§ software

Adabas for Linux, UNIX and Windows

Adabas Utilities

Version 6.7.1

October 2019

ADABAS & NATURAL

This document applies to Adabas for Linux, UNIX and Windows Version 6.7.1 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1987-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: ADAOS-AADAOSUTILITIES-671-20211012

Table of Contents

AdabDas ULIHHES ..ovvvviieeiiiieeeeeeee et e et e e e e e e e e e e e e e e e rarees ix
T CONVENTIONS ...coiiiiiiiieeee ettt e e e e et ee e e e e e e e e e e e et eaeeaeeeeeeeataaaeeeeesseesssannnns 1
Use Of Character FOMESuuuuuiuuiiiiiiiiiiiiiiitiiiietieetiennannnetneeeernnnnnrnnennnennnennnnnnnnnnnnn. 2
Syntax CONVENHIONSccooiiiiiiiiiiiiciec s 2
Upper-Case CONVEISIONSccuiiiiiiiiiiiiiiiiiiiiie it 4
Field Specificationscccocueiiiiiiiiiiiiiccccc 6
Symbols used in control parameter SUMMATIESccceevviriiieiieiiiinieiicceeeeeeeen 6
Order of Parametersccccocviiiiiiiiiiiiiiii i 7
INUIMETIC VAIUES .ovveieiiieeeeeeeee ettt et e e e e ee e e e e e e e e e e aaaanns 7
MaxAmMUIN VAIUESoooviiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeeeaeessesesssessssssssssseseeeaes 7
Syntax Diagrams in the HTML Documentationccccocoeviiiiiiiiiiiiiicice 8
PrOCEAUIE FIOW ..oovvieiiiiiiieiieieeeeeee et aaaaaaaaassasssssasssssnsssesnsnnnnes 8
ODbSO0lete PaTammetersuuuueeeeieiiiieieeeee et e e e e e e e e e e e e e e e 8
2 About this DOCUMENTAtIONcooiiiiiiiiiiieeeeceeeeeceeee e e e e e et eeeeaeees 9
Document CONVENTIONSuuuuiieeeeieiiiiiiiieeeeeeeeeetiieieeeeeeeeeeasteaaeeeeeesessrrnnaaaaaaaeseeees 10
Online Information and SUPPOTtccooeiiiiiiiiii 10
| D=1 = T 6 (o] (=i u 10 s EOS RN 11
S OVEIVIEW ettt et et e e ettt e e e e et e e e e e et e e e s et e e e e et e eesasanaeeseraaeesenaneeesenanns 13
4 ADABAS (Starting The Database Nucleus)ccccoociiiiiiiiiiiiiiiiii 19
FUNCHONAL OVEIVIEW .vvreiiiiiieeeeee ettt e e e e e e e e e eeaees 20
Procedure FIOW oottt e e e eee e e e e e e eeeaaan 21
(@0 1 n o) B 2= 1 =1 0 o L=L (<) RSO US RSO SROPURURORPRURURURRRRt 22
5 ADABCK (Dump And Restore Database Or Files)cccccccoviiiiiiiiiiiiiniiiine 23
Functional OVerVIEWoooiiiiiiiiiiii 24
Procedure FIOWeeeiiiiieeceee et e e e e e e e eeeaaaan 27
ChecKPOINTS ...couiiiiiiiie e 29
CoNtrol Parametersccevviviiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e 30
Restart CONSIAETAtIONSuuuueeeeieiiiiiiiiieeeeeeeeeeeeeeee e e e e e e e eeeeee e e e e e e e e eeraeeeeeeeeeeeeeaaaans 47
6 ADACLP (Command Log Report)ccccceviiiiiiiiiiiiiiiiiiiciiiiecicccec e 49
FUNCHONAl OVEIVIEW .vveeeiiiiiieeeeee ettt eeee e e e e e e e e eeeaaes 50
PrOCEAUIE FIOW ..uveeiiiie et nnnnnnnnn 51
ChecKPOINtSooviiiiiiicicic s 52
CoNtrol Parametersceeeiiiiiieiiiiie ettt e e e e et e e e e e e e e e et e e 52
Specifying Multiple Selection Criteriacccocovviiiiiiiiiiiiiiiiiiiiii, 57
7 ADACMP (Compression Of Data)ccccocviiiiiiiiiiiiiiiiiiiiec 59
Functional OVeIrVIEWoooiiiiiiiiiiii 60
Procedure FIOWeeeiiiieeeeeee et et eee e e e e e e e eeeeaaan 62
ChecKPOINtS ...cocuviiiiiiiiiiie e 63
(@067 ahs yo) B S=Y =V o o <1 (<) o< SRR 63
OULPUL e 75
REPOTE i 76
Restart CONSIAETAtIONSuuueeeeeiieiieiiiiieeeeeeeeeeeeceeeee e e e e eeeeee e e e e e e e e e teeeeeeeeeeeeesaaans 76
8 ADACVT (Convert a Database from a previous Version)cccccceeeevviicieniennnenn. 77

Adabas Utilities

FUNCHONAL OVEIVIEW evveeieiiiiiieeeeee ettt e e e e e e e e e eeaees 78
Procedure FLOWii ittt e e e e e e e eeeaaan 80
ChecKPOintsc.coiiiiiiiiiiiiiii 81
ADACVT COoNtrol PArametersc.coeevvvuuueeeeeeeeeeeeeieeeee et e e e e e eeeereeeeeeeaeeeeens 81
| N =V f @) 1o Lo (1 =Y T) 0 V- S 83
9 ADADBM (Database ModifiCation)eeeeriuieeerniiieeiriiiee et esiieeeeseieeee e 85
FUNCHONAl OVEIVIEW .uvuieiiiiieiiiiceee ettt e e et e e e e e e e e e e eeaaaes 86
ProCeAUIE FIOW ...uuuiiiiiiiicc e aannaennnnnnnnnnnnnnn 88
ChecKpPOINtSooviiiiiiiici e 90
CoNtrol Parametersccovvviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 91
Restart ConSIderationsoovvvuuiieeeeeeeeeeeeiieee e e e e e e e e e e e e e eeernes 117
10 ADADCU (Decompression Of Data)ccccceeiiiiiiiiiiiiiiniiiiiiiicicicceceeceee, 119
FUuNCtional OVEIVIEWoooviiiiiiieeiiiieeeeeee ettt e e aeeeeeeeeeees 120
Procedure FIOWooooiiiiiiieeee et e e e e e e e e eeaaaaan 121
CheckPOintscoooiiiiiiiiiiiii e 122
(@fe) a1u o) B =N =10 4 (<] (<) o= SO UURRPRNt 123
Input and Output Datacccceiviiiiiiiiiiiiiiii e 131
Restart ConSIderationsooeeevuuieeeeeeeeeeeeeee et e e e e e e e e e e e e eearnes 132
11 ADADEYV (Disk Space Management)cccccoovviiiiiiiiiiiiiiiiiiiiiiccecceccen 133
FUuNCtional OVEIVIEWooovviiiieieeiieieeeeeee et e e eeeeeeeens 134
Procedure FIOWcooooiiiiiiieeee ettt e e e e e e 135
CheckPOintsc.ooiiiiiiiiiiiiiii e 136
(@fe)ahu o) B =V =10 4 (<] (<) o= S RO URR NSRRIt 136
12 ADAELA (Event Analytics Administration)ccccoeciviiiiiiiiiiniiiniiiiie, 147
FUuNCtional OVEIVIEWcoooviiiiiiieiiiiieeeeeee et e eeeeeeeeees 148
Procedure FIOW ... 149
CheckPOintscociiiiiiiiiiiii 150
CONIOl PATQmMIELET'S ...ttt e e e e etee e e e e e e e et teeeeeeaaeeees 150
13 ADAELP (Event Log Report)coocviiiiiiiiiiiiiiiiiiiiiciiiecec e 157
FUuNctional OVEeIVIEWooviiiiiiieiiieeeeeeeee ettt e e e e eeeeeeeeees 158
Procedure FIOW ... 159
ChecKPOINtSoouiiiiiiiiic s 160
CONIOl PATamIEET'Seeieieiiiiiieee et e e e e eie e e e e e e e e eevaeeeeeeaaeeees 160
Specifying Multiple Selection Criteriacccocceiviiiiiiiiiiiiiiiiiiiiiiiis 162
14 ADAERR (Error File Report)ccccoooiiiiiiiiiiiiiiiiicc 163
FUNCHONAl OVEIVIEW ...vvvviiiiiiiiiiiiiiiiiiiitiieteeestreteteaeveaaveaesesssassasassssssasssasssssrrrrrrraaaa.. 164
Procedure FIOWooooiiiiiieeeee et e e e e e eeaaaan 165
ChecKPOINtScoouviiiiiiiii e 165
Control Paramieteroovvuuieeiiiiieeeeeeee et e e e e 165
EXAMPIE ©.ooviiiiiii 166
Rejected Data ReCOTdScocuiiiiiiiiiiiiiiiiiiiiiiiiciic i 166
15 ADAFDU (File Definition)ccuveeeeriiieeeeiiiieeeeiieeeeeieeeee it e e e seeeeesseaeeeseeaeeeeeenees 167
FUNCHONAl OVEIVIEW ...vvvviiiiiiiiiiiiiiiiiiieieieteeeteteeetevavevavataaaassessassssssasssssssssssssrrrrrrnnane 168
Procedure FIOWoooooiiiieeeec et e e 169
ChecKPOINTSoouiiiiiiiii e 171

Adabas Utilities

Adabas Utilities

(@067 0ka yo) B =V =1 o (<) (<) o< SRRt 171
EXAMPIES ...ooiiiiiiiiic 185
16 ADAFIN (File Information Report)cccccuiiiiiiiiiiiiiiiiiiiiiiiiiiicciicc 187
FUuNctional OVeIVIEWoooovviiiiiieiiiieeeeeeee ettt e eeeeaeeees 188
Procedure FIOW ... 189
ChecKPOINtSooiviiiiiiicc s 190
CONEIOL PATAINIETETS ..vvvvvvvivieiiiieeieieieeeeeesaeeeeesesesssesarssesersseaerearar—————————————————————————————— 190
17 ADAFRM (Format And Create A New Database)cccovvuvveeirniieiinniieeiiniieeeeas 203
FUuNctional OVeIVIEWcoooviiiiiiieiiieieeeeeee ettt eeeeeaeeees 204
Procedure FIOW ... 206
ChecKPOINtSooviiiiiiic s 207
CONLIOL PATAINIETETS ..vvvvvvvvvieiiirreiiieieteettraeteteserersserereraretearar—ea—.——————————————————————————————. 207
Restart ConSIAETationsoovivvvuiiieeeeeeeeeeeiieeeee et e e e e e e e e e e e e eeeanes 211
Control Statement Examplescccocciiiiiiiiiiiiiiiiiiii 211
18 ADAINV (Creating, Removing And Verifying Inverted Lists)c.ccccoevniinnnn. 213
FUuNctional OVEeIVIEWooviiiiiieiiiiieeeeeee ettt eeeeeaeeees 214
Procedure FIOW ... 216
ChecKPOINtSoouiiiiiiicc s 217
CONEIOL PATAINETETSvvvvvvivieiiiitiiiieireetettsetaeesaseassesereraastereretear———————————————————————————————— 218
Restart ConSIdeTationsooovvviuuiieeeeeeieeiieeeeee et e e e e et e e e e e e e e eeeaanes 228
EXamPIesoooiiiiiiiiii 228
19 ADAMON (Monitoring The Database Nucleus)cccccceviiiiiiiiiiiiiniiniiininnn. 235
FUuNCctional OVEIVIEWoooviiiiiiieeeieeeeeeee ettt e e eeeeeeeeaeeees 236
Procedure FIOW ... 237
ChecKPOINtSooiuiiiiiiiiiccc s 237
CONEIOL PATAINETETS ..vvvvvvvieieiieireieieteeeteteaeeesesaseesrerersseasteaererearar—r—a—————————————————————————— 238
20 ADAMUP (Mass Add And Delete)ccoovruiiiiiniiiiiiiiiieeeeiiieee et 253
FUuNctional OVeIVIEWoooviiiiiiieiiiiieeeeeee ettt e e e e e e e e eeees 254
Procedure FIOW ... 255
ChecKPOINtSooviiiiiiicicc s 258
CONLIOL PATAINETETS ...vvvvvvviviiiiiitiieiiietiietseeretesereasrererereretraererear.——————————————————————————————. 259
Restart ConSIAETationSoooivvviiieieeeeeeeeeeieeeee e e e e e e e e e e e e eeanes 265
SORT Data Set PlacemeEntc.coeveiiiiiiieeeeeeeeeeicceeee et e e e e e e eeeaaee 266
TEMP Data Set PlaCeIMENtuuuuuiiiiiiiiiieieieieeeieieceeeeeeececeeee s nens 266
EXAMPIES ..o 266
21 ADANUC (Starting The Database, Defining Nucleus Parameters)cc.......... 269
FUuNctional OVEeIVIEWoovvuiiiiieiiieieeeeeee et et eeeeeaeeees 270
Procedure FIOW ... 272
ChecKPOINtSooviiiiiiiiicc s 274
CONIOl PAT@mIEEI'Seoiieeeeeiiieeee et e e e et e e e e e e e et aeeeeeeaaeenes 274
Summary of ADANUC Parametersccccoocuiiiiiiiiiiiiiiiiiiiiiiicicciccecceee, 299
22 ADAOPR (Operator Utility)cooieiiiiiiiiice 303
FUNCHONAl OVEIVIEW ...vvvviviiiiiiiiiiiiiiieieiiieteeeteteaeteaaaeaaaeseasaesessassssssasessssssssssssrrrrrnnane 304
Procedure FIOWooooiiiiiieeece et e e e e e 305
ChecKPOINTSoouiiiiiiiii e 306

Adabas Utilities v

Adabas Utilities

(@067 aka o) B =V =1 o (<) (<) o< J PR RRRRRRN 306
23 ADAORD (Reorder Database Or Files, Export/Import Files)c.ccccooveiiiinns 353
FUNCHONAl OVEIVIEW ...vvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiriteteterareraresaaeaeresasrassarasassasrassrerararrraaa—. 354
Procedure FIOWoooooiiiieeeeeeeeeeeeeee ettt e e e e e e 355
ChecKPOINtSoouviiiiiiiiiiiii e 357
(@067 ahu o) B =V =10 o L<) (<) o< SOOIt 357
Restart Considerationsooooviiiiiiiiiiii 366
EXamPIesoooviiiiiiiiiiiiii i 366
24 ADAPLP (Protection Log Printout)c.ccoooiiiiiiiiiiiicc, 369
FUNCHONAl OVEIVIEW ...vvvviiiiiiiiiiiiiiiiiiiiiiieteieteeeterevevesaresaaeasseasarasrssasasssssssarasrrsrraaaaa. 370
Procedure FIOWoooooiiiiieeee ettt e e e e e eraaaan 371
ChecKPOINtScoouviiiiiiiiiic e 372
(@067 015 yo) B =V =1 o (<) (<) o< SR USRI 372
ADAPLP OUPUL ...oviiiiiiiiiiiiiici 381
25 ADAPRI (Print Adabas BIOCKS)ccoeeveiiiiiiiieiee ettt e e e 385
FUuNctional OVEeIVIEWooviiiiiieiiiiieeeeeee ettt eeeeeaeeees 386
Procedure FIOW ... 387
ChecKPOINtSoouiiiiiiicc s 388
CONEIOL PATAINETETS ...vvvvvvviviriiiitiieieireetettaeteeessreeerererererereaeartear———————————————————————————————— 388
26 ADARBA (RBAC AdminiStration)eeeeevvereeriuvieeeeiiiieeeeiveeeeesiireeeessevneeeessseeaennns 391
FUuNctional OVeIVIEWooviiiiiiiieiiiieeeeceee ettt e e e e e e e e aeeees 392
Procedure FIOW ... 393
ChecKPOINtSoouiiiiiiicecc e 394
CONLIOL PATAINIETETS ..vvvvvvvvivieiiiiiiiiiiitieteteteteuererersrerereraresereaereara——.—.—.———————————————————————— 394
27 ADAREC (Recovery Of Database Or Files)ccccoccvviiiiiiiiiiiiiiiii 401
FUuNctional OVeIVIEWooviiiiiiieiiiiieeeecee ettt e e e et eeeeeeeaeeees 402
Procedure FIOW ... 403
ChecKpPOINtScoiiiiiiiiic e 405
ADAREC Input Datac.ooooiiiiiiiiiiiiiiiiiiiiiic 405
(@007 a1u o) B =V =10 4 (<) (<) o= S PO SRRt 405
EXaMPLES ..o 412
ADAREC Restart Considerationscceeeeeeiiieeuiiiieeeeeeeeeeeeeieeeeeeeeeeeveeeeeeeeeeeeeeaans 418
28 ADAREP (Database Report)cccocuiiiiiiiiiiiiiiiiiiiiiiiiiiicciiccicccicceec e 421
FUNCHONAl OVEIVIEW ...vvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiitteveterereraresaaeaereasasaersrasasssarararararerraeaa—. 422
Procedure FIOWoooooiiiiiieeeeeeeeeeeeee ettt e e e e e eaaaaas 423
CheckPOintsccoiiiiiiiiiiiii e 423
(@067 ahu o) B =V =1 4 (<) (<) o= S USSR 424
29 ADASCR (Security FUNCHONS)ooiiiiiiiiiiiiiiiiiiiiiiiicciccciccce e 439
FUuNCioNal OVEIVIEWcoooiviiiiieee et eeeeeeeees 440
Procedure FIOWcooooiiiiiiieeeeeeeeeeeee ettt e e e e e eeaaaa 441
CheckPOintscc.ooiiiiiiiiiiiiii e 442
(@007 ahu o) B =V =10 4 (<] (<) o= SRS RRRTRNt 442
30 ADATST (Issuing Adabas Commands)ccccceeveiiiuiiiiiiiiiiieiiiciecieeee e 463
FUuNCtional OVEIVIEWcoooviiiiiiieiiiieeeeeeee et e e e eeeeeeeeeeeees 464
Procedure FIOW ... 465

vi

Adabas Utilities

Adabas Utilities

ChecKPOINtSoouiiiiiiiic e 465
Control Parametersc..eeeeiiiiiiiiiiiiieiiicceet et 466
31 ADAULD (File Unloading)ccccoeouiiiiiiiiiiiiiiiiiiiiiicciiccie e 483
Functional OVeTIVIEWccciiiiiiiiiiiiiieeeie ettt e e 484
Procedure FIOWcooiiiiiiiiiiiiic ettt 486
ChecKPOINtSooiviiiiiiicc s 488
CONtrol Parameterseeovuiiiiiiiiiiieieiieeeeee ettt ettt 489
EXamPIesoooviiiiiiiiiiiii 495
TEMP Data Set Space Estimationc.cocooiiiiiiiiiiiii, 496
Restart Considerationsccccecueeeriiiiniieiiiieeieeeec e 496
32 ADAVFY (Database Consistency Check)ccccooviiiiiiiiiiiiiiiiiiiiiiicc, 497
Functional OVeTVIEWcccueiiiiiiiiiiiiiiiiicete ettt 498
Procedure FIOWccoouiiiiiiiiiiiie e e 499
Checkpointscooiiiiiiiiiiii 500
CoNtrol Parametersccoviiiiiiiiiiiiieiiieeeeeeee e 500
EXAMPIES ...oooeiiiiiiicic 504
A Appendix A - Example Utility Input Filesccccooiiiiiiiiiniiiiiiiiiiiiie, 505
B Appendix B - Prilogecoooviiiiiiiiii 507
C Appendix C - Adabas Checkpointscccceeviiiiiiiiiiiiiiiiiiiiceccieee e 509

Adabas Utilities Vii

viii

Adabas Utilities

This manual describes the Adabas utilities. The database administrator (DBA) uses the Adabas
utilities to create and maintain Adabas databases. For each utility, the following information is
provided:

* adescription of the purpose of the utility;

* a functional overview of the utility;

® a description of the utility's control parameters;

" examples to illustrate the use of the utility, where appropriate.

This manual is intended principally for the DBA. Certain Adabas utilities contain functionality
for modifying or deleting existing database information, so caution is advised when these utilities

are used. Some utilities, such as ADAREDP, provide status information only, and can be used freely
by the end user.

] Note: The Adabas utilities also contain some undocumented features that can be invoked

using syntax that is not documented (this also includes the FDT syntax as described in the
Administration documentation). Software AG strongly recommends that you do not use
such undocumented features; there is no guarantee that undocumented features will work
correctly and that they will not have negative side effects on the general behaviour of
Adabas.

The Overview provides a summary of the utilities available and their purpose.
The subsequent documents describe the individual utilities in detail, with one utility per document.
Appendix A contains a description of the demo utility input files provided with the Adabas kit.

Appendix B contains a description of the example program prilogc, which is used for printing a
command log that is created with the nucleus parameter CLOGLAYOUT set to 6.

Appendix C contains information about the checkpoints written by the Adabas utilities.

1 Conventions

B USE OF CharaCter FONIScoiiiiiiii et e e e a e e e e e
B SYNEAX CONVENTIONSviiiiii ettt e e et e e e e e e e e ettt e e e e e e e s e ibbareaeeeae e
B UPPEI-CaSE CONVEISIONSveeeeeeieieit e ettt ettt e et e et e ettt e e ettt e e et e e e ettt e e e et e e e e s
B Field SPECITICALIONSe it
= Symbols used in control parameter SUMMANIEScoiiiuuiiiiiee e
B Order Of PATAMELETSi ittt e e e e e e
NUMEIIC VAIUEBS ...ttt oottt e e e e oottt e e e e e ettt e e e e e e e e nneeeees
MAXIMUM VAIUES ...ttt e e e e e et a e e e e e e e e sttt e e e e e e e e e s teaaeraees
Syntax Diagrams in the HTML DOCUMENTAtIONviiiiiiiiiiiiii e
PrOCEAUIE FIOW ...ttt et e ettt e e e e e e
B ODSOIEE PAraMELEIS ittt a e e

Conventions

The following conventions have been used in this manual:

Use of Character Fonts

References to other manuals are shown in italics.
References to documents or sections within documents are shown in bold face.

Examples of utility output and file contents are shown in a typewriter font, for example:

%ADADBM-T-0OPENED, ds DATA2, file DATA2.001 opened
%4ADADBM-F-DSSTALL, allocation error DSST

In examples which show both user input and utility output, the typewriter font is used for the
whole example:

adadbm: add_container = data, size = 35
%ADADBM-T-0OPENED, ds DATA2, file DATA2.001 opened
%ADADBM-F-DSSTALL, allocation error DSST

Syntax Conventions

The syntax of the utility control parameters is as follows.

Items shown in UPPERCASE letters are keywords and must be entered exactly as shown. You can
enter any keyword with uppercase or lowercase letters.

Items shown in lowercase letters indicate that you have to replace the item by a value of your
choice. If the item is "number", you can specify any decimal number. Only positive numbers or 0
can be specified, no negative numbers are allowed. If the item is "string", you can specify a text
string, i.e. any number of alphanumeric characters. For numbers or strings, it is also possible to
specify hexadecimal values preceded by "0x", "0X". "*x" or "*X"; for numbers specified as hexa-
decimal values, leading zeroes may be omitted. Other items are possible, for example "descriptor",
in which case your input must be a descriptor name.

non

Items enclosed in square brackets ("[", "]") are optional.

non

Items enclosed in curly brackets ("{", "}") are mandatory.

H|ll

A vertical bar ("|") separates items which are alternatives, i.e. you can enter one item or the other

but not both.

2 Adabas Utilities

Conventions

The ellipsis ("...") indicates that you can repeat the immediately preceding element of the syntax
as often as you like.

U

If an ellipsis is preceded by a comma, i.e. ",...", this means that you can repeat the immediately
preceding element of the syntax as often as you like, with a comma preceding each repetition.

If round brackets are used for a list of elements and only one keyword is supplied, the round
brackets may be omitted if only one element is supplied.

Example 1

RB=0x33445566

Here the string value has been specified as a hexadecimal string; it consists of printable characters
equivalent to the ASCII character string "3DUf".

Example 2

DBID = number

This means that you must type in the keyword "DBID" (using uppercase or lowercase letters or
any combination thereof), followed by the "=" character, followed by a decimal number, for example:

DBID = 27

Example 3

RABN = number [- number]

This means that you must type in the keyword "RABN" (using uppercase or lowercase letters or

_n

any combination thereof), followed by the "=" character, followed by a decimal number. You can

"non

also provide a hyphen ("-") followed by another decimal number, but this is not required. Here
are a few examples of input that corresponds to this syntax:

RABN = 25

RABN = 1000 - 1125
Example 4

RABN = 0x400

Here the value is specified as a hexadecimal value; it is the equivalent to specifying
RABN = 1024
Example 5

SORTSEQ = { descriptor | ISN }

This means that you must type in the keyword "SORTSEQ" (using uppercase or lowercase letters
or any combination thereof), followed by the "=" character, followed by either a descriptor value
or the keyword "ISN", for example:

Adabas Utilities 3

Conventions

SORTSEQ = ISN

Example 6

number[-number] [,number[-number]]

This example shows the use of the ellipsis ("..."). Here, the ellipsis follows the syntax element

"[[number[-number]]". This means that you can repeat this syntax element as often as you like in
your input line. Here are a few examples of input that corresponds to this syntax:

27

27-50

27-50,68

27,68-90

27-50,68-90

27-50,68-90,102,105,118-140,160

Example 7

As an alternative to example 4, the following syntax specification using the ",..." construction is
also possible:

{ number[-number] },

This syntax allows all of the combinations shown in example 4.
Example 8

(number[,number]...)

Valid input examples for this syntax are.

(12,23,45)
(123)
123 - only one list element, so brackets can be omitted

Upper-Case Conversions

Parameter names that are specified are always converted to upper case.

For most utility control parameters, the specified parameter values are also converted to upper
case, but this is not always desirable. Starting with Adabas Version 6.1.6, a new convention for
upper-case conversion of control parameter values has been introduced:

= If you specify “parameter=value”, the value is converted to upper case.

= If you specify “parameter:value”, the value is not converted to upper case.

4 Adabas Utilities

Conventions

Although the option of specifying a colon or an equals sign after a parameter name has been intro-
duced generally via the parser for all parameters, Software AG recommends that you specify a
colon only for those parameters where it is explicitly described in the syntax, because the behaviour
described above is only guaranteed for these parameters; due to compatibility reasons with previous
Adabas versions, the upper-case conversion is handled differently for some other parameters.

Example

Assume the following syntax:

NAME{=|:}string

If you specify

NAME=Production

The parameter value for NAME is set to "PRODUCTION".
If you specify

NAME:Production

The parameter value for NAME is set to "Production".

However, some utility input is not provided as "parameter{=|:}value", for example field, descriptor
or referential constraint definitions. The specifications are converted to upper case by default,
unless the parameter LOWER_CASE_FIELD_NAMES has been specified before the definitions.

Note: After specifying LOWER_CASE_FIELD_NAMES, none of the definitions are converted
to upper case; then you must specify keywords, for example field options, in upper case.

Example

Without LOWER_CASE_FIELD_NAMES, the field definition
1,3a,8,a,de

is correct and is equivalent to

1,AA,8,A,DE

With LOWER_CASE_FIELD NAMES, however, this field definition is invalid; in order to define
the field "aa", you must specify

1,aa,8,A,DE

Adabas Utilities 9

Conventions

Field Specifications

Several utilities contain parameters that allow the specification of Adabas fields. The exact syntax
for the field specifications depends on the parameter in question: for example, while for ADAINV
INVERT, the specification of a field name is sufficient, ADADBM ADD_FIELD requires a complete
field definition.

These field specifications can be terminated with an END_OF_FIELDS parameter.

Notes:

1. After specifying LOWER_CASE_FIELD_NAMES, the END_OF_FIELDS parameter must be
specified in upper case.

2. In ADACMP and ADADCU, a period (.) can be specified instead of END_OF_FIELDS.

END_OF_FIELDS can be omitted at the end of the parameter specifications for the utilities. If you
want to add other parameters after the field specifications, END_OF_FIELDS is required.

Note: With Adabas versions before V6.3 SP 3, for some utilities END_OF_FIELDS was also

required at the end of the parameter specifications. If END_OF_FIELDS was missing, the
function was not executed.

Symbols used in control parameter summaries

The description of each utility contains a table which summarizes the syntax of the control para-
meters that are available for that utility. Some control parameters are preceded by the letter "M"
or the letter "D".

The letter "M" indicates "mandatory", i.e. the you must specify this parameter in your input to the
utility otherwise the utility cannot run. If the letter "M" is not present, the parameter is optional,
i.e. you do not have to specify it.

The letter "D" indicates that the control parameter has a default value. This means that if you do
not specify this parameter explicitly in your input, the utility will use a preset value for the para-
meter.

6 Adabas Utilities

Conventions

Order of parameters

The parameters of the utilities are listed in this documentation in alphabetical order, but in some
cases, there are restrictions on the order in which they can or must be specified. Usually, the DBID
parameter has to be specified first, and depending on the utility, there may be more restrictions.

For multi-function utilities in particular, there are some parameters that immediately trigger a
function. In these cases, other parameters specified after such a parameter are ignored. However,
these parameters are used if you specify another function afterwards.

Example:

adavfy dbid=34 file=9 index file=11 data

The parameter INDEX triggers the index verification; for this parameter, the preceding specification
"file=9" is relevant. The DATA parameter triggers the data verification; for this parameter, the
preceding specification "file=11" is relevant. The command triggers an index verification of file 9
and a data verification of file 11.

Numeric Values

Numeric values may be specified in the following ways:

® number
® number[K], where the value is 1024*number

" number[M], where the value is 1024*1024*number

number[K] and number[M] are only allowed in cases in which large numeric values are expected.

Maximum Values

Maximum values for numeric parameters are only mentioned if there is a fixed limit that is given
by restrictions within Adabas. They are not mentioned if they result from the fact that a 4 byte
signed or unsigned integer is used to store the variable: in this case, the limit may be defined a
little smaller than the maximum possible integer, for example 4000 M.

Adabas Utilities 7

Conventions

Syntax Diagrams in the HTML Documentation

There is a syntax diagram at the start of each utility description, and these diagrams contain links
to the detailed descriptions of the keywords and parameters that are available. The hyperlinks in
these syntax diagrams are underlined in order to make them visible, but please note that the un-
derlining is not a part of the syntax.

Procedure Flow

The utility documentation contains procedure flow diagrams that show which files are accessed
by the utility. If the utilities access database containers, they also read the ADABAS.INI and DBn-
nn.INI files in order to find out the container locations. In order to keep the diagrams simple,
ADABAS.INI and DBnnn.INI are only mentioned if they are modified.

Obsolete Parameters

Sometimes, utility or nucleus parameters will become obsolete when a new version of Adabas is
released. Usually, the obsolete parameters are still accepted by the utility of the nucleus, but you
will receive a PAROBS warning, for example:

HADANUC-W-PAROBS, parameter NH has become obsolete

8 Adabas Utilities

2 About this Documentation

= Document Conventions

= Online Information and Support

m Data Protection

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font |Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font |Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

{} Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

| Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

[] Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

10 Adabas Utilities

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

About this Documentation

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

" Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.
" Access articles, code samples, demos, and tutorials.

= Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

® Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Adabas Utilities 11

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

12

3 Overview

This chapter gives an overview of the Adabas utilities, which provide all of the functions necessary
to manage an Adabas database.

ADABAS
Start the database nucleus (for Windows only)

This utility starts the database nucleus with the required environment.

ADABCK
Backup and restore database or files

The Adabas backup utility dumps/restores the contents of the database (or a specific file or
files) to/from a sequential data file. The utility can also be used to copy an Adabas backup

copy.
ADACLP
Command log report

This utility prints the command log.

ADACMP
Compression of data

The compression utility compresses user data. The compressed data is used as input for the
mass update utility ADAMUP. The input for this utility is the raw data together with the data
definitions that describe the structure of the data provided.

ADACVT
Convert a database to/from a previous version

ADADBM
Database modification

The ADADBM utility consists of the following functions which can be used to make modific-
ations to the database:

13

Overview

The ADD_CONTAINER function adds a new container file to the Associator or Data Storage
data set;

The ADD_FIELDS function appends one or more new fields to the end of a file's FDT;

The ALLOCATE functions increase the Normal Index, Upper Index, Address Converter or
Data Storage space assigned to a file. The DEALLOCATE functions are the inverse;

The CHANGE function changes the standard length of a field in the FDT;
The CHANGE_FIELDS function changes a field definition;
The DEFINE_REFINT function defines a new referential constraint;

The DELCP function deletes old checkpoint records from the checkpoint file in the specified
range of dates;

The DELETE function deletes an Adabas file or a range of files from the database;

The DELETE_DATABASE function deletes a database. Depending on the keyword specified,
either just the containers are deleted, or the database directory and its content are deleted.

The DISPLAY function displays the UCB;

The DROP_FIELDS function marks the specified fields as not existing, which means that
they can no longer be accessed;

The DROP_LOBFILE function is the inverse function of ADAFDU ADD_LOBFILE;

The DROP_REFINT function drops an existing referential constraint;

The EXTEND_CONTAINER function extends the last container file defined for the database;
The NEW_DBID function changes the identifier of the database in use;

The NEWWORK function allocates and formats a new Adabas WORK data set;

The PGM_REFRESH function is used to disable or enable refreshing an Adabas file inside
an application program with an E1 command;

The RECOVER function returns lost space to the FST;

The REDUCE_CONTAINER function reduces the size of the last container file defined for
the database;

The REFRESH function resets a file or a range of files to the state of zero records loaded;
The REMOVE_CONTAINER function deletes a container file;

The REMOVE_DROP function, used in conjunction with a subsequent REFRESH, removes
dropped fields from the FDT;

The REMOVE_REPLICATION function stops all replication processing and deletes the
replication system files;

The RENAME function changes the database name or the name of a loaded file;
The RENUMBER function renumbers a loaded file or exchanges the numbers of loaded files;

14

Adabas Utilities

Overview

® The REPLICATION_FILES function creates the systems files required for Adabas - Adabas
replication;

® The RESET function removes entries from the UCB;

® The RESET_REPLICATION_TARGET function resets the replication target flag of Adabas
files;

® The REUSE function controls the reuse of data storage space or ISNs by Adabas;

® The SECURITY function sets the security mode of the database;

® The SYFMAX function specifies the maximum number of values generated for a system
generated multiple-value field in the file specified.

ADADCU
Decompression of data

The ADADCU utility decompresses records to be used with anon-Adabas application program,
or as input for the compression utility ADACMP. The file to be decompressed must be unloaded
from the database (unload utility ADAULD) before it can be used as input for this utility. With
ADADCU, complete records can be decompressed, fields can be rearranged within a record,
default lengths can be changed, some types of fields can be truncated, formats can be changed
and space can be allocated for the addition of new fields.

ADADEV
Disk space management (UNIX only)

This utility consists of several functions for managing the disk space to be used by Adabas. It
can be used to preallocate space for a database.

ADAELA
Event Analytics administration

The administration utility ADAELA configures the Event Analytics add-on.

ADAELP
Event Log report

The ADAELP utility prints events from an event log created by Adabas Analytics.

ADAERR
Error file report

The ADAERR utility displays the contents of the error files generated by various utilities.

ADAFDU
File definition

The file definition utility ADAFDU defines a file in the database. It only loads the FCB and the
FDT into the database and allocates the requested space for ASSO and DATA for the specified
file.

Adabas Utilities 15

Overview

ADAFIN
File information report

The ADAFIN utility displays information about one or more files, e.g. FDT, descriptor statistics
and the fill percentage of blocks in the Data Storage, Normal Index and Upper/Main Index.

ADAFRM
Format and create a new database

The formatting utility ADAFRM allocates and formats the files that are used by Adabas (Asso-
ciator, Data Storage, WORK, TEMP and SORT). It can also format files which have been
preallocated by ADADEV.

ADAINV
Creating, removing and verifying inverted lists

The invert utility ADAINV creates, reinverts or removes inverted lists for a loaded file in a
database or validates specified descriptors.

ADAMON
This utility monitors the performance of an Adabas nucleus and displays statistics on a terminal.

ADAMUP
Mass add and delete

The ADAMUP utility adds or deletes large numbers of records to/from a file in the database.

ADANUC
Starting the database, defining nucleus parameters

The ADANUC utility starts the database for online operations and defines the runtime envir-
onment.

