
Adabas for Linux, UNIX and Windows

Command Reference

Version 7.0.1

October 2022

This document applies to Adabas for Linux, UNIX and Windows Version 7.0.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1987-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADAOS-CMDREF-701-20220622

Table of Contents

Command Reference ... ix
1 Conventions ... 1

Notation used in examples .. 2
2 About this Documentation .. 3

Document Conventions ... 4
Online Information and Support ... 4
Data Protection ... 5

3 Concepts And Facilities ... 7
Adabas Command Overview .. 8
User Types .. 14
Competitive Database Access .. 17
System-Generated Fields .. 32

4 Calling Adabas .. 33
Linking Application Programs .. 34
Specifying an ACB Interface Direct Call .. 38
Specifying an ACBX Interface Direct Call .. 39
Mixing ACB and ACBX Direct Calls .. 42
Adabas Control Block Structures (ACB and ACBX) .. 43
Adabas Buffer Descriptions (ABDs) .. 62
Defining Buffers ... 67
Understanding the Different Buffer Types .. 67
Format and Record Buffers .. 69
Search and Value Buffers ... 91
Multifetch Buffers ... 104
ISN Buffer ... 105
Summary of Adabas Format Conversion ... 106
Calling Adabas from Application Servers ... 107
Calling Adabas with Authentication ... 110

5 Programming Considerations ... 113
Using Command IDs .. 114
Using Format Buffer IDs .. 117
ISN List Processing ... 120
Using the Multifetch Feature .. 125
ACB versus ACBX Functionality ... 127
System Generated Fields .. 128
Read Integrity ... 129
Features in the Adabas Command Interface for Large Object (LOB) Support 130

6 ADABAS COMMANDS .. 133
7 A1 Command (Record Update) ... 135

Function and Use .. 136
Control Block .. 140
Format Buffer ... 143
Record Buffer .. 143

iii

Search Buffer .. 144
Value Buffer .. 144
Additional Considerations ... 144
Example .. 148

8 BT Command (Backout Transaction) ... 151
Function and Use .. 152
Control Block .. 156
ISN Buffer ... 157

9 C1 Command (Write a Checkpoint) .. 159
Function and Use .. 160
Control Block .. 163
Example .. 163

10 C5 Command (Write User Data to Protection Log) ... 165
Function and Use .. 166
Control Block .. 168
Record Buffer .. 168
Example .. 168

11 CL Command (Close User Session) ... 171
Function and Use .. 172
Control Block .. 176
Record Buffer .. 176
Examples .. 177

12 E1 Command (Delete Record) ... 179
Function and Use .. 180
Control Block .. 185
Search Buffer .. 186
Value Buffer .. 186
Examples .. 186

13 ET Command (End Transaction) ... 189
Function and Use .. 190
Control Block .. 196
Record Buffer .. 197
ISN Buffer ... 197
Examples .. 198

14 HI Command (Hold Record) ... 199
Function and Use .. 200
Control Block .. 203
Examples .. 203

15 L1/L4 Command (Read Record) .. 205
Function and Use .. 206
Control Block .. 212
Format Buffer ... 216
Record Buffer .. 216
ISN Buffer/Multifetch Buffer .. 216
Additional Considerations ... 217

Command Referenceiv

Command Reference

Examples .. 217
16 L2/L5 Command (Read Physical Sequence) .. 231

Function and Use .. 232
Control Block .. 236
Format Buffer ... 239
Record Buffer .. 239
ISN Buffer/Multifetch Buffer .. 239
Additional Considerations ... 240
Examples .. 240

17 L3/L6 Command (Read Logical Sequence) .. 243
Function and Use .. 244
Control Block .. 249
Format Buffer ... 254
Record Buffer .. 254
Search Buffer .. 254
Value Buffer .. 254
ISN Buffer/Multifetch Buffer .. 255
Additional Considerations ... 255
Examples .. 256

18 L9 Command (Read Descriptor Values) .. 263
Function and Use .. 264
Control Block .. 268
Format Buffer ... 271
Record Buffer .. 272
Search Buffer .. 272
Value Buffer .. 272
ISN Buffer/Multifetch Buffers .. 272
Additional Considerations ... 273
Examples .. 273

19 LF Command (Read Field Definitions) ... 277
Function and Use .. 278
Control Block .. 281
Record Buffer for Command Option 2 = 'S' .. 282
Record Buffer for Command Option 2 = Blank .. 287
Record Buffer for Command Option 2 = ‘X’ and ‘F’ .. 288
Example .. 294

20 MC Command (Multi-Call) ... 295
Function and Use .. 296
Control Block .. 298
Format Buffer ... 299
Record Buffer .. 299
Search Buffer .. 299
Value Buffer .. 299
ISN Buffer ... 299
Processing Considerations ... 300

vCommand Reference

Command Reference

21 N1/N2 Command (Add Record) ... 305
Function and Use .. 306
Control Block .. 309
Format Buffer ... 310
Record Buffer .. 311
Additional Considerations ... 311
Examples .. 313

22 OP Command (Open User Session) ... 317
Function and Use .. 318
User Types .. 318
Control Block .. 323
Record Buffer .. 326
User Queue Element ... 328
Using OP to close previous session of same user .. 328
Examples .. 329

23 RC Command (Release Command ID) .. 333
Function and Use .. 334
Control Block .. 338
Examples .. 339

24 RE Command (Read ET User Data) ... 343
Function and Use .. 344
Control Block .. 346
Record Buffer .. 347
Examples .. 347

25 RI Command (Release Record) .. 349
Function and Use .. 350
Control Block .. 352
Example .. 352

26 S1/S2/S4 Command (Find Records) ... 353
Function and Use .. 354
Control Block .. 359
Format Buffer ... 363
Record Buffer .. 363
Search and Value Buffers .. 364
ISN Buffer ... 364
Examples .. 364

27 S8 Command (Process ISN Lists) ... 375
Function and Use .. 376
Control Block .. 379
ISN Buffer ... 381
Example .. 381

28 S9 Command (Sort ISN List) .. 383
Function and Use .. 384
Control Block .. 387
ISN Buffer ... 390

Command Referencevi

Command Reference

Examples .. 390
29 Appendix A - File Definitions (Examples) .. 393
30 Appendix B - File Definition For Example Programs ... 397
31 Appendix C - C Examples ... 399

C Example .. 400
C Example for LOB Processing .. 406

32 Appendix D - Example Files in the Adabas Kit ... 417

viiCommand Reference

Command Reference

viii

Command Reference

This document describes the Adabas commands for accessing and manipulating an Adabas
database. The commands are generally embedded as calls to Adabas from within an application
written in a third generation language such as C (the call interface is described in the document
Calling Adabas).

This document is intended for software developerswhowish to useAdabas direct calls to develop
database applications.

The document consists of the following:

Concepts and Facilities, provides an overview of the types of commands available, and howdatabase
integrity is maintained in a multi–user environment.

Calling Adabas, provides linking information for Adabas application programs, and describes the
standard calling procedure for Adabas user calls. It also describes in detail the Adabas Control
Block, Format Buffer, Record Buffer, Search Buffer, Value Buffer and ISN Buffer, with many
examples of usage.

Programming Considerations, describeAdabas programming featureswhich can provide significant
improvement in the performance of an application. The topics discussed are: using command IDs;
special processing based on ISN lists; using themultifetch feature to retrievemultiple recordswith
a single Adabas call.

Adabas Commands, provides a detailed description for each Adabas command.

Appendix A, File Definitions, provides a summary of the file and record definitions that are used in
the examples throughout this documentation.

Appendix B, File Definition for Sample Program, contains the file definition used for the sample
program in Appendix C.

Appendix C provides an example of an application program written in C, using Adabas calls to
access and modify an Adabas database.

Appendix D lists the example files provided in the Adabas kit.

ix

x

1 Conventions

■ Notation used in examples .. 2

1

The following syntax conventions are used in this documentation:

{ ... }
items included in curly brackets are mandatory, i.e. you must supply a value.

[...]
items included in square brackets are optional, i.e. you do not have to supply a value.

a | b
The vertical bar "|" means that you can supply one or other of the two values on either side
of it, but not both. So "a | b" means that you can either supply "a" or "b" but not both.

,...
A comma followed by three dots means that you can repeat the item to the left of the comma
as often as you want. You must separate successive repetitions by a comma.

Notation used in examples

The examples given in this documentation use the following notation:

Character strings are enclosed in double quotes. Hexadecimal values are preceded by the two
characters "0x" ("^X"). The character 'b' within a character string denotes a blank character.

Command Reference2

Conventions

2 About this Documentation

■ Document Conventions .. 4
■ Online Information and Support ... 4
■ Data Protection ... 5

3

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Command Reference4

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

5Command Reference

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

6

3 Concepts And Facilities

■ Adabas Command Overview ... 8
■ User Types .. 14
■ Competitive Database Access ... 17
■ System-Generated Fields ... 32

7

This chapter covers the following topics:

■ Adabas Command Overview
■ User Types
■ Competitive Database Access

Adabas Command Overview

Adabas provides a powerful and flexible set of commands to perform database operations.

This section provides an overview of the Adabas commands.

The commands have been categorized by function:

■ Database Query
■ Data Storage Read
■ Associator Read
■ Database Modification
■ Logical Transaction Processing
■ Checkpointing
■ Special Purpose

Database Query

The S1, S2 and S4 commands are used to performdatabase query. The S8 and S9 commands perform
special processing of ISN lists resulting from a database query.

S1/S4

The S1/S4 command selects a set of records which satisfy given search criteria. The search criteria
may be constructed using a single field/derived descriptor or several field/derived descriptors
connected by logical operators.

Adabas returns, as a result of an S1/S4 command, the number of records which satisfy the search
criteria, and a list of the ISNs of the selected records.

An option is available which permits the record identified by the first ISN in the resulting ISN list
to be read from Data Storage.

The S4 commandmay be used to place the record identified by the first ISN in the ISN list in hold
status. This prevents another user from updating the record until it is released.

Command Reference8

Concepts And Facilities

S2

The S2 command is similar to the S1 command, but the ISNs of the records selected are returned
in the sort sequence of the user-specified search criteria. Also, the search criteria can specify non-
descriptor fields. Ascending or descending sequence may be specified.

S8 and S9

The S8 command performs logical operations on two ISN lists previously created by an S1/S4, S8
or S9 command.

The logical operations AND, OR, and NOT are permitted.

AND results in an ISN list containing ISNs that are present in both ISN lists.

OR results in an ISN list containing ISNs that are present in either ISN list.

NOT results in an ISN list containing ISNs that are present in the first list but not in the second
list.

The S9 command sorts an ISN list created previously by a S1/S4, S2, S8 or S9 command.

The ISN list may be sorted by ascending ISN sequence, or by one to three user-specified fields
(ascending or descending sequence).

The ISN lists resulting from any Sx command may be saved on the Adabas temporary working
space for later retrieval during the user session.

Data Storage Read

The L1-L6 commands are used to read records from Data Storage.

L1/L4

The L1 command reads a single record from Data Storage.The user specifies the file number, ISN
of the record to be read and the fields for which values are to be returned. Adabas returns the re-
quested field values in the desired format.

The L4 command is the same as the L1 command, except that the record is placed in hold status.
This prevents other users from updating the record until it is released.

The GET NEXT option may be used to read one or more records identified by ISNs contained in
an ISN list without the user having to specify each ISN.

The READ ISN SEQUENCE optionmay be used to read records in ISN sequence. The record with
the ISN specified by the user is read, unless it is not present, in which case the record which has
the next-highest ISN is read.

9Command Reference

Concepts And Facilities

L2/L5

The L2 command reads the records from a file in the sequence in which they are physically stored
in Data Storage. The user specifies the file to be read and the fields for which values are to be re-
turned. Adabas returns the requested field values.

The L5 command is the same as the L2 command, except that the record read is placed in hold
status. This prevents other users from updating the record until it is released.

L3/L6

The L3 command reads records from Data Storage in the logical sequence of a user-specified
descriptor. The user specifies the file to be read, the descriptor to be used for sequence control,
the value(s) at which the command is to begin and/or end and the fields for which values are to
be returned. The records are returned in ascending or descending sequence of the specified
descriptor's values.

The L6 command is the same as the L3 command, except that the record read is placed in hold
status. This prevents other users from updating the record until it is released.

Associator Read

The L9 and LF commands read information directly from the Associator.

L9

The L9 command returns each value contained in the inverted list for a given descriptor and the
number of records in which the value is contained.

The user specifies the file and descriptor for which values are to be returned and the value(s) at
which the command is to begin and/or end.

The values are returned in ascending or descending sequence.

LF

The LF command returns the field definitions for a file.

The user specifies the file for which the field definitions are to be returned.

The field definitions for all the fields in the file are returned. Each field definition consists of the
field name, level number, standard format, standard length and definition options.

Command Reference10

Concepts And Facilities

Database Modification

The A1, E1 and N1/N2 commands are used to modify the database. The record to be modified
withA1 or to be deletedwith E1must be held before themodification or deletion can be performed.

A1

The A1 command updates the contents of one or more fields within a record. The user specifies
the file and the ISN of the record to be updated, together with the fields to be updated and the
values to be used for updating.

Adabas performs all necessary modifications to the Associator and Data Storage. Associator up-
dating is required only if one or more descriptors are updated.

E1

The E1 command deletes a record. The user specifies the file and ISN of the record to be deleted.

Adabas performs all necessary modifications to the Associator and Data Storage.

N1/N2

The N1/N2 command adds a new record to a file. The user specifies the file to which the record
is to be added together with the fields and field values to be used.

Adabas performs all necessary modifications to the Associator and Data Storage.

If the N1 command is used, the ISN for the new record is assigned by Adabas. If N2 is used, the
ISN is provided by the user.

Logical Transaction Processing

The BT, ET and RE commands are used for logical transaction processing. The primary purpose
of using logical transaction commands is to permit a user restart beginning after the last successfully
processed transaction in the event of an abnormal termination of the user or Adabas. The concept
of subtransactions allows you to back out a unit of work within the current transaction, which is
not the complete transaction.

11Command Reference

Concepts And Facilities

BT

The BT commandbacks out the current transaction or one ormore subtransactions being processed.

Allmodifications resulting fromupdates, add and delete records performed during the transaction
are removed, and all records placed in hold status during the transaction are released.

ET

The ET command indicates the end of the current transaction or subtransaction.

An ET command causes Adabas to physically store all data protection information related to the
transaction. This information is used to apply all the updates performed during the transaction
at the start of the next Adabas session if the current session is terminated before these updates are
physically applied to the database.

The ET command releases all the records which have been placed in hold status during the
transaction.

The ET command may be used to store user data in an Adabas system file. This data may be re-
trieved with an OP or RE command and may be used in conjunction with a user restart.

RE

The RE command reads user data previously stored in an Adabas system file with a CL or ET
command.

Checkpointing

The C1 command is used for user or Adabas checkpointing.

C1

The C1 command causes a checkpoint to be taken.

The C1 command results in the physical writing of all current data protection information to the
data protection log, and thewriting of a checkpoint entry to the data protection log and the system
checkpoint file. This checkpoint entry may be needed as a reference point for subsequent removal
or reapplication of updates.

Command Reference12

Concepts And Facilities

Special Purpose

CL

The CL command terminates a user session.

The CL command results in the physical writing of all current data protection information to the
data protection log; the release of all records currently in hold status for the user; the release of all
the command IDs (and corresponding ISN lists) currently assigned to the user and the storage of
user data in an Adabas system file (optional).

C5

The C5 command writes user data to the Adabas protection log.

HI

The HI command places a record in hold status. The user specifies the file and ISN of the record
to be placed in hold status.

A record placed in hold status cannot be updated by another user until it is released.

MC

The MC command groups other Adabas commands together as subcalls in a single multi-call.

The MC command is only allowed with the ACB interface. If MC commands are performed with
theACBX interface, the result is undefined - this behaviourmay be changed in one of the following
update packages.

OP

The OP command indicates the beginning of a user session. An OP command is required for:

■ Users performing exclusive control updating;
■ Access-only users;
■ Users who wish to store user data in an Adabas system file for retrieval during a subsequent
session;

■ Users who are restricted to a subset of files in the database;
■ Users who want to use subtransactions.

13Command Reference

Concepts And Facilities

RC

The RC command releases a command ID (or all command IDs) currently active for the user.

RI

The RI command releases a record from hold status if it was not updated.

The user specifies the file and ISN of the record to be released. The user may also request that all
records currently held by the user are to be released, provided that none of the recordswas updated.

User Types

Depending on the type of file access and update performed by the user, Adabas recognizes several
user types:

■ Access-only user (user type "AC")
■ ET logic user (user type "ET")
■ Exclusive control user (user type "EX")
■ Exclusive control user with ET logic (user type "EX, ET")
■ Utility user (user type "UT")

Access-only user

An access-only user makes read-only accesses to files. Such a user may not issue hold, update,
delete, add record, ET or BT commands.

Note: Although shared locks may also seem to be useful for users who only want to read
data, shared locks also require transactions,which are only supported for ETusers. Therefore,
L4-6 commands and S4 commands, which place records in shared or exclusive hold status
are generally not allowed for access-only users: access-only users can only perform dirty-
read operations.

A user becomes an access-only user for the current session by issuing an OP command with only
the ACC parameter specified in the record buffer (see the OP command for more details).

Access-only users are identified in the ADAOPR DISPLAY=UQ display by "AC" in the Type
column.

Command Reference14

Concepts And Facilities

ET logic user

An ET logic user uses transaction logic for the current session (see the section Logical Transaction
Processing for further details). This means that all records that are updated during the course of
a transactionmust be kept in hold status. The transactionmust endwith an ET, BT or CL command,
otherwise the whole transaction is backed out after the corresponding transaction duration time
limit (TT) is exceeded (see the section Time Limits for further details).

An ET logic user can be at ET status or not. Being at ET status means that no record is held by this
user.

A user becomes an ET logic user in each of the following cases (see the OP command for more
details):

■ by issuing an OP command with the UPD parameter specified in the record buffer.
■ by starting the session without an OP command (implicit OP command).

ET logic users are identified in the ADAOPR DISPLAY=UQ display by "ET" in the Type column.

Exclusive control user

An exclusive control user opens a file for reading or updating, and access to the file by other users
is either restricted to read-only, or is prevented altogether while the exclusive control user session
is active.

In addition to preventing competitive access or updating, exclusive controlmay be used to simplify
recovery procedures, in that the file(s) may be restored regardless of other user activity.

There are two types of file access for an exclusive control user:

■ Exclusive file updating: A file is opened for updating. Other users can read but not update the
file. A user becomes an exclusive control userwith exclusive file updating for the current session
by issuing an OP command with the EXU parameter specified in the record buffer (see the OP
command for more details).

■ Exclusive file open: A file is opened for updating. Other users can neither read nor update the
file. A user becomes an exclusive control user with exclusive file open for the current session
by issuing an OP command with the EXF parameter specified in the record buffer (see the OP
command for more details).

In general, exclusive control user sessions do not use transaction logic (see however the following
section on exclusive control users with ET logic). They write an OPEN checkpoint at the start of
the session and a CLSE checkpoint at the end of the session.

The decision whether to use record hold commands depends not only on the open mode of the
current file but also on the user type. An exclusive userworkingwith ET logicmust keep all records
in hold before they can be modified, in the sameway as for real transaction processing, regardless

15Command Reference

Concepts And Facilities

of whether the file is opened in an exclusive update mode or not. Only an exclusive control user
without ET logic can update records without ISN hold logic in files opened for exclusive use.

An exclusive control user cannot add an update file to its file list. This is, however, possible for
an exclusive control user with ET logic (see the next section for further information).

Users performing exclusive controlmay use the C1 command to request a checkpoint to bewritten.
This checkpoint may be subsequently used as a reference point to remove updates which have
been applied after the checkpoint, or to re–apply the updates that were applied before the check-
point.

Exclusive control users are identified in the ADAOPR DISPLAY=UQ display by "EX" in the Type
column.

Exclusive control user with ET logic

This applies when an exclusive control user wishes to use transaction logic for the current session.
This means that all updates to a file are performed with transaction logic, even though the user
has exclusive update access to the file. TheOPENandCLSE checkpoints arewritten at the beginning
and end of the session, in the same way as for an exclusive control user.

An exclusive userworkingwith ET logicmust keep all records in hold before they can bemodified,
in the same way as for real transaction processing, regardless of whether the file is opened in an
exclusive update mode or not.

A user becomes an exclusive control user with ET logic in each of the following cases (see the OP
command for more details):

■ The user issues an OP command, specifying in the record buffer either exclusive file updating
(EXU) or exclusive file open (EXF), as well as concurrent file updating (UPD).

■ The user issues an ET command in an exclusive control user session.

An exclusive control user with ET logic can add an update file to its file list. This is not possible
for an exclusive control user without ET logic.

Users performing exclusive controlmay use the C1 command to request a checkpoint to bewritten.
This checkpoint may be subsequently used as a reference point to remove updates which have
been applied after the checkpoint, or to reapply the updates thatwere applied before the checkpoint.

Exclusive control users with ET logic are identified in the ADAOPR DISPLAY=UQ display by
"EX,ET" in the Type column.

Command Reference16

Concepts And Facilities

Utility user

A utility user is defined if the session is started by an Adabas utility.

Utility users are identified in the ADAOPR DISPLAY=UQ display by "UT" in the Type column.

Competitive Database Access

This section describes the Adabas facilities used to ensure data integrity in a competitive updating
environment.

Competitive database access is in effect when two or more users are accessing the same Adabas
file(s). Adabas addresses the following integrity problems that can come up in such a situation:

■ Update transactions - it must not happen that updates are lost as a result of two users updating
the same record at the same time.

■ Read transactions - it must not happen that the records found by a search transaction are not
consistent as a result of several records being updated in the same transaction; then you could
see some records in the state before the update and some records in the state after the update.

Acquiring and releasing shared and exclusive locks, resource interlock and exclusive control up-
dating, are presented in this section.

For this purpose Adabas supports shared or read (S) locks and exclusive or write (X) locks of re-
cords:

■ Auser can only get a shared lock for a record if no other user has an exclusive lock for the record
or is waiting for an exclusive lock for the record. More than one user can have a shared lock for
the same record at the same time. Acquiring a shared lock for a record is also called placing a
record in shared hold status.

■ Auser can only get an exclusive lock for a record if no other user has a shared lock or an exclusive
lock for the record. Acquiring an exclusive lock for a record is also called placing a record in
exclusive hold status.

■ These locks are not sufficient to fulfil all of the integrity requirements that can be necessary:
Adabas first determines which records fulfill a search criterion, but only acquires a lock for the
resulting records one after the other. Therefore, it may happen that at the time the records are
read, some recordsmay no longer fulfil the search criterion, or other records fulfilling the search
criterion may exist before all records have been processed. If using shared and exclusive locks
is not sufficient, you can lock the complete file for updates.

17Command Reference

Concepts And Facilities

Record Locking Commands

Arecord is locked byusing the FINDWITHHOLDcommand (S4), READWITHHOLDcommands
(L4, L5, L6), or a HOLD ISN (HI) command. An N1/N2 command issued by an ET Logic user also
puts the record being added in exclusive hold status. A1 commands with an appropriate option
and E1 commands can also cause a record to be exclusively locked.

The successful completion of any of these commands results in the record (ISN) being shared or
exclusively locked. If this is not possible, because the record is already locked by another user, the
user issuing the record hold command is placed in await status until the record becomes available,
at which time Adabas automatically reactivates the command.

If the return option is used with any of the record hold commands and the record to be held is
held by another user, Adabas returns response code 145 instead of placing the user in await status.

A user who issues a FIND (S1) or READ (L1, L2, L3) command is able to read the record regardless
of the fact that the record is locked for another user (so-called dirty read).

Locking Records with HI, L4, L5, L6 and S4 Commands

You can specify a given lock type by specifying the appropriate command option 3 for the com-
mands HI, L4, L5, L6 and S4 (see table below). If the lock cannot be granted, Adabas does the fol-
lowing:

■ If the Adabas command was issued with the return option, Adabas returns response code 145;
■ If Adabas detects a deadlock situation, it returns response code 9 and rolls back the transaction
to resolve the deadlock situation;

■ Otherwise Adabas suspends the command execution until either the requested locking mode
can be granted or the transaction time limit is exceeded.

The return option is specified in command option 1, which is also used to specify whether the
multifetch option is used. The following table shows the mapping between command option 1
and multifetch option and return option:

Return OptionMultifetch OptionCommand Option 1

NoYesM

YesYesO

YesNoR

NoNoBlank

The lock type is specified with command option 3. This command option also specifies when a
shared lock is released again. The following table shows the usage of command option 3:

Command Reference18

Concepts And Facilities

Time When Lock Is ReleasedLock
Type

Command Option 3

XBlank ■ End or backout of transaction
■ RI command (only if record has not been updated)

SC (not for HI) ■ End of read command (only if record has not yet been locked
before by another command)

SQ (notwithmultifetch, L4 only
with command option 2 = N,

■ Start of next sequential read command or RC for this read
sequence; if the same record has been readwith commandoption

S4 only with non-blank, Q in more than one command sequence, only when the next
non-zero CID and ISN buffer
length 4, not for HI)

record has been read for all these command sequences, or an RC
has been performed. It is not released if another command has
locked the same record exclusively, or the record has been
shared-locked with command option S.

■ One of the events that releases records shared locked with
command option S.

SS ■ End or backout of transaction
■ Backout subtransaction
■ RI command

Notes:

1. The S4 command puts only the first record in hold status.

2. The C option avoids dirty reads without keeping the record in shared hold status beyond the
current read operation.

3. The Q option can be used to perform more than one consistent read operations on the same
record, and the record is released again when the next record for the read sequence is read. If
the current transaction is committed or rolled back before the next record is read, then this also
implies the release of the lock.

4. It is possible to release the locks before the time defined for the command options blank, Q or
S with an RI command, but an exclusive lock will be released only if the record has not been
updated in the current transaction.

5. Since command option 3 is not contained in the ACB, shared locks are only supported only
with the ACBX interface.

19Command Reference

Concepts And Facilities

Record Update Using Hold Option

A user may update/delete any record in exclusive hold status for that user by issuing an A1 or E1
command.

An A1 command will only be executed if the record is in exclusive hold status or the H, R, L, T or
' optionwas specified. If none of these options is used, and the record is not in hold status, response
code 144 is returned. If the record is currently locked by another user and the R or U option is
used, response code 145 is returned. If the record is currently locked by another user and the H
or L option is used, the A1 command waits until the record is available again. If a deadlock is de-
tected, response code 9 is returned.

For more information on using the T option with the A1 command, please refer tp Programming
Considerations, System Generated Fields.

If an E1 command is issued for a record which is not in hold status for the user, Adabas will place
the record in hold status for the user provided that the record is not in hold status for another
user. If the record is currently locked by another user and the R option is used, response code 145
is returned. If the R option is not available, the E1 command waits until the record becomes
available again. If a deadlock is detected, response code 9 is returned.

If a user does not place a record to be deleted in hold statuswhen he reads the record before issuing
the E1 command, there is no guarantee that the record will not be updated or deleted by another
user before the E1 command is executed.

Hold Queue Response Code Summary

Response code 9 is returned when Adabas detects a deadlock situation and performs a backout
transaction to resolve the deadlock.

Response code 47 is returned if the user has reached themaximumnumber of held records allowed
for one user (NISNHQ parameter of ADANUC and ADAOPR).

Response code 144 is returnedwhen an A1 command is issued and the record is not in hold status
for the user.

Response code 145 is returned if any of the following conditions arise:

■ A command is issued which requires a record to be placed in hold status, the record is already
held by another user and the return option (command option 1 field = R) was specified with the
command. In this case, the value 0 is returned in the Additions 2 field;

■ An A1, E1 or N1/N2 command was issued and there was no available entry in the hold queue
for the record. In this case, the hexadecimal value FFFFFFFF is returned in the Additions 2 field.

Command Reference20

Concepts And Facilities

Record Lock Release

ET, BT, CL or OP commands, which commit or roll back a transaction, release the locks for all re-
cords locked by the user; for ET and BT it is also possible to keep the lock for a subset of the records.

The lock for a single record can also be released with the RI command. However the lock will not
be released if the record has been updated in the current transaction.

The following example shows how commands must wait because of record hold logic:

USER 1 USER 2 USER 3

S4 with CO3=S:
Find ISN 1 and 2
Shared lock for ISN 1
Read ISN 1

S4 with CO3=C:
Find ISN 1 and 2
Shared lock for ISN 1
Read ISN 1
Release shared lock for ISN 1

S4 with CO3=blank:
Find ISN 1 and 2

L4 with CO3=S: Wait for ISN 1
Shared Lock for ISN 2 ¦
Read next ISN 2 ¦

¦
L4 with CO3=S: ¦
EOF ¦

¦
ET: ¦
Release ISNs 1 and 2 V

Exclusive lock for ISN 1
Read ISN 1

A1:
Update ISN 1

L4 with CO3=blank:
Exclusive lock for ISN 2
Read ISN 2

L4 with CO3=C:
Wait for next ISN 2
¦ A1:
¦ Update ISN 2
¦
¦ ET:

21Command Reference

Concepts And Facilities

¦ Commit updates
¦ Release ISNs 1 and 2
V
Read ISN 2

L4 with CO3=C:
EOF

Record Lock Upgrading and Downgrading

A record lock can be upgraded from shared to exclusive by using the same commands that acquire
an exclusive lock for a record that is not yet locked in any way.

A record lock can be downgraded from exclusive to shared by an RI command with command
option 3 = S, but only if the record has not been updated in the current transaction.

Keeping Records in Hold Status beyond Transaction End

Normally when a transaction is committed or rolled back, all records locked for this transaction
are released from hold status. However, it is also possible to keep some or all of the records in
hold status:

■ If you specify an ET or BT command with command option 1 = M, only the records specified in
the ISN buffer are released fromhold status. The remaining locks for the user remain unchanged.

■ If you specify an ET or BT commandwith command option 3 = H, all records locked by the user
remain in hold status, but exclusive locks are downgraded to shared locks.

Subtransactions

The concept of subtransactions allows you to back out a unit ofworkwithin the current transaction,
which is not the complete transaction. In Adabas, subtransactions include the delay of uniqueness
checks and referential integrity checks until the end of a subtransaction.

A user session is enabled for subtransactions by an OP command with the S option. This OP
command starts the first subtransaction:

■ A subsequent ET command with the S option terminates the current subtransaction and starts
a new subtransaction. A savepoint is defined; a savepoint means that you subsequently can
back out all updates in the database performed after this savepoint. Each savepoint has a save-
point ID, which is returned in the command ID field in the Adabas control block for an ET
command with S option. The start of a transaction always gets the savepoint ID 0. Usually the
savepoint ID is incremented by 1 at the start of a new subtransaction, but the savepoint ID can
remain unchanged if there were no locking or update activities in the previous subtransaction.

■ Asubsequent BT commandwith the S option backs out all updates performed after the savepoint
which is specified in this BT command.

Command Reference22

Concepts And Facilities

Note: If you performed an RI command in a subtransaction that is rolled back, the lock
for the record remains lost. This is necessary since other usersmay have locked the record
in the meantime. If the lock for an ISN is still required in the case of a backout subtrans-
action, you must not perform an RI command for this ISN.

■ A subsequent BT command without the S option backs out the current complete transaction
and also starts a new subtransaction.

■ A subsequent ET commandwithout the S option commits the current complete transaction and
also starts a new subtransaction.

Example:

This example assumes the following command sequence:

ET=>CID=7… ET-S=>CID=1… ET-S=>CID=2… BT-S(CID=2)… ET-S=>CID=3… BT-S(CID=1)… ET=>CID=8

Note that there is a semantic difference between the CID returned by an end of transaction and
the CID returned by an end of subtransaction:

■ An end of transaction returns the transaction sequence number of the committed transaction.
■ An end of subtransaction returns the current savepoint ID. The savepoint at the start of the first
subtransaction always gets the savepoint ID 0; therefore, the savepoint ID of the first end of
subtransaction after the ET gets the savepoint ID 1.

The first BT-S command is specified with CID=2, the last subtransaction (with savepoint ID 2) is
rolled back, all update operations after the ET-S=>CID=2 are rolled back.

The second BT-S command is specifiedwith CID=1, the previously started subtransaction is rolled
back, all update operations after the last ET-S=>CID=1 are rolled back.

This means that the transaction finally contains the operations marked by the right (black) arrows
where no left arrow is below; and the left (red) arrows show the update operations rolled back:

23Command Reference

Concepts And Facilities

Note that for a BT command, independent of the BT command that is issued for a subtransaction
or for the whole transaction, Adabasmust not roll back operations again which already have been
rolled back by a previous BT subtransaction.

Within a subtransaction, all Adabas commands and all Ux commands that log their modifications
on WORK are permitted. A combination of both command types is also accepted.

Note: If a user session with subtransaction logic disappears after returning response code
9, a newOP commandwith the S option is necessary to continue with subtransaction logic.

The start and roll back of a subtransaction are always logged on WORK and PLOG.

Referential Integrity

If referential integrity constraints are defined for a file, the referential integrity is checked at the
end of a subtransaction, if subtransactions are activated, and at the end of a store/update delete
command for the file otherwise. Please refer to Administration, FDT Record Structure, Referential
Constraints for further information about how to define referential integrity constraints.

Note: A referential integrity check can result in a large number of implied database opera-
tions, e.g. cascaded deletes.

Resource Interlock

Resource interlockwould occurwhen twousers are placed inwait status because each has requested
a recordwhich is currently in hold status for the other user. However, Adabas detects this situation,
and resolves it by backing out the transaction of the user who would have caused the deadlock

Deadlock Detection

USER 1 ADABAS USER 2
READ WITH HOLD (L4)
FILE 1 ISN 1

ISN 1 HELD FOR
USER 1

READ WITH HOLD
(L4) FILE 1 ISN 2

ISN 2 HELD FOR
USER 2

READ WITH HOLD (L4)
FILE 1 ISN 2

USER 1 MUST WAIT...
ISN 2 HELD BY USER 2

READ WITH HOLD
(L4) FILE 1 ISN 1

DEADLOCK DETECTED
THE CURRENT TRANSACTION

Command Reference24

Concepts And Facilities

OF USER 2 IS BACKED OUT.
USER 2 RECEIVES RESPONSE 9
AND 'DEADLOCK DETECTED' IN
THE ADDITIONS 2 FIELD OF THE
CONTROL BLOCK.

Time Limits

Resource interlock is automatically resolved by Adabas by means of a transaction-duration time
limit.

The time measurement for a transaction begins when the first commandwhich results in a record
being placed in hold status is issued, and ends when an ET, BT or CL command is issued.

If a transaction exceeds the prescribed limit, Adabas automatically generates a backout transaction
(BT) command. This results in the removal of all the updates performed during the transaction
and the release of all the records held during the transaction. Response code 9 is returned on the
next call issued by the user.

Two types of time limits are defined:

1. The transaction time limit (TT), that is the maximum time interval in which a transaction must
be performed. The transaction time limit applies only to ET users not at ET status;

2. The non–activity time limits (TNAx), i.e. time intervals after which certain actions are taken if
no user activity occurred during these time intervals.

The values for these time limits can be set by an OP call, or by ADANUC or ADAOPR (see the
Adabas Utilities for further information). User-defined values specified in theOP call for the current
session override values defined in ADANUC or ADAOPR.

A user activity can be stopped with the STOP command in ADAOPR.

The following actions are performed if a time limit is exceeded and the nucleus is runningwithout
OPTIONS=OPEN_REQUIRED (the abbreviations used here are described after the tables):

TIME OUTUSER TYPE
STOPTNAxTT

Non-ID UserID UserNon-ID UserID User

CLSUQECLSUQE-Access only

CLSUQECLSUQE-ET logic user at ET status

BT,SUQEBT, SUQEBT, RSP9ET logic user not at ET status

CLSE checkpoint, SUQECLSE checkpoint, SUQE-Exclusive control user with ET logic,
at ET status

BT, CLSE checkpoint, SUQEBT, CLSE checkpoint, SUQEBT, RSP9Exclusive control user with ET logic,
not at ET status

25Command Reference

Concepts And Facilities

TIME OUTUSER TYPE
STOPTNAxTT

Non-ID UserID UserNon-ID UserID User

CLSE checkpoint, SUQECLSE checkpoint, SUQE-Exclusive control user without ET
logic

CL--Utility user

The following actions are performed if a time limit is exceeded and the nucleus is running with
OPTIONS=OPEN_REQUIRED:

TIME OUTUSER TYPE
STOPTNAXTT

CLCL-Access only

CLCL-ET logic user at ET status

BT, CLBT, CLBT, RSP9ET logic user not at ET status

CLCL-Exclusive control user with ET logic, at ET status

BT, CLBT, CLBT, RSP9Exclusive control user with ET logic, not at ET status

CLCL-Exclusive control user without ET logic

CL--Utility user

Note that user queue elements arising from global transactions will be handled differently. See
the Administration Manual, section XA Support, User Queue Handling for related information.

SUQE (Scratch a user queue element) means: release all command IDs, scratch the file list, scratch
the User ID (if any), scratch the user type, and set response 9 for the next call. After the next call
has received this response 9, the user queue element is deleted: such user queue elements are not
subject to timeout. (See theOP command for additional information about the user queue element).

BT means: Adabas backs out the user's current transaction.

CL means: Adabas closes the user session.

RSP9 means: Adabas will return response code 9 for the next user command.

ID User means: a user who has specified an identification during opening of a session, which is
used later on to mark entries in logs caused by this user's activities.

Command Reference26

Concepts And Facilities

Example

In the example shown in the figure below, user 1 will eventually exceed the transaction time limit
first, causingAdabas to backout user 1's transaction, thereby permitting user 2 to resumeprocessing.

Adabas informs user 1 that his current transaction has been backed out by returning response
code 9 for the next command issued by user 1. User 1 may repeat the backed–out transaction from
the beginning, or may issue another transaction.

The transaction time limit applies only to programs which employ ET logic.

Transaction Time Limit

USER 1 ADABAS USER 2
ISN 1 HELD FOR
USER 1

READ WITH HOLD
(L4) FILE 1 ISN 2

ISN 2 HELD FOR USER 2
READ WITH HOLD
(L4) FILE 1 ISN 2

USER 1 MUST WAIT*
(ISN 2 HELD BY USER 2)

READ WITH HOLD
(L4) FILE 1 ISN 1

USER 2 MUST WAIT*
(ISN 1 HELD BY USER 1)
(BOTH USERS WAITING)
USER 1 HAS EXCEEDED
TRANS. TIME LIMIT.
ADABAS ISSUES BT
FOR USER 1.
ISN 1 RELEASED.
USER 1 NOTIFIED THAT
HIS TRANSACTION HAS
BEEN BACKED OUT
(RESPONSE CODE = 9).
ISN 1 READ AND HELD
FOR USER 2.

USER 1 MAY NEXT COMMAND
REISSUE TRANSACTION
OR ISSUE
ANOTHER TRANSACTION.

(*) If the RETURN option is used for the hold command, the user is not placed in wait status, but
will receive response code 145 instead.

27Command Reference

Concepts And Facilities

Transaction and Non-Activity Time Limits

Recovery/Restart

This section describes the Adabas command facilities related to data protection, recovery and user
restart.

The two types of Adabas users which may perform database updating (ET logic and exclusive
control) are presented, checkpointing procedures for each are summarized and the autobackout
feature is described.

ET Logic Users

The logical transaction commands ET, BT andRE are used to ensure a transaction restart capability.
Transaction restart is the ability to begin a user session starting with the first transaction which
follows the last successful transaction of the user's previous session. Users who use logical trans-
action commands are called ET logic users.

Command Reference28

Concepts And Facilities

Logical Transaction

A logical transaction is the smallest unit ofwork (as defined by the user) whichmust be performed
in its entirety to ensure that the information contained in the database is logically consistent.

A logical transaction may consist of one or more Adabas commands, which together cause the
database updating required to complete a logical unit of work. A logical transaction begins with
the first command which places a record in hold status and ends when an ET (or BT or CL) com-
mand is issued.

ET Command

The ET commandmust be issued at the end of each logical transaction. Successful execution of an
ET command ensures that all the updates performed during the transaction will be physically
applied to the database, regardless of subsequent user or Adabas session interruption.

Updates performed within transactions for which ET commands have not been successfully ex-
ecuted will be backed out by Adabas.

The ET command results in the release of all records held by the user during the transaction.
Adabas returns a unique transaction sequence number which the user may use to identify the
transaction for auditing or restart purposes.

The ET command may also be used to store user data in an Adabas system file. This data may be
used for user restart purposes and may be read with an OP or RE command.

ET Command

USER PROGRAM ADABAS
FIND (S4), UPDATE (A1)

RECORD UPDATED IN ADABAS
BUFFER BUT NOT NECESSARILY
WRITTEN TO THE DATABASE

FIND (S1), HOLD ISN (HI),
UPDATE (A1)

RECORD UPDATED IN ADABAS
BUFFER BUT NOT NECESSARILY
WRITTEN TO THE DATABASE

END TRANSACTION (ET)
DATA PROTECTION INFORMATION
FOR THE TRANSACTION IS WRITTEN
TO THE ADABAS WORK AND LOG

FIND (S4), UPDATE (A1)
RECORD UPDATED IN ADABAS
BUFFER BUT NOT NECESSARILY
WRITTEN TO THE DATABASE

FIND (S1), HOLD ISN (HI),
UPDATE (A1)

29Command Reference

Concepts And Facilities

RECORD UPDATED IN ADABAS
BUFFER BUT NOT NECESSARILY
WRITTEN TO THE DATABASE

. . . ADABAS OR USER SESSION INTERRUPTION . . .

When the next Adabas session is started, or when the user is timed out, both the updates for
transaction 1 will be physically written to the database (if they had not been previously written).
The updates for transaction 2 will not be physically written (or will be backed out) because no ET
command was processed for this transaction.

BT Command

The BT command may be issued to remove all the updates which have been performed during
the transaction currently being processed. This may be necessary because of a program error or
the determination that the entire transaction cannot be successfully completed.

A BT command causes all the records held during the transaction to be released from hold status.

The command sequence

FIND (S4)
UPDATE (A1) (modify field XX to value 20)
FIND (S4)
UPDATE (A1) (modify field YY to value 50)
END TRANSACTION (ET)

FIND (S4)
UPDATE (A1) (modify field XX to value 10)
BACKOUT TRANSACTION (BT)

will result in the field values XX = 20 and YY = 50. The second update to field XX is removed as a
result of the BT command.

Adabas automatically generates a BT command if the user transaction exceeds the transaction
time limit or non–activity time limit. Adabas will return response code 9 to the user to indicate
that the last transaction has been backed out. All records held during the back out transaction are
released from hold status.

This backout procedure:

■ Removes all the updates performed within a partially-completed transaction that was issued
by a user who has terminated abnormally;

■ Resolves a resource interlock between two users (see the section Resource Interlock for additional
information).

If a logical transaction is backed out for an active user, the user may reissue the backed-out
transaction, or issue another transaction.

Command Reference30

Concepts And Facilities

BT command generated by Adabas (user still active)

FIND (S4)
UPDATE (A1)
FIND (S4)
UPDATE (A1)
END TRANSACTION (ET) (end transaction 1)

FIND (S4)
UPDATE (A1)
FIND (S4)
User must wait (record not available)

-------TRANSACTION TIME LIMIT EXCEEDED

BACKOUT (BT) issued by Adabas; logical transaction
2 backed out; user receives response code 9 for S4
command.

BT command generated by Adabas (user no longer active)

FIND (S4)
UPDATE (A1)
FIND (S4)
UPDATE (A1)

-------USER PROGRAM TERMINATES ABNORMALLY

BACKOUT (BT) issued by Adabas; both updates are
backed out and all held records are released.

Autobackout

Autobackout is performedby theAdabas nucleus at the beginning of eachAdabas session to remove
all the updates which were performed within partially-completed transactions issued by ET logic
users.

Autobackout is performed for ET logic users only.

31Command Reference

Concepts And Facilities

System-Generated Fields

Adabas files can contain fields for which the values are automatically generated by Adabas itself.
These fields are called system-generated fields.

System-generated fields can have the following values:

■ The time stamp of when a record was created or the last time it was updated;
■ Information about the userwho created a record orwho performed the last update of the record.

Please refer to Administration, FDT Record Structure, Definition Options, System-Generated Fields for
further information.

Command Reference32

Concepts And Facilities

4 Calling Adabas

■ Linking Application Programs ... 34
■ Specifying an ACB Interface Direct Call ... 38
■ Specifying an ACBX Interface Direct Call ... 39
■ Mixing ACB and ACBX Direct Calls ... 42
■ Adabas Control Block Structures (ACB and ACBX) .. 43
■ Adabas Buffer Descriptions (ABDs) ... 62
■ Defining Buffers .. 67
■ Understanding the Different Buffer Types ... 67
■ Format and Record Buffers ... 69
■ Search and Value Buffers .. 91
■ Multifetch Buffers ... 104
■ ISN Buffer .. 105
■ Summary of Adabas Format Conversion .. 106
■ Calling Adabas from Application Servers .. 107
■ Calling Adabas with Authentication .. 110

33

This chapter describes the procedures used to link application programs, and to call Adabas to
execute an Adabas command.

There are two kinds of Adabas direct calls, one for each of the different control block interfaces
supported by Adabas:

■ The ACB direct call interface is the classic direct call interface, used for Adabas releases prior to
Adabas Version 6.1. Direct calls in this format require the use of the classic Adabas control block
(ACB). If you have been using releases of Adabas prior to Adabas Version 6.1, the direct calls
used by your applications use the ACB direct call interface.

■ The ACBX direct call interface is the extended direct call interface, used for Adabas releases
starting with Adabas Version 6.1. Direct calls in this format require the use of the extended
Adabas control block (ACBX). If you have purchased and installedAdabas Version 6.1 (or later),
you can use this format of direct call in your applications. Otherwise, you cannot.

Adabas Version 6.1 (and subsequent versions) fully supports both the ACB and the ACBX direct
call interfaces:

■ Existing application programs that use the ACB direct call interface can continue to run in the
same way, without change.

■ In addition, you can decide whether you want to use the ACBX-based or ACB-based direct call
interface in your application programs, on a call-by-call basis. The same program can use both
interfaces.

The control block and the related buffers specify which Adabas command is to be executed and
provide any additional information (parameters or operands) required for the command. The
pointer to the appropriate control block (ACB orACBX)must always be the first operand specified
in an Adabas call.

This chapter covers the following topics:

Linking Application Programs

All application programs have to be linked to an Adabas interface. The following interfaces are
available:

Name of the DLL on WindowsName of the shared library on UNIXInterface name

adalnkx.dlllibadalnkx.s[ol]adalnkx

adalnk32.dlllibadalnk.s[ol]adalnk

adalnknc.dlllibadalnknc.s[ol]adalnknc

The following table shows when to use which interface:

Command Reference34

Calling Adabas

adalnkncadalnkadalnkx

xMulti-thread applications

xxxSingle-thread applications

xxNet-work 2 support

xxNet-work 7 support

xxxXA support

xxxACB direct call interface

xACBX direct call interface

Notes:

1. Because starting with Adabas Version 5.1, both adalnkx and adalnk support XA, there is no
longer a requirement for adalnknc. It is only provided for reasons of compatibilitywith Adabas
Version 3.3.

2. You should use either adalnk or adalnkx (but not both at the same time) to link to a client ap-
plication.

Linking on UNIX Platforms

There are various ways of linking the application to the Adabas interface:

Dynamic Link
The application is linked with the required shared library for the Adabas interface. LD_LIB-
RARY_PATH must contain $ACLDIR/lib so that the shared library can be found at runtime.

If you have set the environment as suggested in theAdabas installation, the library path contains
$ACLDIR/lib, where the shared library can be found at runtime.

Loading via stub
The application is linked with the Adabas stub object adabasx.o (for loading adalnkx) or ada-
bas.o (for loading adalnk) in the directory $ACLDIR/lib. Then at runtime the $ADALNK en-
vironment variable has to point to the shared library to be used. When linking with the stub
adabasx.o, the environment variable $ADALNKX has to point to the shared library
libadalnkx.so. LD_LIBRARY_PATH must contain $ACLDIR/lib because the Adabas interface
calls other shared libraries from this directory.

Loading via dlopen
You can also load the Adabas interface via dlopen. It is not necessary to specify the full path
in the dlopen call if you have set the environment as suggested in the Adabas installation; then
the library path contains $ACLDIR/lib where the Adabas interface is stored.

Note: TheAdabas interfacemay only be loaded once. Closing the Adabas interface with
dlclose and reloading it can cause errors.

35Command Reference

Calling Adabas

Note: If you want to use an Adabas interface when an application has the S-bit set, the in-
stallation root directory must be /opt/softwareag. Then /opt/softwareag/AdabasClient/lib
contains the current Adabas interfaces, which can be used to load the Adabas interfaces
from applications with S-bits.

Important: adalnk/adalnkx contain a signal handler which, for example, displays a stack
backtrace after a signal SIGUSR1. This signal handler can be deactivated by setting the en-
vironment variable SMP_SIGNAL_HANDLING to 0. This is necessary if your application
has its own signal handling, because otherwise signals might no longer be processed as
expected by the application's signal handler because of conflicts with the adalnk/adalnkx
signal handler. For example, Natural uses this signal for printing. If you use the environment
variable settings provided by the Adabas installation, they already include the setting of
SMP_SIGNAL_HANDLING to 0.

Linking 32 Bit-Mode Applications on 64 Bit UNIX Platforms

Unlike Adabas Version 3, where a different interface (adalnk32) was provided for linking 32 bit-
mode applications on 64 bit UNIX platforms, starting with Adabas Version 5.1, Adabas provides
the same interfaces as described above in a 32 bit-mode version in a separate directory. Starting
with Adabas Version 6.1, the interfaces for the 32 bit-mode can be found in
$ACLDIR/$ACLVERS/lib_32.

Note: While the installation provides the setting of the environment variable $LD_LIB-
RARY_PATH for the 64 bit-mode, it does not for the 32 bit-mode.Users running Adabas
applications in 32 bit-mode on 64-bit platforms must take care to ensure that they set the
$LD_LIBRARY_PATH correctly before they start the applications.

Command Reference36

Calling Adabas

Linking on Windows

Dynamic Link

Link with adankx.lib, adalnk32.lib or adalnknc.lib. This way, at runtime, the corresponding DLL
is dynamically linked from %PATH%. If you haven't modified %PATH% since installing Adabas,
the DLLs are loaded from %ACLDIR% (32-bit mode) or %ACL64DIR% (64-bit mode).

Notes:

1. In 64-bit mode, only the interface adalnkx is supported.

2. The 64-bit mode interface is only available for those platforms on which Adabas is installed in
64-bit mode.

For further information, such as compile and link options, see the example makefile un-
der%ACLDIR%\..\examples\client and the sample C code in the same directory.

Loading via LoadLibrary or LoadLibraryEx

It is also possible to use LoadLibrary or LoadLibraryEx to load the Adabas interface. It is recom-
mended not to specify the full path for the DLL, since the folderwhere the correct Adabas interface
is stored depends on the installed Adabas versions and the Windows operating system and the
mode (32 or 64 bit); the Adabas installation sets the PATH in such a way, that the correct Adabas
interface is found.

Note: The Adabas interface may only be loaded once. Freeing the Adabas interface with
FreeLibrary or FreeLibraryAndExitThread and reloading it may cause errors.

37Command Reference

Calling Adabas

Specifying an ACB Interface Direct Call

When making a direct call using the ACB interface, syntax such as the following should be used
(this is a COBOL example):

CALL 'ADABAS' USING acb-control-block-name
[format-buffer]
[record-buffer]
[search-buffer]
[value-buffer]
[ISN-buffer]

In an ACB direct call, Adabas expects buffers to be specified in the order shown in this syntax. If
no buffers are required for a call, no buffers need be specified. However, if a given call does not
require a format buffer, but does require one of the other buffers (for example, a record buffer), a
dummy (or blank) format buffer must be specified prior to the record buffer. Likewise, if a call
requires only an ISN buffer, dummy format, record, search, and value buffers must be supplied
as well.

The following table describes each of the italicized, replaceable items in this syntax. For more in-
formation about the format of theACB control block andAdabas buffers, readAdabas Control Block
(ACB) andDefining Buffers. For information about the relationships between different ABD types,
read Understanding the Different Buffer Types.

WithReplace

The pointer to the Adabas Control Block (ACB) to use for the call.acb-control-block-name

The name of or pointer to the format buffer to use for the call. Only one format
buffer can be specified in a single ACB direct call.

format-buffer

The name of or pointer to the ISN buffer to use for the call. Only one ISN
buffer can be specified in a single ACB direct call.

ISN-buffer

The name of or pointer to the record buffer to use for the call. Only one record
buffer can be specified in a single ACB direct call.

record-buffer

The name of or pointer to the search buffer to use for the call. Only one search
buffer can be specified in a single ACB direct call.

search-buffer

The name of or pointer to the value buffer to use for the call. Only one value
buffer can be specified in a single ACB direct call.

value-buffer

Command Reference38

Calling Adabas

Specifying an ACBX Interface Direct Call

Theway direct calls aremade in your applicationswhen using the newACBX interface is different
thanwhen using the classic ACB interface. In addition, the calls are different formainframe applic-
ations and open systems applications. This section covers the following topics:

■ C-Interface for ACBX Interface Direct Calls
■ Mainframe Interface for ACBX Interface Direct Calls

C-Interface for ACBX Interface Direct Calls

Theway direct calls aremade in your applicationswhen using the newACBX interface is different
than when using the classic ACB interface. When making a direct call using the ACBX interface
in open system applications, syntax such as the following should be used (this is a C example):

adabasx(ACBX_pointer, ABD-count, ABD-list-pointer)

Each ABD either directly precedes its associated buffer or contains a pointer to the buffer. It effect-
ively represents the buffer.

ABDs can be specified in any sequence in anACBX interface direct call. However, if anABD requires
a matching ABD of another type, Adabas will match them sequentially. For example, if three
format buffer ABDs and three record buffer ABDs are included in the call, the first format buffer
ABD in the call is matched with the first record buffer ABD in the call, the second format buffer
ABD is matched with the second record buffer ABD, and the third format buffer ABD is matched
with third record buffer ABD.

If unequal numbers of match-requiring ABDs are specified, Adabas will generate a dummy ABD
(with a buffer length of zero) for the missing ABD. For example, if three format buffer ABDs are
specified, but only two record buffer ABDs are specified, a dummy record buffer ABD is created
for use with the third format buffer ABD. If you would prefer that the dummy record buffer ABD
be used for the second format buffer ABD instead, you must specify the dummy record buffer
ABD yourself prior to the record buffer ABD to be used by the third format buffer ABD.

For commands where data in the record buffer is not described by a format specification in the
format buffer, no format buffer segments need be specified; if any are specified, they are ignored.
This applies to only a few commands; the most prominent of them is OP.

The following table describes each of the italicized, replaceable items in this syntax. For more in-
formation about the format of the extended Adabas control block (ACBX), Adabas buffer descrip-
tions (ABDs), and Adabas buffers, read Extended Adabas Control Block (ACBX), Adabas Buffer De-
scriptions (ABDs), and Defining Buffers. For information about the relationships between different
buffer types, read Understanding the Different Buffer Types.

