
Data Access Strategies
This chapter covers the following topics:

Efficient Use of Descriptors

Collation Descriptor

Superdescriptor

Subdescriptor

Phonetic Descriptor

Hyperdescriptor

File Coupling

User-Assigned ISNs

Using the ISN as a Descriptor

ADAM Usage

Efficient Use of Descriptors
Descriptors are used to select records from a file based on user-specified search criteria and to control a
logical sequential read process. The use of descriptors is thus closely related to the access strategy used for
a file. Additional disk space and processing overhead are required for each descriptor, particularly those
that are updated frequently. The following guidelines may be used in determining the number and type of
descriptors to be defined for a file:

If data in certain fields needs to be resequenced before processing on the field can continue, a
collation descriptor can be defined.

The distribution of values in the descriptor field should be such that the descriptor can be used to
select a small percentage of records in the file;

Additional descriptors should not be defined to further refine search criteria if a reasonably small
number of records can be selected using existing descriptors;

If two or three descriptors are used in combination frequently (for example, area, department,
branch), a superdescriptor may be used instead of defining separate descriptors;

If the selection criterion for a descriptor always involves a range of values, a subdescriptor may be
used;

If the selection criterion for a descriptor never involves the selection of null value, and a large
number of null values are possible for the descriptor, the descriptor should be defined with the
null-value suppression (NU) option;

1

Data Access StrategiesData Access Strategies

If a field is updated very frequently, it should normally not be defined as a descriptor;

Files that have a high degree of volatility (large number of additions and deletions) should not
contain a large number of descriptors.

Collation Descriptor
A collation descriptor is used to sort (collate) descriptor field values in a special sequence based on a
user-supplied algorithm. An alpha or wide field can be defined as a parent field of a "collation" descriptor.

Special collation descriptor user exits are specified using the ADARUN parameter CDXnn (CDX01
through CDX08). The user exits are used encode the collation descriptor value or decode it back to the
original field value. Each collation descriptor must be assigned to a user exit, and a single user exit may
handle multiple collation descriptors.

Superdescriptor
A superdescriptor is a descriptor created from a combination of up to 20 fields (or portions of fields). The
fields from which a superdescriptor is derived may or may not be descriptors. Superdescriptors are more
efficient than combinations of ordinary descriptors when the search criteria involve a combination of
values. This is because Adabas accesses one inverted list instead of several and does not have to ‘AND’
several ISN lists to produce the final list of qualifying records. Superdescriptors can also be used in the
same manner as ordinary descriptors to control the logical sequence in which a file is read.

The values for search criteria that use superdescriptors must be provided in the format of the
superdescriptor (binary for superdescriptors derived from all numeric fields, otherwise alphanumeric). If
the superdescriptor format is binary, the input of the search value using an interactive query or report
facility such as Natural may be difficult.

Subdescriptor
A descriptor that is derived from a portion of a field is called a subdescriptor. The field used to derive the
subdescriptor may or may not be a descriptor. If a search criteria involves a range of values that is
contained in the first ‘n’ bytes of an alphanumeric field or the last ‘n’ bytes of a numeric field, a
subdescriptor may be defined from only the relevant bytes of the field. Using a subdescriptor allows the
search criterion to be represented as a single value rather than a range. This results in more efficient
searching, since Adabas does not need to merge intermediate ISN lists; the merged list already exists.

For example, assume an alphanumeric field AREA of 8 bytes, the first 3 of which represent the region and
the last 5 the department. If only records for region ‘111’ are desired, a search criterion of ‘AREA =
11100000 thru 11199999’ would be required without a subdescriptor. If the first three bytes of AREA
were defined as a subdescriptor, a search criterion equal to ‘REGION = 111’ can be specified.

Phonetic Descriptor
A phonetic descriptor may be defined to perform phonetic searches. Using a phonetic descriptor in a Find
command returns all the records that contain similar phonetic values. The phonetic value of a descriptor is
based on the first 20 bytes of the field value with only alphabetic values being considered (numeric values,
special characters and blanks are ignored).

2

Collation DescriptorData Access Strategies

Hyperdescriptor
The hyperdescriptor option enables descriptor values to be generated based on a user-supplied algorithm.
Up to 31 different hyperdescriptors can be defined for a single physical Adabas database. Each
hyperdescriptor must be named by an appropriate HEXnn ADARUN statement parameter in the job where
it is used.

Hyperdescriptors can be used to implement n-component superdescriptors, derived keys, or other key
constructs. For more information about hyperdescriptors, see the documentation on User and Hyperexits,
as well as the ADACMP utility description in the Adabas Utilities documentation.

File Coupling
Using a single Find command, file coupling allows the selection of records from one file that are related
(coupled) to records containing specified values in a second file. For example, assume two files,
CUSTOMER and ORDERS, that contain customer and order information, respectively. Each file contains
the descriptor CUSTOMER_NUMBER, which is used as the basis for relating (coupling) the files.