ADAOPR
Operator utility

The operator utility is used to operate the Adabas nucleus.

ADAORD
Reorder database or files, export/import files

The reorder utility ADAORD provides functions to reorganize a database or files within a
database (REORDER function) and to migrate files between databases (EXPORT and IMPORT
functions).

ADAPLP
Protection log printout

This utility prints the protection log.

ADAPRI
Print Adabas blocks

16 Adabas Utilities

Overview

The ADAPRI utility prints the contents of a block or a range of blocks in the Associator, Data
Storage, WORK, TEMP or SORT for maintenance or auditing purposes.

ADARBA
RBAC administration

The ADARBA utility is used to administrate the RBAC security definitions.

ADAREC
Recovery of database or files

This utility reapplies updates made to the database (REGENERATE function).

ADAREP
Database report

The ADAREP utility produces the database status report. This report contains information
about the current physical layout and logical contents of the database.

The information in this report includes the following: the amount and location of the space
currently allocated for the Associator and Data Storage; the amount and location of unused
space available for Associator and Data Storage; database file summary; checkpoint information;
Security information; information about each file in the database (space allocation, space
available, number of records loaded, MAXISN setting, field definitions).

ADASCR
Security functions

The security utility ADASCR creates, modifies and deletes file protection levels and user
passwords, and enables the record locking capabilities of individual passwords (by using value
criteria for individual database files) to be set or modified. Additionally, the utility is used to
display file and password security information.

ADATST
Issuing Adabas commands

This utility issues commands to an Adabas nucleus.

ADAULD
File unloading

The unload utility ADAULD unloads a file from a database or an Adabas backup copy and
produces compressed records with the same format as those produced by the compression
utility ADACMP. Unloaded records may be used as input for the decompression utility
ADADCU or with the mass update utility ADAMUP. Records can be unloaded from a database
in the sequence in which they are currently stored in Data Storage, in the sequence of a
descriptor or in ISN sequence. However, records can only be unloaded from a backup copy
in the order in which they were stored by the utility.

ADAVFY
Database consistency check

Adabas Utilities 17

Overview

This utility checks the consistency of the database. The General Control Block (GCB) is validated
together with each File Control Block (FCB) and each Field Definition Table (FDT) of the loaded
files. The index structure and Data Storage are validated. If specified, ADAVFY also looks for
lost RABNS.

18 Adabas Utilities

4 ADABAS (Starting The Database Nucleus)

B FUNCHONAI OVEIVIEW ...t e e e e e,
I o Tot= Yo (1 (<3 o o AT UPTRPRRI
B G ON Ol Pl O ... e

19

ADABAS (Starting The Database Nucleus)

This chapter describes the utility "ADABAS".

| Note: This utility is only available on Windows platforms.

Functional Overview

The utility ADABAS is used to start the database nucleus with the nucleus parameters that are
specified in the database initialization file (DBxxx.INI) - if you start the database nucleus ADANUC
directly without parameters, the DBxxx.INI file is not evaluated, and the default values of the
nucleus parameters are used.

| Note: Control parameters and values cannot be entered interactively, and must be entered

at the command prompt when the utility is started.

20 Adabas Utilities

ADABAS (Starting The Database Nucleus)

Procedure Flow

1. ADABAS reads the global initialization file “ %ADADATADIR%\ETC\ ADABAS.INI" to get
the database initialization file of the database to be started.

2. ADABAS reads the database initialization file to get the nucleus parameters of the database to
be started.

3. ADABAS starts ADANUC with the parameters read.

| Note: Please refer to the Extended Operations section for further information about the database

initialization files.

Adabas Utilities 21

ADABAS (Starting The Database Nucleus)

Control Parameter

The following control parameter is available:

I\ [DBID =] number

DBID

[DBID =] number

This parameter selects the database to be used.

Example:

Database 20 can be started by entering either

adabas dbid=20

or

adabas 20

22

Adabas Utilities

5 ADABCK (Dump And Restore Database Or Files)

B FUNCHONAI OVEIVIEW ...t e e e e e,

= Procedure Flow
= Checkpoints

= Control Parameters

B RESIAM CONSIABIAONS . .oeve e e

23

ADABCK (Dump And Restore Database Or Files)

This chapter describes the utility "ADABCK".

Functional Overview

The backup utility ADABCK provides protection against database corruption by creating Adabas
backup copies. ADABCK should be used at regular intervals.

The utility dumps or restores a database or selected files from/to a database.

ADABCK is able to process input files that were created on either the same platform or on a platform
with a different endian mode. The format in which the file was written is recognized by the restore
operation. During the restore, all endian-mode dependent data are converted to the requirements
of the target platform.

Making use of the internal structure of the database, this utility provides optimum performance.
Unused blocks do not have to be read and can be omitted when dumping. Even though such
blocks are not included in the Adabas backup copy, they can be re-created during a restore.

The backup copy can be directly assigned to tape: this option supports consecutive tapes (see Using
Utilities).

Furthermore, a backup copy may be directed to stdout in order to support the piping of the backup
data (this feature is only available on UNIX platforms). This feature is enabled by setting the en-
vironment variable (BCKO001) to '-' (minus). In this case, the output messages are directed to stderr.
The RESTORE and OVERLAY functions can also be used in this way; i.e. a backup copy can be
read from stdin. In this case, the ADABCK control statements must be given in the command line
(see Using Utilities).

The following functions are available:

® The COPY function copies an Adabas backup copy. A backup data set can only be duplicated
on a machine with the same endian mode - attempting to duplicate a backup on a machine with
a different endian mode will be rejected;

* The DUMP function dumps a database or selected files from a database to one or more sequential
files, which is called an Adabas backup copy. The nucleus may be active and parallel updates
are permitted on the files to be dumped while the dump is in progress. The DUMP function
writes data in the endian mode of the processor;

® The EXU_DUMP function dumps a database or selected files from a database to one or more
sequential files, which is called an Adabas backup copy. Only ACC users are permitted on the
files to be dumped while the dump is in progress;

= The IOSTAT function prints information about the data transfer rate and the I/O waiting times.

® The OVERLAY function restores selected files or a database. The files to be restored may already
be loaded in the database: ADABCK performs an implicit delete before restoring such files;

24 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

* The READ_CHECK function checks the readability (i.e. absence of parity errors) and completeness
of the Adabas backup copy. These checks ensure that the dump file can be read by the RESTORE
or OVERLAY function;

® The RESTORE function restores a database or selected files from an existing Adabas backup
copy. If there are no security definitions for the files in the target database, the corresponding
entries (as they were defined at the time the files were dumped) are set up in the security table
when the file is restored;

® The list functions CONTENTS, FILES and SUMMARY display information about an Adabas
backup copy. When the list functions are used, the DBID does not have to be entered first; the
exception to this is when the backup file is in a raw section. In this case, the DBID is required,
but the database itself does not have to be present (UNIX platforms only).

The functions DUMP, EXU_DUMP, OVERLAY and RESTORE are mutually exclusive and only
one of them may be executed during a single run of this utility. The list functions can only be used
together with the READ_CHECK, RESTORE or OVERLAY function.

If you perform the RESTORE or OVERLAY function and the database is too small or database
containers are missing, ADABCK will automatically increase the size of the database or create the
missing containers.

Notes:

1. The RESTORE and OVERLAY functions can process backup files created with earlier Adabas
versions, but usually not backup files created with later Adabas versions. However, it is possible
to restore with earlier Adabas versions if the structures did not change. For example, version
6.6 backup files can be restored with verions 6.5, unless superdescriptors with character-set
encoding are used. If features are not supported by the earlier version, the structure level check
will fail.

2. The RESTORE option PARALLEL=MULTIPROCESS is not supported for backup files created
on a platform with a different endian mode. However, a backup that is split into several extents
can be loaded.

@ Caution: If you do not use the Adabas INI files, but instead use environment variables to

specify the container file names, and if you forget to assign the environment variables/logical
names before you start ADABCK, a copy of the database will be created in the database
directory. If you perform a file overlay or restore when the Adabas nucleus is active, and
the database has to be extended, the database is extended by the nucleus, and not by AD-
ABCK. In this case, the nucleus extends the database even if OPTIONS=AUTO_EXPAND
was NOT specified. If you use environment variables to specify the database containers,
you must consider the following when a new container has to be created for the restore/over-
lay: it is important that the nucleus was started with the correct environment variable settings
for the new container - because the new containers are created by the nucleus, specifying
the environment variable for the ADABCK process has no effect.

Adabas Utilities 25

ADABCK (Dump And Restore Database Or Files)

This utility is a single-function utility.

26 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

Procedure Flow

Adabas Utilities 27

ADABCK (Dump And Restore Database Or Files)

SYS$OUTPUT (see note 4),
stderr/
SYS$ERR (see note 5)

Data Set Environment Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Backup copy BCKOOn Disk, Tape (see note 1) Output of
stdin/ DUMP/EXU_DUMP function,
SYS$INPUT (see note 2), |input for other functions
stdout/
SYS$OUTPUT (see note 3)
BCKOUT Disk, Tape (see note 1) Output of COPY function
Data storage DATAXx Disk
DBnnn.INI Disk Adabas Extended Operations
Manual
Control statements |stdin Utilities Manual
SYS$INPUT
ADABCK messages |stdout/ Messages and Codes

28

Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

Data Set Environment Storage Additional Information
Variable/ Medium
Logical Name
Work WORK1 Disk
Notes:

1. A named pipe can be used for this sequential file (UNIX platforms only, see Using Utilities for

details).

2. For functions other than DUMP or EXU_DUMP (BCKO001 only).
3. For DUMP or EXU_DUMP (BCKO001 only).
4. If BCKO001 is not stdout/SYS$OUTPUT.

5. If BCKO001 is stdout/SYS$OUTPUT.

The sequential files BCK0On can have multiple extents. For detailed information about sequential
files with multiple extents, see Using Utilities.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Function Nucleus must be active |Nucleus must NOT be active [Nucleus is NOT required | Checkpoint written
CONTENTS X -
COPY X -
DUMP X(see note 1) X SYNX
EXU_DUMP |X(see note 1) X SYNX
FILES X -
NEW_PLOG SYNC
OVERLAY X(see note 2) X(see note 3) SYNP
READ_CHECK X -
RESTORE X(see note 2) X(see note 3) SYNP
SUMMARY X -
Notes:

1. Nucleus only required when AUTORESTART is pending at the end of this function.

2. For restore of database or system files.

3. For restore of files.

Adabas Utilities

29

ADABCK (Dump And Restore Database Or Files)

Control Parameters

The following control parameters are available:

O

CONTENTS

COPY [= number]

DBID number

DUMP

{*| (humber[-number][,number[-numberl]...)}
[.BLOCKSIZE = number [K|MI]

[{,DRIVES = number} |

{,INOIDUAL }]

[LET_SYNC_WAIT = number]

[,[NOINEW_PLOG]

[,REPLICATION]

EXU_DUMP = {*|(number[-number][,numberl-numberl]...)}
[[,BLOCKSIZE = number [K|M]]
[{,DRIVES = number} |
{,INOIDUAL} 1]
[,[NOINEW_PLOG]
[,REPLICATION]

FILES = { * | (number[-number][,number[-numberl]...)}
IOSTAT

OVERLAY = {*|(number[-number][,number[-number]]...)}
[,FMOVE [=(number [,number [-number]]...)]]

,FORMAT = (keyword [,keyword])]

,KEEP_FILE_ALLOC]

,NEW_DBID = number]

(o O e B s B s B |

,REPLICATION]

PARALLEL = keyword

READ_CHECK

RESTORE = {*|(number[-number][,number[-number]]...)}
[,FMOVE [=(number [,number [-number]l...)]1]

,FORMAT = (keyword [,keyword])]
,NEW_DBID = number]

e

,REPLICATION]

SUMMARY

,RENUMBER = (number[-number] [,number [-number]]..

,RENUMBER = (number[-number] [,number [-number]]..

1]

1]

30

Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

CONTENTS

CONTENTS

This parameter displays a list of files in an Adabas backup copy created with the DUMP or
EXU_DUMP function.

Example

adabck cont
%AADABCK-T1-STARTED, 30-0CT-2015 11:42:37, <Version number>
Files dumped on 30-0CT-2015 10:51:14

Database 34, GENERAL-DATABASE

File 4, Update-Tog , loaded on 17-SEP-2014 14:44:19
File 9, EMPLOYEES , loaded on 8-0CT-2008 17:59:40
File 14, miscellaneous , loaded on 11-JUN-2015 13:22:19
File 17, Timezone , loaded on 19-SEP-2014 11:44:42
File 19, LARGE , loaded on 2-SEP-2014 15:37:18
File 51, PCA24SYSF1 , loaded on 14-APR-2014 16:55:22
File 91, ADA0S-2544 , loaded on 8-APR-2015 13:19:27
File 95, P299255 , loaded on 20-MAR-2014 11:35:30
File 98, ADA0S-4591 , loaded on 16-JUL-2015 10:03:16
File 1009, LOBFILE of 9 , loaded on 8-0CT-2008 17:59:40

%4ADABCK-I-IOCNT, 1 I0s on dataset BCKOO1
LADABCK-I-TERMINATED, 30-0CT-2015 11:42:37, elapsed time: 00:00:00

COPY

COPY [= number]

This function creates a new file from an existing Adabas backup copy. The input file (BCKO0xx)
and the output file (BCKOUT) may be on either disk or tape, where xx is either the specified
number, or 01 if no number is explicitly specified.

Adabas Utilities 31

ADABCK (Dump And Restore Database Or Files)

DBID
DBID = number

This parameter selects the database to be used.

DUMP

DUMP = { * | (number[-number][,number[-numberl]...)}

{

[,BLOCKSIZE = number [K|M]]
[{,DRIVES = number} |

{, [NOJDUAL } 1
[LET_SYNC_WAIT = number]
[,INOINEW_PLOG]
[,REPLICATION] <

At the file level, this function dumps the files specified by the numbers in the list. LOB files specified
are ignored, but the LOB files assigned to all base files are dumped too. An asterisk *' specifies
that the complete database is to be dumped. Parallel updates are permitted on the files to be
dumped while the dump is in progress.

If the nucleus is running in parallel (online backup), ADABCK must ensure that all transactions
affecting the dumped files are completed by all users before ADABCK terminates. This is called
ET synchronization - please refer to the section ET Synchronization in Administration for further
information. If you perform a dump at the file level with the option NONEW_PLOG, the ET syn-
chronization is performed at the file level; otherwise the ET synchronization is performed for the
complete database.

If you specify files with referential constraints, all files connected to these files via referential
constraints must also be specified in order to maintain referential integrity.

BLOCKSIZE = number{K|M]

This parameter can be specified to change the I/O transfer blocksize. If PARALLEL is specified,
the default blocksize is 512 KB. The following values can be specified: 64KB, 128KB, 256KB, 512KB,
1MB, 2MB, ... 12MB. The blocksize specified will be used in a subsequent RESTORE function.

32 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

DRIVES = number

This parameter limits the maximum number of output devices to be operated in parallel. It can
be used to split a backup file into several extents. The output is sent to BCKOxx.

The default value is 1 and the maximum value is 10.

The parameters DRIVES and DUAL are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

[NOJDUAL

DUAL specifies that two physical copies of the dumped information are to be created. The output
is sent to BCK001 and BCKO002.

The default is NODUAL.

The parameters DUAL and DRIVES are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

ET_SYNC_WAIT = number

This parameter defines the time (in seconds) that ADABCK waits for ET-logic users to come to ET
status at the end of the DUMP function: if a transaction is already active for the number of seconds
(or longer) specified by ET_SYNC_WAIT when the ET synchronization begins, its wait time is 0.
Otherwise, the wait time for a transaction, in seconds, is the value specified for the parameter
minus the number of seconds that the transaction is already active when the ET synchronization
begins. Transactions not yet terminated at the end of their wait times are rolled back.

If this parameter is omitted, the ET synchronization waits until all open transactions are terminated
using the normal Adabas timeout logic (ADANUC parameter TT).

The minimum value is 1 and the maximum value is 32767.

Notes:

1. If you forgot to specify the ET_SYNC_WAIT parameter for ADABCK, and ADABCK is hanging
because of open transactions, you can do one of the following to let ADABCK continue: tempor-
arily set TT to a small value -after ADABCK terminates, you can set the value back to its original
value; or stop the user(s) that have open transations (with ADAOPR STOP).

2. If updates were performed in the database during the ET synchronization, all modified blocks
must be written to the database containers and to the backup copy when all open transactions
have been committed or rolled back. Therefore, the total time for the ET synchronization, which
can be displayed via the IOSTAT parameter, may be longer than the time specified with the
ET_SYNC_WAIT parameter.

Adabas Utilities 33

ADABCK (Dump And Restore Database Or Files)

[NOJNEW_PLOG

This option specifies whether or not to close the protection log file and create a new log file at the
end of the DUMP function.

The default for a database dump is NEW_PLOG, and for a file dump it is NONEW_PLOG.

@ Caution: Before V6.3 SP1 Fix 13, the default for a file dump was NEW_PLOG. In most cases,

this change is of no consequence, but if you really need the PLOG switch, you must specify
NEW_PLOG explicitly.

REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the status of the replications of the files to
be dumped is automatically updated.

For further information refer to ADAOPR CHANGE_REPLICATION_STATUS.

EXU_DUMP

EXU_DUMP = {*|(number[-number][,number[-numberl]...)}
[,BLOCKSIZE = number [K|M]]
[{,DRIVES = number} |
{,[NOJDUAL} 1]
[,[NOINEW_PLOG]
[,REPLICATION] <

At the file level, this function dumps the files specified by the numbers in the list. LOB files specified
are ignored, but the LOB files assigned to all base files are dumped too. An asterisk *' specifies
that the complete database is to be dumped. Only ACC users are permitted on the files to be
dumped while the dump is in progress. ET-synchronization is not required.

If you specify files with referential constraints, all files connected to these files via referential
constraints must also be specified in order to maintain referential integrity.

34 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

BLOCKSIZE = number{K|M]

This parameter can be specified to change the I/O transfer blocksize. If PARALLEL is specified,
the default blocksize is 512 KB. The following values can be specified: 64KB, 128KB, 256KB, 512KB,
1MB, 2MB, ... 12MB. The blocksize specified will be used in a subsequent RESTORE function.

DRIVES = number

This parameter limits the maximum number of output devices to be operated in parallel. It can
be used to split a backup file into several extents. The output is sent to BCKOxx.

The default value is 1 and the maximum value is 10.

The parameters DRIVES and DUAL are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

[NOJDUAL

DUAL specifies that two physical copies of the dumped information are to be created. The output
is sent to BCK001 and BCKO002.

The default is NODUAL.

The parameters DUAL and DRIVES are mutually exclusive, and only one of them may be specified
in a given call of the DUMP function.

[NOJNEW_PLOG

This option specifies whether or not to close the protection log file and create a new log file at the
end of the EXU_DUMP function.

This option must not be used if dumping single files.

The default is NEW_PLOG for EXU_DUMP=*.
REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the status of the replications of the files to
be dumped is automatically updated.

For further information refer to ADAOPR CHANGE_REPLICATION_STATUS.

Adabas Utilities 35

ADABCK (Dump And Restore Database Or Files)

Examples for DUMP/EXUDUMP

Example 1

The database is dumped to three output devices in parallel.

adabck db=34 parallel=multi_process dump=* drives=3
%ADABCK-T-STARTED, 30-0CT-2015 11:05:25, <version number>
%ADABCK-T1-DBOFF, database 34 accessed offline

Database dumped on 30-0CT-2015 11:05:25

Database 34, GENERAL-DATABASE

File 1, CHECKPOINT-FILE , loaded on 4-SEP-2014 13:52:43
File 2, SECURITY-FILE , loaded on 4-SEP-2014 13:52:43
File 3, USER-DATA-FILE , Toaded on 4-SEP-2014 13:52:43
File 4, Update-Tog , loaded on 17-SEP-2014 14:44:19
File 9, EMPLOYEES , loaded on 8-0CT-2008 17:59:40
File 14, miscellaneous , loaded on 11-JUN-2015 13:22:19
File 17, Timezone , loaded on 19-SEP-2014 11:44:42
File 19, LARGE , loaded on 2-SEP-2014 15:37:18
File 30, FILE-30 , loaded on 31-MAR-2015 13:40:33
File 51, PCA24SYSF1 , loaded on 14-APR-2014 16:55:22
File 80, P295170 , loaded on 4-AUG-2015 12:42:43
File 91, ADA0S-2544 , loaded on 8-APR-2015 13:19:27
File 95, P299255 , loaded on 20-MAR-2014 11:35:30
File 98, ADA0S-4591 , loaded on 16-JUL-2015 10:03:16
File 101, COLLATION-TESTS , Toaded on 14-APR-2014 16:47:30
File 111, TESTOPT , loaded on 29-NOV-2011 10:34:23
File 113, lob_LB , loaded on 23-JUN-2015 15:48:48
File 146, XMA-REPOSITORY , Toaded on 10-DEC-2014 09:39:52
File 215, ADAOS-4647 , loaded on 27-APR-2012 15:52:49
File 1009, LOBFILE of 9 , loaded on 8-0CT-2008 17:59:40
File 1080, LOBFILE of 80 , loaded on 4-AUG-2015 12:42:43

File 1113, LOBFILE of 113 , Toaded on 23-JUN-2015 15:48:48
File 22111, LOBFILE of 111 , Toaded on 29-NOV-2011 10:34:23

%ADABCK-T-TIOCNT, 2 I0s on dataset WORK

%ADABCK-T-IOCNT, 135 I0s on dataset DATA

%ADABCK-T-IOCNT, 275 I0s on dataset ASSO

%ADABCK-I-IOCNT, 41 I0s on dataset BCKOO1

%ADABCK-T-TOCNT, 34 I0s on dataset BCK002

%ADABCK-I-IOCNT, 80 I0s on dataset BCKOO3

%ADABCK-T-TERMINATED, 30-0CT-2015 11:05:26, elapsed time: 00:00:01

Example 2

File 215 is dumped, and two physical copies of the backup are created. Only ACC users are allowed
on file 30 while the dump is in progress.

36 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

adabck db=34 exu_dump=215 dual
%ADABCK-I-STARTED, 30-0CT-2015 10:45:43, <version number>
%ADABCK-1-DBON, database 34 accessed online

Files dumped on 30-0CT-2015 10:45:44

Database 34, GENERAL-DATABASE

File 215, ADA0S-4647 , loaded on 27-APR-2012 15:52:49
%ADABCK-T-TOCNT, 51 I0s on dataset DATA

%ADABCK-T-TOCNT, 29 I0s on dataset ASSO

%ADABCK-T-TIOCNT, 40 I0s on dataset BCKOO1

%ADABCK-T-TOCNT, 40 I0s on dataset BCKO0O02

%ADABCK-T-TERMINATED, 30-0CT-2015 10:45:44, elapsed time: 00:00:01
Example 3

All base files in the database with a file number between 91 and 99 or equal to 51 or between 4
and 19 are dumped (including the corresponding LOB files, even if they are not in the specified
file ranges). ADABCK allows a maximum of 10 seconds for ET logic users to come to ET status.

adabck db=34 dump=\(91-99,51,4-19\) et_sync_wait=10
%ADABCK-I-STARTED, 30-0CT-2015 10:51:14, <version number>
%ADABCK-1-DBON, database 34 accessed online

Files dumped on 30-0CT-2015 10:51:14

Database 34, GENERAL-DATABASE

File 4, Update-log , loaded on 17-SEP-2014 14:44:19
File 9, EMPLOYEES , loaded on 8-0CT-2008 17:59:40
File 14, miscellaneous , loaded on 11-JUN-2015 13:22:19
File 17, Timezone , loaded on 19-SEP-2014 11:44:42
File 19, LARGE , loaded on 2-SEP-2014 15:37:18
File 51, PCA24SYSF1 , loaded on 14-APR-2014 16:55:22
File 91, ADA0S-2544 , loaded on 8-APR-2015 13:19:27
File 95, P299255 , loaded on 20-MAR-2014 11:35:30
File 98, ADA0S-4591 , loaded on 16-JUL-2015 10:03:16
File 1009, LOBFILE of 9 , loaded on 8-0CT-2008 17:59:40

%ADABCK-T-TIOCNT, 715 I0s on dataset DATA

%ADABCK-TI-IOCNT, 1145 I0s on dataset ASSO

%ADABCK-T-TOCNT, 1195 I0s on dataset BCKOO1

%ADABCK-T-TERMINATED, 30-0CT-2015 10:51:16, elapsed time: 00:00:02

Files 1,2, 4,6, 8, 10, 11 and 13 are dumped. ADABCK allows a maximum of 5 seconds for ET-logic
users to come to ET status.

Adabas Utilities 37

ADABCK (Dump And Restore Database Or Files)

FILES
FILES = { * | (number[-number][,number[-numberl]...)}

This parameter displays status information of the specified files in a dump file.

IOSTAT

IOSTAT

If this parameter is specified, the data transfer rate and the I/O (waiting) times on the various
devices are printed at the end of ADABCK processing.

Example:

adabck db=36 parallel=multi_process dump=* drives=3 ijostat

Dump Method : parallel

Blocksizes : DB: 512 KB BCK: 512 KB
DB I/0 time : total: 27.09 sec average: 8084 us
BCK 1 I/0 time : total: 1.16 sec average: 7606 us
BCK 2 I/0 time : total: 0.00 sec average: 944 us
BCK 3 I/0 time : total: 1.24 sec average: 1375 us
Wait rates : waits nowaits rate mreq

DB : 1439 1898 43% 8

Transfer rate : 15215 KB/sec

%ADABCK-T-I0OCNT, 2 I0s on dataset WORK
%#ADABCK-T-TIOCNT, 3147 I0s on dataset DATA
%AADABCK-T-I0CNT, 229 I0s on dataset ASSO
%ADABCK-T-TIOCNT, 153 I0s on dataset BCKOO1
%#ADABCK-TI-IOCNT, 2 I0s on dataset BCKOOZ2
%ADABCK-I-IOCNT, 906 I0s on dataset BCKO003

The IOSTAT statistics display the following information:

Dump Method
Either parallel or non-parallel, depending on the setting of the PARALLEL parameter.

DB I/O time
The total I/O time in seconds and the average time per I/O operation in microseconds for the
access to the ASSO and DATA containers.

BCK n I/O time
The total I/O time in seconds and the average time per I/O operation in microseconds for the
access to the backup files.

38 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

Note: The I/O time measured is the time required for the I/O system functions. This may be

different from the physical I/O times actually required to accessing the disks because of
caches in the operating system or in the storage system and because of usage of asynchronous
I/0O.

Wait rates (only for dump method parallel)
For a parallel backup/restore, the I/Os for the database containers are performed asynchronously.
The wait rate shows for how many ASSO or DATA I/Os a wait operation is required. mreq is
the maximum number of parallel I/O requests for database containers.

Note: Only the I/Os for the real backup or restore are counted. During the startup phase

of ADABCK, some additional I/Os are required; therefore the sum of wait and nowait
I/Os is less than the sum of ASSO and DATA I/Os.

BF sync count (only for a backup in online mode)
In the case of a backup in online mode during a buffer flush, synchronization with the nucleus
is required in order to guarantee that the modified database blocks written to disk by the
buffer flush are also written to the backup file(s). The BF sync count is the number of these
buffer flush synchronizations.

ET sync time (only for a backup in online mode)
At the end of a backup in online mode, an ET synchronization is required, i.e. ADABCK must
wait until all ET logic users come to ET status. The ET sync time is the time required for this
ET synchronization.

Transfer rate
This is the number of kilobytes read from or written to the backup file(s) per second.
| Notes:
1. For the transfer rate, only the pure backup/restore time is taken into consideration, but not
the time required for the preparation of the backup/restore. Therefore, the transfer rate may

be higher than the transfer rate you would get if you compute the transfer rate based on
the total elapsed time of ADABCK.

2. In the case of small backups, rounding errors may occur in the computation. Therefore, for
very small backups the transfer rate is not displayed, because the value would be too inac-
curate.

3. Because usually many database blocks are not filled completely, and because only the net
data are copied to the backup file(s), the transfer rate is less than the rate you would get if
you consider the processed database space.

Adabas Utilities 39

ADABCK (Dump And Restore Database Or Files)

OVERLAY

OVERLAY = {*|(number[-number][,number[-numberl]...)}

,FMOVE [=(number [,number [-numberl]...)]1]

,FORMAT = (keyword [,keyword]) 1]

,KEEP_FILE_ALLOC]

,NEW_DBID = number]

,RENUMBER = (number[-number] [,number [-numberl]...)]1]

,REPLICATION]

[e Y s O s T s B e IS

This function restores the files specified by the numbers in the list at file level. LOB files specified
are ignored, but the LOB files assigned to all base files are restored too. The files to be restored
may already be loaded in the database. ADABCK performs an implicit delete before restoring
such files. If only one file of a LOB group is overlaid, the other file of the LOB group is also deleted.
An asterisk ("*') specifies that a restore is to be made at the database level. Exclusive control over
the database container files is required.

Only the specified files are overlayed, even if there are referential integrity constraints to other
files; these referential integrity constraints are removed.

FMOVE [=(number [,number [-number]]...)]

If this keyword is specified, ADABCK reallocates all files to be overlayed or the specified subset
rather than attempting to restore them in the same block ranges as in the backup. Using this
keyword reduces the number of file extents as much as possible.

FORMAT = (keyword [,keyword])

The keywords ASSO and/or DATA may be specified. This parameter is used to format Associator
and/or Data Storage blocks. When restoring at the file level, only blocks contained in the unused
areas of the files' extents are formatted.

KEEP_FILE_ALLOC

If this parameter is specified, ADABCK tries to keep the allocation of the file as it currently is in
the database, as opposed to restoring it with the same block ranges as on the backup. This keyword
can, for example, be used when a file has been reorganized since the backup was made or also if
more space has since been preallocated to the file. If the file on the backup has more blocks allocated
than are currently available in the database, the remaining blocks will be allocated in an arbitrary
location. This keyword can only be used in conjunction with a file list.

40 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

NEW _DBID = number

This parameter can be used to change the identifier of the database to be restored. This parameter
can only be specified when restoring a complete database.

A new identifier can be used to restore a backup copy of an active database into a different set of
container files. The new identifier may not be identical to that of another active database.

If this parameter is omitted, the database identifier remains unchanged.
RENUMBER = (number[-number] [,number [-number]]...)

RENUMBER is used to renumber the files to be overlayed in the target database. The following
restrictions and requirements apply:

® There must be a 1:1 relationship between the files specified in the OVERLAY file list and the
RENUMBER file list.

® If you specify a range in the OVERLAY file list, the corresponding range in the RENUMBER
file list must be the same size.

® Normally it is not necessary to specify LOB files in the OVERLAY file list. However, if the LOB
file is also to be renumbered, the LOB file must also be specified.

* Files may occur more than once in the OVERLAY file list, for example: (11-55),(44-99). In this
case, you are not allowed to specify different target file numbers for the same source file numbers.
For the example file list, it is correct to specify RENUMBER=(1011-1055,1044-1099), whereas
RENUMBER=(1011-1055,2044-2099) is incorrect.

*® Itis not allowed to renumber more than one file to the same target file number.
REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the Adabas file is automatically marked as
a replication target file.

For further information refer to ADAOPR CHANGE_REPLICATION_STATUS.

Adabas Utilities 41

ADABCK (Dump And Restore Database Or Files)

PARALLEL

PARALLEL = keyword

This parameter can be specified to increase processing speed when creating/restoring from backups
on slow devices (e.g. tape drives) by using parallel devices. The keyword MULTI_PROCESS can
be used. If PARALLEL=MULTI_PROCESS is specified, the default value of the BLOCKSIZE
parameter changes to 512 KB.

The ADABCK operation is only performed in parallel if the number of backup files (ADABCK
subparameter DRIVES for DUMP or EXU_DUMP) is greater than 1.

Notes:

1. Inthe case of ADABCK RESTORE or ADABCK OVERLAY, PARALLEL must be specified before
the OVERLAY or RESTORE parameter.

2. The PARALLEL parameter is not supported on Windows platforms.

3. Itis possible to pass the output of ADABCK DUMP or ADABCK EXU_DUMP to named pipes,
which can be directly used as input for an ADABCK RESTORE or ADABCK OVERLAY in order
to copy a database or some files from one database to another database.

4. The PARALLEL parameter does not improve the performance of the READ_CHECK function.

5. The use of PARALLEL=MULTI_PROCESS is not recommended for the DUMP operation if the
data is to be restored on a computer with a different endian mode - the RESTORE operation
will reject backup files created with PARALLEL=MULTI_PROCESS on a computer with a dif-
ferent endian mode.

READ_CHECK

READ_CHECK

This function checks the readability (i.e. absence of parity errors) and completeness of the Adabas
backup copy. These checks are made to ensure that the dump file can be used to restore the database
or files with the RESTORE or OVERLAY function of this utility.

RESTORE

RESTORE = {*|(number[-number][,number[-number]l...)}

,FMOVE [=(number [,number [-numberll...)1]

,FORMAT = (keyword [,keyword])]

,NEW_DBID = number]

,RENUMBER = (number[-number] [,number [-number]l]...)]1]

,REPLICATION]

/-

This function restores the files specified by the numbers in the list at the file level. LOB files specified
are ignored, but the LOB files assigned to all base files are restored too. If a file list is given, the

42 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

files to be restored must not be loaded in the database. An ™' specifies that a restore is to be made
at the database level. In this case, the files may already be loaded in the database and will implicitly
be deleted or substituted by files in the dump with identical file numbers. Exclusive control over
the database container files is required.

Only the specified files are restored, even if there are referential integrity constraints to other files;
these referential integrity constraints are removed.

| Notes:

1. You can only use RESTORE=" if the dump file was created with DUMP=* or EXU_DUMP=*.

2. A backup created on a platform with different endian mode will not be restored if the backup
was created with the option PARALLEL=MULTI_PROCESS.

FMOVE [=(number [,number [-number]]...)]

If this keyword is specified, ADABCK reallocates all files to be restored or the specified subset
rather than attempting to restore them in the same block ranges as in the backup. Using this
keyword reduces the number of file extents as much as possible.

FORMAT = (keyword [,keyword])

The keywords ASSO and/or DATA may be specified. This parameter is used to format Associator
and/or Data Storage blocks. When restoring at the file level, only blocks contained in the unused
areas of the files' extents are formatted.

NEW_DBID = number

This parameter can be used to change the identifier of the database to be restored. This parameter
can only be specified when restoring a complete database.

A new identifier can be used to restore a backup copy of an active database into a different set of
container files. The new identifier may not be identical to that of another active database.

If this parameter is omitted, the database identifier remains unchanged.

Adabas Utilities 43

ADABCK (Dump And Restore Database Or Files)

REPLICATION

The parameter REPLICATION is relevant only for customers who are using the Adabas Event
Replicator with Adabas - Adabas Replication.

This parameter should be specified if you want to use ADABCK for the Adabas - Adabas replication
initial state processing. If you specify this parameter, the Adabas file is automatically marked as
a replication target file.