39Command Reference

Calling Adabas

DescriptionParameter

The pointer to the extended Adabas control block (ACBX) to use for the call.ACBX_pointer

The number of the ABD pointers included in the ABD list for the direct call.ABD-count

The pointer to the ABD list for the direct call. TheABD list contains pointer references
for all of the ABDs used by the ACBX direct call. For more information about the
ABD list, read ABD Lists.

ABD-list-pointer

These adabasx parameters are shown in the following graphic:

Important: The ACBX and the ABDsmust be initialized before the first Adabas call by using
the calls SETACBX(ACBX_pointer) and SETABD(ABD_pointer) respectively.

Mainframe Interface for ACBX Interface Direct Calls

Theway direct calls aremade in your applicationswhen using the newACBX interface is different
than when using the classic ACB interface. When making a direct call using the ACBX interface
inmainframe applications, syntax such as the following should be used (this is a COBOL example):

CALL 'ADABAS' USING acbx-control-block-name
reserved-fullword
reentrancy-token

[format-buffer-ABD record-buffer-ABD [multifetch-buffer-ABD]]...
[search-buffer-ABD]
[value-buffer-ABD]
[ISN-buffer-ABD]
[performance-buffer-ABD]
[user-buffer-ABD]

Each ABD either directly precedes its associated buffer or contains a pointer to the buffer. It effect-
ively represents the buffer.

Command Reference40

Calling Adabas

ABDs can be specified in any sequence in anACBX interface direct call. However, if anABD requires
a matching ABD of another type, Adabas will match them sequentially. For example, if three
format buffer ABDs and three record buffer ABDs are included in the call, the first format buffer
ABD in the call is matched with the first record buffer ABD in the call, the second format buffer
ABD is matched with the second record buffer ABD, and the third format buffer ABD is matched
with third record buffer ABD.

If unequal numbers of match-requiring ABDs are specified, Adabas will generate a dummy ABD
(with a buffer length of zero) for the missing ABD. For example, if three format buffer ABDs are
specified, but only two record buffer ABDs are specified, a dummy record buffer ABD is created
for use with the third format buffer ABD. If you would prefer that the dummy record buffer ABD
be used for the second format buffer ABD instead, you must specify the dummy record buffer
ABD yourself prior to the record buffer ABD to be used by the third format buffer ABD.

For commands where data in the record buffer is not described by a format specification in the
format buffer, no format buffer segments need be specified; if any are specified, they are ignored.
This applies to only a few commands; the most prominent of them is OP.

The following table describes each of the italicized, replaceable items in this syntax. For more in-
formation about the format of the extended Adabas control block (ACBX), Adabas buffer descrip-
tions (ABDs), and Adabas buffers, read Extended Adabas Control Block (ACBX), Adabas Buffer De-
scriptions (ABDs), and Defining Buffers. For information about the relationships between different
buffer types, read Understanding the Different Buffer Types.

WithReplace

The pointer to the extendedAdabas control block (ACBX) to use for the call.acbx-control-block-name

The name of or pointer to the format bufferABD that defines a format buffer
segment to use for the call. Each format buffer segment must end with a

format-buffer-ABD

period and be a complete and valid standalone format buffer. Multiple
format buffer ABDs can be specified in a single ACBX direct call.

The name of or pointer to the ISN buffer ABD that defines an ISN buffer
segment to use for the call. Only one ISN buffer ABD can be specified in a
single ACBX direct call.

ISN-buffer-ABD

The name of or pointer to themultifetch bufferABD that defines amultifetch
buffer segment to use for the call. Multiple multifetch buffer ABDs can be

multifetch-buffer-ABD

specified in a single ACBX direct call. Currently not supported by Adabas
on open systems.

The name of or pointer to the performance buffer ABD that defines a
performance buffer segment. Currently not supported by Adabas on open
systems.

performance-buffer-ABD

The name of or pointer to the record buffer ABD that defines a record buffer
segment to use for the call. Multiple record buffer ABDs can be specified in
a single ACBX direct call.

record-buffer-ABD

The ADALNK reentrancy token. This is a fullword in the calling program's
storage where ADALNK stores the address of its static data area. This

reentrancy-token

41Command Reference

Calling Adabas

WithReplace

fullword should be set to zero before the first Adabas call. It should then
remain unchanged for all subsequent direct calls while the program runs.

The fullword containing binary zeros. This fullword is reserved for use by
Adabas and should be set to binary zeros before the first Adabas call.

reserved-fullword

The name of or pointer to the search buffer ABD that defines a search buffer
segment to use for the call. Only one search buffer ABD can be specified in
a single ACBX direct call.

search-buffer-ABD

The name of or pointer to the user buffer ABD that defines a user buffer
segment (extension) to use for the call. A single user buffer ABD can be
specified in an ACBX direct call.

user-buffer-ABD

The name of or pointer to the value buffer ABD that defines a value buffer
segment to use for the call. Only one value buffer ABD can be specified in
a single ACBX direct call.

value-buffer-ABD

How Adabas Distinguishes Between ACB and ACBX Direct Calls

Any application program can make both ACB and ACBX direct calls. The control block (ACB or
ACBX) is the first parameter in Adabas calls using either the ACB or ACBX interfaces. Adabas
determines which control block is used for a call by the presence of a value starting with the letter
"F" at offset 2 of the control block. Offset 2 in the ACB is the command code field (ACBCMD), but
since there is no valid F* Adabas command, no valid direct call using the ACBwill contain a value
starting with the letter "F" at offset 2. Offset 2 in the ACBX is a new version field (ACBXVER)
identifying the new ACBX.

The presence or absence of an "F" at offset 2 determines how Adabas interprets the direct call. If
an "F" is specified in offset 2, Adabas interprets the control block and remaining direct call para-
meters as an ACBX call; if an "F" is not specified in offset 2, Adabas interprets the control block
and remaining direct call parameters as an ACB call. If, for some reason, the remaining control
block fields and direct call parameters are not specified correctly for the type of call indicated by
the presence or absence of an "F" at offset 2 (for example, if ACB parameters are specified for an
ACBX call), errors may result or the results of the call may not be as expected.

Mixing ACB and ACBX Direct Calls

You can freely mix ACB and ACBX direct calls in the same application.

Command Reference42

Calling Adabas

Adabas Control Block Structures (ACB and ACBX)

Two kinds of control blocks are now supported by Adabas:

■ The Adabas control block (ACB) is the classic control block, used for Adabas releases prior to
Adabas Version 6.1. If you have been using releases of Adabas prior to Adabas Version 6.1, the
direct calls used by your applications use the ACB. It is important to note that Adabas Version
6.1 (and later) fully supports theACB, so you are not required to update your existing applications
once you install Adabas Version 6.1 (or later).

■ The extendedAdabas control block (ACBX) can be used inAdabas releases startingwithAdabas
Version 6.1. The ACBX supports the increased buffer sizes and segmented buffers introduced
in Adabas 6.1. If you have purchased and installed Adabas Version 6.1 (or later), you can use
the ACBX in direct calls from your applications. Otherwise, you cannot.

To ensure user program compatibility with later Adabas releases, all control block fields not used
by a particular command should be set to zeros or blanks, depending on field type.

The position of each field in a control block is fixed. In addition, all values in the control block
must be entered in the data type defined for the field. For example, the ISN field is defined as
binary format; therefore, any entry made in this field must be in binary format.

Notes:

1. Adabas and other Software AG program products use some control block fields for internal
purposes, and may return values in some fields that have no meaning to the user. These uses
and values may be release-dependent, and are not appropriate for program use. Software AG
therefore recommends that you use only the fields and values described in this documentation.
In addition, you should always initialize unused control block fields with either zeros or blanks, according
to their field types.

2. Some Adabas-dependent Software AG products return control block values such as response
codes and subcodes. Refer to the documentation for those products for a description of the
product-specific control block values.

This section covers the following topics:

■ Adabas Control Block (ACB)
■ Extended Adabas Control Block (ACBX)

43Command Reference

Calling Adabas

■ Differences between the ACB and the ACBX

Adabas Control Block (ACB)

The Adabas control block (ACB) is 80 bytes long. This section covers the following topics:

■ ACB Format
■ ACB Fields

ACB Format

The following table describes the format of the ACB. We recommend that you set unused ACB
fields to binary zeros before the direct call is initiated.

FormatLength (in Bytes)OffsetControl Block PositionFieldName

binary1001Call TypeACBTYPE

binary1012(reserved)reserved

alphanumeric2023-4Command CodeACBCMD

binary4045-8Command IDACBCID

binary2089-10File NumberACBFNR

binary20A11-12Response CodeACBRSP

binary40C13-16ISNACBISN

binary41017-20ISN Lower LimitACBISL

binary41421-24ISN QuantityACBISQ

binary21825-26Format Buffer LengthACBFBL

binary21A27-28Record Buffer LengthACBRBL

binary21C29-30Search Buffer LengthACBSBL

binary21E31-32Value Buffer LengthACBVBL

binary22033-34ISN Buffer LengthACBIBL

alphanumeric12235Command Option 1ACBCOP1

alphanumeric12336Command Option 2ACBCOP2

alphanumeric / binary82437-44Additions 1ACBADD1

alphanumeric / binary42C45-48Additions 2ACBADD2

alphanumeric83049-56Additions 3ACBADD3

alphanumeric83857-64Additions 4ACBADD4

alphanumeric / binary84065-72Additions 5ACBADD5

binary44873-76Command TimeACBCMDT

not applicable44C77-80User AreaACBUSER

Command Reference44

Calling Adabas

ACB Fields

The content of the control block fields and buffers must be set before an Adabas command (call)
is issued. Adabas also returns one or more values or codes in certain fields and buffers after each
command is executed.

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Each of the fields in the ACB is described in this section, in the order they appear in the ACB
format. The descriptions are valid formost Adabas commands; however, someAdabas commands
use some control block fields for purposes other than those described here. For complete inform-
ation about how these fields are used by each Adabas command, read Commands.

Call Type (ACBTYPE)

The first byte of the Adabas control block (ADACB) is used by the Adabas API to determine the
processing to be performed.

The values for logical requests are:

Indicates ...Hex

a 1-byte file number (file numbers between 1 and 255) or DBID.00

a 2-byte file number (file numbers between 1 and 65535) or DBID.30

All other values in the first byte of the ADACB are reserved for use by Software AG.

Because an application can reset the value in the first byte of the ADACB on each call, it is possible
to mix both one- and two-byte file number (DBID) requests in a single application. In this case,
youmust ensure the proper construction of the file number (ACBFNR) and response code (ACBRSP)
fields in the ADACB for each call type. See the discussions of these fields for more information.

Software AG recommends that an application written to use two-byte file numbers always places
hex 30 in the first byte of the ADACB, the logical database ID in the ACBRSP field, and the file
number in the ACBFNR field. The application can then treat both the database ID and file number
as 2-byte binary integers, regardless of the value for the file number in use.

Applications written in Software AG's Natural language need not include this first byte of the
Adabas ACB because Natural supplies appropriate values.

45Command Reference

Calling Adabas

Command Code (ACBCMD)

The command code defines the command to be executed, and comprises two alphanumeric char-
acters (for example, OP, A1, BT).

Command ID (ACBCID)

The command ID field is used by many Adabas commands to identify logical read sequences,
search results, and (optionally) decoded format buffers for use by subsequent commands. You
can specify alphanumeric or binary command IDs as you choose or you can request the generation
of new binary command IDs by Adabas. See the sectionUsing Command IDs for more information
about command IDs. For ET, CL, and some OP commands, Adabas returns a binary transaction
sequence number in the command ID field.

Note: Internally, the command ID field is treated as binary, even though alphanumeric
values are often stored in this field. For cross-platform calls this means that there is no EB-
CDIC -ASCII conversion, and that the bytes are swapped if the integer arithmetic is different
on the client and nucleus platforms. However, for those users who specify alphanumeric
values, a 4 byte blank value is also considered to be an empty command ID, like a binary
0 value. This is valid for bothASCII and EBCDIC blanks; in the following, bothASCII blanks
(0x20202020) and EBCDIC blanks (0x40404040) are considered as blank ID values.

File Number (ACBFNR)

The file number may be one or two bytes.

For an application program issuing Adabas commands for file numbers between 1 and 255 (single
byte), build the control block as follows:

ActionPosition

Place hex 00 in the first byte of the ADACB.1

Place the file number in the low-order byte of the ACBFNR field of the ADACB. The high-order
byte of the ACBFNR field is used to store the logical (database) ID or number.

9

Adabas permits the use of file numbers greater than 255 on logical requests. For an application
program issuing Adabas commands for file numbers between 256 and 5000 (two-byte), build the
control block as follows:

Command Reference46

Calling Adabas

ActionPosition

Place hex 30 in the first byte of the ADACB.1

Use both bytes in ACBFNR for the file number, and use the two bytes in ACBRSP for the database
(logical) ID.

9

Response Code (ACBRSP)

The response code field is used for two-byte database IDs.

It is also always set to a value when the Adabas command is completed. Successful completion is
normally indicated by a response code of zero. For repeatable commands that process sequences
of records or ISNs, other response codes indicate end-of-file or end-of-ISN-list. Non-zero response
codes are defined in the Adabas Messages and Codes.

ISN (ACBISN)

The ISNfield both specifies a required four-byte Adabas ISN value required by the command and,
where appropriate, returns either the first ISN of a command-generated ISN list, or an ISN of the
record read by the command.

ISN Lower Limit (ACBISL)

ISN lower limit specifies the starting point in an ISN list or range where processing is to begin.
For OP commands, an optional user-specific non-activity timeout value can be specified in this
field. AnOP command also returnsAdabas release information in this field (see also theAdditions
5 field description).

ISN Quantity (ACBISQ)

The ISN quantity is a count of ISNs returned by a command. The count can be a total of all ISNs
in an ISN list, or the total ISNs entered into the ISN buffer from a larger pool of ISNs by this oper-
ation. The OP command uses this field to specify an optional user-specific transaction time limit;
it returns system and call type information flags in the ISN quantity field (see also the Additions
5 field description).

Buffer Length: Format, Record, Search, Value, and ISN (ACBFBL, ACBRBL, ACBSBL, ACBVBL, and ACBIBL)

The format, record, search, value, and ISN buffer length fields specify the size of the related buffers.
A buffer's size usually remains the same throughout a transaction. In some ISN-related operations,
the ISN buffer size value determines how a command processes ISNs; for example, specifying a
zero ISN buffer length causes some commands to store a resulting ISN list in the Adabas work
area. If a buffer is not needed for an Adabas command, the corresponding length value should be
set to zero. In some cases (multifetch option, as an example), there is a limit on the length of the
buffer; see the specific command descriptions for more information.

47Command Reference

Calling Adabas

Command Option 1 and Command Option 2 (ACBCOP1 and ACBCOP2)

TheCommandOption 1 and 2 fields allowyou to specify processing options (ISNhold, command-
level prefetching control, returning of ISNs, and so on).

Additions 1 (ACBADD1)

The Additions 1 field sometimes requires miscellaneous command-related parameters such as
qualifying descriptors for creating ISN lists.

Additions 2 (ACBADD2)

The Additions 2 field returns compressed record length in the last two bytes and decompressed
length of record buffer-selected fields in the first two bytes for all An, Ln,Nn, and S1/2/4 commands.
OP (open) and RE (read ET data) commands return transaction sequence numbers in this field. If
Entire Net-work is installed, some response codes return the node ID of the "problem" node in the
last two bytes of the Additions 2 field.

If a command results in a nucleus response code, the addition 2 field's first two bytes (47 and 48)
can contain a hexadecimal subcode to identify the cause of the response code. Response codes and
their subcodes (as decimal equivalents) are described in the Adabas Messages and Codes.

Additions 3 (ACBADD3)

The Additions 3 field is for providing a user`s password for accessing password-protected files.
If the file containing the field is actually password-protected, the password in this field is replaced
with spaces (blanks) during command execution beforeAdabas returns control to the user program.

Additions 4 (ACBADD4)

OnMainframes, the Additions 4 field must be set to the cipher code of a file, if a command reads
or writes records of an encrypted (ciphered) Adabas file. On UNIX and Windows platforms this
field is not used.

Additions 5 (ACBADD5)

Instead of using the command ID as a format buffer ID, Additions 5 can be used to store the format
buffer ID for a command separately. Please refer to the section "Using Format Buffer IDs" for further
information.

Command Reference48

Calling Adabas

Command Time (ACBCMDT)

The command time field is used by Adabas to return the elapsed time that was needed by the
nucleus to process the command. In contrast to the mainframe, where this field is always filled
by Adabas, it is only filled on open systems platforms if Command Logging is switched on or if
the nucleus is startedwith the environment variable ADA_CMD_TIME set (the value is irrelevant).

User Area (ACBUSER)

The user area field is reserved for use by the user program. When making logical user calls, the
user area is neither written nor read by Adabas.

For compatibility with future Adabas releases, Software AG recommends that you set unused
control block fields to null values corresponding to the field's data type.

Extended Adabas Control Block (ACBX)

The extended Adabas control block, the ACBX, supports the increase in the buffer sizes in Adabas
commands. It is 192 bytes in length (versus the 80 bytes used by the ACB). The existing, non-ex-
tended Adabas Control Block (ACB) is still supported and your existing applications will still
work, but if you want to take advantage of some of the extended features provided in Adabas
Version 6.1 (or later), you must use the new ACBX. Specifically, you must use the ACBX if you
are using the long buffer (buffers longer than 32K) or segmented buffer (multiple format/record
buffer pairs or format/record/multifetch buffer triplets) features introduced with Adabas Version
6.1.

Otherwise, your application programs may freely switch between Adabas calls using the existing
direct call interface (ACB) and calls using the new interface (ACBX).

■ ACBX Format
■ ACBX Fields

ACBX Format

The following table describes the format of the ACBX.We recommend that you set unused ACBX
fields to binary zeros before the direct call is initiated.

FormatLength (in
bytes)

OffsetControl Block
Position

FieldName

binary1001Call TypeACBXTYP

binary1012Reserved 1ACBXRSV1

binary2023-4Version IndicatorACBXVER

binary2045-6ACBX LengthACBXLEN

alphanumeric2067-8Command CodeACBXCMD

49Command Reference

Calling Adabas

FormatLength (in
bytes)

OffsetControl Block
Position

FieldName

binary2089-10Reserved 2ACBXRSV2

binary20A11-12Response CodeACBXRSP

binary40C13-16Command IDACBXCID

numeric41017-20Database IDACBXDBID

numeric41421-24File NumberACBXFNR

binary81825-32ISNACBXISN

binary82033-40ISN Lower LimitACBXISL

binary82841-48ISN QuantityACBXISQ

alphanumeric13049Command Option 1ACBXCOP1

alphanumeric13150Command Option 2ACBXCOP2

alphanumeric13251Command Option 3ACBXCOP3

alphanumeric13352Command Option 4ACBXCOP4

alphanumeric13453Command Option 5ACBXCOP5

alphanumeric13554Command Option 6ACBXCOP6

alphanumeric13655Command Option 7ACBXCOP7

alphanumeric13756Command Option 8ACBXCOP8

alphanumeric/ binary83857-64Additions 1ACBXADD1

binary44065-68Additions 2ACBXADD2

alphanumeric/ binary84469-76Additions 3ACBXADD3

alphanumeric84C77-84Additions 4ACBXADD4

alphanumeric/ binary85485-92Additions 5ACBXADD5

alphanumeric/ binary85C93-100Additions 6ACBXADD6

binary464101-104Reserved 3ACBXRSV3

binary868105-112Error Offset in BufferACBXERRA

alphanumeric270113-114Error Character FieldACBXERRB

binary272115-116Error SubcodeACBXERRC

alphanumeric174117Error Buffer IDACBXERRD

binary175118ReservedACBXERRE

binary276119-120Error Buffer Sequence NumberACBXERRF

binary278121-122Subcomponent Response CodeACBXSUBR

binary27A123-124Subcomponent Response
Subcode

ACBXSUBS

alphanumeric47C125-128Subcomponent Error TextACBXSUBT

binary880129-136Compressed Record LengthACBXLCMP

binary888137-144Decompressed Record LengthACBXLDEC

binary890145-152Command TimeACBXCMDT

Command Reference50

Calling Adabas

FormatLength (in
bytes)

OffsetControl Block
Position

FieldName

not applicable1698153-168User AreaACBXUSER

do not touch24A8169-193Reserved 4ACBXRSV4

ACBX Fields

The content of the control block fields and buffers must be set before an Adabas command (call)
is issued. Adabas also returns one or more values or codes in certain fields and buffers after each
command is executed.

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Each of the fields in the ACBX is described in this section, in the order they appear in the ACBX
format. The descriptions are valid formostAdabas commands; however, someAdabas commands
use some control block fields for purposes other than those described here.

Call Type (ACBXTYP)

The first byte of the Adabas control block (ADACBX) is used by the Adabas API to determine the
processing to be performed.

When issuing an Adabas command, set this field to binary zeros. This indicates that a logical user
call is being made (ACBXUSER equate).

Applications written in Software AG's Natural language need not include this first byte of the
Adabas ACBX because Natural supplies appropriate values.

Reserved 1 (ACBXRSV1)

This field is reserved. Set this field to zero.

Version Indicator (ACBXVER)

The version indicator identifies whether the Adabas control block uses the new ACBX or the
classic ACB format. If this field is set to a value starting with the letter "F" (for example "F2"),
Adabas treats the Adabas control block as though it is specified in the ACBX format. If this field
is set to any other value, Adabas treats the control block as though it is specified in the classic ACB
format.

51Command Reference

Calling Adabas

ACBX Length (ACBXLEN)

The ACBX length field should be set to the length of the ACBX structure passed to Adabas (the
ACBXQLL equate, currently 192).

Command Code (ACBXCMD)

The command code defines the command to be executed, and comprises two alphanumeric char-
acters (for example, OP, A1, BT).

Reserved 2 (ACBXRSV2)

This field is reserved. Set this field to zero.

Response Code (ACBXRSP)

This field gets set to a value when the Adabas command is completed. Successful completion is
normally indicated by a response code of zero. For repeatable commands that process sequences
of records or ISNs, other response codes indicate end-of-file or end-of-ISN-list. Non-zero response
codes are defined in the Adabas Messages and Codes documentation.

Command ID (ACBXCID)

The command ID field is used by many Adabas commands to identify logical read sequences,
search results, and (optionally) decoded format buffers for use by subsequent commands. You
can specify alphanumeric or binary command IDs as you choose or you can request the generation
of new binary command IDs by Adabas. See the sectionUsing Command IDs for more information
about command IDs. For ET, CL and some OP commands, Adabas returns a binary transaction
sequence number in the command ID field.

Note: Internally, the command ID field is treated as binary, even though alphanumeric
values are often stored in this field. For cross-platform calls this means that there is no EB-
CDIC -ASCII conversion, and that the bytes are swapped if the integer arithmetic is different
on the client and nucleus platforms. However, for those users who specify alphanumeric
values, a 4 byte blank value is also considered to be an empty command ID, like a binary
0 value. This is valid for bothASCII and EBCDIC blanks; in the following, bothASCII blanks
(0x20202020) and EBCDIC blanks (0x40404040) are considered as blank ID values.

Command Reference52

Calling Adabas

Database ID (ACBXDBID)

Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported.
Therefore, the database ID should be specified in the low-order part of the field, with leading
binary zeros.

File Number (ACBXFNR)

Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order part
of the field, with leading binary zeros.

ISN (ACBXISN)

The ISN field specifies any required Adabas ISN value required by the command and, where ap-
propriate, returns either the ISN of the record read by the command , or the first ISN of an ISN
list generated by the command.

TheACBXISNfield is an eight-byte field,which is not yet used, but only 4-byte values are allowed.
The high-order part of the ACBXISN field must contain binary zeros.

ISN Lower Limit (ACBXISL)

The ISN Lower Limit field specifies the starting point in an ISN list or range where processing is
to begin.

For OP commands, an optional user-specific non-activity timeout value can be specified in this
field. The OP command also returns Adabas release information in this field.

The ACBXISL field is an eight-byte field, which is not yet used, but only 4-byte values are allowed.
The high-order part of the ACBXISL field must contain binary zeros.

ISN Quantity (ACBXISQ)

The ISN Quantity field is the count of ISNs returned by a search (Sx) command. The count can be
a total of all ISNs in an ISN list, or the total ISNs entered into the ISN buffer segment from a larger
pool of ISNs by this operation.

For anOP command, an optional user-specific transaction time limit may be specified in this field.
The OP command returns system and call type information in this field.

TheACBXISQfield is an eight-byte field, which is not yet used, but only 4-byte values are allowed.
The high-order part of the ACBXISQ field must contain binary zeros.

53Command Reference

Calling Adabas

Command Options 1 through 8 (ACBXCOP1 through ACBXCOP8)

The Command Option 1 - 8 fields allow you to specify processing options (ISN hold, command-
level prefetching control, returning of ISNs, and so on). In Adabas Version 6.1, only the Command
Option 1 andCommandOption 2 field are supported.However, the otherCommandOptionfields
are provided for potential expansion in future Adabas releases.

Additions 1 (ACBXADD1)

The Additions 1 field sometimes requires miscellaneous command-related parameters such as
qualifying descriptors for creating ISN lists, or the second file number of a coupled file pair.

Additions 2 (ACBXADD2)

OP (open) and RE (read ET data) commands return transaction sequence numbers in this field.

The other values for Additions 2, as described under Additions 2 in the ACB, are also provided,
but the ACBX contains other fields for these values; it is recommended that you use the new fields
if you want to access these values with the ACBX interface.

Additions 3 (ACBXADD3)

The Additions 3 field is for providing a user's password for accessing password-protected files.
This field is always reset to blanks during command execution.

Additions 4 (ACBXADD4)

OnMainframes, the Additions 4 field must be set to the cipher code of a file, if a command reads
or writes records of an encrypted (ciphered) Adabas file. On UNIX and Windows platforms this
field is not used.

Additions 5 (ACBXADD5)

Instead of using the command ID as a format buffer ID, Additions 5 can be used to store the format
buffer ID for a command separately. Please refer to the section "Using Format Buffer IDs" for further
information.

Command Reference54

Calling Adabas

Additions 6 (ACBXADD6)

This field is not used at this time. It must be set to binary zeros.

Reserved 3 (ACBXRSV3)

This field is reserved. This field must be set to binary zeros.

Error Offset in Buffer (ACBXERRA)

The Error Offset in Buffer specifies the offset in the buffer, if any, where the error is detected
during the direct call.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRE fields are only set when the response code is related
to buffer processing.

Error Character Field (ACBXERRB)

This field identifies the two-byte Adabas short name of the field, if any, that was being processed
when the error was detected.

The ACBXERRx fields are only set when a response code is returned from a direct call.

Error Subcode (ACBXERRC)

This field stores the subcode of the error that occurred during direct call processing.

The ACBXERRx fields are only set when a response code is returned from a direct call. If Entire
Net-work is installed, some response codes return the node ID of the problem node in this field.

Error Buffer ID (ACBXERRD)

This field contains the ID (from the ABDID field) of the buffer referred to by the ACBXERRAfield,
so that the buffer causing the error can be identified, when multiple buffers are involved.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRE fields are only set when the response code is related
to buffer processing.

55Command Reference

Calling Adabas

Error Buffer Sequence Number (ACBXERRF)

This field contains the sequence number of the buffer referred to by the ACBXERRA and ACBX-
ERRD fields.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRE fields are only set when the response code is related
to buffer processing.

Subcomponent Response Code (ACBXSUBR)

This field contains the response code from any error that occurredwhen anAdabas add-on product
intercepts the Adabas command.

Subcomponent Response Subcode (ACBXSUBS)

This field contains the response subcode from any error that occurred when an Adabas add-on
product intercepts the Adabas command.

Subcomponent Error Text (ACBXSUBT)

This field contains the error text of any error that occurredwhen an Adabas add-on product inter-
cepts the Adabas command.

Compressed Record Length (ACBXLCMP)

This field returns the compressed record length when a record was read or written.

This is the length of the compressed data processed by the successful Adabas call. If the logical
data storage record spans multiple physical data records, the combined length of all associated
physical records may not be known. In this case, Adabas returns high values in the low-order
word of this field.

Decompressed Record Length (ACBXLDEC)

This field returns the decompressed record length. This is the length of the decompressed data
processed by the successful call. If multiple record buffer segments are specified, this reflects the
total length across all buffer segments.

Command Reference56

Calling Adabas

Command Time (ACBXCMDT)

The command time field is used by Adabas to return the elapsed time that was needed by the
nucleus to process the command. In contrast to the mainframe, where this field is always filled
by Adabas, it is only filled on open systems platforms if Command Logging is switched on or if
the nucleus is startedwith the environment variable ADA_CMD_TIME set (the value is irrelevant).

User Area (ACBXUSER)

The user area field is reserved for use by the user program. When making logical user calls, the
user area is neither written nor read by Adabas.

Reserved 4 (ACBXRSV4)

This field is reserved for use by Adabas. Your user program should set this field to binary zeros
before the first Adabas call using this ACBX and then leave it unmodified thereafter.

Differences between the ACB and the ACBX

TheACBXdiffers inmanyways from theACB. TheACBX includes somefields that are not included
in the ACB and the sizes of some ACBX fields are larger than their ACB equivalents. These expan-
sions in the ACBX have been made to ensure that its structure can be flexible enough to handle
potential future enhancements to Adabas, without altering its fundamental structure for many
years.

This section describes the differences between the ACB and the ACBX:

■ Control Block Length
■ Buffer Length Fields
■ Command Options, Additions, and Reserved Fields
■ Field Length Differences
■ Additional Fields in ACBX
■ ACB Dual Purpose Field Changes
■ Structure and Offset Differences

Control Block Length

The ACBX is 192 bytes in length; the ACB is 80 bytes long.

57Command Reference

Calling Adabas

Buffer Length Fields

The buffer length fields are not included in the ACBX as they are in the ACB. When using the
ACBX direct call interface, they are instead provided in the individual Adabas buffer descriptions
(ABDs). So the ACBX contains no buffer fields corresponding to the ACBFBL, ACBIBL, ACBRBL,
ACBSBL, andACBVBL found in the ACB; the ABDs associatedwith the call are used instead. One
ABD represents an individual Adabas buffer segment. They are described inAdabas BufferDescrip-
tions.

Command Options, Additions, and Reserved Fields

The number of command option, additions, and reserved control block fields are larger in the
ACBX:

■ The ACBX contains eight command option fields, up from the two command option fields
available in the ACB.

■ The ACBX contains six additions fields, up from the five additions fields available in the ACB.
■ The ACBX contains four reserved fields, up from one reserved field available in the ACB.

Reserved ACBX fields must be set to binary zeros; the reserved 4 field (ACBXRSV4) should be
initialized to binary zeros and then left unchanged.

Field Length Differences

The lengths of many control block fields are larger in the ACBX than in the ACB, but note that the
value length that is really supported is often smaller than the actual field length - this was done
in order to enable larger values in future Adabas versions without having to change the interface.
The following table summarizes these changes:

LengthField Title
ACBXACB

ValueField

242 (with call type 0x30 in File Number)File Number

242 (with call type 0x30 in Response Code)Database ID

484ISN

484ISN Lower Limit

484ISN Quantity

282 (in Additions 2)Compressed Record Length

482 (in Additions 2)Decompressed Record Length

884Command Time

48 (in the ABD)2Format Buffer Length

48 (in the ABD)2Record Buffer Length

Command Reference58

Calling Adabas

LengthField Title
ACBXACB

ValueField

48 (in the ABD)2Search Buffer Length

48 (in the ABD)2Value Buffer Length

Additional Fields in ACBX

The following additional fields are available in the ACBX:

DescriptionACBX Name

Additions 6ACBXADD6

Command options 3ACBXCOP3

Command options 4ACBXCOP4

Command options 5ACBXCOP5

Command options 6ACBXCOP6

Command options 7ACBXCOP7

Command options 8ACBXCOP8

The database ID. In the ACB, the database ID is stored in the response code field (ACBRSP)
for hex 30 calls and in the first byte of ACBFNR for other logical calls.

ACBXDBID

Error offset into the buffer (32-bit).ACBXERRA

Error character field (field name).ACBXERRB

Error subcode.ACBXERRC

Error buffer ID, if multiple buffers are involved.ACBXERRD

Error buffer sequence number, if multiple buffers are involved.ACBXERRE

Error offset into the buffer (64-bit) - this field is not yet supported.ACBXERRG

Compressed record length (or portion of record if the entire record is not read). In the ACB,
the compressed record length is stored in the Additions 2 field (ACBADD2).

ACBXLCMP

Decompressed record length. In the ACB, the decompressed record length is stored in the
Additions 2 field (ACBADD2).

ACBXLDEC

The length of the ACBX, currently 192ACBXLEN

Reserved. The value of this field must be set to zero.ACBXRSV2

Reserved. The value of this field must be set to zero.ACBXRSV3

Reserved for use by Adabas.ACBXRSV4

Subcomponent response code, used by Adabas add-on products.ACBXSUBR

Subcomponent response subcode, used by Adabas add-on products.ACBXSUBS

Subcomponent error text, used by Adabas add-on products.ACBXSUBT

When set to F2, this field indicates to Adabas that the new extended ACB (ACBX) is used.ACBXVER

59Command Reference

Calling Adabas

ACB Dual Purpose Field Changes

There are a number of cases where an ACB field that has multiple purposes has been split out into
additional fields in the ACBX:

■ In the ACB, the Response code field (ACBRSP) is used to store the database ID for hex 30 calls.
For the other logical calls the one-byte database IDwas stored in the first byte of the file number
field, ACBFNR. The ACBX provides a Database ID field (ACBXDBID) for this purpose.

■ In the ACB, the ACBADD2 field is used to retain error information for certain Adabas response
codes. In the ACBX, error information fields (ACBXERR* series) are provided for this purpose.

■ In the ACB, the ACBADD2 field is used to return, for a successful call, the compressed and de-
compressed record lengths of the processed data. In the ACBX, for a successful call, the Com-
pressed Record field (ACBXLCMP) contains the length of the compressed data processed by
Adabas and the Decompressed Record field (ACBXLDEC) contains the length of the decom-
pressed data.

Structure and Offset Differences

The offset and sequence of ACBX fields is generally different from the corresponding ACB fields,
as depicted in the following table.

ACBX Field NameACB Field NameOffset

ACBXTYPE (Call type)ACBTYPE (Call type)00

ACBXRSV1 (reserved 1)reserved01

ACBXVER (ACBX version indicator)ACBCMD (Command code)02

ACBXLEN (ACBX length)ACBCID (Command ID)04

ACBXCMD (Command code)(ACBCID continued)06

ACBXRSV2 (reserved 2)ACBFNR (File number)08

ACBXRSP (Response code)ACBRSP (Response code -- used for the
database ID with X’30’ calls)

0A

ACBXCID (Command ID)ACBISN (ISN)0C

ACBXDBID (Database ID)ACBISL (ISN lower limit)10

ACBXFNR (File number)ACBISQ (ISN quantity)14

ACBXISN (8-Byte ISN)ACBFBL (Format buffer length)18

ACBRBL (Record buffer length)1A

ACBSBL (Search buffer length)1C

ACBVBL (Value buffer length)1E

ACBXISL (8-Byte ISN Lower Limit)ACBIBL (ISN buffer length)20

ACBCOP1 (Command option 1)22

ACBCOP2 (Command option 2)23

ACBADD1 (Additions 1)24

Command Reference60

Calling Adabas

ACBX Field NameACB Field NameOffset

ACBXISQ (8-Byte ISN Quantity)(ACBADD1 continued)28

ACBADD2 (Additions 2)2C

ACBXCOP1 (Command option 1)ACBADD3 (Additions 3)30

ACBXCOP2 (Command option 2)(ACBADD3 continued)31

ACBXCOP3 (Command option 3)(ACBADD3 continued)32

ACBXCOP4 (Command option 4)(ACBADD3 continued)33

ACBXCOP5 (Command option 5)(ACBADD3 continued)34

ACBXCOP6 (Command option 6)(ACBADD3 continued)35

ACBXCOP7 (Command option 7)(ACBADD3 continued)36

ACBXCOP8 (Command option 8)(ACBADD3 continued)37

ACBXADD1 (Additions 1)ACBADD4 (Additions 4)38

ACBXADD2 (Additions 2)ACBADD5 (Additions 5)40

ACBXADD3 (Additions 3)(ACBADD5 continued)44

(ACBXADD3 continued)ACBCMDT (Command time)48

ACBXADD4 (Additions 4)ACBUSER (User area)4C

ACBXADD5 (Additions 5)---54

ACBXADD6 (Additions 6)---5C

ACBXRSV3 (reserved 3)---64

ACBXERRG (Error offset in buffer, 64-bit -- this is not
yet supported).

---68

ACBXERRA (Error offset in buffer, 32-bit)---6C

ACBXERRB (Error character field)---70

ACBXERRC (Error subcode)---72

ACBXERRD (Error buffer ID)---74

ACBXERRE (Error buffer sequence number)---75

ACBXSUBR (Subcomponent response code)---78

ACBXSUBS (Subcomponent response subcode)---7A

ACBXSUBT (Subcomponent error text)---7C

ACBXLCMP (Compressed record length)---80

ACBXLDEC (Decompressed record length)---88

ACBXCMDT (Command time)---90

ACBXUSER (User area)---98

ACBXRSV4 (reserved 4)---A8

61Command Reference

Calling Adabas

Adabas Buffer Descriptions (ABDs)

If an Adabas call using the ACBX interface is made that requires buffer specifications, Adabas
buffer descriptions (ABDs) must be used. ABDs must not be used when specifying an Adabas call
using the classic ACB interface; if an Adabas call using the ACB interface is made that requires
buffer specifications, specify the buffers or pointers to the buffers directly in the Adabas call itself.
For more information about the ACBX and ACB interface direct calls, read Calling Adabas.

As the ACBX interface supports segmented buffers (multiple pairs of format and record buffers,
or multiple triplets of format, record, and multifetch buffers), the total number of buffers in an
ACBX call is not fixed and limited. The individual buffers are no longer described by fields in the
ACBX itself (in the way the buffer lengths are defined in the ACB); instead, each buffer has its
own Adabas buffer description (ABD) structure that describes what kind of buffer it is, where it
is located, what size it is, and other pertinent information.

InUNIX andWindows applications, the addresses of ABDs are specified in theABD list associated
with the call; in mainframe system applications, the addresses of ABDs are specified directly in
the Adabas call.

This section describes the structure of an ABD and ABD lists:

■ Available ABD Types
■ ABD Structure
■ ABD Field Descriptions
■ ABD Lists

Available ABD Types

Using ABDs in an ACBX interface direct call, the buffers used in a direct call can be contiguous
or discontiguous. You can define ABDs for the following types of buffers:

■ Format buffers
■ Record buffers
■ Multifetch buffers
■ Search buffers
■ Value buffers
■ ISN buffers

Each Adabas buffer segment is represented by a single ABD, although you can define multiple
ABDs of a given type in the same program. Offset 4 (ABDID) in each ABD identifies the type of
buffer defined by the ABD.

Command Reference62

Calling Adabas

In an ACBX interface call, there is a one-to-one correspondence between ABD and buffer specific-
ations; each buffer youwant to specifymust have a correspondingABD. The buffer can be specified
in the ABD itself or referenced by indirect reference.

ABDs can be specified in any sequence in anACBX interface direct call. However, if anABD requires
a matching ABD of another type, Adabas will match them sequentially. For example, if three
format buffer ABDs and three record buffer ABDs are included in the call, the first format buffer
ABD in the call is matched with the first record buffer ABD in the call, the second format buffer
ABD is matched with the second record buffer ABD, and the third format buffer ABD is matched
with third record buffer ABD.

If unequal numbers of match-requiring ABDs are specified, Adabas will generate a dummy ABD
(with a buffer length of zero) for the missing ABD. For example, if three format buffer ABDs are
specified, but only two record buffer ABDs are specified, a dummy record buffer ABD is created
for use with the third format buffer ABD. If you would prefer that the dummy record buffer ABD
be used for the second format buffer ABD instead, you must specify the dummy record buffer
ABD yourself prior to the record buffer ABD to be used by the third format buffer ABD.

For commands where data in the record buffer is not described by a format specification in the
format buffer, no format buffer segments need be specified; if any are specified, they are ignored.
This applies to only a few commands; the most prominent of them is OP.

For information about the relationships between different buffer types, read Understanding the
Different Buffer Types.

ABD Structure

The following table describes the structure of the ABD.

FormatLength (in
bytes)

OffsetControl Block
Position

FieldName

binary2001-2ABD lengthABDLEN

binary2023-4Version indicatorABDVER

alphanumeric1045Buffer Type IDABDID

binary1056Reserved 1ABDRSV1

alphanumeric/binary1067Buffer location flagABDLOC

binary1078Reserved 2ABDRSV2

binary4089Reserved 3ABDRSV3

binary40C13Reserved 4ABDRSV4

binary81017-24Buffer size (allocated length)ABDSIZE

binary81825-32Data length to sendABDSEND

binary82033-40Data length receivedABDRECV

binary42841-44Reserved 5ABDRSV5

63Command Reference

Calling Adabas

FormatLength (in
bytes)

OffsetControl Block
Position

FieldName

alphanumeric42C45-48Indirect address pointer (if
ABDLOC= C'I')

ABDADR

not applicableuser-defined3049-nBuffer (if ABDLOC=C' ' or X'00')---

ABD Field Descriptions

Each of the fields in the ABD is described in this section, in the order they appear in the ABD
structure.

ABD Length (ABDLEN)

Required. Use this field to specify the length of the ABD. Currently, the value of this field must
be 48.

Version Indicator (ABDVER)

Required. This field identifies the version of the ABD structure. A value of C'G2' in this field indic-
ates that the buffer definition is in the new, extended ABD structure.

Buffer Type ID (ABDID)

Required. Use this field to identify the type of buffer described by the ABD, as shown in the fol-
lowing table:

Type of BufferID Setting

FormatC'F'

ISNC'I'

MultifetchC'M'

RecordC'R'

SearchC'S'

ValueC'V'

Command Reference64

Calling Adabas

Reserved 1 (ABDRSV1)

This field is reserved and must be set to binary zeros.

Buffer Location Flag (ABDLOC)

Required.Use this field to identifywhether the location of the buffer is defined at an indirect address
or is defined at the end of the ABD itself. If this field is set to "I" (C'I'), Adabas assumes indirect
addressing is specified and will use the address specified in the indirect address pointer field
(ABDADDR). In this case the buffermust reside in 31-bit addressable storage in the primary address
space.

If this field is blank (C' ') or contains hexadecimal zeros, the buffer must immediately follow the
ABD.

Reserved 2 (ABDRSV2)

This field is reserved and must be set to binary zeros.

Reserved 3 (ABDRSV3)

This field is reserved and must be set to binary zeros.

Reserved 4 (ABDRSV4)

This field is reserved and must be set to binary zeros.

Buffer Size (ABDSIZE)

Required. Use this field to specify the size of the buffer (in bytes), as it is allocated. A size of zero
indicates a dummy buffer, which is treated as if it was not specified at all.

Data Length to Send (ABDSEND)

Required. Use this field to specify the length of the data (in bytes) to be sent to Adabas. The max-
imum value of this field cannot exceed the value set for the buffer size field (ABDSIZE). A buffer
is sent to Adabas only if it is an input buffer for the type of command being issued.

Note: At this time, you must specify the same value for this field as you specify for the
maximum buffer size (ABDXSIZE field). This is a temporary limitation of Adabas Version
6.1, that will be resolved in a future release.

65Command Reference

Calling Adabas

Data Length Received (ABDRECV)

This field specifies the length of the data (in bytes) returned to Adabas. The Adabas router sets
this value at the end of call processing. The maximum value of this field will not exceed the value
set for the buffer size field (ABDSIZE). A buffer is received from Adabas only if it is an output
buffer for the type of command being issued.

Reserved 5 (ABDRSV5)

This field is reserved and must be set to binary zeros.

Indirect Address Pointer (ABDADR)

If you set the buffer location flag field (ABDLOC) to C'I' (indirect buffer), specify the address of
the actual buffer in this field. More than 32 KB of data can now be specified in an Adabas buffer.

Actual Buffer

If you set the buffer location flag field (ABDLOC) to C' ' (blanks), this field should contain the ac-
tual buffer.More that 32 KB of data can be specified in anAdabas buffer using the ACBX interface.
For complete information on defining buffers, read Defining Buffers.

ABD Lists

AnABD list is a file containing a list of pointer references to the Adabas buffer descriptions (ABDs)
used for a direct call. ABD lists are used only for open systems ACBX direct calls. In the list, one
ABD pointer is required for every buffer segment that is needed for the direct call.

ABD lists can include pointers to the ABDs for the following types of buffers: format, record,
multifetch, search, value and ISN.Multiple ABDs of the same type can be specified in an ABD list.

ABDs can be specified in the list in any sequence. However, if an ABD requires a matching ABD
of another type, Adabas will match them sequentially. For example, if three format ABDs and
three record ABDs are included in the list, the first format ABD in the list is matched with the first
record ABD in the list, the second format ABD is matched with the second record ABD, and the
third formatABD ismatchedwith third recordABD. If unequal numbers ofmatch-requiringABDs
are listed (for example, if three format ABDs are listed, but only two record ABDs), Adabas will
generate a dummy ABD for the missing ABD (in this case a dummy record ABD will be created).

For complete information about the relationships between the different types of ABD or buffer
specifications, read Understanding the Different Buffer Types.

Command Reference66

Calling Adabas

Defining Buffers

If your direct calls use the ACB direct call interface, you can define five different types of buffers:
format, record, search, value, and ISN buffers. These buffers are specified elsewhere in your ap-
plication and are indirectly referenced in the ACB direct call (via pointer references).

If your direct calls use the ACBX direct call interface, you can define different types of buffer
segments using Adabas buffer descriptions (ABD) and their associated buffer definitions: format,
record, multifetch, search, value and ISN buffers. Each Adabas buffer segment is represented by
a single ABD, although you can define multiple ABDs of some types in the same program. (For
example, you can define multiple format ABDs for use by the same program.) A single buffer
definition is associated with each ABD -- either indirectly by pointer reference or directly in the
ABD itself. For detailed information about ABDs, including their structure, read Adabas Buffer
Descriptions (ABDs).

This section covers the following topics:

Describes the different buffer types and the relationships between
them, and correspondingly, the relationships between their associated
ABDs (if you are making ACBX interface direct calls).

Understanding the Different Buffer
Types

Describes format and record buffers and their syntax, together with
examples

Format and Record Buffers

Describes multifetch buffers and their syntax.Multifetch Buffers

Describes search and value buffers and their syntax, together with
examples

Search and Value Buffers

Describes ISN buffers and their syntax.ISN Buffers

Understanding the Different Buffer Types

The following syntax depicts the relationships between the different types of buffers that can be
specified for a direct call. It should assist you in determining which buffer specifications are de-
pendent on the presence of others.

Notes:

1. If you are specifying an ACBX interface direct call, corresponding Adabas buffer descriptions
(ABDs) must also be specified. In addition, in ACBX interface direct calls when buffer specific-
ations require the presence of other buffer specifications (for example, a format buffer requires
the presence of a record buffer), Adabas pairs the buffers in the sequence in which they are
specified (for example, the first specified format buffer ABD with the first specified record

67Command Reference

Calling Adabas

buffer ABD). The syntax below can assist you in determining the sequence in which the ABDs
should be listed in the call or in the ABD list.

2. If you are specifying an ACB interface direct call, the multifetch buffer listed in this syntax do
not apply. In addition, buffers must be specified in this sequence: format, record, search, value,
and ISN. If an earlier buffer in the sequence is not needed, but a later one is, all of the buffers
up to the needed buffermust be specified, even if they are blank. For example, if anACB interface
direct call requires an ISN buffer but none of the other buffers, dummy format, record, search,
and value buffers must be specified before the ISN buffer.

[format-buffer record-buffer... [multifetch-buffer]]...
[search-buffer value-buffer]
[ISN-buffer]

The following table describes the elements in this syntax:

ConditionsDescriptionElement

Required only if you need to specify the fields to be
processed during the execution of an Adabas read or
update command.

When required, multiple format buffers can be specified
for an ACBX interface direct call. Only one format buffer
can be specified in an ACB interface direct call.

A format buffer segment
to use for the call. Each
format buffer segment
must end with a period
and be a complete and
valid standalone format
buffer.

format-buffer

If a format buffer is specified in the call, a corresponding
record buffer must also be specified.

Optionally, in an ACBX interface direct call,a
corresponding multifetch buffer can also be specified.

Required only if you need to set aside an area in storage
to store ISNs or (in the case of an ACB interface direct

An ISN buffer segment to
use for the call.

ISN-buffer

call) an area to store the record descriptor elements
(RDEs) of multifetched records.

When required, only one ISN buffer should be specified
for the call.

Used only by ACBX interface direct calls and required
only if you need to set aside an area in storage to store

A multifetch buffer
segment to use for the

multifetch-buffer

the record descriptor elements (RDEs) of multifetched
records.

ACBX interface call. This
buffer is only available for

When required, multiple multifetch buffers can be
specified for an ACBX interface direct call.

ACBX interface direct
calls.

If a multifetch buffer is specified, corresponding format
and record buffers must also be specified.

Command Reference68

Calling Adabas

ConditionsDescriptionElement

Required only if you need to set aside an area of storage
to store record data required or collected for the call.

When required, multiple record buffers can be specified
for an ACBX interface direct call. Only one record buffer
can be specified in an ACB interface direct call.

A record buffer segment
to use for the call.

record-buffer

If a record buffer is specified in the call, a corresponding
format buffer must also be specified.

Optionally, in an ACBX interface direct call,a
corresponding multifetch buffer can also be specified.

Required only if search criteria are required to select
records for the call.

If a search buffer is specified in the call, a corresponding
value buffer must also be specified. Only one search and
value buffer pair can be specified in a single direct call.

A search buffer segment
to use for the call.

search-buffer

Required only if search criteria are required to select
records for the call.

If a value buffer is specified in the call, a corresponding
search buffermust also be specified. Only one search and
value buffer pair can be specified in a single direct call.

A value buffer segment to
use for the call.

value-buffer

Format and Record Buffers

The format buffer specifies the fields to be read/updated during the execution of an Adabas
read/update command.

For read commands, the values of the fields specified in the format buffer are returned by Adabas
in the record buffer.

Format Buffer AA,BB. names of the fields to be read

Record Buffer value(AA) value(BB) field values returned by Adabas

For add/update commands, the newvalues for the fields specified in the format buffer are provided
by the user in the record buffer.

69Command Reference

Calling Adabas

Format Buffer XX,YY. names of the fields to be updated

Record Buffer value(XX) value(YY) field values provided by user

Format Buffer Syntax

This section describes the syntax used to construct the format buffer.

The field names used in the examples in this section are based on the two file definitions contained
in Appendix A in this manual.

Note: There are several restrictions for format buffers, which are described inMessages and
Codes, Nucleus Response Codes, response 41.

The syntax of the format buffer is as follows:

{[{nX|'literal'}, ...] field_definition [segment | {,length}] [,format] ↩
[,edit_mask][,#'char_set']},

A comma must be used to separate adjacent format buffer entries. One or more spaces may be
present between entries. The last entry may not be followed by a comma. The format buffer must
be terminated with a period.

The following special option is available: a format buffer with the value `C.' will return the com-
pressed record in the record buffer.

The terms nX, literal, field_definition, segment, length, format, edit_mask and #'char_set', which
are used in the syntax of the Format Buffer, are described below.

nX

For READ commands, nX specifies that n spaces are to be inserted in the record buffer by Adabas
immediately before the next field value. The maximum allowed value of n is 253.

Format Buffer AA,5X,BB. 5 blanks are to be inserted between
values for fields AA and BB

For UPDATE commands, nX causes n positions in the record buffer to be ignored by Adabas.

Format Buffer AA,5X,BB. 5 positions between values for fields
AA and BB are to be ignored

Command Reference70

Calling Adabas

Record Buffer value(AA) 5 bytes value(BB)

'literal'

For READ commands, the character string contained within the quotation marks is to be inserted
in the record buffer immediately before the next field value. The character string provided may
be 1 - 254 bytes in length and may contain any alphanumeric character except a quotation mark.

Format Buffer AA,'text',BB. 'text' is to be inserted between
values for AA and BB

Record Buffer value(AA)text value(BB)

field_definition

The field_definition field indicates the elementary field, multiple-value field or periodic group to
be used. Ranges of adjacent elementary fields can also be specified. Formultiple value fields (MU)
and periodic groups (PE), index ranges can be specified. The permissible combinations are as fol-
lows, where the field name is indicated by `name':

name [mu_pe_index]
name A [mu_pe_index]
name [pe_index]C
name S
name-name
name L[mu_pe_index]
name D[mu_pe_index]

where mu_pe_index is one of:

mu_index
pe_index
pe_and_mu_index

mu_index specifies an MU index or a range of MU indicies for an MU field. pe_index specifies a
PE index for a PE or a range of PE indices for a PE. For mu_index and pe_index the following
values may be specified:

i
MU index for MU field or PE index for PE

i-j
Range of MU indices or PE indices

N
highest MU index for MU field or PE index for PE

1-N
Range of all MU indices or PE indices (not permitted with update commands)

71Command Reference

Calling Adabas

Note: If you specify 1-N, and no value exists, because the periodic group or themultiple-
value field is empty, no occurrence is displayed. This is an inconsistency to mainframe,
where at least one occurrence is displayed.

pe_and_mu_index specifies a PE index or a range of PE indices, and an MU index or a range of
MU indices for an MU field in a PE. The following values may be specified:

i(m)
i = PE index, m = MU index for MU field in PE

i(m-n)
i = PE index, m-n = range of MU values for MU field in PE

i(N)
i = PE index, N = highest MU index for MU field in PE

i(1-N)
i = PE index, range of allMU indices forMUfield in PE (not permittedwith update commands)

N(m)
N = highest PE index, m = MU index for MU field in PE

N(m-n)
N = highest PE index, m-n = range of MU indices for MU field in PE

N(N)
Highest PE index and highest MU index for MU field in PE

N(1-N)
Highest PE index, range of all MU values for MU field in PE (not permitted with update
commands)

i-j(m)
i-j = range of PE indices, m = MU index for MU field in PE

i-j(m-n)
i-j = range of PE indices, m-n = range of MU indices for MU field in PE

i-j(N)
i-j = range of PE indices, N = highest MU index for MU field in PE

i-j(1-N)
i-j = range of PE indices,1-N = range of all MU values for MU field in PE (not permitted with
update commands)

If you specify a range both for the MU indices and for the PE indices, the corresponding sequence
of record buffer elements starts with all specified elements for the lowest specified PE index, and
ends with all specified elements for the highest specified PE index.

Command Reference72

Calling Adabas

Example:

Is equivalent to AA1(3),AA1(4),AA2(3),AA2(4).AA1-2(3-4)

These combinations are described in detail in the following.

name [mu_pe_index]

The following combinations are permitted for name [mu_pe_index]:

■ name

The name of the field (or group) for which the value (or values) is requested, or a new value (or
values) is being provided.