Physical Coupling

The files are physically coupled using the ADAINV utility, which creates a pair of additional indices in
the inverted list indicating which records in the CUSTOMER file are related (coupled) to records in the
ORDERS file (that is, have the same customer number) and vice versa. Once the files have been coupled,
a single Find command containing descriptors from either file may be constructed, for example:

FIND CUSTOMER WITH NAME = JOHNSON
 AND COUPLED TO ORDERS
 WITH ORDER-MONTH = JANUARY

Physical coupling may be useful for information retrieval systems in which file volatility is very low, or
the additional overhead of the coupling lists is deemed insignificant compared with the ease with which
queries may be formulated. It may also be useful for small files which are primarily query-oriented.

Physical coupling may involve a considerable amount of additional overhead if the files involved are
frequently updated. The coupling lists must be updated if a record in either of the files is added or deleted,
or if the descriptor used as the basis for the coupling is updated in either file.

Physical coupling requires additional disk space for the storage of the coupling indices. The space
required depends on the number of records that are related (coupled). The best case is where the coupling
descriptor is a unique key for one of the files. This means that only a few records in one file will be
coupled to a given record in the other file. The worst case is when a many-to-many relationship exists
between the files. This will result in a large number of records being coupled to other records in both files.

A descriptor used as the basis for coupling should normally be defined with the null suppression option so
that records containing a null value are not included in the coupling indices.

See the Adabas Utilities documentation, the ADAINV utility, for additional information on the use of
coupling.

3

Data Access StrategiesHyperdescriptor

Logical Coupling

A multifile query may also be performed by specifying the field to be used for interfile linkage in the
search criteria. This feature is called logical coupling and does not require the files to be physically
coupled.

Although this technique requires read commands, it is normally more efficient if the coupling descriptor is
volatile because it does not require any physical coupling lists. It should also be noted that the user
program need only specify the search criteria and the field to be used for the soft-coupling link. Adabas
performs all necessary search, read and internal list matching operations.

User-Assigned ISNs
The user has the option of assigning the ISN of each record in a file rather than having this done by
Adabas. This technique permits later data retrieval using the ISN directly rather than using the inverted list
technique. This requires that the user develop his own method for the assigning a unique ISN to each
record. The resulting ISNs must be within the range of the MINISN and MAXISN parameter values
specified by the ADALOD utility when the file is loaded.

Using the ISN as a Descriptor
The user may store the ISN of related records in another record in order to be able to read the related
records directly without using the Inverted Lists.

For example, assume an application which needs to read an order record and then find and read all
customer records for the order. If the ISN of each customer record (for more than one customer per order,
a multiple-value field could be used) were stored in the order record, the customer records could be read
directly since the ISN is available in the order record.

Storing the customer record ISNs avoids having to issue a FIND command to the customer file to
determine the customer records for the order. This technique requires that the field containing the ISNs of
the customer records be established and maintained in the order record, and assumes that the ISN
assignment in the customer file will not be changed by a file unload and reload operation.

ADAM Usage
The Adabas direct access method (ADAM) facility permits the retrieval of records directly from Data
Storage without access to the inverted lists. The Data Storage block number in which a record is located is
calculated using a randomizing algorithm based on the ADAM key of the record. The use of ADAM is
completely transparent to application programs and query and report writer facilities.

The ADAM key of each record must be a unique value. The ISN of a record may also be used as the
ADAM key.

While accessing ADAM files is significantly faster, adding new records to and loading of ADAM files is
slower than for standard files because successive new records will not generally be stored in the same
block.

4

User-Assigned ISNsData Access Strategies

If an ADAM file is to be processed both randomly and in a given logical sequence, the logical sequential
processing may be optimized by using the bit truncation feature of the ADALOD utility. This feature
permits the truncation of a user-specified number of bits from the rightmost portion of each ADAM key
value prior to its usage as input to the randomizing algorithm. This will cause records of keys with similar
leftmost values to be stored in the same Data Storage block.

It is important not to truncate too many bits, however, as this may increase the number of overflow
records and degrade random access performance. The reason is, overflow records which cannot be stored
in the blocks located using the ADAM key are stored elsewhere using the standard inverted list process;
overflow records must also be located using the inverted list. The only other way to minimize overflow is
to specify a relatively large file and padding factor size.

ADAM will generally use an average of 1.2 to 1.5 I/O operations (including an average of overflow
records stored under Associator control in other blocks of the file), rather than the three to four I/O
operations required to retrieve a record using the inverted lists. Overflow records are also retrieved using
normal Associator inverted list references.

The variable factors of an ADAM file that affect performance are, therefore, the amount of disk space
available (the more space available, the fewer the overflow records which need to be located with an
inverted list), the number of bits truncated from the ADAM key, and the amount of record adding and
update activity. The ADAMER utility may be used to determine the average number of I/O operations for
various combinations of disk space and bit truncation. See the Adabas Utilities documentation for
additional information.

5

Data Access Strategies ADAM Usage

	Data Access Strategies
	Efficient Use of Descriptors
	Collation Descriptor
	Superdescriptor
	Subdescriptor
	Phonetic Descriptor
	Hyperdescriptor
	File Coupling
	Physical Coupling
	Logical Coupling

	User-Assigned ISNs
	 Using the ISN as a Descriptor
	 ADAM Usage