For further information refer to ADAOPR CHANGE_REPLICATION_STATUS.
Examples for RESTORE/OVERLAY

Example 1

The complete database is restored in parallel from several backup devices. Only database backups
can be processed (backups created with DUMP=* or EXU_DUMP=*). The backup of example 1 for
DUMP/EXUDUMP is used. The nucleus must be inactive.

adabck db=34 parallel=multi_process restore=*
%#ADABCK-T-STARTED, 30-0CT-2015 11:13:24, <version number>
%ADABCK-T1-DBOFF, database 34 accessed offline

Restore database 34 dumped on 30-0CT-2015 11:10:29

Database 34, GENERAL-DATABASE

File 1, CHECKPOINT-FILE , loaded on 4-SEP-2014 13:52:43
File 2, SECURITY-FILE , loaded on 4-SEP-2014 13:52:43
File 3, USER-DATA-FILE , Toaded on 4-SEP-2014 13:52:43
File 4, Update-log , loaded on 17-SEP-2014 14:44:19
File 9, EMPLOYEES , loaded on 8-0CT-2008 17:59:40
File 14, miscellaneous , loaded on 11-JUN-2015 13:22:19
File 17, Timezone , loaded on 19-SEP-2014 11:44:42
File 19, LARGE , loaded on 2-SEP-2014 15:37:18
File 30, FILE-30 , loaded on 31-MAR-2015 13:40:33
File 51, PCA24SYSF1 , loaded on 14-APR-2014 16:55:22
File 80, P295170 , loaded on 4-AUG-2015 12:42:43
File 91, ADA0S-2544 , loaded on 8-APR-2015 13:19:27
File 95, P299255 , loaded on 20-MAR-2014 11:35:30
File 98, ADA0S-4591 , loaded on 16-JUL-2015 10:03:16
File 101, COLLATION-TESTS , loaded on 14-APR-2014 16:47:30
File 111, TESTOPT , loaded on 29-NOV-2011 10:34:23
File 113, Tob_LB , loaded on 23-JUN-2015 15:48:48
File 146, XMA-REPOSITORY , Toaded on 10-DEC-2014 09:39:52
File 215, ADAOS-4647 , loaded on 27-APR-2012 15:52:49
File 1009, LOBFILE of 9 , loaded on 8-0CT-2008 17:59:40
File 1080, LOBFILE of 80 , loaded on 4-AUG-2015 12:42:43

File 1113, LOBFILE of 113 , Toaded on 23-JUN-2015 15:48:48
File 22111, LOBFILE of 111 , Toaded on 29-NOV-2011 10:34:23

44 Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

%AADABCK-TI-IOCNT, 1 I0s on dataset WORK

%ADABCK-T-IOCNT, 133 I0s on dataset DATA

%#ADABCK-TI-I0CNT, 244 I10s on dataset ASSO

%ADABCK-I-TIOCNT, 41 I0s on dataset BCKOO1

%ADABCK-TI-I0CNT, 34 I0s on dataset BCKO0O02

%ADABCK-T-TOCNT, 80 I0s on dataset BCKOO03

%ADABCK-TI-TERMINATED, 30-0CT-2015 11:13:26, elapsed time: 00:00:02

Example 2

File 215 is restored; the file must not already exist in the database. Database backups and file
backups can be processed. If there is more than one backup file, the backup files are not processed
in parallel, even if the backup was created with option PARALLEL. The nucleus may be either
active or inactive.

adabck db=34 restore=215
%ADABCK-T-STARTED, 30-0CT-2015 11:18:34, <version number>

%»ADABCK-T-DBOFF, database 34 accessed offline
Restore files from database 34 dumped on 30-0CT-2015 11:10:29
Database 34, GENERAL-DATABASE

File 215, ADAO0S-4647 , loaded on 27-APR-2012 15:52:49

%ADABCK-T-IOCNT, 7 I0s on dataset DATA

%ADABCK-I-IOCNT, 28 I0s on dataset ASSO

%ADABCK-TI-TI0OCNT, 41 I0s on dataset BCKOO1

%ADABCK-T-IOCNT, 34 I0s on dataset BCKOOZ2

%ADABCK-I-I0CNT, 80 I0s on dataset BCKO03

%ADABCK-T-TERMINATED, 30-0CT-2015 11:18:34, elapsed time: 00:00:00

Example 3

All base files in a backup file with a file number between 91 and 99 or equal to 51 or between 11
and 19 are restored (including the corresponding LOB files, even if they are not in the specified
file ranges). If a file already exists in the database, the file is overwritten. Database backups and
file backups can be processed. The nucleus may be either active or inactive.

Adabas Utilities 45

ADABCK (Dump And Restore Database Or Files)

adabck db=34 over=\(91-99,51,11-19\)

HADABCK-T-ST
%ADABCK-1-DB

ARTED, 30-0CT-2015 11:38:12,

ON, database 34 accessed online

Overlay files dumped on 30-0CT-2015 10:51:14

Database 34, GENERAL-DATABASE

File 14,
File 17,
File 19,
File 51,
File 91,
File 95,
File 98,

miscellaneous ,
Timezone ,
LARGE 3
PCA24SYSF1 ,
ADAOS-2544 3
P299255
ADAOS-4591 3

loaded
loaded
loaded
loaded
loaded

, loaded

loaded

on
on
on
on
on
on
on

11-JUN-2015
19-SEP-2014

2-SEP-2014
14-APR-2014

8-APR-2015
20-MAR-2014
16-JUL-2015

HADABCK-T-IOCNT, 619 I0s on dataset DATA
CNT, 1122 I0s on dataset ASSO
CNT, 1195 I0s on dataset BCKOOL

HADABCK-1-10
%ADABCK-TI-1I0
HADABCK-T-TE

SUMMARY

SUMMARY

RMINATED,

<version

13:

11

153
16:
13:

11

10:

number>

22
144
37 ¢
55 ¢
19¢
:35:
03:

19
42
18
22
27
30
16

30-0CT-2015 11:38:13, elapsed time: 00:00:01

This parameter displays general information and physical layout of the database in the Adabas
backup copy created by a previous run of the DUMP/EXU_DUMP function.

Example

adabck summa
%ADABCK-TI-ST

Database dumped on 30-0CT-2015 11:57:04

Database 34, GENERAL-DATABASE

Summary of D

DATABASE NAM
DATABASE ID
MAXIMUM FILE
SYSTEM FILES
ACTUAL FILES
CURRENT PLOG
CURRENT CLOG

ry

ARTED, 30-0CT-2015 12:01:46,

atabase 34

E
NUMBER LOADED
LOADED

NUMBER
NUMBER

30-0CT-2015 12:01:46

WO-DB-34

221

34
11

1
23
99
10

(CHK), 2 (SEC),

{version number>

3 (USR)

46

Adabas Utilities

ADABCK (Dump And Restore Database Or Files)

Container
File

ASS01
ASS02
ASS03
ASS04
ASS05

DATAL
DATA2
DATA3
DATA4

WORK1

Device
Type

file
file
file
file
file

file
file
file
file

file

Extents in Blocks

35,
166,
205,
210,

24,
34,

from

1
841
401
121
241

,892
380
620

35

166,
205,
210,
944,

24,
34,
388,

207

to

,840
400
120
240
832

,891
379
619
763

,872

Number of
Blocks

35

130,
38,

734,

15,

10,
354,

207

,840
560
720
,120
592

,891
488
240
144

,872

Block
Size

,096
,048
,768
,384

8,192

,096
,192
, 384
, 768

,096

Total Size
(Megabytes)

140.
255.
1,210.
80.
.00

5,739

34.
.00
160.
.00

121

11,067

00
00
00
00

73

00

HADABCK-T-1

OCNT,

2 I0s on dataset BCKOO1
%ADABCK-I-TERMINATED,

30-0CT-2015 12:01:46, elapsed time: 00:00:00

Restart Considerations

ADABCK has no restart capability. An abnormally-terminated ADABCK execution must be rerun
from the beginning.

An interrupted RESTORE/OVERLAY of one or more files will result in lost RABNs which can be
recovered by executing the RECOVER function of the utility ADADBM. An interrupted RE-

STORE/OVERLAY of a database results in a database that cannot be accessed.

Adabas Utilities

47

48

6 ADACLP (Command Log Report)

B FUNCHONAI OVEIVIEW ...t e e e e e,

= Procedure Flow
= Checkpoints

= Control Parameters

= Specifying Multiple SeleCtion CritEriaooiiiiiiiee e

49

ADACLP (Command Log Report)

This chapter describes the utility "ADACLP".

Functional Overview

The ADACLP utility prints the command log with a line width of 132 characters.

| Note: ADACLP can only process command logs of nucleus sessions that were started with

the ADANUC parameter CLOGLAYOUT=5 (5is the default value). Please refer to ADANUC,
CLOGLAYOUT for further information.

A record is written in the command log for each Adabas command issued. Command logging
must be enabled during Adabas startup with the nucleus parameter LOGGING, or when the
nucleus is already active with the ADAOPR parameter LOGGING.

] Note: For performance reasons, the Adabas nucleus determines the command start timestamp

only if command logging has been enabled. For this reason, the command start date and
the command duration are not displayed for Adabas commands that are already active but
not yet finished when command logging is switched on.

Any of the ADACLP parameters selects a subset of the command log information.

This utility is a single-function utility.

50 Adabas Utilities

ADACLP (Command Log Report)

Procedure Flow

ADACLP

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name

Command log CLPCLG Disk, Tape (* see note) | Utilities Manual,

ADACLP

Control statements |stdin/ Utilities Manual
SYS$INPUT

ADACLP report |stdout/ Messages and Codes
SYS$OUTPUT

] Note: (*) Anamed pipe can be used for this sequential file.

The sequential files CLPCLG can have multiple extents. For detailed information about sequential
files with multiple extents, see Using Utilities.

Adabas Utilities 51

ADACLP (Command Log Report)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

[NOJADDITIONS_2
[NOJADDITIONS_2
This option can be used to display the Additions 2 field instead of the command ID.

The default is NOADDITIONS 2.

CLASS
CLASS = (keyword [,keyword]...)

This parameter selects the log records whose command codes belong to the specified command
class. All records are selected if neither the CLASS parameter nor the COMMAND parameter is
specified.

CLASS and COMMAND are mutually exclusive.

The following keywords can be used:

KEYWORD |USE

CONTROL |Selects control commands such as “open' and “close’;

FIND Selects find commands;

READ Selects read commands;

UPDATE |Selects update commands.

52 Adabas Utilities

ADACLP (Command Log Report)

Example:

adaclp: class = find

The log records of the commands S1, 52, S4, S8 and S9 are selected.

CLOG
CLOG = (number [,number])

This parameter is required if the command log is within a raw section. It is optional if the command
log is within a file system. The CLOG number and the extension count can be specified. If no ex-
tension count is specified, Adabas will open subsequent extents as necessary. If an extent count
is specified, then only the specified extent will be processed.

Note: This parameter applies to UNIX platforms only.

COMMAND
COMMAND = (keyword [,keyword]...)

This parameter selects the log records with an Adabas command code specified by the keywords.
Up to ten keywords can be defined. If neither the COMMAND parameter nor the CLASS parameter
is specified, all records are selected.

COMMAND and CLASS are mutually exclusive.

All valid Adabas commands (A1...59) can be used as keywords (see Command Reference for further
information).

DATE
DATE = ([absolute-date] [,[absolute-datel])

This parameter selects the log records in the range specified by the optional date strings. The date
strings must correspond to the following absolute date and time format:

dd-mmm-yyyy[:hh:mm:ss]

Leading zeroes in the date and time specification may be omitted. Any numbers not specified are
set to 0, for example 28-jul-2012 is equivalent to 28-jul-2012:00:00:00.

By default, all log records are selected.

Adabas Utilities 53

ADACLP (Command Log Report)

Examples:

adaclp: date = 8-aug-2012

The log record written on 8-AUG-2012 00:00:00 is selected

adaclp: date = (8-aug-2012:12,)

All log records written from 8-AUG-2012 12:00:00 onwards are selected.

adaclp: date = (,8-aug-2012:12:34)
All log records written up to 8-AUG-2012 12:34:00 are selected.
DBID

DBID = number

This parameter selects the database to be used. This parameter must be specified when the CLOG
to be used is on a raw device.

Note: This parameter applies to UNIX platforms only.

DISPLAY
DISPLAY = (keyword [,keywordl...)

This parameter is used to display various kinds of information from the command log. The
keywords shown in the following table are available. Information for these keywords can only be
displayed if corresponding data was logged during the nucleus session.

KEYWORD |MEANING

CB ® Command log record number

B Starting date and time of the command

B Duration of the command in microseconds

® User ID specified in the corresponding OP command

= Node ID

= Login ID or, if ES_ID was specified, environment-specific ID
® Selected fields of the control block

B " in column 'X' indicates utility or exclusive file usage

® The thread which processed the command

54 Adabas Utilities

ADACLP (Command Log Report)

KEYWORD |MEANING
= T/O statistics
Note: For command logs created with versions lower than Version 6.3 SP1, the duration of
the command is displayed in milliseconds.
FB Format buffer.
FULL_CB |All fields of the control block. Other information shown for DISPLAY=CB is not shown here.
IB ISN buffer.
10 IO list.
NAT Natural information.
RB Record bulffer.
SB Search buffer.
STATISTICS |Command statistics of the selected records.
VB Value buffer.

The default is DISPLAY = CB.

ES_ID
ES_ID [= number]
This parameter causes the environment-specific ID to be displayed instead of the login ID.

If a number is specified, only records with information for the specified environment-specific ID
(process ID) will be selected.

By default, all records are selected.

FILE

FILE = (number [- number] [,number [- number]]...)

This parameter selects the log records with commands that reference the file(s) specified by
number or range of numbers. A maximum of 20 files may be specified.

By default, all records are selected.

Adabas Utilities 95

ADACLP (Command Log Report)

[NOJHEXADECIMAL
[NOJHEXADECIMAL

If this parameter is set to HEXADECIMAL, the record buffer and value buffer are displayed in
hexadecimal format (when DISPLAY=RB or DISPLAY=VB is specified).

The default is NOHEXADECIMAL.

LOGIN_ID
LOGIN_ID = string
This parameter selects all records with the specified login ID.

By default, all records are selected.

NODE_ID
NODE_ID = string
This parameter selects the log records from the specified node.

The node identification shown while processing ADAOPR with the parameter DISPLAY = UQ
must be used.

This parameter is valid only if ENTIRE NET-WORK is installed.

PAGE
PAGE = number
This parameter defines the page size, in lines, used for the printout.

The default is 59 lines.

RECORDS

RECORDS = number [-number]

This parameter selects the log records in the specified range of log record numbers. Log record
numbers start with 1 after the log is switched on.

By default, all records are selected.

56 Adabas Utilities

ADACLP (Command Log Report)

RESPONSE
RESPONSE = (number [- number] [,number [- numberl]] ...)

This parameter selects the records with the specified response code or range of response codes.

USER_ID
USER_ID = string
This parameter selects the records with the user ID specified in ‘string'.

By default, all users are selected.

Example

user_id = *adarep
All records that represent commands issued from the utility ADAREP are selected.
WIDTH

WIDTH = number
This parameter selects the output line width. Valid values are 80 and 132.

The default is 132.

Specifying Multiple Selection Criteria

If multiple selection criteria are specified, they are combined by a logical AND, e.g.

command = 13, file = 5

This selects all L3 commands on file 5.

Adabas Utilities of

58

7 ADACMP (Compression Of Data)

B FUNCHONAI OVBIVIBWvvvie ettt e e e e e e e e e e e e e eees
B PROCEAUE FIOW .. evviieee e e et e e
B CNECKPOINES ...ttt e ettt ettt et s
B CONMTOI PAramELEIS ... e s

59

ADACMP (Compression Of Data)

This chapter describes the utility "ADACMP".

Functional Overview

The compression utility ADACMP compresses user raw data into a form which can be used by
the mass update utility ADAMUP.

The input data for this utility must be contained in a sequential file. LOB field values can also be
provided in separate files.

The logical structure and characteristics of the input data are described by a field definition table
(FDT). These statements specify the level number, field name, standard length and format together
with any definition options that are to be assigned to the field (descriptor, unique descriptor,
multiple-value field, null value suppression, fixed storage, periodic group). See Adabas Basics, FDT
Record Structure for more detailed information about the layout of the file in the database and
characteristics of the input data.

Each field in the input record without the option SY (system generated) is compressed. Compression
consists of removing trailing blanks from alphanumeric fields and leading zeros from numeric
fields. Unpacked and packed fields are checked for correct data. Fields defined with the fixed
storage option are not compressed. A user exit is provided to allow additional editing of each input
record with a user-written routine.

System generated fields are either regenerated or decompressed, depending on the keyword
specified for the ADACMP parameter SYFINPUT.

This utility creates three types of output files:

® Compressed data.
® Descriptor values.

" Records with errors.
The sizes of the descriptor values of all descriptors are listed at the end of execution.
If the utility writes records to the error file, it will exit with a non-zero status.

. Note: Please be careful if you want to add data to a file that still contains ICU 3.2 collation
descriptors:

= If you specify the FDT with the parameters DBID and FILE, the FDT is taken unchanged from
the database. This means the ICU version is still 3.2. You can add the data to the file, and the
ICU version remains 3.2.

60 Adabas Utilities

ADACMP (Compression Of Data)

® If you take the FDT from the CMPFDT file, a new FDT is created from the CMPFDT file, where
the ICU version is set to 5.4. This means you can only add the data to the file if it is empty, and
if you specify the NEW_FDT option. The ICU version used is 5.4.

This utility is a single-function utility.

Adabas Utilities 61

ADACMP (Compression Of Data)

Procedure Flow

Lser LOB Input Data

Field Defintions

User Input Data Error Data

The sequential files CMPDTA, CMPDVT and CMPERR can have multiple extents. For detailed
information about sequential files with multiple extents, see Adabas Basics, Using Ultilities, Adabas

62 Adabas Utilities

ADACMP (Compression Of Data)

Sequential Files, Multiple Extents . CMPLOB is a directory that contains files which may be stored

as LOB values in the database.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASS0x Disk
Compressed data CMPDTA Disk, Tape (* see note) |output by ADACMP
Descriptor Value Table [CMPDVT Disk, Tape (* see note) |output by ADACMP
Rejected data CMPERR Disk, Tape (* see note) |output by ADACMP
Input data FDT CMPEDT Disk, Tape (* see note) | Utilities Manual
User input data CMPIN Disk (* see note) Utilities Manual
User LOB input data |CMPLOB Disk Utilities Manual
ADACMP stdin/ Utilities Manual
control statements SYSSINPUT
ADACMP messages |stdout/ Messages and Codes
SYS$OUTPUT

Note: (*) Anamed pipe can be used for this sequential file (see Adabas Basics, Using Utilities,

Adabas Sequential Files, Using Named Pipes for details).

If the SINGLE_FILE option is set, the Descriptor Value Table (DVT) and the compressed user data

are written together to the logical name CMPDTA.

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

DBID = number

D [NOIDST

FDT

FIELDS {uncompressed_field_definition | FDT}...[END_OF_FIELDS |

Adabas Utilities

ADACMP (Compression Of Data)

FILE = number
D [NOJLOBS
D [NOJLOWER_CASE_FIELD_NAME
D MAX_DECOMPRESSED_SIZE = number [K|M]
D MUPE_C_L = {1]|2]4}
D [NOJNULL_VALUE
D NUMREC = number
D RECORD_STRUCTURE = keyword
SEPARATOR = character | \character
D [NOJSHORT_RECORDS
D [NOJSINGLE_FILE
SKIPREC = number
D SOURCE_ARCHITECTURE = (keyword[,keywordl[,keyword])
D SYFINPUT = keyword
D TZ {=]:} [timezone]
D [NOJUSEREXIT
D [NOJUSERISN

D WCHARSET = char_set

DBID

DBID = number

This parameter selects the database that contains the file to be specified by the FILE parameter.

64 Adabas Utilities

ADACMP (Compression Of Data)

[NOJDST
[NOIDST

The parameter DST is required if a daylight saving time indicator is provided for date/time fields
with the option TZ. The daylight saving time indicator must be appended behind the date/time
value as a 2-byte integer value (format F) that contains the number of seconds to be added to the
standard time in order to get the actual time (usually 0 or 3600).

Without the parameter DST, it is not possible to define time values in the hour before the time is
switched back to standard time.

The default is NODST.

Notes:

1. The DST parameter is ignored if the FIELDS parameter is specified. In this case, you must specify
a D element for fields with the daylight saving time indicator.

2. The DST parameter is not compatible with the RECORD_STRUCTURE = NEWLINE_SEPAR-
ATOR parameter because the daylight saving indicator in format F contains non-printable
characters.

Example:
A DT field has the following definition: 1,DT,8,PDT=E(DATE_TIME), TZ
The following values must then be specified for this field:

® The local date/time value corresponding to the edit mask DATE_TIME as an 8-byte packed
value

® The daylight saving time indicator, usually 0 for standard time and 3600 for summer time as a
2-byte fixed point value

Case 1 (DT has a date/time value with daylight saving time): 0x0200910250230000E10
Case 2 (DT has a date/time value with standard time): 0x0200910250230000000

FDT
FDT

If this parameter is specified as the first parameter, or as the second parameter after
[NOJLOWER_CASE_FIELD_NAMES, ADACMP reads the FDT information contained in the se-
quential file CMPFDT and displays the FDT.

Note: Alternatively, instead of FDT, you can specify DBID and FILE as the first parameters,
or as the second parameters after NOJLOWER_CASE_FIELD_NAMES (which is allowed

Adabas Utilities 65

ADACMP (Compression Of Data)

before DBID and FILE). In this case, the FDT of the file is used as the base for the compres-
sion.

The FDT parameter can be specified several times, but if you have already determined the FDT

to be used for the compression by specifying the FDT or DBID and FILE parameters, specifying
the FDT parameter again will only display the FDT; the FDT is not overwritten by the CMPFDT
file.

FIELDS

FIELDS {uncompressed_field_definition | FDT}...[END_OF_FIELDS | .]

This parameter is used to specify a subset of fields given in the FDT and their format and length.
This means that the input records do not have to contain all of the fields given in the FDT, or that
fields can be provided with a different format or length. The syntax and semantics are the same
as for the format buffer, with the exception that you can also specify an R-element (for LOB refer-
ences) if the decompressed record contains the name of a file containing the LOB value instead of
the LOB value itself. See Adabas Basics, Loading and Unloading Data, Uncompressed Data Format for
more detailed information.

While entering the specification list, the FDT function can be used to display the FDT of the file
to be decompressed. The specification list can be terminated or interrupted by entering
END_OF_FIELDS or ".". The "." option is an implicit END_OF_FIELDS and is compatible with the
format buffer syntax. FIELDS or END_OF_FIELDS must always be entered on a line by itself,
whereas the ".' may be entered on a line by itself or at the end of the format buffer elements.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

FILE
FILE = number

This parameter specifies the file from which the FDT information is to be read. This parameter
can only be specified after the DBID parameter.

66 Adabas Utilities

ADACMP (Compression Of Data)

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The defaultis NOLOWER_CASE_FIELD_NAMES.

If lower case field names in the FDT are not to be converted to upper case, the parameter must be
specified as the first parameter before the FDT parameter; if lower case field names in the FIELDS
parameter are not to be converted to upper case, the parameter must be specified before the FIELDS
parameter.

“P) Caution: If the LOWER_CASE_FIELD_NAMES parameter is specified for the CMPFDT file,

not upper case conversion is done for the complete file. Lower case characters for field
formats and field options will cause FDT syntax errors. This problem also exists for lower
case characters in the FIELDS parameter.

[NOJLOBS
[NOJLOBS

This parameter specifies whether LA and LB field values are to be stored in a LOB file after loading
the compressed data into the database:

*® If the parameters DBID and file number have been specified, this parameter is ignored, and the
field is handled as described below;

= If the parameters DBID and file number have not been specified and LOBS is specified, field
values for LA and LB fields are prepared for storage in a LOB file, except the field is defined as
a descriptor.

= If the parameters DBID and file number have not been specified and NOLOBS is specified, field
values for LA and LB fields are prepared for storage in the base file. In this case, the length of

field values for LA and LB fields must not exceed 16381 bytes and the compressed record must
fit into a 32 KB DATA block.

Please note that LA and LB fields which are descriptors or parent fields of a derived descriptor,
e.g. a super descriptor, are always handled as described for the NOLOBS parameter.

Default behaviour is as follows:

= If the parameters DBID and file number have been specified and the file is a base file with cor-
responding LOB file, LOBS is default.

= If the parameters DBID and file number have been specified and the file is not a base file with
corresponding LOB file, NOLOBS is default.

= If the parameters DBID and file number have not been specified, LOBS is default.

Adabas Utilities 67

ADACMP (Compression Of Data)

MAX_DECOMPRESSED_SIZE
MAX_DECOMPRESSED_SIZE = number [K|M]

This parameter specifies the maximum size of a decompressed record in bytes, kilobytes or
megabytes, depending on the specification of "K" or "M" after the number. This parameter is inten-
ded to recognize invalid CMPIN files as early as possible.

The default is 65536. This is also the minimum value.
Notes:

1. This parameter does not include the size of LOB values stored in separate files.

2. The exact definition of this parameter is the size of the I/O buffer required for the largest decom-
pressed record. Only multiples of 256 bytes are used for the I/O buffers, which means that you
must specify a value greater than or equal to the largest decompressed record (including the
preceding length field) rounded up to the next multiple of 256.

MUPE_C_L
MUPE_C_L = (1]2]4)

If the uncompressed data contain multiple-value fields or periodic groups, they are preceded by
a binary count field with the length of MUPE_C_L bytes.

The default is 1.

[NOJNULL_VALUE
[NOINULL_VALUE

The parameter NULL_VALUE is required if you are compressing data according to the standard
FDT and the status values of the NC option fields are given in the input data. Normally, such input
data is generated by ADADCU with the NULL_VALUE option set.

The default is NONULL_VALUE.

Example

The definition in the FDT for the field AAis: 1, AA, 2, A, NC

Case 1 (AA has a non-NULL value): input record (hexadecimal) = 00004142

Case 2 (AA has a NULL value): input record (hexadecimal) = FFFF2020

68 Adabas Utilities

ADACMP (Compression Of Data)

NUMREC
NUMREC = number

This parameter specifies the number of input records to be processed. If this parameter is omitted,
all input records contained on the input file are processed.

Use of this parameter is recommended for the initial execution of ADACMP if the input data file
contains a large number of records. This avoids unnecessary processing of all records in cases
where a data definition error or invalid input data results in a large number of rejected records.

This parameter is also useful for creating small files for test purposes.

RECORD_STRUCTURE
RECORD_STRUCTURE = keyword

This parameter specifies the type of record separation used in the input file with the environment
variable CMPIN. The following keywords can be used:

Keyword Meaning

ELENGTH_PREFIX The records in the CMPIN file are separated by a two-byte exclusive length field.

E4LENGTH_PREFIX The records in the decompressed data file are separated by a 4-byte exclusive
length field.

ILENGTH_PREFIX The records in the CMPIN file are separated by a two-byte inclusive length field.

I4LENGTH_PREFIX The records in the decompressed data file are separated by a 4-byte inclusive
length field.

NEWLINE_SEPARATOR |The records in the CMPIN file are separated by a new-line character. This
keyword may only be specified if the field values do not contain characters
interpreted as new-line (i.e. if there are only unpacked, alphanumeric and
Unicode fields, and the alphanumeric and Unicode fields contain only printable
characters). This keyword and the USERISN parameter are mutually exclusive.

RDW The records in the CMPIN file contain data that has been transferred from an
IBM host using the FTP site rdw option. ADACMP is able to process such data
without having to use cvt_fmt first (in previous versions, the unsupported tool
cvt_fmt was used for such format conversions). For example:

% ftp IBM-host

ftp> binary

200 Representation type is Image

ftp> site rdw

200 Site command was accepted

ftp> get decomp

% setenv CMPIN decomp

% adacmp fdt record_structure=rdw source=(ebcdic,high)

RDW_HEADER Like RDW, for data decompressed on a mainframe with HEADER=YES.

Adabas Utilities 69

ADACMP (Compression Of Data)

Keyword Meaning

HEADER For data decompressed on a mainframe with HEADER=YES, if the decompressed
data do not contain any additional information about block or record length.

VARIABLE_BLOCKED |The variable blocked format from BS2000 or IBM.

The default is ELENGTH_PREFIX.

SEPARATOR

SEPARATOR = character | \character

If you specify this option, ADACMP expects the fields in the raw data record to be separated by
the character specified. You can omit the apostrophes round the character specification if the
character has no special meaning for the Adabas utilities. The same fields in different records are
then permitted to be of different lengths.

If a format buffer is specified using the FIELDS parameter, the order of the specified field names
must correspond with the order in which the fields are specified in the FDT. A mismatch results
if this is not the case.

If the FDT contains multiple value fields or periodic groups, a format buffer must be specified
with the FIELDS parameter. Members of periodic groups must be ordered by 1) periodic group
index and 2) field sequence in the FDT (see example 2 below).

Because no binary data is expected in the input file using the SEPARATOR option, the RE-
CORD_STRUCTURE parameter will be set to NEWLINE_SEPARATOR.

Example 1
FDT: 1, AA, 2, U
1, AB, 8, U
1, AC, 2, A
CMPIN: 12;12345678;AA
1234;5;B8B
adacmp
fdt

separator=\;

or for UNIX

adacmp fdt separator=\\\;
or

adacmp fdt separator='\;

70 Adabas Utilities

ADACMP (Compression Of Data)

In this example, 2 records are compressed with the default FDT, the separator character is the
semicolon, and the default record structure is NEWLINE_SEPARATOR. Note that the semicolon
must be preceded by a backslash, otherwise it would be treated as the start of a comment. If you
enter the parameters under UNIX directly from the command line, it is necessary to precede the
backslash and the semicolon by additional backslashes or to put them in quotes or double quotes
since they are special characters.

Example 2
FDT: 1, XX, PE
2, AA, 8, A
2, AB, 8, U
1, YY, 2, A
Correct: CMPIN: aaaa,l,bbbb,2,yy

Command: adacmp fdt separator=, fields AAl,AB1,AA2,AB2,YY.
First, the field values for the periodic group index 1 are
specified, and then the field values for periodic group index 2.

Invalid: CMPIN: aaaa,bbbb,1,2,yy
Command: adacmp fdt separator=, fields AAl1-2,AB1-2,YY.
The fields specification is invalid because the 2nd value of
AA is specified before the 1st value of AB; you will get
the error SEPINV.

In this example, 1 record with fields given in the format buffer is compressed, the separator char-
acter is the comma.

Example 3

FDT: 1, AA, 8, A
CMPIN: aaaas2hA%B
bbbb%3%C%D%E
adacmp dbid=9 file=15 separator=%, fields "AA,MAC,1,U,MAI-N"

In this example, 2 records with fields given in the format buffer are compressed, the occurrence
count or the multiple value field MA is different in different records. The separator character is
the percent character.

Adabas Utilities 71

ADACMP (Compression Of Data)

[NOJSHORT_RECORDS
[NOJSHORT_RECORDS

If SHORT_RECORDS is specified, it is possible to omit fields at the end of the decompressed record
that contain null values.

The default is NOSHORT_RECORDS.
You can only omit complete fields; it is not possible to truncate the last value:
Example

Assuming you have specified the parameters for a file containing alphanumeric fields AA and
AB:

FIELDS
AA,20,AB, 20
END_OF_FIELDS
SHORT_RECORDS

Then the following record is allowed:

"Field AA "

The following record is not allowed:
"Field AA"

[NOJSINGLE_FILE
[NOJSINGLE_FILE

If the SINGLE_FILE option is set, ADACMP writes the Descriptor Value Table (DVT) and the
compressed user data to a single file (CMPDTA) instead of writing them to separate files.

The default is NOSINGLE_FILE.
SKIPREC

SKIPREC = number

This parameter specifies the number of records to be skipped before compression is started.

72 Adabas Utilities

ADACMP (Compression Of Data)

SOURCE_ARCHITECTURE

SOURCE_ARCHITECTURE = (keyword [,keyword [,keyword] 1)

This parameter specifies the format (character set, floating-point format and byte order) of the
input data records. The following keywords can be used:

Keyword Group Valid Keywords
Character set ASCII
EBCDIC

Floating-point format|IBM_370_FLOATING
IEEE_FLOATING

VAX_FLOATING
Byte order HIGH_ORDER_BYTE_FIRST

LOW_ORDER_BYTE_FIRST

If no keyword of a keyword group is specified, the default for this keyword group is the keyword
that corresponds to the architecture of the machine on which ADACMP is running.

| Note: The FDT is always input in ASCII format.

Example

If the input records that are to be compressed are in IBM format, the user must specify the following;:

SOURCE_ARCHITECTURE = (EBCDIC, IBM_370_FLOATING, HIGH_ORDER_BYTE_FIRST)

SYFINPUT

SYFINPUT = keyword

This parameter specifies the input used for the compression of system generated fields. The fol-
lowing keywords can be used:

Keyword Meaning

SYSTEM |The system generated field values are regenerated by the system in ADACMP.

USER |The system generated field values are taken from the decompressed file.

The default is SYFINPUT = USER.

Adabas Utilities 73

ADACMP (Compression Of Data)

TZ
TZ {=|:} [timezone]

The specified time zone must be a valid time zone name that is contained in the time zone database
known as the Olson database (https://www.iana.org/time-zones). If a time zone has been specified,
this time zone is used for time zone conversions of date/time fields with the option TZ.

The default is UTC, which is used internally to store date/time fields with option TZ; no conversion
is required.

If you specify an empty value, no checks are made to ensure that date/time fields are correct.

| Note: The time zone names are file names. Depending on the platform, these file names

may or may not be case sensitive. Also, the time zone names, depending on the platform,
may or may not be case sensitive.

Examples:

tz:Europe/Berlin

This is correct on all platforms.

TZ=Europe/Berlin

With this specification, TZ is converted to upper case EUROPE/BERLIN. This is correct on Windows,
because file names are not case sensitive on Windows, but it is not correct on Unix, because Unix
file names are case sensitive.

[NOJUSEREXIT
[NOJUSEREXIT

This option specifies whether a user exit is to be taken or not. If USEREXIT is specified, the envir-
onment variable ADAUEX_6/logical name ADABAS$USEREXIT_6 must point to a loadable user-
written routine.

See Adabas Basics, User Exits and Hyperexits for more details.

The default is NOUSEREXIT.

74 Adabas Utilities

https://www.iana.org/time-zones

ADACMP (Compression Of Data)

[NOJUSERISN
[NOJUSERISN

If this option is set to USERISN, the ISN for each record in the input file will be assigned by the
user.

If USERISN is specified, the user must give the ISN to be assigned to each record as a four-byte
binary number immediately preceding each data record.

ISNs may be assigned in any order and must be unique (for the file). The ISN must not exceed the
maximum number of records (MAXISN) specified for the file (see the file definition utility
ADAFDU for more detailed information).

ADACMP does not check for unique ISNs or for ISNs which exceed MAXISN. These checks are
performed by the mass update utility ADAMUP (if an error is detected, the ADAMUP run termin-
ates with an error message).

If this option is set to NOUSERISN, the ISN is assigned by Adabas.

The default is NOUSERISN.

WCHARSET
WCHARSET = char_set

This parameter specifies the default encoding used in the decompressed file based on the encoding
names listed at http://www.iana.org/assignments/character-sets - most of the character sets listed
there are supported by ICU, which is used by Adabas for internationalization support.

The default is UTF-8.

Output

The ADACMP utility outputs three files:

1. Compressed data
2. Descriptor values

3. Records with errors

Adabas Utilities 75

http://www.iana.org/assignments/character-sets

ADACMP (Compression Of Data)

Compressed Data Records

The data records which ADACMP has processed, modified and compressed are output together
with the FDT information to a sequential file. This file is used as input for the mass update utility
ADAMUP.

If the output file contains no records (no records on the input file or all records rejected), the output
may still be used as input for the mass update utility ADAMUP.

Descriptor-Value Table File

This file contains the descriptor value tables (DVT).

Compressed data records and descriptor value tables are written to one file if the SINGLE_FILE
option is specified.

Rejected Data Records
Any records rejected by ADACMP are written to the ADACMP error file. The contents of this error

file should be displayed using the ADAERR utility. Do not print the error file using the standard
operating system print utilities since the records contain unprintable characters.

See the ADAERR utility for further information.

Report

The ADACMP report begins with a display of the field definition entered if CMPFDT is used for
input. Any statement which contains a syntax error will be printed with a message immediately
following the statement.

Following the display of the data-definition statements, a descriptor summary, the number of input
records processed, the number of input records rejected, and the number of input records com-
pressed are printed.

Restart Considerations

ADACMP does not have a restart capability. An interrupted ADACMP run must be re-started
from the beginning.

ADACMP does not change the database; therefore, no considerations need to be made concerning
database status before restarting ADACMP.

76 Adabas Utilities

8 ADACVT (Convert a Database from a previous Version)

B FUNCHONAI OVEIVIEW ...t e e e e e,

= Procedure Flow

= Checkpoints

B ADACVT CoNtrol Parametarscovu e e
B RESIAM CONSIABIAONS . .oeve e e

77

ADACVT (Convert a Database from a previous Version)

This chapter describes the utility "ADACVT".

Functional Overview

The utility ADACVT converts an existing database in place. The conversions performed are de-
scribed below.

ADACVT enables the conversion of a database in both directions:

® From a previous version to the current version and;

® From the current version to a previous version.
When converting a database

= The nucleus must not be active or;
® The nucleus must not have an AUTORESTART pending;

* The nucleus must not have utility entries in the utility control block (UCB).
Prior to converting a database, it is highly recommended that you:

® Use ADABCK to dump the database;
® Use ADAVEFY'S FIELD and INDEX functions to verify the consistency of the database.

| Note: The verification of the database can be done either before or after dumping the
database.