The name specified must be two characters in length andmust be present in the field definition
table of the file being read/updated.

The namemay refer to an elementary field, a group or a multiple-value field. The field or group
must not belong to a periodic group. The first occurence of a multiple-value field without MU
index references the first value of the multiple-value field, the second occurence to the second
value of the multiple-value field, etc. The same multiple-value field should not be specified
withoutMU index andwithMU index in the same format buffer; the results of a commandusing
such a format buffer are undefined.

A subdescriptor or superdescriptor name may be specified for an access command if no parent
field of the descriptor is a multiple field or a field within a periodic group. Phonetic or hyper-
descriptors must not be used. For the L9 command, any descriptor other than a phonetic
descriptor is allowed.

For UPDATE commands, the same name may not be used more than once (except in the case
of multiple-value fields as explained below).

A name which refers to a group results in all of the fields within the group being referenced.

Refers to group GA (equivalent to the specification AA,AB).GA

A group name may not be used if the group contains a multiple-value field.

The use of group names will result in a significant reduction in the time required to process the
command.

Specifyingmultiple-value fieldswithout an index in anUPDATE command allows you to replace
all old multiple-value field values by exactly the number of fields specified in the format buffer.
In this way, themultiple-value field count of anMUfieldwithout the NU option can be reduced
again.

73Command Reference

Calling Adabas

■ name mu_or_pe_index

The user must specify which occurrence is to be referenced, if one of the following is to be refer-
enced:
■ a periodic group;
■ a field within a periodic group that is not a multiple-value field;
■ a multiple-value field;
■ a subdescriptor or superdescriptor with a field within a periodic group as parent field, which
does not have a multiple-value field as parent field;

■ a subdescriptor or superdescriptor with amultiple-value field as parent field, which does not
have a field within a periodic group as parent field.

This is done by appending a numeric subscript (leading zeros permitted) to the name.

Note: Subdescriptors or superdescriptorswith fieldswithin a periodic group or amultiple-
value fields as parent field in the format buffer are not supported with Adabas versions
< 5.1.

The third occurrence of the periodic group GB is referenced (fields BA3, BB3, BC3).GB3

The field BB in the 6th occurence of the periodic group GB is referenced.BB6

The second value of the multiple-value field MF is referenced.MF02

N refers to the last occurence of a periodic group, a field in the last occurence of a periodic group
or a multiple-value field for a read command; for an update command, a new occurence will
be appended. A periodic group namemust not be used if the periodic group contains amultiple-
value field.

A range of occurrences of a periodic group (or a fieldwithin a periodic group)may be referenced
by specifying the first and last occurrence number to be referenced (connected by a hyphen)
after the name. A multiple-value field may also be referenced. A descending range may not be
specified. A periodic group name must not be used if the periodic group contains a multiple-
value field.

The second through fourth occurrences of the periodic group GB are referenced (BA2,
BB2, BC2, BA3, BB3, BC3, BA4, BB4, BC4).

GB2-4

Command Reference74

Calling Adabas

The second through fourth occurrences of BA and BC are referenced (BA2, BA3, BA4,
BC2, BC3, BC4).

BA2-4,BC2-4

The first 3 values of the multiple-value field are referenced.MF1-3

Invalid, incorrect syntax.GB2-GB4

Invalid, descending range.GB4-2

name 1-N means the first to the last occurrence of the field.
■ name mu_and_pe_index

If amultiple-value field containedwithin a periodic group or a subdescriptor or superdescriptor
where a parent field is a fieldwithin a periodic group and a parent field is amultiple-value field
(they can be the same – a multiple-value field within a periodic group) is to be referenced, the
periodic group occurrence number (i), followed by the desired multiple-value field value (m)
or range of values (m-n), must be specified.

Note: Subdescriptors or superdescriptorswith fieldswithin a periodic group or amultiple-
value fields as parent field in the format buffer are not supported with Adabas versions
< 5.1.

The fifth value of the multiple-value field CB in the second occurrence of the periodic group
GC is to be referenced.

CB2(5)

The first five values of the multiple-value field CB in the second occurrence of the periodic
group GC are to be referenced.

CB2(1-5)

Nmeans the last occurrence of either the last occurrence of the element in a periodic group or
the last value of a multiple-value field or both. In an update command, this means an append
of a value.

If a range of multiple-value field values within a range of periodic group occurrences is to be
referenced, the range of the periodic group occurrences (i-j), followed by the range of themultiple-
value field values (m-n) must be specified.

The first four values of the multiple-value field CB in the first occurrence of the periodic
group GC are referenced, followed by the first four values of CB in the second occurrence
of GC.

CB1-2(1-4)

name A [mu_pe_index]

Appending an `A' to the name of an elementary field, a multiple-value field, a field within a
periodic group, or a multiple-value field within a periodic group indicates the add option. The
permitted combinations are the same as for name [mu_pe_index].

75Command Reference

Calling Adabas

If this option is used, a value can be added to a field instead of the value in the field being overlayed.
This saves some Adabas calls, e.g. the sequence L4-A1 can be reduced to a single A1 call.

The following formats are supported: unpacked (U), packed (P), fixed point (F) and floating point
(G).

For all commands other than A1, the A suffix is ignored.

name [pe_index]C

The highest occurrence number of a periodic group, or the number of existing values of amultiple-
value field, or the number of existing values of a multiple value field in a PE for one occurrence
or a range of occurrences of the PE may be obtained by appending the literal `C' to the periodic
group or multiple-value field name.

The highest occurrence number of the periodic group GB is referenced.GBC

The number of existing values of the multiple-value field MF is referenced.MFC

For UPDATE commands, a `C' element is ignored and its corresponding count within the record
buffer is skipped.

The count is returned in the record buffer as a one-byte binary number, unless an explicit length
and/or format is specified by the user (see length and format parameters).

The count of the existing values of a multiple-value field within a periodic groupmay be obtained
by indicating the periodic group occurrencewith a one or two digit index and the literal `C' imme-
diately following the multiple-value field name.

The count of the existing number of values of the multiple-value field CB in the fourth occurrence
of the periodic group GC is referenced.

CB4C

For UPDATE commands, a `C' element is ignored and its corresponding count within the record
buffer is skipped. This is one byte for count fields which are specified without a length override.

The user cannot directly update the contents ofmultiple-value field or periodic group count fields.
These count fields are automatically updated by Adabas when multiple-value field values and
periodic group occurrences are added/deleted.

Command Reference76

Calling Adabas

Specifies the count of existing values of the multiple-value field in the final periodic group.MFNC

name S

The `S' element is used when reading or updating the SQL null–value attribute of fields which
have SQL null-value support. The `S' element is formed by appending the literal `S' to the field
name.

This element can only be applied to elementary fields that are not in a periodic group, with the
NC option (SQL null value supported) specified. If no other format or length is specified, it is 2
bytes long and the format is fixed point.

For UPDATE commands, the SQL null value will be stored in the field if the corresponding value
in the record buffer is –1. Any other negative values result in a response 52. Positive values and
0 are ignored.

The `S' element is only required for UPDATE commands if the elementary field is being changed
to the null value; otherwise the `S' element is not required but may be used. The `S' element and
name element can be anywhere within the format buffer. When an `S' element updates a field's
value to null then a following name element is ignored.

Several format buffer elements which refer to the same field cannot be contained within a format
buffer for an UPDATE command.

For READ commands, the following information is returned in the `S' element:

MeaningValue in S element

Field contains the SQL null value.-1

Field is significant and the value is not truncated.0

Field is significant and the value is truncated, the length of the value does not fit into the
S element (for example, with default format F and default length 2: value length is greater
than 32767).

1

Field is significant and the value is truncated: length of the value.>1

name-name

The notation name-namemay be used to reference a series of consecutive fields (as ordered in the
field definition table). The user specifies the beginning and ending field names connected by a
hyphen. No multiple-value field or periodic group may be contained within the series, and no
length or format override is permitted.

A namewhich refers to a groupmay not be specified as the beginning or ending name, but a group
may be embedded within the series.

Standard format and length is in effect for all the fields within the series.

77Command Reference

Calling Adabas

The fields AA, AB and AC are referenced.AA-AC

Invalid, the series may not contain a multiple-value field or periodic group.AA-GC

Invalid, the series may not begin/end with a group.GA-AC

Invalid, a length and/or format override is not permitted with a series notation.AA,5,U,-AD

name L[mu_pe_index]

The format buffer indicator, L, can be used to retrieve or specify the actual length of any alphanu-
meric or Unicode field value that is either a multiple-value field or a field within a periodic group.
This format buffer element is referred to as the length indicator.

The length indicator is specified using the field name followed by the character L (for example,
FB='ACL.' would return the length of the AC field). By default, the compressed field length is re-
turned in four-byte binary format.

Using the Length Indicator with MU/PE Fields

When used with MU or PE fields, the length indicator must specify occurrence indices, including
the range of occurrence index.

Consider the following examples.

1. In the following example, the length of the fifth value of the multiple-value field CB in the
second occurrence of periodic group would be returned:

FB='CBL2(5).'

2. In the following example, the lengths of the first ten values of multiple-value field MF would
be returned:

FB='MFL1-10.'

3. The following example for the multiple-value field MF is illegal as the length indicator does
not support MU fields without an occurrence index:

FB='MFL.'

name D[mu_pe_index]

Using the D element (daylight saving time indicator) in the format buffer is only allowed for fields
with DT and TZ option. It indicates if daylight saving time was active for the date/time value. The
default format for a D element is F with length 2 bytes. Its value is the number of seconds to be
added to the standard time in order to get the current local time; this is usually 0 when daylight

Command Reference78

Calling Adabas

saving time is not active and 3600 when daylight saving time is active. For update format buffers,
the value of the D element is subtracted from the value specified for the field in the record buffer
in order to get the standard time. Using the D element also allows you to specify time values
during the hour in which the daylight saving time is switched off again. If you specify date/time
values in this hour,which occurs twice in add/update commandswithout aD element, it is assumed
the values belonging to standard time are meant. In add/update commands for each D element
theremust be a 1:1 relationship between theD element and the corresponding date/time editmask
element. If your format buffer contains a D element, the value must be a correct daylight saving
time indicator value valid for the time specified; otherwise you get a response code 55with subcode
31.

In add and update commands, it is possible to specify the moment when the standard time or the
daylight saving time ends, both as standard time and as daylight saving time value, but if you
read such a value again, it is always displayed as the beginning of the new time period.

In the following example, the local time zone is MET (Middle European Time)., and field values
for a field defined with the edit mask E(DATETIME) are read:

Value of D ElementField Values for Edit Mask E(DATETIME)Internal Value (UTC)

02008012114500020080121135000

36002009102502300020091025003000

020091025023000 (1)20091025013000

(1) In add or update commands it is also possible to specify 20091025030000 with D element 3600.

length, format

The length and format parameters are used to indicate that a field value is to be returned or
provided in a length and/or format different from the standard length and/or format of the field.

The length specifiedmust be large enough to contain the value in the chosen format andmust not
exceed the maximum length permitted (see following figure).

Asterisk (*) Length Notation

For alphanumeric and Unicode fields you can specify an asterisk (*) instead of a length in the
format element. The presence of an asterisk indicates that the amount of space available for the
field value in the record buffer is variable and depends on the actual value of the field. However,
unlike the zero length specification setting, no four-byte length field precedes the field value in
the record buffer; the record buffer area corresponding to the format element only contains the
value of the field. The actual field value length should be retrieved for read commands and must
be specified for update commands using the new format buffer length indicator, L. For more in-
formation about the length indicator, read Length Indicator (L), elsewhere in this guide.

In the following example, the record buffer for LB field L1 contains only the value of the L1 field,
followed by the value of the AA field for which 10 bytes have been allotted.

79Command Reference

Calling Adabas

FB='L1,*,AA,10,A.'

In the following example, the record buffer for LBmulti-value field L2 contains the first ten values
of L2.

FB='L21-10,*.'

The record buffer is not necessarily required to provide sufficient space for the entire field if its
format element includes an asterisk length setting. However, in read command processing, the
field value can be truncated if both of the following conditions are met:

■ The record buffer space available is insufficient for the field value.
■ A field with asterisk notation is specified at the end of the format buffer.

In these conditions, no error is returned. If this were the case in the second example above
(FB='L21-10,*.'), Adabas would truncate the ten values to be read down to the length of the
corresponding record buffer segment. (The truncation occurs from right to left; that is, the last
value is truncated first; if the remaining space is still insufficient, the second-to-last value is trun-
cated, and so on.) In extreme cases, if no space is available at all for the field value, the value is
truncated down to zero bytes.

In the first example above (FB='L1,*,AA,10,A.'), if the record buffer segment is too short, no
truncation occurs because this is not allowed for fields specified with a fixed length or length of
zero (0). Instead, the nucleus returns response code 53 (record buffer too small).

Only read commands executed by the Adabas nucleus may truncate values specified with the as-
terisk notation; no truncation occurs in update commands. In addition, the ADACMP utility does
not truncate values specified with the asterisk notation.

The format specified must be compatible with the standard format of the field (see the following
table of length/format parameters). The processing rules for format conversion are shown later in
this section.

These parameters may only be specified for an elementary or multiple-value field.

If the length and/or format parameters are omitted, the field value is returned/must be provided
according to the standard length and/or format of the field. If a length of zero is specified, or name
refers to a field which is defined as a variable-length field (no standard length), the value returned
by Adabas will be preceded by a binary field which contains the length of the value (including
the length indicator). For UPDATE commands, this length indicatormust be provided by the user.
The length of the length indicator is

■ 4 bytes if the field has the L4 option;
■ 2 bytes if the field has the LA option;
■ 1 byte if the field has neither of these options.

Command Reference80

Calling Adabas

Destination
Formats

ExplanationMax.
Length

Source
Format

AAlphanumeric16381 (if the field has the option L4 or LA and
is not a descriptor), or 1114 (if the field has the
L4 or LA option and is a descriptor), else 253

A

A, F, P, UBinary (unsigned)126B

A, B, P, UFixed point (signed)8F

GFloating point8G

A, B, F, UPacked decimal
Signed, `+' = nA, nC, nE, nF
`–' = nB or nD in least significant byte,
where `n' is the least significant digit of
a given value

15P

A, B, F, PUnpacked decimal
Signed, `+' = 3n in least significant byte
`–' = 7n in least significant byte,
where `n' is the least significant digit of
a given value (as in zoned format)

29U

WUnicodeFor the internal value stored in UTF-8: 16381 (if
the field has the option L4 or LA, and is not a

W

descriptor), 1144 (if the field has the option L4
or LA, and is a descriptor), else 253. The
external values, which may use different
encodings, may be larger, if the field has the
option LA or L4, but without one of these
options the external values are also limited to
253 bytes.

All lengths are in bytes. The signs in P and U formats are hexadecimal in nibbles or bytes.

Conversion from BINARY is limited to values between 0 and 2**64 - 1; conversion to BINARY is
limited to values between 0 and 2**80 -1.

Conversion from or to FIXED POINT is limited to values between -(2**63) and 2**63 - 1.

Conversion from a numeric format to alphanumeric results in an unpacked value, left–justified,
without leading zeros andwith trailing blanks. For example, the three–byte packed value `10043F'
would be converted to `3130303433202020'. Value truncation is possiblewith this type of conversion.
Floating point fields (G format) cannot be converted to another format. Conversions from 4 byte
G format to 8 byte G format and vice versa are also not allowed.

Note: Starting with Adabas Version 6.3 SP2, for source format U, the sign bytes on EBCDIC
machines, converted to ASCII, are also allowed as input for the sign bytes (see following
table):

81Command Reference

Calling Adabas

ASCII, HexDisplayEBCDIC, HexDigit

7B{C0+0

41AC1+1

42BC2+2

43CC3+3

44DC4+4

45EC5+5

46FC6+6

47GC7+7

48HC8+8

49IC9+9

7D}D0-0

4AJD1-1

4BKD2-2

4CLD3-3

4DMD4-4

4END5-5

4FOD6-6

50PD7-7

51QD8-8

52RD9-9

Using the Length Indicator and Asterisk Indicator in Read Commands

When the length indicator is specified for a field in the format buffer of a read command, the
number of bytes required for the field value in the record buffer (without padding and with no
further length indication) is returned at the corresponding field position in the record buffer. The
amount of space required in the record buffer is based on the field format and the UES-related
definitions for the database, file, and user.

For Unicode fields, the length indicator currently always returns the internal length, i.e. the length
of the value in UTF-8 encoding. This may be changed in a future version of adabas, so that the
length of the value in another encoding is returned. It is, therefore, strongly recommended that
you currently use the length indicator for reading W fields only if the default encoding for the
Adabas session is UTF-8 and if no encoding is specified in a corresponding format buffer element
with asterisk length. Otherwise youmay receive different results with a future version of Adabas.

If character LB field L1 (format A) contains a 40,000-byte value, consider the following examples:

1. Suppose the format buffer specification for L1 is:

Command Reference82

Calling Adabas

FB='L1L,4,B.'

The record buffer will contain the four-byte binary length of the value of field L1:

0x00009C40

2. Suppose the format buffer specification for L1 is:

FB='L1L,4,B,L1,*,A.'

The record bufferwill contain the four-byte binary length of the value of field L1 at the beginning
of the record buffer area , followed by 40,000 characters of the actual L1 data.

If a field in the format buffer is specified with its corresponding length indicator (for example,
FB='L1L,4,B,L1,*.'), and if the field is not subject to blank compression (theNB option is specified
for the field in the FDT), the length returned is the number of bytes specified when the value was
stored. However, if the field is subject to blank compression, the length returned is the number of
significant left-most bytes, beyond which the value is padded with blanks.

If a field in the format buffer is specified with its corresponding length indicator (for example,
FB='L1L,4,B,L1,*.'), and if the field is null suppressed (the NU option is specified for the field
in the FDT) and the field value is all blanks, the returned field value length is zero; if the field is
not null suppressed, the returned field value length is the length of one blank (one byte for alpha-
numeric fields and UTF-8 Unicode fields).

Using the Length Indicator and Asterisk Length in Store/Update Commands

When a length indicator is specified in the format buffer for an update command, the corresponding
value in the record buffer specifies the actual value length of the field in the record buffer. Only
one length indicator for the base field can be specified and it must be accompanied by the asterisk
(*) length notation in the format buffer.

The length indicator must occur in its format buffer segment prior to any format element that
implies a variable length in the record buffer (due to the use of asterisk notation or zero length
notation). In other words, the length indicator is located in a constant position, independent of
the values of any fields mentioned in the format.

In addition, if you elect to combine the length indicator and an asterisk length notation value re-
quest in the same format buffer for an MU or PE field, the value requests must use corresponding
ranges as the length requests. It does not matter whether the length requests and value requests
are specified in the same or different format buffer segments. Consider the following examples,
where XX is an LA or LB field with the MU option:

1. The following valid examples request the length of the first two values of the XX field as well
as their actual values.

83Command Reference

Calling Adabas

FB='XXL1-2,XX1-2,*.'

FB='XXL1,XXL2,XX1,*,XX2,*.'

2. The following invalid examples are attempts to request the length of the first two values of the
XX field as well as their actual values. However, these examples are invalid because the ranges
specified for the MU field in the length and value requests are not specified in a corresponding
manner.

FB='XXL1,XXL2,XX1-2,*.'

FB='XXL1-2,XX1,*,XX2,*.'

3. The following two format buffers request the length of the third and fourth values of the XX
field, as well as their actual values.

FB='XXL3,XXL4.'

FB='XX3,*,XX4,*.'

4. The following invalid format buffers attempt to request the length of the third and fourth values
of the XX field, as well as their actual values, but fail because the ranges specified for the length
and value requests are not specified in a corresponding manner.

FB='XXL3,XXL4.'

FB='XX3-4,*.'

Format Buffer: segment

Specifying segment instead of length allows you to process only a part of a field, which is of par-
ticular interest for LOB fields. You can only specify segment for fields defined with the format A.
segment has the following syntax:

(byte_number, length [, length2])

ForMUfields in PE, segment can only be specified if both the PE andMU index have been specified.
If no segment is specified, the complete field is processed.

byte_number specifies the byte number of the first byte of the field segment to be processed;
byte_number may be either a number or ‘*’.

If a number is specified, it denotes the position of the byte within the value where the segment to
be processed start; the first (leftmost) byte of the value has byte number 1.

Command Reference84

Calling Adabas

If you specify byte_number = ‘*’, it is called the *-position. If you specify a *-position, it means that
the segment starts at the current position. For an L1, L4 or A1 command with command option
2=‘L’, the current position is specified in the field ISN LOWER LIMIT in the control block as the
number of bytes preceding the segment to be processed; by specifying a *-position you can process
different segments of a field using the same format buffer. For other commands, the current position
is always the first (leftmost) byte of the field value. In a read command, only one field value can
be processedwith *-position; therefore, more than one format buffer element with *-positionmust
not be specified in the format buffer.

Notes:

1. If the current position is past the end of the value, you get response code 3 for L1 and L4 com-
mands with the L option. Otherwise, Adabas returns the old current position and length in the
ISN LOWER LIMIT field. This means that you can process the complete value by a series of L1
or L4 commands, until you get response code 3, without having to change the control block
and format buffer.

2. The current position to be specified in the ISN LOWER LIMIT field is one less than the explicit
byte number to be specified in the format buffer for the same segment. Examples: L1(1,1000) is
equivalent to L1(*,1000)with ISNLOWERLIMIT 0, and L1(1001,1000) is equivalent to L1(*,1000)
with ISN LOWER LIMIT 1000.

length is the length in bytes of the field segment to be processed. The specified number of bytes
must be provided at the corresponding position in the record buffer.

length2 is optional and relevant only for update (A1) commands; for other commands length2 is
ignored. It specifies the length of the area in the old value that is replaced by the new segment; if
specified, currently the value of length2 must be equal the value of length. If not specified, all re-
maining data of the old field value starting from position byte_number is replaced by the data in
the record buffer.

Notes:

1. If a segment that is read contains bytes past the end of the field value, these bytes are filled up
with blanks.

2. If a segment does not startwith the first byte in anN1/N2 command, the field value is constructed
by preceding the segment with blanks. The resulting value is compressed if the field does not
have the NB option.

3. If a segment starts past the end of the old value for anA1 command, the newvalue is constructed
by filling up the old value with blanks and adding the segment from the record buffer. The
resulting value is compressed if the field does not have the NB option.

4. If a segment in an A1 command does not start past the end of the old value, but ends past the
end of the old value, the value is created by adding the segment after the part of the old value
before the segment. The resulting value is compressed if the field does not have the NB option.

85Command Reference

Calling Adabas

5. If a segment in anA1 command ends before the end of the old value, the resulting value depends
on length2: if it is specified, length2 bytes of the old value are replaced by the segment. If not
specified, the rest of the old value is removed, and the resulting value is compressed if the field
does not have the NB option.

Format Buffer: edit_mask

edit_mask is one of:

numeric_edit_mask
E(date_time_edit_mask_name)

Format Buffer: numeric_edit_mask

Numeric edit masks are used according to the standard edit mask rules as used in the COBOL
programming language.

A numeric edit mask may only be specified for numerically-defined fields. All data that is being
returned by Adabas to an edited field is converted to unpacked decimal format, regardless of the
standard format of the field. The maximum number of digits (other than edit characters) which
may be returned to an edited field is 15.

The user must ensure that the length parameter for the field for which an edit format has been
specified is sufficiently large to contain the field value plus all required edit characters, otherwise
Adabas will return a response code.

Numeric Edit Mask Generated Maximum LengthDefault LengthFormat

zzzzzzzzzzzzzzz15E1

zzzzzzzzzzzzzz9-16E2

zzzzzzzzz99.99.9917E3

zzzzzzzzz99/99/9917E4

z.zzz.zzz.zzz.zzz,zz20E5

z,zzz,zzz,zzz,zzz,zz20E6

z,zzz,zzz,zzz,zz9.99-21E7

z.zzz.zzz.zzz.zz9.99-21E8

*,***,***,***,**9.99-21E9

*.***.***.***.**9.99-21E10

Reserved-E11

Reserved-E12

Reserved-E13

Reserved-E14

Reserved-E15

Command Reference86

Calling Adabas

Examples of Numeric Edit Mask Usage:

Format Buffer Field Value Edited Value

XC,15,E1. 009877 bbbbbbbbbbb9877
XC,8,E4. 301177 30/11/77
XB,5,E7. -366 3.66-
XB,7,E9. 542 **5.42b

Format Buffer: E(date_time_edit_mask_name)

For date/time fields defined with a date/time edit mask you can specify a date/time edit mask.
While numeric edit masks are only allowed for read commands, date/time edit masks are also al-
lowed for update commands. The edit masks are the same edit masks that are used in the file
definition. The following combinations of edit masks in the field definition and edit masks in the
format buffer are allowed (columns=format buffer, rows=FDT):

XTIMESTAMPUNIXTIMENATDATENATTIMETIMESTAMPDATETIMETIMEDATE

F/TF/TC/CF/TF/TF/T-/-A/ADATE

-/--/--/--/--/--/-A/A-/-TIME

F/TC/CT/FF/TF/TA/AX/-T/FDATETIME

C/CT/FT/FT/FA/AT/FX/-T/FTIMESTAMP

F/TT/FT/FA/AF/TT/FX/-T/FNATTIME

F/TF/TA/AF/TF/TF/T-/-C/CNATDATE

F/TA/AT/FF/TF/TC/CX/-T/FUNIXTIME

A/AT/FT/FT/FC/CT/FX/-T/FXTIMESTAMP

The first value specifies the behaviour during read commands; the second the behaviour during
update commands:

MeaningValue

Not allowed.-/-

Allowed, no conversion required.A

Conversion required; source and target value have the same precision.C

Fill up the value with 0; the target value has a higher precision. Depending on the edit masks, an
additional conversion may be required.

F

Truncate the value; the target value has a lower precision. Depending on the edit masks, an additional
conversion may be required.

T

Extract the time component from the value for read operations; the target value does not contain date
information. Depending on the edit masks, an additional conversion may be required. Only allowed
for read operations.

X/-

87Command Reference

Calling Adabas

Notes:

■ Adabas allows you to add a date/time edit mask to the field definition of an existing field of
formats B, F, P and U. This can result in values in the database that are not correct values for
this date/time edit mask.

■ The following rules apply to the usage of date/time edit masks in the format buffer:
■ If you don’t specify a date/time edit mask for a field without the TZ option in the format
buffer, no date/time conversions and checks are performed.

■ If you don’t specify a date/time edit mask for a field with the TZ option in the format buffer,
the format buffer is treated as the date/time edit mask of the field definition specified.

■ If you don’t specify length or format together with a date/time edit mask in the format buffer,
the default format or length of the field is used - ensure that you specify length or format if
the default does not match the date/time edit mask specified.

■ If a date/time edit mask specified is not compatible with the date/time edit mask in the field
definition, you get a response code 41.

■ If you specify a date/time edit mask for a field definedwithout the DT option, a check is made
to see whether the value is a valid value for this edit mask - if it isn't, you get a response code
55.

■ If you specify a date/time editmask that is only allowed only for read commands in the format
buffer for an update or add command, you get a response code 44.

■ If you specify a date/time edit mask in the format buffer for an update or add command, a
check is made to ensure that the value is a correct date/time value - you get a response code
55 if the value is not compatible with the edit mask.

■ If you specified a date/time edit mask in the format buffer for a read command, and the field
contains an invalid date/time value, or the length of the field is not sufficient to store the value,
you get a response code 55.

#'char_set'

This format buffer element may be specified only forW fields, and is used to specify the character
set of the corresponding field in the record buffer. Youmust specify an encoding name that is listed
in http://www.iana.org/assignments/character-sets - most of the character sets listed there are
supported by ICU, which is used by Adabas for internationalization support.

Command Reference88

Calling Adabas

http://www.iana.org/assignments/character-sets

Example for Character Set Specification

#'UTF-16BE'

Format Buffer Examples

This section provides examples of format buffer and record buffer construction. All the examples
in this section refer to the sample Adabas files in Appendix A.

Example 1: Using elementary fields (standard length and format).

Format Buffer : AA,5X,AB.

Record Buffer : AA value(8 bytes alphanumeric)
5 spaces
AB value(2 bytes packed)

Example 2: Using elementary fields (length and format override).

Format Buffer : AA,4,5X,AB,3,U,W1,50,#'UTF-16BE'.

Record Buffer : AA value (4 bytes alphanumeric)
5 spaces
AB value (3 bytes unpacked)
W1 value (50 bytes = 25 characters in UTF-16BE encoding)

Example 3: A reference to a periodic group.

Format Buffer : GB1.

Record Buffer : BA1 value (1 byte binary)
BB1 value (5 bytes packed)
BC1 value (10 bytes alphanumeric)

Example 4: The first two occurrences of periodic group GB are referenced.

Format Buffer : GB1-2.

Record Buffer : BA1 value (1 byte binary)
BB1 value (5 bytes packed) GB1
BC1 value (10 bytes alphanumeric)
BA2 value (1 byte binary)
BB2 value (5 bytes packed) GB2
BC2 value (10 bytes alphanumeric)

89Command Reference

Calling Adabas

Example 5: The sixth value of the multiple-value field MF is referenced.

Format Buffer : MF6.

Record Buffer : MF value 6 (3 bytes alphanumeric)

Example 6: The first two values of the multiple-value field MF are referenced.

Format Buffer : MF01-02.

Record Buffer : MF value 1 (3 bytes alphanumeric)
MF value 2 (3 bytes alphanumeric)

Example 7: The highest occurrence number of the periodic group GC and the existing number
of values for the multiple-value field MF are referenced.

Format Buffer : GCC,MFC.

Record Buffer : Highest occurrence count for GC (1 byte binary)
Value count for MF (1 byte binary)

Format Buffer Performance Considerations

Performance improvements may be achieved by using the following guidelines during format
buffer construction:

■ Use group nameswherever possible rather than referring to elementary fields individually. The
use of group names reduces the time required by Adabas to interpret the format buffer. The use
of the field series notation does not result in performance improvements. A field series notation
is converted by Adabas into a series of elementary fields;

■ Use length and format overrides only when necessary. Using overrides requires additional
processing time when interpreting the format buffer and when processing the field;

■ If the same fields of a record are to be read and then updated, the same format buffer should
be used for the read and update commands.

Record Buffer

The record buffer is used primarily with the read (L1-L6, L9, S1/S2/S4 with read option) and the
update (A1, N1/N2) commands.

For read commands, Adabas returns the requested field values in this buffer. The field values are
returned in the order specified in the format buffer. A value is returned in the standard length
and format defined for the field, unless a length and/or format overridewas specified in the format
buffer. If the value is a null value, it is returned in the format in effect for the field:

Command Reference90

Calling Adabas

Empty Value FormatFormat

blanksALPHANUMERIC

binary zerosBINARY

binary zerosFIXED POINT

binary zerosFLOATING POINT

unpacked decimal zerosUNPACKED DECIMAL

packed decimal zerosPACKED DECIMAL

Adabas returns the number of bytes equal to the combined lengths (standard or overridden) of
all requested fields.

For update commands, the user provides the values for the fields to be updated in this buffer. If
an empty value is being provided, itmust be provided according to the format in effect as described
above.

The record buffer is also used to transfer information to or fromAdabas in the following commands:

■ End transaction (ET), or close user session (CL). The user provides the data to be stored in an
Adabas system file. Storing user data with any of the above commands is optional;

■ Read ET data (RE). Adabas returns the user data stored in the Adabas system file;
■ Write user data to the protection log (C5). The user provides the data to bewritten to the Adabas
data protection log;

■ Open user session (OP). The user indicates the type of updating to be performed (exclusive
control or ET logic) together with the files to be accessed/updated. User data stored in the
Adabas system file is returned by Adabas (optional);

■ Read field definitions (LF). Adabas returns the field definitions for the file.

Search and Value Buffers

The search and value buffers are used together to define the search criterion to be used to select
a set of records using a find command (S1, S2, S4). They are also used read logical sequential
(L3/L6) and the read descriptor values (L9) commands to indicate the starting value for a given
sequential pass of a file.

The user provides the search expression(s) in the search buffer and the values which correspond
to the search expressions in the value buffer.

The search and value buffer are also used with the update record (A1) and delete record (E1)
commands; the search buffer syntax for these commands is provided in Adabas Commands.

91Command Reference

Calling Adabas

Search Buffer Syntax for S1/S2/S4 Commands

The search buffer as usedwith the S1, S2 and S4 commands is constructed according to the following
syntax:

search expression [,connecting operator, search expression]... .

A comma must be used to separate all search buffer entries. One or more spaces may be present
between entries. The last entry may or may not be followed by a comma. The search buffer must
be terminated with a period.

The syntax for a search expression is:

{[name[i]D[,length][,format],] name[i][,length] [,format] ↩
[,E(date_time_edit_mask_name)] [,C]
 [,#'char_set'][,comparator]} | {nameS[,length] [,format]} | (command_id)

The terms used in this syntax are described in the following sections.

name[i|S]

The name of the field or derived descriptor to be used in the search expression. The name must
refer to a field, subdescriptor, superdescriptor, collation descriptor, hyperdescriptor or phonetic
descriptor.

If you search for a field within a periodic group, a superdescriptor or collation descriptor derived
from a field within a periodic group, or a hyperdescriptor with the PE option, a subscript (leading
zeros permitted) may be appended to the name in order to limit the search to only those values
located in the occurrence specified. If no subscript is provided, the values in all occurrences will
be searched.

If you search for amultiple-value field, or a subdescriptor, a superdescriptor or a collation descriptor
derived from a multiple-value field, all values of the field will be used in the search. For this type
of fields, it is not possible to restrict the search results by specifying a subscript to only one occur-
rence of the multiple field.

If the field is defined with the NU option (null value suppression), null values are not stored in
the inverted lists; therefore, a search for all the recordswhich have the null valuewill always result
in no records found (even if there are records in Data Storage which contain a null value for the
field). This rule also applies to subdescriptors or collation descriptors. A superdescriptor value is
not stored if at least one field fromwhich it is derived is definedwith the NU option and the value
for that field is null.

A search can be made for all of the records that have the SQL null value, by appending an upper
case `S' to the field name if the field is defined with the NC option (SQL null value) or with the
NUoption (null value suppression, here theAdabas null value is interpreted as an SQL null value).

length
format

Command Reference92

Calling Adabas

The length and format of the field value as provided in the value buffer may be explicitly stated
with these parameters. If the length and/or format parameter is omitted, the valuemust be provided
in accordance with the standard length and format of the field.

Note: For a superdescriptor, in general, the full length should be explicitly specified or the
default length must be used. Exceptions to this rule are, for example, superdescriptors that
have only alphanumeric parent fields.

Twofigures showing the possible formatswhich can be used and the processing ruleswhich apply
to each format are provided at the end of this section.

E(date_time_edit_mask_name)

Date/time edit masks can be used in the same way as date/time edit masks in the format buffer;
please refer to the description of date/time edit-masks in the format buffer for further information.

name[i]D

If you want to specify a date/time value with the daylight saving time indicator, the daylight
saving time indicator must be specified first, followed by the field specification including the
date/time edit mask. Name and, if specified, the PE index for the daylight saving time indicator
must be the same as in the following date/time field specification. The default length and format
for the daylight saving time indicator are 2,F.

C

The C option may be specified only for collation descriptors without the HE option. When the
option is specified, the corresponding value in the value buffer is not the collating key, but the
value of the parent field.

If you don't specify the C option for a collation descriptor without HE option, because you want
to specify collation keys that you created yourself with ICU, please note that Adabas uses ICU
version 3.2. ICU keys created by a different ICU version may be incompatible with the collation
keys used by Adabas.

#'char_set'

This search buffer element may be specified only for W fields, and is used to specify the character
set of the corresponding field in the value buffer. Youmust specify an encoding name that is listed
at http://www.iana.org/assignments/character-sets - most of the character sets listed there are
supported by ICU, which is used by Adabas for internationalization support.

93Command Reference

Calling Adabas

http://www.iana.org/assignments/character-sets

Example for Character Set Specification

#'UTF-16BE'

comparator

A comparator may be used as the last entry of a search expression to indicate the logical operation
to be performed between the preceding field and its corresponding value in the value buffer.

The following comparators may be specified:

MeaningComparator

equal toEQ

not equal toNE

greater than or equal toGE

greater thanGT

less than or equal toLE

less thanLT

For the first operand of an S operator, only the comparators GE and GT are allowed - EQ is also
accepted and handled like GE. For the second operand of an S operator, only the comparators LE
and LT are allowed - EQ is also accepted and handled like LE.

If no comparator is specified, an `equal to' operation is assumed.

Example:

AA equal to the value specified in the value buffer.AA.

AA less than the value specified in the value buffer.AA,LT.

AA greater than or equal to the value specified in the value buffer.AA,GE.

Command_id

A search expression may consist of a command ID value (enclosed within parentheses) which
identifies a list of ISNs resulting from a previous find command inwhich the SAVE ISNLIST option
was used. An ISN list resulting from an S8 or S9 command may also be used.

Command Reference94

Calling Adabas

Connecting Operators

A connecting operator may be used to connect search expressions. The permissible connecting
operators (in order of increasing precedence) are:

ExamplesMeaningConnecting
Operator

Specifies that the results of two search expressions are
to be combined using a logical OR operation.

R AA,R,AB.

Specifies that the results of two search expressions are
to be combined using a logical AND operation.

D AA,D,AB.

Specifies that the results of two search expressions are
to be combined using a logical OR operation. The O
operatormay only be used to connect search expressions
which use the same descriptor.

O AA,O,AA. Valid

AA,O,AB. Invalid

Expresses a FROM/TO rangewhich involves two search
expressions. The same descriptor must be used in both
search expressions. Depending on the comparators
defined for the operands, records for which the the field
value is equal to the lower or upper bound can be
included in the search result or omitted.

S AA,S,AA.
AA,GE,S,AA,LE.

Range including start and end ↩
values

AA,GT,S,AA,LT.

Range excluding start and end ↩
values

Excludes a single value or a range of values from a
previous FROM/TO range. This operator may only be
specified in conjunction with the `S' operator.

N AA,S,AA,N,AA. Valid
AA,S,AA,N,AB. Invalid
AA,S,AA,N,AA,S,AA. Valid
AA,S,AA,N,AA,N,AB. Invalid

Range Construction

There are two possibilities for constructing a range like NAME between A and Z:

1. NAME greater equal A `AND' NAME less equal Z

SB := NA,1,GE,D,NA,1,LE.
VB := AZ

2. NAME from A to Z

95Command Reference

Calling Adabas

SB := NA,1,S,NA,1.
VB := AZ

Precedence of Connecting Operators

If different connecting operators are usedwithin a single search buffer, the operators are processed
in the following order:

■ evaluate all O/S/N operations, if necessary
■ evaluate D operations, if necessary
■ evaluate R operations, if necessary

Example: the search buffer: AA,S,AA,N,AA,O,AA,D,BB,R,CC,D,FF.

is evaluated as:(((((AA,S,AA),N,AA),O,AA),D,BB),R,(CC,D,FF))

Search Buffer Syntax (Using Soft Coupling)

The search buffer for a search in which soft coupling is to be used is constructed according to the
following syntax:

(mfile, mfield, sfile, sfield [,mfile, mfield, sfile, sfield],...)
/file/search expression [,operator, search-expression],... .

mfile

The main file. This file must also be specified in the file number field of the Adabas control block.
The final resulting ISN list will contain ISNs contained in the main file only.

mfield

The field in the main file which is to be used as the soft coupling link field. This field must be a
descriptor, subdescriptor, superdescriptor or hyperdescriptor. It may not be contained within a
periodic group.

sfile, sfield

For each ISN selected from this sfile (according to the search criterion), the field specified as sfield
will be read. The value of the field will then be used to determine which ISNs in the main file have
a matching value.

sfield must be a field, either a non-descriptor or a descriptor, but not a subdescriptor, super-
descriptor, hyperdescriptor collation descriptor or phonetic descriptor. It must have the same
format as mfield. The standard length may be different.

The field may not be contained within a periodic group.

A maximum of 42 soft coupling criteria may be specified.

Command Reference96

Calling Adabas

Please refer to the section Search/Value Buffer Examples in this chapter for examples of search
criteria for soft coupling.

Search Buffer Syntax for L3/L6/L9 Commands

The search buffer as used with the L3, L6 and L9 commands is constructed according to the fol-
lowing syntax:

{L3_SB_element [,comparator].} | {L3_SB_element,S, L3_SB_element.}

The first form of the search buffer is used if the value buffer contains only the starting value or
ending value for the processing sequence. The entry in the command option 2 field and the com-
parator used determines whether the value specified in the value buffer is interpreted as the
starting descriptor value or as the ending descriptor value.

The second form of the search buffer is used if the value buffer contains both the starting value
and the ending value for the processing sequence. The first value in the value buffer specifies the
lower limit of the range, and the second value specifies the upper limit of the range. Whether it is
the lower limit or the upper limit that determines the starting value or the ending value depends
on whether ascending or descending sequence has been specified. This makes it possible for an
application program to change the direction of processing by simply modifying the entry in the
command options 2 field in the control block.

The syntax of an L3_SB_element is:

[name [i] D [,length] [,format] ,] name [i] [,length] [,format] , [,C] ↩

where

name D
If you want to specify a date/time value with the daylight saving time indicator, the daylight
saving time indicator must be specified first, followed by the field specification including the
date/time edit mask.

name
The name of the descriptor to be used for sequence control. The name specified must be the
same as that specified in the Additions 1 field in the control block.

i
If the descriptor forwhich values are to be returned is contained in a periodic group, this option
can be used to specify the occurrence number for which values are to be returned. The value
specified in the ISN field of the control block will be ignored if both the search buffer and the
value buffer are specified. All of the occurrences of a given value will be returned if no index
is specified.

Note: This option can only be used with the L9 command.

97Command Reference

Calling Adabas

length
The length of the value as provided in the value buffer. If the length is not specified, it is as-
sumed that the value is being provided using the default length of the descriptor as specified
in the FDT.

format
The format of the value as provided in the value buffer. If the format is not specified, it is as-
sumed that the value is being provided using the default format of the descriptor as specified
in the FDT.

comparator
The comparators GE (greater than or equal to), GT (greater than), LE (less than or equal to),
and LT (less than) can be used. GE is assumed if no comparator is specified.

C
The C optionmay only be specified for collation descriptors without the HE option.When this
option is specified, the corresponding value in the value buffer is not the collating key, but the
value of the parent field.

If you don't specify the C option for a collation descriptor without HE option, because you
want to specify collation keys that you created yourself with ICU, please note that Adabas
uses ICU version 3.2. ICU keys created by a different ICU version may be incompatible with
the collation keys used by Adabas.

Value Buffer

The user specifies the values for each descriptor specified in the search buffer in the value buffer.

The values providedmust be in the same sequence as the corresponding search expressions specified
in the search buffer.

All values provided must correspond to the standard length and format of the corresponding
descriptor, unless the user has explicitly overridden the standard length or format in the search
buffer.

Note that for phonetic descriptors and for hyperdescriptors with the HE option, youmust specify
not the internal search value, but rather a corresponding parent field value.

If the search expression consists of a command ID, no corresponding entry is made in the value
buffer. However, a non–zero value buffer length must be specified.

If the search expression contains a field name FN followed by the S option, the value buffer must
contain the either the hexadecimal value FFFF (select all records with the null value in the field
FN) or the hexadecimal value 0000 (select all records that do not have a null value in the field FN).

Intervening blanks or other characters such as a comma must not be inserted between the values
in the value buffer. No period is required to terminate the value buffer.

Command Reference98

Calling Adabas

Search/Value Buffer Examples

This section contains examples of search and value buffer construction. All examples refer to the
sample Adabas files in Appendix A. The values for the value buffer are shown in character and/or
hexadecimal notation.

Example: A search which uses a single search expression.

Search Buffer : AA.
Value Buffer : 12345bbb

0x3132333435202020

Result: This search returns the ISNs of all the records in file 1 which contain the value 12345 for
field AA. The same searchmay be performed using AA,5. in the search buffer and the value 12345
(without trailing blanks) in the value buffer.

Example: A search which uses two search expressions connected by the AND operator.

Search Buffer : AA,D,AB.
Value Buffer : 0x3132333435363738002C

Result: this search returns the ISNs of all the records in file 1 which contain the value 12345678
for the field AA and the value +2 for the field AB.

Search Buffer : AA,D,AB,3,U.
Value Buffer : 12345678002

0x3132333435363738303032

Result: this search produces the same result as the preceding search. It shows the use of the length
and format override in the search buffer.

Example: A search which uses three search expressions connected by the OR operator.

Search Buffer : XB,3,U,O,XB,3,U,O,XB,3,U.
Value Buffer : 284285290

0x323834323835323930

Result: this search returns the ISNs of all the records in file 2 which contain any of the values 284,
285, or 290 for the field XB. Length and format overrides are also used.

99Command Reference

Calling Adabas

Example: A search which uses two search expressions connected by the FROM/TO operator.

Search Buffer : XB,S,XB.
Value Buffer : 0x020C030C

Result: this search returns the ISNs of all the records in file 2 which contain any value within the
range +20 to +30 for the field XB.

Example: A search which uses three search expressions connected by the FROM-TO and BUT-
NOT operators.

Search Buffer : XB,S,XB,N,XB.
Value Buffer : 0x020C030C027C

Result: this search returns the ISNs of all the records in file 2 which contain any of the values in
the range +20 to +30 but not +27 for the field XB.

Example: A search where two ranges of descriptor values are connected by the OR operator.

Search Buffer : XB,S,XB,O,XB,S,XB.
Value Buffer : 0x001C200C500C600C

Result: this search returns the ISNs of all the records in file 2 which contain any of the values in
the range +1 to +200 or +500 to +600 for the field XB.

Example: A search in which a multiple-value field is used.

Search Buffer : MF.
Value Buffer : ABC

0x414243

Result: this search returns the ISNs of all the records in file 1 which contain the value ABC for any
value of the multiple-value field MF.

Search Buffer : MF2. Invalid.

Example: A search in which a descriptor within a periodic group is used.

Search Buffer : BA.
Value Buffer : 0x04

Result: this search returns the ISNs of all the records in file 1 which contain the value 4 in any oc-
currence of the descriptor BA (which is contained in a periodic group).

Command Reference100

Calling Adabas

Search Buffer : BA3.
Value Buffer : 0x04

Result: this search returns all the records in file 1 which contain the value4 in the third occurrence
of the descriptor BA (which is contained within a periodic group).

Example: A searchwhich uses a subdescriptor. SA is a subdescriptor derived from the first four
bytes of the field RA.

Search Buffer : SA.
Value Buffer : 0x41424344

Result: this search returns the ISNs of all the records in file 2 which contain the value ABCD for
the subdescriptor SA.

Example: A search which uses a superdescriptor with ALPHANUMERIC format. SB is a super-
descriptor derived from the first eight bytes of the field RA and the first four bytes of the field
RB.

Search Buffer : SB.
Value Buffer : 0x414243444546474831323334

Result: this search returns the ISNs of all the records in file 2 which contain the value ABCDE-
FGH1234 for the superdescriptor SB.

Example: A search which uses a superdescriptor with BINARY format. SC is a superdescriptor
derived from the fields XB and XC.

Search Buffer : SC.
Value Buffer : 0x020F313233343536

Result: this search returns the ISNs of all the records in file 2 which contain the value +20 for the
field XB and the value 123456 for the field XC.

Example: A search which uses previously-created ISN lists (identified by their command IDs).

Search Buffer : (CID1),D,(CID2).
Value Buffer : not used

Result: this search returns the ISNs present in both ISN lists identified by the command IDs CID1
and CID2.

101Command Reference

Calling Adabas

Search Buffer : (CID1),D,AB,3,U.
Value Buffer : 123

0x313233

Result: this search returns the ISNs of all the records in file 1 for which an ISN is present in the
ISN list identified by CID1 and which contain the value +123 for the field AB.

Example: A search in which a value operator is used.

Search Buffer : AB,3,U,GT.
Value Buffer : 100

0x313030

Result: this search returns the ISNs of all the records in file 1 which contain a value greater than
+100 for the field AB.

Example: A search in which both value and connecting operators are used.

Search Buffer : AB,3,U,GT,D,AA,1,GT.
Value Buffer : 100A

0x31303041

Result: this search returns the ISNs of all the records in file 1 which contain a value greater than
+100 for the field AB and a value greater than A for the field AA.

Example: A search which uses two search expressions of two different descriptors connected
by OR; one of the search expressions is a complex expression that uses an AND operator.

Search Buffer : AB,R,AC,3,NE,D,MF.
Value Buffer : 0x001C414243414243

Result: this search returns the ISNs of all records in file 1 that contain the value 0x001C in the filed
AB or don't contain the value 0x414243 in the first three bytes of the field AC and contain this
value in the field MF.

Example: A search based on SQL null value.

Note: The following example assumes that the field ZZ is an alphanumeric field with the
NC option. The field ZZ does not appear in the sample listings in Appendix A.

Search Buffer : AA,4,A,D,ZZS.
Value Buffer : 0x41424344FFFF

Result: records are selected with field AA = "ABCD" and a null value in field ZZ.

Command Reference102

Calling Adabas

Search Buffer : AA,4,A,D,ZZS.
Value Buffer : 0x414243440000

Result: records are selected with field AA = "ABCD" and a non–null value in field ZZ.

Example: Using a single soft coupling criterion and single search criterion.

File Number : 4
Search Buffer: (4,AB,1,AC)/1/AB,S,AB.
Value Buffer :

1. Search file 1 for AB=value as provided in the value buffer;

2. For each resulting ISN in file 1, read the field AC and internally match the value with the cor-
responding value list for file 4;

3. The resulting ISN list from file 4 is provided in the ISN buffer.

Example: Using a single soft coupling criterion and multiple search criteria.

File Number : 1
Search Buffer: (1,AA,2,AB)/1/AC,D,AE,D,/2/AF,S,AF.
Value Buffer :

1. Search file 2 for AF=... through ... (values provided in the value buffer);

2. For each resulting ISN in file 2, read the field AB and internally match the value with the cor-
responding value list for file 1;

3. Search file 1 for AC=... and AE=... (values provided in the value buffer);

4. Match resulting ISN lists from steps 2 and 3;

5. ISNs resulting from step 4 are provided in the ISN buffer.

Example: Using multiple soft coupling criterion and multiple search criteria.

File Number : 1
Search Buffer: (1,AA,2,AB;1,AA,5,BA)

/1/AC,D,AE,D,/2/AF,S,AF,D,/5/BC,S,BC.

1. Search file 2 for AF=... through ... (values provided in the value buffer);

2. For each resulting ISN in file 2, read the field AB and internally match the value with the cor-
responding value list for file 1;

3. Search file 5 for BC=... through ... (values provided in the value buffer);

4. For each resulting ISN in file 5, read the field BA and internally match the value with the cor-
responding value list for file 1;

5. Search file 1 for AC=... through ... (values provided in the value buffer);

6. Match the resulting ISN lists from steps 2, 4 and 5;

103Command Reference

Calling Adabas

7. ISNs resulting from step 6 are provided in the ISN buffer.

Example: A search using the NOT EQUAL operator

Search Buffer : AA,4,A,NE.
Value Buffer : ABCD

0x41424344

Result: this selects all records with field AA not equal to "ABCD".

Example: A search using the R operator ("OR" with different field names)

Search Buffer : AA,4,A,R,BB,LT.
Value Buffer : ABCD3000

0x4142434433303030

Result: this selects all records with field AA equal to "ABCD" or field BB less than "3000".

Search Buffer : AA,4,A,R,(TEST).
Value Buffer : ABCD

0x41424344

Result: this selects all records with field AA equal to "ABCD" or which are members of the ISN
list "TEST".

Multifetch Buffers

Multifetch buffers are needed only for some Adabas commands run using the ACBX direct call
interface; they are not needed for any ACB interface direct calls.

A multifetch buffer defines an area in storage to which Adabas can return the record descriptor
elements (RDEs) of multifetched records. This buffer is only required by Adabas commands for
which the multifetch option has been activated (by setting Command Option 1 to "M"). RDEs are
each 16 bytes long.

When themultifetch optionM is set in the CommandOption 1 field of anACBX command,Adabas
returns all records being read in the specified record buffer segments, based on the format specific-
ations in the corresponding format buffer segments. For each record buffer segment, the corres-
pondingmultifetch buffer segment containsmultifetch headers describing the records in the record
buffer segment.

For BT or ET commands, a multifetch buffer is not needed if Command Option 1 is set to "M". In
this case, the ISN buffer is used to store the ISNs that need to be removed from the hold queue.

When a multifetch buffer is required, a corresponding format and record buffer are expected as
well. If they are not provided, Adabas will create dummy format and record buffers (with length

Command Reference104

Calling Adabas

zero) to pair with themultifetch buffer. For complete information about the relationships between
the different types of ABD or buffer specifications, read Understanding the Different Buffer Types.

ISN Buffer

Adabas returns the ISNs of the records which satisfy the search criteria in this buffer.

Each ISN is provided as a four-byte binary number. The ISNs are provided in ascending sequence.
For the S2 or S9 command, the ISNs are provided according to the user–specified sort sequence.

If the ISN buffer is not large enough to contain the entire resulting ISN list, Adabas will store (if
requested) the overflow ISNs on the Adabas temporary working space. These overflow ISNsmay
be retrieved at a later time (see Programming Considerations, ISN List Processing for more detailed
information).

Note: Since theACB interface does not supportmultifetch buffers, for calls that use theACB
interface the ISN buffer is used instead of the multifetch buffer if the mutlifetch option is
set.

105Command Reference

Calling Adabas

Summary of Adabas Format Conversion

The following table describes how values in the record/value buffer are converted for update (in-
cluding add)/search commands, and how the values in the data record are converted for read
commands.

Adabas ProcessingSource Format
- Format specified in the
Format/Search Buffer for
update/search commands
- Standard format of the field specified
for read commands

Target Format
- Standard format of the field
specified* for update/search
commands
- Format specified in the
format buffer for read
commands

Only the length is adapted.ALPHANUMERICALPHANUMERIC

The value is converted toUNPACKED, leading
zeros are removed, the value is left justified
with trailing spaces added if necessary.

BINARY,
PACKED,
UNPACKED

Only the length is adapted.BINARY/FIXEDBINARY/FIXED

The value is converted to BINARY/FIXED
POINT.

PACKED,
UNPACKED

No conversion required. Different lengths
cause a response code 41/61.

FLOATING POINTFLOATING POINT

Only the length is adapted.PACKEDPACKED

The value is converted to PACKED format.BINARY,
UNPACKED,
FIXED

Only the length is adapted.UNPACKEDUNPACKED

The value is converted toUNPACKED format.BINARY,
PACKED,
FIXED

The value in the encoding specified as charset
in the format/value buffer or in the OP
command is converted to UTF-8.

UNICODEUNICODE

All other format combinations result in a response code 41 (format buffer) or 61 (search buffer).

* Subdescriptor format is the same format as the field from which it is derived.
If all of the fields from which a superdescriptor is derived are unpacked, the superdescriptor
standard format is alphanumeric, unpacked or binary, depending on the definition of the super-
descriptor. If not all of the fields fromwhich it is derived are unpacked, the default superdescriptor
format is alphanumeric if at least one of the fields fromwhich it is derived is alphanumeric, other-
wise it is binary.