The new Adabas version works best if the database is registered in the ADABAS.INI file. If the
database is not registered, but a corresponding DBxxx.INI file is available, then ADACVT adds
the database into the ADABAS.INI file.

During the conversion, the new structure level and the AUTOSTART option are adapted in
ADABAS.INIL

] Notes:

1. A downward conversion is not possible if features introduced with Adabas Version 6.7 were
used. Any modifications made using the new features must be removed before you attempt
the downward conversion.

2. If you perform a downward conversion of a database that contains collating descriptors created
with ICU version 5.4, you must execute ADAINV REINVERT with ADAINV of the target version
for these collation descriptors, following successful execution of ADACVT.

78 Adabas Utilities

ADACVT (Convert a Database from a previous Version)

3. If the spanned record flag is set in the FCB, ADACVT will not perform a downward conversion
of a database from Version 6.7 or above to Version 6.6 or below.

4. If the RBAC system file is loaded, ADACVT will not perform a downward conversion of a
database from Version 6.6 or above to Version 6.5 or below, and it will replace the RBAC system
file with a loss of user-defined data when converting to Version 6.7.

This utility is a single-function utility.

Adabas Utilities 79

ADACVT (Convert a Database from a previous Version)

Procedure Flow

80 Adabas Utilities

ADACVT (Convert a Database from a previous Version)

Data Set Environment |Storage |Additional Information
Variable/ Medium
Logical Name

Associator ASSOx Disk

Data storage DATAX Disk

Sort storage SORTx Disk |Administration Manual, temporary working space
TEMPLOCx

Control statements |stdin/
SYS$INPUT

ADAINYV messages|stdout/ Messages and Codes
SYS$OUTPUT

Temporary storage |TEMPx Disk

Checkpoints

On successful completion, ADACVT writes a SYNP checkpoint.

ADACVT Control Parameters

The following control parameters are available:

M DBID = number
I\ CONVERT = {V630|V640|V650|V660}
DBID

DBID = number

This parameter selects the database to be converted.

Adabas Utilities

81

ADACVT (Convert a Database from a previous Version)

CONVERT

CONVERT = {V610|V620|V630|V640|V650|V660|V670)

This parameter specifies the structure of the destination version and can take the following values:
V610

Converts a database from Version 6.7 to Version 6.1.

V620
Converts a database from Version 6.7 to Version 6.2.

V630
Converts a database from Version 6.7 to Version 6.3.

V640
Converts a database from Version 6.7 to Version 6.4.

V650
Converts a database from Version 6.7 to Version 6.5.

V660
Converts a database from Version 6.7 to Version 6.6.

V670
Converts a database from Version 6.1, Version 6.2, Version 6.3, Version 6.4, Version 6.5 or
Version 6.6 to Version 6.7.

Example 1:

ADACVT DBID=number CONVERT=V670

The database with the DBID = number is converted from Version 6.1, 6.2, 6.3, 6.4, 6.5 or 6.6 to
Version 6.7.

Example 2:

ADACVT DBID=number CONVERT=V630

The database with the DBID = number is converted from Version 6.7 to Version 6.3.

82 Adabas Utilities

ADACVT (Convert a Database from a previous Version)

Restart Considerations

If ADACVT is unable to restart after a crash, restore the original database from the backup and
run the utility again.

Adabas Utilities 83

84

9 ADADBM (Database Modification)

B FUNCHONAI OVEIVIEW ...t e e e e e, 86
I o Tot= Yo (1 (<3 o o AT UPTRPRRI 88
B CNECKPOINES ...ttt e ettt ettt et s 90
B CONTTOl ParAMBIETS .. e e e e e e e e 91
B RES A CONSIAIAtIONS . .eeeee e e 117

85

ADADBM (Database Modification)

This chapter describes the utility "ADADBM".

Functional Overview

The ADADBM utility consists of the following functions which may be used to make modifications
to the database:

The ADD_CONTAINER function adds a new container file to the Associator or Data Storage
data set;

The ADD_FIELDS function adds new fields to the end of a file's FDT;

The ALLOCATE NI, UI, AC or DS function increases the Normal Index, Upper Index, Address
Converter or Data Storage space assigned to a file;

The BT function sets/clears the NOBT flag for an existing file;

The CHANGE function changes the standard length of a field in the Field Definition Table
(FDT);

The CHANGE_FIELDS function modifies one or more field specifications in a file;

The DEALLOCATE functions are the inverse functions of ALLOCATE. The NI, UI, AC or DS
function returns the Normal Index, Upper Index, Address Converter or Data Storage space
which is no longer required by a file to the free space table (FST);

The DELCP function deletes old checkpoint records from the checkpoint file in the specified
range of dates;

The DELETE function deletes a single Adabas file or a range of Adabas files from the database;

The DELETE_DATABASE function deletes a database. Depending on the keyword specified,
either just the containers are deleted, or the database directory and its content are deleted.

The DISPLAY function displays the utility communication block (UCB);

The DROP_FIELDS function marks the specified fields as not existing, which means that they
can no longer be accessed ;

The DROP_LOBFILE function is the inverse function of ADAFDU ADD_LOBFILE;

The DROP_REFINT function drops an existing referential constraint;

The EXTEND_CONTAINER function extends the last container file defined for the database;
The NEW_DBID function changes the identifier of the database in use;

The NEWWORK function allocates and formats a new Adabas WORK data set;

The PGM_REFRESH function enables or disables refreshing an Adabas file inside an application
program with an E1 command;

The RBAC_FILE function creates the RBAC system file required for Adabas authorization mode.
The RECORDSPANNING function enables/disables record spanning for a file;

86

Adabas Utilities

ADADBM (Database Modification)

® The RECOVER function returns lost space to the free space table;

" The REDUCE_CONTAINER function reduces the size of the last container file defined for the
database;

® The REFRESH function resets a single file or a range of files to the state of zero records loaded;

" The REMOVE_CONTAINER function removes a container file from the Associator, or Data
Storage data set;

® The REMOVE_DROP function, used in conjunction with a subsequent REFRESH, removes
dropped fields from the FDT;

® The REMOVE_REPLICATION function stops all replication processing and deletes the replication
system files;

® The RENAME function changes the database name or names of loaded files;
* The RENUMBER function renumbers a loaded file or exchanges the numbers of loaded files;

® The REPLICATION_FILES function creates the system files required for Adabas - Adabas rep-
lication;

® The RESET function removes entries from the UCB;

® The RESET_REPLICATION_TARGET function resets the replication target flag of Adabas files;
® The REUSE function controls the reusage of Data Storage space or ISNs by Adabas;

® The SECURITY function sets the security mode of the database;

® The SYFMAX function specifies the maximum number of values generated for a system generated

multiple-value field in the file specified.

This utility is a multi-function utility.

Adabas Utilities 87

ADADBM (Database Modification)

Procedure Flow

Online Mode

If the Adabas nucleus is active, ADADBM calls the nucleus to modify the database containers. For
some tasks, no checkpoints are written, but the activity is logged in the database log, and in the
case of a recovery, the activity is re-executed automatically.

88 Adabas Utilities

ADADBM (Database Modification)

Offline Mode

If the Adabas nucleus is not active, ADADBM itself modifies the database containers.

Data Set Environment |Storage |Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Data storage DATAX Disk
DBnnn.INI Disk |Adabas Extended Operations Manual
Control statements |stdin Utilities Manual
ADADBM messages |stdout Messages and Codes
Protection Log NUCPLG |Disk |Utilities Manual:
(online mode only) ADANUC, ADAPLP
Temporary storage |TEMP1 Disk |[New WORK data set for the NEWWORK function. After this
(offline mode only) function is performed, the Work environment variable/logical
name must be changed to point to the new Work data set.

Adabas Utilities 89

ADADBM (Database Modification)

Data Set Environment |Storage | Additional Information
Variable/ Medium
Logical Name

Work WORK1 Disk

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must|Nucleus must NOT |Nucleus is NOT Checkpoint written
be active be active required

ADD_CONTAINER X SYNP

ADD_FIELDS X SYNP (offline)
SYNX (online)

ALLOCATE X SYNP

BT X SYNP

CHANGE X -

CHANGE_FIELDS X SYNP (offline)
SYNX (online)

DEALLOCATE X SYNP

DELCP X SYNP

DELETE X SYNP (offline)
SYNX (online)

DELETE_DATABASE X -

DISPLAY X -

DROP_FIELDS X SYNP (offline)
SYNX (online)

DROP_LOBFILE X SYNP

EXTEND_CONTAINER for WORK for ASSO or DATA |SYNP

NEW_DBID X (see note 1) SYNP

NEWWORK X (see note 1) SYNP

PGM_REFRESH X SYNP

RBAC_FILE X SYNP (see note 3)

RECOVER X SYNP

RECORDSPANNING X SYNP (see note 3)

REDUCE_CONTAINER for ASSO or DATA |SYNP

90

Adabas Utilities

ADADBM (Database Modification)

Function Nucleus must|Nucleus must NOT |Nucleus is NOT Checkpoint written
be active be active required
REFRESH X SYNP
REMOVE_CONTAINER X SYNP
REMOVE_REPLICATION X SYNP (offline)
RENAME X SYNP
RENUMBER X SYNP
REPLICATION_FILES X SYNP (offline)
SYNX (online)
(see note 2)
RESET X SYNX
RESET_REPLICATION_TARGET
REUSE X SYNP
SECURITY X SYNP (offline)
SYFMAX X SYNP (offline)
SYNX (online)
Notes:

1. Function requires exclusive access to the database container files

2. Inaddition, ADADBM or ADAFDU checkpoints are generated (also in offline mode) to indicate
the system file numbers deleted or generated.

3. In addition, an ADABCK checkpoint is generated, indicating the RBAC system file number.

Control Parameters

The following control parameters are available:

ADD_CONTAINER = keyword
D [,BLOCKSIZE=number[K]]
,SIZE = number [B|M]

ADD_FIELDS = number {field_specification|FDT}

ALLOCATE = keyword,

SIZE = number [B|M]

BT = keyword,

CHANGE = number,

FILE = number

FIELD = string,

LENGTH =

[END_OF_FIELDS]

FILE = number [,RABN = number],

number

Adabas Utilities

N

ADADBM (Database Modification)

CHANGE_FIELDS = number {field_specification|FDT} ... [END_OF_FIELDS]
M DBID = number
DEALLOCATE = keyword, FILE = number [,RABN = number],
SIZE = numberB
DEFINE_REFINT = number constraint_specification
DELCP = { * | ([absolute-date] [,[absolute-datel]) }
DELETE = (number [-number][,number[-numberl]...)
DELETE_DATABASE = keyword
DISPLAY = UCB
DROP_FIELDS = number {field_name|FDT} ... [END_OF_FIELDS]
DROP_LOBFILE = number
DROP_REFINT = number, NAME {=|:}constraint_name
EXTEND_CONTAINER = keyword, SIZE = number [B|M]
D [NOJLOWER_CASE_FIELD_NAMES
NEW_DBID = number
NEWWORK [,BLOCKSIZE=number[K] 1, SIZE = number [B|M]
PGM_REFRESH = keyword, FILE = number
RBAC_FILE = number
RECORDSPANNING = keyword, FILE = number
RECOVER
REDUCE_CONTAINER = keyword, SIZE = number B
REFRESH = (number [-number][,number[-number]]...)
REMOVE_CONTAINER = keyword
[NOJREMOVE_DROP
REMOVE_REPLICATION
RENAME = number, NAME {=|:} string
92 Adabas Utilities

ADADBM (Database Modification)

RENUMBER = (number, number)

REPLICATION_FILES = (filel, file2, file3, filed)
RESET = UCB, IDENT = { (number [,number]...) | * }
RESET_REPLICATION_TARGET = number

REUSE = (keyword [,keyword]), FILE = number
SECURITY = keyword

SYFMAX = number, FILE = number

ADD_CONTAINER

ADD_CONTAINER = keyword
[,BLOCKSIZE=number[K]]
,SIZE = number [B|M]

The ADD_CONTAINER function adds a new container file to an existing Associator or Data
Storage dataset in accordance with the keyword used. The keyword can take the values ASSO or
DATA .

The new container file may be allocated on the same device as the current container files or it may
be allocated on a different device type.

The placement of the new container file depends on the environment variable/logical name ASSOx
or DATAXx. This has to be set to a legal file name with its whole path name. If ASSOx or DATAXx
is not set, the container files are created in the current directory.

Notes:

1. If you add a new DATA container, free space is required on the existing Associator for the Data
Storage Space Table (DSST): 1 byte is required for each new DATA block. Therefore, you should
add a new ASSO container first if the existing Associator is full.

2. If you add a new container while the Adabas nucleus is active, the container is not added by
ADADBM, but by ADANUC. In this case, you should consider the following, depending on
the way the container files are specified: if the container files are specified as environment
variables/logical names, you can only add the new container if you have already defined the
corresponding environment variable/logical name for the current nucleus session. If you haven't,
you have to terminate the current nucleus session before you can add the new container. If, on
the other hand, the container files are specified in the DBnnn.INI files, you can enter the new
container in the file just before you add the container, since the nucleus re-reads the file before
the container is added (please refer to the Adabas Extended Operation for further information
about the DBnnn.INI files).

Adabas Utilities 93

ADADBM (Database Modification)

3. If you add a new container while the Adabas nucleus is not active, an entry for this new con-
tainer file is added to the DBnnn.INI file.

BLOCKSIZE = number[K]

This parameter specifies the block size in bytes (or in kilobytes, if "K" is specified after the number)
of the new container file.

Adabas rounds up the value you specify to the next multiple of 1K. The minimum block size is
1K and maximum block size is 32K.

The default value for BLOCKSIZE is the block size of the last container file of the dataset in question
that is currently present in the database.

SIZE = number [B|M]

This parameter specifies the number of blocks (B) or megabytes (M) to be allocated for the new
container file. By default, the size is given in megabytes.

Example

adadbm: add_container=data, size=10
%4ADADBM-1-CREATED, dataset DATA2 , file /FS/fs0395/Adabas/adadb/db076/DATA2 created
%ADADBM-T-FUNC, function ADD_CONTAINER executed

A new container file of 10 megabytes is added to the Data Storage. The block size is the same as
the block size of DATAL.

ADD_FIELDS
ADD_FIELDS = number {field_specification|FDT}... [END_OF_FIELDS]

The ADD_FIELDS function adds one or more new fields to the end of the file defined by ‘number".
Specitying a LOB file is not permitted. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

Note: It is not possible to add derived descriptors using ADADBM - you should use the
utility ADAINV to do this instead.

94 Adabas Utilities

ADADBM (Database Modification)

field_specification
The field specification list is entered in the same way as the FDT input in ADAFDU:

lTevel-number, name [,length] [,format] [(,option)...]
The first field to be added must be a level-one field.

The NN option is not permitted. DE is only permitted when the Adabas nucleus is active and to-
gether with the NU or NC option. Otherwise use the ADAINV utility to give the new fields
descriptor status. UQ is only permitted together with the DE option.

Note: When you add system-generated fields (fields with the field option SY) to a file, these

fields have null values in the records that are already in the database - this is the same be-
haviour as for fields without the SY option.

FDT
This parameter displays the FDT of the file to which the fields are to be added.
Example

adadbm: add_fields=12
adadbm: fdt

Field Definition Table:

Level I Name I Length I Format I Options I Flags
1 I AA 1 15 I A I DE,UQ,NU I
1 I AB I 4 I F I FI I
1 I AC 1 8 I A I DE I
1 I CD I I I I
2 I AD I 20 I A I DE,NU I SP
2 I AE 1 20 I A I NU I
2 I AF 1 10 I A I DE,NU I
1 I AG I 2 I U I NU I SP
1 I AH I 1 I A I DE,FI I
1 I Al 1 1 I A I FI I
1 I AJ I 6 I U I NU I SP
1 I AK I I I I
2 I AL I 3 I A I NU I
2 I AM 1 4 I P I NU,MU I
Type I Name I Length I Format I Options I Parent field(s) Fmt
SUPER I AN I 4 I B I NU I 5 = 6) U
I I I I I 3 = 4) U

Adabas Utilities 95

ADADBM (Database Modification)

adadbm: 01,dd,1,a
adadbm: 01,gr

adadbm: 02,91,20,a,fi
adadbm: fdt

Field Definition Table:

Options

,UQ, NU

, NU

,NU

FI

, MU

SP

SP

SP

Level I Name I Length I Format I
1 I AA I 15 I A I DE
1 I AB I 4 I F I FI
1 I AC I 8 I A I DE
1 I CD I I I

2 I AD I 20 I A I DE
2 I AE I 20 I A I NU
2 I AF I 10 I A I DE
1 I AG I 2 I U I NU
1 I AH I 1 I A I DE
1 I AT 1 1 I A I FI
1 I A 1 6 I U I NU
1 I AK 1 I I

2 I AL I 3 I A I NU
2 I AM 1 4 I P I NU
1 I DD I 1 I A I
1 I GR I I I

2 I Gl I 20 I A I FI
Type I Name I Length I Format I

adadbm: end_of_fields
%ADADBM-T1-FUNC, function ADD_FIELDS exe

cuted

96

Adabas Utilities

ADADBM (Database Modification)

ALLOCATE

ALLOCATE = keyword, FILE = number [,RABN = number], SIZE = number [B|M]

Depending on the keyword specified (AC, DS, NI or UI), the ALLOCATE function increases the
Normal Index (NI), Upper Index (UI), Address Converter (AC) or Data Storage (DS) by a given
size. Each extent for the required type is checked to see whether it can be extended or not. A new
extent is created if none of the current extents can be extended.

This function lets the DBA override the automatic extension method and can be used to preallocate
smaller or larger extents. This can be useful when adding a large number of records. Exclusive
control of the file is NOT required for this function.

FILE = number

This parameter specifies the file to be extended.

RABN = number

This parameter specifies the allocation start RABN. For NI or Ul allocation for a LOB file, the block
size of the RABN specified must be less than 16 KB. For DS allocation for a LOB file, the block size
of the RABN specified must be 32 KB.

SIZE = number [B|M]

This parameter specifies the size of the expansion area. If a 'B' is appended to size, the size is in
blocks, otherwise it is in megabytes.

Example

adadbm: allocate=ni, file=11l, size=100b
%ADADBM-T-ALLOC, 100 NI blocks allocated (611 - 710)

adadbm: allocate=ds, file=11, size=10
%ADADBM-I-DEALLOC, 2560 DS blocks allocated (245 - 2804)

Adabas Utilities 97

ADADBM (Database Modification)

BT

This function is used to set or clear the NOBT flag for an existing file. Specifying a LOB file is not
permitted. The keyword can take the values YES or NO. It is not permitted to set BT=NO for files
that are primary files of referential constraints. This function can only be executed in offline mode.

FILE = number

This parameter specifies the file for which the NOBT flag is to be set/cleared.

Examples

adadbm db=12 bt=yes,file=11 ; clear the NOBT flag for file 11
adadbm db=12 bt=no,file=11 ; set the NOBT flag for file 11
CHANGE

CHANGE = number, FIELD = string, LENGTH = number

This function changes the standard length of a field in the file specified by number. Specifying a
LOB file is not permitted. The length of fixed storage fields (option FI) and floating point fields
(format G) cannot be changed.

Changing the length of a field does not lead to any modifications within the Data Storage, but
may affect programs that use the standard length.

Fields defined with the option SY=OPUSER cannot be changed.
FIELD = string

This parameter specifies the field whose standard length is to be changed. The field must be defined
in the Field Definition Table for this file.

LENGTH = number

This parameter defines the new standard length of the field.

98 Adabas Utilities

ADADBM (Database Modification)

Example

adadbm: change=12, field=ac, len=11
%ADADBM-I-FUNC, function CHANGE executed

CHANGE_FIELDS
CHANGE_FIELDS = number {field_specification|FDT}... [END_OF_FIELDS]

The CHANGE_FIELDS function modifies one or more field specifications of the file defined by
‘number'. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

The changes that are allowed depend on the existence of records in the file. The following restric-

tions apply to all files:

® The field level number must not change;

® A group must remain a group;

® A periodic group must remain a periodic group;

® A field that is not a group or periodic group must not be converted to a group or a periodic
group.

The following additional restrictions apply to non-empty files:

® Field length: the new length must be compatible with the new field format and field options.

Such a change changes the behaviour of adabas commands in which the field length is not
specified in the format buffer;

* Field format: A may be changed to W and vice versa. It is the responsibility of the user to ensure
that the field contains UTF-8 values if the format is changed from A to W. After changing the
format from W to A, the field will contain UTF-8 values. Please note that the format specified
in the format buffer of Adabas commands must be identical to the format in the field definition
for A and W fields - therefore it may be necessary to adapt existing programs accordingly.
Other changes of the field format except for the change between A and W are not allowed.

® Field options: it is not allowed to add or remove the options DE, FI, HF, MU and UQ.

The following field option changes are allowed:

Adabas Utilities 99

ADADBM (Database Modification)

Old Field Options |New Field Options Comments
DT not set DT set, TZ not set or |No check is made to see whether the values in the database
set are compliant with the date/time edit mask specified. TZ may

not be set for edit mask names DATE, TIME and NATDATE.
Caution: Usually, the semantics of the field values defined
with the TZ option and the field values defined without the
TZ option are different: the field without the TZ value usually
contains local time values, whereas the field with the TZ value
contains UTC values. The field values are not updated
automatically; it is the user's responsibility to ensure that
necessary updates are made.

DT set DT not set Specifying a date/time edit mask for the field in the format
buffer is no longer allowed.

HF set HF not set The behaviour of cross-platform calls changes. The file must

HF not set HF set be empty to apply this change.

LA and LB not set|LA or LB set The behaviour of calls accessing the field with variable length

LA set LA not set, LB set changes.

LB set LB not set, LA set Only allowed if there is no LOB file defined for the file or if
the field is a descriptor of the parent of a derived descriptor.
The behaviour of calls accessing the field with variable length
changes.

NB not set NB set

NCand NN set |FI, NC, NU and NN |After this change, the field is no longer mandatory in the

not set format buffer for N1/N2 commands; if not specified, the field
gets the Adabas null value.

NCand NN set |NCset, NN notset |After this change, the field is no longer mandatory in the
format buffer for N1/N2 commands; if not specified, the field
gets the SQL null value.

NU set NC set Empty values are converted to NULL values. Note that NC
set -> NU not set because NU and NC are mutually exclusive.

NV set NV not set The behaviour of cross-platform calls changes.

NV not set NV set

SY not set SY set The behaviour of A1, N1 and N2 commands changes. The field
format must be compatible with the SY option. Note that no
check is made to ensure that the existing values are reasonable.

SY set SY not set The behaviour of Al, N1 and N2 commands changes.

TR not set TR set

TZ not set DT set | TZ set, DT unchanged | Values in the database will be converted from UTC to local
time when you specify a date/time edit mask.

TZ set TZ not set Values in the database are no longer converted from UTC to
local time when you specify a date/time edit mask.

100

Adabas Utilities

ADADBM (Database Modification)

field_specification
The field specification list is entered in the same way as the FDT input in ADAFDU:

level-number, name [,length] [,format] [(,option)...]

The first field to be added must be a level-one field.
FDT
This parameter displays the FDT of the file to which the fields are to be added.

DBID
DBID = number
This parameter selects the database to be used.

Note: Utility functions which require or allow the nucleus to be shut down need logical as-

signments for the data sets.

Examples

adadbm: dbid=76
%»ADADBM-1-DBOFF, database 76 accessed offline

adadbm: dbid=76
%ADADBM-1-DBON, database 76 accessed online

DEALLOCATE

DEALLOCATE = keyword, FILE = number [,RABN = number],
SIZE = numberB

DEALLOCATE = AC, DS, Nl or Ul

Depending on the keyword specified (AC, DS, NI or Ul), this function releases a given amount of
space from the Address Converter (AC), Data Storage (DS), Normal Index (NI) or Upper Index
(UI).

If too much space is allocated to an extent, either automatically or manually, the DBA can release
this space and return it to the Free Space Table (FST).

Deallocation is done for only one extent at a time. To release space from multiple extents, DEAL-
LOCATE has to be called several times.

Adabas Utilities 101

ADADBM (Database Modification)

FILE = number
This parameter specifies the file.
RABN = number

This parameter specifies the first RABN to be deallocated. If this parameter is omitted, deallocation
starts at the end of the last extent.

SIZE = numberB
This parameter specifies the size of the area to be deallocated, in blocks.

Example

adadbm: deallocate=ni, file=11l, size=110b
SIZE=1108

A

%ADADBM-E-VALUP, value has to be less-equal 100
%ADADBM-T1-ABORTED, 14-NOV-2002 14:44:01, elapsed time: 00:00:00

adadbm: deallocate=ni, file=11, size=100b
%ADADBM-I-DEALLOC, 100 NI blocks deallocated (611 - 710)

adadbm: deallocate=ni, file=11, size=10b
%ADADBM-TI-DEALLOC, 10 NI blocks deallocated (323 - 332)

DEFINE_REFINT

DEFINE_REFINT = number constraint_specification

This function adds a referential constraint to the file number’, which contains a foreign key. The
syntax for the constraint is the same as that used in the FDT file for ADAFDU and is described in
Administration, FDT Record Structure, Referential Constraints. The constraint is also included in the
FDT of the primary file, therefore, the constraint name must not already be defined in the primary
file.

Adding a referential constraint is not allowed if the file specified as the primary file is defined
with PGM_REFRESH=YES.

If there are violations of the referential integrity, adding of the constraint will fail - no updates are
performed on the data of the file in order to establish referential integrity.

102 Adabas Utilities

ADADBM (Database Modification)

DELCP
DELCP = { * | ([absolute-date] [,[absolute-date]]) }
This function deletes checkpoint records from the checkpoint file.

If an asterisk *' is entered, all checkpoint records are deleted.

Examples

adadbm: delcp=13-N0V-2006:15:09:48
%ADADBM-T1-DELCP, 1 record deleted from CHECKPOINT file

adadbm: delcp=(13-N0V-2006:15:09:48,)
%ADADBM-I-DELCP, 81 records deleted from CHECKPOINT file

adadbm: delcp=(,14-NOV-2006:14:37:24)
%ZADADBM-I-DELCP, 41 records deleted from CHECKPOINT file

adadbm: delcp=(14-NOV-2006:14:37:25,14-N0V-1996:14:38:15)
%ADADBM-T1-DELCP, 42 records deleted from CHECKPOINT file

adadbm: delcp=*
%ADADBM-I-DELCP, 20 records deleted from CHECKPOINT file

DELETE

DELETE = (number [-number][,number[-number]]...)

The DELETE function deletes one or more files or ranges of files from the database and returns
all space which was allocated for this file to the Free Space Table (FST). LOB files specified are ig-
nored, but the LOB files assigned to all base files specified are deleted too. There must not be a
referential constraint between a file that is to be deleted and another file, which is not specified.
Deletion of system files is not allowed.

Note: If you want to stop using Adabas-to-Adabas replication, and therefore want to delete

the replication system files, you must use ADADBM REMOVE_REPLICATION, not the
DELETE FUNCTION.

ADADBM does not request confirmation of the files to be deleted, i.e. care should be taken when
entering the file numbers.

Adabas Utilities 103

ADADBM (Database Modification)

Example

adadbm: delete=(4-11,14)
%ADADBM-I-DELETED, file 11 deleted
%ADADBM-I-DELETED, file 14 deleted

DELETE_DATABASE

DELETE_DATABASE = keyword

The DELETE_DATABASE function deletes a database. Depending on the keyword specified
(CONTAINER or FULL), either just the containers are deleted, or the database directory and its
contents are deleted.

If you specify the keyword CONTAINER, the container files and the DBID entry in the [DB_LIST]
section of the ADABAS.INI file will be deleted. If you specify the keyword FULL, the database
directory and all of its contents will be deleted.

Example:

adadbm: dbid=12 delete_database=container
The containers of the database with the DBID 12 will be deleted.
DISPLAY

DISPLAY = UCB

The DISPLAY function displays the utility communication block. This function can also be executed
during a pending AUTORESTART.

Example:

adadbm: display=uch

Date/Time Entry Id Utility Mode Files
14-NOV-2006 14:38:40 233 adaopr UTO 11
14-NOV-2006 14:38:42 234 adabck ACC *

The display shows the following items:

® DATE/TIME shows the date and time on which the given files were locked.
® ENTRY ID shows the allocated identification of the entry.
= UTILITY shows the name of the utility.

104 Adabas Utilities

ADADBM (Database Modification)

® MODE shows the mode in which the files are being accessed.
= FILES shows the file numbers of the files that are locked.

DROP_FIELDS

DROP_FIELDS = number {field_name|FDT}... [END_OF_FIELDS]

The DROP_FIELDS function drops one or more fields from the file defined by ‘'number’ - the
specified fields are marked as no longer existing and they cannot be accessed. Specifying a LOB
file is not permitted. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

If you specify a group or a periodic group, all of the fields that belong to the group or periodic
group are dropped. You must not specify a field that is a descriptor or from which a descriptor is
derived - if you want to drop such a field, you must first release all corresponding descriptors
with ADAINV.

Once the DROP_FIELDS function has been executed, you can redefine the names of the dropped
fields, for example using ADADBM's ADD_FIELDS function.

Notes:

1. The DROP_FIELDS function does not physically remove the fields. You should not drop and
then add fields repeatedly, since this can cause the data records or the FDT of the file in question
to overflow.

2. ADAMUP is not able to load data into a file that contains the same visible fields but which
contains different dropped fields.

FDT

This parameter displays the FDT of the file from which the fields are to be dropped.

Adabas Utilities 105

ADADBM (Database Modification)

DROP_LOBFILE
DROP_LOBFILE = number <

The number must specify the file number of a base file with an empty assigned LOB file to be de-
leted.

DROP_LOBFILE is not allowed if the assigned LOB file is not empty.

DROP_REFINT
DROP_REFINT = number, NAME {=|:} constraint_name

The function removes a referential constraint from the file specified by 'number', which contains
the foreign key. The constraint is also removed from the FDT of the primary file.

EXTEND_CONTAINER
EXTEND_CONTAINER = keyword, SIZE = number [B|M]

The EXTEND_CONTAINER function extends the last Associator, Data Storage or WORK container
file defined for the database in accordance with the keyword used. The keyword can take the
values ASSO, DATA or WORK.

Note: The WORK container can only be extended in the offline mode.

SIZE = number [B|M]

This parameter specifies the size of the expansion area in blocks (B) or megabytes (M). By default,
the size is in megabytes.

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the ADD_FIELDS, CHANGE_FIELDS or DEFINE_REFINT
parameters.

106 Adabas Utilities

ADADBM (Database Modification)

NEW_DBID

NEW_DBID = number

This function is used to change the identifier of the database in use. The new identifier may not
already be in use by another active database.

Example

adadbm: new_dbid=77
%ADADBM-T-FUNC, function NEW_DBID executed

NEWWORK
NEWWORK [,BLOCKSIZE = number[K] 1, SIZE = number [B|M]

This function removes the existing WORKI1 container file and replaces it with a new WORK1
container file. The new WORKI1 container file is allocated and then formatted, if required.

Before a new WORK can be created, the nucleus and all utilities using the database must have
been successfully terminated. Since this function requires the current WORK, it must not be deleted
before NEWWORK has been executed. TEMP1 must point to the new work file when this function
is used.

Note: The new WORK can be directed to a disk section or to a file system. If TEMP1 points

to the same disk section as WORK1, then ADADBM tries to extend/reduce the existing
WORK file. In each case the name of the new WORK container file is WORKI. If the function
completes successfully, the old WORKI1 gets deleted.

BLOCKSIZE = number[K]

This parameter specifies the block size in bytes (or in kilobytes, if "K" follows the number) of the
new container file.

Adabas rounds up the value you specify to the next multiple of 1024.
The minimum block size allowed is 3072 and the maximum block size allowed is 32768.

In addition to these minimum and maximum values, the following size restrictions apply in gen-
eral to the block sizes for ASSO and WORK:

MAX (ASSOBLS) < WORKBLS

where MAX(ASSOBLS) represents the largest ASSO block size and WORKBLS represents the
WORK block size.

The default value for BLOCKSIZE is the block size of the old WORK file.

Adabas Utilities 107

ADADBM (Database Modification)

SIZE = number [B|M]

This parameter specifies the number of blocks or megabytes to be allocated for the new WORK
file. By default, the size is in megabytes. The minimum value is 200 blocks or the equivalent value
in megabytes.

PGM_REFRESH

PGM_REFRESH = keyword, FILE = number

This function is used to disable or enable refreshing an Adabas file inside an application program
with an E1 command (ISN =0, CID = BLANK). Specifying a LOB file is not permitted. The keyword
can take the values YES or NO. It is not allowed to set PGM_REFRESH=YES for files that are
primary files of referential constraints.

FILE = number
This parameter specifies the file for which refreshing is to be enabled/disabled.

RBAC_FILE
RBAC_FILE = number
This function creates the RBAC system file and loads the initial security definitions.

This function makes use of the ADABCK restore functionality. The RBAC system file requires a
block size of 2K for the ASSO container, and a block size of 4K for the DATA container. If necessary,
corresponding extents are allocated automatically.

For further information please refer to ADABCK RESTORE and Adabas Basics - Container Files.

Example

adadbm: rbac_file=200

RECORDSPANNING

This function is used to disable or enable record spanning for a file. The keyword can take the
values YES or NO. The RECORDSPANNING function can only be specified for a base file that
has a LOB file assigned.

108 Adabas Utilities

ADADBM (Database Modification)

FILE = number

This parameter specifies the file for which record spanning is to be enabled/disabled.

Examples

adadbm db=12 recordspanning=yes,file=9 ; enable record spanning for file 9
adadbm db=12 recordspanning=no,file=9 ; disable record spanning for file 9
RECOVER

RECOVER

This function returns lost space within the Associator and Data Storage to the Free Space Table
(EST).

Space can be lost by a non-successful termination of an Adabas utility.

Example

adadbm: recover
%ADADBM-I-FUNC, function RECOVER executed

REDUCE_CONTAINER
REDUCE_CONTAINER = keyword, SIZE = number B

The REDUCE_CONTAINER function deallocates free space at the end of the Associator or Data
Storage container defined for the database in accordance with the keyword used. The keyword
can take the values ASSO or DATA.

The requested number of blocks must not be in use at the end of the container specified. If the
complete space of one or more container extents is to be released, the container extents are removed.
Note that the message informing you that a container extent is removed is not displayed by
ADADBM if ADADBM is executed online - instead, it is included in the nucleus log.

If less blocks than requested are free at the end of the container, all free space at the end of the
container is deallocated, and the following warning is displayed:

Adabas Utilities 109

ADADBM (Database Modification)

%ADADBM-W-PREDCONT, not all requested blocks removed

SIZE = number B

This parameter specifies the size by which the container is to be reduced, in blocks.

REFRESH

REFRESH = (number [-number][,number[-number]]...)

This function resets the files specified by ‘number' to the state of zero records loaded. Only the
first extents for Normal Index, Address Converter and Data Storage are kept. The remaining extents
are returned to the Free Space Table (FST). The Upper Index is rebuilt and the unused Upper Index
extents are then returned to the Free Space Table. LOB files specified are ignored, but the LOB
files assigned to all base files specified are refreshed too. The primary file of a referential integrity
constraint may be refreshed only if the foreign file of the referential constraint is also refreshed.

ADADBM does not request confirmation of the files to be refreshed, i.e. care should be taken when
entering the file numbers.

This function is useful for clearing a test file in a test environment. This method is faster than de-
leting and reloading the file.

Files using the ADAM feature cannot be refreshed.
If the REMOVE_DROP function has been specified, dropped fields are removed from the FDT.

Example

adadbm: refresh=13
%“ADADBM-T1-REFRESH, file 13 refreshed

REMOVE_CONTAINER
REMOVE_CONTAINER = keyword

This function removes the last database container file from an existing Associator or Data Storage
data set in accordance with the keyword used. The keyword can take the values ASSO or DATA.

The container file to be removed must not be in use when this function is executed, i.e. all of the
blocks in the file must be free.

The container file will be deleted from the file system or from the raw disk section.

Before a container file can be removed, the nucleus and all of the utilities using the database must
have terminated successfully.

110 Adabas Utilities

ADADBM (Database Modification)

Note: If you remove a container, the corresponding entry for this container file in the DBn-
nn.INI file is deleted.

Example

adadbm: remove_container=data
%ADADBM-1-DMCONREM, container DATA2 removed

REMOVE_DROP

[NOJREMOVE_DROP

If you specify REMOVE_DROP, subsequent REFRESH functions will remove dropped fields from
the FDT.

If you specify NOREMOVE_DROP, subsequent REFRESH functions will not remove dropped
fields from the FDT.

The default is NOREMOVE_DROP.

Example

adadbm: remove_drop

adadbm: refresh=2
%ADADBM-T-REFRESH, file 2 refreshed
adadbm: refresh=3
%#ADADBM-T-REFRESH, file 3 refreshed
adadbm: noremove_drop

adadbm: refresh=4
%ADADBM-T-REFRESH, file 4 refreshed

File 2 has been refreshed and dropped fields have been removed from the FDT. File 3 has been
refreshed and dropped fields have been removed from the FDT. File 4 has been refreshed and
dropped fields have not been removed from the FDT.

REMOVE_REPLICATION
REMOVE_REPLICATION
This function stops all replication processing and deletes all replication system files.

Note: This function is only relevant for customers who are using the Adabas Event Replic-

ator with Adabas - Adabas replication.

Adabas Utilities 111

ADADBM (Database Modification)

RENAME
RENAME = number, NAME {=|:} string

This function changes the name of a file or a database. 'number' is the number of the file whose
name is to be changed. If 'number’ is 0, the name of the database is changed.

NAME {=|:} string

‘string’' is the new name of the specified file or database. If you specify an equals sign, the value
given for 'string’ will be converted to upper case; if you specify a colon, no upper-case conversion
is performed.

Example

adadbm: rename=11, name=employee-file
%ADADBM-T-FUNC, function RENAME executed

RENUMBER

RENUMBER = (number, number)

This function changes the file number of a loaded Adabas file. If, however, the file's new number
already belongs to a loaded file, the numbers of these files are exchanged.

The first 'number" is the file number currently assigned to the file. The second ‘'number" is the new
file number to be assigned to the file.

Example:

adadbm: renumber=(12,14)
%ADADBM-I-RENUM, File 12 renumbered to 14
%ADADBM-I-RENUM, File 14 renumbered to 12

REPLICATION_FILES
REPLICATION_FILES = (filel, file2, file3, filed)

This functions performs all of the necessary initialization steps for the Adabas - Adabas replication
and creates the replication system files.

filel
The metadata file.

file2
The replication transaction file.

112 Adabas Utilities

ADADBM (Database Modification)

file3
The replication command file.

filed
LOB file for the replication command file.

Notes:

1. This function is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas replication.

2. After having initialized the Adabas - Adabas replication, the Adabas nucleus will only work
after the Adabas Event Replicator has been installed - in particular, the replication exit is required.

3. The space required for the replication files is about 1 MB of ASSO space (small ASSO blocks
with block size <16 KB) and 5 MB of DATA space (block size 32 KB). If there is a high update
load or when a replication is in the status Recording, the replication system files can grow because
they store all of the update operations for the replicated files until they have been applied to
the target database.

RESET

RESET = UCB, IDENT = { (number [,numberl...) | * }

ucse

This function removes one or more entries from the utility communication block (UCB). This option
can also be used during a pending AUTORESTART.

The UCB is used to control access to certain resources (the whole database, one or more files, etc.)
within a database. It saves information about the Adabas utilities processing the database and the
resources attached to them.

An entry is made in the UCB each time a utility is granted access to a resource. This entry contains
information about the utility and the resources it locks. The utility automatically removes the entry
when the resource is no longer required. Please refer to the DISPLAY=UCB function of this utility
for information about how to display the contents of the UCB.

However, certain special conditions (e.g. an aborted ADAMUP) can cause entries to remain in the
UCB and keep allocated resources locked. The RESET function releases these resources by removing
one or more entries from the UCB.

Resetting a UCB entry also removes the associated entry from the user queue and returns lost
blocks to the free space table if the nucleus is active. Otherwise, the resource can be returned to
the free space table by using the RECOVER function.

Adabas Utilities 113

ADADBM (Database Modification)

IDENT = { (number [,number]...) | *}

This parameter specifies the unique ID of the entry to be removed. *' removes all entries.
If the RESET UCB function is used offline, only "*' may be specified.

Example

adadbm: reset=ucb, ident=233
%#ADADBM-T-RESUCB1, 1 entry deleted from UCB

adadbm: reset=uch, ident=(235,234)
%ADADBM-T1-RESUCB, 2 entries deleted from UCB

adadbm: reset=uch, ident=*
%ADADBM-I1-RESUCB1, 1 entry deleted from UCB

RESET_REPLICATION_TARGET
RESET_REPLICATION_TARGET = number

This function resets the replication target flag of Adabas files, after which they are handled as
normal files again. If you specify 0, the replication target flag of all replication target files is reset;
if you specify a file number, the replication target flag of the file with this file number is reset.

Notes:

1. This function is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas replication.

2. After performing this function, a replication to this replication target is no longer possible - if
the replication to this replication target is still active, a new update transaction on the replication
source will set the replication to status Error. If you want to replicate data to this replication
target again, a new initial state processing is required.

REUSE
REUSE = (keyword [,keyword]), FILE = number
The REUSE function controls the reuse of Data Storage space or ISNs by Adabas.

The File Control Block (FCB) for the specified file is modified to indicate the type of allocation
technique to be used when adding new records or moving updated records.

The valid keywords are [NO]DS and [NO]ISN.

114 Adabas Utilities

ADADBM (Database Modification)

If the DS keyword is specified, Adabas scans the Data Storage Space Table (DSST) in order to
locate a block with sufficient space. In this case, the first block found with sufficient space is used.

If the NODS keyword is specified, then all newly-added records, together with records that have
to be moved to another block (as a result of record expansion caused by updating), are placed in
the last used block in the Data Storage extent allocated to the file. If there is not sufficient space in
this block, the next block is used.

DS and NODS are mutually exclusive. The default is REUSE = DS.
If the ISN keyword is specified, Adabas may reuse the ISN of a deleted record.

If the NOISN keyword is specified, Adabas does not reuse the ISN of a deleted record for a new
record. Each new record will be assigned the next-highest unused ISN.

ISN and NOISN are mutually exclusive. The default is REUSE = NOISN.
FILE = number

This parameter specifies the file.

Example

adadbm: reuse=nods, file=11
%ADADBM-T1-FUNC, function REUSE executed

adadbm: reuse=(ds,isn), file=12
%ADADBM-T1-FUNC, function REUSE executed

SECURITY
SECURITY = keyword

The SECURITY function sets the security mode of the database. The keyword can either be ACTIVE
or WARN.

Adabas Utilities 115

ADADBM (Database Modification)

ACTIVE

The ACTIVE keyword enables the security functionality. ACTIVE implies that only authenticated
users are allowed access to the database. Security violations, like authentication or authorization
errors, are protocolled as “Error” in the Audit-Trail.

In case of a authentication violation, access to the database is rejected.

/\, Important: Database security cannot be disabled once it has been activated.

WARN

The WARN keyword enables the security functionality. WARN implies that all users are allowed
access to the database. Security violations, like authentication or authorization errors, are protocolled
as “Warning” in the Audit-Trail. In case of a security violation, access to the operation is not rejected.

This mode is intended for transitioning applications to use a secure database. See also Nucleus user
exit 21.

A\ Important: The security mode WARN can only be changed to mode ACTIVE.

Default Mode
By default security is not enabled.

SYFMAX
SYFMAX = number, FILE = number

This parameter specifies the maximum number of values generated for a system generated multiple-
value field in the file specified. There is no explicit maximum value, but you should bear in mind,
that you can get a record overflow if the value is defined too high; the compressed data record
should also fit into one DATA block is SYFMAX values are defined for system generated multiple-
value fields. If the SYFMAX value is decreased and a record contains more values for system
generated fields than the new value of SYFMAX, the excess values are removed during the next
update operation for this record.

116 Adabas Utilities

ADADBM (Database Modification)

FILE = number

This parameter specifies the file.

Restart Considerations

ADADBM has no restart capability. At the end of each function, however, the system reports
whether execution was successfully completed or not. If it is not successfully completed, the
function has to be re-started.

Adabas Utilities 117

118

10 ADADCU (Decompression Of Data)

B FUNCHONAI OVEIVIBW ..ot e e e e 120
B PTOCEAUIE FlOW .ottt et e 121
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 122
B G0N0l ParaMEIErS . et 123
B nput and OQUIPUE DAEA ..o 131
B REStAM CONSIABIALIONS ... oo e e e, 132

19

ADADCU (Decompression Of Data)

This chapter describes the utility "ADADCU".

Functional Overview

The decompression utility ADADCU decompresses records produced by the ADACMP, ADAMUP
and ADAULD utilities.

The output of the decompression utility ADADCU can be used as input for a program using
standard operating system file access methods.

It can also be used as input for the compression utility ADACMP once any required changes have
been made to the data structure or once the data definitions of the file have been changed. A
warning message is issued if the decompressed output file (DCUOUT file) created by the utility
is empty.

ADADCU also decompresses files produced with the SINGLE option of the utilities ADAULD
and ADACMP, but no parameter is required since this can be determined by the utility.

With ADADCU, the following functions are available:
® Complete records can be decompressed to the formats and lengths described in the FDT. A one-

byte count field precedes each multiple-value field or periodic group in the output record.

® LOB field values can also be stored in separate files; the generated file names are put into the
decompressed records.

" Several fields can be decompressed.

If several fields are decompressed, the fields can be re-arranged within a record, i.e. the record
structure may be changed as follows:

* Field lengths can be changed;
* Field formats can be changed;

" Space can be allocated for subsequent addition of new fields using the literal element or blank
element.

If the utility writes records to the error file, it will exit with a non-zero status.

This utility is a single-function utility.

120 Adabas Utilities

ADADCU (Decompression Of Data)

Procedure Flow

LOB Data

Adabas Utilities 121

ADADCU (Decompression Of Data)

DCULOB is a directory where LOB values are stored in separate files. The sequential files DCUDTA
and DCUERR can have multiple extents. For detailed information about sequential files with
multiple extents, see Adabas Basics, Using Utilities.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Compressed DCUDTA Disk, Tape (* see note) |Output of ADACMP or ADAULD
data records
Rejected data DCUERR Disk, Tape (* see note) |Output of ADADCU
Output data FDT DCUFDT Disk, Tape (* see note) |Output of ADADCU
Utilities Manual
Decompressed records| DCUOUT Disk, Tape (* see note) | Utilities Manual
LOB data DCULOB Disk Utilities Manual
Control statements stdin/ Utilities Manual
SYS$INPUT
ADADCU messages |stdout/ Messages and Codes
SYS$OUTPUT

| Note: (*) A named pipe can be used for this sequential file.

Checkpoints

The utility writes no checkpoints.

122

Adabas Utilities

ADADCU (Decompression Of Data)

Control Parameters

The following control parameters are available:

D [NOIDCUFDT
D [NOIDST
FDT
FIELDS {field_specification | FDT},...[END_OF_FIELDS | .]
D [NOJLOWER_CASE_FIELD_NAMES
D MAX_DECOMPRESSED_SIZE = number [K|M]
D MUPE_C_L = {1]2]4)
MUPE_OCCURRENCES
D [NOINULL_VALUE
D NUMREC = number
D RECORD_STRUCTURE = keyword
SKIPREC = number
D TARGET_ARCHITECTURE = (keyword[,keyword[,keyword]l])
D [NOJTRUNCATION
TZ {=|:} [timezone]
D [NOJUSERISN

WCHARSET = char_set

Adabas Utilities 123

ADADCU (Decompression Of Data)

[NOJDCUFDT
[NOJDCUFDT

If this option is set to DCUFDT, the FDT information of the decompressed records is written to
the sequential file DCUFDT. The default is NODCUFDT.

If you have used the FIELDS parameter (see below), the fields are written to the sequential file
DCUEFDT in the order specified in FIELDS. Thus, the fields in DCUFDT might be in a different
order to those in the original FDT.

[NOJDST
[NOIDST

The parameter DST is required if a daylight saving time indicator is to be provided for date/time
fields with the option TZ. The daylight saving time indicator will be appended behind the date/time
value as a 2-byte integer value (format F) containing the number of seconds to be added to the
standard time to get the actual time (usually 0 or 3600).

This parameter is required if there are records containing date/time values with the option TZ in
the hour before the time is switched back to standard time, otherwise these values are written to
the error file.

The default is NODST.

Notes:

1. The DST parameter is ignored if the FIELDS parameter is specified. In this case, you must specify
a D element for fields with the daylight saving time indicator.

2. The DST parameter is not compatible with the RECORD_STRUCTURE = NEWLINE_SEPAR-
ATOR parameter because the daylight saving indicator in format F contains non-printable
characters.

FDT
FDT

This parameter displays the FDT of the file containing the compressed records.

124 Adabas Utilities

ADADCU (Decompression Of Data)

FIELDS
FIELDS {field_specification | FDT},...[END_OF_FIELDS | .]

This parameter is used to specify a subset of fields given in the FDT and their format and length.
This means that the decompressed records created do not have to contain all of the fields given
in the FDT, or that fields can be decompressed with a different format or length. The syntax and
semantics are the same as for the format buffer, with the exception that you can also specify an R-
element (for LOB references) if the decompressed record contains the name of a file containing
the LOB value instead of the LOB value itself. See Adabas Basics, Loading And Unloading Data, Un-
compressed Data Format for further information.

While entering the specification list, the FDT function can be used to display the FDT of the file
to be decompressed. The specification list can be terminated or interrupted by entering
END_OF_FIELDS or ".". The "." option is an implicit END_OF_FIELDS and is compatible with the
format buffer syntax. FIELDS or END_OF_FIELDS must always be entered on a line by itself,
whereas the ".' may be entered on a line by itself or at the end of the format buffer elements. Pro-
cessing may be continued after setting any option or parameter by entering FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

Example

adadcu: fields

adadcu: ; This is a comment line
adadcu: AA,AB,6,A,AC,P ; - inline comment -
adadcu: AD,AF,CBC,CB1-N . ; implicit END_OF_FIELDS

Field AA is output with default length and format, field AB with 6 byte alphanumeric and field
AC with default length packed. Fields AD and AF are output in default length and format, followed
by the one-byte binary multiple field count of field CB and all its occurrences.

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. If NOLOWER_CASE_FIELD_NAMES is specified, Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the FIELDS parameter.

Adabas Utilities 125

ADADCU (Decompression Of Data)

MAX_DECOMPRESSED_SIZE
MAX_DECOMPRESSED_SIZE = number [K|M]

This parameter specifies the maximum size of a decompressed record in bytes, kilobytes or
megabytes, depending on the specification of "K" or "M" after the number. This parameter is inten-
ded to prevent very large decompressed record files from being created unintentionally (if you
didn’t consider that a file contained LOB data).

The default is 65536. This is also the minimum value.

Note: The exact definition of this parameter is the size of the I/O buffer required for the

largest decompressed record. Only multiples of 256 bytes are used for the I/O buffers, which
means that you must specify a value greater than or equal to the largest decompressed record
(including the preceding length field) rounded up to the next multiple of 256.

MUPE_C_L
MUPE_C_L = {1]|2|4}

If the data contain multiple-value fields or periodic groups, they are preceded by a binary count
field with the length of MUPE_C_L bytes in the decompressed data.

The default is 1.

MUPE_OCCURRENCES
MUPE_OCCURRENCES

This parameter is used to print a list of all multiple fields and periodic groups together with their
maximum occurrence. Such information is important because the decompressed data can become
very large; if the range specified is too large, it is even possible to exceed the limit for the size of
a decompressed record.

Example

The FDT of the file containing the compressed records is as follows:

LAALA L ALCNU
,PE,PE
,PA,2,A,NU
,PB,2,A,NU,MU
MM, 2,0, NU, MU
,X1,4,8B

— NN

MUPE_OCCURRENCES might produce something of the form:

126 Adabas Utilities

ADADCU (Decompression Of Data)

PE 4
PB 8
MM 12

%ADADCU-T-DCUREC, Number of decompressed records: 5023
%ADADCU-T-DCUIR, Number of incorrect records: 0

The file can then be decompressed as follows:

adadcu fields "AA,PA1-4,PB1-4(1-8),MM1-12,P,X1" <«

Note: A record is considered to be incorrect if it has too many occurrences of a periodic

group containing an MU field, and thus causes an internal overflow. It is not possible to
decompress this record including the periodic group.

[NOJNULL_VALUE

[NOINULL_VALUE

This parameter can be used to decompress records according to the standard FDT if the record
contains NC option fields and their status values (S-elements). It is required if one or more fields
have the null value, otherwise these records are put in the error file.

Example

If the FDT entry for field AAis: 1, AA, 2, A, NC, the effect of NULL_VALUE is as follows:

® NULL_VALUE: 1st output record (in hex) 00004141 (AA has a value), 2nd output record (in
hex) FFFF2020 (A A has the null value).

® NONULL_VALUE: 1st output record (in hex) 4141 (AA has a value), 2nd output record (in hex)
AA is null, therefore the record will be put into the error file.

The default is NONULL_VALUE.

NUMREC

NUMREC = number

This parameter specifies the number of records to be read from the input file and decompressed.
If NUMREC is not specified and SKIPREC is also not specified, all records are processed.

Adabas Utilities 127

ADADCU (Decompression Of Data)

Example

adadcu: numrec = 100

100 records are read and decompressed.

RECORD_STRUCTURE

RECORD_STRUCTURE = keyword

This parameter specifies the type of record separation used in the output file with the logical name
DCUOUT. The following keywords can be used:

Keyword

Meaning

ELENGTH_PREFIX

The records in the DCUOUT file are separated by a two-byte exclusive length
field. There is no separator character and the use of this format is not subject to
any restrictions.

E4ALENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte exclusive
length field.

ILENGTH_PREFIX

The records in the DCUOUT file are separated by a two-byte inclusive length
field. There is no separator character and the use of this format is not subject to
any restrictions.

[4LENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte inclusive
length field.

NEWLINE_SEPARATOR

The records in the DCUOUT file are separated by a new-line character. If the
DCUOUT file is to be used as input for ADACMDP, this keyword can only be
specified if the field values of the output do not contain the new-line character
(i.e. if there are only unpacked, alphanumeric and Unicode fields, and if the
alphanumeric and Unicode fields only contain printable characters).

This keyword and the USERISN parameter are mutually exclusive.

RDW

The records in the DCUOUT file are formatted such that they can be transferred
to an IBM host using the FTP site rdw option.

RDW_HEADER

Like RDW, for decompressed records that can be compressed on a mainframe
with HEADER=YES.

VARIABLE_BLOCKED

The records are stored as blocks. Each record begins with an inclusive four-byte
length field.

The default is ELENGTH_PREFIX.

128

Adabas Utilities

ADADCU (Decompression Of Data)

SKIPREC

SKIPREC = number

This parameter specifies the number of records to be skipped before decompression is started.

TARGET_ARCHITECTURE
TARGET_ARCHITECTURE = (keyword[,keyword[,keyword]])

This parameter specifies the format (character set, floating-point format and byte order) of the
output data records. The following keywords can be used:

Keyword Group Valid Keywords
Character set ASCII
EBCDIC

Floating-point format|IBM_370_FLOATING
IEEE_FLOATING

VAX_FLOATING
Byte order HIGH_ORDER_BYTE_FIRST

LOW_ORDER_BYTE_FIRST

If no keyword of a keyword group is specified, the default for this keyword group is the keyword
that corresponds to the architecture of the machine on which ADADCU is running.

Note: The FDT is always output in ASCII format.

Example

If the output records are to be decompressed into IBM format, the user must specify the following:

TARGET_ARCHITECTURE = (EBCDIC, IBM_370_FLOATING, HIGH_ORDER_BYTE_FIRST)

Adabas Utilities 129

ADADCU (Decompression Of Data)

[NOJTRUNCATION
[NOJTRUNCATION
This option enables or disables the truncation of alphanumeric field values.

NOTRUNCATION is the default. In this case, all the records with truncated alphanumeric field
values are written to the error file.

Numeric values may not be truncated, and the value must fit into the standard or specified length.
If truncated numeric values occur, the records concerned are written to the error file.

TZ
TZ {=]:} [timezone]

The specified time zone must be a valid time zone name that is contained in the time zone database
known as the Olson database (https://www.iana.org/time-zones). If a time zone has been specified,
this time zone is used for time zone conversions of date/time fields with the option TZ.

The defaultis UTC, which is used internally to store date/time fields with option TZ; no conversion
is required.

If you specify an empty value, no checks are made to ensure that date/time fields are correct.

| Note: The time zone names are file names. Depending on the platform, these file names

may or may not be case sensitive. Also, the time zone names, depending on the platform,
may or may not be case sensitive.

Examples:

tz:Europe/Berlin

This is correct on all platforms.

T/=Europe/Berlin

With this specification, TZ is converted to upper case EUROPE/BERLIN. This is correct on Windows,
because file names are not case sensitive on Windows, but it is not correct on Unix, because Unix
file names are case sensitive.

130 Adabas Utilities

https://www.iana.org/time-zones

ADADCU (Decompression Of Data)

[NOJUSERISN
[NOJUSERISN

This parameter indicates whether the ISN is to be output together with each decompressed record
or not. The user can specify whether the ISN currently assigned to the record is to be output with
the decompressed data or whether it is to be omitted. If the user intends to reload the file with the
same ISNs, the USERISN option must be set.

This parameter cannot be specified if RECORD_STRUCTURE=NEWLINE_SEPARATOR is specified.
If this parameter is omitted, the ISN is not output with each record.

NOUSERISN is the default.

Example

adadcu: userisn

The ISN is output with each record.

WCHARSET

WCHARSET = char_set

This parameter specifies the default encoding used in the decompressed file based on the encoding
names listed at http://www.iana.org/assignments/character-sets - most of the character sets listed
there are supported by ICU, which is used by Adabas for internationalization support.

Input and Output Data

The input for ADADCU must be a file containing compressed records such as those output by the
unload utility ADAULD or by the compression utility ADACMP.

ADADCU decompresses each input record in accordance with the FIELDS specifications and
writes the resulting record to the file with the logical name DCUOUT. The records are written in
variable-length format. By default, the records are separated by a two-byte exclusive length field
(see the parameter RECORD_STRUCTURE in this section for more detailed information).

If USERISN is specified, the data record is preceded by its ISN in the form of a four-byte binary
number.

Adabas Utilities 131

http://www.iana.org/assignments/character-sets

ADADCU (Decompression Of Data)

ADADCU Output

The sequential file DCUFDT (field definition information of the decompressed records) can be
used as input for the file definition utility ADAFDU or for the compression utility ADACMP.

Rejected Data Records
Any records rejected by ADADCU are written to the ADADCU error file. The contents of this error

file should be displayed using the ADAERR utility. Do not print the error file using the standard
operating system print utilities since the records contain unprintable characters.

See the ADAERR utility for further information.

Restart Considerations

ADADCU does not have a restart capability. An interrupted ADADCU run must be re-executed
from the beginning.

ADADCU does not update the database, therefore, no considerations regarding the status of the
database need to be made before re-executing an interrupted ADADCU execution.

132 Adabas Utilities

11 ADADEYV (Disk Space Management)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 134
B PIOCEAUIE FIOW ...t et e 135
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 136
B CONEIOl PArAMEIEIS ... e ettt e 136

133

ADADEYV (Disk Space Management)

This chapter describes the utility "ADADEV".

| Note: This utility only applies to UNIX platforms.

Functional Overview

The ADADEYV utility provides several functions for managing disk space to be used by Adabas
via the raw disk I/O interface.

ADADEV requires READ/WRITE access to the specified disk-section device file. See Installation,
Installing Adabas for information about raw disk-section usage in your system.

Each disk section used by Adabas must be initialized once with ADADEV. Preallocation for
Adabas container files or for Adabas sequential files is not necessary, but can be useful sometimes.
Disk space is allocated automatically when creating container extents with ADAFRM or when
creating Adabas sequential files with an Adabas utility. If space has not been preallocated, a best-
fit algorithm is used for container extents. For Adabas sequential files, one half of the largest
available free space is allocated if it is larger than 1 MB. If the allocated space is exceeded, an
automatic extension is performed if the immediate right neighbour is a free space area.

The number of container extents and sequential files per raw section is limited to 338.

This utility is a multi-function utility.

134 Adabas Utilities

ADADEYV (Disk Space Management)

Procedure Flow

s R

ADADEV

Data Set Environment Storage Medium Additional Information
Variable

Control statements |stdin Utilities Manual

ADADEYV messages |stdout Messages and Codes

Adabas sequential file| DEVxyz (see note 1) |Disk, Tape (see note 2)

D Notes:

1. xyz=PLG, CLG, 00n, OUT, ERR, LOG, EXP, DTA, DVT.
2. A named pipe can be used for this sequential file (see Adabas Basics, Using Utilities for details).
The sequential files DEVPLG, DEVCLG, DEV00n, DEVOUT, DEVERR, DEVEXP, DEVDTA,

DEVDVT and DEVLOG can have multiple extents. For detailed information about sequential files
with multiple extents, see Adabas Basics, Using Utilities.

Adabas Utilities 135

ADADEYV (Disk Space Management)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

ALLOCATE = keyword[,START_SECTOR = number]
[,BLOCKSIZE = numberKB] ,SIZE = number [B|M]

CHANGE = (keyword, keyword)
COMBINE = keyword, DESTINATION = string

COPY

keyword, DESTINATION = string
DBID = number
DEALLOCATE = {*|keyword}
FREE_SPACE
INITTIALIZE
LAYOUT
D [NOIMOUNTCHECK
MOVE = keyword, DESTINATION = string
NEW_DBID = (container-name, new-dbid)
REALLOCATE = {*|keyword}
RESET
RESIZE
I\ SECTION = string

UNLOCK = keyword

136 Adabas Utilities

ADADEYV (Disk Space Management)

ALLOCATE

ALLOCATE = keyword[,START_SECTOR = number]
[,BLOCKSIZE = numberKB] ,SIZE = number [B|M]

In accordance with the keyword specified, this function allocates space for an Adabas container
file or Adabas sequential file. The space is allocated using a best-fit algorithm if no start sector is
specified. The keyword can take the values ASSOx, DATAx, WORKx, TEMPx and SORTx (where
x is a number between 1 and the maximum number of extents allowed, as described in Adabas
Basics, Using Utilities), PLG, CLG, BCK, BCKOUT, RECOUT, ERR, MUPLOG, MUPTMP, ORDEXP,
DTA or DVT. The DBID parameter must be set before space can be allocated to an ASSO, DATA
or WORK file, or to PLG, CLG, BCK, BCKOUT or RECOUT.

The DBA can use this function to preallocate container files or Adabas sequential files. Reasons
for using it include performance aspects, avoiding fragmentation (by specifying the start sectors)
and reserving space for a database that is to be created in the future.

If ADADBM or ADAFRM are used to create a container file in a disk section, the preallocated
space is taken if it is available. If there was no preallocation made, the allocation is made using a
best-fit algorithm. The same sizes must be used when preallocating and creating container files.

START_SECTOR = number

This parameter specifies the sector at which allocation is to start.

BLOCKSIZE = numberKB

Values up to 32KB can be used to specify the container block-size when the allocation is being
made in blocks. The defaults are 2KB for ASSO container files, 4KB for all other container files and
1 KB for Adabas sequential files.

SIZE = number [B|M]

This parameter specifies the size of the area to be allocated in blocks or megabytes. If 'B' is appended
to the number, the size is in blocks. By default, the size is given in megabytes.

Adabas Utilities 137

ADADEYV (Disk Space Management)

CHANGE
CHANGE = (keyword, keyword)

This function changes the type of the container file or Adabas sequential file specified by the first
keyword into the type specified by the second keyword.

The following keyword combinations are allowed:

From To

WORK1 |TEMP1, SORT1, SORT2
TEMP1 |WORK1, SORT1, SORT2
SORT1 |WORKI1, TEMP1, SORT2
SORT2 |WORKI1, TEMP1, SORT1
DTA MUPLOG
MUPLOG|DTA

RECOUT |PLG (* see note)
BCKOUT |BCK (* see note)

Note: (*) If RECOUT [BCKOUT] is a copy of PLG.n [BCK00n], the new Adabas sequential
file name will be the corresponding name.

The DBID parameter must be set before the keywords WORK1, RECOUT or BCKOUT are used.

The WORKT1 container of a given database can only be changed to a SORT or TEMP container if
there is no autorestart pending.

COMBINE
COMBINE = keyword, DESTINATION = string

This parameter combines multiple Adabas sequential file extents into a single extent. The keyword
can take the values PLG.n, CLG.n, BCK00n, BCKOUT, RECOUT.n, ERR, MUPLOG, ORDEXP,
DTA or DVT. The keywords can also be followed by an extent label (m). In some cases, the DBID
parameter must be set (see ALLOCATE for further information).

A COMBINE can start at an arbitrary extent, but must end with the final (end-of-file) extent. All
subsequent extents can be specified interactively, or by predefined environment variables. If
DEVxyz is set, the first extent is taken from the default path name. If DEVxyz is not set, Adabas
looks in the current disk section to find the first extent.

‘string' is either the path name of the device file that represents the raw interface of a disk section,
the path name of a tape device, the (path) name of a non-existent file of a file system or a period

".").

138 Adabas Utilities

ADADEYV (Disk Space Management)

See Adabas Basics, Using Utilities for further information.
Example 1:

In this example, PLOG 2 of database 100 consists of 3 extents that are all located at the same disk
section /dev/rdsk/c4d0s2.

Environment Variable | Setting

DEVPLG /dev/rdsk/c4d0s2 /dev/rdsk/c4d0s2

The ADADEV commands are as follows:

adadev: section=/dev/rdsk/...
adadev: dbid=100

adadev: combine=plg.2(1)
adadev: destination=PLOG_2

All extents of PLOG 2 are combined into one file which will be written into the file system under
the name PLOG_2. The section must be specified twice in DEVPLG so that it can flip-flop.

Example 2:

In this example, PLOG 3 of database 100 consists of 9 extents, and the extents 5 to 9 are distributed
across four disk sections:

Environment Variable | Setting

DEVPLG /dev/rdsk/c3d0s2 # contains PLG.3(5) and PLG.3(9) EOF
DEVPLG2 /dev/rdsk/c4d0s2 # contains PLG.3(6)

DEVPLG3 /dev/rdsk/c5d0s2 # contains PLG.3(7)

DEVPLG4 /dev/rdsk/c6d0s2 # contains PLG.3(8)

The ADADEV commands are as follows:

adadev: section=/dev/rdsk/...
adadev: dbid=100

adadev: combine=plg.3(5)
adadev: destination=PL0G.3(5)

Extents 5 to 9 of PLOG 3 are combined into one extent in PLOG 3 with the extent number 5 and
the EOF label. The combined PLOG extent is created in the current directory under the name
PLOG.3(5).

Adabas Utilities 139

ADADEYV (Disk Space Management)

COPY
COPY = keyword, DESTINATION = string

This function copies a container file (ASSO1, DATA], etc.) or an Adabas sequential file (RECOUT,
DVT, etc.) from its present location to a specified destination (DESTINATION=string).

Valid keywords for the container files are ASSOx, DATAx and WORKX, where x is a number
between 1 and the maximum number of extents allowed, as described in Adabas Basics, Using
Utilities.

Valid keywords for the Adabas sequential files are PLG.n, CLG.n, BCK00n, BCKOUT, RECOUT.n,
ERR, MUPLOG, ORDEXP, DTA, and DVT. The 'n' extension on the Adabas sequential file keywords
designates an extent number.

If a container file is to be copied, you must first set the appropriate environment variable (e.g.
ASSO1) to the source location before the copy is attempted.

If an Adabas sequential file is to be copied into the current disk section, as specified by the SECTION
parameter (e.g. SECTION=/dev/c5d0s2), the environment variable DEVxyz (where xyz may take
the values PLG, CLG, 00n, OUT, ERR, LOG, EXP, DTA, and DVT) must be set to the Adabas se-
quential file or device file.

The DESTINATION keyword may be specified as either a path name for a raw disk section, a path
name of a tape device, a path name of a non-existent file in the file system, a named pipe or a
period ".", which indicates that the file will be copied into the current disk section.

In some cases, the DBID must be specified in order to uniquely identify the file before the COPY
function can be executed: please refer to the ALLOCATE function for a list of those files that require
the DBID.

Examples:

adadev: section=/dev/riv02

adadev: dbid=23

adadev: copy=WORK1, destination=/FS/fs0395/SAG/ada/db023/WORK1.023
WORKT1 is copied from a raw device to a file system.

The environment variable WORK1 has the value /FS/fs0395/SAG/ada/db023/WORK1.023.

140 Adabas Utilities

ADADEYV (Disk Space Management)

adadev: section=/dev/rlv02
adadev: dbid=023
adadev: copy=WORKI, destination=.

WORKT1 is copied from a file system to the currently-selected raw device.

DBID
DBID = number

This parameter specifies the database of an ASSO, DATA or WORK container file, or of a PLG,
CLG, BCK, BCKOUT or RECOUT Adabas sequential file.

DEALLOCATE
DEALLOCATE = { * | keyword }

In accordance with the keyword specified, this function deallocates an Adabas container file or
Adabas sequential file, or all of the extents of a given database (DEALLOCATE=*). The keyword
can take the values ASSOx, DATAx, WORKX, TEMPx , SORTx, NUCTMPx and NUCSRTx (where
x is a number between 1 and the maximum number of extents allowed, as described in Adabas
Basics, Using Utilities), PLG, PLG.n, PLG*, CLG, CLG.n, CLG*, BCK, BCK00n, BCK*, BCKOUT,
RECOUT, RECOUT.n, ERR, MUPLOG, MUPTMP, ORDEXP, DTA or DVT. The Adabas sequential
file keywords can also be followed by an extent label (m) or (*). In some cases, the DBID parameter
must be set (see ALLOCATE for further information).

The DBA can use this function to deallocate container files, e.g. when a database is no longer re-
quired or, for example, when a PLOG extent is saved to tape. The deallocated space is managed
as free space and can be allocated to other containers.

Note: If you reduce the space required for a database stored on a raw section with ADADBM

REDUCE_CONTAINER or ADADBM REMOVE_CONTAINER, this also implies that the
corresponding space in the raw section is deallocated automatically; it is not necessary to
perform ADADEV DEALLOCATE for this purpose.

() Caution: Please be careful when using ADADEV DEALLOCATE. ADADEV DEALLOCATE

does not check whether a container is still required. If you specify a database container that
is still in use, the corresponding database will be corrupted.

Adabas Utilities 141

ADADEYV (Disk Space Management)

FREE_SPACE
FREE_SPACE

This function displays the areas of free space on the current disk section. It is a subset of the
LAYOUT function. In order to make it easier to allocate space in units of the default block sizes,
this function also lists the size of the free areas in units of 2KB and 4KB.

INITIALIZE
INITIALIZE

Some sectors at the beginning of each disk section are used to manage the allocated and free space
areas. This function initializes this management part. Each disk section to be used by Adabas must
be initialized beforehand. When a disk section is accessed for Adabas purposes, the first step is
for the management part to be verified. A disk section can only be initialized if this verification
fails.

LAYOUT
LAYOUT

This function provides a summary of the disk section usage. It lists the container and Adabas se-
quential areas as well as the free space areas. It also displays the status of a container area (allocated
or created). Adabas sequential files can also have the status "during creation". This means that the
Adabas sequential file is growing: some of the allocated space has been used up, but some of it is
still free.

Following a power failure, TEMP and SORT containers may be locked for read or write (status:
rlocked or wlocked). Please refer to the UNLOCK function in this section for further information
about unlocking container files.

[NOJMOUNTCHECK
[NOIMOUNTCHECK

If MOUNTCHECK is used, ADADEV checks if a file system is mounted on the disk specified in
the ADADEV SECTION parameter. If a file system is mounted, ADADEV terminates. This check
can be skipped if NOMOUNTCHECK is specified before the SECTION parameter is used.

The default is MOUNTCHECK.

142 Adabas Utilities

ADADEYV (Disk Space Management)

MOVE

MOVE = keyword, DESTINATION = string

MOVE is essentially the same as COPY, however, with the difference that the source file is removed
(see COPY for further information).

Adabas Utilities 143

ADADEYV (Disk Space Management)

NEW_DBID
NEW_DBID = (container-name, new-dbid)

This function changes the DBID of Adabas files within raw sections (for example, when the number
of a database has been changed and the PLOGs are to be applied to the database with the new
number).