Command Reference106

Calling Adabas

Sign Handling

Binary values are treated as unsigned numbers. Fixed point, floating point, unpacked and packed
values are treated as signed numbers.

Valid signs which may be provided are:

The sign is contained in the high-order bitFixed point

0 = positive
1 = negative (two's complement)

0x00000005 = +5
0xFFFFFFFB = -5

The sign is contained in the most-significant bit of the 4 or 8 bytes.Floating point

The sign is contained in the four high-order bits of the low-order byte (zoned format).Unpacked

0x313233 = +123
0x313273 = -123

The sign is contained in the four low-order bits of the low-order byte.Packed

Input Output
----- ------
A,C,E,F C=positive
B,D D=negative

0x123C = +123
0x123D = -123

If a search value is being provided for a superdescriptorwhich is derived from a packed
field, an `A', `C', `E', `F' for positive or a `B', `D' for negative must be provided in the
low nibble of the last byte.

Calling Adabas from Application Servers

In application servers, multiple clients access the database through one server.

Due to the fact that the server issues the Adabas calls on behalf of the client, the server is the only
virtual Adabas user that can be seen by the nucleus. The intention is to issue calls only from the
server, but for the nucleus to recognize each user.

The Adabas user identification is made up from the node name, the user name, the environment-
specific identification (process ID) and a timestamp.

107Command Reference

Calling Adabas

The user identification information is set up on the client, which then provides the server with the
information, or it is generated on the server.

In order to obtain the user identification information, the application has to issue a call
lnk_get_adabas_id(). The interface for this routine is as follows:

#include "adabas.h"

int lnk_get_adabas_id (int buffer_length, unsigned char *buf);

The first argument buffer_length describes the length of a buffer that is addressed by a second
argument buf. This buffer will be filled with the user identification by lnk_get_adabas_id(...). The
buffer length that is supplied must be sufficient to accommodate all of the information that is re-
turned. The structure that is returned is as follows:

struct adaid {
unsigned short s_level; //security: equivalent structure level: 3
unsigned short s_size; //size of the data structure
unsigned char s_node[8]; //Adabas node name
unsigned char s_user[8]; //Adabas user name
unsigned int s_pid; //process identification, 4 bytes
long long s_timestamp //microseconds since 1970

};

For the current version, the structure level is 3, and the returned buffer length is 32 bytes. This
user identification information must be sent to the server. The server has to issue a function call
lnk_set_adabas_id() in order to make the user identification available to Adabas. The interface for
this routine is as follows:

#include "adabas.h"

int lnk_set_adabas_id (unsigned char *buf);

The argument is a pointer to a buffer that contains the user identification structure that is returned
by lnk_get_adabas_id(...) on the client, or is generated on the server. ADALNK checks the input
structure using the length field and the structure level, and makes the information available to
Adabas. The user identification information has to be written by the server each time the client
changes.

There are the following requirements for server-generated user identifications: neither the ASCII
node name nor the ASCII user name nor the process ID may be filled with binary zeroes.

Notes:

1. The caller's node name, user name and process identification are used by default for the user
identification structure if you don't call lnk_set_adabas_id. If you call lnk_set_adabas_id, you
can set these fields to any values that you want.

2. When the Adabas user identification is displayed by utilities, for example ADADBM DIS-
PLAY=UQ, the node name and the user name are displayed as 8 characters. Therefore, it is

Command Reference108

Calling Adabas

strongly recommended to specifiy only printable characters for the node name and the user
name; values provided as null-terminated stringswith a string length of less than 8 bytes should
be padded with blanks.

3. For compatibility reasons with previous Adabas versions, structure level 2 is also supported.
Structure level 2means that the timestamp is not contained in the adaaid structure; this reduces
the size of the adaaid structure to 24 bytes. Therefore, structure level 2 is used in lnk_get_ada-
bas_id, if lnk_get-adabas_id is called with the parameter buffer_length = 24. Using structure
level 2 is only possible if no Adabas call has been performed before the first call to
lnk_get_adabas_id or lnk_set_adabas_id. A program must not mix calls with structure level 2
and 3. However, an Adabas user identification received by a program with structure level 2
may be used in another program in lnk_set_adabas_id with structure level 3; you must set the
time stamp to 0 in this case.

Caution: If you still use Adabas version 6.1 with an SP < 11 or Adabas version 6.2 or Net-
Work version 7.3, the timestamp is not used for Adabas sessions where these versions are
used. In such cases you have to take the following into consideration: if you want to create
a new Adabas session with lnk_set_adabas_id, it is your responsibility to ensure that the
combination (node, user, pid) in the adaid structure specified is not used for another Adabas
session. Because the timestamp information is not yet used as part of the user identification,
it is not sufficient that there are different timestamps in the adaid structure. If an existing
user identification without a timestamp is used, unexpected errors will occur since both
clients share the same Adabas session, which is not what is intended - a typical error in
such a case is an Adabas response code 153 if both clients issue an Adabas call at the same
time.

Caution: If an application uses lnk_set_adabas_id, it is no longer possible for Adabas to re-
cognizewhether anAdabas call is the first call for anAdabas session. Therefore, transaction
consistency following an Adabas nucleus restart is only guaranteed if the nucleus is started
with the option OPEN_REQUIRED.

Note: Because Net-Work also uses lnk_set_adabas_id, you should always use the option
OPEN_REQUIRED if you use Net-Work.

Multi-threaded Applications

If you write multi-threaded applications, you should use adalnkx.

The standard way to call Adabas in multi-threaded applications is for each thread that needs to
execute Adabas calls to have its own Adabas session; each thread first makes an open command,
then the Adabas calls to access the database, and finally a close command.

It is also possible to use one Adabas session in different threads by using the functions
lnk_get_adabas_id and lnk_set_adabas_id. If you have an active Adabas session in thread 1, and
you want to continue it in thread 2, youmust first call lnk_get_adabas_id in thread 1 and then call
lnk_set_adabas_id in thread 2.

109Command Reference

Calling Adabas

Note: Older multi-threaded applications that were developed before adalnkx was available
might still call the old interface adalnk. This is possible if you use the following rules:

■ the adalnk calls must be synchronized - only one thread at a time may call adalnk;
■ while adalnkx by default creates a separate Adabas session for each thread, adalnk by default
only creates one Adabas session for the whole process. If you want to have more sessions, you
must use lnk_set_adabas_id.

Calling Adabas with Authentication

The application is responsible for setting the user credentials prior to opening a database session.

The following Adabas Client functions are provided tomanage client sessions and set credentials:

DescriptionFunctionSteps

Set the session identification.lnk_set_adabas_id()1 (optional)

Set the authentication credentials for a specific database.lnk_set_uid_pw()2

Step 1 is optional. It is only required in application servers, where multiple clients access the
database through one server. The Adabas session identification must then be set prior to setting
the credentials.

It is mandatory, when accessing a secured database that the credentials are set prior to the start of
each Adabas session and must be set for each database ID that is to be accessed.

The credentials are valid for the duration of the database session. Attempts to set credentials
during an open database sessionwill result in a nucleus response 9 “SE”: Security Violation. Open
database transactions are backed out.

Database sessionswith either invalid credentials or that are initiatedwithout credentials will result
in a “Security Violation”: Nucleus response 200 with subcode 31.

Example

Refer to the file security_example.c in Appendix D - Example Files in the Adabas Kit for further
information.

Command Reference110

Calling Adabas

#include "adabasx.h"

int dbid;
static char *uid;
static char *passwd;

/*
** Set database-specific credentials
**
** This must be done -
** a) for each Adabas Session (Prior to start of session)
** b) for each dbid, which is to be accessed
**
*/

lnk_set_uid_pw(dbid, uid, passwd);

Transition Mode

The Adabas nucleus user exit 21 could be used to set authentication credentials.

The purpose of this routine is to ease the transition of applications to use Adabas authentication.
This routine is not intended as a replacement for setting credentials in the application and should
be used as briefly as possible.

111Command Reference

Calling Adabas

112

5 Programming Considerations

■ Using Command IDs .. 114
■ Using Format Buffer IDs .. 117
■ ISN List Processing .. 120
■ Using the Multifetch Feature .. 125
■ ACB versus ACBX Functionality ... 127
■ System Generated Fields .. 128
■ Read Integrity ... 129
■ Features in the Adabas Command Interface for Large Object (LOB) Support ... 130

113

Using Command IDs

The command ID field of the control block serves an important function duringAdabas command
execution. This section provides a summary of the uses of this field and describes the procedures
to be followed when using command IDs.

A command ID is associated with the following information:

■ If you perform read sequential commands (L2/L5, L3/L6, L9), Adabas needs information to
identify the record to be processedwith the next command. For this purpose, Adabas has a table
for all active sequential command sequences, and the command ID identifies the entry in this
table.

■ If you perform search commands, Adabas needs information on the ISN list returned by the
search commands. For this purpose, Adabas has a table for all active ISN lists, and the command
ID identifies the entry in this table.

■ If a format buffer is associatedwith a read, S1/S2/S4 search or update command,Adabas converts
the format buffer to an internal format buffer that is used for record compression or decompres-
sion. Adabas can keep these internal format buffers inmemory in order to reuse them for further
commands with the same format buffer, which avoids a new conversion of the format buffer.
The command ID can be used as a format buffer ID to identify an internal format buffer that
already exists.

Command IDs Used with Read Sequential Commands

The read sequential (L2/L5, L3/L6, L9) commands require that a non–blank, non–zero command
ID be specified. The command ID is required by Adabas to return the records to the user in the
correct sequence. These command IDs are maintained in the table of sequential commands.

The command ID is released by Adabas when an end-of-file condition (Adabas response code 3)
is detected during read sequential processing (only from the table of sequential commands).

The command ID value provided with these commands is also entered and maintained in the in-
ternal format-buffer pool. It will only be released by an explicit RC command.

Command Reference114

Programming Considerations

Command IDs Used with ISN Lists

If a non-blank, non-zero command ID is specified for any command which results in an ISN list
(S1, S2, S4, S8, S9), the command ID value may be used to identify the list at a later time.

If the SAVE ISN LIST option is used for an Sx command, a non-blank, non-zero command IDmust
be provided. The SAVE ISN LIST option causes the entire ISN list to be stored on the Adabas
temporary working space. ISNs from the list may be subsequently retrieved by an Sx command
or by using the GET NEXT option of the L1/L4 command.

If the SAVE ISN LIST option is not used and an ISN buffer-overflow condition occurs (the entire
ISN list cannot be inserted in the ISN buffer), the overflow ISNs will be stored on the Adabas
temporary working space only if a non-blank, non-zero command ID value was used. In this case,
the command ID will be released by Adabas (only from the ISN list table) and the ISN list it
identifieswill be released byAdabaswhen all the ISNs have been returned to the user by subsequent
Sx commands, or by L1 commands with the GET NEXT option when an end-of-file condition
(Adabas response code 3) is detected.

Automatic Command ID Generation

Automatic command ID generation is invoked by specifying a command ID of hexadecimal
FFFFFFFF. This causes the Adabas nucleus to generate command IDs automatically, starting with
hexadecimal 00000001 and incrementing by 1 for each new command ID.

Releasing Command IDs

The user may release a command ID and its associated entries (or ISN list) with an RC or CL
command. The RC command contains optionswhich allow the user to release only those command
IDs contained in the internal format–buffer pool, the table of sequential commands or the table of
ISN lists.

TheCL command causes all of the command IDs that are currently active for the user to be released.

Command IDs are not released at the end of a global transaction.

Internal Identification of Command IDs

Each command ID entry is identified byAdabas using the internal user number and the command
ID value.

A user need not be concernedwith the command ID values in use by other users. The user should,
however, exercise care when using the same command ID value for different commands, particu-
larly for command IDs used for sequential read (L2/L5, L3/L6, L9) commands and Sx commands.
The notation Sx command as used in this manual refers to any search command (S1, S2, S4, S8,
S9).

115Command Reference

Programming Considerations

Empty Command IDs

You may sometimes want to perform Adabas commands without storing a command ID in the
table of sequential commands, in the ISN list table or in the internal format buffer pool. This can
be achieved by storing one of the following values in the command ID field:

■ Binary zero.
■ ASCII blanks (0x20202020). This is because character values are often used as command ID, al-
though the command ID field is defined as binary.

■ EBCDICblanks (0x40404040). This is to enablemainframe users performing cross-platform calls
to also specify blanks as an empty command ID.

Specifying one of these values in the command ID field has the following consequences:

■ The command ID is not stored in the table of sequential commands, in the ISN list table and
inthe internal format buffer pool.

■ No RC command is required to release the command ID.
■ The format buffer is re-translated for each call (unless you have specified a format buffer ID in
Additions 5, as decribed in the next section) .

■ It is not possible to perform subsequent commands for this command.

Command ID Usage Examples

This section contains examples of command ID usage.

Example 1: Find/Read processing

A set of records is to be selected and read. The same format buffer is to be used for each record.

Find (S1) CID=EX1B
Read (L1) CID=EX1B
Read (L1) CID=EX1B

Example 2: Find/Read using the Get Next option

A set of records is to be selected and read using the GET NEXT option of the L1/L4 command.

Find (S1) CID=EX2A
Read (L1) CID=EX2A
Read (L1) CID=EX2A
Read (L1) CID=EX2A
...

Command Reference116

Programming Considerations

Example 3: Read/Update processing

A file is to be read and updated in logical sequence. The same format buffer is to be used for
reading and updating.

Read Log Seq (L6) CID=EX3A
Update (A1) CID=EX3A
Read Log Seq (L6) CID=EX3A
Update (A1) CID=EX3A
...

Example 4: Read/Find processing

A file is to be read in logical sequence. A find command is to be issued to a second file using the
value of a field read from the first file, and the records which result from the find command are
then to be read using the GET NEXT option.

Read Log Seq (L3) CID=EX4A
Find (S1) CID=EX4B
Read (L1) CID=EX4B
Read (L1) CID=EX4B (RSP 3)
Read Log Seq (L3) CID=EX4A
Find (S1) CID=EX4B
Read (L1) CID=EX4B

Using Format Buffer IDs

Format buffer translations to an internal format buffer are time-consuming. For this reason, Adabas
can save the internal format buffers in memory for reusage by other Adabas commands, and
format buffer IDs were introduced to identify the internal format buffers to be reused.

Usually the command ID is used as the format buffer ID, but it is also possible to use Additions
5 to specify a format buffer ID separately:

■ If there ismore than one active read-sequential or search commandusing the same format buffer,
a separate local format buffer ID may be useful. In this case “local” means user-specific.

■ If several users run the same application program doing Adabas calls in parallel, a separate
global format buffer ID may be useful. In this case “global” means valid for all Adabas users.

117Command Reference

Programming Considerations

Using a Command ID and Separate Local Format Buffer ID

Separate values can be used for command IDs and format buffer IDs. As long as the first byte of
the Additions 5 field is not alphanumeric, the command ID is also used as the format buffer ID.
If, however, the first byte of the Additions 5 field is a lower case character, the bytes 5 to 8 of the
Additions 5 field are used as the (local) format buffer ID (see example 2 below). The format buffer
ID must not start with hexadecimal FF.

Using a Global Format Buffer ID

In many cases, numerous users who use the same program read or update the same fields of a file
and therefore use identical format buffers. Defining a global format buffer ID for each of these
programs means that Adabas does not have to store the same format buffer in the internal format
buffer pool for each such program. If this option is used, the format buffer for each user is identified
by the format buffer ID only, rather than by the format buffer ID and the internal communication
ID. The result of this option is that numerous users can `share' a single format buffer, which in
turn means that Adabas does not have to overwrite entries in the format buffer pool.

Caution: If a format buffer containsW fields, and the character set is not specified explicitly
in the format buffer, Adabas implicitly uses the character set specified in the Adabs OP
command via the parameter WCHARSET (default: 'UTF-8') . The information about the
character set is included in the internal format buffer. This has the consequence that you
may only use a global format buffer ID for such a format bufferwhen the sameWCHARSET
is specified in the OP comand of all Adabas sessions in which this global format buffer ID
is used. Otherwise it may happen that the W fields are processed with the wrong character
set.

The global format buffer ID option is set by setting the first byte of the Additions 5 field to a digit
or upper case letter (see example 3 below).

EBCDIC Characters in Additions 5

Adabas must also be able to process commands issued on mainframes. In this case, Additions 5
may contain EBCDIC characters. Because it may also contain binary data, no EBCDIC-ASCII
conversion is performed for Additions 5. Therefore, EBCDIC lower-case characters (hex 8x, 9x) in
first byte of Additions 5 indicate a separate local format buffer ID, EBCDIC upper-case characters
(hex Cx, Dx) and EBCDIC digits (hex Fx) indicate a separate global format buffer ID, and EBCDIC
blank (hex 40) indicates no separate format buffer ID.

The behavior of Adabas is undefined if you specify anything else in the first byte of Additions 5.

Command Reference118

Programming Considerations

Examples of Command ID and Format Buffer ID Usage

Example 1: Using the same command ID and format buffer ID

Additions 5: The first byte of the Additions 5 field is blank or binary zero

Result: the command ID is used as the format buffer ID.

Example 2: Using separate local format buffer ID

Additions 5: The first byte of the Additions 5 field is set to 'a'

Result: bytes 5 to 8 of the Additions 5 field are used as the format buffer ID (the format buffer ID
must not start with hexadecimal FF).

Example 3: Using global format buffer ID

Additions 5: The first byte of the Additions 5 field is set to 'A'

Result: the Additions 5 field (8 bytes) is used as the global format buffer ID (usable by several
users in parallel).

Example 4: Using a global format buffer ID on mainframe

Additions 5: The first byte of the Additions 5 field is set to hex D1

Result: Hex D1 = EBCDIC ‘J’ -> the Additions 5 field (8 bytes) is used as the global format buffer
ID (usable by several users in parallel).

Format Buffer IDs Used with Read, Search and Update Commands

The read commands (L1-L6, L9) and update commands (A1,N1/N2) require a format bufferwhich
specifies the fields to be read or updated. A format buffer can also be specified for an S1/S2/S4
search command to read the first result record. This format buffermust be interpreted and converted
into an internal format buffer by Adabas. The same format buffer ID may be used to avoid repet-
itive interpretation and conversion during successive commandswhich use the same format buffer.
A read or update command in which a format buffer ID is used causes Adabas to check whether
it is in the internal format buffer pool. If the format buffer ID is present, the internal format buffer
for the format buffer ID is used, and no format buffer interpretation is required. The user may,
therefore, achieve a significant decrease in the processing time required for read and update
commands by using a format buffer ID when reading or updating a series of records in which the
same format buffer is used. If the user is reading and updating the same fields (for example, L5
followed byA1), it is also recommended that the same format buffer ID be used for both commands
(see the A1 and N1/N2 commands for restrictions on using the same format buffer for reading
and updating).

If the internal format buffer pool is full, and a command is received in which a format buffer ID
not in the pool is present, Adabas will overwrite the least active entry in the pool with the new
format buffer ID. If a command is subsequently received which uses the deleted command ID,

119Command Reference

Programming Considerations

this command ID will in turn replace the least active entry in the pool. The format buffer must be
newly interpreted and converted into an internal format buffer whenever the above occurs. For
this reason, the format buffer should not bemodified between successive read or update commands
in which the same format buffer ID is used.

Caution: Please take care to ensure that you always specify a correct pair of format buffer
ID and format buffer:

■ If, for example, you use a new format buffer but forget to specify a new command ID, you may
read the fields specified in the format buffer associated to the old command ID. This may lead
to wrong results in the record buffer.

■ If you don’t specify the correct format buffer for subsequent commands with the same format
buffer ID, the program may work correctly for a long time, but suddenly it may happen that
the corresponding internal format buffer has been overwritten in the format buffer pool. Then
a new format buffer conversion is required, which may fail, or will be invalid if the correct
format buffer has not been specified for the command.

ISN List Processing

This section discusses the procedures used to retrieve ISNs from the Adabas temporary working
space. If the GET NEXT option of the L1/L4 command is to be used to read the records which
correspond to the ISNs contained in the ISN list, ISN handling as discussed in this section is per-
formed automatically by Adabas, and the user need not make use of these procedures.

Storing ISN Lists

Adabas stores ISNs on the Adabas temporary working space under the following conditions:

■ An Sx command is issued, a non-blank non-zero command ID is specified and the SAVE ISN
LIST option is specified. The entire resulting ISN list is stored in this case;

■ An Sx command is issued, a non-blank non-zero command ID is specified, the SAVE ISN LIST
option is not specified, and the resulting ISN list contains more ISNs than can be inserted in the
ISN buffer. Only the overflow ISNs are stored in this case.

If an Sx command is issued with blanks or binary zeros in the command ID field, Adabas does
not store any ISNs on the Adabas temporary working space.

Command Reference120

Programming Considerations

Retrieving ISN Lists

The user may retrieve ISNs stored on the Adabas temporary working space by issuing an Sx
command in which the same command ID value is used as that used for the initial Sx command.
When an Sx commandwith an active command IDvalue is issued,Adabas uses this as an indicator
that the user is requesting ISNs from an existing ISN list. Adabas locates the ISN list identified by
the command ID specified and inserts the next group of ISNs in the ISN buffer. As many ISNs are
returned as can be inserted in the ISN buffer.

If the SAVE ISN LIST option was specified with the Sx command used to create the ISN list,
Adabas uses the ISN specified in the ISN lower limit field to determine the next group of ISNs to
be returned. The next group begins with the first ISN which is greater than the ISN specified in
ISN lower limit. If binary zeros are specified, the next group begins with the first ISN in the list.
If a value is specified which is greater than any ISN in the list, response code 3 is returned. Such
an S1 call without an ISN buffer can be used for repositioning within the current ISN list.

If the ISN list was created using an S2/S9 command, the ISN specified must be present in the ISN
list, otherwise response code 25 is returned. Using the SAVE ISN LIST option thus allows the user
tomove forwards and backwardswithin an ISN list. This is useful for programswhichmust perform
forward and backward screen paging.

If the SAVE ISN LIST option was not specified with the Sx command used to create the ISN list,
Adabas returns the ISNs in the order in which they are positioned in the list and deletes each
group from the temporary working space when it has been inserted in the user's ISN buffer. The
command ID used to identify the list is released when the last group of ISNs has been returned
to the user. The ISN lower limit field is not used in this case.

The user may determine when all of the ISNs in a list have been retrieved by using the ISN
quantity field of the control block. Adabas returns in this field, as a result of an initial Sx command,
the total number of records which satisfy the search criteria. Adabas returns, as the result of a
subsequent Sx command used to retrieve ISNs from the Adabas temporary working space, the
number of ISNs which were inserted in the ISN buffer.

Handling of ISNs that no longer exist

When an ISN list is processed, it may occur that ISNs found by the search operation no longer
exist when the ISN is processed, for the following reasons:

■ The ISN has been deleted after the ISN was included in the search result.
■ The search operation processes a previously generated ISN list, and the ISN in that ISN list has
already been deleted before the search operation started.

Please note thatAdabas generally does not checkwhether the ISNs still existwhen they are included
in the search result. An exception is an initial Sx command, where a format buffer has also been
specified. In this case, Adabas reads the first ISN of the resulting ISN list - if it no longer exists,
the ISN is removed from the resulting ISN list. For subsequent Sx commandswith a format buffer,

121Command Reference

Programming Considerations

you get a response code 113 if the first ISN in the ISN list to be processed does not exist. This is
because the command ID is deleted after the last ISN has been returned. If you did not get all ISNs
of the ISN list, it could be that the user assumes that another subsequent Sx command is performed,
but in fact a new initial Sx command is performed.

If you process the ISN list using L1 commands with GET NEXT option, ISNs that no longer exist
are skipped. Therefore, itmay occur that you get an end-of-list condition (response code 3), although
the number of ISNs read is less than the ISN quantity returned in the initial Sx command.

Examples of ISN List Processing

Example 1: Initial Sx call using SAVE ISN LIST option

COMMAND = Sx
COMMAND ID = SX01
COMMAND OPTION 1 = H
ISN LOWER LIMIT = 0
ISN BUFFER LENGTH = 20
CALL ADABAS ...

Resulting ISN quantity = 7

Resulting ISN list:
(all ISNs are stored) 8 12 14 15 24 31 33

Resulting ISN buffer: 8 12 14 15 24

Subsequent Sx call

COMMAND = Sx
COMMAND ID = SX01
ISN LOWER LIMIT = 24
ISN BUFFER LENGTH = 20
CALL ADABAS ...

Resulting ISN quantity = 2

Resulting ISN buffer: 31 33 14 15 24

Subsequent Sx call

COMMAND = Sx
COMMAND ID = SX01
ISN LOWER LIMIT = 0
ISN BUFFER LENGTH = 20
CALL ADABAS ...

Resulting ISN quantity = 5

Resulting ISN buffer: 8 12 14 15 24

Command Reference122

Programming Considerations

Example 2: With ISN overflow handling

Initial Sx call (SAVE ISN LIST option not used)

COMMAND = Sx
COMMAND ID = SX02
COMMAND OPTION 1 = blank
ISN LOWER LIMIT = 0
ISN BUFFER LENGTH = 20
CALL ADABAS ...

Resulting ISN quantity = 7

Resulting ISN list: (only ISNs 31 and 33 are stored)
8 12 14 15 24 31 33

Resulting ISN buffer: 8 12 14 15 24

Subsequent Sx call

COMMAND = Sx
COMMAND ID = SX02
ISN LOWER LIMIT (not used)
ISN BUFFER LENGTH = 20
CALL ADABAS ...

Resulting ISN quantity = 2

Resulting ISN buffer: (ISNs 31 and 33 are deleted from the Adabas temporary working space,
command ID SX02 is released).
31 33 14 15 24

A subsequent Sx call with command ID SX02 will be processed as an initial Sx call since SX02 was
released after the second call which resulted in the last ISN being returned to the user.

Example 3: Without ISN overflow handling

Initial Sx call with blank or zero command ID

COMMAND = Sx
COMMAND ID = blanks or binary zeros
COMMAND OPTION 1 = blank
ISN LOWER LIMIT = 0
ISN BUFFER LENGTH = 20
CALL ADABAS ...

Resulting ISN quantity = 7

Resulting ISN list:
(no ISNs are stored) 8 12 14 15 24 31 33

123Command Reference

Programming Considerations

Resulting ISN buffer: 8 12 14 15 24

A subsequent Sx call with command ID equal to blanks or binary zeros and ISN lower limit equal
to 0 will result in the re-execution of the same find command with the same result as the initial
call.

A subsequent call with command ID equal to blanks or binary zeros and ISN lower limit = 24 will
re-execute the Sx command. The result of this command will be ISN quantity = 2 and ISNs 31 and
33 in the ISN buffer.

Example 4: Reading ISN list with GET-NEXT option

Inital Sx command

COMMAND = Sx
COMMAND ID = SX01
COMMAND OPTION 1 = blank
ISN LOWER LIMIT = 0
ISN BUFFER LENGTH = 4
FORMAT BUFFER = <not empty>
CALL ADABAS ...

Resulting ISN quantity = 3

Resulting ISN = 44

Resulting ISN list:
44 321 344 (only 321 and 344 are stored)

Resulting ISN buffer: 44

Resulting record buffer: field values of ISN 44

Subsequent L1/L4 call

COMMAND = L1 or L4
COMMAND ID = SX04
COMMAND OPTION 2 = N
FORMAT BUFFER = <unchanged>
CALL ADABAS ...

Resulting response code = 0

Resulting ISN = 321

ISN 321 is deleted from the Adabas temporary working space.

Resulting record buffer: field values of ISN 321

Subsequent L1/L4 call

Command Reference124

Programming Considerations

COMMAND = L1 or L4
COMMAND ID = SX04
COMMAND OPTION 2 = N
FORMAT BUFFER = <unchanged>
CALL ADABAS ...

Resulting response code = 0

Resulting ISN = 344

ISN 344 is deleted from theAdabas temporaryworking space, the remaining ISN list is now empty

Resulting record buffer: field values of ISN 344

Subsequent L1/L4 call

COMMAND = L1 or L4
COMMAND ID = SX04
COMMAND OPTION 2 = N
FORMAT BUFFER = <unchanged>
CALL ADABAS ... ↩

Resulting response code = 3 (end of ISN list)

Command ID SY04 is released.

Using the Multifetch Feature

The Multifetch feature is used to retrieve more than one record with one call. This leads to a con-
siderable reduction in the communications overhead.

Retrieval

The Multifetch feature is invoked by specifying the value `M' in the Command Option 1 field for
any of the commands L1/L4, L2/L5, L3/L6 and L9. If, in addition, the Return option is required for
these commands, the value `O' should be specified instead.

If you use the ACBX interface, multifetch buffers must also be defined within the user program.

If you use the ACB interface, an ISN buffer must also be defined within the user program.

Adabas uses the corresponding buffers as storage for data that describe the records returned in
the record buffer. The first 4 bytes contain the number of records returned by the call. Each record
in the record buffer is represented by a 16-byte entry in the ISN/multifetch buffer:

125Command Reference

Programming Considerations

UsageByte

Length of record1-4

Adabas response code5-8

ISN of record (L9 command: occurrence count if descriptor is within a periodic group)9-12

ISN quantity13-16 (L9)

Index in periodic group if descriptor used is within periodic group13-16 (L3/L6)

The ISN Lower Limit field in the command block can be used to limit the number of records to be
returned. If this field is set to zero, the maximum number of records returned depends on the size
of the record buffer and/or the size of the ISN/multifetch buffer.

If an ISN is in hold status for another user or if the hold queue limit is reached, no further records
are returned to the record buffer. If the first record is held by another user and the Command
Option 1 field is set to `M', an implicit wait is performed. If a record other than the first record is
held by another user, Adabas immediately returns the records up to but not including that record
to the user. If the CommandOption 1 field is set to `O' and a record is held by another user, Adabas
response code 145 is returned. For the first record, the response code is within the control block,
and for subsequent records it is in the ISN/multifetch buffer.

If an error is detected while a record is being processed, the response code will be returned in the
corresponding structure in the ISN/multifetch buffer.

The ISN returned in the control block is the ISN of the first record returned.

If the ISN/multifetch buffer length is less than 20 bytes, or if the record buffer is too small to process
at least one record, an Adabas response 53 will be returned in the Control Block.

If an error is detected while the first record is being processed, the error response is returned in
the Response Code field of the control block. If an error is detected while a record other than the
first record is being processed, Adabas returns the records that were processed successfully and
puts the the response code for the unsuccessful record in the corresponding structure in the user-
defined ISN/multifetch buffer.

Transaction Control

TheMultifetch feature is invoked by specifying the value 'M' in the command option 1 field of the
ET/BT command. This specifies that the list of ISNs provided by the user in the ISN buffer are to
be released from hold status. The first 4 bytes contain the number of ISNs to be released. Each ISN
is represented by an 8-byte entry in the ISN buffer:

Command Reference126

Programming Considerations

UsageByte

File number1-4

ISN of record5-8

If all of the records are to be kept in hold status, the first 4 bytes of the ISN buffer must be set to
zeros. In this case, the TT time limit is not restarted.

If a given combination of file number and ISN is not in hold status for the user in question, Adabas
response code 144 is returned.

This response is given after the entire ISN buffer is processed.

If the ISN buffer length is less then 4 + (number of ISNs * 8), the Multifetch feature will be ignored
(i.e. the call will be processed as a standard call) and an Adabas response 53 will be returned.

Note: For transaction control, theACBX interface also uses ISNbuffers, rather thanMultifetch
buffers, for the Multifetch feature.

ACB versus ACBX Functionality

The Adabas functionality that is available with the ACB interface is a subset of the functionality
available with the ACBX interface, with one exception - the MC command is only available via
the ACB interface.

All ACB calls are transformed into an ACBX call by the Adabas interface routine (e.g. adalnkx),
and the results are transformed back to the ACB interface. The following rules apply:

■ All fields that are contained both in the ACB and in the ACBX are copied to the ACBX. Some
fields are defined with larger sizes in the ACBX interface; this means that you must use the
ACBX interface if you want to specify values that do not fit into an ACB field, but that do fit
into the corresponding ACBX field. With Adabas Version 6.2, these larger lengths are not yet
used.

■ The ABDs required in the ACBX interface are generated from the Adabas buffer lengths. If a
command requires buffers >= 64 KB, you must use the ACBX interface.

■ As described in the previous section, the ISN buffer is sometimes used in the ACB interface
when the ACBX interface uses a multifetch buffer. In such cases, the ABD for the ISN buffer of
the ACB call is generated as the ABD for a multifetch buffer.

■ Fields that are only contained in the ACBX are set to their default values; if you want to provide
other values for these fields, youmust use the ACBX interface, but for Adabas Version 6.2, there
are no commands that use input from ACBX-only fields.

■ The resulting values in fields that belong to fields contained both in the ACB and in the ACBX
are copied back to the ACB. With Adabas Version 6.1, it is not possible that these fields have

127Command Reference

Programming Considerations

values that do not fit into the ACB fields, if the fields are defined with a larger size in the ACBX
than in the ACB.

■ Information that is returned in ACBX-only fields is lost in ACB calls. In Adabas Version 6.2,
only some diagnostic information for the command executed is returned in ACBX-only fields.

With this knowledge about the relationship between ACB and ACBx calls, it is not necessary to
provide separate descriptions about how commands are executed with the ACB interface and
with the ACBX interface.

System Generated Fields

If a file contains system generated fields, only the behaviour of store and update commands
changes - the behaviour of read and search commands remains unchanged.

The values for system generated fields are generated automatically by Adabas. It doesn’t matter
whether a record buffer for store and update commands contains values for system generated
fields or not - field values for system generated fields in the record buffer are normally ignored,
with the exception of using a last update time stampfield for optimistic locking as described below.

If the system generated fields are defined with option CR, the values are generated only during
a store command and are never updated.

If the system generated fields are defined without option CR, the values are generated during
store commands, and up-dated during update commands. If the field is a multiple-value field, a
new first value is inserted and the old fields are shifted one element to the right - if this results in
field values with MU index > file parameter SYFMAX, these fields are deleted.

Using Last Update Time Stamp for Optimistic Locking

If you specify command option 2='T' (check time stamp) for an A1 command, you can use a last-
update-time-stamp system generated field for optimistic locking:

■ When you read the record to be updated, you either do not lock the record at all, with the dis-
advantage that you can see uncommitted updates (dirty read), or you lock it with option 'C',
which guarantees you that you don’t see uncommitted updates but doesn’t keep the lock beyond
the end of the read command. The read command reads a last-update-time-stamp system gen-
erated field (field with option SY=TIME without option CR).

■ The update is performed by an A1 command with command option 'T' and must include the
last-update-time-stamp field in the format and record buffer; the field valuemust not have been
changed since the read command.

■ If the last update time stamp is stored in an MU field, the field value with index 1 must be spe-
cified in the format buffer.

Command Reference128

Programming Considerations

■ If option 'T' was specified and no last-update-time-stamp system generated field is contained
in the format buffer, then you receive response code 44, subcode 13.

■ A check is made to see whether the field value specified in the record buffer is the same as the
current value in the database record:
■ If the value in the database is the same value, and the current time in the precision of the field
with option SY=TIME is still the same, the command fails with response code 22, subcode 42

■ If it is the same value, and the current time in the precision of the field with option SY=TIME
has changed, the record is placed in hold status; if the record is held by another user, the be-
haviour depends on the usage of the return option:
■ If the return option (option 'R' or 'U') is specified, response code 145 is returned.
■ Otherwise the commandwaits until the record is available again; then the check is repeated.

■ If the system generated value has been changed in themeantime, you receive a response code
48, subcode 34. If you have specified option 'L' or 'U', themodified record is read into the record
buffer.

Note: If the system generated fieldwith option SY=TIME is not a high-precision time stamp,
it is only guaranteed that no updates are lost if all updates on this file are performed with
option 'T'. If you aren't sure, you should only use this kind of update with high-precision
time stamps.

Read Integrity

If you read a record with an L1, L2, L3 or S1 command, you perform a dirty read, i.e. you also see
uncommitted updates. In order to see only the committed states of records, Adabas provides
shared locks for the records. Depending on your requirements, you can keep the record in shared
hold status for different times:

■ The C option does not keep the record in shared hold status beyond the current read operation,
unless it was already locked before.

■ The Q option keeps the record in shared hold status until the next record of a read loop is read.
It can be used to perform more than one consistent read operation on the same record.

■ The S option keeps the record in shared hold status until the current transaction is committed
or rolled back.

■ The RI command enables you to release a record from shared hold status before the record
would normally be removed from shared hold status.

Note: In order to use the C, Q or S options, you must change the commands to L4, L5, L6
or S4.

129Command Reference

Programming Considerations

If you read different parts of a recordwithmore than one read command, for example, if you read
a LOBfield piece-meal, it is strongly recommended to ensure that the record is not updated between
the read operations. The following possibilities are available for this purpose:

■ Place the record in shared or exclusive hold status with command option 3 = Q, S or blankwhen
you perform the first read command for the record.

■ Read a high-precision, system-generated last update time stampwith each read command, and
check that it was not changed between the read commands. The advantage of this solution is
that you can also read the recordwhen somebody else has put the record in exclusive hold status
- but you must be aware that this is still a dirty read, i.e. you can see uncommitted updates.

■ The application guarantees the read integrity; for example, you can read a record without
locking it, when another user is only allowed to update the record after locking another record,
which you have already locked.Note that you should only use this kind of integrity preservation
if you can really be sure that all programs updating the file apply these rules.

Features in the Adabas Command Interface for Large Object (LOB) Support

The following features have been introduced to the Adabas command interface, for LOB support
in particular:

■ Large Buffers with the ACBX Interface
■ More than one Format/Record Buffer Pair with the ACBX Interface
■ 4-Byte Length Indicator for LOB Fields when reading with variable Length
■ Length Indicator in Format/Record Buffer
■ Asterisk (*) Length Notation in the Format Buffer
■ Accessing Parts of LOBs with the Segment Notation in the Format Buffer

Large Buffers with the ACBX Interface

With the old ACB interface, the size of record buffers was limited to 64 KB, which is too small for
LOB support. This limitation was removed with the new ACBX interface, which allows record
buffer sizes of up to 2 GB.

Command Reference130

Programming Considerations

More than one Format/Record Buffer Pair with the ACBX Interface

When you access LOB fields and other fields with one Adabas call, the LOB value often has a
variable length, and you want to be able to allocate the space in a special area, while the other
fields have a fixed length, and which are located in a predefined area. The ACBX interface allows
you to specify both areas as different record buffers for the same Adabas call.

4-Byte Length Indicator for LOB Fields when reading with variable Length

If you specify 0 as the length in the format buffer to indicate variable length for LOB fields (fields
with field option LB), a 4-byte length indicator is used in the record buffer in order to support
larger length values.

Length Indicator in Format/Record Buffer

When youwant to read a LOB value, you often don't know the length of the LOB value in advance.
The length indicator allows you to retrieve the length of the LOB value first, before you allocate
the area for the LOB value.

Asterisk (*) Length Notation in the Format Buffer

Specifying an asterisk (*) as length reads a value with variable length. The difference to specifying
0 as length is as follows:

■ The value is a value without the length in front. It is recommended for read commands and re-
quired for insert/update commands that you also specify a length indicator for the LOB field.

■ You don't get a record buffer overflow (Adabas response code 53) when you read a value that
doesn't fit into the record buffer. If you read the length indicator and the LOB value with *
length, you still get the LOB value length even if the LOB value does not fit into the record
buffer, and you can reallocate the record buffer with a sufficient size and reread the LOB value.

Accessing Parts of LOBs with the Segment Notation in the Format Buffer

If the available memory is limited, or if you only need a part of a LOBwhere you know its position
within the LOB value, and you want to access large LOB values, you may want to access the LOB
value in pieces. This is possible using the segment notation in the format buffer.

Note: You can find Detailed information on the format buffer entries mentioned above in
the section Calling Adabas, Format and Record Buffers.

131Command Reference

Programming Considerations

132

6 ADABAS COMMANDS

This chapter contains a detailed description of each Adabas command. The commands are
presented in alphabetical order for ease of reference.

The user is referred to theAdabasMessages and Codes for an explanation of all response codeswhich
may result from Adabas commands.

The information is organized under the following headings:

Update record(s) (with hold option)A1 Command: Update Record

Remove database updates for ET logic usersBT Command: Back Out Transaction

Write checkpoint identifier, data protection log number
and block number

C1 Command: Write a Checkpoint

Write user data to PLOGC5 Command: Write User Data to Protection
Log

End/ET session and update databaseCL Command: Close User Session

Delete record or refresh fileE1 Command: Delete Record / Refresh File

End and save current transactionET Command: End Transaction

Prevent record update by other usersHI Command: Hold Record

Read record of specified ISN
Read and hold option

L1 / L4 Command: Read Record

Read records in physical order
Read in physical order and hold option

L2 / L5 Command: Read Physical Sequential

Read records in descriptor value order
Read in descriptor value order with hold option

L3 / L6 Command: Read Logical Sequential

Read the values of a specified descriptorL9 Command: Read Descriptor Values

Read the characteristics of all fields in a fileLF Command: Read Field Definitions

Reduce interprocess communications between an Adabas
database and its application programs

MC Command: Multi-Call

133

Add new database record with ISN assigned by Adabas
Add new database record with user-assigned ISN

N1 / N2 Command: Add Record

Open user sessionOP Command: Open User Session

Release one ormore command IDs or a global format buffer
ID for the issuing user

RCCommand:ReleaseCommand IDorGlobal
Format Buffer ID

Read ET data for this, another, or all usersRE Command: Read ET User Data

Release held record and ISN
Release all records currently held by user

RI Command: Release Record

Return count and ISNs of records satisfying the search
criterion
Return count of records and ISNs in user-specified order

S1 / S2 / S4 Command: Find Records

Combine two ISN lists from the same file with an AND,
OR, or NOT operation

S8 Command: Process ISN Lists

Sort ISN list in ascending ISN or descriptor-specified
sequence

S9 Command: Sort ISN List

Please note that only those control block fields relevant to the command in question are shown in
the control block. Also, in order to be compatible with new versions of Adabas, Software AG
strongly recommends that you set all unused control block fields to their default values.

If errors occur while using the ACBX interface, Adabas may return additional information in the
ACBXERRx fields, although this is not documented in the command documentation. Please refer
to theNucleus Response Codes inMessages and Codes for more information about this additional in-
formation.

If an Adabas call using the ACBX interface is made that requires buffer specifications, Adabas
buffer descriptions (ABDs)must be used instead of the ACB fields for format buffer length, record
buffer length, search buffer length, value buffer length and ISN buffer length.

Command Reference134

ADABAS COMMANDS

7 A1 Command (Record Update)

■ Function and Use .. 136
■ Control Block .. 140
■ Format Buffer .. 143
■ Record Buffer ... 143
■ Search Buffer .. 144
■ Value Buffer .. 144
■ Additional Considerations .. 144
■ Example .. 148

135

Function and Use

The A1 command is used to modify the value of one or more fields within a record. The record
containing the field (or fields) to be updated is identified by the file number inwhich it is contained
and its ISN. The user specifies the fields to be updated in the format buffer, and provides the values
to be used for updating these fields in the record buffer. Only those fields specified and system
generated fields defined without the option CR will be modified. All other fields in the record re-
main unchanged.

All necessary updating to the Associator andData Storage is performed byAdabas. If one ormore
descriptors are updated, Adabas will update the inverted lists to reflect the modifications. If a
fieldwhichwas used to derive a subdescriptor or a superdescriptor is updated, Adabaswill update
the corresponding subdescriptor or superdescriptor values to reflect the modification.

In case of an ET user, the A1 commandwill be executed only if the record to be updated is in hold
status for the user or when command option 1 = H, L, U or R was specified.

The user can also position to a record via an ADAM (Adabas direct access method) key. In this
case, the command option 2 must be set to V, and the search and value buffers must contain the
ADAM descriptor name and the ADAM key respectively. If this method is used, the ISN field in
the control block becomes an output field.

Command Reference136

A1 Command (Record Update)

A1 Command, Procedure Flow

137Command Reference

A1 Command (Record Update)

A1 Command, Procedure Flow (continued)

Command Reference138

A1 Command (Record Update)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBISN

F/ABISN Lower Limit

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

F/UBSearch Buffer Length (ACB only)

F/UBValue Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

-/AA,BAdditions 2

F/AAAdditions 3

F/UAAdditions 5

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

F/UFormat Buffer

F/ARecord Buffer

F/U (2)Search Buffer

F/U (2)Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

139Command Reference

A1 Command (Record Update)

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.
(2) Only required if the V option is used

Control Block

Command Code
A1

Command ID
If a series of records is to be updated by using a series of A1 calls, and the same fields are
specified in the format buffer for each call (such as when updating a set of records resulting
from a FIND command), this field should be set to a non-blank, non-zero value. If the A1 is
used in conjunctionwith the L1/L4, L2/L5, or L3/L6 command, and the same fieldswithin each
record are read and updated, the same Command IDwhichwas used for the READ command
should be used for the A1 calls. In both cases, this reduces the time required to process each
successive A1 call.

If only a single record is to be updated with a single A1 call, or the format buffer is modified
between A1 calls, this field should be set to blanks or binary zero.

The high-order byte of this field may not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for addi-
tional information).

File Number
The number of the file which contains the record to be updated.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN
The ISN of the record to be updated.

If the ADAM option is used, Adabas returns the ISN of the record found in this buffer.

Command Reference140

A1 Command (Record Update)

ISN Lower Limit
If command option ‘L’ is used, the format buffer must contain a segment with *-position, the
input value contains the current position of the segment. The value is increased by the length
specified for the segment.

Format Buffer Length (ACB only)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACB only)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Search Buffer Length (ACB only)
The search buffer length (in bytes). The search buffer area defined in the user program must
be as large as (or larger than) the length specified.

Value Buffer Length (ACB only)
The value buffer length (in bytes). The value buffer area defined in the user program must be
as large as (or larger than) the length specified.

Command Option 1
When the user supplies an `H', the record is placed into exclusive hold status before the update
command is executed.

When the user supplies an `R', the record is placed into exclusive hold status before the update
command is executed. If the ISN is held by another user, a response 145 is returned.

When the user supplies an `L', the current updated record is returned in the record buffer ac-
cording to the current format buffer. This option implies the H option.

When the user supplies a `U', Adabas attempts to place the record is placed into exclusive hold
status. The commandwill not wait if an ISN conflict is detected (ISN in hold for another user),
and a response 145 is returned. The current updated record is returned in the record buffer.

The `L' and the `U' options are only useful when used in conjunction with the add option or
system generated fields (without CR) in the format buffer.

When the user supplies an ‘X’, the A1 command is equivalent (but more efficient) to an E1
command for the ISN specified followed by an N2 command for the ISN specified with the
format and record buffers specified, with the exception that fields with field options SY and
CR remain unchanged.

Note: The ‘X’ option is helpful for reducing the number of MU values or PE groups in
a record.

141Command Reference

A1 Command (Record Update)

Command Option 2
When the user supplies an `H', the ISN is placed into the hold queue before the update command
is executed. The command waits if the ISN is held by another user unless the `R' option is
specified in Command Option 1, in which case a response 145 is returned.

When the user supplies an ‘L’, the format buffer is only allowed if the format buffer contains
a segment with *-position. Then the ISN Lower Limit field is used to determine the current
position of the segmentwith *-position.Without the option ‘L’, the current position of a segment
with *-position is the first (leftmost) byte of the field value.

When the user supplies a ‘T’, the record is handled according to the rules described in the
section Programming Considerations, System Generated Fields.

A `V' in this field indicates that the ADAM option is being used. A value (ADAM key) can
only be supplied for ADAM descriptor files. The value for the key is given in the value buffer,
and the descriptor name is specified in the search buffer. If the ADAM option is used, the ISN
field becomes an output field.

A response 52 is returned if no record with specified ADAM key is found.

The following table shows the possible combinations of the command options 1 and 2, together
with the hold status required and conflict information:

SpecialsConflictHold StatusCO2CO1

Requires hold' '' '

Wait for ISNSet hold' ''H'

Wait for ISNSet hold'H'' '

Read recordWait for ISNSet hold' ''L'

Read recordRsp 145Set hold' ''U'

Rsp145Set hold' ''R'

Rsp 145Set hold'H''R'

ADAMRsp 145Set hold'V''R'

ADAMRequires hold'V'' '

ADAM, read recordWait for ISNSet hold'V''H'

ADAM, read recordWait for ISNSet hold'V''L'

ADAM, read recordRsp 145Set hold'V''U'

Additions 2
If the response code is 0, Adabas returns the compressed record length of the updated record
in this field. The length is provided in the first two bytes in binary format. If the `L' or `U' option
is used, the last two bytes will contain the length of the compressed fields selected by the
format buffer in binary format.

Command Reference142

A1 Command (Record Update)

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 5
This fieldmay be used to provide a separate format buffer ID that is used to identify the internal
format buffer used for this command, or to provide a global format buffer ID.

As long as the first byte of the Additions 5 field is not alphanumeric, the value provided in
the command ID field will also be used as the format buffer ID.

If the first byte is a lower case character, the bytes 5 to 8 of the Additions 5 field will be used
as the separate local format buffer ID.

If the first byte is a digit or an upper case character, the Additions 5 field (8 bytes) will be used
as a separate global format buffer ID, which means that the format buffer ID can be used by
several users in parallel.

See Programming Considerations, Using Command IDs for additional information and examples.

Format Buffer

The fields to be updated must be specified in this buffer.

The syntax and examples of format buffer construction are provided in Calling Adabas, Format and
Record Buffers.

Record Buffer

The values to be used for updating are provided in this buffer according to the length and format
as specified in the format buffer.

Examples of record buffer construction are provided in Calling Adabas, Format and Record Buffers.

143Command Reference

A1 Command (Record Update)

Search Buffer

If theADAMoption (commandoption 2=V) is used, the search buffer contains the field specification
of the ADAM descriptor. A response 61 is returned if the field name is not an ADAM key.

Value Buffer

If the ADAM option (command option 2=V) is used, the value buffer contains the value of the
ADAM key.

Additional Considerations

The following additional considerations are applicable for the A1 command:

1. Subdescriptors, superdescriptors, hyperdescriptors andphonetic descriptorsmaynot be updated
directly. In order to update any of the above, the field(s) used to derive the subdescriptor, su-
perdescriptor, or phonetic descriptormust be updated. All corresponding subdescriptor, super-
descriptor, or phonetic descriptor values will then be updated automatically by Adabas.

2. The maxiumum record length after compression (including record ISN) is the maximum
available DATA storage block size - 4.

3. Adescriptor valuemaynot exceed 1144 bytes, unless the descriptor is definedwith the TRoption.

4. If a field is updated using a length override which exceeds the standard length (not permitted
if the field is defined with the Fixed Storage option), all subsequent references to this field
should specify the length which was used. If a subsequent reference uses the standard length,
value truncation for alphanumeric fields or response code 55 for numeric fields may occur.

5. Field names without index may be specified more than once only if they are multiple-value
fields. Multiple-value fields and fields in periodic groups with the same index may not be spe-
cifiedmore than once. It is also forbidden to specify a group and a field in the group at the same
time.

6. Numeric edit masks must not be specified in the format buffer.

7. A multiple-value count field or periodic group count field specified in the format buffer will
be ignored by Adabas. The corresponding value in the record buffer will also be ignored. A
literal in the format bufferwill be ignored byAdabas. The corresponding positions in the record
buffer will also be ignored.

8. If a multiple-value field is updated, Adabas automatically updates the multiple value field
count, if necessary, according to the following rules:

Command Reference144

A1 Command (Record Update)

■ For a multiple-value field defined with the NU option, the count field is adjusted to reflect
the current number of existing non-null values. Null values are completely suppressed.

Field Definition 01,MF,5,A,MU,NU

MF values before update XXXXX,YYYYY
Format Buffer MF4
Record Buffer ZZZZZ
Result after update XXXXX,YYYYY,ZZZZZ

MF count = 3

MF values before update XXXXX,YYYYY,ZZZZZ
Format Buffer MF2
Record Buffer bbbbb (blanks)
Result after update XXXXX,ZZZZZ

MF count = 2

MF values before update XXXXX,ZZZZZ
Format Buffer MF1-2
Record Buffer bbbbbbbbbb (blanks)
Result after update Values suppressed

MF count = 0

■ For a multiple-value field defined without the NU option, the count is adjusted to reflect the
current number of existing values (including null values).

Field Definition 01,MF,5,A,MU

MF values before update XXXXX,YYYYY
Format Buffer MF4
Record Buffer DDDDD
Result after update XXXXX,YYYYY,b(blank),DDDDD

MF count = 4

MF values before update XXXXX,YYYYY,ZZZZZ
Format Buffer MF3
Record Buffer bbbbb (blanks)
Result after update XXXXX,YYYYY,b (blank)

MF count = 3

9. If you specifyMUfieldswithout index, only the values contained in the record buffer are stored
in the database; all otherMUvalues contained in the old record are removed. If the current record
buffer contains null values and the MU field is defined with the NU option, the null values are
suppressed. The count field is adjusted accordingly.

145Command Reference

A1 Command (Record Update)

Field Definition 01,MF,5,A,MU,NU

MF values before update XXXXX,YYYYY
Format Buffer MF
Record Buffer AAAAA
Result after update AAAAA

MF count = 1

MF values before update XXXXX,YYYYY
Format Buffer MF1
Record Buffer AAAAA
Result after update AAAAA,YYYYY

MF count = 2

MF values before update XXXXX,YYYYY,ZZZZZ
Format Buffer MF
Record Buffer bbbbb (blanks)
Result after update value suppressed

MF count = 0

10. If one or more fields contained in a periodic group are updated, Adabas automatically updates
the periodic group count, if necessary, according to the following rule:
■ The count is adjusted to reflect the highest occurrence number referenced in the format buffer
(provided that this occurrence is higher than the current highest occurrence number).

Field Definitions 01,GB,PE
02,BA,1,B,DE,NU
02,BB,5,P,NU

GB values before update GB (1st occurrence)
BA = 5 BB = 20
GB (2nd occurrence)
BA = 6 BB = 25
GB count = 2

Format Buffer GB4
Record Buffer 0x08000000500C

Command Reference146

A1 Command (Record Update)

Result after update GB (1st occurrence)
BA = 5 BB = 20
GB (2nd occurrence)
BA = 6 BB = 25
GB (3rd occurrence)
BA = 0 BB = 0
GB (4th occurrence)
BA = 8 BB = 500
GB count = 4

GB values before update GB (1st occurrence)
BA = 5 BB = 20
GB (2nd occurrence)
BA = 6 BB = 25
GB count = 2

Format Buffer GB1
Record Buffer 0x00000000000C

Result after update GB (1st occurrence)
BA = 0 BB = 0
GB (2nd occurrence)
BA = 6 BB = 25
GB count = 2

11. If a field defined with variable length (no standard length) is specified in the format buffer, the
corresponding value in the record buffer must be preceded by a one byte binary number which
represents the length of the value (including the length byte).

Field Definitions 01,AA,3,A
01,AB,0,A

Format Buffer AA,AB.
Record Buffer "313233063132333435"

Fields AA andAB are to be updated. The new value for AA is 123. The new value for AB (which
is a variable length field) is 12345.