The following can be specified for container-name:

= all containers/sequential files with an associated database ID (ASSO, DATA, PLG ...)

® wildcard character *' with PLOG and CLOG (PLG*, CLG¥) to change all files within the section

® when specifying a given PLOG (e.g. PLG.175) and there are sequential file extents (PLG.175(1)
etc.), all these occurrences are changed

The following cannot be specified for container-name:

" containers without a DBID (SORT, DTA, ...)
= specific PLOG file extents (e.g. "PLG.175(1)")

Example

The following example shows how to change the DBID from 1 to 2:

adadev section=xxx dbid=1 new_dbid=(assol,?2)
adadev section=xxx dbid=1 new_dbid=(plg.175,2)
adadev section=xxx dbid=1 new_dbid=(plg*,2)

REALLOCATE
REALLOCATE = { * | keyword }

This function deallocates space and directly allocates it in a single step. The keyword can take the
same values as for the DEALLOCATE function. Adabas sequential file areas that are <=50 KB are
always deallocated.

This function can be used as a short cut when deallocating a container file and then allocating it
again at the same location. It is particularly useful if ADAFRM aborts while creating a database,
with some container files already created and preallocated at given start sectors.

There is a flag for each container in a disk section, which indicates whether the container or Adabas
sequential file has actually been created or whether the space has only been allocated for it. For
security reasons, an existing container or Adabas sequential file cannot be overwritten just by
creating it again: it must be deallocated or reallocated first.

144 Adabas Utilities

ADADEYV (Disk Space Management)

RESET

RESET

The management part of the current disk section is set to binary zero if the section is initialized.
This function is used if a disk section which has the same start sector as an overlapping, initialized
disk section is to be initialized.

RESIZE
RESIZE

If a new, overlapping disk section is used with the same start sector as the current disk section,
this function updates the size of the section to the size of the new section. The new section can be
larger or smaller than the current section. If it is larger, the free space at the end of the section is
increased. If it is smaller, existing free space at the end of the section is decreased.

SECTION
SECTION = string

This parameter selects the disk section to be used. The (path) name of the device file that represents
the raw I/O interface of the disk section must be specified.

UNLOCK
UNLOCK = keyword

This parameter is used to unlock a container of an abnormally terminated utility (for example kill
-9). The keyword can take the values TEMP1, SORT1 or SORT2.

Following a power failure, locked container files must be unlocked using the UNLOCK function
in order to use them further. If an Adabas sequential file consists of more than one physical extent,
the last extent is marked with EOF in the status field.

Adabas Utilities 145

146

12 ADAELA (Event Analytics Administration)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 148
B PIOCEAUIE FIOW ...t et e 149
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 150
B CONEIOl PArAMEIEIS ... e ettt e 150

147

ADAELA (Event Analytics Administration)

This chapter describes the utility "ADAELA".

Functional Overview

The administration utility ADAELA configures the Event Analytics add-on. It does not require
the Adabas nucleus to be active, but if changes are made to the configuration, the nucleus must
be restarted in order to make them active.

More than one event type can be added or removed during a single run of the utility. It is also
possible to both add and remove event types during a single run. If more than one add_eventtype,..
and/or remove=eventtype,..statementis issued, each statement must be finished with the keyword
END_OF_EVENTTYPE.

| Note: If there is already a configuration present, it will be overwritten.

This utility is a multi-function utility.

148 Adabas Utilities

ADAELA (Event Analytics Administration)

Procedure Flow

Data Set Environment Storage Additional Information
Variable/ Medium
Logical Name
Database configuration DBnnn.ini
Event types store eventtypes.txt
Control statements stdin/SYS$INPUT see section Control Parameters
ADAELA messages |stdout/SYS$OUTPUT Messages and Codes

Adabas Utilities 149

ADAELA (Event Analytics Administration)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

ADD_SERVER

[,server_keywords]
ADD_NUCELG

[,nucelg_keywords]
ADD_EVENTTYPE

[,eventtype_keywords]
ADD_FILTER

[,filter_keywords]

M DBID = number
DISABLE
DISPLAY = CONFIGURATION | EVENTTYPES
ENABLE

REMOVE = SERVER | NUCELG | EVENTTYPE, NAME=string | FILTER

ADD_SERVER

ADD_SERVER

D [,HOST=string]

D [,PORT=number]

D [,RECONNECT_TIMEOUT=number]
D [,RETRY=number]

D [,ON_ERROR=keyword]

This parameter adds the Analytics Server configuration to the DBnnn.INI file. It is not possible to
use the Analytics Server in parallel to writing events into a file (see NUCELQG). If there is already
a configuration for the NUCELG file present, it will be deleted.

HOST=string

The hostname where the Analytics Server is running. The default is 7ocalhost, which assumes
that the server will run on the same host as the Adabas nucleus for the best performance.

150 Adabas Utilities

ADAELA (Event Analytics Administration)

PORT=number

The TCP/IP listen port number of the Analytics Server. The default value is 6521. The port number
must match the port number configured in the Analytics Server.

RECONNECT_TIMEOUT=number

If the connection between the Adabas nucleus and the Analytics Server is lost, this parameter
specifies the time (in seconds) that the Adabas nucleus waits between reconnect attempts to the
Analytics Server. The default is 1.

Note: Reconnect attempts are time consuming and have a negative impact on the Adabas

performance.
RETRY=number

If the connection between the Adabas nucleus and the Analytics Server is lost, this parameter
specifies the number of reconnect attempts. The default is 0, which means "try continuously".

Note: If the maximum number of attempts is not 0, and if the maximum number of reconnect

attempts is reached without reconnecting successfully, event logging will be deactivated.
ON_ERROR=keyword

This parameter defines the behavior of the Adabas nucleus in case an error occurs with the Ana-
lytics Server. The default is IGNORE. "keyword” can take one of the following values:

Keyword [Meaning

ABORT |The Adabas nucleus will abort on any error condition with the Analytics Server.

IGNORE|The Adabas nucleus will attempt to reconnect to the Analytics Server.

ADD_NUCELG

ADD_NUCELG

D [,TIME_SWITCH=number]
D [,EVENT_SWITCH=number]
D [,ELGFILE=path]

This parameter adds the configuration for writing events to a file. It is not possible to use the
Analytics Server in parallel to writing events into a file. If there is already a configuration for the
Analytics Server present, it will be deleted.

TIME_SWITCH=number

The time (in seconds) that elapses before starting a new log file. The default value is 0, which
means that the log file is never switched after a given time.

Adabas Utilities 151

ADAELA (Event Analytics Administration)

EVENT_SWITCH=number

The number of events that have to occur before starting a new log file. The default value is 0, which
means that the log file is never switched after a given number of events.

ELGFILE=path

The fully-qualified path name for the log file. The default is $ADADATADIR/ dbnnn/NUCELG or
FADADATADIRZ\ dbnnn\NUCELG. A numbering suffix will be added automatically.

ADD_EVENTTYPE
ADD_EVENTTYPE ,NAME=string
,AREA=keyword
,FIELDS=(keyword [,keyword] ..)
D [,FILE=path]
D [,END_OF_EVENTTYPE]
This parameter adds an event-type definition to the event types file.
NAME-=string
The name of the event type.
FILE=PATH
The fully-qualified path name to the file which stores the event types.
AREA=keyword

The area where the event will be created. keyword can take one of the following values:

Keyword Meaning

POST_COMMAND |The event is based on the Adabas Control Block. After a regular Adabas command
has been processed, an event that depends on the command code will be sent.

The area defines also which fields are available for the event.

FIELDS = (keyword [, keyword] ...)

A list of the fields for the event type. The following fields are available:

152 Adabas Utilities

ADAELA (Event Analytics Administration)

Keyword

Area

Type, Length

Meaning

event_timestamp

POST_COMMAND

Integer, 8

Timestamp when the event was generated

Dbid POST_COMMAND |Integer, 4 |Database ID

file_number POST_COMMAND |Integer, 4 |Adabas file number

command_code POST_COMMAND |String, 2 Adabas command code

response_code POST_COMMAND |Integer,4 |Nucleus response code

Pid POST_COMMAND |Integer, 8 Process ID

Isn POST_COMMAND |Integer, 8 |ISN

hostname POST_COMMAND |String, 8 Host name

user_id POST_COMMAND |String, 8 User ID

Tsid POST_COMMAND |Binary, 8 Unique identifier

natapplication POST_COMMAND |String, 8 Natural application name

natprogram POST_COMMAND |String, 8 Natural program name

natlevel POST_COMMAND |Integer, 4 |Natural call level

natcount POST_COMMAND |Integer, 8 |Number of Adabas calls since last IO

natexec POST_COMMAND |Integer, 8 Number of times a Natural object has been
executed

natuser POST_COMMAND |String, 8 Natural user ID

natstatement POST_COMMAND |String, 4 Natural statement number

Natlib POST_COMMAND |String, 8 Natural library name

natrpcclientuid POST_COMMAND |String, 8 Natural RPC client user ID

natrpcid POST_COMMAND |String, 16 [Natural RPC ID

natrpcconvid POST_COMMAND |String, 16 |Natural RPC conversation ID

natsecgroup POST_COMMAND |String, 8 Natural security group

additionsl POST_COMMAND |Binary, 8 |Additions 1 field

duration POST_COMMAND |Integer, 4 |Command duration in microseconds

command_optl

POST_COMMAND

Character, 2

Command option 1 field

command_opt2

POST_COMMAND

Character, 2

Command option 2 field

asso_io_count

POST_COMMAND

Integer, 8

Number of the I/O read or writes to the ASSO
container

data_io_count

POST_COMMAND

Integer, 8

Number of the I/O read or writes to the DATA
container

work_io_count

POST_COMMAND

Integer, 8

Number of the I/O read or writes to the WORK
container

compressed_rec_Ing

POST_COMMAND

Integer, 4

Compressed record length returned by READ
or a FIND command stored in the database

decompressed_rec_Ing

POST_COMMAND

Integer, 4

Decompressed record length stored in the
database after command completes

Adabas Utilities

153

ADAELA (Event Analytics Administration)

Keyword

Area

Type, Length

Meaning

descriptor_count

POST_COMMAND

Integer, 4

Counter for updated descriptor per Adabas call
stored in database

cq_wait_duration

POST_COMMAND

Integer, 8

Duration in microseconds for a command in
command queue before dispatching into an
Adabas thread

isn_lower_limit

POST_COMMAND

Integer, 4

Adabas ISN Lower Limit

isn_quantity

POST_COMMAND

Integer, 4

Adabas ISN Quantity

command_opt3

POST_COMMAND

Character, 2

Contains the value of command option 3 of the
processed call

command_opt4

POST_COMMAND

Character, 2

Contains the value of command option 4 of the
processed call

command_opt5

POST_COMMAND

Character, 2

Contains the value of command option 5 of the
processed call

command_opt6

POST_COMMAND

Character, 2

Contains the value of command option 6 of the
processed call

command_opt7

POST_COMMAND

Character, 2

Contains the value of command option 7 of the
processed call

command_opt8

POST_COMMAND

Character, 2

Contains the value of command option 8 of the
processed call

additions2 POST_COMMAND |Binary, 4 |Contains the additions2 field of the issued call
additions3 POST_COMMAND |Binary, 8 Contains the additions3 field of the issued call
additions4 POST_COMMAND |Binary, 8 Contains the additions4 field of the issued call
additions5 POST_COMMAND |Binary, 8 |Contains the additions5 field of the issued call
additions6 POST_COMMAND |Binary, 8 |Contains the additions6 field of the issued call

Error_offset

POST_COMMAND

Integer, 8

Error offset in buffer

Error_field

POST_COMMAND

String, 2

Error character field

END_OF_EVENTTYPE

The keyword END_OF_EVENTTYPE must be specified if more than one event type is added, or
if an event type is added and one or more event types are removed.

154

Adabas Utilities

ADAELA (Event Analytics Administration)

ADD_FILTER

ADD_FILTER
D [,filter_keywords]

This parameter adds filter keywords to a file.
DBID

DBID = number

This parameter selects the database to be used.
DISABLE

DISABLE

This parameter disables the event logging feature.
DISPLAY

DISPLAY = CONFIGURATION | EVENTTYPES

This parameter display information about the event logging. The following keywords can be
specified:

Keyword Meaning

CONFIGURATION |Displays the configuration of the event logging. The information is taken from the

DBnnn.INI file.
EVENTTYPES Displays all configured event types.
ENABLE
ENABLE

This parameter enables the event logging feature.

Adabas Utilities 155

ADAELA (Event Analytics Administration)

REMOVE

REMOVE = SERVER | NUCELG | EVENTTYPE, NAME=string | FILTER
REMOVE = SERVER

This parameter removes the server configuration. The section TARGET_SERVER will be removed
from the DBnnn.INI file.

REMOVE = NUCELG
This parameter removes the NUCELG configuration.
REMOVE = EVENTTYPE, NAME=string [[END_OF_EVENTTYPE]

This parameter removes an event type with the specified name from the event types file.

The keyword END_OF_EVENTTYPE must be specified if more than one event type is removed,
or if an event type is removed and one or more event types are added.

156 Adabas Utilities

13 ADAELP (Event Log Report)

B FUNCHONAI OVEIVIBW ..ot e e e e 158
B PTOCEAUIE FlOW .ottt et e 159
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 160
B G0N0l ParaMEIErS . et 160
= Specifying Multiple SElection CrItEracvvviiei e 162

157

ADAELP (Event Log Report)

This chapter describes the utility "ADAELP".

Functional Overview

The ADAELP utility prints events from an event log created by Adabas Analytics.

| Note: Event logging must be enabled in order to write event logs. For further information
see the section ADAELA (Event Analytics Administration) in the Utilities documentation.

The ADAELP parameters USER_ID, HOSTNAME and EVENT_TIMESTAMP select a subset of
the events in the event log.

In the interactive mode, ADAELP displays the selected events when the keyword LIST is entered.
If ADAELP is called with parameters, the selected events are displayed immediately.

Events are displayed as follows: a first line with the event type is followed by lines that contain
the field data of the event in question. The display of an event is concluded with the event type
being repeated on the last line.

Example output

start read event
event_timestamp=16-JUL-2015 11:51:01.977020
dbid=163
file_number=1
command_code=L5
response_code=0
isn=993
pid=6772
hostname=PCSTO1
user_id=st
tsid=68 ba 56 02 fb la 05 00
end read event

This utility is a single-function utility.

158 Adabas Utilities

ADAELP (Event Log Report)

Procedure Flow

Data Set Environment |Storage |Additional Information
Variable/ Medium
Logical Name
Event log ELPELG |Disk
Control statements |stdin see section Control Parameters
ADAELP report |stdout

Adabas Utilities 159

ADAELP (Event Log Report)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

D DBID = number
EVENT_TIMESTAMP = ([absolute-datel[,[absolute-datel])
HOSTNAME = string
LIST

USER_ID = string
DBID

DBID = number

This parameter specifies the database ID of the database for which the event log was written.

EVENT_TIMESTAMP

EVENT_TIMESTAMP = ([absolute-datell,[absolute-datel])

This parameter selects the log records in the range specified by the optional date strings. The date
strings must correspond to the following absolute date and time format:

dd-mmm-yyyy[:hh:mm:ss[.mmmmmm]]

Leading zeroes in the date and time specification may be omitted. Any numbers not specified are
set to 0, for example 28-jul-2015 is equivalent to 28-jul-2015:00:00:00.000000.

By default, all log records are selected.

160 Adabas Utilities

ADAELP (Event Log Report)

Examples:

adaelp: event_timestamp = 8-aug-2015

The event with event_timestamp 8-AUG-2015 00:00:00 is selected.

adaelp: event_timestamp = (8-aug-2015:12,)

All events with time_stamp from 8-AUG-2015 12:00:00 onwards are selected.

adaelp: event_timestamp = (,8-aug-2012:12:34)

All events with time_stamp before 8-AUG-2015 12:34:00 are selected.

adaelp: event_timestamp = (16-JUL-2015 11:51:01.977020, 16-JUL-2015 11:51:02.177000)

All events with event_timestamp from 16-JUL-2015 11:51:01.977020 to 16-JUL-2015 11:51:02.177000
are selected.

HOSTNAME
HOSTNAME = string

This parameter selects all events with the hostname specified by 'string’. The length of the para-
meter value is limited to 8 characters.

LIST

LIST

This parameter lists the events selected with the parameters DBID, EVENT_TIMESTAMP,
HOSTNAME and USER_ID.

USER_ID
USER_ID = string

This parameter selects all events with the user ID specified by 'string'. The length of the parameter
value is limited to 8 characters.

Adabas Utilities 161

ADAELP (Event Log Report)

Specifying Multiple Selection Criteria

If multiple selection criteria are specified, they are combined by a logical AND, e.g.

event_timestamp=(8-aug-2015:12:34,), user_id = guest, hostname = machine3

This selects all events after 8-aug-2015:12:34 with user_id= guest and hostname=machine3.

162 Adabas Utilities

14 ADAERR (Error File Report)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 164
B PIOCEAUIE FIOW ...t et e 165
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 165
B CONMTOI ParaMEIEY ...t e 165
B EXAMIPIE 1o 166
B Rejected Data RECOMSviiiiiiiiie e 166

163

ADAERR (Error File Report)

This chapter describes the utility "ADAERR".

Functional Overview

The ADAERR utility displays the contents of error files generated by the utilities

ADACMP
ADADCU
ADAINV
ADAMUP
ADAREC

This utility is a single-function utility.

164 Adabas Utilities

ADAERR (Error File Report)

Procedure Flow

ik
-

E— ADAERR

o

| ERRIN ':
Error Data

Data Set Environment |Storage Medium Additional Information
Variable/
Logical Name

Error data ERRIN Disk, Tape (* see note)

Error messages stdout/
SYS$OUTPUT

| Note: () Anamed pipe can be used for this sequential file.

The sequential file ERRIN can have multiple extents. For detailed information about sequential
files with multiple extents, see Adabas Basics, Using Ultilities.

Checkpoints

The utility writes no checkpoints.

Control Parameter

The following control parameter is available:

D [NOIDUMP

Adabas Utilities 165

ADAERR (Error File Report)

[NOJDUMP
[NOIDUMP

If NODUMP is specified, only a description (length of record, ISN of the record etc.) of each error
record will be output, but not the actual record content. See the section Rejected Data Records in
this section for information on the contents of the error records.

If DUMP is specified, the record content will be dumped in addition to the record description. For
ADACMP, the decompressed record will be dumped, whereas for ADADCU the compressed record
will be dumped.

The default is NODUMP.

Example

$ adaerr

%ADAERR-T-STARTED, 11-0CT-2006 18:59:20, Version 6.1.1
%ZADAERR-T-RECNOTF, Record NOT found for ISN 317 in file 49
%AADAERR-T-PLOGRB, from record 1 in block 6 on PLOG 1
%AADAERR-T-TOCNT, 1 I0 on dataset ERRIN
%ZADAERR-T-TERMINATED, 11-0CT-2006 18:59:20, elapsed time: 00:00:01

Rejected Data Records

Any records rejected by the following utilities are written to the error file in variable-length format.

= ADACMP
= ADADCU
= ADAINV
= ADAMUP
= ADAREC

The structure of the error records is contained as a header file iodesam.h in the subdirectory
“Adabas/inc” of the installation directory on both Windows and UNIX.

166 Adabas Utilities

15 ADAFDU (File Definition)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 168
B PIOCEAUIE FIOW ...t et e 169
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 171
B CONEIOl PArAMEIEIS ... e ettt e 171
B XAMIDIES L.ttt 185

167

ADAFDU (File Definition)

This chapter describes the utility "ADAFDU".

Functional Overview

The file definition utility ADAFDU defines a new base file and/or a LOB file in a database. It does
not require the Adabas nucleus to be active.

The field definitions for a base file, including special descriptor definitions and referential integrity
definitions for foreign keys, are read from the sequential file FDUFDT; the field definition of a
LOB file is predefined. Additional input for ADAFDU is provided by parameters.

| Note: If the new file contains collating descriptors, they are always created with ICU Version
5.4.

See Administration, FDT Record Structure for information about the syntax and use of the data
definitions to define the logical structure of the file in the database.

See Administration, Loading And Unloading Data, File Space Estimation for information about formulae
for calculating the Associator and Data Storage space requirements for a file.

See Adabas Basics, FDT Record Structure for information about the syntax and use of the data
definitions to define the logical structure of the file in the database.

See Adabas Basics, Loading And Unloading Data, File Space Estimation for information about formulae
for calculating the Associator and Data Storage space requirements for a file.

This utility is a single-function utility.

168 Adabas Utilities

ADAFDU (File Definition)

Procedure Flow

Field Definitions

Offline Mode

If the nucleus is not active, ADAFDU itself creates the new file in ASSO and DATA

Adabas Utilities 169

ADAFDU (File Definition)

Field Definitions

Online Mode

If the nucleus is active, ADAFDU calls the nucleus to create the new file in ASSO and DATA. In
this case, no checkpoint is written, but the file creation is logged in the database log, and in case
of a recovery, the file is created automatically.

170 Adabas Utilities

ADAFDU (File Definition)

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name

Associator ASSOx Disk

Data storage DATAX Disk

Control statements |[stdin/ Utilities Manual
SYSSINPUT

ADAFDU messages|stdout/ Messages and Codes
SYS$OUTPUT

FDT information = |[FDUFDT Disk, Tape (* see note)

Protection Log NUCPLG Disk Utilities Manual

ADAPLP

Note: (*) A named pipe can be used for this sequential file.

Checkpoints

The utility writes a SYNP checkpoint if it is performed offline. If the utility is performed online,
the file definition is written to the PLOG, a SYNX checkpoint is written.

Control Parameters

The following control parameters are available:

ACBLOCKSIZE = numberK

ACRABN = number

ADAM_KEY =

key

D ADAM_OVERFLOW = number

D ADAM_PARAMETER = number

ADD_LOBFILE = (number,number)

D ASSOPFAC = number

D [NOIBT

D [NOJCIPHER

Adabas Utilities

171

ADAFDU (File Definition)

D CONTIGUOUS = ([AC], [,DS] [,NI] [,UTID)

D DATAPFAC = number

M DBID = number

DSBLOCKSIZE = numberK

DSRABN = number
D DSSIZE = number[B|M]
FDT

FILE = number
D [NOIFORMAT
LOBFILE = number [,LOBSIZE = number[B|M]]
D [NOJLOWER_CASE_FIELD_NAMES
D MAXISN = number
D NAME{=]:} string

NIBLOCKSIZE = numberK| (numberK,numberkK)

NIRABN = number | (number,number)

D NISIZE

number[B|MJ| (number[B|M],number[B|M])

[NOJPGM_REFRESH

D REUSE = (keyword [,keywordl])

SYFMAX

number

UIBLOCKSIZE = numberK| (numberK,numberK)

UIRABN = number|(number,number)

D UISIZE

number[B|M1| (number[B|M],number[B|M]1)

172 Adabas Utilities

ADAFDU (File Definition)

ACBLOCKSIZE
ACBLOCKSIZE = numberK
This parameter allows you to specify a block size for the allocation of the address converter extent.

Example:

acblocksize = 6k
The address converter will be allocated with a block size of 6 kilobytes.

If the database does not contain enough space with this block size, ADAFDU aborts.

ACRABN
ACRABN = number

This parameter specifies the RABN at which the space allocation for the Address Converter is to
start.

This parameter can be used to allocate the Address Converter to a given container file extent.

If this parameter is omitted, ADAFDU assigns the starting RABN.

ADAM_KEY
ADAM_KEY = key

If this parameter is specified, the file is defined as an ADAM file. The key can be either a descriptor
name or the keyword "ISN'. If an ADAM key is used, it must be defined with the UQ option in
the FDT. It must not be a sub-, super-, phonetic or hyperdescriptor. It must not be a multiple-value
field or a field within a periodic group. It must not have the NU/NC option.

ADAM_OVERFLOW
ADAM_OVERFLOW = number

This parameter specifies the number of DATA overflow blocks for the file. Overflow blocks are
required in case ADAM-calculated blocks get full. The overflow blocks are taken from the end of
the file's DATA blocks.

Adabas Utilities 173

ADAFDU (File Definition)

File’s DSSIZE

le— Blocks used by ADMM — |+ Overflow —»]

At least one overflow block must be allocated.
The maximum is DSSIZE - 1.

Note: When checking the maximum value, and DSSIZE is specified in megabytes, it is as-

sumed that the Data Storage block size is 32 - independent of the actual value. If you want
to specify a larger value for ADAM_OVERFLOW, which is possible with a smaller Data
Storage block size, DSSIZE must be specified in blocks.

The default is 1.

ADAM_PARAMETER
ADAM_PARAMETER = number

This parameter specifies the number of consecutive ISNs to be stored in one block if the keyword
'ISN' is specified for the ADAM_KEY parameter.

If the ADAM key is a descriptor with fixed-point format, the parameter specifies the number of
consecutive values for one block. For other key formats, it specifies an offset into the values. See
Adabas Basics, Data Access Strategies for more information.

If the ADAM key is a descriptor with fixed-point format, the parameter specifies the number of
consecutive values for one block. For other key formats, it specifies an offset into the values. See
Administration for more information.

A value may be specified in the range 1 to 10000.

The default value is 8.

ADD_LOBFILE
ADD_LOBFILE = (number, number)

The parameter ADD_LOBFILE is used to create a LOB file and assign it to an existing base file
that is specified by the first number, the base file must not yet have an assigned LOB file. A LOB
file, with the file number specified by the second number, is generated and assigned to the base
file, and the base file is enabled for LOB processing. A file with the specified file number must not
yet exist. The maximum number that can be specified is 32000. You can specify the parameters

174 Adabas Utilities

ADAFDU (File Definition)

describing the data storage, the address converter, the normal and upper index of the LOB file,
but the following should be taken into consideration:

= The block size for LOB file data blocks must be 32 KB.
= The block size for LOB NI and Ul blocks must be < 16 KB.

It is not possible to specify FILE if you specify ADD_LOBFILE, and vice versa.

Because there are some predefined requirements for a LOB file, not all the other ADAFDU para-
meters make sense in connection with ADD_LOBFILE, for example the ADAM_* parameters.
These parameters are ignored by ADAFDU when the LOB file is added.

ASSOPFAC
ASSOPFAC = number

This parameter specifies the padding factor to be used for the file's index. The number specified
is the percentage of each index block which is not to be used by a subsequent run of the mass update
utility ADAMUP. This padding area is reserved for future use if additional entries have to be added
to the block by the Adabas nucleus. This avoids the necessity of having to relocate overflow entries
to another block.

A value may be specified in the range 0 to 95.

A small padding factor (0 to 10) should be specified if little or no descriptor updating is expected.
A larger padding factor (10 to 50) should be specified if there is a large amount of descriptor up-
dating in which new descriptor values are created.

You can change the padding factor at a later time using the utility ADAORD.

The default padding factor is 5.
[NOIBT
[NOIBT

If NOBT is specified, this file will be a no-BT file, which means that modifications to this file are
not made within normal transaction logic, and all modifications are kept in the database even if
a transaction is backed out.

BT is the default.
. Note: The following points should be considered if the nucleus crashes:

® All database modifications for a no-BT file issued before the last ET command are applied to
the database.

Adabas Utilities 175

ADAFDU (File Definition)

= Jtisnot defined whether database modifications for a no-BT file issued after the last ET command
are applied to the database or not.

[NO]JCIPHER

[NOICIPHER
This option can be used to enable or disable data record ciphering.

Ciphering prevents the unauthorized analysis of Adabas container files. If ciphering is enabled,
data records are ciphered when they are stored in a database by either the Adabas nucleus or by
the mass update utility ADAMUP. The data records are then deciphered when they are requested
by a user or application: this means that the ciphering is completely transparent to the user or
application. See Adabas Basics, Adabas Security Facilities for further information about ciphering.

The default is NOCIPHER.
CONTIGUOUS
CONTIGUOUS = ([AC] [,DS] [,NIT [,UI1)

This parameter is used to control ADAFDU's space allocations. If specified, ADAFDU ensures
that only the first logical extent of the types specified is used.

By default, ADAFDU makes contiguous-best-try allocations.

DATAPFAC
DATAPFAC = number

This parameter specifies the padding factor to be used for the file's Data Storage. The number
specified is the percentage of each data block which is not to be used when subsequently adding
new records to the file with the mass update utility ADAMUP or with the Adabas nucleus. This
padding area is reserved for future use if any record in the block requires additional space as a
result of record updating by the Adabas nucleus. This avoids the necessity of having to relocate
the record to another block.

A value in the range 0 to 95 may be specified.

A small padding factor (0 to 10) should be specified if there is little or no record expansion. A larger
padding factor (10 to 50) should be specified if there is a large amount of record updating which
will cause expansion.

You can change the padding factor at a later time using the utility ADAORD.

The default padding factor is 5.

176 Adabas Utilities

ADAFDU (File Definition)

DBID
DBID = number

This parameter selects the database to be used.

DSBLOCKSIZE
DSBLOCKSIZE = numberK
This parameter allows you to specify a block size for the allocation of the data storage extent.

Example:

dsblocksize = 6k
Data storage will be allocated with a block size of 6 kilobytes.

If the database does not contain enough space with this block size, ADAFDU aborts.

DSRABN

DSRABN = number

This parameter specifies the RABN at which the space allocation for Data Storage is to start.
This parameter can be used to allocate Data Storage to a given container file extent.

If this parameter is omitted, ADAFDU assigns the starting RABN.

DSSIZE
DSSIZE = number [B|M]

This parameter specifies the number of blocks or megabytes to be assigned to Data Storage. By
default, the size is given in megabytes.

The value specified for DSSIZE determines the size of the logical extent allocated to Data Storage
for the file.

A contiguous-best-try allocation is made unless CONTIGUOUS=DS has been specified.

This parameter is mandatory for ADAM files - the dependencies between the parameters
ADAM_OVERFLOW and DSSIZE are described for the parameter ADAM_OVERFLOW.

For non-ADAM files, this parameter can be omitted; in this case Adabas calculates a reasonable
number of blocks to be used for Data Storage. If the size that is actually required is larger, the file
is automatically increased.

Adabas Utilities 177

ADAFDU (File Definition)

FDT
FDT

If this parameter is specified, the FDT contained in the sequential file FDUFDT is displayed.

FILE
FILE = number

This parameter is required when a base file is to be created; it specifies the file number to be assigned
to the file.

The 'number' specified must not be currently assigned to another file in the database and must
not exceed the maximum file number defined for the database. The maximum number that can
be specified is 32000.

File numbers can be assigned in any sequence.

It is not possible to specify FILE if you specify ADD_LOBFILE, and vice versa.

[NOJFORMAT
[NOJFORMAT

This option is used to control whether the RABNs allocated for the file's index and Data Storage
are to be formatted or not. The RABNSs of the file's Address Converter are always formatted.

The default is NOFORMAT.

LOBFILE

LOBFILE = number [, LOBSIZE = number[B|MI1]

If LOBFILE is specified, a LOB file with the specified number is generated and assigned to the
base file to be created, and the base file is enabled for LOB processing. A LOB file with the specified
file number must not already exist. The maximum number that can be specified is 32000. You
should take the following into consideration:

® The block size for LOB file data blocks will be 32 KB.
® The block size for LOB NI and UI blocks will be <16 KB.
* LOBSIZE specifies the size in Data storage of the LOB file, analogously to the parameter DSSIZE.

® Adabas calculates reasonable sizes for the Address converter, the normal and upper index of
the LOB file. If you want to specify these values yourself, you should create the base file first
without specifying LOBFILE, and then you should call ADAFDU again and add the LOB file
with the ADD_LOBFILE parameter.

178 Adabas Utilities

ADAFDU (File Definition)

[NOJLOWER_CASE_FIELD_NAMES

[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The defaultis NOLOWER_CASE_FIELD_NAMES.

MAXISN

MAXISN = number

This parameter specifies the highest ISN expected in the file. The file definition utility ADAFDU
uses this parameter to determine the amount of space to be allocated for the file's Address Con-
verter (AC). The default value for MAXISN is 5000.

A contiguous-best-try allocation is made unless CONTIGUOUS=AC has been specified.

Note: The value is rounded up to the number of ISNs that fit into the Address converter

blocks required to store MAXISN ISNs in the Address converter, the exact value used as
MAXISN for the file is:

(MAXISN specified / (Address converter block size / 4) + 1) * (Address converter block size
/ 4) -1. For example, using an Address converter with a block size of 4KB, the default value
of 5000 is increased to (5000 / (4096 / 4) + 1) * (4096 / 4) -1 =5119.

Adabas Utilities 179

ADAFDU (File Definition)

NAME
NAME {=]:} string

This parameter specifies the name to be assigned to the file. This name will appear together with
data about this file in the database status report produced by the report utility ADAREP. A max-
imum of 16 characters are permitted. If you specify an equals sign, the value given for 'string’ will
be converted to upper case; if you specify a colon, no upper-case conversion is performed

The default value is FILE-n, where n is the file number.

NIBLOCKSIZE
NIBLOCKSIZE = numberK| (numberK,numberkK)

This parameter allows you to specify a block size for the allocation of the Normal Index. Note that
the Normal Index requires a block size >=16 KB for large index values > 253 bytes, while a smaller
block is allocated for descriptors with smaller descriptor values. The following must be taken into
consideration:

= If you specify one block size, the file is created with all normal index blocks having this size.

® If you specify two block sizes, one value should be < 16K, and one value should be >=16K. You
should also specify two values for NISIZE; the first value for NIBLOCKSIZE corresponds to the
first value of NISIZE, and the second value for NIBLOCKSIZE corresponds to the second value
of NISIZE.

Examples:

niblocksize = 6k

The normal index will be allocated with a block size of 6 kilobytes.

niblocksize = (8k,32k)
nisize = (1000b,10m)

The normal index will be allocated with 1000 blocks of block size 8 KB and 10 MB of block size 32
KB.

If the database does not contain enough space with this block size, ADAFDU aborts.

180 Adabas Utilities

ADAFDU (File Definition)

NIRABN

NIRABN = number| (number,number)

This parameter specifies the RABN at which the space allocation for the Normal Index is to start.
This parameter can be used to allocate the Normal Index to a given container file extent.

If two RABNs have been specified, one should have a block size < 16KB, and the other should
have a block size of >= 16KB.

If this parameter is omitted, ADAFDU assigns the starting RABNs.

If both NIBLOCKSIZE and NIRABN are specified, the block sizes of the RABNSs specified as
NIRABN must be equal to the values specified as NIBLOCKSIZE.

NISIZE

NISIZE = number [B|MI|(number [B|MI,number [B|MI)

This parameter defines the number of blocks or megabytes to be assigned to the Normal Index.
By default, the size is in megabytes.

If the block size cannot be derived from the NIBLOCKSIZE or the NIRABN parameter, the first
value for NISIZE is used for blocks < 16KB, and the second value is used for blocks >= 16KB.

A contiguous-best-try allocation is made unless CONTIGUOUS=NI has been specified.

If this parameter is omitted, Adabas calculates a reasonable number of blocks to be used for the
normal index.

Examples:

adafdu: nisize = 100b

If the block size cannot be derived from the NIBLOCKSIZE or NIRABN parameter, 100 blocks
with block size < 16KB are allocated for the Normal Index.

adafdu: nisize = (10m,1000b)

If the block size cannot be derived from the NIBLOCKSIZE or NIRABN parameter, 10 MB of blocks
with block size < 16KB and 1000 blocks of block size >= 16KB are allocated for the Normal Index.

Adabas Utilities 181

ADAFDU (File Definition)

[NOJPGM_REFRESH
[NOJPGM_REFRESH

If PGM_REFRESH is specified, the file can be refreshed by an E1 command (reset to a state of zero
records loaded) when it is loaded.

The default is NOPGM_REFRESH.

REUSE
REUSE = (keyword [,keyword])

The REUSE parameter controls the reuse of Data Storage space or ISNs by Adabas.
REUSE = [NO]DS

NODS causes all newly-added records, together with records that have to be moved to another
block (as a result of record expansion caused by updating) to be placed in the last used block in
the Data Storage extent allocated to the file. If there is not sufficient space in this block, the next
block is used.

If the DS keyword is specified, Adabas will scan the Data Storage Space Table (DSST) in order to
locate a block with sufficient space. In this case, the first block found with sufficient space will be
used.

The file control block for the specified file is modified to indicate the type of allocation to be used
when adding new records or moving updated records.