147Command Reference

A1 Command (Record Update)

Example

Note: The Adabas file definitions in Appendix A are used in the examples in this section.

ISN 4 of file 1 is to be updated with the following values:

Field AA 1234
Field AB 20

Control Block:

Command Code A1

Command ID bbbb (blanks; only 1 record is to be updated)

File Number 1

ISN 4

Format Buffer Length 10 (or larger)

Record Buffer Length 10 (or larger)

Additions 3 bbbbbbbb (blanks; file is not security protected)

Buffer Areas:

Format Buffer AA,AB,2,U.

Command Reference148

A1 Command (Record Update)

Record Buffer 0x21323334202020203230

149Command Reference

A1 Command (Record Update)

150

8 BT Command (Backout Transaction)

■ Function and Use .. 152
■ Control Block .. 156
■ ISN Buffer .. 157

151

Function and Use

The BT command is used for two purposes:

■ Backout of a logical transaction (command option ‘S’ not specified);
■ Backout of subtransactions (command option ‘S’ specified).

BT commands may only be issued by ET Logic users.

Backout of a Logical Transaction

The BT command is used to remove all the database modifications (adds, deletes, updates) per-
formed during the user's current logical transaction. This may be necessary because of a program
error or when it is determined that the entire transaction cannot be successfully completed.

If command option ‘H’ is used, all exclusive locks of the user are downgraded to shared locks.
Otherwise, without the multifetch option all records held by the user are released, or with the
multifetch option all records specified in the ISN buffer are released.

Adabas issues an implicit ET command as the last step in the processing of a BT command. This
causes the current data protection block to be physically written to the Adabas work file and the
data protection log, and releases all of the records which were held during the transaction.

Command Reference152

BT Command (Backout Transaction)

BT Command, Backout of a Logical Transaction

153Command Reference

BT Command (Backout Transaction)

Backout of a Subtransaction

The BT command is used to remove all the databasemodifications performed during all subtrans-
actions, starting at the savepoint with the savepoint ID specified in the command ID field of the
control block.

BT Command, Backout of a Subtransaction

Command Reference154

BT Command (Backout Transaction)

Error Situations for the Backout of a Subtransaction

■ Command option ‘S’ is specified for the BT command, but subtransactions are not enabled for
the current Adabas user session: response 22 is returned, the first 2 bytes of the Additions 2 field
are set to 19.

■ The CID specified for a BT subtransaction is not a savepoint ID belonging to the current trans-
action: response 21 is returned, the first 2 bytes of The Addition 2 field are set to 10.

■ The CID specified for a BT subtransaction is a savepoint ID that no longer exists because of a
BT subtransaction; as shown in following diagram:

In this case, the actions until the problematic subtransaction backout are rolled back; because
of this subtransaction backout, the database content is the same as it was when ET-S=>CID=1
was issued. Because this is not the database content as it was when ET-S=>CID=2 was issued,
response 2 is returned, the first 2 bytes of the Additions 2 field are set to 5.

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/ABCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 3 (ACBX only)

155Command Reference

BT Command (Backout Transaction)

FormatField

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

–/–Format Buffer

–/–Record Buffer

–/–Search Buffer

–/–Value Buffer

F/UISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
BT

Command ID
Adabas returns in this field the transaction sequence number of the transactionwhich has been
backed out. The number is returned in binary format. If the userwas at ET status or has backed
out a transaction without any updates, a 0 will be returned.

Command Reference156

BT Command (Backout Transaction)

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN Buffer Length (ACB only)
The ISN buffer length (in bytes). This buffer is only used in conjunction with the Multifetch
feature. The value specified may not be smaller than 4 + (number of ISNs * 8), otherwise the
Multifetch feature will be ignored.

Command Option 1
When the user supplies an ‘S’ in this field, a backout of a subtransaction is performed.Otherwise
a backout of a logical transaction is performed. An `M' in this field invokes the Multifetch
feature. See Programming Considerations, Using theMultifetch Feature for additional information
about the Multifetch feature.

Command Option 3 (ACBX only)
If this field is set to ‘H’, all locked records remain in hold status, but exclusive locks are
downgraded to shared locks.

If this field is set to a blank, all records currently locked are released from hold status.

Additions 2
For some response codes, Adabas returns detailed information in this field. See the Adabas
Messages And Codes for further information.

ISN Buffer

This buffer contains the ISNs and file numbers of the records that are to be released from hold
status. This field is only used in conjunction with the Multifetch feature. If all of the records are
to be kept in hold status, the first 4 bytes of this buffer must be set to zeros.

For a detailed layout description of the ISN buffer, see Programming Considerations, Using the
Multifetch Feature (Transaction Control).

157Command Reference

BT Command (Backout Transaction)

158

9 C1 Command (Write a Checkpoint)

■ Function and Use .. 160
■ Control Block .. 163
■ Example .. 163

159

Function and Use

The C1 command is used to request that a checkpoint be taken.

C1 commands are normally issued only by exclusive control update users who are not using ET
Logic. Even if a C1 command is issued by an ET Logic user, it is not subject to ET Logic, which
means that its effects will not be wiped out by a BT (backout transaction) command.

Adabas automatically executes aC1 commandat the beginning of a user program inwhich exclusive
file control updating has been requested.

The result of the C1 command is a checkpoint entry in theAdabas checkpoint table. This checkpoint
entry contains the checkpoint identifier (the value provided by the user in the Command ID field),
and the current data protection log and block number. This checkpoint entrymay be used to restore
the database (or certain files) to the status in effect at the time the checkpoint was taken. This may
be necessary before a program that performs exclusive control updating can be rerun or restarted.

Command Reference160

C1 Command (Write a Checkpoint)

C1 Command, Procedure Flow

161Command Reference

C1 Command (Write a Checkpoint)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

–/–Format Buffer

–/–Record Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Command Reference162

C1 Command (Write a Checkpoint)

Control Block

Command Code
C1

Command ID
A non-blank, non-zero value must be entered in this field. This value will serve to identify the
checkpoint taken. It is not necessary that each value provided for each checkpoint is unique.

A value of 'SYNx' must not be specified.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Additions 2
For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Example

The user requests a checkpoint. The checkpoint is to be identified by the value USR4.

Control Block:

Command Code C1

Command ID USR4 (checkpoint identifier)

163Command Reference

C1 Command (Write a Checkpoint)

164

10 C5 Command (Write User Data to Protection Log)

■ Function and Use .. 166
■ Control Block .. 168
■ Record Buffer ... 168
■ Example .. 168

165

Function and Use

The C5 command is used to write user data to the Adabas protection log.

The data written have no effect on Adabas recovery processing. The recovery utility ADAREC
ignores all data written to the data protection log as a result of a C5 command.

C5 Command, Procedure Flow

Command Reference166

C5 Command (Write User Data to Protection Log)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

-/-BCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBRecord Buffer Length (ACB only)

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

*/–Format Buffer

F/URecord Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Ababas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-
Not used but must be included in parameter list of CALL statement*

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

167Command Reference

C5 Command (Write User Data to Protection Log)

Control Block

Command Code
C5

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Record Buffer Length (ACB only)
The number of bytes specified in this field will be written to the Adabas data protection log.

The maximum length which may be specified is 2000 bytes.

Additions 2
For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
and Codes for further information.

Record Buffer

The information to be written to the data protection log is provided in this buffer.

The format of the data protection log is alphanumeric.

Example

The information `ULRR0422 UPDATES FOR JANUARY' is to be written to the Adabas data pro-
tection log.

Control Block

Command Code C5

Record Buffer Length 28

Command Reference168

C5 Command (Write User Data to Protection Log)

Buffer Areas

Record Buffer ULRR0422 UPDATES FOR JANUARY

169Command Reference

C5 Command (Write User Data to Protection Log)

170

11 CL Command (Close User Session)

■ Function and Use .. 172
■ Control Block .. 176
■ Record Buffer ... 176
■ Examples ... 177

171

Function and Use

The CL command is used to terminate a user session. It is recommended that all user programs
issue a CL command when database processing is complete.

A CL command results in:

■ An implicit ET command (ET logic users only);
■ The storing of user data in an Adabas system file (optional);
■ The physical writing of the current data protection block to the Adabas data protection log and
WORK container;

■ The release of all records currently in hold status for the user, and the release of all Command
ID entries (and corresponding ISN lists) assigned to the user;

■ The transfer of the user's data from the AdabasWORK container to an Adabas system file. This
is done only if a USERID was provided with the OP command; otherwise, any user data stored
in the user–data system file (written by an ET command) during the session is not retained.

Command Reference172

CL Command (Close User Session)

CL Command, Procedure Flow

173Command Reference

CL Command (Close User Session)

CL Command, Procedure Flow (continued)

Command Reference174

CL Command (Close User Session)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

-/ABCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

$ F/UBRecord Buffer Length (ACB only)

F/UACommand Option 2

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

$ */–Format Buffer

$ F/URecord Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-
Not used but must be included in parameter list of CALL statement*
Only used if user data to be stored$

175Command Reference

CL Command (Close User Session)

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
CL

Command ID
If ET commands have been issued during the user session, Adabas will return the transaction
sequence number of the user's last successfully executed transaction in this field. The number
is provided in binary format.

If no ET command has been successfully executed during this session, this field is set to 0.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Record Buffer Length (ACB only)
If user data is to be stored in an Adabas system file, the length of the record buffer must be
specified in this field. The length specified determines the number of bytes of user data to be
stored.

The maximum length which may be specified is 2000 bytes.

If no user data is to be stored, this field is not used.

Command Option 2
An `E' in this field indicates that user data provided in the record buffer is to be stored in an
Adabas system file.

Additions 2
For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
and Codes for further information.

Record Buffer

The user data which is to be stored is provided in this buffer. The number of bytes actually stored
is determined by the value specified in the record buffer length field. The data will be retained
only if the user has issued an OP command in which a non-blank USERID was provided. If so,
the data will be retained until the user issues the next ET or CL command in which user data is
provided. If a non-blank USERID was not provided, the data cannot be retrieved in a subsequent
session.

Command Reference176

CL Command (Close User Session)

The user data can be in any format and Adabas performs no conversion on it.

Examples

Example 1:

The user program has completed all database activity and issues the CL command. No user data
is to be stored.

Control Block:

Command Code CL

Command Option 2 b (no user data is to be stored)

Example 2:

The user program issues a CL command and provides user data to be stored in an Adabas system
file.

Control Block:

Command Code CL

Record Buffer Length 17 (17 bytes of user data to be stored)

Command Option 2 E (user data is to be stored)

Buffer Areas:

Record Buffer USER 7 NORMAL END

177Command Reference

CL Command (Close User Session)

178

12 E1 Command (Delete Record)

■ Function and Use .. 180
■ Control Block .. 185
■ Search Buffer .. 186
■ Value Buffer .. 186
■ Examples ... 186

179

Function and Use

The E1 command is used to delete a record.

The user specifies the file number and ISN of the record to be deleted. Adabas deletes the record
from Data Storage and makes any necessary updates to the Associator.

If the user is an ET user and the record to be deleted is not in hold status for the user, Adabas will
place the record in hold status for the user. If the record is in hold status for another user, the E1
command will be suspended until the record becomes available, unless the return option is used,
in which case response code 145 is returned.

The user can also position to a record via an ADAM (Adabas direct access method) key. In this
case, the command option 2 must be set to V, and the search and value buffers must contain the
ADAM descriptor name and the ADAM key respectively. If this method is used, the ISN field in
the control block becomes an output field.

The E1 command can also be used to refresh a file - refreshing a file resets it to a state of zero records
loaded. If a file is to be refreshed, the ISN field in the control block must be set to zero, and the
command ID field must be blank.

Command Reference180

E1 Command (Delete Record)

E1 Command, Procedure Flow

181Command Reference

E1 Command (Delete Record)

E1 Command, Procedure Flow (continued)

Command Reference182

E1 Command (Delete Record)

E1 Command, Procedure Flow (continued)

183Command Reference

E1 Command (Delete Record)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBISN

F/UBSearch Buffer Length (ACB only)

F/UBValue Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

-/AA,BAdditions 2

F/AAAdditions 3

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

–/–Format Buffer

–/–Record Buffer

F/U (2)Search Buffer

F/U (2)Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

Command Reference184

E1 Command (Delete Record)

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.
(2) Only required if the V option is used

Control Block

Command Code
E1

Command ID
The command ID must be set to blanks if a file is to be refreshed.

File Number
The number of the file which contains the record to be deleted.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN
The ISN of the record to be deleted.

If the ADAM option is used, Adabas returns the ISN of the record deleted.

If the file is to be refreshed (reset to a state of zero records loaded), this field must be set to
zero.

Search Buffer Length (ACB only)
The search buffer length (in bytes). The search buffer area defined in the user program must
be as large as (or larger than) the length specified.

Value Buffer Length (ACB only)
The value buffer length (in bytes). The value buffer area defined in the user program must be
as large as (or larger than) the length specified.

Command Option 1
An `R' in this field indicates that the return option is to be used. If an E1 command is issued,
and the record to be deleted is currently held by another user, Adabas will return response
code 145 rather than placing the user in wait status until the record becomes available.

Command Option 2
A `V' in this field indicates that the ADAM option is being used. A value (the ADAM key) can
only be supplied for ADAM descriptor files. The value for the key is given in the value buffer,
and the descriptor name is specified in the search buffer. If the ADAM option is used, the ISN
field becomes an output field.

Response code 52 is returned if no record with the specified ADAM key is found.

185Command Reference

E1 Command (Delete Record)

Additions 2
For some response codes, Adabas returns detailed information in this field. to the Adabas
Messages and Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Search Buffer

If the ADAM option (command option 2 = V) is used, the search buffer contains the field specific-
ation of the ADAM descriptor. A response 61 is returned if the field name is not an ADAM key.

Value Buffer

If the ADAM option (command option 2 = V) is used, the value buffer contains the value of the
ADAM key.

Examples

Example 1:

ISN 4 in file 2 is to be deleted.

Control Block:

Command Code E1

Command Reference186

E1 Command (Delete Record)

File Number 2 (record to be deleted is in file 2)

ISN 4 (record with ISN 4 to be deleted)

Command Option 1 b (Return Option not to be used)

Additions 3 Password (file 2 is security protected)

Example 2:

A set of ISNs (which were previously selected with a FIND command) is to be deleted from file
1.

Control Block:

Command Code E1

File Number 1 (record to be deleted is in file 1)

ISN n (ISN resulting from previous Find)

Command Option 1 b (Return Option not to be used)

Additions 3 bbbbbbbb (file is not security protected)

The E1 command is repeated for each ISN which resulted from the FIND command.

187Command Reference

E1 Command (Delete Record)

188

13 ET Command (End Transaction)

■ Function and Use .. 190
■ Control Block .. 196
■ Record Buffer ... 197
■ ISN Buffer .. 197
■ Examples ... 198

189

Function and Use

The ET command is used for two purposes:

■ End of a logical transaction (command option ‘S’ has not been specified).
■ End of a subtransaction (command option ‘S’ has been specified).

End of a Logical Transaction

An ET command without the command option ‘S’results in:

■ The writing of all current data protection information to the Adabas data protection log and
Adabas work file for all update commands successfully executed during the transaction. This
information may be needed by Adabas to apply all the updates which were performed during
the transaction at the start of the next Adabas session. This will occur only if the current session
is abnormally terminated (system failure) before these updates have been physically applied to
the Associator and Data Storage;

■ Downgrade of all exclusive locks of the user to shared locks, if command option ‘H’ is used.
Otherwise the release of all records held by the user (without multifetch option), or the release
of all records specified in the ISN buffer (with the multifetch option);

■ Optionally, the storing of user data in an Adabas system file. This user data may be read sub-
sequently with an OP or RE command and may be used for program restart;

■ The returning of a unique sequence number for the transaction by Adabas. This sequence
numbermay be used to identify the last successfully processed transaction if a restart is necessary;

■ If subtransactions are activated, the end of the last subtransaction for the current transaction;
thismeans if uniqueness and referential integrity checks have been delayed, they are performed
now;

■ In the case of a uniqueness error, the current subtransaction is backed out, and a response code
98 is returned. In the case of a referential integrity error, the current subtransaction is backed
out, and a response code 196 is returned. If you activated subtransactions but didn’t use sub-
transactions, i.e. you did not use an ET commandwith command option ‘S’, this means that the
complete transaction is rolled back;

Note: A referential integrity check can imply a large number of database operations, e.g.
if you specified cascaded delete in the referential integrity constraint.

■ If subtransactions are activated, the start of the first subtransaction for the next transaction. A
new savepoint is defined with savepoint ID 0.

Command Reference190

ET Command (End Transaction)

The successful execution of an end of a logical transaction guarantees that all of the updates per-
formed during the transaction will be applied to the database, regardless of any subsequent user
or Adabas session interruption.

ET Command - End of Logical Transaction, Procedure Flow

191Command Reference

ET Command (End Transaction)

ET Command - End of Logical Transaction, Procedure Flow (continued)

End of a Subtransaction

An ET command with the command option ‘S’results in:

■ If subtransactions are not enabled for the current Adabas user session, response code 22 is re-
turned; the first 2 bytes of the Additions 2 field are set to 19;

■ If there are uniqueness checks which have been delayed, they are performed now. In the case
of a uniqueness error, the current subtransaction is backed out, and a response code 98 is returned.
In the case of a referential integrity error, the current subtransaction is backed out, and a response
code 196 is returned;

Note: A referential integrity check can imply a large number of database operations, e.g.
if you specified cascaded delete in the referential integrity constraint.

■ Start of the next subtransaction. A new savepoint ID is defined; the savepoint ID is returned in
the command IDfield of the control block. The new savepoint IDmay be the same as the previous
savepoint ID, if there were no lock or update activities after the previous savepoint.

Command Reference192

ET Command (End Transaction)

Note: Usually the savepoint ID is incremented by 1. For some undocumented internal
commands internal subtransactions are created. Therefore, usage of these commands can
result in larger savepoint IDs.

Note: While the end of a logical transaction implies a commit, i.e. it is guaranteed that all
of the updates performed during the transaction will be applied to the database, regardless
of any subsequent user or Adabas session interruption, there is no commit at the end of a
subtransaction:With a backout subtransaction you can backout all subtransactions belonging
to a logical transaction until the complete transaction is committed.

193Command Reference

ET Command (End Transaction)

ET Command - End of Subransaction, Procedure Flow

Command Reference194

ET Command (End Transaction)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

-/ABCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

$ F/UBRecord Buffer Length (ACB only)

F/U (1)BISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

F/UACommand Option 3 (ACBX only)

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

$ */-Format Buffer

$ F/URecord Buffer

*/– (2)Search Buffer

*/– (2)Value Buffer

F/U (2)ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-
Not used but must be included in parameter list of CALL statement*

195Command Reference

ET Command (End Transaction)

Only if user data to be stored$

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.
(2) only if the multifetch feature is used

Control Block

Command Code
ET

Command ID
Adabas returns in this field the sequence number for the transaction. This number is provided
in binary format.

Transaction sequence numbers are assigned in ascending sequence during a given user session,
starting with 1. The value 0 will be returned if the transaction has performed no updates.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Record Buffer Length (ACB only)
If user data is to be stored in an Adabas system file, the number of bytes of user data to be
stored must be specified in this field.

Adabas will store the number of bytes specified in this field. The maximum number of bytes
which may be specified is 2000 bytes.

If no user data is to be stored, this field is not used.

ISN Buffer Length (ACB only)
The ISN buffer length (in bytes). This buffer is only used in conjunction with the Multifetch
feature. The value specified may not be smaller than 4 + (number of ISNs * 8), otherwise the
Multifetch feature will be ignored.

Command Option 1
If this field is set to ‘S’, an end of subtransaction is performed, otherwise an end of a logical
transaction is performed. If this field is blank, all records in hold for the current transaction
are released. If the field is set to `M', only the ISNs specified in the ISN Buffer are released from
hold. to Programming Considerations, Multifetch Feature for more detailed information.

If this field is set to ‘T’, the ET command releases all resources that are in use for the current
user session: it is equivalent to (but more efficient than) a CL command followed by an OP
command with the Record Buffer set to ‘.’ and command option 1 set to the same value as in
the previous OP command.

Command Reference196

ET Command (End Transaction)

Note: The ‘T’ option has been introduced for use after an OP without the ‘R’ option. If
you perform an ET command with the ‘T’ option after an OP command with the ‘R’
option, all subsequent commands that access any file will get a response code 17. This
is because using the ‘T’ option for the ET command by mistake does not allow access
to other files that are not already in the file list.

Command Option 2
An `E' in this field indicates that user data is to be stored in an Adabas system file.

Command Option 3 (ACBX only)
If this field is set to ‘H’, all locked records remain in hold status, but exclusive locks are
downgraded to shared locks.

Additions 2
For some response codes, Adabas returns detailed information in this field. See Adabas Mes-
sages and Codes for further information.

Record Buffer

The user data to be stored in an Adabas system file is provided in this buffer.

The data will be retained until the user issues the next ET or CL command in which ET data is
provided. The user data will be retained when the user session terminates only if the user issued
an OP command in which a non-blank USERID was provided.

The user data can be in any format and Adabas performs no conversion on it.

ISN Buffer

This buffer contains the ISNs and file numbers that are to be unlocked. This buffer is only used in
conjunction with the Multifetch feature. If no records are to be unlocked, the first 4 bytes of this
buffer must be set to zeros.

For a detailed layout description of the ISN buffer, see Programming Considerations, Using the
Multifetch Feature (Transaction Control).

197Command Reference

ET Command (End Transaction)

Examples

Example 1: ET without user data

Control Block:

Command Code ET

Command Option 2 b (blank; no user data is to be stored)

Example 2: ET with user data

Control Block:

Command Code ET

Record Buffer Length 25 (25 bytes of user data to be stored)

Command Option 2 E (user data to be stored)

Buffer Areas:

Record Buffer User Data For Transaction

Command Reference198

ET Command (End Transaction)

14 HI Command (Hold Record)

■ Function and Use .. 200
■ Control Block .. 203
■ Examples ... 203

199

Function and Use

The HI option is used to place record in hold status, i.e. lock the records for other users. Please
refer toConcepts and Facilities, Competitive Updating, Shared Locks and Hierarchical Locking for further
information. The command can also be used to upgrade the lock mode of a record from shared to
exclusive. If the user already holds an exclusive lock for the record, the lock mode remains un-
changed.

The record remains in the requested lock mode until the lock is upgraded by another command,
or it is released with an ET or BT command, or it is released or downgradedwith an RI command.

The user specifies the file number and ISN of the record to be held.

The HI command does not check whether the ISN to be placed in hold status exists.

Adabas will only execute this command if this is not prevented by a lock for another user. If the
record is not available, the user will be placed in wait status and reactivated automatically by
Adabas when the record becomes available again.

If the HI command is issued with the return option and the record to be held is currently not
available, Adabas will return response code 145 instead of placing the user in wait status.

Command Reference200

HI Command (Hold Record)

HI Command, Procedure Flow

201Command Reference

HI Command (Hold Record)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBISN

F/UACommand Option 1

F/UACommand Option 3 (ACBX only)

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

–/–Format Buffer

–/–Record Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Command Reference202

HI Command (Hold Record)

Control Block

Command Code
HI

File Number
The number of the file which contains the record to be held.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN
The ISN of the record to be placed in hold status.

Command Option 1
An `R' in this field indicates that the return option is to be used. If the record to be held is
currently held by another user, Adabas will return response code 145 rather than placing the
user in wait status until the record becomes available.

Command Option 3 (ACBX only)
An ‘S’ in this field places the record in shared hold status, if the record is not yet locked shared
or exclusively. The record remains in shared hold status until the lock is upgraded to an ex-
clusive lock, or until the lock is released again with an ET, BT or RI command.

A blank or binary zero in this field places the record in exclusive hold status.

Additions 2
For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
and Codes for further information.

Examples

The record identified by ISN 3 in file 2 is to be placed in exclusive hold status. Control is not to be
returned until the record is available.

Control Block:

Command Code hi

203Command Reference

HI Command (Hold Record)

File Number 2 (record to be held is in file 2)

ISN 3 (record with ISN 3 to be held)

Command Option 1 b (Return option not used)

Command Option 3 b (exclusive lock)

The record identified by ISN 4 in file 2 is to be placed in shared hold status. If the record is exclus-
ively locked or it is waiting to be exclusively locked by another user, Adabaswill return a response
code 145.

Control Block:

Command Code hi

File Number 2 (record to be held is in file 2)

ISN 4 (record with ISN 4 to be held)

Command Option 1 R (Return option used)

Command Option 3 S

Command Reference204

HI Command (Hold Record)

15 L1/L4 Command (Read Record)

■ Function and Use .. 206
■ Control Block .. 212
■ Format Buffer .. 216
■ Record Buffer ... 216
■ ISN Buffer/Multifetch Buffer .. 216
■ Additional Considerations .. 217
■ Examples ... 217

205

Function and Use

The L1/L4 command is used to read a single record fromData Storage. Using theMultifetch feature,
it is also possible to read multiple records with a single L1/L4 command.

Without the Multifetch Feature

The user specifies the file number and ISN of the record to be read. The user indicates in the format
buffer which fields are to be read. Adabas returns the requested field values in the record buffer.

The GET NEXT option provides for the reading of the records identified by the ISNs contained in
an ISN list (which has been created previously by a Sx command) without the user having to
provide the ISN of the record to be read with each L1/L4 call. Adabas automatically selects the
ISN from the list and reads the record identified by that ISN. If the ISN no longer exists, the ISN
is skipped, and the next ISN of the ISN list is read. Therefore, the number of ISNs read before you
get a response code 3 (end of ISN list) may be smaller than the ISN quantity of the corresponding
Sx command.

The READ ISN SEQUENCE option provides for the reading of a record identified by ISN, and if
the ISN specified is not present in the file, the reading of the recordwith the next higher ISNwhich
is present.

The L4 command performs the same function as the L1 command, and, in addition, places the
record in shared or exclusive hold status, i.e. locks the record for other users. The L4 command
should be used if the user needs to prevent other users from updating the record, e.g. because he
wants to update the record. Please refer toConcepts and Facilities, Competitive Updating, Shared Locks
for further information. If the user already holds a shared lock for the record, and requests an ex-
clusive lock now, the lock is upgraded to the exclusive locking mode. If the user already holds an
exclusive lock for the record, the locking mode remains unchanged.

If the GETNEXT option is used and the previous command for this command IDwas issued with
the command option ‘Q’, and the record read has not yet been released from shared hold status
afterwards, this record read will be released from shared hold status again, with the following
exceptions:

■ If the same record has been read with the command option ‘Q’ in more than one command se-
quences, the record is only released if the next record has been read for all these command se-
quences, or an RC has been performed;

■ It is not released if another command has locked the same record exclusively, or the record has
been shared locked with command option ‘S’.

With the Multifetch Feature

The L1/L4 command supports the Multifetch feature. This is indicated by one of the values `M' or
`O' in the Command Option 1 field (see the description of the Command option 1 field for more

Command Reference206

L1/L4 Command (Read Record)

details). The Multifetch feature for the L1/L4 command is only available when used together with
the following Command Option 2 values:

■ `I' (read in ISN sequence)
■ `N' (get next after FIND)

When the Multifetch feature is used, the maximum number of records which can be returned for
a single L1/L4 call is limited by the following factors:

■ The ISNLower Limit field can be used to specify themaximumnumber of records to be returned,
thus avoiding internal overheads when only a limited number of records are required.

■ If the value in the ISN Lower Limit field is 0, the number of records returned is limited only by
the size of the ISN/Multifetch Buffer and/or the Record Buffer.

207Command Reference

L1/L4 Command (Read Record)

L1/L4 Procedure Flow

Command Reference208

L1/L4 Command (Read Record)

L1/L4 Procedure Flow (continued)

209Command Reference

L1/L4 Command (Read Record)

L1/L4 Procedure Flow (continued)

Command Reference210

L1/L4 Command (Read Record)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/ABISN

F/UBISN Lower Limit

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

F/UACommand Option 3 (ACBX only)

-/AA,BAdditions 2

F/AAAdditions 3

F/UAAdditions 5

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

F/UFormat Buffer

–/ARecord Buffer

–/–Search Buffer

–/–Value Buffer

–/AISN Buffer

Formats:

alphanumericA
binaryB

211Command Reference

L1/L4 Command (Read Record)

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
L1/L4

Command ID
If a series of records is to be read with a series of L1/L4 calls and the same fields are to be spe-
cified in the format buffer for each call, this field should be set to a non-blank, non-zero value.
This reduces the time required to process each L1/L4 call.

If the GET NEXT option is to be used, the Command ID of the ISN list to be used must be
specified in this field. The format buffer may not be changed between successive L1/L4 calls
when the GET NEXT option is used.

If only a single record is to be read, or if the format buffer is to be modified between L1/L4
calls, this field should be set to blanks or binary zeros.

The high-order byte of this field must not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for
additional information).

File Number
The number of the file which contains the record to be read.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Response code 3 indicates an end-of-list condition (possible only if GET NEXT or ISN SE-
QUENCE option is used).

If the Multifetch feature is used and an error occurs while processing the first record, the re-
sponse code is returned in this field. In this case, the contents of the ISN Buffer and Record
Buffer are undefined.

Command Reference212

L1/L4 Command (Read Record)

If an error is detected for the second or any subsequent ISN during the processing loop of the
Multifetch feature, the first non-zero response code will terminate the multifetch processing.
In this case, the response code will be stored as an additional entry in the ISN Buffer itself, not
in the Response Code field of the Control Block. Since there are two possible locations for a
response code, an application program should check first the Response Code field in the
Control Block for errors of a general nature, then in the response code field of each ISN Buffer
entry individually.

ISN
The ISN of the record to be read. If the GET NEXT option is used, the following rules apply
for this field:
■ Adabas automatically selects ISNs from the ISN list in the order in which they are contained
in the list, independent of the setting of this field;

■ If the user wishes to position to a given ISN in the list, he has to use an S1/S4 command. See
Programming Considerations, Retrieving ISN Lists for additional information.

If the READ ISN SEQUENCE option is used, the record identified by the ISN provided in this
field will be read. If the ISN is not present in the file, the record with the next highest ISN will
be read.

The GET NEXT and the READ ISN SEQUENCE options are mutually exclusive.

Adabas returns the ISN of the record which has been read in this field. This applies regardless
of any options used.

If the Multifetch feature is used, the ISN returned in the control block is the ISN of the first
record returned.

ISN Lower Limit
If the Multifetch feature is used, the maximum number of records read by a single L1/L4
command is limited to the value specified in this field. If this value is 0, the number of records
is limited only by the size of the ISN Buffer and the Record Buffer.

If command option ‘L’ is used, and the Format Buffer contains a segment with *-position, the
input value contains the current position of the segment. The value is increased by the length
specified for the segment.

Format Buffer Length (ACB only)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACB only)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

ISN Buffer Length (ACB only)
The ISN buffer length (in bytes). If the length of the ISN buffer is less than 20 bytes, the Multi-
fetch feature will be ignored, and an Adabas response 53 will be returned.

213Command Reference

L1/L4 Command (Read Record)

This field is only used in conjunction with the Multifetch feature.

Command Option 1
An `R' in this field indicates that the return option is to be used. If an L4 command is issued
and the record to be read andheld is currently held by another user, Adabaswill return response
code 145 rather than placing the user in wait status until the record becomes available.

An `M' or an `O' in this field invokes the Multifetch feature. See Programming Considerations,
Using The Multifetch Feature for additional information. The Multifetch feature can only be
used if the Command Option 2 field is set to `I' or `N'.

Command Option 2
An `N' in this field indicates that the GET NEXT option is to be used. This option is used to
read the records identified by the ISNs which are contained in an ISN list, without having to
provide the ISN of the record to be read with each L1/L4 call. The ISN list to be used must be
specified in the Command ID field. Response code 3 will be returned when all the ISNs in the
list have been selected.

An `I' in this field indicates that the READ ISN SEQUENCE option is to be used. Adabas will
read the record identified by the ISN specified in the ISN field if the ISN is present in the file.
If the ISN is not present, the record with the next highest ISN will be read. If the ISN is not
present and no higher ISN is present in the file, no record will be read and response code 3
will be returned.

An ‘L’ in this field is only allowed if the format buffer contains a segmentwith *-position. Then
the ISN Lower Limit field is used to determine the current position of the segment with *-pos-
ition. Without the command option ‘L’, the current position of a segment with *-position is
the first (leftmost) byte of the field value. The ‘L’ option is not allowed together with the
Multifetch feature.

Command Option 3 (ACBX only)
The command option 3 field is only relevant for an L4 command.

A ‘C’ in this field indicates that a shared lock is to be acquired for this record for only as long
as the command is active. If the record was already locked before, it remains locked. Using
this option avoids dirty reads: you see only the committed states of the record.

An ‘S’ in this field indicates that the record is to be placed in shared hold status. The lock will
be released again when the current transaction is committed or backed out. If the command
belongs to a subtransaction, the lock is also releasedwhen the current subtransaction is backed
out. You can also release the lock with an RI command.

A ‘Q’ in this field indicates that the record is to be placed in shared hold status. The lock is
released again at start of the next sequential read command for this read sequence, or when
one of the events occurs that releases a record read with ‘S’ option, whichever happens first.
If the same record is read bymore than one commandwith the ‘Q’ option, the record is released
only when, for all these command sequences, either the next record has been read, or an RC
command has been issued. If the same record has also been read by another command with

Command Reference214

L1/L4 Command (Read Record)

the ‘S’ option, or the record has been locked exclusively, the record is not released by reading
the next record of the command sequence. The ‘Q’ option is not allowed in combination with
Command Option 1 = ‘M’ (multifetch feature).

A blank in this field indicates that the record is locked exclusively.

Additions 2
If the command completes successfully, and at least oneAdabas field is requested in the format
buffer, Adabas returns in the first two bytes of this field the compressed record length of the
data storage record that was accessed, in binary format. The last two bytes contain the length
of the decompressed fields selected by the Format Buffer in binary format. If the Multifetch
feature is used, this information refers to the first record read.

For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 5
This fieldmay be used to provide a separate format buffer ID that is used to identify the internal
format buffer used for this command, or to provide a global format buffer ID.

As long as the first byte of the Additions 5 field is not alphanumeric, the value provided in
the command ID field will also be used as the format buffer ID.

If the first byte is a lower case character, the bytes 5 to 8 of the Additions 5 field will be used
as the separate local format buffer ID.

If the first byte is a digit or an upper case character, the Additions 5 field (8 bytes) will be used
as a separate global format buffer ID, which means that the format buffer ID can be used by
several users in parallel.

See Programming Considerations, Using Command IDs for additional information and examples.

215Command Reference

L1/L4 Command (Read Record)

Format Buffer

The user specifies the fields to be read in this buffer. The format buffer definition, syntax and ex-
amples are provided in Calling Adabas, Format and Record Buffers.

Record Buffer

Adabas returns the requested field values in this buffer. All values are returned according to the
standard format and length of the field, unless the user has explicitly requested a different length
and/or format in the format buffer.

When the Multifetch feature is used, the Record Buffer can contain data returned from multiple
records. The Record Buffer consists of several entries, whereby each entry contains the requested
field values from a single record. The number of entries returned, and the length of each entry is
stored in a corresponding entry in the ISN Buffer.

ISN Buffer/Multifetch Buffer

When the Multifetch feature is used with the ACB interface, the ISN Buffer contains information
which describes the entries returned in the Record Buffer. If you use the Multifetch feature with
the ACBX interface, multifetch buffers are used instead.

The first 4 bytes of the respective buffer specify the number of 16–byte entries which follow in the
that buffer. Each 16–byte entry corresponds to an entry returned in the Record Buffer, and contains
the following unsigned integer values (each 4 bytes long):

■ the length of the entry in the Record Buffer
■ the response code for the entry in the Record Buffer (this can be different from the value in the
Response Code field in the Control Block)
If this value is non–zero, thismeans that an error occurredwhich caused themultifetch processing
to be terminated. In this case, there is no corresponding entry in the Record Buffer.

■ the ISN
■ an unused field

Command Reference216

L1/L4 Command (Read Record)

Additional Considerations

The Command ID used is internally saved and used by Adabas. It will be released by Adabas
when an end–of–file condition is detected, when an RC or CL command is issued, or when the
Adabas session is terminated. The same command ID must not be used by the user for another
read sequential command until it has been released.

Command IDs are not released at the end of a global transaction.

Examples

Note: The Adabas file definitions in Appendix A are used in all examples in this section.

Example 1: Reading a single Record

ISN 4 in file 1 is to be read. The values for fields AA and AB are to be returned.

Control Block:

Command Code L1

Command ID bbbb (only 1 record is to be read)

File Number 1

ISN 4

Format Buffer Length 6 (or larger)

Record Buffer Length 10 (or larger)

217Command Reference

L1/L4 Command (Read Record)

Command Option 2 b (Get Next or Read ISN Seq. options not
used)

Additions 3 bbbbbbbb (file is not security protected)

Buffer Areas:

Format Buffer AA,AB.

Example 2: Reading a Record with ISN from the ISN List returned by a Find Command in the ISN Buffer

A set of records for which the ISNs have been previously obtained by a FIND command are to be
read from file 2. The values for fields RA and XB are to be returned with the value for field XB to
be returned with length 3 and format U.

Control Block:

Command Code L1

Command ID ABCD (a non-blank CID is recommended for
a series of reads in which the same
fields are being read in each record).

File Number 2

ISN n (ISNs are taken from the ISN list
created by the Find command).

Format Buffer Length 10 (or larger)

Record Buffer Length 11 (or larger)

Command Reference218

L1/L4 Command (Read Record)

Command Option 2 b (Get Next or Read ISN Seq. options not
used)

Additions 3 Password (file is security protected)

Buffer Areas:

Format Buffer RA,XB,3,U.

Note: n indicates an ISN from the ISN list which resulted from the FIND command. The L1
call is repeated for each ISN in the ISN list.

Example 2a: Reading a Set of Records using the Get Next Option

The requirement as stated for example 2 may also be resolved by using the GET NEXT option.

Control Block:

Command Code L1

Command ID ABCD (CID of ISN list to be used)

File Number 2

ISN 0 (the entire ISN list is to be selected
starting with the first ISN in the list)

Format Buffer Length 10 (or larger)

Record Buffer Length 11 (or larger)

219Command Reference

L1/L4 Command (Read Record)

Command Option 2 N (Get Next option to be used)

Additions 3 Password (file 2 is security protected)

Additions 5 APL3FB01 (a global format buffer ID is
recommended for series of reads in
which the same fields are read in each
record for several users using the same
application)

Buffer Areas:

Format Buffer RA,XB,3,U.

The L1 call is repeated for each ISN in the ISN list. No changes to the control block are required
between L1 calls. Response code 3will be returnedwhen all the ISNs in the list have been selected.

Example 3: Read with Hold

ISN 5 in file 2 is to be read and held for updating. The values for fields XC and XD are to be re-
turned.

Control Block:

Command Code L4 (Read With Hold)

Command ID bbbb (only 1 record to be read)

File Number 2

ISN 5

Command Reference220

L1/L4 Command (Read Record)

Format Buffer Length 6 (or larger)

Record Buffer Length 14 (or larger)

Command Option 1 b (Return option not used)

Command Option 2 b (Get Next or Read ISN Seq. options not
used)

Additions 3 Password (file is security protected)

Buffer Areas:

Format Buffer XC,XD.

Example 4: Read using the Read ISN Sequence Option

File 1 is to be read using the READ ISN SEQUENCE option. The values for fields AA, AB and AC
are to be returned.

Control Block:

Command Code L1

Command ID BCDE (non–blank CID is recommended when a
series of records for which the same
fields are to be returned is to be read)

File Number 1

ISN 1 (If ISN 1 is not present, the record
with the next higher ISN will be read)

221Command Reference

L1/L4 Command (Read Record)

Format Buffer Length 6 (or larger)

Record Buffer Length 30 (or larger)

Command Option 2 I (Read ISN Sequence option is invoked)

Additions 3 bbbbbbbb (file is not security protected)

Buffer Areas:

Format Buffer GA,AC.

Adabas returns the ISN of the record which has been read in the ISN field of the control block.
The record with the next highest ISN may be read by adding one to the ISN field and repeating
the L1 command.

Example 5: Reading multiple-value Fields and periodic Groups

The record identified by ISN 2 in file 1 is to be read. The value for field AA, all values for the
multiple value field MF and all occurrences of the periodic group GB are to be returned.

1. Issue an L1 call to obtain the count of the number of values which exist for MF and the highest
occurrence count for GB.

Control Block:

Command Code L1

Command ID bbbb (only 1 record is to be read)

File Number 1

Command Reference222

L1/L4 Command (Read Record)

ISN 2

Format Buffer Length 8 (or larger)

Record Buffer Length 2 (or larger)

Command Option 2 b (Get Next or Read ISN Seq. option not
used)

Buffer Areas:

Format Buffer MFC,GBC.

2. Assuming that the result of the above L1 call was that the record contains 4 values for MF and
6 occurrences for GB, repeat the L1 call using the following format buffer:

AA,MF1-4,GB1-6

For each call, the length of the format and record buffers must be sufficiently large to accom-
modate all entries and values.

When using this procedure to read a series of records, a non-blank CID should be used in step 1
and a blank CID should be used for step 2, since the content of the format buffer may vary with
each step 2 call.

An alternative solution for example 5 usually provides better performance if the number of val-
ues/occurrences is small (less than 6) in a large percentage of the records.

1. Issue an L1 call in which the counts for MF and GB are requested, plus the expected number
of values and occurrences of MF and GB, plus field AA.

Assuming that the expected number of values for MF is 2 and the expected number of occur-
rences of GB is 3, the format buffer for step 1 would be:

AA,MFC,GBC,MF1-2,GB1-3

Maximumperformance is normally achieved if a numberwhichwill retrieve all of the values/oc-
currences in 90 per cent of the records is specified.

2. If the count received for MF exceeds 2 or the count received for GB exceeds 3, then a format
buffer similar to that in step 2 above would be used to obtain the additional values and/or oc-
currences. Otherwise, no additional call is required.

223Command Reference

L1/L4 Command (Read Record)

Example 6: Read a LOB Value

The LOB field L1 of the record with ISN 6 is to be read. Assume that you have defined an area of
1,000,000 bytes for the LOB value. The LOB value can then be read with the following command:

Control Block (ACBX):

Command Code L1

Command ID EFGH

File Number 2

ISN 6

Command Option 1 b (Return option not used)

Command Option 2 b (Get Next or Read ISN Seq. options not used)

Additions 3 Password (file is security protected)

Buffer Areas:

Format Buffer 1 L1L.

Record Buffer 1 Length 4

Format Buffer 2 L1,*.

Record Buffer 2 Length 1000000

If the LOB value is larger than 1,000,000 bytes, you can allocate a new memory area that is large
enough for the LOB value, set the record buffer 2 length to the new value, and repeat the call.

Command Reference224

L1/L4 Command (Read Record)

Example 7: Read a LOB Value piecemeal

Aset of records has previously been found by an S1 commandwith command ID “ABCD”without
format and ISN buffer.

The LOB field L1 is read piecemeal in segments of 1,000,000 bytes. The first call for a record uses
the Get Next option to fetch the next record of the ISN list, and reads the first segment of the LOB
value:

Control Block (ACBX):

Command Code L4 (read with hold)

Command ID ABCD

File Number 2

ISN unchanged from S1 command

ISN Lower Limit 0

Command Option 1 b (Return option not used)

Command Option 2 N (Get Next option)

Command Option 3 Q (Shared hold until next record read)

Additions 3 Password (file is security protected)

225Command Reference

L1/L4 Command (Read Record)

Buffer Areas:

Format Buffer 1 L1L.

Record Buffer 1 Length 4

Format Buffer 2 L1(*,1000000).

Record Buffer 2 Length 1000000

If the length of the LOB field is larger than 1.000.000, you can read the next segment of the LOB
value with the following command:

Control Block (ACBX):

Command Code L1

Command ID ABCD

File Number 2

ISN unchanged from L4 command

ISN Lower Limit unchanged from previous call

Command Option 1 b (Return option not used)

Command Option 2 L (*-position determined by ISN Lower Limit)

Command Reference226

L1/L4 Command (Read Record)

Additions 3 Password (file is security protected)

Buffer Areas:

Format Buffer 1 L1L.

Record Buffer 1 Length 4

Format Buffer 2 L1(*,1000000).

Record Buffer 2 Length 1000000

In order to read the complete LOB value, you must repeat this L1 call without changing the ISN
Lower Limit between the calls, either as often as indicated by the LOB length or until you get a
response code 3.

Example 7a: Read a LOB Value piecemeal plus other Fields

If additional fields are to be read in the previous example, you would read these other fields sev-
eral times, which is superfluous. Therefore, you can use two different format buffers for the L4
command for the non-LOB fields and the L1 command for the LOB field segment:

Control Block (ACBX):

Command Code L4 (Read with Hold)

Command ID ABCD

File Number 2

ISN unchanged from S1 command

227Command Reference

L1/L4 Command (Read Record)

Command Option 1 b (Return option not used)

Command Option 2 N (Get Next option)

Command Option 3 Q (Shared hold until next record read)

Additions 3 Password (file is security protected)

Buffer Areas:

Format Buffer 1 L1L,RG.

Record Buffer 1 Length 53 (or larger)

The LOB field is read piecemeal in segments of 1.000.000 bytes with the following command:

Control Block (ACBX):

Command Code L1

Command ID EFGH

File Number 2

ISN unchanged from L4 command

ISN Lower Limit 0

Command Option 1 b (Return option not used)

Command Reference228

L1/L4 Command (Read Record)

Command Option 2 L (*-position determined by ISN Lower Limit)

Additions 3 Password (file is security protected)

Buffer Areas:

Format Buffer 1 L1L,(*,1000000).

Record Buffer 1 Length 1000000 (or larger)

In order to read the complete LOB value, you must repeat this L1 call without changing the ISN
Lower Limit between the calls, either as often as indicated by the LOB length or until you get re-
sponse code 3.

229Command Reference

L1/L4 Command (Read Record)

230

16 L2/L5 Command (Read Physical Sequence)

■ Function and Use .. 232
■ Control Block .. 236
■ Format Buffer .. 239
■ Record Buffer ... 239
■ ISN Buffer/Multifetch Buffer .. 239
■ Additional Considerations .. 240
■ Examples ... 240

231

Function and Use

The L2 command is used to read a record froma set of recordswhich are stored in physical sequence
in Data Storage. Using the Multifetch feature, it is also possible to read multiple records with a
single L2/L5 command.

Without the Multifetch Feature

The L2 command does not result in the reading of records in any particular logical order (unless
the records were initially loaded in a particular logical sequence and no updating of the file which
resulted in a change to this order has been performed).

Using the L2 command repeatedly, an entire file can be read at optimum speed since no access is
required to theAssociator (aswith the L3 command), and all physical blocks are read in consecutive
sequence.

The user specifies the file to be read and the fields within each record for which values are to be
returned. The fields are specified in the format buffer. Adabas returns the requested field values
in the record buffer.

The L5 command performs the same function as the L2 command, and, in addition, places the
record in shared or exclusive hold status, i.e. locks the record for other users. The L5 command
should be used if the user needs to prevent other users from updating the record, e.g. because he
wants to update the record. Please refer toConcepts and Facilities, Competitive Updating, Shared Locks
andHierarchical Locking for further information. If the user already holds a shared lock for the record,
and requests an exclusive lock now, the lock is upgraded to the exclusive lockingmode. If the user
already holds an exclusive lock for the record, the locking mode remains unchanged.

If the previous command for this command IDwas issuedwith the ‘Q’ option and the record read
has not yet been released from shared hold status afterwards, this record read will be released
from shared hold status again with the following exceptions:

■ If the same record has been read with the command option ‘Q’ in more than one command se-
quence, the record is only released if the next record has been read for all these command se-
quences, or an RC has been performed.

■ It is not released if another command has locked the same record exclusively, or the record has
been shared locked with the command option ‘S’.

With the Multifetch Feature

The L2/L5 command supports the Multifetch feature. This is indicated by one of the values `M' or
`O' in the Command Option 1 field (see the description of the Command option 1 field for more
details).

Command Reference232

L2/L5 Command (Read Physical Sequence)

When the Multifetch feature is used, the maximum number of records which can be returned for
a single L2/L5 call is limited by the following factors:

■ The ISNLower Limit field can be used to specify themaximumnumber of records to be returned,
thus avoiding internal overheads when only a limited number of records are required.

■ If the value in the ISN Lower Limit field is 0, the number of records returned is limited only by
the size of the ISN/Multifetch Buffer and the Record Buffer.

L2/L5 Command, Procedure Flow

233Command Reference

L2/L5 Command (Read Physical Sequence)

L2/L5 Procedure Flow (continued)

Command Reference234

L2/L5 Command (Read Physical Sequence)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/ABISN

F/UBISN Lower Limit

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 3 (ACBX only)

-/AA,BAdditions 2

F/AAAdditions 3

F/UAAdditions 5

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

F/UFormat Buffer

–/ARecord Buffer

–/–Search Buffer

–/–Value Buffer

–/AISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA

235Command Reference

L2/L5 Command (Read Physical Sequence)

To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
L2/L5

Command ID
This fieldmust be set to a non-blank, non-zero value. It is used byAdabas to provide the records
in the correct physical order and to avoid the repetitive interpretation of the format buffer.
The value provided must not be modified during any given sequential pass of a file.

The high-order byte of this field must not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for addi-
tional information).

File Number
The number of the file to be read.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Response code 3 indicates an end-of-file condition has been detected. Response codes 17, 18,
21, 23, 145 are possible as well.

If theMultifetch feature is used and an error occurs before or while processing the first record,
the response code is returned in this field. In this case, the contents of the ISNBuffer andRecord
Buffer are undefined.

If an error is detected for the second or any subsequent ISN during the processing loop of the
Multifetch feature, the first non-zero response code will terminate the multifetch processing.
In this case, the response code will be stored as an additional entry in the ISN Buffer itself, not
in the Response Code field of the Control Block. Since there are two possible locations for a
response code, an application program should check first the Response Code field in the
Control Block for errors of a general nature, then in the response code field of each ISN Buffer
entry individually.

Command Reference236

L2/L5 Command (Read Physical Sequence)

ISN
If this field is set to zero before the initial L2/L5 call, the sequential pass will begin with the
first record contained in the first physical block of the file.

If this field is set to an ISN value before the initial L2/L5 call, the sequential pass will begin at
the first record physically located after the record identified by the ISN specified. The ISN
specified must be present in the file, otherwise response code 23 will be returned.

This field need not be modified by the user after the initial L2/L5 call.

Adabas returns the ISN of the record which has been read in this field.

If the Multifetch feature is used, the ISN returned in the control block is the ISN of the first
record read.

ISN Lower Limit
If theMultifetch feature is used, this field is used to limit the number of records to be returned.
If this field is set to zero, the maximum number of records returned depends on the size of the
record buffer and/or the size of the ISN buffer.

Format Buffer Length (ACB only)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACB only)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

ISN Buffer Length (ACB only)
The ISN buffer length (in bytes). If the length of the ISN buffer is less than 20 bytes, the Multi-
fetch option will be ignored.

This field is only used in conjunction with the Multifetch feature.

Command Option 1
An `R' in this field indicates that the return option is to be used. If an L5 command is issued,
and the record to be read andheld is currently held by another user, Adabaswill return response
code 145 rather than placing the user in wait status until the record becomes available.

An `M' in this field invokes the Multifetch feature. See Programming Considerations, Using The
Multifetch Feature for additional information.

If theMultifetch feature is requiredwith the Return option, the value `O' should be used instead
of `M'.

Command Option 3 (ACBX only)
The command option 3 is relevant only for an L5 command.

237Command Reference

L2/L5 Command (Read Physical Sequence)

A ‘C’ in this field indicates that a shared lock is to be acquired for this record only as long as
the command is active. If the record was already locked before, the record remains locked.
Using this option avoids dirty reads: you see only the committed states of the record.

An ‘S’ in this field indicates that the record is to be placed in shared hold status. The lock will
be released again when the current transaction is committed or backed out. If the command
belongs to a subtransaction, the lock is also releasedwhen the current subtransaction is backed
out. You can also release the lock with an RI command.

A ‘Q’ in this field indicates that the record is to be placed in shared hold status. The lock is
released again at start of next sequential read command for this read sequence, or when one
of the events happens that releases a record read with ‘S’ option, whichever happens first. If
the same record is read by more than one command with ‘Q’ option, the record is released
only when, for all these command sequences, either the next record has been read, or an RC
command has been issued. If the same record has also been read by another command with
‘S’ option, or the record has been locked exclusively, the record is not released by reading the
next record of the command sequence. The ‘Q’ option is not allowed in combination with the
command option 1 = ‘M’ (multifetch feature).

A blank in this field indicates that the record is locked exclusively.

Additions 2
If the command completes successfully,and at least oneAdabas field is requested in the format
buffer, Adabas returns in the first two bytes in this field the compressed record length of the
data storage record that was accessed, in binary format. The last two bytes contain the length
of the decompressed fields selected by the Format Buffer in binary format. If the Multifetch
feature is used, this information refers to the first record read.

For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 5
This fieldmay be used to provide a separate format buffer ID that is used to identify the internal
format buffer used for this command, or to provide a global format buffer ID.

As long as the first byte of the Additions 5 field is not alphanumeric, the value provided in
the command ID field will also be used as the format buffer ID.

If the first byte is a lower case character, the bytes 5 to 8 of the Additions 5 field will be used
as the separate local format buffer ID.

Command Reference238

L2/L5 Command (Read Physical Sequence)

If the first byte is a digit or an upper case character, the Additions 5 field (8 bytes) will be used
as a separate global format buffer ID, which means that the format buffer ID can be used by
several users in parallel.

See Programming Considerations, Using Command IDs for additional information and examples.

Format Buffer

The fields for which values are to be returned are specified in this buffer. Format buffer definition,
syntax and examples are provided in Calling Adabas, Format and Record Buffers.

The format buffer may not be modified after the initial L2/L5 call has been issued.

Record Buffer

Adabas returns the requested field values in this buffer. All field values are returned according
to the standard length and format of each field, unless the user has explicitly requested a different
length and/or format in the format buffer.

When the Multifetch feature is used, the Record Buffer can contain data returned from multiple
records. The Record Buffer consists of several entries, whereby each entry contains the requested
field values from a single record. The number of entries returned, and the length of each entry is
stored in a corresponding entry in the ISN Buffer.

ISN Buffer/Multifetch Buffer

When the Multifetch feature is used with the ACB interface, the ISN Buffer contains information
which describes the entries returned in the Record Buffer. If you use the Multifetch feature with
the ACBX interface, multifetch buffers are used instead.

The first 4 bytes of the respective buffer specify the number of 16-byte entries which follow in the
that buffer. Each 16-byte entry corresponds to an entry returned in the Record Buffer, and contains
the following unsigned integer values (each 4 bytes long):

■ the length of the entry in the Record Buffer
■ the response code for the entry in the Record Buffer (this can be different from the value in the
Response Code field in the Control Block)
If this value is non-zero, thismeans that an error occurredwhich caused themultifetch processing
to be terminated. In this case, there is no corresponding entry in the Record Buffer.

■ the ISN

239Command Reference

L2/L5 Command (Read Physical Sequence)

■ an unused field

Additional Considerations

The following additional considerations are applicable for the L2/L5 command:

1. The Command ID used with the L2/L5 command is internally saved and used by Adabas. It
will be released by Adabas when an end-of-file condition is detected, when an RC or CL com-
mand is issued, or when the Adabas session is terminated. The same command IDmust not be
used by the user for another read sequential command until it has been released.

Command IDs are not released at the end of a global transaction (see the Administration
Manual for additional information).

2. The user is permitted to update and/or delete recordswhich he has readwith an L2/L5 command.
Adabas maintains information as to the next record to be provided to the user and is able to
provide the correct next record despite any interim record update or or delete performed by
this user. But itmay be that he receives the same recordmore than once during a given sequential
pass of the file.

3. If another user is updating the file being readwith an L2/L5 command, or if the user performing
the L2/L5 commands is updating or deleting a record in the file that is not the record currently
readwith the L2/L5 command, it is possible that the user readingwith the L2/L5 commandwill
not receive one or more records in the file, or that he receives one record more than once.

Examples

Example 1:

File 2 is to be read in physical sequential order. All the values for all the fields within each record
are to be returned.

Control Block:

Command Code L2

Command Reference240

L2/L5 Command (Read Physical Sequence)

Command ID EXL2 (non blank CID required)

File Number 2

ISN 0 (all records are to be read)

Format Buffer Length 3 (or larger)

Record Buffer Length 49 (or larger)

Command Option 1 b (Return option not used)

Additions 3 Password (file 2 is security protected)

Buffer Areas:

Format Buffer RG.

The L2 call is repeated to obtain each successive record. The ISNfield need not bemodified between
calls.

Example 2:

File 2 is to be read in physical sequential order. The values for fields RA, XA, and XB (3 bytes un-
packed) are to be returned. Each record read is to be placed in hold status for updating purposes.

Control Block:

Command Code L5

Command ID EXL5 (non blank CID is required)

241Command Reference

L2/L5 Command (Read Physical Sequence)

File Number 2

ISN 0 (all records are to be read)

Format Buffer Length 13 (or larger)

Record Buffer Length 21 (or larger)

Command Option 1 b (Return option not used)

Additions 3 Password (file 2 is security protected)

Buffer Areas:

Format Buffer RA,XA,XB,3,U.

The L5 call is repeated to obtain each successive record. The ISNfield need not bemodified between
L5 calls.

Each record held should be released by an ET command (ET logic users) or RI command (non-ET
logic users).

Command Reference242

L2/L5 Command (Read Physical Sequence)

17 L3/L6 Command (Read Logical Sequence)

■ Function and Use .. 244
■ Control Block .. 249
■ Format Buffer .. 254
■ Record Buffer ... 254
■ Search Buffer .. 254
■ Value Buffer .. 254
■ ISN Buffer/Multifetch Buffer .. 255
■ Additional Considerations .. 255
■ Examples ... 256

243

Function and Use

The L3/L6 command is used to read a record from a set of records which are stored in logical se-
quential order based on the ascending or descending sequence of the values for a given descriptor.
Using the Multifetch feature, it is also possible to read multiple records with a single L3/L6 com-
mand.

Without the Multifetch Feature

The user specifies the file to be read, the descriptor to be used to control the read sequence
(phonetic descriptors may not be used), and the fields within each record for which values are to
be returned. Adabas returns the requested field values in the record buffer.

Optionally, a starting value, ending value or a range of values may be specified. In addition, pos-
itioning to a given value during the sequential read allows the user to `browse' through a file
without having to read each record.

The L6 command performs the same function as the L3 command, and, in addition, places the
record in shared or exclusive hold status, i.e. locks the record for other users. The L6 command
should be used if the user needs to prevent other users from updating the record, e.g. because he
wants to update the record. Please refer toConcepts and Facilities, Competitive Updating, Shared Locks
andHierarchical Locking for further information. If the user already holds a shared lock for the record
and requests an exclusive lock now, the lock is upgraded to the exclusive lockingmode. If the user
already holds an exclusive lock for the record, the locking mode remains unchanged.

If the previous command for this command IDwas issuedwith the ‘Q’ option, and the record read
has not yet been released from shared hold status afterwards, this record read will be released
from shared hold status again with the following exceptions:

■ If the same record has been read with the command option ‘Q’ in more than one command se-
quence, the record is only released if the next record has been read for all these command se-
quences, or an RC has been performed.

■ It is not released if another command has locked the same record exclusively, or the record has
been shared locked with the command option ‘S’.

With the Multifetch Feature

The L3/L6 command supports the Multifetch feature. This is indicated by one of the values `M' or
`O' in the Command Option 1 field (see the description of the Command Option 1 field for more
details).

When the Multifetch feature is used, the maximum number of records which can be returned for
a single L3/L6 call is limited by the following factors:

Command Reference244

L3/L6 Command (Read Logical Sequence)

■ The ISNLower Limit field can be used to specify themaximumnumber of records to be returned,
thus avoiding internal overheads when only a limited number of records are required.

■ If the value in the ISN Lower Limit field is 0, the number of records returned is limited only by
the size of the ISN/Multifetch Buffer and the Record Buffer.

245Command Reference

L3/L6 Command (Read Logical Sequence)

L3/L6 Command, Procedure Flow (without Multifetch Feature)

Command Reference246

L3/L6 Command (Read Logical Sequence)

L3/L6 Command, Procedure Flow (continued (without Multifetch Feature)

247Command Reference

L3/L6 Command (Read Logical Sequence)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/ABISN

F/UBISN Lower Limit

-/ABISN Quantity

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

V F/UBSearch Buffer Length (ACB only)

V F/UBValue Buffer Length (ACB only)

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

Command Option 3 (ACBX only)

F/AAAdditions 1

-/AA,BAdditions 2

F/AAAdditions 3

F/UAAdditions 5

-/ABCommand Time

Buffer Areas

Buffer

F/UFormat Buffer

–/ARecord Buffer

V F/USearch Buffer

V F/UValue Buffer

–/AISN Buffer

Formats:

alphanumericA

Command Reference248

L3/L6 Command (Read Logical Sequence)

binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Required if starting or ending values or range of values specifiedV
Not used–

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
L3/L6

Command ID
This fieldmust be set to a non-blank, non-zero value if a sequential pass is required. The value
provided is used by Adabas to provide the records in the correct sequence and to avoid repet-
itive interpretation of the format buffer.

The high-order byte of this field must not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for addi-
tional information).

This field must not be modified during a given sequential pass of a file.

If only a single record is to be read, this field may be set to blanks or binary zeros.

File Number
The number of the file to be read.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Response code 3 indicates that all entries of the specified descriptor have been processed or
that the ending descriptor-value condition has become true.

If theMultifetch feature is used and an error occurs before or while processing the first record,
the response code is returned in this field. In this case, the contents of the ISNBuffer andRecord
Buffer are undefined.

249Command Reference

L3/L6 Command (Read Logical Sequence)

If an error is detected for the second or any subsequent ISN during the processing loop of the
Multifetch feature, the first non-zero response code will terminate the multifetch processing.
In this case, the response code will be stored as an additional entry in the ISN Buffer itself, not
in the Response Code field of the Control Block. Since there are two possible locations for a
response code, an application program should check first the Response Code field in the
Control Block for errors of a general nature, then in the response code field of each ISN Buffer
entry individually.

ISN
Together with the starting descriptor value specified in the value buffer, this field is used to
determine the start position for the initial L3/L6 call, in cases where several records can have
the same descriptor value (matching descriptor-value entries) and when value-repositioning
is to be performed. Refer to Example 5, "Using Value Start or Repositioning Option", for more
details.

If an ISN of zero is specified, reading starts at the lowest (ascending sequence) or highest
(descending sequence) ISN within the matching starting descriptor-value entries.

If a non-zero ISN is specified, reading starts at the closest ISN within the matching starting
descriptor-value entries that is greater than (ascending sequence) or less than (descending se-
quence) the ISN specified in the control block. If the resultant ISN is outside the range of ISNs
that match the starting descriptor value, the current position is moved to the next descriptor
value and its lowest ISN (ascending sequence) or to the previous descriptor value and its
highest ISN (descending sequence).

This field is ignored if the starting descriptor value does not match, or if the GT (ascending
sequence) or LT (descending sequence) comparators are specified in the search buffer.

Adabas returns the ISN of the record which has been read in this field.

When the Multifetch feature is used, the first record to be read is determined as described
above. The ISNs of the other records read with this L3/L6 command follow according to the
logical sequence being used.

ISN Lower Limit
If the Multifetch feature is used, the maximum number of records read by a single L3/L6
command is limited to the value specified in this field. If this value is 0, the number of records
is limited only by the size of the ISN Buffer and the Record Buffer.

ISN Quantity
If the descriptor for which values are to be returned is in a periodic group, Adabas returns the
occurrence number inwhich the returned value is located in this field. If theMultifetch feature
is used, this field refers to the first record returned.

Format Buffer Length (ACB only)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Command Reference250

L3/L6 Command (Read Logical Sequence)

Record Buffer Length (ACB only)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Search Buffer Length (ACB only)
The search buffer length (in bytes) if a starting value, ending value or a range of values has
been specified.

The search buffer length is ignored if no value buffer is specified.

Value Buffer Length (ACB only)
The value buffer length (in bytes) if a starting value, ending value or a range of values has
been specified.

The value buffer length is ignored if no search buffer is specified.

ISN Buffer Length (ACB only)
The length of the ISN Buffer. This value must be specifiedwhen theMultifetch feature is used.
See the description of the ISN Buffer for information on how to calculate the length.

When the Multifetch feature is used, the Record Buffer can contain multiple records. The
number of records returned, and the length of each record is stored in a corresponding entry
in the ISN Buffer.

Command Option 1
An `R' in this field indicates that the Return option is to be used. If an L6 command is issued,
and the record to be read andheld is currently held by another user, Adabaswill return response
code 145 rather than placing the user in wait status until the record becomes available.

An `M' in this field indicates that the Multifetch feature is to be used.

If theMultifetch feature is requiredwith the Return option, the value `O' should be used instead
of `M'.

Command Option 2
The entry in this field specifies the sequence in which the entries for the given descriptor are
processed.

An `A' in this field indicates that the descriptor values are to be read in ascending sequence.
A starting value, ending value or range of values can be specified optionally. If the search
buffer or value buffer is omitted, all of the entries for the given descriptor will be processed.

A `V' in this field indicates that the descriptor values are to be read in ascending sequencewith
a starting value. Both the search buffer and the value buffer must be present.

A `D' in this field indicates that the descriptor values are to be read in descending sequence.
A starting value, ending value or range of values can be specified optionally. If the search
buffer or value buffer is omitted, all of the entries for the given descriptor will be processed.

251Command Reference

L3/L6 Command (Read Logical Sequence)

A blank value or any value other than the three specified above indicates that all descriptor
values are to be processed in ascending sequence. The search buffer and value buffer will be
ignored if they are specified.

When writing new applications, Software AG strongly recommends the use of the value `A'
for this field. The use of the value `V' is supported in order to ensure upward compatibility.

When using the values `A' and `D', the processing sequence can be reversed simply by changing
the contents of the command option 2 field.

Command Option 3 (ACBX only)
The command option 3 is relevant only for an L6 command.

A ‘C’ in this field indicates that a shared lock is to be acquired for this record only as long as
the command is active. If the record was already locked before, the record remains locked.
Using this option avoids dirty reads: you see only the committed states of the record.

An ‘S’ in this field indicates that the record is to be placed in shared hold status. The lock will
be released again when the current transaction is committed or backed out. If the command
belongs to a subtransaction, the lock is also releasedwhen the current subtransaction is backed
out. You can also release the lock with an RI command.

A ‘Q’ in this field indicates that the record is to be placed in shared hold status. The lock is
released again at start of next sequential read command for this read sequence, or when one
of the events happens that releases a record read with ‘S’ option, whichever happens first. If
the same record is read by more than one command with ‘Q’ option, the record is released
only when, for all these command sequences, either the next record has been read, or an RC
command has been issued. If the same record has also been read by another command with
‘S’ option, or the record has been locked exclusively, the record is not released by reading the
next record of the command sequence. The ‘Q’ option is not allowed in combination with the
command option 1 = ‘M’ (multifetch feature).

A blank in this field indicates that the record is locked exclusively.

Additions 1
The descriptor to be used to control the read sequence must be specified in this field. The
descriptor name is specified in the first two positions of this field. The remaining positions
must be set to blanks on the initial L3 call.

Phonetic descriptors must not be specified.

A descriptorwhich is amultiple-value field or derived from a periodic groupmay be specified,
in which case the possibility exists that the same record may be read several times (once for
each different value within a given record) during the sequential pass of the file.

If the descriptor specified is defined with the null value suppression (NU or NC) option, any
records containing a null value for the descriptor will not be read.

Command Reference252

L3/L6 Command (Read Logical Sequence)

If a search buffer is specified, the descriptor(s) in the search buffer must be identical to the
descriptor specified in the Additions 1 field.

This field should not be modified by the user between L3/L6 calls. The exception to this rule
is when the user wishes to reposition to a particular value during a sequential pass. Setting
the last six positions of this field to blanks will cause a new setting of the start and ending
value according to the current search and value buffer.

If response 3 occurs, Adabas sets the last six positions of this field to blanks.

Additions 2
If the command completes successfully, and at least oneAdabas field is requested in the format
buffer, Adabas returns in the first two bytes of this field the compressed record length of the
data storage record that was accessed, in binary format. The last two bytes contain the length
of the decompressed fields selected by the Format Buffer in binary format. If the Multifetch
feature is used, this information refers to the first record read.

For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 5
This fieldmay be used to provide a separate format buffer ID that is used to identify the internal
format buffer used for this command, or to provide a global format buffer ID.

As long as the first byte of the Additions 5 field is not alphanumeric, the value provided in
the command ID field will also be used as the format buffer ID.

If the first byte is a lower case character, the bytes 5 to 8 of the Additions 5 field will be used
as a separate local format buffer ID.

If the first byte is a digit or an upper case character, the Additions 5 field (8 bytes) will be used
as a separate global format buffer ID, which means that the format buffer ID can be used by
several users in parallel.

See Programming Considerations, Using Command IDs for additional information and examples.

253Command Reference

L3/L6 Command (Read Logical Sequence)

Format Buffer

The fields for which values are to be returned must be specified in this buffer. The syntax and ex-
amples of format buffer construction are provided in Calling Adabas, Format and Record Buffers.

Record Buffer

Adabas returns the requested field values in this buffer. The field values are returned according
to the standard format and length of each field, unless the user has explicitly requested a different
format and/or length in the format buffer.

When the Multifetch feature is used, the Record Buffer can contain data returned from multiple
records. The Record Buffer consists of several entries, whereby each entry contains the requested
field values from a single record. The number of entries returned, and the length of each entry is
stored in a corresponding entry in the ISN Buffer.

Search Buffer

The search buffer is only required if a starting value, ending value or both are specified in the
value buffer in order to limit the number of descriptor entries to be retrieved.

If either the search buffer or value buffer are omitted, all of the values for the given descriptor will
be processed.

In a sequence of search buffer elements, a comma is used as separating character and a period as
terminating character.

The syntax of the search buffer is provided in Calling Adabas, Search and Value Buffers.

Value Buffer

The value buffer contains the starting value or the ending value or the lower and upper limits of
a range in accordance with the specifications contained in the search buffer.

Command Reference254

L3/L6 Command (Read Logical Sequence)

ISN Buffer/Multifetch Buffer

When the Multifetch feature is used with the ACB buffer, the ISN Buffer contains information
which describes the entries returned in the Record Buffer. If you use the Multifetch feature with
the ACBX interface, multifetch buffers are used instead.

The first 4 bytes of the respective buffer specify the number of 16–byte entries which follow in the
that buffer. Each 16–byte entry corresponds to an entry returned in the Record Buffer, and contains
the following unsigned integer values (each 4 bytes long):

■ the length of the entry in the Record Buffer
■ the response code for the entry in the Record Buffer (this can be different from the value in the
Response Code field in the Control Block)
If this value is non-zero, thismeans that an error occurredwhich caused themultifetch processing
to be terminated. In this case, there is no corresponding entry in the Record Buffer.

■ the ISN
■ if the field for which values are to be returned is a descriptor in a periodic group, the occurrence
number within the periodic group.

Additional Considerations

The following additional considerations are applicable for the L3/L6 command:

1. The Command ID used with the L3/L6 command is saved internally and used by Adabas. It
will be released by Adabas when an end-of-file condition is detected, an RC or CL command
is issued, or the Adabas session is terminated. The same command ID may not be used by the
user for another read sequential command until it has been released.

Command IDs are not released at the end of a global transaction.

2. The user is permitted to update and/or delete records from a file which is being read by the
user with an L3/L6 command. Adabas maintains information about the last and next record to
be provided to the user and is able to provide the correct next record despite any interim record
update or deletion performed by the user.

3. If another user is updating the file being read with an L3/L6 command, it is possible that the
user reading with the L3/L6 command will not receive one or more records in the file, or may
receive the same record more than once, during a given sequential pass of the file.

255Command Reference

L3/L6 Command (Read Logical Sequence)

Examples

Example 1:

File 2 is to be read in logical sequential order. The descriptor RB is to be used for sequence control.
The values for the fields RA and RB are to be returned. The entire file is to be read.

Control Block:

Command Code L3

Command ID EX01 (a non-blank CID is required)

File Number 2

Format Buffer Length 6 (or larger)

Record Buffer Length 18 (or larger)

Command Option 1 b (Return option not used)

Command Option 2 A

Additions 1 RBbbbbbb (descriptor RB to be used for
sequence control)

Additions 3 Password (file 2 is security protected)

Command Reference256

L3/L6 Command (Read Logical Sequence)

Buffer Areas:

Format Buffer RA,RB.

The L3 call is repeated to obtain each successive record. The CID and ADDITIONS 1 field must
not be modified between L3 calls. Response code 3 will be returned when all records have been
read.

Example 2: Read in logical sequence with hold

File 1 is to be read in logical sequential order. The descriptor AA is to be used for sequence control.
The values for fields AA andAB are to be returned. Each record read is to be placed in hold status.

Control Block:

Command Code L6

Command ID EX02 (non blank CID required)

File Number 1

Format Buffer Length 3 (or larger)

Record Buffer Length 10 (or larger)

Command Option 1 b (Return option not used)

Command Option 2 A

Additions 1 AAbbbbbb (descriptor AA to be used for
sequence control)

257Command Reference

L3/L6 Command (Read Logical Sequence)

Additions 3 bbbbbbbb (file 1 is not security protected)

Buffer Areas:

Format Buffer GA.

Each record read should be released by an ET command (ET logic users), or RI command (non–ET
logic users).

Example 3: Starting with a given value

The same requirement as Example 1 except that reading is to begin with the value `N'.

Control Block:

Command Code L3

Command ID EX03 (non blank CID required)

File Number 2

ISN 0 (reading is to start with the lowest ISN that
contains the value given in the value buffer)

Format Buffer Length 6 (or larger)

Record Buffer Length 18 (or larger)

Search Buffer Length 7 (or larger)

Value Buffer Length 1 (or larger)

Command Reference258

L3/L6 Command (Read Logical Sequence)

Command Option 1 b (Return option not used)

Command Option 2 A

Additions 1 RBbbbbbb (RB is to be used for sequence
control)

Additions 3 Password (file 2 is security protected)

Buffer Areas:

Format Buffer RA,RB.

Search Buffer RB,1,A. (GE is implicit)

Value Buffer N (reading to begin with value N)

The initial L3 call will result in the return of the first record which contains the value N for the
descriptor RB. If no records exist with this value, the first record which contains a value greater
than N (such as NA) will be returned.

Example 4: Value repositioning

The same requirement as example 3 except that a value repositioning is to be performed. The se-
quential read process is to continue with the value Q.

Control Block:

Command Code L3

Command ID EX03 (the CID field may not be changed
when performing a value repositioning)

259Command Reference

L3/L6 Command (Read Logical Sequence)

File Number 2

ISN 0 (position to the lowest ISN that contains
the value specified in the value buffer)

Format Buffer Length 6 (or larger)

Record Buffer Length 18 (or larger)

Search Buffer Length 7 (or larger)

Value Buffer Length 1 (or larger)

Command Option 1 b (Return option not used)

Command Option 2 A

Additions 1 RBbbbbbb (the last six positions of this
field must be set to blank for value
repositioning)

Additions 3 Password (file 2 is security protected)

Buffer Areas:

Format Buffer RA,RB.

Search Buffer RB,1,A.

Command Reference260

L3/L6 Command (Read Logical Sequence)

Value Buffer Q (repositioning is to be to value Q)

Example 5: Using Value Start or Repositioning Option

Inverted list for the descriptor used for sequence control:

Value ISN List

A 1,4
B 2
D 3,5

Initial L3/L6 command with Command Option 2 = A, or subsequent L3/L6 command with Com-
mand Option 2 = A and last six bytes of Additions 1 reset to blanks (value repositioning):

ISN with which reading will start (or continue)User-supplied ISNUser-supplied Value

10A

41A

42A

24A

25A

20B

21B

32B

33B

31BABC

30C

30D

53D

54D

Response Code 35D

Response Code 3–E–Z

Example 6: Using The Ascending/Descending Option

The following example illustrates the possibilities of using the ascending/descending option in
conjunction with various search buffer and value buffer contents. The following applies to the file
being read:

261Command Reference

L3/L6 Command (Read Logical Sequence)

■ the values V1 and V2 are both present, otherwise the "GE" and "LE" examples would be the
same as the "GT" and "LT" examples;

■ ISN=0 (no further positioning within matching start values).

Command Reference262

L3/L6 Command (Read Logical Sequence)

18 L9 Command (Read Descriptor Values)

■ Function and Use .. 264
■ Control Block .. 268
■ Format Buffer .. 271
■ Record Buffer ... 272
■ Search Buffer .. 272
■ Value Buffer .. 272
■ ISN Buffer/Multifetch Buffers .. 272
■ Additional Considerations .. 273
■ Examples ... 273

263

Function and Use

The L9 command is used to determine the range of values present for a descriptor and the number
of records which contain each value. With the Multifetch feature, it is also possible to return in-
formation for more than one descriptor value with a single call of the L9 command.

Adabas determines this information by reading the Associator inverted lists. No access to Data
Storage is required.

Without the Multifetch Feature

The user specifies the file in which the descriptor is contained, the descriptor for which the values
are to be returned and the value at which processing is to begin. Adabas returns (with each L9
call) the next value for the descriptor in the record buffer, along with the number of records con-
taining that value in the ISNquantity field of the control block. The values are provided in ascending
or descending order. Null values for descriptors defined with the null value suppression option
are not returned.

With the Multifetch Feature

TheL9 command supports theMultifetch feature. This is indicated by the value `M' in theCommand
Option 1 field (see the description of the Command option 1 field for more details).

When the Multifetch feature is used, the maximum number of descriptor values which can be
processed by a single L9 call is limited by the following factors:

■ The ISN Lower Limit field can be used to specify the maximum number of descriptor values to
process, thus avoiding internal overheadswhen only a limited number of descriptors are required.

■ If the value in the ISNLower Limit field is 0, the number of descriptor values processed is limited
only by the size of the ISN/Multifetch Buffer and the Record Buffer.

Command Reference264

L9 Command (Read Descriptor Values)

L9 Command, Procedure Flow

265Command Reference

L9 Command (Read Descriptor Values)

L9 Command, Procedure Flow (continued)

Command Reference266

L9 Command (Read Descriptor Values)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

-/ABISN

F/UBISN Lower Limit

-/ABISN Quantity

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

F/UBSearch Buffer Length (ACB only)

F/UBValue Buffer Length (ACB only)

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

* F/UAAdditions 1

-/AA,BAdditions 2

F/AAAdditions 3

F/UAAdditions 5

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

F/UFormat Buffer

–/ARecord Buffer

* F/USearch Buffer

* F/UValue Buffer

–/AISN Buffer

Formats:

alphanumericA

267Command Reference

L9 Command (Read Descriptor Values)

binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-
optional*

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
L9

Command ID
This fieldmust be set to a non-blank, non-zero value if a sequential pass is required. This value
is used by Adabas to provide the values in the correct sequence and to avoid the repetitive
interpretation of the format buffer.

The high-order byte of this field must not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for addi-
tional information).

This field must not be modified during a given sequential pass of the file.

If only a single index value is to be read, this field may be set to blanks or binary zeros.

File Number
The number of the file to be read.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Response code 3 indicates that all entries of the specified descriptor have been processed or
that the ending descriptor-value condition has become true.

If theMultifetch feature is used and an error occurs before or while processing the first record,
the response code is returned in this field. In this case, the contents of the ISN/Multifetch Buffer
and Record Buffer are undefined.

Command Reference268

L9 Command (Read Descriptor Values)

If an error is detected for the second or any subsequent ISN during the processing loop of the
Multifetch feature, the first non-zero response code will terminate the multifetch processing.
In this case, the response codewill be stored as an additional entry in the ISN/Multifetch Buffer
itself, not in the Response Code field of the Control Block. Since there are two possible locations
for a response code, an application program should check first the Response Code field in the
Control Block for errors of a general nature, then in the response code field of each ISN/Multi-
fetch Buffer entry individually.

ISN
If the descriptor for which values are to be returned is contained within a periodic group, this
field is used
■ on the initial call to specify the occurrence number for which values are to returned if the
search/value buffer is not defined. Otherwise the search buffer is used to determine the oc-
currence number, and the content of the ISN field is ignored. A value of zero indicates that
all occurrences are to be returned. A non–zero value indicates that only values of the specified
occurrence are to be returned.

■ by Adabas to return the occurrence number of the value being returned in the record buffer
as a four–byte integer.

When the Multifetch feature is used, the ISN field refers to the first descriptor value which
will be processed by the L9 command.

ISN Lower Limit
If theMultifetch option is used, this field is used to limit the number of records to be returned.
If this field is set to zero, the maximum number of records returned depends on the size of the
record buffer and/or the size of the ISN buffer.

ISN Quantity
Adabas returns in this field the number of records containing the value returned in the record
buffer. If the Multifetch feature is used, this field refers to the first descriptor value returned.

Format Buffer Length (ACB only)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACB only)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Search Buffer Length (ACB only)
The search buffer length (in bytes) if a starting value, ending value or a range of values has
been specified.

If no search buffer length is supplied, the command starts from the lowest value.

Value Buffer Length (ACB only)
The value buffer length (in bytes) if a starting value, ending value or a range of values has
been specified.

269Command Reference

L9 Command (Read Descriptor Values)

The value buffer length is ignored if no search buffer is specified.

ISN Buffer Length (ACB only)
The length of the ISN Buffer. This value must be specifiedwhen theMultifetch feature is used.
See the description of the ISN Buffer for information on how to calculate the length.

When theMultifetch feature is used, the Record Buffer can contain data formultiple descriptor
values. The number of descriptor values returned, and the number of bytes of data returned
for each descriptor is stored in a corresponding entry in the ISN Buffer.

Command Option 1
An `M' in this field invokes the Multifetch feature. See Programming Considerations, Using The
Multifetch Feature for more detailed information.

Command Option 2
An `A' in this field indicates that the descriptor values are to be read in ascending sequence.
A starting value, ending value or range of values can be specified optionally. If the search
buffer or value buffer is omitted, all of the entries for the given descriptor will be processed.

A `D' in this field indicates that the descriptor values are to be read in descending sequence.
A starting value, ending value or range of values can be specified optionally. If the search
buffer or value buffer is omitted, all of the entries for the given descriptor will be processed.

When using the values `A' and `D', the processing sequence can be reversed simply by changing
the content of the command option 2 field.

When writing new applications, Software AG strongly recommends the use of the values `A'
and `D' for this field. The use of other values is supported in order to ensure upward compat-
ibility.

If the field contains a blank value or any value other than `A' or `D', the descriptor values are
processed as if the value `A' had been specified.

Additions 1
If no search buffer or no value buffer has been supplied, Additions 1 must contain the name
of the descriptor to be used to control the read sequence. The descriptor name is specified in
the first two positions of this field. The remaining positionsmust be set to blanks. The descriptor
name specified in Additions 1must be the same as the descriptor name specified in the Format
Buffer.

Phonetic descriptors must not be specified.

Additions 2
For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 3
This field is used to provide a security password.

Command Reference270

L9 Command (Read Descriptor Values)

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 5
This fieldmay be used to provide a separate format buffer ID that is used to identify the internal
format buffer used for this command, or to provide a global format buffer ID.

As long as the first byte of the Additions 5 field is not alphanumeric, the value provided in
the command ID field will also be used as the format buffer ID.

If the first byte is a lower case character, the bytes 5 to 8 of the Additions 5 field will be used
as the separate local format buffer ID.

If the first byte is a digit or an upper case character, the Additions 5 field (8 bytes) will be used
as a separate global format buffer ID, which means that the format buffer ID can be used by
several users in parallel.

See Programming Considerations, Using Command IDs for additional information and examples.

Format Buffer

The format in which the values are to be returned must be specified in this buffer.

The syntax of the format buffer is:

name[,length][,format].

name
The name of the descriptor for which values are to be returned. A phonetic descriptor may
not be specified.

length
The length in which the value is to be returned. If length is not specified, the value will be re-
turned using the default length of the descriptor as specified in the FDT.

format
The format in which the value is to be returned. The format specifiedmust be compatible with
the standard format of the descriptor. If the format is not specified, the value will be returned
using the default format of the descriptor as specified in the FDT.

271Command Reference

L9 Command (Read Descriptor Values)

Record Buffer

Adabas returns the descriptor values requested in this buffer. A different value is provided with
each L9 call. The values are provided in ascending or descending sequence. If the descriptor is
definedwith the null value suppression option, the null value for the descriptorwill not be returned.

When the Multifetch feature is used, the Record Buffer can contain data for multiple descriptor
values. The number of descriptor values processed, and information concerning each descriptor
value, is stored in the ISN/Multifetch Buffer.

Search Buffer

The search buffer is only required if a starting value, ending value or both are specified in the
value buffer in order to limit the number of descriptor entries to be retrieved.

If either the search buffer or the value buffer is omitted, all of the values for a given descriptor (or
all of the values for a given occurrence) will be processed. In this case, the Additions 1 field must
contain the descriptor name.

The syntax of the search buffer is provided in Calling Adabas, Search and Value Buffers.

Value Buffer

The value buffer contains the starting value or the ending value or the lower and upper limits of
a range in accordance with the specifications contained in the search buffer.

ISN Buffer/Multifetch Buffers

When the Multifetch feature is used with the ACB interface, the ISN Buffer contains information
which describes the descriptor entries returned in the Record Buffer. If you use the Multifetch
feature with the ACBX interface, multifetch buffers are used instead.

The first 4 bytes of the respective buffer specify the number of 16-byte entries which follow in the
that buffer. Each 16-byte entry corresponds to a descriptor entry returned in the Record Buffer,
and contains the following unsigned integer values (each 4 bytes long):

■ the number of bytes of information in the Record Buffer for the descriptor value

Command Reference272

L9 Command (Read Descriptor Values)

■ the response code for the descriptor value (this can be different from the value in the Response
Code field in the Control Block)
If this value is non-zero, thismeans that an error occurredwhich caused themultifetch processing
to be terminated. In this case, there is no corresponding entry for the descriptor value in the
Record Buffer.

■ if the descriptor is in a periodic group, the occurrence number within the periodic group.
■ the number of ISNs found for the descriptor

Additional Considerations

The following additional considerations are applicable for the L9 command:

1. The Command ID used with the L9 command is internally saved and used by Adabas. It will
be released byAdabaswhen an end-of-file condition is detected, an RCorCL command is issued
or the Adabas session is terminated. The same command ID may not be used by the user for
another command until it has been released.

2. The user is permitted to update and/or delete records from a file which is being read by the
user with an L9 command. Adabas maintains information about the last and next value to be
provided to the user and is able to provide the correct next value despite any interim record
update or deletion performed by the user.

3. If another user is updating the file being read with an L9 command, it is possible that the user
reading with the L9 command will not receive one or more values in the file.

Examples

Example 1:

The values for the descriptor RB in file 2 are to be returned. All values are to be returned.

Control Block:

Command Code L9

273Command Reference

L9 Command (Read Descriptor Values)

Command ID L901 (a non blank CID is required)

File Number 2

Format Buffer Length 3 (or larger)

Record Buffer Length 10 (or larger)

Search Buffer Length 5 (or larger)

Value Buffer Length 1 (or larger)

Command Option 2 A

Additions 3 Password (file 2 is security protected)

Buffer Areas:

Format Buffer RB. (the values are to be returned using
standard length and format)

Search Buffer RB,1. (the values for descriptor RB are
to be returned, and the starting value is
being provided with standard format and
length = 1)

Value Buffer b (processing is to begin with the first
value for RB equal or greater than 'b'

Each successive L9 call will result in the return of the next value (values are provided in ascending
order). The number of records containing the value is returned in the ISN Quantity field.

Example 2:

The values for descriptor AB in file 1 are to be returned. Only values which are equal to or greater
than 20 are to be returned.

Command Reference274

L9 Command (Read Descriptor Values)

Control Block:

Command Code L9

Command ID L902 (a non blank CID is required)

File Number 1

Format Buffer Length 7 (or larger)

Record Buffer Length 3 (or larger)

Search Buffer Length 7 (or larger)

Value Buffer Length 2 (or larger)

Command Option 2 A

Additions 3 bbbbbbbb (file 1 is not security
protected)

Buffer Areas:

Format Buffer AB,3,U. (the values are to be returned
with length = 3 and format = unpacked)

Search Buffer AB,2,U. (the values for the descriptor AB
are to be returned and the starting value
is to be provided as a 2 byte unpacked
number)

275Command Reference

L9 Command (Read Descriptor Values)

Value Buffer 0x3230 (Processing is to begin with the
first value for AB which is equal to or
greater than 20)

Example 3: Using The Ascending/Descending Option

The following example illustrates the possibilities of using the ascending/descending option in
conjunction with various search buffer and value buffer contents. The following applies to the file
being read:

■ the values V1 and V2 are both present, otherwise the "GE" and "LE" examples would be the
same as the `GT' and `LT' examples;

Command Reference276

L9 Command (Read Descriptor Values)

19 LF Command (Read Field Definitions)

■ Function and Use .. 278
■ Control Block .. 281
■ Record Buffer for Command Option 2 = 'S' .. 282
■ Record Buffer for Command Option 2 = Blank ... 287
■ Record Buffer for Command Option 2 = ‘X’ and ‘F’ .. 288
■ Example .. 294

277

Function and Use

The LF command is used to read the field definition information for a file.

The user specifies the file number for which the field definitions are to be returned.

Adabas returns the field definition information in the record buffer. The following information is
returned for each field:

■ Level number;
■ Name;
■ Standard length;
■ Standard format;
■ Definition options.

This command can be used to obtain the standard field length and format of a field during program
execution in order to dynamically create a format or search buffer.

The timestampwhen the field definitions were last updated is returned in the record buffer when
the command option 2 = ‘X’. This may be one of the following:

■ The time when the file was created;
■ The time when a field was last added, changed or deleted;
■ A descriptor was last inverted or released.

If a file is imported with ADAORD or restored with ADABCK, the timestamp of the import or
restore is not stored; the original timestamp of the file when it was exported or dumped is kept.

Note: The LF command only reads meta information on the file, but not the file itself. For
this reason, an LF command can also be performed on a file that is currently exclusively
locked by an application program or which is locked by a utility.

Command Reference278

LF Command (Read Field Definitions)

LF Command, Procedure Flow

279Command Reference

LF Command (Read Field Definitions)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

-/-BCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBRecord Buffer Length (ACB only)

F/UACommand Option 2

-/AA,BAdditions 2

F/AAAdditions 3

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

*/–Format Buffer

–/ARecord Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-
Not used but must be included in parameter list of CALL statement*

Command Reference280

LF Command (Read Field Definitions)

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
LF

File Number
The number of the file for which the field definition information is to be returned.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Record Buffer Length (ACB only)
The record buffer length (in bytes). The length specified must be large enough to contain all
field definition information for the file and must not be greater than the size of the record
buffer area defined in the user program.

Command Option 2
The setting of this field determines the format and type of information to be returned in the
record buffer.

An ‘S’ in this field returns the standard information on the file that was available already with
Adabas Version 6.1. However, this information is not complete; in particular, the new features
introduced with Adabas Version 6.2 are not supported.

An ‘X’ in this field returns extended information on the file in the record buffer. This contains
all information required to create a file with the same FDT.

An ‘F’ in this field returns full information on the FDT. It is similar to the ‘X’ option but with
the difference that logically-deleted fields are also returned in the record buffer.

Notes:

1. You can only load data with the ADAMUP utility if the FDT of the decompressed data is
the same as the FDT of the target file, including the logically-deleted fields.

2. Logically-deleted fields are returned in the record buffer without field names.

A blank in this field returns only the basic information on the fields of the file; only a subset
of the options is returned. No information on special descriptors is returned.

Additions 2
Adabas returns the total length of the returned structure in this field.

281Command Reference

LF Command (Read Field Definitions)

For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Record Buffer for Command Option 2 = 'S'

All field definition information is returned in the record buffer.

Setting the Command Option 2 field to `S' returns the information in the following format:

Record Buffer General Layout

UsageBytes

Total length of information1 - 2

Number of fields in the FDT (including SDT)3 - 4

Field definitions, each 8 bytes long5 -N

SDT (Special Descriptor Table)
Special descriptors are:
subdescriptors
superdescriptors
phonetic descriptors
hyperdescriptors
collation descriptors
For SDT definitions, an SDT element has an integral length and is a multiple of 8 bytes.

N - M

Command Reference282

LF Command (Read Field Definitions)

FDT Field Definitions

UsageBytes

Indicator field name 'F'1

Field name2 - 3

Definition options
(00 = no definition options)
0x 01 = unique descriptor
0x 02 = parent of sub-/superdescriptor
0x 04 = parent of phonetic descriptor
0x 08 = PE group field/ PE inner group/
elementary field within PE group
0x 10 = null suppression
0x 20 = multiple field
0x 40 = fixed format
0x 80 = descriptor

4

Level number (binary)5

Length (group = 0)6

Format
(Space (no format) for group)
A = alpha
B = binary
F = fixed point
G = floating point
P = packed decimal
U = unpacked decimal
W = Unicode

7

0x01 = NC option is active
0x02 = NN option is active
0x04 = LB option is active
0x08 = LA option is active
0x20 = HF option is active
0x40 = NV option is active
0x80 = NB option is active

8

Caution: In order to be mainframe-compatible, the bit for the NV option has been changed:
in Adabas Version 3.3 and earlier, NV option = 0x04; in Adabas Version 5.1 and higher and
Adabas on mainframes, NV option = 0x40.

283Command Reference

LF Command (Read Field Definitions)

SDT Field Definitions

IndicatesByte 1

Collation descriptor, see collation descriptor definitionC

Hyperdescriptor, see hyperdescriptor definitionH

Phonetic descriptor, see phonetic descriptor definitionP

Subdescriptor, see subdescriptor definitionS

Superdescriptor, see superdescriptor definitionT

Collation Descriptor Definitions

UsageBytes

C indicates collation descriptor1

Collation descriptor name2 - 3

Definition options
0x 01 = unique descriptor
0x 02 = unused
0x 04 = no HE option
0x 08 = periodic
0x 10 = NU
0x 20 = multiple field
0x 40 = unused
0x 80 = unused

4

Unused5

Length (255 means length > 254)6

Parent field name7 - 8

Command Reference284

LF Command (Read Field Definitions)

Hyperdescriptor Definitions

UsageBytes

H indicates hyperdescriptor1

Hyperdescriptor name2 - 3

Definition options
0x 01 = unique descriptor
0x 02 = unused
0x 04 = HE option used
0x 08 = periodic
0x 10 = null suppression
0x 20 = multiple field
0x 40 = unused
0x 80 = unused

4

Hyperexit number5

Length6

Format
A = alphanumeric
B = binary
F = fixed point
G = floating point
P = packed decimal
U = unpacked decimal
W = Unicode

7

Unused8

0x0000 indicates continuation1 - 2

parent field name list (2 bytes each)3 - 8

Phonetic Descriptor Definition

UsageBytes

P indicates phonetic descriptor1

Phonetic descriptor name2 - 3

Unused4

Parent field name5 - 6

Unused7 -8

285Command Reference

LF Command (Read Field Definitions)

Subdescriptor Definition

UsageBytes

S indicates subdescriptor1

Subdescriptor name2 - 3

Definition options
0x 01 = unique descriptor
0x 02 = unused
0x 04 = unused
0x 08 = periodic
0x 10 = null suppression
0x 20 = multiple field
0x 40 = unused
0x 80 = descriptor

4

Parent field name5 - 6

From byte7

To byte8

Superdescriptor Definition

UsageBytes

T indicates superdescriptor1

Superdescriptor name2 - 3

Definition options
0x 01 = unique descriptor
0x 02 = unused
0x 04 = unused
0x 08 = periodic
0x 10 = null suppression
0x 20 = multiple field
0x 40 = unused
0x 80 = descriptor

4

Parent field 15 - 6

From byte7

To byte8

For the second and subsequent parent fields, the following table applies:

Command Reference286

LF Command (Read Field Definitions)

UsageBytes

0x00 indicates continuation1

Unused2 - 3

Format of superdescriptor4

Parent field name5 - 6

From byte7

To byte8

Record Buffer for Command Option 2 = Blank

Information for all fields of a file, but not for special descriptors (for example, superdescriptors),
is returned in the record buffer, Setting the command option 2 to blank returns the information
in the following format:

Record Buffer General Layout

UsageBytes

Number of fields in the FDT (excluding special descriptors)1 - 4

Field definitions, each 6 bytes long5 -N

FDT Field Definitions

UsageBytes

Level number (binary)1

Field name2 - 3

Length (0 for groups, 255 means length > 254)4

Format5

Definition options
(00 = no definition options)
0x 80 = unique descriptor
0x 40 = parent of sub-/superdescriptor
0x 20 = parent of phonetic descriptor
0x 10 = PE group field/ PE inner group/
elementary field within PE group
0x 08 = null suppression
0x 04 = multiple field
0x 02 = fixed format
0x 01 = descriptor

6

287Command Reference

LF Command (Read Field Definitions)

Note: The definition options in the record buffer for command option 2 = blank are not
mainframe-compatible. Mainframe-compatible LF commands are only possible with com-
mand option 2 = S.

Record Buffer for Command Option 2 = ‘X’ and ‘F’

Setting command option 2 to ‘X’ or ‘F’returns the information in the following format:

Record Buffer General Layout

UsageBytes

Total length of information1 - 4

Structure level (= 0) (with S option you get ‘F’ at this location)5

Flag byte for future use6

Number of entries in the FDT including Special Descriptor Table (SDT) and Referential Integrity
Constraint Table (RIT)

7 - 8

The maximum number of entries in the FDT including SDT is 3214; additionally referential
integri-ty constraints can be defined for a file.

Unix timestamp (microseconds since 1970)9 -16

Field definitions, each 16 bytes long. Larger entries may be possible in future versions.17 - N

SDT (Special Descriptor Table). Special descriptors are:(N+1) - M

■ Subdescriptors
■ Superdescriptors
■ Phonetic descriptors
■ Hyperdescriptors
■ Collation descriptors

The length of an SDT definition is a multiple of 4 bytes.

RIT (Referential Integrity Constraint Table)(M+1) - L

Notes:

■ Each entry in the record buffer begins with the following fields:
■ Byte 1: Type of the entry
■ Byte 2: Length of the entry
■ Byte 3-4: Name of the entry
■ Byte 5: Format (Not for RI constraints)

Command Reference288

LF Command (Read Field Definitions)

■ Byte 6: Options (Not for RI constraints)
■ Descriptor length (Only for SDT entries)

■ In order to be compatible with future Adabas versions, please consider the following:
■ Future Adabas versions may provide additional entry types for the ‘X’ option, therefore, you
should not consider unknown entry types to be an error.

■ The record buffer entries may be larger than with the current Adabas version. Therefore, you
should always use the entry length field to skip to the next entry. The information currently
returned in the record bufferwill also be returned at the same position in a record buffer entry
with future Adabas versions.

■ The length of each entry is aligned to 4 bytes so that you can access 4-byte integer values
without alignment problems.

■ There may be more entries returned in the LF command than specified in the file definition,
because the names of referential integrity constraints are defined only for the file containing the
foreign key, but they are also re-turned by the LF command for the file containing the primary
key.

FDT Field Definitions

UsageBytes

Indicator field name ‘F’1

Total length of ‘F’ entry2

Field name3-4

Format5

Definition options
(00 = no definition options)
0x 01 = unique descriptor
0x 02 = parent of sub-/superdescriptor
0x 04 = parent of phonetic descriptor
0x 08 = PE group field/ PE inner group/
elementary field within PE group
0x 10 = null suppression
0x 20 = multiple field
0x 40 = fixed format
0x 80 = descriptor

6

0x01 = NC option is active
0x02 = NN option is active
0x04 = LB option is active
0x08 = LA option is active
0x20 = HF option is active
0x40 = NV option is active
0x80 = NB option is active

7

Level number8

289Command Reference

LF Command (Read Field Definitions)

UsageBytes

Date/time edit masks:
1 = E(DATE)
2 = E(TIME)
3 = E(DATETIME)
4 = E(TIMESTAMP)
5 = E(NATDATE)
6 = E(NATTIME)
7 = E(UNIXTIME)
8 = E(XTIMESTAMP)

9

Suboptions:10

For DT option (indicated by byte 9 not equal to 0):
Bit 0x01 = TZ option is active

For desrciptor option (indicated by bit 0x80 in byte 6):
Bit 0x02 = TR option is active

For SY option (indicated by byte 11 not equal to 0):
Bit 0x40 = CR option is active

SY function:
1 = TIME
2 = SESSIONID
3 = OPUSER

11

Deactivation flag (only with command option ‘F’) :
Bit 0x01 = Field logically deleted

12

Field length13-16

SDT Field Definitions

There are SDT field definitions for the same descriptor types and with the same first byte as for
the ‘S’ option.

Collation Descriptor Definitions

UsageBytes

C indicates collation descriptor1

Total length of C entry2

Collation descriptor name3-4

Format of parent field (On open systems only W, on mainframe also A is possible)5

Definition options (same as byte 4 for ‘S’ option)6

Standard length7-8

Parent field name9-10

Maximum internal length11-12

Command Reference290

LF Command (Read Field Definitions)

UsageBytes

Additional options
0x04 = LA
0x08 = LB
0x80 = Collation defined via collation exit
Not set: collation defined via ICU
Other bits: unused

13

String length of collation attribute string (length byte and termination null character not
included)

14

Collation attribute string as null terminated string, for example: “‘de’,PRIMARY”15-14 + byte 14

If collation defined via collation exit: exit number as null terminated string, for example:
“1”

Notes:

1. The C entry length is aligned to 4 bytes.

2. The format of parent field is relevant if you specify a parent field value in the value buffer. If
the collation descriptor is defined without the HE option, you can also specify the internal col-
lation descriptor values. These values have the format A with the option NV.

Hyperdescriptor Definitions

UsageBytes

H indicates hyperdescriptor1

Total length of H entry2

Hyperdescriptor name3-4

Format5

Definition options (same as byte 4 for ‘S’ option)6

Hyperdescriptor length7-8

Exit number9

Additional options (mainframe only, same as byte 8 for ‘S’ option)10

unused11

Number of parent fields12

Parent field names13-12 + 2* byte 12

Note: The H entry length is aligned to 4 bytes.

291Command Reference

LF Command (Read Field Definitions)

Phonetic Descriptor Definitions

UsageBytes

P indicates phonetic descriptor1

Total length of P entry2

Phonetic descriptor name3-4

Format (currently only A supported)5

Options (unused)6

Descriptor length7-8

unused9-10

Parent field name11-12

Sub-/Superdescriptor Definitions

UsageBytes

S indicates subdescriptor1

T indicates superdescriptor

Total length of entry2

Sub-/superdescriptor name3-4

Format5

Definition options (same as byte 4 for ‘S’ option)6

Descriptor length7-8

unused9

Number of parent fields (1 for subdescriptor, > 1 for superdescriptor)10

Parent field entries – for each parent field:11-10 + 6*byte 10

■ Parent field name (2 bytes)
■ From byte (2 bytes)
■ To byte (2 bytes)

Note: The sub-/superdescriptor entry length is aligned to 4 bytes.

Command Reference292

LF Command (Read Field Definitions)

Referential Integrity Definitions

UsageBytes

R indicates referential constraint1

Total length of R entry2

Constraint name3-4

Reference file5-8

In case of primary file entry, the file of the foreign key

In case of foreign file entry, the file of the primary key

Primary key name (00 means ISN)9-10

Foreign key name11-12

1 primary file entry13

2 foreign file entry

Update action:14

0 No action

1 Cascade

2 Set NULL

Delete action:15

0 No action

1 Cascade

2 Set NULL

Unused16

The FDTs of each of the two referenced files contain an entry for a referential constraint. If both
the foreign and primary key are in the same file for a referential constraint, the FDT of this file
contains two entries for this constraint.

Note: The name of a referential integrity constraint may also occur as the name of a field or
special descriptor of the file.

293Command Reference

LF Command (Read Field Definitions)

Example

The field definition information (including features introduced with Adabas version 6.2) for file
1 is to be read.

Control Block:

Command Code LF

File Number 1 (field definitions for file 1 requested)

Record Buffer Length 100

Command Option 2 X

Additions 3 bbbbbbbb (file is not security protected)

Command Reference294

LF Command (Read Field Definitions)

20 MC Command (Multi-Call)

■ Function and Use .. 296
■ Control Block .. 298
■ Format Buffer .. 299
■ Record Buffer ... 299
■ Search Buffer .. 299
■ Value Buffer .. 299
■ ISN Buffer .. 299
■ Processing Considerations .. 300

295

Function and Use

TheMC command is used to reduce the interprocess communications between anAdabas database
and its application programs. It does not provide any additional functionality at the Adabas call
interface. The MC command is a generalization of the multifetch behaviour for read commands:
this generalization applies to any arbitrary sequence of Adabas commands with the exception of
BT, CL, OP and MC.

Note: The MC command is only supported by the ACB interface, it is NOT supported by
the ACBX interface.

Each Adabas command of such a sequence is represented by its control block and its command
buffers, which are delivered in the corresponding buffers of theMC command. The control blocks
are delivered at the beginning of the record buffer. The number of different Adabas commands
must be specified in `cq_isn_quantity'.

An Adabas command sequence of an MC command can be terminated by an ET command. Only
one ET command is allowed per MC command and this one must always be the last command of
the sequence. If it is not the last command, the ET command will be rejected with response 22.

If a response code greater than 0 occurs during subcommand processing, the execution of further
subcommands will be stopped immediately. However, an open transaction will not be backed
out. TheMC command returns response 16 and provides a pointer to the control block of the failed
subcommand in `cb_addition_2'.

Command Reference296

MC Command (Multi-Call)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBISN Quantity

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

F/UBSearch Buffer Length (ACB only)

F/UBValue Buffer Length (ACB only)

F/UBISN Buffer Length (ACB only)

F/UACommand Option 2

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

F/UFormat Buffer

F/ARecord Buffer

F/USearch Buffer

F/UValue Buffer

F/AISN Buffer

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

297Command Reference

MC Command (Multi-Call)

Control Block

Command Code
MC

Response Code
Adabas returns the response code of theMCcommand in this field. If a subcommand terminates
with a non-zero response code, Adabas returns the response code 16 in this field and stops
further processing of subcommands.

ISN Quantity
Number of subcommands delivered by the MC command. Value 0 means nothing to do.

Format Buffer Length (ACB only)
If there is no subcommand referring to a format buffer, this length can be set to 0.

Record Buffer Length (ACB only)
The length of the record buffer must be specified in this field. If ISN Quantity is not 0, this
length must be set. The length specified must be large enough to accommodate all required
record buffer entries and control blocks.

Search Buffer Length (ACB only)
If there is no subcommand referring to a search buffer, this length can be set to 0.

Value Buffer Length (ACB only)
If there is no subcommand referring to a value buffer, this length can be set to 0.

ISN Buffer Length (ACB only)
If there is no subcommand referring to an ISN buffer, this length can be set to 0.

Command Option 2
An `S' (SHORT) in this field indicates that only the control block of theMC command is returned
when no error occurs during subcommand processing.

Additions 2
If response code 16 is returned, the following information will be returned in this field:
■ The first two bytes will contain the sequence number of the subcall which has received a
non-zero response code;

■ The third and fourth bytes will contain the byte offset of the control block in the record
buffer that caused the response code.

Command Reference298

MC Command (Multi-Call)

Format Buffer

The format buffer contains a buffer header (see Processing Considerations, Command Buffers)
and the format buffer(s) of the subcommands. It may be omitted if no subcommand references
the format buffer.

Record Buffer

The record buffer contains a buffer header followed immediately by the control blocks of all the
subcommands followed by the record buffers of the subcommands.

Search Buffer

The search buffer contains a buffer header (see Processing Considerations, Command Buffers)
and the search buffer(s) of the subcommands. It may be omitted if no subcommand references the
search buffer.

Value Buffer

The value buffer contains a buffer header (see Processing Considerations, Command Buffers) and
the value buffer(s) of the subcommands. It may be omitted if no subcommand references the value
buffer.

ISN Buffer

The ISN buffer contains a buffer header (see Processing Considerations, Command Buffers) and
the ISN buffer(s) of the subcommands. It may be omitted if no subcommand references the ISN
buffer.

299Command Reference

MC Command (Multi-Call)

Processing Considerations

Command Buffers

The command buffers of the several subcommands will be delivered within the corresponding
command buffers of the MC command. Therefore, within a buffer, several entries can be present.
Each buffer must be started (offset 0) by a two-element structure. This structure contains two two-
byte offsets and is called the buffer header. The buffer header indicates what is within the buffer.
The buffer can contain several command buffers or only one global buffer which is used by all the
subcommands. All specified offsets are relative to the beginning of the corresponding command
buffer.

The C definition for the buffer header is:

struct CmdBufHd
{

unsigned short GloBuf; /* Offset to global buffer used by all subcommands */
unsigned short StartOff; /* Offset to an array of buffer start

offsets */

}

If both offsets of a buffer header are set, the correspondingMC command is rejectedwith response
146.

Example:

If the format buffer of an MC command contains a common format buffer for all subcommands,
the `GloBuf' offset of the buffer header must point to the common format buffer and the `StartOff'
offset must be 0.

Command Reference300

MC Command (Multi-Call)

However, the buffer may contain several different format buffers. In this case, the buffer header
has an offset to a second structure, which contains the start offsets to the different format buffers.
The start offsets are 2–byte fields with the subcommand sequence number as index. A zero start
offset indicates that the corresponding subcommand does not refer to that command buffer.

The array of the 2-byte start offsets is position-independent, but thewhole arraymust be delivered
contiguously. The only exception is the record buffer. The control blocks of the different subcom-
mandsmust always be delivered directly behind the `BufferHeader' of the record buffer (offset=4).

301Command Reference

MC Command (Multi-Call)

If a subcommand does not use a command buffer, the corresponding offset will not be checked.
A global input buffer will be ignored too if the buffer is not referred to by the command.

The control block and the ISN buffer of the subcommand must always start at an offset divisible
by 4 within the corresponding MC command buffer. Because the subcommand control blocks
must start directly behind the `buffer header', the first control block always starts at offset 4 and
therefore all following control blocks start automatically with a correct offset, because the con-
trol–block length is always divisible by 4. Within the ISN buffer, the user must ensure that all
offsets are divisible by 4. If not, the MC command is terminated by response 146 and no subcom-
mands are processed.

Command Reference302

MC Command (Multi-Call)

If no subcommand of the sequences refers to a command buffer, the corresponding buffer of the
MC command is not necessary and the buffer size can be set to 0.

It is also possible to specify the same start offset to a command buffer fromdifferent subcommands,
but it will not be permitted to use this feature to transfer data from one subcommand to a sub-
sequent one. There is no check for record–buffer or ISN–buffer consistency. The caller is responsible
for the correct specification of the subcommand output buffers to avoid overwriting.

Response Handling

If an error occurs, the current subcommand will be backed out, if necessary, and the execution of
further subcommands will be stopped immediately. This will be done for all response codes
greater than 0.

The errors will be signalled in the following way:

Errors which occur within the MC environment are returned in the control block of the MC com-
mand. `cb_add2' does not point to a control block of a subcommand. This kind of error occurs
during start or end processing of the MC command (before the first subcommand or after the last
subcommand is processed).

Errors which occur during subcommand processing are returned in their control blocks. The MC
command itself will return response 16, to signal that a subcommand has failed. Additions 2 points
to the control block of the failed subcommand.

Response table of an MC command:

DescriptionADD_2
(last two bytes)

ADD_2
(first two bytes)

RSP

Error during subcommand processing. Error
code and additional information are delivered
in the control block of the failed subcommand.

Offset to
subcommand's control
block

Number of
subcommand

16

Incorrect MC command buffer detected
(illegal buffer header, start offsets out of range,
ISN buffer offset not divisible by 4,...)

CommandbuffernameNumber of command
buffer

146

MC command was terminated during
command start or command end processing.

additional information if presentResponse of
MC
command

303Command Reference

MC Command (Multi-Call)

Response 146

Explanation: This response is caused by one of the following:

■ illegal buffer header detected (both offsets are set)
■ an ISN-buffer offset is not divisible by 4
■ `start offset array' out of MC buffer range
■ record buffer of MC command not big enough to contain all subcommand control blocks
■ invalid buffer length detected (subcommand)

The `cb_add2' field in the control block contains additional information for response 146:

last two bytesfirst two bytes

FB1Format Buffer

RB2Record Buffer

SB3Search Buffer

VB4Value Buffer

IB5ISN Buffer

Note: If an Adabas command with Prefetch/Multifetch option terminates with a response
during a subsequent ISNprocessing, this response is not returnedwithin the corresponding
control block and therefore the MC command does not terminate with response 16. Such a
subcommand is handled like a subcommand which is successfully terminated.

If an MC command is terminated with response 146, no subcommand has been processed.

Response table of a subcommand:

DescriptionADD_2
(last two bytes)

ADD_2
(first two bytes)

RSP

Invalid buffer length detected, e.g. the end of
subcommand buffer (offset + buffer length) is out
of the corresponding MC command buffer range.

Command buffer
name

Number of
command buffer

146

Invalid command or command which is not
allowed within an MC command sequence.
ET command which is not the last command of an
MC subcommand sequence.

22
23

-22

Subcommand processing was terminated by
response code `rsp'.

additional information if presentResponse of
command

Command Reference304

MC Command (Multi-Call)

21 N1/N2 Command (Add Record)

■ Function and Use .. 306
■ Control Block .. 309
■ Format Buffer .. 310
■ Record Buffer ... 311
■ Additional Considerations .. 311
■ Examples ... 313

305

Function and Use

The N1 command is used to add a new record to a file.

The user specifies the file to which the record is to be added and the fields for which values are
being provided. Any fields not specified will contain a null value in the record added.

Adabas assigns the record an ISN, adds the record to Data Storage and performs any Associator
updating which may be required.

TheN2 command is used if the ISN to be assigned to the record is provided by the user, regardless
of whether REUSE=ISN is specified in ADAFDU.

If the user is an ET logic user, the record added is placed in exclusive hold status.

Command Reference306

N1/N2 Command (Add Record)

N1/N2 Command, Procedure Flow

307Command Reference

N1/N2 Command (Add Record)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

*BISN

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

-/AA,BAdditions 2

F/AAAdditions 3

F/UAAdditions 5

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

F/UFormat Buffer

F/URecord Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-
–/A for N1; F/U for N2*

Command Reference308

N1/N2 Command (Add Record)

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
N1/N2

Command ID
If a series of records is being addedusing a series ofN1/N2 calls and the samefields are specified
in the format buffer for each call, this field should be set to a non-blank, non-zero value. This
results in a reduction in the time required to process each N1/N2 call.

If only a single record is being added, or if the format buffer is modified between N1/N2 calls,
this field should be set to blanks or binary zeros.

The high-order byte of this field must not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Command IDs for addi-
tional information).

File Number
The number of the file to which the record is to be added.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN
If the N1 command is being used, Adabas returns the ISN assigned to the record in this field.

If the N2 command is being used, the ISN to be assigned to the record must be provided in
this field. The ISN provided must not already be assigned to a record in the file and must be
within the limit (MAXISN) in effect for the file. MAXISN is set by the DBA when the file is
loaded.

Format Buffer Length (ACB only)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACB only)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Additions 2
If response code 0 is returned, Adabas returns the compressed record length of the record
added in this field. The length is provided in the first two bytes in binary format.

309Command Reference

N1/N2 Command (Add Record)

For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 5
This fieldmay be used to provide a separate format buffer ID that is used to identify the internal
format buffer used for this command, or to provide a global format buffer ID.

As long as the first byte of the Additions 5 field is not alphanumeric, the value provided in
the command ID field will also be used as the format buffer ID.

If the first byte is a lower case character, the bytes 5 to 8 of the Additions 5 field will be used
as the separate local format buffer ID.

If the first byte is a digit or an upper case character, the Additions 5 field (8 bytes) will be used
as a separate global format buffer ID, which means that the format buffer ID can be used by
several users in parallel.

See Programming Considerations, Using Command IDs for additional information and examples.

Format Buffer

The fields for which values are being provided in the record buffermust be specified in this buffer.

The syntax and examples of format buffer construction are provided in Calling Adabas, Format and
Record Buffers.

Any fields which are not specified will contain a null value in the record being added.

All non-NU descriptors which are not specified in the format buffer will have null values in the
inverted list.

For non-NU descriptors which are contained in a periodic group, null values will be entered in
the inverted list only for null occurrences which precede the highest occurrence number specified
in the format buffer.

Command Reference310

N1/N2 Command (Add Record)

Record Buffer

The value for each field specified in the format buffer must be provided in this buffer.

Each value must be provided according to the standard length and format of the field for which
the value is being provided, unless a different length and/or format is specified in the format
buffer.

If the field is defined as a variable length field (no standard length), a one byte binary field con-
taining the length of the field (including the length byte) must be provided immediately before
the value.

If the field for which the value is being provided is defined as a unique descriptor, the value
provided must not already exist for the descriptor; otherwise, error response 98 will be returned.

Additional Considerations

The following additional considerations are applicable for the N1/N2 command:

1. Subdescriptors, superdescriptors, and phonetic descriptors may not be specified in the format
buffer. Adabas automatically creates the correct value for any of the above if a field, fromwhich
a subdescriptor, superdescriptor, or phonetic descriptor is derived, is specified in the format
buffer.

2. Themaximum record length after compression (including record ISN) is themaximumavailable
DATA storage block size - 4.

3. Adescriptor valuemaynot exceed 1144 bytes, unless the descriptor is definedwith the TRoption.

4. If a field is specified using a length override which exceeds the standard length (not permitted
if the field is definedwith the fixed storage option), all subsequent references to this field should
specify the length which was used. If a subsequent reference uses the standard length, value
truncation for alphanumeric fields (if OPTIONS=TRUNCATION is specified) or a non–zero
response code for numeric fields may occur.

5. Field names withput index may be specified more than once only if they are multiple-value
fields. Multiple-value fields and fields in periodic groups with the same index may not be spe-
cifiedmore than once. It is also forbidden to specify a group and a field in the group at the same
time.

6. Numeric edit masks must not be specified in the format buffer.

7. A multiple-value count field or periodic-group count field specified in the format buffer will
be ignored by Adabas. The corresponding value in the record buffer will also be ignored. A
literal in the format bufferwill be ignored byAdabas. The corresponding positions in the record
buffer will also be ignored.

311Command Reference

N1/N2 Command (Add Record)

8. If a multiple-value field is specified in the format buffer, Adabas sets the multiple-value field
count according to the following rules:
■ For a multiple-value field defined with the NU option, the count field is adjusted to reflect
the number of existing non–blank values. Blank values are completely suppressed.

01,MF,5,A,MU,NU
MF1-3
XXXXXYYYYYZZZZZ
XXXXX,YYYYY,ZZZZZ
MF count = 3

Field Definition
Format Buffer
Record Buffer
Result after add

MF1-3
XXXXXbbbbbZZZZZ
XXXXX,ZZZZZ
MF count = 2

Format Buffer
Record Buffer
Result after add

MF1-3
bbbbbbbbbbbbbbb (blanks)
Values suppressed
MF count = 0

Format Buffer
Record Buffer
Result after add

■ For a multiple–value field defined without the NU option, the count is adjusted to reflect the
number of existing values (including null values).

01,MF,5,A,MU
MF1-3
XXXXXYYYYYbbbbb
XXXXX,YYYYY,b(blank)
MF count = 3

Field Definition
Format Buffer
Record Buffer
Result after add

MF1
bbbbb (blanks)
b (blank)
MF count = 1

Format Buffer
Record Buffer
Result after add

9. If a periodic group or a field within a periodic group is specified in the format buffer, Adabas
sets the periodic group count equal to the highest occurrence number specified in the format
buffer. If the highest occurrence is null–value suppressed, the count is adjusted accordingly.

01,GB,PE
02,BA,1,B,DE,NU
02,BB,5,P,NU

Field Definitions

GB1-2.
0x08000000500C09000000600C
(or ^X08000000500C09000000600C)

Format Buffer
Record Buffer

Command Reference312

N1/N2 Command (Add Record)

GB (1st occurrence)
BA = 8 BB = 500
GB (2nd occurrence)
BA = 9 BB = 600
GB count = 2

Result after add

GB1-2.
0x00000000000C00000000000C
(or ^X00000000000C00000000000C)

Format Buffer
Record Buffer

GB (1st occurrence)
Values Suppressed
GB (2nd occurrence)
Values Suppressed
GB count = 0

Result after add

10. If a field defined with variable length (no standard length), as specified in the format buffer,
the corresponding value in the record buffer must be preceded by a one byte binary number
which represents the length of the value (including the length byte).

01,AA,3,A
01,AB,0,A

Field Definitions

AA,AB.
0x313233063132333435
(or ^X3132330631323334350)

Format Buffer
Record Buffer

Fields AA andAB are to be added. The value for AA is 123. the value for AB (which is a variable
length field) is 12345.

Examples

Example 1:

A record is to be added to file 1. The ISN of the record is to be assigned byAdabas. The field values
which are to be provided are:

VALUEFIELD

ABCDAA

AAAMF (value 1)

BBBMF (value 2)

5BA (1st occurrence)

6BA (2nd occurrence)

313Command Reference

N1/N2 Command (Add Record)

Control Block:

Command Code N1

Command ID bbbb (only 1 record being added)

File Number 1

Format Buffer Length 15 (or larger)

Record Buffer Length 16 (or larger)

Additions 3 bbbbbbbb (file 1 not security protected)

Buffer Areas:

Format Buffer AA,MF1-2,BA1-2.

Record Buffer 0x61626364202020206161616262620506
(or ^X61626364202020206161616262620506)

Example 2:

A record is to be added to file 2. The ISN of the record is to be provided by the user. The field
values to be provided are:

VALUEFIELD

12345678RA

ABCDRB

Command Reference314

N1/N2 Command (Add Record)

Control Block:

Command Code N2

Command ID bbbb (only 1 record is to be added)

File Number 2

ISN 20 (ISN 20 is to be assigned to the
record)

Format Buffer Length 6 (or larger)

Record Buffer Length 18 (or larger)

Additions 3 Password (file 2 is security protected)

Buffer Areas:

Format Buffer RA,RB.

Record Buffer 0x313233343536373861626364202020202020
(or ^X313233343536373861626364202020202020)

315Command Reference

N1/N2 Command (Add Record)

316

22 OP Command (Open User Session)

■ Function and Use .. 318
■ User Types ... 318
■ Control Block .. 323
■ Record Buffer ... 326
■ User Queue Element .. 328
■ Using OP to close previous session of same user .. 328
■ Examples ... 329

317

Function and Use

The OP command is used to indicate the beginning of a user session. If the user is not yet known
to Adabas, a new user queue element will be allocated, which will exist until the user issues a CL
command, or is stopped by Adabas or by an operator.

An OP command is mandatory if any of the following applies:

■ The user is an exclusive control user (see the description in Concepts and Facilities);
■ User data stored in an Adabas system file with an ET command is to be read;
■ The user is to be an access-only user (no update commands permitted);

An OP command is optional for all other users if OPTIONS=OPEN_REQUIRED is not enabled
for the current nucleus session. An implicit OP command will be issued by Adabas when the first
Adabas command is issued by a user who is not currently identified to Adabas.

Users who use files which are security protected are not required to issue an OP command, but
such users must provide a password with each command that involves a file which is security
protected.

If an OP command is issued by an active ET logic user, and the user is not at ET status (currently
has a record in hold), Adabas will issue a BT command for the user and will return response code
9 for theOP command. If anOP command is issued by any other type of active user, Adabas issues
a CL command for the user prior to processing the OP command.

User Types

Adabas recognizes various user types, depending on the type of access/update performed by the
user. See Concepts and Facilities, User Types for further details.

Command Reference318

OP Command (Open User Session)

OP Command, Procedure Flow

319Command Reference

OP Command (Open User Session)

OP Command, Procedure Flow (continued)

Command Reference320

OP Command (Open User Session)

OP Command, Procedure Flow (continued)

321Command Reference

OP Command (Open User Session)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

-/ABCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/ABISN Lower Limit

F/ABISN Quantity

F/UBRecord Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

F/UAAdditions 1

-/AA,BAdditions 2

-/AAAdditions 5

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

*/–Format Buffer

F/URecord Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU

Command Reference322

OP Command (Open User Session)

Not used-
Not used but must be included in parameter list of CALL statement*

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
OP

Command ID
For an access only user, Adabas always returns 0 in this field.

For an ET logic user, Adabas will return binary zeros in this field if the previous session for
this user was successfully terminated with a CL command, or no previous session existed for
this user. If this user is an ID user (Additions 1 is not blank) and the previous session of the
current user ID was not successfully terminated with a CL command, Adabas will return the
transaction sequence number of the last successfully-completed user transaction in this field.
Additionally, response code 9 is returned.

ISN Lower Limit
This field may be used to provide a user-specific non-activity time limit.

If this field contains binary zeros, the non-activity time limit specified by the appropriate
ADANUC parameter (TNAA, TNAE, or TNAX) for the Adabas session is in effect. Following
successful OP completion, Adabas returns system release information in this field; the timeout
information previously held here is instead returned in the Additions 5 field.

The following platform information is returned in the ISN Lower Limit field, considered as a
4-byte binary value:

ContentsByte

Architecture byte describing the hardware architecture of the database:high order byte

Bit 0x01 set: low-order first
Bit 0x01 not set: high-oder first

Bit 0x04 set: EBCDIC
Bit 0x04 not set: ASCII

Bit 0x20 set: IEEE floating point
Bit 0x20 not set: Mainframe floating point

This implies:

323Command Reference

OP Command (Open User Session)

ContentsByte

The architecture byte for Intel architectures (Windows, Linux) is 0x21.
The architecture byte for UNIX (AIX, HPUX, Solaris) zLINUX is 0x20.
The architecture byte for mainframe Adabas is 0x04.

product line:
2 = Open Systems

0

local/remote indicator (local nucleus = 0, remote nucleus = 1)low order byte

ISN Quantity
This field may be used to provide a user-specific transaction time limit.

If this field contains binary zeros, the non-activity time limit specified by the ADANUC para-
meter TT for theAdabas session is in effect. Following successfulOP completion,Adabas returns
system release information in this field; the timeout information previously held here is instead
returned in the Additions 5 field.

The following version information is returned in the ISNQuantity field, considered as a 4-byte
binary value:

ContentsByte

major versionhigh order byte

minor version

SM level

patch levellow order byte

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Record Buffer Length (ACB only)
The length of the record buffer must be specified in this field. The length specified must be
large enough to accommodate all required record buffer entries. The record buffer length
should be set to zero if an empty record buffer is to be supplied.

If user data which is stored in an Adabas system file is to be returned, the length specified
must be large enough to permit the user data to be inserted in the record buffer; otherwise,
the user data will be truncated.

Command Option 1
An `R' in this field indicates that the user is to be restricted to only those files specified in the
file list provided in the record buffer. Response code 17 will be returned if the user attempts
to access/update a file that is not contained in the file list. If an R is not specified in this field,
a request to access/update a file that is not in the file list is processed as described under User
Queue Element in this section.

Command Reference324

OP Command (Open User Session)

An `S' in this field enables the user section for subtransactions; this option implies the `R' option
if a file list has been specified.

Command Option 2
An `E' in this field indicates that user data stored in an Adabas system file by a CL or ET
command is to be returned in the record buffer.

The data stored with the last successful CL or ET command issued by the user in which user
data was provided is returned.

This option may only be used if the user has provided the same USERID for both this user
session and the session during which the user data was stored.

This field must be set to blank in all other cases.

Additions 1
This field may be used to provide a USERID for the user session.

A USERID must be provided if the user intends to store and/or read user data, and the user
wants this data to be available during a subsequent user– or Adabas session.
■ The user intends to store and/or read user data, and the user wants this data to be available
during a subsequent user- or Adabas session;

■ The user is to be assigned a special processing priority;

The value provided for the USERIDmust be unique for this user (not used by any other user),
and must begin with a digit or an uppercase letter.

Users for whom none of the above conditions are true should set this field to blanks.

Additions 2
If the command is successful, the value returned in this field by Adabas depends on the user
type:

The input value is unchanged.Access only user:

The value returned is the ISN of the user's last successfully completed transaction
for which user data was stored. If this is the first session or a non–ID user session,
the value 0 is returned.

ET logic user:

For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 5
User-specific timeout values as specified in the fields ISN lower limit and ISN quantity are
returned in the last 4 bytes of this field. The two high-order bytes contain the user-specific
non-activity time limit in binary format, the two low-order bytes contain the user-specific
transaction time limit in binary format.

325Command Reference

OP Command (Open User Session)

Record Buffer

The default encoding forW fields, the local time zone, and the files to be accessed and/or updated
and the type of updating to be performed are specified in this buffer.

The syntax of this buffer is:

[OP_expression,...].

OP_expression may be one of the following:

ExplanationOP_expression

You must specify as timezone the name of a time zone that is contained in the tz
database that is also known as the Olson database (see

TZ=’timezone’

https://www.iana.org/time-zones). You must specify the full name of a location,
for example:
America/New_York

You must specify as char_set an encoding name that is listed in
http://www.iana.org/assignments/character-sets - most of the character sets listed

WCHARSET=’char_set’

there,are supported by ICU, which is used by Adabas for internationalization
support. This character set is the default character set used for W fields in record
and value buffers in the Adabas user sessionwhen no other character set has been
specified in the format or search buffer.
Some character sets are platform-dependent, for example UTF-16. It is strongly
recommended that you use the corresponding platform-independent character
set, i.e. UTF-16BE or UTF-16LE instead of UTF-16. Otherwise Adabas cannot
guarantee which variant is used.

Here usage is one of the following:usage=file_list

■ ACC or ACCESS: files are to be accessed only.
■ UPD or UPDATE: files are to be updated (implies ET logic). Specifying 'UPD'
or '.' makes the user an ET logic user.

■ EXF: files are to be opened under exclusive control of the user. No other user
will be permitted to access the file while this user session is active. Exclusive
control will be given only if no other active user has issued an OP command in
which the ACC, EXF, EXU or UPD parameter was specified for the file.

■ EXU: file is to be updated under exclusive control of the user. No other user
will be permitted to update the file while this user session is active. Exclusive
control will be given only if no other active user has issued an OP command in
which the EXF, EXU or UPD parameter was specified for the file.

The syntax of file_list is:

filenumber [,filenumber] ...

Command Reference326

OP Command (Open User Session)

https://www.iana.org/time-zones
http://www.iana.org/assignments/character-sets

ExplanationOP_expression

where filenumber is a number (leading zeros permitted)which indicates theAdabas
file for which the preceding keyword is applicable.

TZ and WCHARSET may be specified only once.

Duplicate file numbers for a given usage keyword are permitted. Duplicate file numbers across
usage keywords are permitted. Each usage keyword may appear only once.

UPD, EXF and EXU also imply access to the file. If ACC or UPD are the only keywords specified,
a file list is not required.

The following keyword combinations are permitted:

■ ACC + EXF
■ ACC + EXU
■ ACC + UPD
■ EXF + UPD
■ EXU + UPD
■ ACC + EXF + UPD
■ ACC + EXU + UPD

A user may or may not be permitted to use a file currently in use by another user or by an Adabas
utility (denoted by UTI) as shown below:

USER 1 Current UsageUSER 2 Requested Usage
UTIUPDEXUEXFACC

noyesyesnoyesACC

nononononoEXF

nonononoyesEXU

noyesnonoyesUPD

nononononoUTI*

*Some utilities permit access to a file by other users during utility execution. In this case, the utility
issues an OP command with the EXU parameter specified.

If no keyword is supplied (in other words, if the record buffer is set to '.'), the user automatically
becomes an ET logic user. In this case, the record buffer length can be set to zero in the Adabas
control block and the record buffer need not be supplied.

327Command Reference

OP Command (Open User Session)

User Queue Element

During the time that a user is active, Adabas maintains a user queue element (UQE) for the user.
The UQE contains a list of file numbers for the files the user is currently using. The file list is gen-
erated when the user issues an OP command and may be modified during the user session. If no
OP command is issued, the file list will initially contain no files.

Each file in the file list is marked as one of the following:

■ ACC (access only)
■ EXF (read- and write-protected against all other users)
■ EXU (access and update and under exclusive control)
■ UPD (access and update)
■ UTI (access and update and in use by an Adabas utility)

If a subsequent attempt is made to access a file that is not currently in the user's file list, a test will
be made to determine whether the file is currently in use by an Adabas utility. If not, the file will
be added to the user's file list and marked as ACC.

If a subsequent attempt is made to update a file that is not currently in the user's file list, the fol-
lowing tests are applied:

■ Does the request conflict with the user type? For example, an access-only user may not issue
update commands;

■ Is the user's file list restricted because command option 1 in theOP command specifies the value
`R'?;

■ Is the file to be updated under exclusive control of another user or Adabas utility?

If the file is determined to be available for the user, the file is added to the user's file list andmarked
as UPD.

Using OP to close previous session of same user

The following special feature is activated only if the nucleus has been started with OPTIONS=
OPEN_REQUIRED.

If a user session is terminatedwithout a CL (close) command, e.g. by switching off and re–booting
a PC, the Adabas nucleus still considers the connection to be active. If the user wants to start a
new session with the same user ID, the nucleus handles this OP command as if it was issued by
a different user because of the new process ID, and so returns a response code to the user.

Command Reference328

OP Command (Open User Session)

However, if this user keeps trying to start the new session and the first session remains inactive
for a defined time frame (about 60 seconds) then the first session will be terminated. This termin-
ation may result in a backout transaction command (BT) for the first session. The second session
for the user will then be able to start. If the first session in the meantime issues another command,
the error response code 9will be returned to the first session, and additional information indicating
"open required" is returned in the field ADDITIONS_2 of the Control Block. See theMessages and
Codes manual, response code 9, value "open required" in field ADDITIONS_2 for further details.

Examples

Example 1: Access-only user with character set UTF-16BE

An access-only user session is to be opened with the character set UTF-16BE for W fields.

Control Block

Command Code OP

Record Buffer Length 24 (or larger)

Buffer Areas:

Record Buffer WCHARSET='UTF-16BE',ACC.

Example 2: ET logic user

A user session is to be opened, in which the user intends to access files 8 and 9, and update files
8 and 16. The user intends to store user data in an Adabas system file during the session. The user
data which was stored during the previous session is to be read. The USERID for the user is
USER0001.

Control Block:

Command Code OP

329Command Reference

OP Command (Open User Session)

Record Buffer Length 15 (or larger)

Command Option 2 E (user data is to be read)

Additions 1 USER0001 (USERID is required if user data
is to be stored and/or read)

Buffer Areas:

Record Buffer ACC=9,UPD=8,16.

Example 3: Exclusive control user without ET logic

A user session is to be opened, in which the user wishes to have exclusive control of files 10, 11
and 12. The user does not intend to use ET commands and does not intend to store and/or read
user data in/from an Adabas system file.

Control Block:

Command Code OP

Record Buffer Length 13 (or larger)

Command Option 2 b (user data is not to be stored or read)

Additions 1 bbbbbbbb (USERID is not required)

Buffer Areas:

Record Buffer EXU=10,11,12.

Example 4: Exclusive control user with ET logic

A user session is to be opened, in which the user wishes to have exclusive control of files 10,11
and 12. The user intends to use ET commands.

Command Reference330

OP Command (Open User Session)

Control Block:

Command Code OP

Record Buffer Length 26 (or larger)

Command Option 2 b (user data is not to be stored or read)

Additions 1 bbbbbbbb (USERID is not required)

Buffer Areas:

Record Buffer EXU=10,11,12,UPD=10,11,12.

Example 5: User-defined timeout value

A user session is to be opened, in which the user intends to update files 5 and 7. The user ID of
the user is USER0002. The user sessionwill runwith timeout values TNAE=30minutes and TT=10
minutes.

Control Block:

Command Code OP

Record Buffer Length 8

ISN Lower Limit 1800 (1800 seconds = 30 minutes)

ISN Quantity 600 (600 seconds = 10 minutes)

Additions 1 USER0002

331Command Reference

OP Command (Open User Session)

Buffer Areas:

Record Buffer UPD=5,7.

Command Reference332

OP Command (Open User Session)

23 RC Command (Release Command ID)

■ Function and Use .. 334
■ Control Block .. 338
■ Examples ... 339

333

Function and Use

The RC command is used to release one or more command IDs that are currently assigned to a
user.

A command ID should be released under any of the following circumstances:

■ The user has completed the processing of an ISN list which is stored on the Adabas temporary
working space as a result of an Sx command in which the SAVE ISN LIST option was used. This
will permit Adabas to reuse the space currently occupied by the list;

■ The user wishes to terminate a sequential pass of a file (L2/L5, L3/L6, L9 command) before
reaching an end–of–file condition;

■ The user has completed a series of L1/L4, A1,N1/N2 commands inwhich a non-blank command
ID was used.

Command Reference334

RC Command (Release Command ID)

RC Command, Procedure Flow

335Command Reference

RC Command (Release Command ID)

RC Command, Procedure Flow (continued)

Command Reference336

RC Command (Release Command ID)

RC Command, Procedure Flow (continued)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/UACommand Option 1

F/UACommand Option 2

-/AA,BAdditions 2

F/UAAdditions 5

-/ABCommand Time

F/UUser Area

337Command Reference

RC Command (Release Command ID)

Buffer Areas

Buffer

–/–Format Buffer

–/–Record Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
RC

Command ID
The local command ID or separate format buffer ID that is to be released is specified in this
field. A value of binary zeros will release all of the command IDs currently assigned to the
user.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Command Option 1/2
These fields are used to indicate that a command ID is to be released from the internal format
buffer pool, the ISN list table or the table of sequential commands. Information about each of
the above tables is contained in Programming Considerations, Using Command IDs.

Command Reference338

RC Command (Release Command ID)

An `F' in either of these fields indicates that the command ID(s) is/are to be released if contained
in the internal format buffer pool.

An `S' in either of these fields indicates that the command ID(s) is/are to be released if contained
in the table of sequential commands.

An `I' in either of these fields indicates that the command ID(s) is/are to be released if contained
in the ISN list table.

If both of these fields are set to blanks or binary zeros, the command ID(s) will be released
from all of the above tables in which it is or they are present.

An `L' in either of these fields indicates that a global format buffer ID is to be released. The
format buffer ID is provided in the Additions 5 field.

Additions 2
For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 5
This field is used to provide the global format buffer ID that is to be released if the command
option 1/2 field contains an `L'.

Examples

Example 1:

The command ID X003 is to be released.

Control Block

Command Code RC

Command ID X003 (command ID X003 to be released)

Command Option 1/2 bb (all CID types to be released)

Example 2:

All command IDs currently assigned to the user are to be released.

339Command Reference

RC Command (Release Command ID)

Control Block

Command Code RC

Command ID 0x00000000 (binary zeros indicate that
(or ^X00000000) all command IDs are to be released)

Command Option 1/2 bb (all CID types to be released)

Command Reference340

RC Command (Release Command ID)

Example 3:

All of the command IDs assigned to the user and which are contained in the table of sequential
commands or the internal format buffer pool are to be released.

Control Block

Command Code RC

Command ID 0x00000000 (binary zeros indicate that
(or ^X00000000) all command IDs are to be released)

Command Option 1 F (F indicates that command IDs contained
in the internal format buffer pool are to
be released)

Command Option 2 S (S indicates that command IDs contained
in the table of sequential commands are
to be released)

341Command Reference

RC Command (Release Command ID)

342

24 RE Command (Read ET User Data)

■ Function and Use .. 344
■ Control Block .. 346
■ Record Buffer ... 347
■ Examples ... 347

343

Function and Use

The RE command is used to read user data which has been previously stored in an Adabas system
file by a CL or ET command.

This user datamay be needed for a user restart following abnormal termination of a user or Adabas
session.

User data from a previous session may only be read if the user has specified the same USERID
with the OP command for both this session and the session in which the user data was stored.

User data stored by another user may be read if the USERID of the user who stored the data is
known.

RE Command, Procedure Flow

Command Reference344

RE Command (Read ET User Data)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

-/ABCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

F/UBRecord Buffer Length (ACB only)

F/UACommand Option 1

F/UAAdditions 1

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

*/–Format Buffer

–/ARecord Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-
Not used but must be included in parameter list of CALL statement*

345Command Reference

RE Command (Read ET User Data)

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
RE

Command ID
If the user who stored the user data is an ET logic user, Adabas will return the transaction se-
quence number of the last successful logical transaction for the user in this field.

If the user is not active and the last session was terminated normally, a 0 is returned.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

Record Buffer Length (ACB only)
The length of the record buffer. The length specified determines the number of bytes of user
data to be returned.

If the length specified is less than the number of bytes of user data available, only the specified
number of byteswill be inserted in the record buffer and the rightmost byteswill be truncated.
A response code 2 is returned.

Command Option 1
An `I' in this field indicates that user data stored by another user is to be read.

Additions 1
If user data stored by another user is to be read, this field must contain the USERID of the user
who stored the data.

Additions 2
If the user who stored the data being read was an ET logic user, Adabas will return the trans-
action sequence number of the user's last successfully completed transaction for which user
data was stored with an ET or CL command in this field.

Command Reference346

RE Command (Read ET User Data)

Record Buffer

Adabas returns the user data in this buffer.

If no ET data are found, the record buffer is filled with blanks.

If the record buffer is larger than the user data, the record buffer is paddedwith blanks. If the record
buffer is smaller than the user data, the user data are truncated.

Examples

Example 1:

The user wishes to read the user data which he previously stored with an ET command.

Control Block

Command Code RE

Record Buffer Length 100 (100 bytes user data is to be read)

Command Option 1 b (the user data to be read was stored by
this user)

Example 2:

The user wishes to read user data stored by another user (USERID = USER6666).

Control Block

Command Code RE

Record Buffer Length 150 (150 bytes of user data to be read)

347Command Reference

RE Command (Read ET User Data)

Command Option 1 I (the user data to be read was stored by
another user)

Additions 1 USER6666 (USERID of the user who stored
the user data)

Command Reference348

RE Command (Read ET User Data)

25 RI Command (Release Record)

■ Function and Use .. 350
■ Control Block .. 352
■ Example .. 352

349

Function and Use

The RI command is used to release the lock for a record or to downgrade the lock level from ex-
clusive to shared.

The user specifies the file and ISN of the record to be released.

An option is available which permits the user to release all of the records currently being held by
the user.

This command will be rejected for records which have been updated.

RI Command, Procedure Flow

Command Reference350

RI Command (Release Record)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/U (1)BFile Number

F/A (1)BResponse Code

F/ABISN

F/UACommand Option 3 (ACBX only)

-/AA,BAdditions 2

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

–/–Format Buffer

–/–Record Buffer

–/–Search Buffer

–/–Value Buffer

–/–ISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

351Command Reference

RI Command (Release Record)

Control Block

Command Code
RI

File Number
The number of the file which contains the record to be released.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully. Response code 0 will also be returned if the
specified record was not in hold status for the current user. If the specified record is in hold
status for another user, it will not be released, but response code 0 will be returned.

ISN
The ISN of the record to be released.

If all the records held by the user are to be released, this field must be set to binary zeros.

Command Option 3 (ACBX only)
A blank in this field releases the record completely from hold status. An ‘S’ in this field
downgrades the locking mode from exclusive to shared.

Example

The record identified by ISN 3 in file 2 is to be released from hold status.

Control Block

Command Code RI

File Number 2 (record to be released is in file 2)

ISN 3 (record with ISN 3 is to be released)

Command Reference352

RI Command (Release Record)

26 S1/S2/S4 Command (Find Records)

■ Function and Use .. 354
■ Control Block .. 359
■ Format Buffer .. 363
■ Record Buffer ... 363
■ Search and Value Buffers .. 364
■ ISN Buffer .. 364
■ Examples ... 364

353

Function and Use

The S1/S2/S4 commands are used to select a set of records which satisfy given search criteria.

The result of an S1/S2/S4 command is the set of records which satisfy the query along with a list
of the ISNs of the records. If the S1/S4 command is used, the ISNs are returned in ascending se-
quence in the ISN buffer. If the S2 command is used, the ISNs are returned according to a user-
specified sort sequence. The S4 command places the first ISN in the resulting ISN list in hold status,
i.e. lock the record for other users. The S4 command should be used if the user needs to prevent
other users from updating the record, e.g. because he wants to update the record. Please refer to
Concepts and Facilities, Competitive Updating, Shared Locks for further information. If the user already
holds a lock of a lower locking mode for the record the lock is upgraded to the locking mode re-
quested. If the user already holds a higher lockingmode for the re-cord, the lockingmode remains
unchanged.

Adabas will store (if requested) on the Adabas temporary working space any ISNs which could
not be inserted in the ISN buffer on the initial S1/S2/S4 call. These overflow ISNsmay be retrieved
subsequently by using further S1/S2/S4 calls. See Programming Considerations, ISN List Processing
for additional information.

Adabas will release an overflow ISN list when the last ISN in the list has been returned to the user.
If the user needs to retain the entire ISN list indefinitely, the SAVE ISN LIST option may be used.
If this option is specified, the entire ISN list is stored on the Adabas temporary working space and
is not released until an RC or CL command is issued (or the Adabas session is terminated).

If the user intends to read the records identified by the ISNs in the list by using the GET NEXT
option of the L1/L4 command, the ISN buffer is not required. ISNs are obtained automatically
from the stored ISN list by Adabas when this option is used.

The record identified by the first ISN in the resulting ISN list may optionally be read from Data
Storage with the S1/S2/S4 command by providing a format buffer.

Command Reference354

S1/S2/S4 Command (Find Records)

S1/S2/S4 Command, Procedure Flow

355Command Reference

S1/S2/S4 Command (Find Records)

S1/S2/S4 Command, Procedure Flow (continued)

Command Reference356

S1/S2/S4 Command (Find Records)

S1/S2/S4 Command, Procedure Flow (continued)

357Command Reference

S1/S2/S4 Command (Find Records)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

-/ABISN

F/UBISN Lower Limit

-/ABISN Quantity

F/UBFormat Buffer Length (ACB only)

F/UBRecord Buffer Length (ACB only)

F/UBSearch Buffer Length (ACB only)

F/UBValue Buffer Length (ACB only)

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

F/UACommand Option 3 (ACBX only)

F/UAAdditions 1

-/AA,BAdditions 2

F/AAAdditions 3

F/UAAdditions 5

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

F/UFormat Buffer

–/ARecord Buffer

F/USearch Buffer

F/UValue Buffer

–/AISN Buffer

Command Reference358

S1/S2/S4 Command (Find Records)

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF
Unchanged after Adabas callU
Not used-

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
S1/S2/S4

Command ID
This field is used to provide a value to identify the resulting ISN list if it is to be stored on the
Adabas temporary working space.

If the SAVE ISN LIST option is to be used, or if overflow ISNs are to be stored, a non-blank,
non-zero value must be provided in this field.

The high-order byte of this field must not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for addi-
tional information).

See Programming Considerations, ISN List Processing for additional information.

File Number
The number of the file from which the ISNs are to be selected.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN
Adabas returns the first ISN of the resulting ISN list in this field. If there were no resulting
ISNs, this field is not modified. This applies to both the initial call and any subsequent calls
which are used to retrieve ISNs from the Adabas temporary working space.

359Command Reference

S1/S2/S4 Command (Find Records)

ISN Lower Limit
This field may be used in an initial Sx call to limit the resulting ISN list to those ISNs which
are greater than the ISN specified in this field. If this field is set to zeros, Adabas will return
all qualifying ISNs.

In a subsequent Sx call, this field is used when a group of ISNs from a saved ISN list is being
retrieved from the Adabas temporary working space, in order to determine the first ISN to be
used.

ISN Quantity
Adabas returns, as a result of an initial Sx call, the number of records which satisfy the search
criteria in this field.

Adabas returns, as a result of a subsequent Sx call used to retrieve ISNs from the Adabas
temporary working space, the number of ISNs returned in the ISN buffer.

Format Buffer Length (ACB only)
The format buffer length (in bytes). The format buffer area defined in the user program must
be as large as (or larger than) the length specified.

Record Buffer Length (ACB only)
The record buffer length (in bytes). The record buffer area defined in the user program must
be as large as (or larger than) the length specified.

Search Buffer Length (ACB only)
The search buffer length (in bytes). The search buffer area defined in the user program must
be as large as (or larger than) the length specified.

Value Buffer Length (ACB only)
The value buffer length (in bytes). The value buffer area defined in the user program must be
as large as (or larger than) the length specified.

ISN Buffer Length (ACB only)
The ISN buffer length (in bytes). This length is used to determine the number of ISNs placed
in the ISN buffer.

If this field is set to zeros, no ISNs will be inserted in the ISN buffer. This field should be set
to zeros if the resulting ISN list is to be readwith the GETNEXT option of the L1/L4 command,
or if the command is being issued only to determine the number of qualifying records.

If a non-zero value is specified, it should be a multiple of 4. If it is not, Adabas will reduce the
length to the next-lowest integer which is a multiple of 4.

Command Option 1
An `H' in this field invokes the SAVE ISN LIST option. This option causes Adabas to store the
entire resulting ISN list on the Adabas temporary working space.

An `R' in this field indicates that the return option is to be used. If an S4 command is issued
and the record to be read andheld is currently held by another user, Adabaswill return response
code 145 rather than place the user in hold status until the record becomes available.

Command Reference360

S1/S2/S4 Command (Find Records)

Command Option 2
If the S2 command is being used, this field is used to indicate whether the resulting ISNs are
to be sorted in ascending or descending sequence.

A `D' indicates that descending sequence is to be used.

A 'T' indicates that the index truncation check is to be preformed. If this option is specified,
the search buffer must contain a descriptor with the TR option, and the value buffer must
contain the corresponding value. In this case, no search operation is performed, there is only
a check made to see whether or not the specified descriptor value is truncated in the index:
response code 0 indicates no truncation, response code 2 indicates truncation.

Command Option 1/2
An `I' in either of these fields causes the release of the CID value specified in the command ID
field as the first action taken during command execution.

Command Option 3 (ACBX only)
The command option 3 is relevant only for an S4 command.

A ‘C’ in this field indicates that a shared lock is to be acquired for the first record found for
only as long as the command is active. If the record was already locked before, the record re-
mains locked. Using this option avoids dirty reads: you see only the committed states of the
record.

An ‘S’ in this field indicates that the first record found is to be placed in shared hold status.
The lock will be released again when the current transaction is committed or backed out. If
the command belongs to a subtransaction, the lock is also released when the current subtrans-
action is backed out. You can also release the lock with an RI command.

A ‘Q’ in this field is allowed only for an S4 command with a command ID and ISN buffer
length 4, and indicates that the first record found is to be placed in shared hold status. The
lock is released again at start of next sequential read command for this read sequence, or when
one of the events happens, which releases a record read with ‘S’ option, whichever happens
first. If the same record is read by more than one command with the ‘Q’ option, the record is
only released when, for all these command sequences, either the next record has been read or
an RC command has been issued. If the same record has also been read by another command
with the ‘S’ option, or the record has been locked exclusively, the record is not released by
reading the next record of the command sequence. The 'Q' option is not allowed in combination
with command option 1 = ‘M’ (multifetch feature).

Note: If an S4 command finds only one record and the command option 1 is not equal
to 'H', no ISN list entry is generated. Therefore you cannot perform a sequential read
command for the command ID, which would release the record if it was read with the
'Q' option. This means that the record read with the 'Q' option remains in shared hold
status until an event occurs that would also release a record that is read with the 'S'
option.

361Command Reference

S1/S2/S4 Command (Find Records)

A blank in this field indicates that the record is locked exclusively.

Additions 1
If the S2 command is being used, this field is used to specify the field name(s) to be used to
control the sort sequence. Fromone to four namesmaybe specified.Descriptor or non-descriptor
field namesmay be used, but theymust not be derived fromaperiodic group.Hyperdescriptors
may be specified but not in combinationwith non-descriptor field names. Phonetic descriptors
must not be specified. Subdescriptors and superdescriptors may be specified if they are not
derived from a PE group. A multiple-value field may be specified, in which case the ISNs will
be sorted corresponding to the highest value present within a given record.

The descriptors are specified beginningwith byte 1 (left-justified) and any remaining positions
must be set to blanks ("b" in the following example).

Example:

XXYYbbbb

XX = major sort descriptor
YY = minor sort descriptor

If using non-descriptor fields, all of their values must be within the standard FDT length if the
length is not equal to zero, otherwise response 1 may be returned.

If a descriptor defined with the NU option and containing null values is used for the sort se-
quence, the null values appear at the beginning of the sorted list.

Example:

Sorted list with NU option : 0, -1, +1

Sorted list without NU option : -1, 0, +1

Additions 2
If at least one record is found, and at least one Adabas field is requested in the format buffer,
Adabas will return the compressed record length of the record which has been read in this
field. The length is provided in the first two bytes in binary format.

The last two bytes of this field contain the length of the decompressed fields selected by the
Format buffer, in binary format.

For some response codes, Adabas returns detailed information in this field. See Adabas Mes-
sages And Codes for further information.

Additions 3
This field is used to provide a security password.

Command Reference362

S1/S2/S4 Command (Find Records)

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 5
This fieldmay be used to provide a separate format buffer ID that is used to identify the internal
format buffer used for this command, or to provide a global format buffer ID.

As long as the first byte of the Additions 5 field is not alphanumeric, the value provided in
the command ID field will also be used as the format buffer ID.

If the first byte is a lower case character, the bytes 5 to 8 of the Additions 5 field will be used
as the separate local format buffer ID.

If the first byte is a digit or an upper case character, the Additions 5 field (8 bytes) will be used
as a separate global format buffer ID, which means that the format buffer ID can be used by
several users in parallel.

See Programming Considerations, Using Command IDs for additional information and examples.

Format Buffer

If the record identified by the first ISN in the resulting ISN list is to be read fromData Storage, the
fields within the record for which values are to be returned must be specified in this buffer.

The syntax and examples of format buffer construction are provided in Calling Adabas, Format and
Record Buffers.

If no read is to be performed, the first non-blank character in this buffer must be a period.

Record Buffer

If a format buffer is provided, Adabas returns the requested field values in this buffer.

The values are returned according to the standard length and format of the field, unless the user
has explicitly requested a different length and/or format in the format buffer.

363Command Reference

S1/S2/S4 Command (Find Records)

Search and Value Buffers

These buffers are used to define the search criterion. The search expression (or expressions) is
provided in the search buffer, and the values which correspond to the search expressions are
provided in the value buffer.

The syntax and examples of search and value buffer construction are provided in Calling Adabas,
Search and Value Buffers.

ISN Buffer

Adabas places the list of resulting ISNs in this buffer. Each ISN is returned as a four-byte binary
number.

The ISNs are returned in ascending ISN sequence unless the S2 command is being used, in which
case they are returned in the user-specified sort sequence.

If the ISN buffer length field is set to zeros, no ISNs will be returned in the ISN buffer.

If the ISN buffer length is not zero, the ISN buffer is not large enough to contain all the resulting
ISNs and a non-blank, non-zero command ID was used, Adabas will store the overflow ISNs on
the Adabas temporary working space. These ISNs may then be retrieved using further S1/S2/S4
calls in which the same command ID is used. See Programming Considerations, ISN List Processing
for additional information.

Examples

Note: All the examples in this section refer to the files in Appendix A.

Example 1:

The set of records in file 1 which contain a value in the range A to J for the descriptor AA is to be
selected.

Command Reference364

S1/S2/S4 Command (Find Records)

Control Block:

Command Code S1

Command ID bbbb (no ISNs are to be stored on the
Adabas temporary working space)

File Number 1

ISN Lower Limit 0 (all qualifying ISNs are to be returned)

Format Buffer Length 1 (or larger)

Search Buffer Length 12 (or larger)

Value Buffer Length 2 (or larger)

ISN Buffer Length 200 (no more than 50 ISNs are expected)

Command Option 1 b (SAVE ISN LIST option not used)

Additions 3 bbbbbbbb (the file is not security
protected)

Buffer Areas:

Format Buffer . (no read to be done)

Search Buffer AA,1,S,AA,1.

365Command Reference

S1/S2/S4 Command (Find Records)

Value Buffer C'AJ'

Example 2:

FIND with READ option. The ISN of the record containing the value ABCDEFGH for the field
AA in file 1 is to be selected. The record is also to be read from Data Storage with the value for the
field AC to be returned.

Control Block:

Command Code S1

Command ID bbbb (no ISNs are to be stored on the
Adabas temporary working space)

File Number 1

ISN Lower Limit 0 (all qualifying ISNs are to be returned)

Format Buffer Length 3 (or larger)

Record Buffer Length 20 (or larger)

Search Buffer Length 3 (or larger)

Value Buffer Length 8 (or larger)

ISN Buffer Length 4 (no more than 1 ISN expected)

Command Option 1 b (the Save ISN List option is not to be
used)

Command Reference366

S1/S2/S4 Command (Find Records)

Additions 3 bbbbbbbb (file is not security protected)

Buffer Areas:

Format Buffer AC. (the value for field AC is to be
returned)

Search Buffer AA.

Value Buffer "ABCDEFGH"
0x6162636465666768
(or ^X6162636465666768)

Example 3:

FIND with ISN buffer overflow. The set of records which contain any value in the range A to D
for field AA in file 1 are to be selected. ISN buffer overflow handling is to be used.

Control Block:

Command Code S1

Command ID ABCD (a non blank Command ID is required)

File Number 1

ISN Lower Limit 0 (all qualifying ISNs are to be returned)

Format Buffer Length 1 (or larger)

Record Buffer Length 0 (or larger)

367Command Reference

S1/S2/S4 Command (Find Records)

Search Buffer Length 12 (or larger)

Value Buffer Length 2 (or larger)

ISN Buffer Length 100 (up to 25 ISNs will be returned with
each call)

Command Option 1 b (SAVE ISN LIST option not used)

Additions 3 bbbbbbbb (file is not security protected)

Buffer Areas:

Format Buffer . (no read to be performed)

Search Buffer AA,1,S,AA,1.

Value Buffer "AD"
0x6164
(or ^X6164)

Adabas will return, as a result of the initial S1 call, a maximum of 25 ISNs in the ISN buffer. If
more than 25 ISNs resulted from the query, the remaining ISNs will be stored on the Adabas
temporary working space under the command ID ABCD. These overflow ISNs may be retrieved
by repeating the S1 call using the same command ID.

Example 4:

FIND with SAVE ISN LIST option. All the records containing the value +80 for the field XB in file
2 are to be selected. The entire resulting ISN list is to be stored on the Adabas temporary working
space.

Command Reference368

S1/S2/S4 Command (Find Records)

Control Block:

Command Code S1

Command ID BCDE (a non blank CID is required when
using the Save ISN List option)

File Number 2

ISN Lower Limit 0 (all qualifying ISNs are to be selected)

Format Buffer Length 1 (or larger)

Record Buffer Length 0 (or larger)

Search Buffer Length 3 (or larger)

Value Buffer Length 2 (or larger)

ISN Buffer Length 200 (a maximum of 50 ISNs will be
returned on each call)

Command Option 1 H (Save ISN List option is to be used)

Additions 3 Password (file is security protected)

369Command Reference

S1/S2/S4 Command (Find Records)

Buffer Areas:

Format Buffer . (no read is to be done)

Search Buffer XB.

Value Buffer 0x080C
(or ^X080C)

The user may retrieve any group of ISNs from the ISN list which is stored as a result of this call
by repeating the S1 command using the command ID BCDE. Adabas will insert as many ISNs as
can be accommodated in the ISN buffer, starting with the first ISN which is greater than the ISN
specified in the ISN Lower Limit field.

Example 5:

FIND with SORT. All records containing a value in the range A to F for the field AA in file 1 are
to be selected. The resulting ISN list is to be returned in the ascending order of the values for field
AB.

Control Block:

Command Code S2

Command ID CDEF (a non blank Command ID is required
when using the S2 command)

File Number 1

ISN Lower Limit 0 (all qualifying ISNs are to be selected)

Format Buffer Length 1 (or larger)

Command Reference370

S1/S2/S4 Command (Find Records)

Record Buffer Length 0 (or larger)

Search Buffer Length 12 (or larger)

Value Buffer Length 2 (or larger)

ISN Buffer Length 100 (a maximum of 25 ISNs will be
returned on each call)

Command Option 1 b (the Save ISN List option is not used)

Command Option 2 b (the descending sort option is not used)

Additions 1 ABbbbbbb (resulting ISNs are to be sorted
on the values of field AB)

Additions 3 bbbbbbbb (file is not security protected)

Buffer Areas:

Format Buffer . (no read is to be done)

Search Buffer AA,1,S,AA,1.

Value Buffer "AF"
0x6166
(or ^X6166)

Example 6:

FINDwith HOLD. The record in file 1 containing the value 87654321 for field AA is to be selected.
The record is also to be read and placed in hold status. The values for fields AB and AC are to be
returned.

371Command Reference

S1/S2/S4 Command (Find Records)

Control Block:

Command Code S4

Command ID bbbb (blank Command ID may be used since
SAVE ISN LIST option is not to be used
and no overflow ISNs are expected)

File Number 1

ISN Lower Limit 0 (all qualifying ISNs are to be selected)

Format Buffer Length 6 (or larger)

Record Buffer Length 22 (or larger)

Search Buffer Length 3 (or larger)

Value Buffer Length 8 (or larger)

ISN Buffer Length 4 (only 1 ISN is expected)

Command Option 1 b (the Save ISN List option is not to be
used)

Additions 3 bbbbbbbb (file is not security protected)

Command Reference372

S1/S2/S4 Command (Find Records)

Buffer Areas:

Format Buffer AB,AC. (the record which is identified by
the first ISN is to be read, values for
fields AB and AC are to be returned)

Search Buffer AA.

Value Buffer "87654321"
0x6867666564636261
(or ^X6867666564636261)

Example 7:

Find using multiple search criteria (complex search). The set of records in file 2 containing a value
of ABCD for subdescriptor SA, a value less than 80 for field XB and a value in the rangeMMMMM
through ZZZZZ (but not Sbbbb through TZZZZ) for field XE is to be selected.

Control Block:

Command Code S1

Command ID GGGG (a non blank Command ID is used
since Save ISN List option is to be used)

File Number 2

ISN Lower Limit 0 (all qualifying ISNs are to be selected)

Format Buffer Length 1 (or larger)

Record Buffer Length 0 (or larger)

373Command Reference

S1/S2/S4 Command (Find Records)

Search Buffer Length 35 (or larger)

Value Buffer Length 27 (or larger)

ISN Buffer Length 0 (No ISNs to be returned in the ISN
Buffer).

Command Option 1 H (Save ISN List option is to be used)

Additions 3 Password (file 2 is security protected)

Buffer Areas:

Format Buffer . (no read is to be done)

Search Buffer SA,D,XB,3,U,LT,D,XE,S,XE,N,XE,S,XE.

Value Buffer C'ABCD080MMMMMZZZZZSbbbbTZZZZ'

Command Reference374

S1/S2/S4 Command (Find Records)

27 S8 Command (Process ISN Lists)

■ Function and Use .. 376
■ Control Block .. 379
■ ISN Buffer .. 381
■ Example .. 381

375

Function and Use

The S8 command may be used to perform logical processing on two ISN lists which have been
previously created with Sx commands.

The ISN lists to be processedmust be in ISN sequence. ISN lists resulting from an S2 or S9 command
which are not in ISN sequence may not be used.

The ISN lists to be used should contain ISNs from a single Adabas file.

The S8 command can be used to perform the following logical operations:

■ AND. The resulting ISN list will contain those ISNs which are present in both ISN lists;
■ OR. The resulting ISN list will contain those ISNs which are present in either of the ISN lists;
■ NOT. The resulting ISN list will contain those ISNs which are present in the first ISN list but
not present in the second ISN list.

The resulting ISNs are returned in the ISN buffer in ascending sequence.

If one or both of the original ISN lists were stored without the SAVE ISN LIST option, the list(s)
will automatically be released at the end of the S8 command.

Command Reference376

S8 Command (Process ISN Lists)

S8 Command, Procedure Flow

377Command Reference

S8 Command (Process ISN Lists)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

-/ABISN

F/ABISN Lower Limit

-/ABISN Quantity

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

F/UAAdditions 1

-/AA,BAdditions 2

F/AAAdditions 3

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

*Format Buffer

*Record Buffer

*Search Buffer

*Value Buffer

–/AISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA
To be filled in by UserF

Command Reference378

S8 Command (Process ISN Lists)

Unchanged after Adabas callU
Not used-
Not used but must be included in parameter list of CALL statement*

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
S8

Command ID
This field is used to provide a value to identify the resulting ISN list if it is to be stored on the
Adabas temporary working space.

If the SAVE ISN LIST option is to be used, or if overflow ISNs are to be stored, a non-blank,
non-zero value must be provided in this field.

The high-order byte of this field must not be set to hexadecimal `FF', except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for addi-
tional information).

File Number
The number of the file from which the ISN lists that are to be processed were obtained.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN
Adabas returns the first ISN of the resulting ISN list in this field. If there were no resulting
ISNs, this field is not modified. This applies to both the initial call and any subsequent calls
which are used to retrieve ISNs from the Adabas temporary working space.

ISN Lower Limit
This field may be used in an initial Sx call to limit the resulting ISN list to those ISNs which
are greater than the ISN specified in this field. If this field is set to zeros, Adabas will return
all qualifying ISNs.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from the
Adabas temporary working space.

ISN Quantity
As a result of an initial S8 call, Adabas returns the number of records which are contained in
the resulting ISN list in this field.

379Command Reference

S8 Command (Process ISN Lists)

As a result of a subsequent S8 call used to retrieve ISNs from the Adabas temporary working
space, Adabas returns the number of ISNs returned in the ISN buffer.

ISN Buffer Length (ACB only)
The ISN buffer length (in bytes). This length is used to determine the number of ISNs placed
in the ISN buffer.

If this field is set to zeros, no ISNs will be inserted in the ISN buffer. This field should be set
to zeros if the resulting ISN list is to be readwith the GETNEXT option of the L1/L4 command,
or if the command is being issued only to determine the number of qualifying records.

If a non-zero value is specified, it should be a multiple of 4. If it is not, Adabas will reduce the
length to the next-lowest integer which is a multiple of 4.

Command Option 1
An `H' in this field invokes the SAVE ISN LIST option. This option causes Adabas to store the
entire resulting ISN list on the Adabas temporary working space.

Command Option 2
This field is used to indicate the logical operation that is to be performed on the ISN lists.

A `D' indicates that an AND operation is to be performed. The resulting ISN list will contain
those ISNs which are present in both ISN lists.

An `O' indicates that an OR operation is to be performed on the ISN lists. The resulting ISN
list will contain those ISNs which are present in either ISN list.

An `N' indicates that a NOT operation is to be performed on the ISN lists. The resulting ISN
list will contain those ISNs which are present in the first list but not in the second list.

An `I' releases the CID value specified in the Command ID field as the first action taken during
command execution.

Additions 1
The command IDs which identify the ISN lists to be processed must be specified in this field
(four bytes per command ID). Each ISN list must be currently stored on the Adabas temporary
working space and should contain ISNs from the same file.

Additions 2
For some response codes, Adabas returns detailed information in this field. SeeAdabasMessages
And Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Command Reference380

S8 Command (Process ISN Lists)

ISN Buffer

Adabas places the list of resulting ISNs in this buffer. Each ISN is returned as a four-byte binary
number.

If the ISN buffer length is not zero, and the ISN buffer is not large enough to contain all of the
resulting ISNs, and a non–blank, non–zero command IDwas used, Adabaswill store the overflow
ISNs on the Adabas temporary working space. These ISNs may then be retrieved using further
Sx calls inwhich the same command ID is used. See Programming Considerations, ISN List Processing,
for additional information.

Example

A logical OR operation is to be performed on two ISN lists in order to produce a third ISN list
which contains ISNs present in either list. The ISN lists to be processedwere stored on the Adabas
temporary working space under the command IDs U020 and U021. The resulting ISN list is to be
stored on the Adabas temporary working space under the Command ID U999. The SAVE ISN
LIST option is to be used.

Control Block:

Command Code S8

Command ID U999 (the resulting ISN list is to be
stored under the command ID U999)

ISN Lower Limit 0 (all of the resulting ISNs are to be
selected)

ISN Buffer Length 0 (no ISNs are to be returned in the ISN
Buffer)

381Command Reference

S8 Command (Process ISN Lists)

Command Option 1 H (Save ISN List option to be used)

Command Option 2 O (an OR operation is to be performed)

Additions 1 U020U021 (the ISN lists identified by the
command IDs U020 and U021 are to be
processed)

Additions 3 bbbbbbbb (file is not security protected)

Command Reference382

S8 Command (Process ISN Lists)

28 S9 Command (Sort ISN List)

■ Function and Use .. 384
■ Control Block .. 387
■ ISN Buffer .. 390
■ Examples ... 390

383

Function and Use

The S9 command is used to sort an ISN list which was created using an Sx command, or to sort a
list of ISNs provided by the user.

Two types of sorting may be done:

■ In the order of ISN values (ascending ISN sequence);
■ In the order of the values of a user-specified descriptor (or descriptors). The user may specify
from one to four descriptors which are to be used to control the sort sequence. Either ascending
or descending sequence may be specified.

The ISN list to be sorted may either be stored on the Adabas temporary working space or may be
provided in the ISN buffer.

The resulting ISN list is returned to the ISN buffer.

Command Reference384

S9 Command (Sort ISN List)

S9 Command, Procedure Flow

385Command Reference

S9 Command (Sort ISN List)

Control Block

FormatField

F/UBCall Type

-/-Reserved (internal use)

F/UACommand Code

F/UBCommand ID

F/U (1)BFile Number

F/A (1)BResponse Code

-/ABISN

F/UBISN Lower Limit

F/ABISN Quantity

F/UBISN Buffer Length (ACB only)

F/UACommand Option 1

F/UACommand Option 2

F/UAAdditions 1

-/AA,BAdditions 2

F/AAAdditions 3

F/AAAdditions 4

-/ABCommand Time

F/UUser Area

Buffer Areas

Buffer

*Format Buffer

*Record Buffer

*Search Buffer

*Value Buffer

F/AISN Buffer

Formats:

alphanumericA
binaryB

x/y before/after Adabas call - x and y can take the values:

Filled in by AdabasA

Command Reference386

S9 Command (Sort ISN List)

To be filled in by UserF
Unchanged after Adabas callU
Not used-
Not used but must be included in parameter list of CALL statement*

(1) Themeaning of this field depends on the value specified for "Call Type". SeeCalling Adabas,
The Control Block for details.

Control Block

Command Code
S9

Command ID
A non-blank, non-zero value may be specified in this field.

The high-order byte of this field must not be set to a hexadecimal `FF' except when automatic
command ID generation is used (see Programming Considerations, Using Command IDs for addi-
tional information).

File Number
The number of the file from which the ISN list to be sorted was obtained.

Response Code
Adabas returns the response code for the command in this field. Response code 0 indicates
that the command was executed successfully.

ISN
Adabas returns the first ISN of the resulting ISN list in this field. If there were no resulting
ISNs, this field is not modified. This applies to both the initial call and any subsequent calls
which are used to retrieve ISNs from the Adabas temporary working space.

ISN Lower Limit
This field may be used in an initial S9 call to limit the resulting ISN list to those ISNs which
are greater than the ISN specified in this field. If this field is set to zeros, Adabas will return
all qualifying ISNs.

This field is also used when a group of ISNs from a saved ISN list is being retrieved from the
Adabas temporary working space. See Programming Considerations, ISN List Retrieval for addi-
tional information.

ISN Quantity
As a result of an initial S9 call, Adabas returns the number of records which are contained in
the resulting ISN list in this field.

387Command Reference

S9 Command (Sort ISN List)

As a result of a subsequent S9 call used to retrieve ISNs from the Adabas temporary working
space, Adabas returns the number of ISNs returned in the ISN Buffer.

If the ISN list which is to be sorted is being provided in the ISN buffer, this field must contain
the number of ISNs that are to be sorted - if you specify a value larger than the number of ISNs
provided in the ISN buffer, it is reduced to the number of these ISNs.

ISN Buffer Length (ACB only)
The ISN buffer length (in bytes). This length is used to determine the number of ISNs placed
in the ISN buffer.

If this field is set to zeros, no ISNs will be inserted in the ISN buffer. This field should be set
to zeros if the resulting ISN list is to be readwith the GETNEXT option of the L1/L4 command,
or if the command is being issued only to determine the number of qualifying records.

If a non-zero value is specified, it should be a multiple of 4. If it is not, Adabas will reduce the
length to the next-lowest integer which is a multiple of 4.

If the ISNs to be sorted are contained in the ISN buffer, this field must contain a value equal
to or larger than the number of ISNs to be sorted multiplied by 4.

Command Option 1
An `H' in this field invokes the SAVE ISN LIST option. This option causes Adabas to store the
entire resulting ISN list on the Adabas temporary working space.

An ‘S’ in this field tells ADABAS that the ISN list is already sorted. The ‘S’ option includes the
SAVE ISN LIST option. If you specify the ‘S’ option, but the ISN list is not sorted, you get a
response code 24. The ‘S’ option is only allowed if the ISN list is provided in the ISN buffer -
Additions 4 must be set to blanks.

Command Option 2
This field may be used to invoke the descending sort option. A `D' indicates that the ISN list
is to be sorted in descending order. The descending option may not be specified when sorting
by ISN values.

Command Option 1/2
An `I' in either of these fields causes the release of the CID value specified in the command ID
field as the first action taken during command execution.

Additions 1
The value ISNbbbbb indicates that the ISN values are to be used as the sorting sequence.

This field may also contain the name(s) that is/are to be used to control the sort sequence.

From one to four names may be specified. These may be descriptors or non descriptor field
names, but theymust not be derived fromaperiodic group.Hyperdescriptorsmay be specified,
but not in conjunction with non-descriptor field names. Phonetic descriptors must not be
specified. Subdescriptors and superdescriptors may be specified if they are not derived from
a PE group. A multiple value field may be specified, in which case the ISNs will be sorted
corresponding to the highest value present within a given record.

Command Reference388

S9 Command (Sort ISN List)

The descriptors are specified beginningwith byte 1 (left-justified) and any remaining positions
must be set to blanks ("b" in the following example).

Example:

XXYYbbbb

XX = major sort descriptor
YY = minor sort descriptor

If using non-descriptor fields, all of their values must be within the standard FDT length if the
length is not equal to zero, otherwise response 1 may be returned.

If a descriptor defined with the NU option and containing null values is used for the sort se-
quence, the null values appear at the beginning of the sorted list.

Example:

Sorted list with NU option : 0, -1, +1

Sorted list without NU option : -1, 0, +1

Additions 2
For some response codes, Adabas returns detailed information in this field. See Adabas Mes-
sages And Codes for further information.

Additions 3
This field is used to provide a security password.

If the file to be used is not security protected, this field should be set to blanks. If the file is se-
curity protected, the user must provide a valid password.

Adabas sets this field to blanks during command processing to protect the integrity of any
password provided.

Additions 4
If the ISN list to be sorted is contained on the Adabas temporary working space, the command
ID under which the list is stored must be specified in the first 4 bytes of this field.

If the ISN list to be sorted is being provided in the ISN buffer, this field must be set to blanks.

389Command Reference

S9 Command (Sort ISN List)

ISN Buffer

The ISN list that is to be sorted may be provided by the user in this buffer. If the ISNs that are to
be sorted are being provided in this buffer, it must be large enough to initially contain all ISNs to
be sorted.

Adabas places the list of resulting ISNs in this buffer. Each ISN is returned as a four-byte binary
number.

If the ISN buffer length is not zero, and the ISN buffer is not large enough to contain all the resulting
ISNs, and a non-blank command IDwas used, Adabas will store the overflow ISNs on the Adabas
temporary working space. These ISNs may then be retrieved using further S9 calls in which the
same command ID is used. See Programming Considerations, ISN List Processing for additional in-
formation.

Examples

Example 1:

An ISN list contained in the ISN buffer is to be sorted in ISN sequence. 622 ISNs are to be sorted.

Control Block:

Command Code S9

Command ID S901 (a non blank, non zero command ID is
required)

File Number 1 (the ISN list to be sorted is derived
from file 1)

ISN Quantity 622 (622 ISNs are to be sorted)

Command Reference390

S9 Command (Sort ISN List)

ISN Lower Limit 0 (all ISNs are to be selected)

ISN Buffer Length 2488 (or larger) (each ISN to be sorted
requires 4 bytes)

Command Option 1 H (the Save ISN List option is to be used)

Command Option 2 b (ascending sequence is to be used)

Additions 1 ISNbbbbb (the ISN values are to be used
as the sorting sequence)

Additions 3 bbbbbbbb (file is not security protected)

Additions 4 bbbbbbbb (the ISN list to be sorted is
contained in the ISN Buffer)

Buffer Areas:

ISN Buffer The ISNs to be sorted are provided in
this buffer. Each ISN must be provided as
a four byte binary number.

Example 2:

An ISN list that is stored on the Adabas temporary working space is to be sorted. The command
ID under which the ISN list is stored is U066. The list is to be sorted using the descriptors AA and
AB as the major and minor sequence fields. The descending option is to be used.

Control Block:

Command Code S9

391Command Reference

S9 Command (Sort ISN List)

Command ID S902 (a non blank command ID is required)

File Number 1 (the ISN list was derived from file 1)

ISN Lower Limit 0 (All ISNs are to be selected)

ISN Buffer Length 0 (no ISNs are to be returned in the ISN
Buffer)

Command Option 1 H (the Save ISN List option is to be used)

Command Option 2 D (the descending option is to be used)

Additions 1 AAABbbbb (AA is to be used as the major
sequence field; AB is to be used as the
minor sequence field)

Additions 3 bbbbbbbb (file is not security protected)

Additions 4 U066bbbb (the ISN list to be sorted is
stored on the Adabas temporary working
space under the command ID U066)

Command Reference392

S9 Command (Sort ISN List)

29 Appendix A - File Definitions (Examples)

The following file definitions are used in all examples in this manual.

In these examples, SL means standard length, and SF means standard format.

File 1:

01,GA ; Group GA, consisting of fields AA and AB.

02,AA,8,A,DE,NU ; Elementary field AA; SL is 8 bytes, SF is
; Alphanumeric, Descriptor, Null Value
; Suppression.

02,AB,2,P,DE,NU ; Elementary field AB; SL is 2, SF is Packed,
; Descriptor, Null Value Suppression.

01,AC,20,A,NU ; Elementary field AC; SL is 20, SF is
; Alphanumeric, Null Value Suppression.

01,MF,3,A,MU,DE,NU ; Multiple value field MF; SL is 3, SF is
; Alphanumeric, Descriptor, Null Value
; Suppression.

393

01,GB,PE ; Periodic group GB.

02,BA,1,B,DE,NU ; Elementary field BA (within periodic group
; GB); SL is 1, SF is Binary, Descriptor, Null
; Value Suppression.

02,BB,5,P,NU ; Elementary field BB (within periodic group
; GB); SL is 5, SF is Packed, Null Value
; Suppression.

02,BC,10,A,NU ; Elementary field BC (within periodic group
; GB); SL is 10, SF is Alphanumeric, Null Value
; Suppression.

01,GC,PE ; Periodic group GC.

02,CA,7,A,DE,NU ; Elementary field CA (within periodic group
; GC); SL is 7, SF is Alphanumeric, Descriptor,
; Null Value Suppression.

02,CB,10,A,MU,NU ; Multiple value field CB (within periodic group
; GC); SL is 10, SF is Alphanumeric, Null Value
; Suppression.

01,DA,4,F,NC ; Elementary field DA; SL is 4; SF is Fixed Point;
; may contain SQL NULL values

01,W1,0,W ; Elementary field W1
; SL is variable
; SF is Unicode

File 2:

Command Reference394

Appendix A - File Definitions (Examples)

01,L1,0,A,NU,NV,NB,LB ; LOB field

01,RG ; Group RG, consisting of all other fields in the
; record.

02,RA,8,A,DE,NU ; Elementary field RA; SL is 8, SF is Alphanumeric,
; Descriptor, Null Value Suppression.

02,RB,10,A,DE ; Elementary field RB; SL is 10, SF is
; Alphanumeric, Descriptor.

02,GX ; Group GX, consisting of the fields XA, XB, XC,
; XD, and XE.

03,XA,10,A ; Elementary field XA; SL is 10, SF is
; Alphanumeric.

03,XB,2,P,DE ; Elementary field XB; SL is 2, SF is Packed,
; Descriptor.

03,XC,6,U ; Elementary field XC; SL is 6, SF is Unpacked.

03,XD,8,A,DE,NU ; Elementary field XD; SL is 8, SF is
; Alphanumeric, Descriptor, Null Value
; Suppression.

03,XE,5,A,DE,NU ; Elementary field XE; SL is 5, SF is
; Alphanumeric, Descriptor, Null Value
; Suppression.

SA=RA(1,4) ; Subdescriptor SA; derived from bytes 1 through
; 4 of field RA, format is Alphanumeric.

395Command Reference

Appendix A - File Definitions (Examples)

SB=RA(1,8),RB(1,4) ; Superdescriptor SB; derived from bytes 1
; through 8 of field RA and bytes 1 through 4 of
; field RB, format is Alphanumeric.

SC=XB(1,2),XC(1,6) ; Superdescriptor SC; derived from bytes 1
; through 2 of field XB and bytes 1 through 6 of
; field XC, format is Binary.

SD,B,UQ = XC(1,1),XC(5,6)
; Superdescriptor SD; derived from the first byte
; and the bytes 5 through 6 of the field XC, the
; resulting format is binary, unique descriptor

Command Reference396

Appendix A - File Definitions (Examples)

30 Appendix B - File Definition For Example Programs

This file definition is used for the following example program.

1 , A0 ; Personnel data
2 , AA , 8 , A , DE,UQ ; Personnel ID
2 , AB ; ID data
3 , AC , 4 , F , DE ; Personnel no.
3 , AD , 8 , B , NU,HF ; ID card
3 , AE , 0 , A , LA,NU,NV,NB ; Signature

1 , B0 ; Full name
2 , BA , 40 , W , NU ; First name
2 , BB , 40 , W , NU ; Middle name
2 , BC , 50 , W , NU ,DE ; Name

1 , CA , 1 , A , FI ; Maritial status
1 , DA , 1 , A , FI ; Sex
1 , EA , 4 , P , DE,NC ; Birth
1 , F0 , PE ; Private address
2 , FA , 60 , W , NU,MU ; Address line
2 , FB , 40 , W , DE,NU ; City
2 , FC , 10 , A , NU ; Post code
2 , FD , 3 , A , NU ; Country
2 , F1 ; Phone email
3 , FE , 6 , A , NU ; Area code
3 , FF, 15 , A , NU ; Private phone
3 , FG , 15 , A , NU ; Private fax
3 , FH , 15 , A , NU ; Private mobile
3 , FI , 80 , A , NU,MU,DE ; Private email

1 , I0 , PE ; Business address
2 , IA , 40 , W , NU,MU ; Address line
2 , IB , 40 , W , DE,NU ; City
2 , IC , 10 , A , NU ; Post code
2 , ID , 3 , A , NU ; Country
2 , IE , 5 , A , NU ; Room number
2 , I1 ; Phone email
3 , IF , 6 , A , NU ; Area code
3 , IG , 15 , A , NU ; Business phone

397

3 , IH , 15 , A , NU ; Business fax
3 , II , 15 , A , NU ; Business mobile
3 , IJ , 80 , A , NU,MU,DE ; Business email

1 , JA , 6 , A , DE ; Department
1 , KA , 66 , W , DE,NU ; Job title
1 , L0 , PE ; Income
2 , LA , 3 , A , NU ; Currency code
2 , LB , 6 , P , NU ; Salary
2 , LC , 6 , P , NU,MU,DE ; Bonus

1 , MA , 4 , G , NU ; Total income
1 , N0 ; Leave data
2 , NA , 2 , U ; Leave due
2 , NB , 3 , U , NU ; Leave taken

1 , O0 , PE ; Leave booked
2 , OA , 8 , U , NU ; Leave start
2 , OB, 8 , U , NU ; Leave end

1 , PA , 3 , A , DE,NU,MU ; Language
1 , QA , 7 , P ; Last update
1 , RA , 0 , A , LB,NU,NV,NB ; Picture
1 , S0 , PE ; Documents
2 , SA , 80 , W , NU ; Document description
2 , SB , 3 , A , NU ; Document type
2 , SC , 0 , A , LB,NU,NV,NB,MU ; Document

CN,HE=COLLATING(BC,'de__PHONEBOOK',PRIMARY)
H1=NA(1,2),NB(1,3)
S1=JA(1,2)
S2=JA(1,6),BC(1,40)
S3=LA(1,3),LB(1,6)

Command Reference398

Appendix B - File Definition For Example Programs

31 Appendix C - C Examples

■ C Example ... 400
■ C Example for LOB Processing .. 406

399

This Appendix contains examples in C using direct Adabas calls.

C Example

The Adabas file defined in Appendix B is used in this example.

/************* ADABAS ************* (C) Copyright Software AG 2005
*
* File : c_example.c
* Description: Example for ADABAS calls from C programs
*
*
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <adabasx.h> /* include adabas definitions */

#define NULLPTR ((char *) 0) /* define for NULL-pointer */

int dbid; /* default database */
int emp_file ; /* filenumber */

#define FMTBUF "LB1,4,F." /* FB: get first salary field */
#define FBLEN 8 /* format buffer's length */

#define SEABUF "BC,5." /* SB: search NAME equal to */
#define SBLEN 5 /* search buffer's length */

#define VALBUF "SMITH" /* VB: name to search for */
#define VBLEN 5 /* value buffer's length */

#define RBLEN 4 /* record buffer's length */
#define IBLEN 4 /* ISN buffer's length */

char openrb[100]; /* record buffer used for OPEN */

/*

Command Reference400

Appendix C - C Examples

+----------------+
! define buffers !
+----------------+

*/

static CB_PAR cb; /* control block */

static int isn_buffer; /* ISN buffer (1 ISN) */

static int rb_salary; /* record buffer (for salary field) */

/***/
/** Module Local Functions **/
/***/

int usage ();
int open_database ();
int close_database();
void response ();
int update_record();
int find_record();
int issue_bt ();

usage()
{

printf("usage: c_example <dbid> <employees file number>\n");
exit(1);

}

/*
+------------------+
! Main program !
+------------------+

*/

int main (int argc, char **argv)
{

register int upd = 0; /* update counter */
register int old_salary; /* saving salary field */

printf ("\nSoftware AG - C example program for calling ADABAS\n\n") ;

if (argc==3)
{

if (sscanf (argv[1],"%d",&dbid)==0)
usage ();
if (sscanf (argv[2],"%d",&emp_file)==0)
usage ();

401Command Reference

Appendix C - C Examples

}
else

usage();

/*--------------*/
/* Open session */
/*--------------*/
if (open_database() != ADA_NORMAL)

response (); /* open command failed */
else
{

/*--------------------------------------*/
/* Search all persons with name = SMITH */
/*--------------------------------------*/
if (find_record () == ADA_NORMAL)
{

printf ("Found %ld records with name %s, increase salary by 10 %%\n",
cb.cb_isn_quantity, VALBUF);

while (cb.cb_return_code == ADA_NORMAL && cb.cb_isn_quantity != 0)
{

old_salary = rb_salary;
rb_salary += rb_salary / 10;

/*-------------------------*/
/* Increase salary by 10 % */
/*-------------------------*/

if (update_record () != ADA_NORMAL)
cb.cb_isn_quantity = 0;

else
{

upd++;
printf

("%3d. ISN = %8d old salary = %10ld new salary = %10ld\n",
upd, cb.cb_isn, old_salary, rb_salary);

/*-----------------*/
/* Get next record */
/*-----------------*/

find_record ();
}

}
}

if (cb.cb_return_code != ADA_NORMAL) /* if response given: */
{

response (); /* display response code */
cb.cb_return_code = ADA_NORMAL;

if (upd != 0) /* if updates done */
{

if (issue_bt () == ADA_NORMAL) /* backout transaction */

Command Reference402

Appendix C - C Examples

upd = 0;
else

response (); /* BT failed */
}
}

if (close_database () != ADA_NORMAL)
response ();

}
}

/*
+------------------------+
! Open the database for !
! updating the EMPLOYEES !
! file !
+------------------------+

*/

int open_database ()
{

cb.cb_cmd_code[0] = 'O';
cb.cb_cmd_code[1] = 'P';

sprintf(openrb,"UPD=%d.",emp_file);

cb.cb_rec_buf_lng = strlen(openrb);
do
{

CB_SET_FD(&cb,dbid,0);
adabas (&cb , NULLPTR , openrb, NULLPTR, NULLPTR, NULLPTR);

}
while (cb.cb_return_code == ADA_TABT);

cb.cb_isn_quantity = 0;
cb.cb_isn_ll = 0;

return (cb.cb_return_code);
}

/*
+--------------------------------+
! Close the database and give !
! implicit end of transaction. !
+--------------------------------+

*/

int close_database ()

403Command Reference

Appendix C - C Examples

{
CB_SET_FD(&cb,dbid,0);

cb.cb_cmd_code[0] = 'C';
cb.cb_cmd_code[1] = 'L';

adabas (&cb, NULLPTR, NULLPTR, NULLPTR, NULLPTR, NULLPTR);

return (cb.cb_return_code);
}

/*
+--------------------------------+
! Call ADABAS to find all people !
! named SMITH and read them !
+--------------------------------+

*/

int find_record ()
{

CB_SET_FD(&cb,dbid,emp_file);

if (cb.cb_isn_quantity == 0) /* if first call: */
{ /* search records and */

cb.cb_cmd_code[0] = 'S'; /* read first one */
cb.cb_cmd_code[1] = '4';
cb.cb_cmd_id[0] = 'F';
cb.cb_cmd_id[1] = 'I';
cb.cb_cmd_id[2] = 'N';
cb.cb_cmd_id[3] = 'D';

cb.cb_fmt_buf_lng = FBLEN;
cb.cb_rec_buf_lng = RBLEN;
cb.cb_sea_buf_lng = SBLEN;
cb.cb_val_buf_lng = VBLEN;
cb.cb_isn_buf_lng = IBLEN; /* read 1. record by search */

}
else /* if subsequent call: */
{ /* read next record */

cb.cb_cmd_code[0] = 'L';
cb.cb_cmd_code[1] = '4';
cb.cb_cop2 = ADA_GET_NEXT; /* activate get-next option */

}

adabas (&cb , FMTBUF , &rb_salary , SEABUF , VALBUF , &isn_buffer);

if (cb.cb_return_code == ADA_EOF)
{

cb.cb_return_code = ADA_NORMAL; /* indicate success */
cb.cb_isn_quantity = 0; /* force termination of loop */

Command Reference404

Appendix C - C Examples

}
return (cb.cb_return_code);

}

/*
+----------------------------+
! Change the value of salary !
! and update the record !
+----------------------------+

*/

int update_record ()
{

CB_SET_FD(&cb,dbid,emp_file);

cb.cb_cmd_code[0] = 'A';
cb.cb_cmd_code[1] = '1';
cb.cb_cop1 = cb.cb_cop2 = ' ';

adabas (&cb , FMTBUF , &rb_salary, NULLPTR, NULLPTR, NULLPTR);

return (cb.cb_return_code);
}

/*
+-----------------------+
! printf response code !
+-----------------------+

*/

void response ()
{

printf ("** Response code %d from ADABAS for Command %-2.2s\n",
cb.cb_return_code , cb.cb_cmd_code);

printf ("** Additions2 %d %d\n",
cb.cb_add2[2] , cb.cb_add2[3]);

}

/*
+--------------------+
! Issue BT command !
+--------------------+

*/

int issue_bt ()

405Command Reference

Appendix C - C Examples

{
CB_SET_FD(&cb,dbid,0);

cb.cb_cmd_code[0] = 'B';
cb.cb_cmd_code[1] = 'T';
cb.cb_cop1 = cb.cb_cop2 = ' ';

adabas (&cb, NULLPTR, NULLPTR, NULLPTR, NULLPTR, NULLPTR);

return (cb.cb_return_code);
}

C Example for LOB Processing

This example works with any file that contains an elementary LOB field; the database ID, file
number and name of the LOB field can be passed to the program as parameters.

/************* ADABAS ************* (C) Copyright Software AG 2006 **********
*
* File : lob_example.c
*
* Description: Example for ADABAS calls from C programs
*
* This is an example how read and write large objects in a database
* or to read an object from a database
*
* Parameters:
* function (add_lob or read_lob)
* Database-ID
* Filenr
* Isn
* fieldname
* filename
*
* The add_lob function reads a disk file and adds or updates the
* content of a specified field in a database. This is done by an
* ADABAS A1 call.
* The record must exist and the given field is updated.
*
* The read_lob function does two L1 calls to retrieve the size and
* the content of a given field in a database. The content is then
* written to a disk file.
*
*
* adabasx()is required for buffers greater than 64 K.
* The buffers are described by ABD structures (ADABAS Buffer
* descritpions) that are passed as arguments to adabasx.
* More than one pair of ABDs for record and format buffer can be used.

Command Reference406

Appendix C - C Examples

* (See function add_lob)
* This means that not all data has to be in one continuous memory
* area.The ABDs are initialized by the SETABD macros.
*
*
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include "adabasx.h" /* include adabas definitions */

/* opening the database */
void open_database(int dbid);

/*close the database */
void close_database(int dbid);

/*usage descriptions */
void usage();

/* display response code */
void response(ACBX *cbx);

/* read from database */
void read_lob(int dbid, int filenr, int isn, char *filename, char *field);

/* write in the database */
void add_lob(int dbid, int filenr, int isn, char *filename, char *field);

/* read from the file */
int read_file(char *filename, void **obj);

/* write LOB to file */
void write_file(char *filename, char *obj, unsigned int objsize);

int main (int argc, char **argv)
/*
 Main function
 read the argument and pass control to one of the functions
*/

{
 int filenr, dbid, isn; /* variables for adabas call */
 char * command = NULL; /* command to execute (read/write)*/
 char * filename = NULL; /* filename */
 char *field; /* field of the database */

407Command Reference

Appendix C - C Examples

 printf("\nSoftware AG - C example program for calling ADABAS with large");
 printf(" objects\n\n add/read a large object to/from a record \n\n");

 if(argc != 7)
 usage();
 else
 {
 command = &argv[1][0];

 if((strcmp(command ,"add_lob") != 0)
 && (strcmp(command, "read_lob") != 0))
 {
 usage ();
 }

 if(sscanf(argv[2],"%d",&dbid) == 0)
 usage();

 if(sscanf (argv[3],"%d",&filenr) == 0)
 usage();

 if(sscanf (argv[4],"%d",&isn) == 0)
 usage();

 field = argv[5];

 filename = argv[6];
 }

 open_database(dbid); /* Open database */

 /* read in the database */
 if(strcmp(command, "add_lob") == 0)
 add_lob(dbid, filenr, isn, filename, field);
 else /* Write from database */
 read_lob(dbid, filenr, isn, filename, field);

 close_database(dbid); /* Close database */

}

void usage()
/*--
 Display how the program has to be used
--*/
{
printf("usage:\n");
printf(" lob_example (add_lob | read_lob) <dbid> <file> <isn> <field> <file ↩
name>");

Command Reference408

Appendix C - C Examples

printf("\n\n");
printf(" add_lob : Read an object from <file name> and update <field> in ↩
record\n");
printf(" read_lob : Read from database, save to file on disk\n");
printf(" dbid : Number of ADABAS database\n");
printf(" file : Number of file\n");
printf(" isn : ISN of record to be updated/read\n");
printf(" field : Field where object is (to be) stored\n");
printf(" file name: Name of the disk file to be read or written\n\n");
printf(" ie.: lob_example add_lob 12 9 1100 RA picture.jpg \n");
printf(" ie.: lob_example read_lob 12 9 1100 RA picture.jpg\n");
 exit(1);
}

void open_database(int dbid)

/*---
 Open the database

 This call is done with conventional adabas
 function.
 All other calls are done via adabasx to show that
 The two types of calls can be mixed.
---*/

{

 CB_PAR cb; /* Control block */
 char *open_rb = ".";

 memset(&cb,0,sizeof(cb));

 cb.cb_call_type=0;

 cb.cb_cmd_code[0] = 'O'; /* open options */
 cb.cb_cmd_code[1] = 'P';
 CB_SET_FD(&cb,dbid,0);
 adabas(&cb, 0, open_rb , 0 ,0 ,0); /* adabas call */

 if(cb.cb_return_code != 0)
 {
 printf("Open of Database %d failed with response %d\n",
 dbid,
 cb.cb_return_code);
 exit(1);
 }
}

409Command Reference

Appendix C - C Examples

void read_lob(int dbid, int filenr, int isn, char *filename, char *field)
/*--+
 Read a large object from database
 two L1 calls are done:
 the first to determine the size of the object.
 then a buffer with this size is allocated.
 the second reads the actual object.
+---*/
{
#define abdcount 4
 char i=0;
 ACBX cbx; /* Control block */
 ABD object_fb_abd; /* Format buffer ABD for the object */
 ABD object_rb_abd; /* Record buffer ABD for the object */
 ABD object_size_fb_abd; /* Format buffer ABD for the size */
 ABD object_size_rb_abd; /* Record buffer ABD for the size */

 ABD* pabd[abdcount]; /* ABD array for Adabas call */

 char size_fb[20]; /* format buffer for size */
 char object_fb[30]; /*format buffer to retrieve the */
 /*object itself */
 unsigned int object_size; /*The 4-Byte integer object_size */
 /*is our record buffer */
 /*for the first call */
 unsigned int object_size_chk;/*store the size to check if object*/
 /*changed between the calls */

 SETACBX (&cbx);

 cbx.acbxdbid = dbid;
 cbx.acbxfnr = filenr;
 cbx.acbxisn = isn;
 cbx.acbxcmd[0] = 'L'; /* Command code */
 cbx.acbxcmd[1] = '1';

 /*Initialize the abds*/
 pabd[0] = &object_size_fb_abd;
 pabd[1] = &object_size_rb_abd;
 pabd[2] = &object_fb_abd;
 pabd[3] = &object_rb_abd;

 /*Initialize abd*/
 for (i=0 ;i< abdcount;i++)
 {
 SETABD (pabd[i]);
 pabd[i]->abdloc = ABDQIND;
 /* ABDQIND means that the buffer is found at abdaddr */
 }

Command Reference410

Appendix C - C Examples

 object_size_fb_abd.abdid = ABDQFB;
 sprintf(size_fb, "%sL.", field);
 object_size_fb_abd.abdaddr = size_fb;
 object_size_fb_abd.abdsend =
 object_size_fb_abd.abdsize = strlen(size_fb);

 object_size_rb_abd.abdid = ABDQRB;
 object_size_rb_abd.abdaddr = &object_size;
 object_size_rb_abd.abdsize = sizeof(object_size);

 adabasx (&cbx, 2 , pabd);
 response(&cbx);

 printf("Size of Object in Database :%d \n\n",object_size);
 if (object_size)
 {
 object_fb_abd.abdid = ABDQFB;

 sprintf(object_fb, "%s,*.", field);
 object_fb_abd.abdaddr = object_fb;
 object_fb_abd.abdsend = object_fb_abd.abdsize = strlen(object_fb);

 object_rb_abd.abdid = ABDQRB;

 do {
 object_size_chk=object_size;

 /*Now the memory for the object is allocated */
 /*and the object itself is read by a second call */
 /*the lenth is read again to verify that it is unchanged */
 object_rb_abd.abdsize = object_size_chk;
 if (object_rb_abd.abdaddr)
 free(object_rb_abd.abdaddr);
 object_rb_abd.abdaddr = malloc (object_size_chk);
 if (object_rb_abd.abdaddr)
 {
 adabasx (&cbx , 4 , pabd); /* Adabas call */
 response(&cbx);

 }
 else
 {
 printf ("*** Memory allocation for Record Buffer failed");
 close_database(dbid);
 exit (-1);
 }
 } while (object_size>object_size_chk&&object_size);
 }
 if (object_size)

411Command Reference

Appendix C - C Examples

 {
write_file(filename, object_rb_abd.abdaddr, (unsigned int)object_rb_abd.abdsize);
printf("Object from field %s ISN %d file %d Database %d successfully written\nto ↩
file %s\n\n",
field,isn,filenr,dbid,filename);
 }
 else
 {
printf("No Object found in field %s ISN %d file %d Database %d\n",
field,isn,filenr,dbid);
printf("No file written\n\n");
 }

}

void write_file(char *filename, char *obj, unsigned int objsize)
/*--
 write LOB to disc file
---*/
{
 FILE * fd;
 struct stat st; /* to specify the exists of the file */

 if(stat(filename , &st) > 0)
 {
 printf("The file %s already exists!\n\n", filename);
 exit(1);
 }
 /* open the file */
 if((fd = fopen(filename, "wb+")) == NULL)
 {
 printf("File %s could not be opened for writing!\n\n", filename);
 exit(1);
 }
 /* write in the file */
 else if (fwrite (obj, 1, objsize, fd) < 0)
 {
 printf("Cannot write to file %s\n\n", filename);
 exit(1);
 }
 fclose(fd);
}

void add_lob(int dbid, int filenr, int isn, char *filename, char *field)
/*--
 add a large object to a record in a database.
 for demonstration purposes two pairs of record and format
 buffer segments are used:

Command Reference412

Appendix C - C Examples

 one pair is used to specify the size of the object
 one pair is used for the object itself
 --*/
{
#define abdcount 4
 char i=0;
 ACBX cbx; /* Control block */
 ABD object_fb_abd; /* Format buffer ABD for the object */
 ABD object_rb_abd; /* Record buffer ABD for the object */
 ABD object_size_fb_abd; /* Format buffer ABD for the size */
 ABD object_size_rb_abd; /* Record buffer ABD for the size */

 ABD* pabd[abdcount]; /* ABD array for Adabas call */

 char size_fb[20]; /* format buffer for size */
 char object_fb[20]; /* format buffer for content */
 int object_size;

 SETACBX (&cbx); /* Initialing abds */
 cbx.acbxdbid = dbid;
 cbx.acbxfnr = filenr;
 cbx.acbxisn = isn;
 cbx.acbxcmd[0] = 'A'; /* Record Update */
 cbx.acbxcmd[1] = '1';
 cbx.acbxcop1 = 'H'; /* Hold status database */

 pabd[0] = &object_size_fb_abd;
 pabd[1] = &object_fb_abd;
 pabd[2] = &object_size_rb_abd;
 pabd[3] = &object_rb_abd;

 /*Initialize abd*/
 for (i=0 ;i< abdcount;i++)
 {
 SETABD (pabd[i]);
 pabd[i]->abdloc = ABDQIND;
 /* ABDQIND means that the buffer is found at abdaddr */
 }

 /*the object is stored in a pair of rb and fb */
 object_fb_abd.abdid = ABDQFB;
 object_fb_abd.abdaddr = object_fb;
 sprintf (object_fb,"%s,*.",field);
 object_fb_abd.abdsend = object_fb_abd.abdsize = strlen(object_fb);
 strlen(object_fb);

 object_rb_abd.abdid = ABDQRB;
 /*store the size of the object in the abdsize field */
 /*this field is also used as the second record buffer segment*/

413Command Reference

Appendix C - C Examples

 object_size = (int)read_file(filename, &object_rb_abd.abdaddr);
 object_rb_abd.abdsend = object_rb_abd.abdsize = object_size ;

 printf("** Size of Object to add:%d \n\n",object_rb_abd.abdsize);

 /*the size of the object is stored in a separate pair */

 object_size_fb_abd.abdid = ABDQFB;
 object_size_fb_abd.abdaddr=size_fb;
 sprintf (size_fb,"%sL.",field);
 object_size_fb_abd.abdsend = object_size_fb_abd.abdsize
 = strlen(size_fb);

 object_size_rb_abd.abdid = ABDQRB;
 object_size_rb_abd.abdsend = object_size_rb_abd.abdsize
 = sizeof(object_size);

 object_size_rb_abd.abdaddr=&object_size;

 adabasx (&cbx , abdcount, pabd); /* Adabas call */

 response(&cbx);

printf("Object successfully added/updated in field %s ISN %d file %d Database %d\n\n",
 field,isn,filenr,dbid);

#undef abdcount
}

int read_file(char *filename, void **obj)
/*------------------------------------
 allocate memory for the record buffer and
 read a file into it
+--------------------------------------*/
{
 unsigned int filelength;
 FILE * fd;
 struct stat st;

 /* determine the length of file */

 if(stat(filename , &st) < 0)
 {
 printf("The file %s doesn't exist!\n\n", filename);
 exit (1);
 }

Command Reference414

Appendix C - C Examples

 if((filelength = st.st_size) < 0)
 {
 printf("File % could not be opened!\n\n", filename);
 exit(1);
 }

 /* open the file */
 if(!filename || (fd = fopen(filename, "rb")) == NULL)
 {
 printf("File % could not be opened!\n\n", filename);
 exit(1);
 }

 if (!(*obj=malloc (filelength)))
 {
 printf("Could not allocate memory\n\n");
 exit(1);
 }

 filelength=fread(*obj, sizeof(char), filelength / sizeof(char), fd);

 fclose (fd);

 if(filelength < 0)
 {
 printf("Could not read from the file: %s\n\n", filename);
 exit(1);
 }

 return filelength;
}

void close_database(int dbid)
/*----------------------------+
 Close the session and give
 implicit end of transaction.
+----------------------------*/

{
 ACBX cbx; /* Control block */

 SETACBX(&cbx); /* Initialize the Control Block*/
 cbx.acbxcmd[0] = 'C'; /* put close option */
 cbx.acbxcmd[1] = 'L';
 cbx.acbxdbid = dbid;

 adabasx(&cbx , 0 , NULL); /* adabas call */

 response(&cbx);

415Command Reference

Appendix C - C Examples

 if(cbx.acbxrsp != 0)
 printf("** Close failed with response %d\n\n", cbx.acbxrsp);
}

void response(ACBX *cbx)
/*-----------------+
print response code
+------------------*/

{
 if(cbx->acbxrsp != 0)
 {
 printf("** Response code from ADABAS for Command %-2.2s: %d\n\n",
 cbx->acbxcmd, cbx->acbxrsp);
 if(cbx->acbxrsp == ADA_LOBERR)
 {
 printf("** subcommand response %d\n\n",cbx->acbxerrc);
 }
 if (cbx->acbxrsp != ADA_ANACT)
 {
 close_database(cbx->acbxdbid);
 }
 exit(1);
 }

}

Command Reference416

Appendix C - C Examples

32 Appendix D - Example Files in the Adabas Kit

The Adabas kit contains the following example files:

DescriptionFile Name

Executable of the C example program$ACLDIR/examples/bin/c_example (UNIX)
%ACLDIR%\..\examples\client\c_example.exe (Windows)

Executable of the C example program in
32 bit mode

$ACLDIR/examples/bin32/c_example (UNIX, only on 64 bit
systems where 32 bit mode is supported)
%ACLDIR%\..\examples\bin32\c_example.exe (Windows, only
on 64 bit systems where 32 bit mode is supported)

C example program of Appendix C$ACLDIR/examples/src/c_example.c (UNIX)
%ACLDIR%\..\examples\src\c_example.c (Windows)

C example programusingwide character
sets

$ACLDIR/examples/src/c_example_w.c (UNIX)
%ACLDIR%\..\examples\src\c_example_w.c (Windows)

Executable of the C example program for
LOB processing

$ACLDIR/examples/bin/lob_example (UNIX)
%ACLDIR%\..\examples\client\lob_example.exe (Windows)

Executable of the C example program for
LOB processing in 32 bit mode

$ACLDIR/examples/bin32/lob_example (UNIX, only on 64 bit
UNIX systems where 32 bit mode is supported)
%ACLDIR%\..\examples\bin32\lob_example.exe (Windows,
only on 64 bit systems where 32 bit mode is supported)

C example program for LOB processing
of Appendix C

$ACLDIR/examples/src/lob_example.c (UNIX)
%ACLDIR%\..\examples\src\lob_example.c (Windows)

Make file for C example program - for
usage, see the comments in the make file

$ACLDIR/examples/src/makefile (UNIX)
%ACLDIR%\..\examples\src\makefile (Windows)

C example program using Adabas
authentication

$ACLDIR/examples/src/security_example.c (UNIX)
%ACLDIR%\..\examples\src\security_example.c (Windows)

417

Note: TheC examples use the Employees file,which is one of the demoAdabas files delivered
with the Adabas kit. For more information on the demo files see Utilities, Appendix A.

Command Reference418

Appendix D - Example Files in the Adabas Kit

	Command Reference
	Table of Contents
	Command Reference
	1 Conventions
	Notation used in examples

	2 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	3 Concepts And Facilities
	Adabas Command Overview
	Database Query
	S1/S4
	S2
	S8 and S9

	Data Storage Read
	L1/L4
	L2/L5
	L3/L6

	Associator Read
	L9
	LF

	Database Modification
	A1
	E1
	N1/N2

	Logical Transaction Processing
	BT
	ET
	RE

	Checkpointing
	C1

	Special Purpose
	CL
	C5
	HI
	MC
	OP
	RC
	RI

	User Types
	Access-only user
	ET logic user
	Exclusive control user
	Exclusive control user with ET logic
	Utility user

	Competitive Database Access
	Record Locking Commands
	Locking Records with HI, L4, L5, L6 and S4 Commands
	Record Update Using Hold Option
	Hold Queue Response Code Summary
	Record Lock Release
	Record Lock Upgrading and Downgrading
	Keeping Records in Hold Status beyond Transaction End
	Subtransactions
	Referential Integrity
	Resource Interlock
	Time Limits
	Example

	Recovery/Restart
	ET Logic Users
	Logical Transaction
	ET Command
	BT Command
	Autobackout

	System-Generated Fields

	4 Calling Adabas
	Linking Application Programs
	Linking on UNIX Platforms
	Linking on Windows

	Specifying an ACB Interface Direct Call
	Specifying an ACBX Interface Direct Call
	C-Interface for ACBX Interface Direct Calls
	Mainframe Interface for ACBX Interface Direct Calls

	Mixing ACB and ACBX Direct Calls
	Adabas Control Block Structures (ACB and ACBX)
	Adabas Control Block (ACB)
	ACB Format
	ACB Fields
	Call Type (ACBTYPE)
	Command Code (ACBCMD)
	Command ID (ACBCID)
	File Number (ACBFNR)
	Response Code (ACBRSP)
	ISN (ACBISN)
	ISN Lower Limit (ACBISL)
	ISN Quantity (ACBISQ)
	Buffer Length: Format, Record, Search, Value, and ISN (ACBFBL, ACBRBL, ACBSBL, ACBVBL, and ACBIBL)
	Command Option 1 and Command Option 2 (ACBCOP1 and ACBCOP2)
	Additions 1 (ACBADD1)
	Additions 2 (ACBADD2)
	Additions 3 (ACBADD3)
	Additions 4 (ACBADD4)
	Additions 5 (ACBADD5)
	Command Time (ACBCMDT)
	User Area (ACBUSER)

	Extended Adabas Control Block (ACBX)
	ACBX Format
	ACBX Fields
	Call Type (ACBXTYP)
	Reserved 1 (ACBXRSV1)
	Version Indicator (ACBXVER)
	ACBX Length (ACBXLEN)
	Command Code (ACBXCMD)
	Reserved 2 (ACBXRSV2)
	Response Code (ACBXRSP)
	Command ID (ACBXCID)
	Database ID (ACBXDBID)
	File Number (ACBXFNR)
	ISN (ACBXISN)
	ISN Lower Limit (ACBXISL)
	ISN Quantity (ACBXISQ)
	Command Options 1 through 8 (ACBXCOP1 through ACBXCOP8)
	Additions 1 (ACBXADD1)
	Additions 2 (ACBXADD2)
	Additions 3 (ACBXADD3)
	Additions 4 (ACBXADD4)
	Additions 5 (ACBXADD5)
	Additions 6 (ACBXADD6)
	Reserved 3 (ACBXRSV3)
	Error Offset in Buffer (ACBXERRA)
	Error Character Field (ACBXERRB)
	Error Subcode (ACBXERRC)
	Error Buffer ID (ACBXERRD)
	Error Buffer Sequence Number (ACBXERRF)
	Subcomponent Response Code (ACBXSUBR)
	Subcomponent Response Subcode (ACBXSUBS)
	Subcomponent Error Text (ACBXSUBT)
	Compressed Record Length (ACBXLCMP)
	Decompressed Record Length (ACBXLDEC)
	Command Time (ACBXCMDT)
	User Area (ACBXUSER)
	Reserved 4 (ACBXRSV4)

	Differences between the ACB and the ACBX
	Control Block Length
	Buffer Length Fields
	Command Options, Additions, and Reserved Fields
	Field Length Differences
	Additional Fields in ACBX
	ACB Dual Purpose Field Changes
	Structure and Offset Differences

	Adabas Buffer Descriptions (ABDs)
	Available ABD Types
	ABD Structure
	ABD Field Descriptions
	ABD Length (ABDLEN)
	Version Indicator (ABDVER)
	Buffer Type ID (ABDID)
	Reserved 1 (ABDRSV1)
	Buffer Location Flag (ABDLOC)
	Reserved 2 (ABDRSV2)
	Reserved 3 (ABDRSV3)
	Reserved 4 (ABDRSV4)
	Buffer Size (ABDSIZE)
	Data Length to Send (ABDSEND)
	Data Length Received (ABDRECV)
	Reserved 5 (ABDRSV5)
	Indirect Address Pointer (ABDADR)
	Actual Buffer

	ABD Lists

	Defining Buffers
	Understanding the Different Buffer Types
	Format and Record Buffers
	Format Buffer Syntax
	nX
	'literal'
	field_definition
	length, format
	Format Buffer: segment
	Format Buffer: edit_mask
	Format Buffer: numeric_edit_mask
	Format Buffer: E(date_time_edit_mask_name)
	#'char_set'

	Format Buffer Examples
	Format Buffer Performance Considerations
	Record Buffer

	Search and Value Buffers
	Search Buffer Syntax for S1/S2/S4 Commands
	Connecting Operators
	Range Construction
	Precedence of Connecting Operators

	Search Buffer Syntax (Using Soft Coupling)
	Search Buffer Syntax for L3/L6/L9 Commands
	Value Buffer
	Search/Value Buffer Examples

	Multifetch Buffers
	ISN Buffer
	Summary of Adabas Format Conversion
	Sign Handling

	Calling Adabas from Application Servers
	Multi-threaded Applications

	Calling Adabas with Authentication
	Transition Mode

	5 Programming Considerations
	Using Command IDs
	Command IDs Used with Read Sequential Commands
	Command IDs Used with ISN Lists
	Automatic Command ID Generation
	Releasing Command IDs
	Internal Identification of Command IDs
	Empty Command IDs
	Command ID Usage Examples

	Using Format Buffer IDs
	Using a Command ID and Separate Local Format Buffer ID
	Using a Global Format Buffer ID
	EBCDIC Characters in Additions 5
	Examples of Command ID and Format Buffer ID Usage
	Format Buffer IDs Used with Read, Search and Update Commands

	ISN List Processing
	Storing ISN Lists
	Retrieving ISN Lists
	Handling of ISNs that no longer exist
	Examples of ISN List Processing

	Using the Multifetch Feature
	Retrieval
	Transaction Control

	ACB versus ACBX Functionality
	System Generated Fields
	Using Last Update Time Stamp for Optimistic Locking

	Read Integrity
	Features in the Adabas Command Interface for Large Object (LOB) Support
	Large Buffers with the ACBX Interface
	More than one Format/Record Buffer Pair with the ACBX Interface
	4-Byte Length Indicator for LOB Fields when reading with variable Length
	Length Indicator in Format/Record Buffer
	Asterisk (*) Length Notation in the Format Buffer
	Accessing Parts of LOBs with the Segment Notation in the Format Buffer

	6 ADABAS COMMANDS
	7 A1 Command (Record Update)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	Additional Considerations
	Example

	8 BT Command (Backout Transaction)
	Function and Use
	Backout of a Logical Transaction
	Backout of a Subtransaction
	Error Situations for the Backout of a Subtransaction

	Control Block
	Buffer Areas

	Control Block
	ISN Buffer

	9 C1 Command (Write a Checkpoint)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Example

	10 C5 Command (Write User Data to Protection Log)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Record Buffer
	Example

	11 CL Command (Close User Session)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Record Buffer
	Examples

	12 E1 Command (Delete Record)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Search Buffer
	Value Buffer
	Examples

	13 ET Command (End Transaction)
	Function and Use
	End of a Logical Transaction
	End of a Subtransaction
	Control Block
	Buffer Areas

	Control Block
	Record Buffer
	ISN Buffer
	Examples

	14 HI Command (Hold Record)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Examples

	15 L1/L4 Command (Read Record)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	ISN Buffer/Multifetch Buffer
	Additional Considerations
	Examples
	Example 1: Reading a single Record
	Example 2: Reading a Record with ISN from the ISN List returned by a Find Command in the ISN Buffer
	Example 2a: Reading a Set of Records using the Get Next Option
	Example 3: Read with Hold
	Example 4: Read using the Read ISN Sequence Option
	Example 5: Reading multiple-value Fields and periodic Groups
	Example 6: Read a LOB Value
	Example 7: Read a LOB Value piecemeal
	Example 7a: Read a LOB Value piecemeal plus other Fields

	16 L2/L5 Command (Read Physical Sequence)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	ISN Buffer/Multifetch Buffer
	Additional Considerations
	Examples

	17 L3/L6 Command (Read Logical Sequence)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	ISN Buffer/Multifetch Buffer
	Additional Considerations
	Examples

	18 L9 Command (Read Descriptor Values)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	ISN Buffer/Multifetch Buffers
	Additional Considerations
	Examples

	19 LF Command (Read Field Definitions)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Record Buffer for Command Option 2 = 'S'
	Record Buffer General Layout
	FDT Field Definitions
	SDT Field Definitions
	Collation Descriptor Definitions
	Hyperdescriptor Definitions
	Phonetic Descriptor Definition
	Subdescriptor Definition
	Superdescriptor Definition

	Record Buffer for Command Option 2 = Blank
	Record Buffer General Layout
	FDT Field Definitions

	Record Buffer for Command Option 2 = ‘X’ and ‘F’
	Record Buffer General Layout
	FDT Field Definitions
	SDT Field Definitions
	Collation Descriptor Definitions
	Hyperdescriptor Definitions
	Phonetic Descriptor Definitions
	Sub-/Superdescriptor Definitions
	Referential Integrity Definitions

	Example

	20 MC Command (Multi-Call)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	Search Buffer
	Value Buffer
	ISN Buffer
	Processing Considerations
	Command Buffers
	Response Handling
	Response 146

	21 N1/N2 Command (Add Record)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	Additional Considerations
	Examples

	22 OP Command (Open User Session)
	Function and Use
	User Types
	Control Block
	Buffer Areas

	Control Block
	Record Buffer
	User Queue Element
	Using OP to close previous session of same user
	Examples

	23 RC Command (Release Command ID)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Examples

	24 RE Command (Read ET User Data)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Record Buffer
	Examples

	25 RI Command (Release Record)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Example

	26 S1/S2/S4 Command (Find Records)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	Format Buffer
	Record Buffer
	Search and Value Buffers
	ISN Buffer
	Examples

	27 S8 Command (Process ISN Lists)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	ISN Buffer
	Example

	28 S9 Command (Sort ISN List)
	Function and Use
	Control Block
	Buffer Areas

	Control Block
	ISN Buffer
	Examples

	29 Appendix A - File Definitions (Examples)
	30 Appendix B - File Definition For Example Programs
	31 Appendix C - C Examples
	C Example
	C Example for LOB Processing

	32 Appendix D - Example Files in the Adabas Kit