The default value is DS.
REUSE = [NO]JISN

If REUSE is set to NOISN, Adabas does not reuse the ISN of a deleted record for a new record.
Each new record will be assigned the next-highest unused ISN.

If REUSE is set to ISN, Adabas may reuse ISNs of deleted records. ISN reusage is done as follows:
when a new record is stored in the database, an Address Converter (AC) block is read and checked
for a free ISN. In order to keep the overhead for ISN reusage small, only one AC block is read - if
no free ISN is found in the AC block, handling is the same as when ISN reusage is switched off.

Note: Setting REUSE to ISN, does not necessarily mean that ISN reusage is actually done.

Because unsuccessful ISN reusage means an overhead for reading an additional AC block,
Adabas sets ISN reusage to inactive if the probability of finding a reusable ISN is small.
After deleting enough records, ISN reusage is then set to Active again.

The default value is NOISN.

182 Adabas Utilities

ADAFDU (File Definition)

Examples

adafdu: reuse = (isn, ds)

ISNs of deleted records can be reassigned to new records. The DSST is scanned for free space when
a record is added to the database or when an updated record is moved in the database.

adafdu: reuse = isn

Reuse of data storage and ISNs is allowed.

adafdu: reuse = <cr>

Reuse of data storage and no reuse of ISNs is specified. This is the default setting.

SYFMAX

SYFMAX = number

This parameter specifies the maximum number of values generated for a system generated multiple-
value field. There is no explicit maximum value, but you should bear in mind, that you can get a
record overflow if the value is defined too high; the compressed data record should also fit into
one DATA block is SYFMAX values are defined for system generated multiple-value fields.

The default value is 1.

UIBLOCKSIZE
UIBLOCKSIZE = numberK]| (numberK,numberK)

This parameter allows you to specify a block size for the allocation of the Upper Index. Note that
the Upper Index requires a block size >=16 KB for large index values > 253 bytes, while a smaller
block is allocated for descriptors with smaller descriptor values. The following must be taken into
consideration:

= If you specify one block size, the file is created with all normal index blocks having this size.

® If you specify two block sizes, one value should be < 16K, and one value should be >= 16K. You
should also specify two values for UISIZE; the first value for UBBLOCKSIZE corresponds to the
first value of UISIZE, and the second value for UIBBLOCKSIZE corresponds to the second value
of UISIZE.

Adabas Utilities 183

ADAFDU (File Definition)

Examples:

uiblocksize = 6k

The upper index will be allocated with a block size of 6 kilobytes.

uiblocksize = (8k,32k)
uisize = (1000b,10m)

The upper index will be allocated with 1000 blocks of block size 8 KB and 10 MB of block size 32
KB.

If the database does not contain enough space with this block size, ADAFDU aborts.

UIRABN

UIRABN = number| (number,number)

This parameter specifies the RABN at which the space allocation for the Upper Index is to start.
This parameter can be used to allocate the Upper Index to a given container file extent.

If two RABNs have been specified, one should have a block size < 16KB, and the other should
have a block size of >= 16KB.

If both UIBLOCKSIZE and UIRABN are specified, the block sizes of the RABNs specified as UIR-
ABN must be equal to the values specified as UIBLOCKSIZE.

If this parameter is omitted, ADAFDU assigns the starting RABN.

UISIZE
UISIZE = number [B | M]

This parameter defines the number of blocks or megabytes to be assigned to the Upper Index. By
default, the size is in megabytes.

If the block size cannot be derived from the UIBLOCKSIZE or the UIRABN parameter, the first
value for UISIZE is used for blocks < 16KB, and the second value is used for blocks >= 16KB.

A contiguous-best-try allocation is made unless CONTIGUOUS=UI has been specified.

If this parameter is omitted, Adabas calculates a reasonable number of blocks to be used for the
upper index.

184 Adabas Utilities

ADAFDU (File Definition)

Examples

Example:

adafdu: dbid = 1, file = 6, maxisn = 20000, dssize = 1008B,
adafdu: assopfac = 10, datapfac = 10,
adafdu: uisize = 20b, nisize =5

File 6 is to be loaded. The maximum number of expected records preset for the file is 20000. 100
blocks are allocated for Data Storage. The Associator and Data Storage block padding factors are
both 10 percent. 20 blocks are allocated for the Upper Index and 5 megabytes for the Normal Index.
The Normal Index ISN size is implicitly set to 2.

Example:

adafdu: dbid =1, file = 7, maxisn = 350000,
adafdu: assopfac = 5, datapfac = 15,

adafdu: dssize = 100,

adafdu: uisize = 2, nisize = 30

File 7 is to be loaded. The maximum number of expected records preset for the file is 350000. The
Associator padding factor is 5 percent. The Data Storage padding factor is 15 percent. 100 megabytes
are allocated for Data Storage. The Normal Index ISN size is implicitly set to 4.

Example:

adafdu: dbid =1, file = 8,
adafdu: maxisn = 10000, dssize = 20,
adafdu: uisize = 10b, nisize = 50b

File 8 is to be loaded. The maximum number of expected records preset for the file is 10000. 20
megabytes are allocated to Data Storage. The padding factor for both the Associator and Data
Storage is 5 percent (default).

Adabas Utilities 185

ADAFDU (File Definition)

Example:

adafdu: dbid = 1, file = 9, maxisn = 55000, dssize = 2000b, dsrabn = 30629,
adafdu: uisize = 50b, nisize = 300b,
adafdu: assopfac = 20, datapfac = 10

File 9 is to be loaded. The maximum number of expected records preset for the file is 55000. 2000
blocks are allocated for Data Storage. The Data Storage allocation will start at RABN 30629. 50
blocks are allocated for the Upper Index. 300 blocks are allocated for the Normal Index. The padding
factor for the Associator is 20 percent. The padding factor for Data Storage is 10 percent.

Example:

adafdu: dbid = 1, file = 10, maxisn = 20000

File 10 is to be loaded. The maximum number of records expected for the file is set to 20000. All
space allocation will be calculated by Adabas.

186 Adabas Utilities

16 ADAFIN (File Information Report)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 188
B PIOCEAUIE FIOW ...t et e 189
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 190
B CONEIOl PArAMEIEIS ... e ettt e 190

187

ADAFIN (File Information Report)

This chapter describes the utility "ADAFIN".

Functional Overview

The file information utility ADAFIN displays

= the FDT,
® descriptor information, and

® the number of blocks in the Data Storage, Normal Index or Upper Index and their usage
of one or more selected files.

This utility is a multi-function utility.

188 Adabas Utilities

ADAFIN (File Information Report)

Procedure Flow

Associator ASSOx Disk

Data storage DATAX Disk

Control statements |stdin/ Utilities Manual
SYSSINPUT

ADAFIN messages|stdout/ Messages and Codes
SYS$OUTPUT

Work WORK1 Disk

Adabas Utilities 189

ADAFIN (File Information Report)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

ADAM_DS = keyword

M DBID = number

DESCRIPTOR = { = | : }{ * | (string [,stringl...) }
FDT
M FILE = { * | (number [-number] [,number [-number]l]...) |}

D [NOJHISTOGRAM

USAGE = (keyword [,keyword [,keyword]])
ADAM_DS
ADAM_DS = keyword

This parameter can be used in conjunction with USAGE=DS for ADAM files. It selects the data
section of the ADAM file for which information is to be displayed. The following keywords can
be used:

Keyword Meaning

FULL All of the DS space is selected

ADAM Only the ADAM area is selected
OVERFLOW |Only the ADAM overflow area is selected

190 Adabas Utilities

ADAFIN (File Information Report)

DBID
DBID = number

This parameter selects the database to be used.

DESCRIPTOR
DESCRIPTOR = { = | : }{ * | (string [,stringl...) |}

This function defines the list of descriptors for which information is to be displayed. If more than
one file is selected, information may only be requested for all descriptors (DESCRIPTOR = *).

The DESCRIPTOR function can only be executed if the selected files are not opened for update
with the nucleus running. This function can only be selected in conjunction with the FILE parameter.

The DESCRIPTOR function does not synchronize against parallel updates (for example ADAINV
REINVERT).

Examples

adafin: file=13, descriptor=ca

Database 76, File 13 (MISCELLANEOUS) 27-0CT-2006 08:08:17

Descriptor CA , Format: A , Options: NU

min ma x ave
Length 1 233 20.59
ISNs per value 1 2 1.08
Values: different: 86 total: 93
ASSO-Blocks: NI : 2 Ul: 1

adafin: file=(11,12), descriptor=*
Database 1, File 11 (EMPLOYEES-NAT) 27-0CT-2006 08:09:39

Descriptor AA , Format: A , Options: UQ

min max ave
Length 8 8 8.00
ISNs per value 1 1 1.00
Values: different: 1,107 total: 1,107
ASSO-Blocks: NT: 5 Ul: 1

Adabas Utilities 191

ADAFIN (File Information Report)

Descriptor AE , Format: A , Options: None

min
Length 3
ISNs per value 1
Values: different: 804
ASSO-Blocks: NI: 4

Descriptor AH , Format: P , Options: NC

min
Length 4
ISNs per value 1
Values: different: 921
ASSO-BTocks: NI : 4

Descriptor AJ , Format: A , Options: NU

min
Length 3
ISNs per value 1
Values: different: 307
ASSO-Blocks: NI: 3

Descriptor AO , Format: A , Options: None

min
Length 6
ISNs per value 1
Values: different: 167
ASSO-Blocks: NI: 2

Descriptor AP , Format: A , Options: NU

min
Length 2
ISNs per value 1

192

Adabas Utilities

ADAFIN (File Information Report)

Values: different: 237 total:
ASSO-BTocks: NI: 3 Ul:
Descriptor AZ , Format: A , Options: NU,MU
min max
Length 3 3
ISNs per value 1 843
Values: different: 21 total:
ASSO-BTocks: NI: 2 Ul:
Super-Descriptor H1 , Format: B , Options: NU
Parent field(s): AU (1 - 2) U
Av (1 - 2) U
min max
Length 4 4
ISNs per value 1 93
Values: different: 259 total:
ASSO-BTocks: NI: 2 Ul:

Phonetic-Descriptor PH , Format: A , Options: None

Parent field(s): AE A

min max
Length 3 3
ISNs per value 1 33
Values: different: 608 total:
ASSO-Blocks: NT: 3 Ul:
Sub-Descriptor S1 Format: A , Options: None
Parent field(s): AO (1 - 4) A

min max
Length 4 4
ISNs per value 1 208
Values: different: 13 total:
ASSO-Blocks: NI: 2 Ul:

1,107

Adabas Utilities

193

ADAFIN (File Information Report)

Super-Descriptor S2 , Format: A , Options: None
Parent field(s): AO (1 - 6) A
AE (1 - 20) A

min ma x ave
Length 9 23 12.78
ISNs per value 1 5 1.05
Values: different: 1,052 total: 1,107
ASSO-Blocks: NI: 6 Ul: 1

Super-Descriptor S3 , Format: A , Options: NU,PE

Parent field(s): AR (1 - 3) A
AS (1 - 9) P
min ma x ave
Length 12 12 12.00
ISNs per value 1 25 2.15
Values: different: 1,567 total: 3,383
ASSO-Blocks: NI: 10 Ul: 1
Highest PE-occurrence: b
Database 1, File 12 (VEHICLES) 10-0CT-2006 14:30:39

Descriptor AA , Format: A , Options: UQ,NU

min ma X ave
Length 6 10 7.91
ISNs per value 1 1 1.00
Values: different: 772 total: 772
ASSO-Blocks: NI: 4 Ul: 1

Descriptor AC , Format: A , Options: None

min ma X ave
Length 1 8 7.74
ISNs per value 1 24 1.16
Values: different: 662 total: 773

194 Adabas Utilities

ADAFIN (File Information Report)

ASSO-Blocks: NI: 3

Descriptor AD , Format: A , Options: NU

Ul:

min
Length 2
ISNs per value 1
Values: different: 45
ASSO-Blocks: NI: 1

Descriptor AF , Format: A , Options: NU

min
Length 3
ISNs per value 1
Values: different: 68
ASSO-BTlocks: NI: 1

Descriptor AH , Format: A , Options: FI

min
Length 1
ISNs per value 169
Values: different:
ASSO-BTlocks: NI: 1

Super-Descriptor AO , Format: A , Options:

Parent field(s): AG (1 - 2) U
AD (1 - 20) A

min
Length 4
ISNs per value 1
Values: different: 180
ASSO-BTlocks: NI: 2

Total of 18 descriptors

Information about all descriptors in the specified files is displayed.

Adabas Utilities

195

ADAFIN (File Information Report)

FDT
FDT

This parameter displays the Field Definition Tables (FDTs) of the files selected with the FILE
parameter. This function can only be selected in conjunction with the FILE parameter.

Example

adafin: file=9, fdt
Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:11:42

Field Definition Table:

Level I Name I Length I Format I Options I Flags I Encoding
1 I AA I 8 I A I DE,UQ I I
1 I AB I I I I |
2 I AC I 20 I W I NU I I
2 I AE I 20 I W [NU [SP |
2 I AD I 20 I W I NU I I
1 I AF I 1 I A I FI I I
1 I AG I 1 I A I FI I I
1 I AH I 8 I U I DE I I
1 I Al I I I I I
2 I AT I 20 I W I NU,MU I I
2 I A0 I 20 I W I DE,NU I I
2 I AK I 10 I A I NU I I
2 I AL I 3 I A I NU I |
1 I A2 1 I I I I
2 I AN I 6 I A [NU I I
2 I AM I 15 I A I NU I I
1 I A0 I 6 I A I DE I SB,SP I
1 I AP I 25 I W I DE,NU I I
1 I AQ I I I PE I I
2 I AR I 3 I A I NU I SP I
2 I AS I 5 I P I NU I SP I
2 I AT I 5 I P [NU,MU I |
1 I A3 I I I I I
2 I AU I 2 I U I [SP I
2 I AV I 2 I U I NU I SP I
1 I AW I I I PE I |
2 I AX I 8 I U I NU I I
2 I AY I 8 I U [NU I |
1 I AZ 1 3 I A I DE,NU,MU I I
Type I Name I Length I Format I Options [Parent field(s) Fmt
COLL I CN 11,144 I I NU,HE I AE de__ PHONEBOOK
I I I I I PRIMARY

196 Adabas Utilities

ADAFIN (File Information Report)

SUPER I HI I 4 I B I NU I AU (1 2) U
I [I I I AV (1 2) U
SUB I S1 1 4 I A I I AO (1 4) A
SUPER I S2 1 26 I A I NU I AO (1 6) A
I I I I I AE (1 20) W
SUPER I S3 1 12 I A I NU,PE I AR (1 3) A
I I I I I AS (1 9) P
FILE

FILE = { * | (number [-number] [,number [-number]]...) }

This parameter selects one or more files from a database and displays information about these
files in accordance with the following parameter. Specifying FILE = * selects all files.

[NOJHISTOGRAM
[NOJHISTOGRAM

If the HISTOGRAM option is selected, a graphical overview of the descriptor-value length distri-
butions will be provided in all the information that is subsequently displayed by the DESCRIPTOR
function.

If HISTOGRAM is used, it must be specified before the DESCRIPTOR parameter.
Using the HISTOGRAM option does not lead to additional I/Os on the data sets.

The default is NOHISTOGRAM.

Example (with HISTOGRAM)

adafin: file=9, histogram, descriptor=ap
Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:12:44

Descriptor AP , Format: W , Options: NU

min ma X ave
Length 2 26 12.71
ISNs per value 1 75 4.61
Values: different: 240 total: 1,107
ASSO-BTocks: NI: 3 Ul: 1

Adabas Utilities 197

ADAFIN (File Information Report)

Histogram of descriptor value length for descriptor AP

Length | 25% 50% 75% 100%| Frequency

------- dp====c=========dfcc===c-c======dizc====c=c=c===dhz=====cc=======dhz=====c===
2 | | 1
3 |* | 22
5 | | 7
6 |* | 26
7 |****** | 124
8 |**** | 83
9 |****** | 117
10 |****** | 119
11 |*** | 67
12 |**** | 83
13 | * | 23
14 | | 47
15 & | 46
16 s | 46
17 |* | 29
18 I***** i 101
19 e 27
20 | * | 29
21 |* | 33
22 |* | 17
23 |* | 20
24 |* | 21
25 | | 5
26 |* | 14

adafin:

The information that is displayed has the following meaning:

Keyword (Meaning

Length |Each value n shown in this column indicates that there is a descriptor value with a length of n
bytes in the file.

The range of values in this column lies between the minimum (column "min") and maximum
(column "max") values shown in the table before the histogram.

Frequency | The value shown in this column indicates the number of descriptor values for the given descriptor
length.

The sum of the values in the frequency column is equal to the total number of values for the
descriptor in question.

If all of the descriptor values are of the same length, the histogram will be of an unusual type, e.g.:

198 Adabas Utilities

ADAFIN (File Information Report)

adafin: file=9, histogram, descriptor=aa

Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:15:16

Descriptor AA , Format: A , Options: UQ

min max
Length 8 8
ISNs per value 1 1
Values: different: 1,107 total:
ASSO-BTocks: NI: 5 Ul:

Histogram of descriptor value length for descriptor AA

Length | 25% 50% 75% 100%| Frequency
——————— dh====c===c=====dhz===cccccc====dhccc=-=cc=cc===dhcccc==-=ccccc==dhcccc=-===-
8 |**| 1 107

This histogram shows that the file only contains descriptor values that have a length of 8 bytes.

The file contains a total of 1107 values for the descriptor AA.

Example (with NOHISTOGRAM)

adafin: file=9, histogram, descriptor=ap

Database 1, File 9 (EMPLOYEES) 27-0CT-2006 08:14:24

Descriptor AP , Format: W , Options: NU

min ma x
Length 2 26
ISNs per value 1 75
Values: different: 240 total:
ASSO-Blocks: NI: 3 Ul:

Adabas Utilities

199

ADAFIN (File Information Report)

USAGE
USAGE = (keyword [,keyword [,keywordl])

Depending on the keyword specified, this parameter displays the percentage of used blocks in
the file.

Keyword | Meaning

DS Displays statistics of used blocks in the Data Storage;

NI Displays statistics of used blocks in the Normal Index;

Ul Displays statistics of used blocks in the Main/Upper Index.

Example

adafin: file=13, usage=ds

Database 76, File 13 (MISCELLANEOUS) 27-0CT-2006 08:16:18

DS - Blocks allocated = 50 , used = 49 , unused = 1
Records: Number = 179
Length: max = 1,991 , min = 260 , avg = 997 .47
0%: 0 blocks
5%: 0 blocks
10%: 0 blocks
15%: 0 blocks
20%: 0 blocks
25%: 0 blocks
30%: 0 blocks
35%: 0 blocks
40%: 0 blocks
45%: 0 blocks
50%: 0 blocks
55%: 0 blocks
60%: 0 blocks
65%: 0 blocks
7O/ g #5esosss 2 blocks
75%: 0 blocks
80%:** 1 block
85%:************* 6 b]OCkS
90%:***************************** 13 b]OCkS

95%:*** 27 b]OCkS

100%: 0 blocks

Information about the used data blocks of file 13 in database 76 is displayed. 50 DS blocks are al-
located, of which 49 are in use and 1 is unused. The total number of records is 179, with the record

200 Adabas Utilities

ADAFIN (File Information Report)

length varying between a maximum of 1991 and a minimum of 260. The average record length is
997.47. The following lines give an overview of the number of blocks that are used up to a given
level. The majority of the blocks (27) is used up to between 90% and 95%.

Example (for ADAM file)
adafin: file = 8

adafin: adam_ds = full
adafin: usage = ds

Database 30, File 8 (ADAM_FILE) 11-0CT-2006 12:08:57
ADAM key = FF ADAM parameter = 5 ADAM_DS = FULL
DS - Blocks used for ADAM = 94
Total overflow blocks = 1, used =1
Records: Number = 3863
In ADAM area= 3860 , ovfl = 3
Length: max = 9 , min = 9 , avg = 9.00
0Fg trsiseserivesds 10 blocks
B7%g i 4 blocks
10%: 0 blocks
15%: 0 blocks
20%: 0 blocks
25%: 0 blocks
30%: * 1 block
35%: 0 blocks
40%: 0 blocks
45%: 0 blocks
50%: * 1 block
55%: 0 blocks
60%: 0 blocks
65%: *hkkhkkhkhkhkhkkhkhkhhkhkhhkhkkhhkhkhkhkhkhhkhhkhkkhkhkhhhkhkhkhkhkhhkhkhhkkhhkhkhkkhkhk 74 b]OCkS
70%: 0 blocks
75%: 0 blocks
80%: 0 blocks
85%: 0 blocks
90%: 0 blocks
95 = 3 blocks
100%: * 2 blocks

Information about all data blocks of file 8, which is an ADAM file, is displayed. The ADAM
parameter is set to 5. 94 blocks are used for the ADAM area, with 1 block reserved for overflow.
The ADAM area contains 3860 records, and 3 records are in the overflow area.

Adabas Utilities 201

202

17 ADAFRM (Format And Create A New Database)

B FUNCHONAI OVEIVIBW ..ot e e e e 204
B PTOCEAUIE FlOW .ottt et e 206
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 207
B G0N0l ParaMEIErS . et 207
B RES A CONSIAIAtIONS . .eeeee e e 211
B Control Statement EXAMPIESoiiiiiiie i 211

203

ADAFRM (Format And Create A New Database)

This chapter describes the utility "ADAFRM".

Functional Overview

The utility ADAFRM creates the container files (ASSO, DATA, WORK) assigned to the database
and establishes the database including the database system files. It can also be used to format the
TEMP and SORT files.

The database is included in the ADABAS.INI file.

If the file DBnnn.INI does not yet exist, ADAFRM creates the DBnnn.INI file, including the default
parameters derived from ADABAS.INI, and stores it in the appropriate database directory (please
refer to Adabas Extended Operation for further information about the DBnnn.INI files).

The following rules apply for determining the locations for the container extents to be created:

1. If an environment variable for the container extent exists, use the environment variable.

2. If the DBnnn.INI file already exists before ADAFRM is started, and it contains an entry for the
container extent, use the entry in the DBnnn.INI file.

3. Otherwise create the container extent in the database directory (FPADADATADIR/dbnnn on
UNIX, %ADADATADIR% \ dbnnn on Windows) with name XXXXx.nnn, where XXXX is the
container type, x the container extent and nnn the database number.

Exceptions are the SORT and TEMP containers if they are created without creating a database at
the same time; here the following rules apply:

1. If an environment variable for the container extent exists, use the environment variable.

2. Otherwise create the container in the current directory with the name XXXXx, where XXXXis the
container type, and x the container extent.

If you create a database, but not if you only create the SORT or TEMP containers, the created
container extents are stored in theDBnnn.INI file. If the DBnnn.INI file already was created before
ADAFRM was started, all other values in the file are not changed; if the file didn't exist, it is created
with default values.

If you create only the SORT or TEMP containers without creating a database, no updates are per-
formed in a DBnnn.INI file.

For the raw device interface, the utility ADADEV can be used if placement control is required.
Raw devices and files in the file system may be used for database container files.

You can create up to 255 ASSO and 255 DATA container files. You can add more containers later
using ADADBM's ADD_CONTAINER function.

204 Adabas Utilities

ADAFRM (Format And Create A New Database)

After ADAFRM creates the container files, it initializes the global Adabas blocks, inserts the 3
Adabas system files (checkpoint file, ET data file, security file) and allocates space for them. The
checkpoint file is allocated 3000 records, the ET data file is allocated 3000 records and the security
file is allocated 200 records.

Block sizes from 1 kilobyte to 32 kilobytes may be used for database container files.

If you try to reformat a container file, the utility terminates with an error message. This ensures
that the database is not accidentally overwritten.

This utility is a single function utility.

Adabas Utilities 205

ADAFRM (Format And Create A New Database)

Procedure Flow

If a database is to be formatted:

Data Set Environment |Storage Medium | Additional Information

Variable/

Logical Name
ADABAS.INI Disk Adabas Extended Operations Manual
Associator ASSOx Disk
Data storage DATAX Disk
DBnnn.INI Disk Adabas Extended Operations Manual
Control statements |stdin/ Utilities Manual

SYS$INPUT

206

Adabas Utilities

ADAFRM (Format And Create A New Database)

Data Set Environment |Storage Medium|Additional Information
Variable/
Logical Name

ADAFRM messages |stdout/ Messages and Codes
SYS$OUTPUT

Work WORK1 Disk

If a TEMP or SORT is to be formatted:

Data Set Environment |Storage Medium |Additional Information
Variable/
Logical Name

Sort storage SORTx Disk

Control statements |stdin/ Utilities Manual
SYS$INPUT

ADAFRM messages |stdout/ Messages and Codes
SYS$OUTPUT

Temporary storage |TEMPx Disk

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are only used when establishing a new database:

)

D ASSOBLOCKSIZE = (number[K] [,number[KI] ...)

M ASSOSIZE = (number[B|M] [,number[B|MI]...)

D DATABLOCKSIZE = (number[K] [,number[KI] ...)

M DATASIZE = (number[B|M] [,number[B|MI]...)
DBID = number

D NAME {=|:} string

M SORTSIZE = (number[M] [,number[M]]

D SYSFILES = (number, number, number)

Adabas Utilities

ADAFRM (Format And Create A New Database)

M TEMPSIZE = (number[M] [,number[M1] ...)
D WORKBLOCKSIZE = number[K]

M WORKSIZE = number[M | B]

ASSOBLOCKSIZE

ASSOBLOCKSIZE = (number[K] [,number[KI]l ...)

This parameter specifies the block sizes that are to be used for the Associator container file(s). The
first block size corresponds to ASSO1, the second to ASSO2 etc.

If block sizes are not specified, the default of 4K will be used.

For ASSO1, only blocks sizes from 2K to 8K can be specified. For ASSO2 to ASSOn, block sizes
between 1K and 32K are permitted.

Note: The ASSOBLOCKSIZE parameter should be specified once for each ASSOSIZE that

is specified, i.e. these parameters should be specified in pairs. If ASSOSIZE is specified more
frequently than ASSOBLOCKSIZE, then the last specified block size will be used for the
containers that do not have a block size specified. The default value will be used if ASSOB-
LOCKSIZE is not specified at all.

ASSOSIZE

This parameter specifies the number of blocks or megabytes to be assigned to the Associator.

If the Associator is to be contained in more than one physical file, the size of each file must be
specified.

If a 'B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

DATABLOCKSIZE

DATABLOCKSIZE = (number[K] [,number[K]] ...)

This parameter specifies the block sizes that are to be used for the Data Storage container file(s).
The first block size corresponds to DATA1, the second to DATA?2 etc.

If block sizes are not specified, the default of 32K will be used.

Note: The DATABLOCKSIZE parameter should be specified once for each DATASIZE that
is specified, i.e. these parameters should be specified in pairs. If DATASIZE is specified
more frequently than DATABLOCKSIZE, then the last specified block size will be used for

the containers that do not have a block size specified. The default value will be used if
DATABLOCKSIZE is not specified at all.

208 Adabas Utilities

ADAFRM (Format And Create A New Database)

DATASIZE

DATASIZE = (number[B|M] [,number[B|M]]...) <

This parameter specifies the number of blocks or megabytes to be assigned to the Data Storage.
If the Data Storage is to be contained in more than one file, the size of each file must be specified.

If a 'B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

DBID

DBID = number

This parameter selects the database to be created.

The minimum value is 1 and the maximum value is 255.

Note: This parameter only needs to be set when formatting ASSO, DATA and WORK. It
must not be entered when formatting only SORT or TEMP.

NAME
NAME {=]:} string

This parameter specifies the name to be assigned to the database. This name will appear in the
title of the database status report produced by the report utility ADAREP. If you specify an equals
sign, the value given for 'string’ will be converted to upper case; if you specify a colon, no upper-
case conversion is performed.

A maximum of 16 characters may be specified.

If this parameter is omitted, a default value of ‘GENERAL-DATABASE' is assigned.

SORTSIZE
SORTSIZE = (number[M] [,number[MI] ...)
This parameter specifies the number of megabytes to be assigned to the SORT dataset.

If the SORT dataset consists more than one extent, the size of each extent must be specified. Up
to 50 extents can be specified. The SORT dataset can be formatted independently.

Adabas Utilities 209

ADAFRM (Format And Create A New Database)

SYSFILES
SYSFILES = (number, number, number)

This parameter specifies the file numbers to be reserved for the Adabas system files. These file
numbers must not be used subsequently for user files.

The first value specifies the file number of the checkpoint file.
The second value specifies the file number of the security file.
The third value specifies the file number of the user data file.

The default setting is SYSFILES=(1, 2, 3).

TEMPSIZE
TEMPSIZE = (number [M] [,number[MI] ...)
This parameter defines the number of megabytes to be assigned to TEMPx.

If the TEMP dataset is to be contained in more than one physical file, the size of each file must be
specified.

This component may be formatted independently.
WORKBLOCKSIZE

WORKBLOCKSIZE = number[K]
This parameter specifies the block size that is to be used for the WORK file.

If no block size is specified, the default of 16K will be used.

WORKSIZE

WORKSIZE = number [B|M]
This parameter defines the number of blocks or megabytes to be assigned to WORK1.

If a 'B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

210 Adabas Utilities

ADAFRM (Format And Create A New Database)

Restart Considerations

ADAFRM does not have a restart capability. An interrupted ADAFRM run must be restarted from
the beginning. Associator, Data Storage and WORK must be formatted together.

The files created during an earlier run have to be deleted first.

Control Statement Examples

Example: Formatting a database

adafrm: dbid = 1, name = DATABASE_1

adafrm: assosize (200M, 100M), assoblocksize = (2K, 4K)
adafrm: datasize (500M, 500M, 2M), datablocksize = (4K, 16k)
adafrm: worksize = 50M, workblocksize = 16K

A new database is established with the number 1 and the name "DATABASE_1". Two ASSO con-
tainer files are created: ASSOL1 has a size of 200 megabytes and a blocksize of 2 kilobytes, and
ASS0O2 has a size of 100 megabytes and a blocksize of 4 kilobytes. There are three DATA containers.
DATA1 and DATA3 have a blocksize of 4 kilobytes, DATA2 has a blocksize of 16 kilobytes. There
is a single WORK container file with a block size of 16 kilobytes. The file numbers 1, 2 and 3 will
be used for the 3 system files.

Example: Formatting SORT and TEMP

adafrm: sortsize = (10M,10M)
adafrm: tempsize = 10M

Explanation: Two container files, each 10 megabytes in length, are to be formatted as SORT1 and
SORT?2. A container file, 10 megabytes in length, is to be formatted as TEMP1.

Adabas Utilities 211

212

1 8 ADAINV (Creating, Removing And Verifying Inverted Lists)

B FUNCHONAI OVEIVIBW ..ot e e e e 214
B PTOCEAUIE FlOW .ottt et e 216
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 217
B G0N0l ParaMEIErS . et 218
B RES A CONSIAIAtIONS . .eeeee e e 228
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 228

213

ADAINV (Creating, Removing And Verifying Inverted Lists)

This chapter describes the utility "ADAINV".

Functional Overview

The inverted list utility ADAINV creates, removes and verifies inverted lists for loaded files in a
database. It does not require the Adabas nucleus to be active. The nucleus may, however, be active
or shut down while ADAINV is running. The following functions are available:

® The INVERT function establishes new descriptors;

® The REINVERT function performs an implicit RELEASE and INVERT;

* The RELEASE function removes existing descriptors;

® The RESET_UQ function removes the unique status from descriptors;

® The SET_UQ function establishes a unique status for existing descriptors;

® The SUMMARY function displays the descriptor space summary for the specified descriptors
and the required sizes to process these descriptors;

® The VERIFY function checks the integrity of inverted lists.
A LOB file can only be specified for the functions REINVERT, SUMMARY and VERIFY.

These functions are mutually exclusive and only one of them may be executed each time this
utility is run.

Notes:

1. When you perform ADAINV INVERT or REINVERT for a collation descriptor, the collation
descriptor is always created using the highest ICU version supported (for Adabas Version 6.5:
ICU 5.4, for older Adabas versions: ICU 3.2).

2. If you reinvert a collation descriptor created with ICU version 3.2 in order to upgrade to ICU
version 5.4, there may be differences in the syntax or semantics of the collation specification.
For example, with ICU version 3.2, the locale “fr” implies the FRENCH option, while with ICU
version 5.4, the FRENCH option must be specified explicitly. In such a case, instead of performing
ADAINYV REINVERT, first perform ADAINV RELEASE for the collation descriptor and then
ADAINV INVERT with a new specification, which is equivalent to the old ICU version 3.2
specification.

When ADAINV is performed in online mode, Adabas users accessing the file may be active when
ADAINYV is running:

214 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

Function ACC Users|UPD Users
INVERT Yes No
REINVERT |No No
RELEASE |No No
RESET_UQ |Yes No
SET_UQ Yes No
SUMMARY | Yes Yes
VERIFY Yes No

An Adabas user is an ACC user if he has only performed read or search operations for the file, or
if he has executed an appropriate Open command. He is an UPD user if he has also performed
insert, update or delete operations for the file or placed an ISN of the file in exclusive hold status,
or if he has executed an appropriate open command.

If there are users of the file that are not permitted, as defined in the table shown above, ADAINV
fails with an error ADA048.

) Notes:

1. An UPD user remains an UPD user after the end of the current transaction until the end of the
user session.

2. You can determine which users are currently accessing a file with the ADAOPR DIS-
PLAY=UQ_FILES command.

If the utility writes records to the error file, it will exit with a non-zero status.

This utility is a single-function utility.

Adabas Utilities 215

ADAINV (Creating, Removing And Verifying Inverted Lists)

Procedure Flow

216 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

The sequential file INVERR can have multiple extents. For detailed information about sequential
files with multiple extents, see Adabas Basics, Using Utilities.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name

Associator ASSOx Disk

Data storage DATAX Disk

Rejected data INVERR Disk, Tape (* see note) |output of ADAINV

Sort storage SORTx Disk Administration Manual, temporary working
TEMPLOCx space

Control statements |stdin/ Utilities Manual
SYSSINPUT

ADAINV messages |stdout/ Messages and Codes
SYS$OUTPUT

Temporary storage |TEMPx Disk

Work storage WORK1 Disk

| Note: (*) Anamed pipe can be used for this sequential file.

In cases without an active nucleus and no pending AUTORESTART, the WORK may be used as
TEMP by setting the environment variable/logical name TEMP1 to the path name or raw disk
section of a WORK container.

Checkpoints

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must |Nucleus must NOT be Nucleus is NOT Checkpoint written |Nucleus operations
be active active required allowed

INVERT X SYNP R

REINVERT X(* see note) X SYNP

RELEASE X SYNP R

RESET_UQ X SYNP R

SET_UQ X SYNP R

SUMMARY X \

VERIFY X(* see note) X SYNX R

Adabas Utilities 217

ADAINV (Creating, Removing And Verifying Inverted Lists)

Note: (*) When processing an Adabas system file.

R: read operations allowed for the processed file.
W: read und write operations allowed for the processed file.

Control Parameters

The following control parameters are available:

M DBID = number

INVERT = number,
FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT},
[END_OF_FIELDS]

[,FDT]
D [,LWP = number[K|M]]
D [,UQ_CONFLICT = keyword]

D [NOJLOWER_CASE_FIELD_NAMES

REINVERT = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
D [,[NOJFORMAT]
D [,LWP = number[K|M]]
D [,UQ_CONFLICT = keyword]
RELEASE = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
D [,[NOJFORMAT]
RESET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
SET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
D [,UQ_CONFLICT = keyword]
SUMMARY = number,
{ALL_FIELDS | FIELDS
{descriptor_name | derived_descriptor_definition | FDT},
[END_OF_FIELDS]T)
[,FDT]
D [,FULL]

218 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

VERIFY = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
D [,ERRORS = number]

[,FDT]
D [,LWP = number[K|MI]

DBID
DBID = number

This parameter selects the database to be used.

INVERT

INVERT = number,
FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT},
. [END_OF_FIELDS]
[,FDT]
[,LWP = number[K|MI]
[,UQ_CONFLICT = keyword]

This function establishes new elementary, sub-, super-, hyper-, phonetic and collation descriptors
at any time after a file has been initially loaded. 'number’ specifies the file containing the fields to
be inverted. You are not allowed to specify the number of a LOB file.

FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the field specification list.

FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]

This parameter specifies fields to be inverted. It can contain one or more

= field name,
" phonetic descriptor or
® sub-, super-, hyper- or collation descriptor

specifications, each starting on a separate line. See Adabas Basics, FDT Record Structure for valid
specifications of field names, phonetic, sub-, super-, hyper- or collation descriptors.

The options UQ and TR are used to specify whether the field in question is a unique descriptor
or whether index truncation will be performed. See Adabas Basics, Definition Options for further
information about the UQ and TR options.

Adabas Utilities 219

ADAINV (Creating, Removing And Verifying Inverted Lists)

Note: Only fields for which the values are stored in the base file can be used as descriptors
or parent fields of derived descriptors. For this reason, an invert function will be aborted
if a field to be inverted or a parent field of a derived descriptor to be created has the LA or
LB option and values are stored in the LOB file. LA and LB fields can be used as descriptors
or parent fields of derived descriptors, but then all values are limited to 16 KB — 3, and the
base record including these LA or LB field values must fit into one data block.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

LWP = number[K|M]

For the sort of descriptor values, ADAINV uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAINV. The LWP parameter allows
you to increase the work pool; it defines the additional space added to the default work pool size
in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

= If you notice that in your environment the performance is better with a large work pool.
= If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter

can decrease the required size of the SORT container.

You can use the SUMMARY function to determine the required value for this parameter.
UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. ‘keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINV terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, the UQ status of the descriptors in question is removed and processing
continues.

The default is UQ_CONFLICT = ABORT.

220 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

[NOJLOWER_CASE_FIELD_NAMES
[NOJLOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. f NOLOWER_CASE_FIELD_NAMES s specified, Adabas field names are converted to upper
case. The defaultis NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the FIELDS parameter.

REINVERT

REINVERT = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[.[NOJFORMAT]
[,LWP = number[K|M]]
[,UQ _CONFLICT = keyword]

This function performs an implicit RELEASE and INVERT. This reduces the probability of a typing
error, especially for sub- and superdescriptors.

Note: The purpose of ADAINV REINVERT is to recreate a descriptor if the index tree becomes

unbalanced as a result of a large number of updates, or if an index error occurred. Descriptors
are always recreated with the same definition as before; if you want to change the definition
of a descriptor, for example a superdescriptor, you must perform ADAINV RELEASE fol-
lowed by ADAINV INVERT with the new descriptor definition.

ALL_FIELDS
This parameter specifies that all descriptors of the selected file are to be released/inverted.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

Adabas Utilities 221

ADAINV (Creating, Removing And Verifying Inverted Lists)

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors to be released/reinverted. It can be followed by one or
more field names, each starting on a separate line. See Adabas Basics, FDT Record Structure for a
description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

[NOJFORMAT

If a descriptor is released or reinverted, the new index created is generally smaller than the old
index and requires less disk space. The FORMAT option can be used to format the blocks that are
no longer used by the index but which are still allocated to the file.

The default is NOFORMAT.
LWP = number[K|M]

For the sort of descriptor values, ADAINV uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAINV. The LWP parameter allows
you to increase the work pool; it defines the additional space added to the default work pool size
in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

= If you notice that in your environment the performance is better with a large work pool.
® If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter

can decrease the required size of the SORT container.

You can use the SUMMARY function to determine the required value for this parameter.
UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. 'keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINV terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, the UQ status of the descriptors in question is removed and processing
continues.

The default is UQ_CONFLICT = ABORT.

222 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

RELEASE

RELEASE = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[,[NOJFORMAT]

This function removes elementary, sub-, super-, hyper-, phonetic and collation descriptors from
the file specified by 'number'. You are not allowed to specify the number of a LOB file.

ALL_FIELDS
This parameter specifies that all descriptors of the selected file are to be released.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors to be released. It can be followed by one or more field
names, each starting on a separate line. See Adabas Basics, FDT Record Structure for a description
of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

[NOJFORMAT

If a descriptor is released or reinverted, the new index created is generally smaller than the old
index and requires less disk space. The FORMAT option can be used to format the blocks that are
no longer used by the index but which are still allocated to the file.

The default is NOFORMAT.

Adabas Utilities 223

ADAINV (Creating, Removing And Verifying Inverted Lists)

RESET_UQ

RESET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]

This function removes the unique status from elementary, sub-, hyper-, super- and collation
descriptors defined in the file specified by 'number'. You are not allowed to specify the number
of a LOB file.

ALL_FIELDS

This parameter specifies that the unique status is to be removed from all unique descriptors in the
specified file.

FDT

This parameter displays the Field Definition Table (FDT) of the selected file. This option may be
specified before or within the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors that are to have unique status removed. It can be followed
by one or more field names, each starting on a separate line. See Adabas Basics, FDT Record Structure
for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

SET_UQ

SET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]!
[,FDT]
[,UQ_CONFLICT = keyword]

This function establishes the unique status for elementary, sub-, hyper-, super- and collation
descriptors defined in the file specified by 'number'. You are not allowed to specify the number
of a LOB file.

224 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

ALL_FIELDS

This parameter specifies that the unique status is to be established for all elementary, sub-, hyper-
, super- and collation descriptors defined in the specified file.

FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors for which the unique status is to be established. It can be
followed by one or more field names, each starting on a separate line. See Adabas Basics, FDT Record
Structure for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. ‘’keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINYV terminates execution and returns an error status if duplicate descriptor values are found.
If RESET is specified, the UQ status of the descriptors in question is not established and processing
continues.

The default is UQ_CONFLICT = ABORT

SUMMARY

SUMMARY = number,
{ALL_FIELDS | FIELDS
{descriptor_name | derived_descriptor_definition | FDT},
[END_OF_FIELDS]}
[,FDT]
[,FULL]

This function displays the descriptor space summary (DSS) for the specified descriptors and the
required sizes to process the descriptors.

Note: Processing the exact size would be too complicated. It may be that sizes a little smaller

than those displayed are sufficient. If the file is updated during or after the SUMMARY
function, the displayed values might also be too small.

Adabas Utilities 225

ADAINV (Creating, Removing And Verifying Inverted Lists)

See Adabas Basics, Optimization of ADAMUP and ADAINV Processing for further information about
ADAINV SUMMARY processing.

ALL_FIELDS
This parameter specifies that all descriptors of the selected files are to be checked.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors for which the unique status is to be established. It can be
followed by one or more field names, phonetic descriptors, subdescriptors, superdescriptors, hy-
perdescriptors or collation descriptors, each starting on a separate line. You can specify fields that
are descriptors or fields that are not descriptors. See Adabas Basics, FDT Record Structure for a de-
scription of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

FULL

If this is specified, each descriptor is displayed along with the sizes that are required for the
descriptor. This can be helpful if not all of the specified fields are to be processed.

VERIFY

VERIFY = number,

{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,ERRORS = number]
[,FDT]

[,LWP = number[K|M]]

This function checks the integrity of inverted lists of the file specified by ‘number".

226 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

ALL_FIELDS
This parameter specifies that all descriptors of the selected file are to be checked.
ERRORS = number

This parameter specifies the number of errors that have to be reported in order to terminate the
verification of a descriptor.

The default is 20.
FDT

This parameter displays the FDT of the selected file. This option may be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptor fields to be verified. It can be followed by one or more field
names, each starting on a separate line. See Adabas Basics, FDT Record Structure for a description
of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper case when the LOWER_CASE_FIELD_NAMES parameter is used. In addition,
the FDT parameter must also be specified in upper case when the LOWER_CASE_FIELD_NAMES
parameter is used.

LWP = number[K|M]

For the sort of descriptor values, ADAINV uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAINV. The LWP parameter allows
you to increase the work pool; it defines the additional space added to the default work pool size
in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

® If you notice that in your environment the performance is better with a large work pool.

= If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter
can decrease the required size of the SORT container.

You can use the SUMMARY function to determine the required value for this parameter.

Adabas Utilities 227

ADAINV (Creating, Removing And Verifying Inverted Lists)

Restart Considerations

ADAINYV has no restart capability. However, it may or may not be possible to re-start an abnormally
terminated ADAINV from the beginning.

If ADAINV terminates abnormally, it can usually be restarted from the beginning. However, if
ADAINYV has modified the index, the following points have to be considered:

® The function REINVERT ... FIELDS is the same as the function RELEASE ... FIELDS followed
by the function INVERT ... FIELDS. So if ADAINV has aborted in the INVERT phase, perform
the function INVERT ... FIELDS to restart the operation.

" If ADAINV is performed offline, there is a very small amount of time where a few records that
together form a logical unit are written to disk. If ADAINV terminates after the first of these
records has been written and before the last has been written, ADAINV cannot be restarted. In
this case, the function REINVERT ... ALL_FIELDS is required. This cannot happen if ADAINV
is performed online.

= If ADAINV terminates abnormally, it can happen that some index blocks are lost. These index
blocks can only be recovered by the function REINVERT ... ALL_FIELDS or by using the utility
ADAORD or by using the utilities ADAULD and ADAMUP.

Examples

Example 1

adainv: dbid=1
adainv: invert=10, fields
adainv: HO

The elementary field HO in file 10 of database 1 is inverted.

Example 2

adainv: dbid=1

adainv: invert=10

adainv: Twp=600k

adainv: fields

adainv: ph=phon(na)

adainv: sp=na(l1,3),yy(1,2),uq
adainv: bb,uqg

228 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

Three new descriptors are established for file 10 in database 1. PH is a phonetic descriptor based
on the field NA. SP is a unique superdescriptor derived from bytes 1 to 3 of field NA and bytes 1
to 2 of field YY. The elementary field BB is changed to descriptor status and the unique flag is set.
The size of the work pool to be used for the sort is increased to 600 K.

Example 3

adainv: dbid=l
adainv: release=10
adainv: fields
adainv: ho

adainv: ph

The two descriptors HO and PH from the examples above are released.

Example 4

adainv: dbid = 1, verify = 10
adainv: errors = 5

adainv: fields

adainv: sp

adainv: na

adainv: end_of_fields

The descriptors SP and NA are verified. The descriptor value table entries generated for descriptor
NA are checked against the decompressed values of this field. Verification is terminated if more
than five errors are reported for each descriptor.

Example 5

adainv: dbid = 1, reinvert = 10
adainv: fields
adainv: na

The descriptor NA in file 10 of database 1 is to be reinverted (this may be necessary if errors are
reported in example 4).

Adabas Utilities 229

ADAINV (Creating, Removing And Verifying Inverted Lists)

Example 6

adainv: db=12
adainv: reinvert=9
adainv: all_fields

The complete index is recreated for file 9 in database 12.

The following output is produced:

HADAINV-T-FILE,

HADAINV-T-UIUPD, upper index being modified

file 9,

HADAINV-I-SORTDESC, sorting

HADAINV-T-LOADDESC,

BADAINV-T-SORTDESC,
HADAINV-T-LOADDESC,

HADAINV-T-SORTDESC,
SADAINV-T-LOADDESC,

KADAINV-T-SORTDESC,
HADAINV-T-LOADDESC,

BADAINV-T-SORTDESC,
HADAINV-T-LOADDESC,

HADAINV-T-SORTDESC,
BADAINV-T-LOADDESC,

KADAINV-T-SORTDESC,
HADAINV-T-LOADDESC,

HADAINV-T-SORTDESC,
KADAINV-T-LOADDESC,

HADAINV-T-SORTDESC,
SADAINV-T-LOADDESC,

BADAINV-T-SORTDESC,
HADAINV-T-LOADDESC,

HADAINV-T-SORTDESC,
SADAINV-T-LOADDESC,

KADAINV-T-SORTDESC,
HADAINV-T-LOADDESC,

BADAINV-T-SORTDESC,

loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting
loading

sorting

EMPLOYEES

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor
descriptor

descriptor

KA
KA

S3
S3

S2
S2

PA
PA

FB
FB

AA
AA

BC
BC

CN
CN

JA
JA

H1
H1

EA
EA

LC
LC

S1

230

Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

AADAINV-T-LOADDESC, loading descriptor S1

AADAINV-T-SORTDESC, sorting descriptor AC
%ADAINV-T-LOADDESC, Tloading descriptor AC

HADAINV-T-NULLDESC, no values for descriptor IJ
%ADAINV-T-LOADDESC, loading descriptor IJ

ZADAINV-T-NULLDESC, no values for descriptor IB
HADAINV-T-LOADDESC, Toading descriptor IB

HADAINV-T-NULLDESC, no values for descriptor FI
%ADAINV-T-LOADDESC, Tloading descriptor FI

%ADAINV-T-UIUPD, upper index being modified

AADAINV-T-DSPASSES, data storage passes : 17

%#ADAINV-T-REMOVED, dataset SORT1, file C:\Program Files\Software AG\Adabas/db012
\SORT01_3664.012 removed

ZADAINV-I-TI0CNT, 1 I0s on dataset SORT

HADAINV-T-TOCNT, 85 I0s on dataset DATA

SADAINV-I-TI0CNT, 49 10s on dataset ASSO
Notes:

1. The message NULLDESC indicates that no descriptor values exist for this descriptor. This may
happen for fields defined with option NU or NC if the field contains the null value/SQL null
values for all records.

2. The message DSPASSES shows how often the data records of the file were read. In this case the
number of data storage passesis 17, i.e. the data records were reread for each descriptor, because
no TEMP container was defined where descriptor values can be saved. The number of data
storage passes can be reduced by defining a TEMP container. This is recommended in particular
for large files, because it reduces the number of required I/O operations significantly. The
ADAINV parameter SUMMARY can be used to find out which size is useful for the TEMP
container.

3. The message REMOVED shows that a temporary SORT container created by ADAINV was
deleted. You can also use a persistent SORT container, which is not created and deleted by
ADAINYV (see ADAFRM for further details).

Adabas Utilities 231

ADAINV (Creating, Removing And Verifying Inverted Lists)

Example 7

adainv: dbid = 1, set_ug=10
adainv: fields

adainv: na

adainv: end_of_fields
adainv: ug_conflict=reset

The unique status is to be established for the descriptor NA in file 10 of database 1. If there is more
than one ISN per descriptor value, the conflicting ISNs are written to the error log and the unique
status is removed.

Example 8

adainv: dbid = 1, reset_ug=10
adainv: fields
adainv: sp

The unique status is to be removed from the descriptor SP in file 10 of database 1.

Example 9

adainv: db=33

adainv: summary=112

adainv: fields

adainv: ab

adainv: ae

adainv: sl=ap(l,1),aq(l,1),ar(1,1)
adainv: s2=ac(1,3),ad(1,8),ae(1,9)
adainv: s3=ao(2,3)

This produces the following output:

Descriptor summary:

Descriptor AB : 1,194,469 bytes, 581,209 occ
Descriptor AE : 3,605,545 bytes, 538,769 occ
Descriptor S1 : 1,566,501 bytes, 581,209 occ
Descriptor S2 : 1,520,169 bytes, 72,389 occ
Descriptor S3 : 1,340,949 bytes, 446,983 occ

Required sizes to process these descriptors:

232 Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)

- SORTSIZE (LWP= 0 KB) = 8 MB
- LWP for incore sort = 13,230 KB
- TEMPSIZE (1 pass) = 24 MB
- TEMPSIZE (2 passes) = 13 MB
- TEMPSIZE (recommended minimum size) = 5 MB
SADAINV-I-TIO0CNT, 1710 I0s on dataset DATA
HADAINV-T-TOCNT, 3 I0s on dataset ASSO

HADAINV-T-TERMINATED, 24-NOV-2006 14:15:06, elapsed time: 00:04:03

Adabas Utilities 233

234

19 ADAMON (Monitoring The Database Nucleus)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 236
B PIOCEAUIE FIOW ...t et e 237
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 237
B CONEIOl PArAMEIEIS ... e ettt e 238

235

ADAMON (Monitoring The Database Nucleus)

This chapter describes the utility "ADAMON".

Functional Overview

The ADAMON utility is used to monitor an Adabas session with the aim of collecting performance
data. The type of information collected is determined by the setting of the DISPLAY parameter;
the information is usually displayed on a "per second" basis. The information collected can be
presented as a set of numbers or as a basic graphical output. An ADAMON session is terminated
by typing CTRL/C, or when the value specified for the LOOP parameter has been reached - then
a statistical summary of the monitored session is displayed.

This utility is a multi-function utility.

236 Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

Procedure Flow

ADANUC
ADAMON
Data Set Environment Variable/ | Storage Medium | Additional Information
Logical Name
Control statements |stdin/ Utilities Manual
SYS$INPUT
ADAMON stdout/ Messages and Codes
messages SYS$OUTPUT

Checkpoints

The utility writes no checkpoints.

Adabas Utilities 237

ADAMON (Monitoring The Database Nucleus)

Control Parameters

The following control parameters are available:

D [NOIDATETIME
M DBID = number
D DISPLAY = keyword
D [NOJGRAPHICAL
D INTERVAL = number
D LOOPS = number
RCMD
SUMMARY = filename
SUMMARY_COMPARE = filename
SUMMARY_COMPARE_FILES = (filename,filename)

SUMMARY_INPUT = filename
DATETIME

[NOJDATETIME

If this parameter is set to DATETIME, each monitoring line with non-graphical output will be
preceded by the current date and time. The default is NODATETIME.

DBID

DBID = number

This parameter selects the database to be used. The database must be active for all functions with
the exception of DISPLAY = BACKUP.

238 Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

DISPLAY

DISPLAY = keyword

This parameter displays database information in accordance with the keyword specified. The
display is refreshed at intervals specified by the parameter INTERVAL (default of 3 seconds).
Please refer to the DISPLAY examples in the section ADAOPR for explanations of the information
displayed.

The following keywords are available:

Keyword Meaning

ACTIVITY Displays the throughput of a database, for example the number of commands per second.
This keyword is the default if the nucleus is active.

BACKUP Displays a graph which monitors the execution of an ADABCK DUMP or RESTORE
function. The values displayed are normalized to full blocksizes, which can be different
from the real backup/restore space because of 'used size compression'. The output is always
graphically oriented. This keyword can also be used if the nucleus is not active. This
keyword is the default if the nucleus is not active.

HIGH_WATER |Displays some important highwater values. The output is always graphically oriented.
The bold line gives the current value in percent, the dashed line shows the highwater
value. If there is only a bold line, the current and the high water values are identical. The
'"Write Limit' line shows the number of modified blocks in percent until the flush limit is
reached - at 100%, usually a buffer flush will be started. The number given within the line
shows the modified space in bytes. The 'WP1 Flush' line shows the number of modified
WORK part 1 blocks from the most recent buffer flush record - if the 100% point is reached,
a buffer flush will be started. The 'Hit rate’ lines show the overall hit rate (dashed line)
and the current rate that occurred during the measured interval (bold line). The 'ASSO'
and 'DATA' lines show the ratio between used and total allocated container space. The
PLOG' line shows the ratio between the used and allocated space for the protection log.
The numbers in these data set lines are either given in KB, MB or GB units. Note that the
PLOG on file system always shows 100%

INDEX Displays some counters and exceptions that occurred during index update (for internal
reasons).
10 Displays the number of physical I/Os of the specific Adabas container files, per second.

For each container type (ASSO, DATA) only the first 10 extents can be displayed. I/Os to
upper extents are collected in ASSOx or DATAX.

Furthermore, if an exceptional situation is detected during collection of the data, additional inform-
ation is displayed on the screen. In the non-graphical mode it is displayed in the final column, in
the graphical mode, the status is shown in the base line. The following status information can be
detected:

BF_ACTIVE
A buffer flush is in progress.

Adabas Utilities 239

ADAMON (Monitoring The Database Nucleus)

SPACE_WAIT
Threads waiting for work pool space on complex commands.

ET_SYNC
The nucleus is in ET_SYNC mode, which means no new transactions will be started.

HYX
The nucleus is executing a hyperexit.

UEX
The nucleus is executing a user exit.

LARGE_DWP
The internal work pool is so large that it extends into the buffer pool.

SHUTDOWN-P
Nucleus shutdown in progress.

SHUTDOWN-C
Nucleus shutdown completed.

CRASHED
Nucleus abnormally terminated.

If an AUTORESTART is executing, ADAMON can monitor and display the phase number (1, 2,
3 or 4) and the number of processed blocks. Usually, phase 3 takes the most time, and the percentage
of processed blocks is displayed. This is done independently of the selected function. When the
AUTORESTART completes, it PT_RETs to the function requested.

Note: Refer to Database Monitoring and Tuning for further information about the buffer flush.

GRAPHICAL

[NOJGRAPHICAL

Setting this option to GRAPHICAL switches the output to the graphical format. For the display
functions BACKUP and HIGH_WATER, only the graphical format is supported. The default is
NOGRAPHICAL.

INTERVAL

INTERVAL = number
This parameter specifies the data-collection sampling interval in seconds.

The default interval is 3 seconds.

24 Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

LOOPS

LOOPS = number
This parameter limits the number of data collection loops.

By default, ADAMON loops continuously. Data collection can be terminated with CTRL/C.
RCMD
The parameter RCMD is only relevant for customers using the Adabas Event Replicator with

Adabas - Adabas (A2A) Replication. If this parameter is specified, two additional columns are
added to the output for DISPLAY=ACTIVITY:

Column Meaning

Rec. per sec |Number of recorded commands

Repl. per sec| Number of replicated commands

Additionally, the number of replication commands and also the ration of replication commands
per second will be added to the summary at the end of the ADAMON run.

Note: If no replications were pending when ADAMON started, and no replications were

pending when ADAMON ended, it may nevertheless be that the total number of “replication
commands recorded” is larger than the total number of “replicated commands”; this is be-
cause commands that are stored on replication system files belonging to a transaction that
is rolled back, are removed again from the replication system files without replicating them.

SUMMARY

SUMMARY = filename

The parameter SUMMARY can be used to write the summary for DISPLAY=ACTIVITY into a file.
The resulting file is a binary file. The parameters INTERVAL and LOOPS can be used to limit the
runtime of ADAMON.

SUMMARY_COMPARE

SUMMARY_COMPARE = filename

The parameter SUMMARY_COMPARE can be used to create a compare report. The intention is
to have a reference file already created with SUMMARY = filename and then to use this reference
file as a base for the current ADAMON run. The parameters INTERVAL and LOOPS can be used
to limit the runtime of ADAMON.

Adabas Utilities 241

ADAMON (Monitoring The Database Nucleus)

SUMMARY_COMPARE_FILES

SUMMARY_COMPARE_FILES = (filename,filename)

The parameter SUMMARY_COMPARE_FILES can be used to compare two ADAMON summary

files.

SUMMARY_INPUT

SUMMARY_INPUT = filename

The parameter SUMMARY_INPUT can be used to display the contents of the summary file created

with SUMMARY=filename. The DBID parameter is not required.

Examples
Example 1:

> adamon db=36
%ADAMON-T-STARTED,

29-MAR-2016 11:53:29,

Database 36, startup at 23-MAR-2016 16:58:41
ADANUC Version <version number>, PID 525

Commands [/0s per second Throw
per sec ASSO DATA WORK PLOG backs

(@)
O OO WO O OOoOMNEF—O
O OO DO OO OO oM WwWwOo

A

Summary (measurement

0 0 0
0 0 0
10 3 43
0 0 0
0 0 0
1 0 9
1 0 2
0 0 7
19 2 50
0 0 0
0 0 0
3 1 24

time: 00:00:33)

Buffer pool
Hit Flushs

O
(o)
1S3
O O OO OO oo oo oo

Version <version number>

Totals Ratio per sec
Commands 801 24
ASSQ 1/0s 15 0
DATA 1/0s 31 0
242 Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

WORK I/0s 2 97 2
TEMP 1/0s 2 126 3
PLOG I/0s 2 13 0
Throwbacks 3 135 4
Buffer Hit s 99%
Buffer flushes: 0

5ADAMON-T-TERMINATED, 29-MAR-2016 11:54:04, elapsed time: 00:00:35
If you don't specify the DISPLAY parameter, this is equivalent to the default DISPLAY=ACTIVITY.

Example 2:

> adamon db=34 rcmd
%ZADAMON-I-STARTED, 29-MAR-2016 12:53:53, Version <version number>

Database 34, startup at 29-MAR-2016 12:53:32
ADANUC Version <version number>, PID 6488

Commands Record. Repl. I1/0s per second Throw Buffer pool
per sec per sec per sec ASSO DATA WORK PLOG backs Hit Flushs

248 60 14 0 0 48 0 0 100% 0
258 57 7 1 0 44 0 0 99% 0
229 60 14 0 0 43 0 0 100% 0
263 58 14 110 18 53 0 0 100% 1
274 60 7 0 0 40 0 0 100% 0
~C
Summary (measurement time: 00:00:15)
Totals Ratio per sec
Commands 3 3809 253
Recorded : 878 58
Replicated : 160 10
ASSO 1/0s 2 330 22
DATA 1/0s : 53 3
WORK I/0s 2 679 45
TEMP 1/0s 3 0 0
PLOG I/0s 2 0 0
Throwbacks : 0 0
Buffer Hit J 99%
Buffer flushes: 1
WP1 Limit: 1

%ADAMON-T-TERMINATED, 29-MAR-2016 12:54:04, elapsed time: 00:00:11

Adabas Utilities 243

ADAMON (Monitoring The Database Nucleus)

If you specify the RCMD parameter, DISPLAY=ACTIVITY additionally includes the columns “Rec.
per second” (replication commands recorded) and “Repl. per sec” (replicated commands per
second).

If Adabas-to-Adabas replication is defined for a database, the summary additionally contains the
values for “Rec. per second” (replication commands recorded) and “Repl. per sec” (replicated
commands per second).

Example 3:

C:\ProgramData\Software AG\Adabas\db034> adamon db=34 display=backup

This command results in the following screen that is refreshed with the current values every 3
seconds - the refresh rate can be modified with the INTERVAL parameter:

[z+] Administrator: adadevenv - adamon db=34 display=backup

Backup

Transfer rate C(interval> : 16384
Transfer rate (totall : 15891 KBr=zec
Ezstimated remaining time: 31 sec

After pressing Control C when the dump or restore is finished, a summary is displayed:

Administrator: adadevenv

Backup

Restore finished

Summary (measurement time: AA:B@:-48)

LETNTTH

Brutto size to transfer:
Data copied H
Tranzfer rate . 21232 KBrzec

#ADAMON—I-TERMINATED, 30-MAR-20816 13:279:43. elapsed time: BA:BA@:51

C:“ProgramDatasSoftware AGNAdabassdh@34»_

244 Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

Example 4:

C:\ProgramData\Software AG\Adabas\db034> adamon dbid=34 display=high_water

This command results in the following screen that is refreshed with the current values every 3
seconds — the refresh rate can be modified with the INTERVAL parameter:

Flush 287862
Mrite Limit
BF Hit Rate

Work Fool 16384
ASS0 9288M

DATA 200068H
PLOG(1> 131352729K

When you enter Control C (instead of entering Control C, you can also stop ADAMON with the
LOQOPS parameter), a summary is added to the output:

Adabas Utilities 245

ADAMON (Monitoring The Database Nucleus)

Administrator: adadevenv

=
=
=
)

o &
=
=
=
=
=

E
E
=

I 7
&

g

g

=l
vl
g

=R

o]

Example 5:

> adamon db=36 display=io
%ADAMON-T-STARTED,

Database 36, startup at 23-MAR-2016 16:58:41
ADANUC T-Version 6.5.0.0, PID 525

[/0s per sec
Al A2 A3 A4 A5 D1 D2 D3 D4 W1 PLOG

=

=

-

=

-
b (5

=l

=101 %]

29-MAR-2016 14:19:17, T-Version 6.5.0.0 (Solaris 64Bit)

246

Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

O OO DO OO O oo

AC

Summary (measurement time:

O OO OO OO oo oo

O O OO OO oo oo

OO OO OO oo

O OO DO OO O oo

O OO OO OO oo oo

00:

O O OO OO oo o oo
OO OO OO oo

00:51)

Totals

105
118

64
99
88
85
81
120
79

O OO DO OO O oo

Ratio per sec

Commands

ASSO
DATA
WORK
TEMP
PLOG

1/0s
1/0s
1/0s
1/0s
I/0s

Throwbacks

Buffe

Buffer flushes:

ASSO1
ASS02
ASSO3
ASS04
ASS05
DATAL
DATA2
DATA3
DATA4
WORK1
TEMP

r Hit

1/0s
1/0s
1/0s
1/0s
1/0s
1/0s
1/0s
1/0s
1/0s
1/0s
1/0s

408

HADAMON-T-TERMINATED,

Example 6:

In the first step of this example, a summary reference file is created:

O — OO OO oo oOoOo

O OO OO OO O oo

(0e}

0

O1 O N 01Oy N 01 O O o1

OO OO OO oo

29-MAR-2016 14:20:08, elapsed time: 00:00:51

Adabas Utilities

247

ADAMON (Monitoring The Database Nucleus)

>adamon db=34 summary=mon.sum interval=1 loops=100
%AADAMON-T-STARTED, 30-MAR-2016 10:47:48, Version <version number>

Database 34, startup at 30-MAR-2016 10:00:43
ADANUC Version <version number>, PID 2244
Summary file "mon.sum" created

HADAMON-T-TERMINATED, 30-MAR-2016 10:49:30, elapsed time: 00:01:42

Then the contents of the summary reference file are displayed:

>adamon db=34 summary_input=mon.sum interval=1 Toops=100
%ADAMON-T-STARTED, 30-MAR-2016 11:29:41, Version <version number>

Database 34, startup at 30-MAR-2016 10:00:43
ADANUC Version <version number>, PID 2244

Summary (measurement time: 00:01:39)

Totals Ratio per sec
Commands : 16053 162
ASSO 1/0s 3 2787 28
DATA 1/0s 2 1694 17
WORK I/0s : 420 4
TEMP 1/0s 2 90434 913
PLOG I/0s : 54 0
Throwbacks 2 355 3
Buffer Hit : =
Buffer flushes: 18

HADAMON-T-TERMINATED, 30-MAR-2016 11:29:41, elapsed time: 00:00:00

In the final step, the summary is compared with the current activity of the database:

>adamon db=34 summary_compare=mon.sum interval=1 Toops=100
%ADAMON-T-STARTED, 30-MAR-2016 11:27:13, Version <version number>

Database 34, startup at 30-MAR-2016 10:00:43
ADANUC T-Version <version number>, PID 2244

Monitor Summary | Reference | Current

________________ +__________________________+_________________________
From date : Wed Mar 30 10:59:18 2016 | Wed Mar 30 11:27:13 2016
To date : Wed Mar 30 11:01:00 2016 | Wed Mar 30 11:28:55 2016
Duration in sec : 99 | 99

248 Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

DBID : 34 | 34

Version : <version number> | <version number>
Structure level : 1| 1
,,,,,,,,,,,,,,,, o

Monitor Summary | Reference | Current | Absolute | Percentaged
---------------- e e e
Commands : 16053 | 16326 | +273 | +2%
RPLCMDS : 0 | 0 | +0 | +0%
Rec. : 0 | 0 | +0 | +0%
Repl. : 0 | 0 | +0 | +0%
ASSO 1/0s : 2787 | 5904 | +3117 | +1129%
DATA I/0s : 1694 | 4859 | +3165 | +187%
WORK 1/0s : 420 | 416 | -4 | -1%
TEMP I/0s : 90434 | 145384 | +54950 | +61%
PLOG 1/0s : 54 | 82 | +28 | +52%
Throwbacks : 355 | 706 | +351 | +99%
Buffer Hit : 99 | 99 | +0 | +0%
Buffer flushs 18 | 27 | +9 | +50%

5ADAMON-T-TERMINATED, 30-MAR-2016 11:28:55, elapsed time: 00:01:42

Instead of comparing the reference file with the current database activity, you can also create a
second summary file and then compare the two files:

>adamon db=34 summary=monl.sum interval=1 Toops=100
%ADAMON-TI-STARTED, 30-MAR-2016 11:49:09, Version <version number>

Database 34, startup at 30-MAR-2016 10:00:43
ADANUC Version <version number>, PID 2244
Summary file "monl.sum" created

%ADAMON-T-TERMINATED, 30-MAR-2016 11:50:51, elapsed time: 00:01:42

>adamon db=34 summary_compare_files=(mon.sum,monl.sum)

»ADAMON-T-STARTED, 30-MAR-2016 12:02:19, Version <version number>

Monitor Summary | Reference | Current

________________ +__________________________+_________________________

From date : Wed Mar 30 10:59:18 2016 | Wed Mar 30 11:49:10 2016

To date : Wed Mar 30 11:01:00 2016 | Wed Mar 30 11:50:51 2016

Duration in sec : 99 | 99

DBID : 34 | 34

Version : <{version number> | {version number>
Structure level : 1| 1
________________ +__________________________+_________________________

Monitor Summary | Reference | Current | Absolute | Percentaged
———————————————— R R e e L
Commands : 16053 | 14852 | -1201 | -7%

Adabas Utilities 249

ADAMON (Monitoring The Database Nucleus)

RPLCMDs
Rec.

Repl.

ASSO 1/0s
DATA 1/0s
WORK I/0s
TEMP 1/0s
PLOG I/0s
Throwbacks
Buffer Hit
Buffer flushs

HADAMON-T-TERMINATED,

Example 7:

> adamon db=150

%ADAMON-T-STARTED,

30-MAR-2016 12:02:19, elapsed time: 00:00:

25-0CT-2018 10:51:43,

0

0

0
2787
1694
420
90434
54
355
99
18

0 |

0 |

0 |
5043 |
6627 |
416 |
174211 |
57 |
554 |
99 |
31 |

Database 150, startup at 22-0CT-2018 17:14:39
ADANUC Version <version number>,

PLOG

PID 12264

Throw
backs

Buffer pool

O OO OO oo oo

PLOG

Hit Flushs

= 0
99% 1
99% 0
100% 1
100% 1
99% 0

= 0

= 0
100% 1
99% 2
100% 1
100% 0
100% 1

= 0

Buffer pool
Hit Flushs

Commands [/0s per second

per sec ASSO DATA WORK

0 0 0 0

497 87 54 241

814 0 2 350

799 114 43 365

949 114 49 404

849 0 5 428

0 0 0 0

0 0 0 0

710 116 54 321

867 132 59 537

1002 112 51 674

865 0 0 421

455 112 53 241

0 0 0 0
Commands [/0s per second

per sec ASSO DATA WORK

0 0 0 0

643 0 0 273

960 113 62 441

962 0 0 431

908 117 60 433

430 0 0 243

0 0 0 0

+0

+0

+0
+2256
+4933
-4
+83777
+3
+199
+0
+13

BF_ACTIVE

Version <version number>

+0%
+0%
+0%
+81%
+291%
1%
+93%
+6%
+56%
+0%
+72%

250

Adabas Utilities

ADAMON (Monitoring The Database Nucleus)

Summary (measurement time: 00:01:36)

Totals Ratio per sec
Commands 3 35118 365
ASSO 1/0s g 3044 31
DATA 1/0s : 1465 15
WORK I/0s 2 17397 181
TEMP 1/0s : 0 0
PLOG I/0s 2 0 0
Throwbacks : 5 0
Buffer Hit 2 99%
Buffer flushes: 10

WP1 Limit: 9
IgnoreBlk: 1

%ADAMON-T-TERMINATED, 25-0CT-2018 10:53:22, elapsed time: 00:01:39

The value in the column Buffer pool Flushs is the number of times that the buffer pool is flushed
while the monitoring is active.

Adabas Utilities 251

252

20 ADAMUP (Mass Add And Delete)

B FUNCHONAI OVEIVIBW ..ot e e e e 254
B PTOCEAUIE FlOW .ottt et e 255
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 258
B G0N0l ParaMEIErS . et 259
B RES A CONSIAIAtIONS . .eeeee e e 265
B SORT Data Set PlaCemeNt ... oo e e 266
B TEMP Data Set PlaCement .. oo 266
L e 111 o] TSP PR RTOPUPPPPPPRR 266

253

ADAMUP (Mass Add And Delete)

This chapter describes the utility "ADAMUP".

Functional Overview

The mass update utility ADAMUP adds records to, or deletes records from a file in a database. It
does not require the Adabas nucleus to be active.

The output files produced by the compression utility ADACMP or the unload utility ADAULD
may be used as input for a mass add.

Note: The ADAMUP ADD function can process MUPDTA/MUPDVT files created with
earlier Adabas versions, but not MUPDTA/MUPDVT files created with later Adabas versions.

Input files produced by ADACMP or ADAULD with the SINGLE_FILE option or from a previous
run of ADAMUP using the DELETE function with the LOG option can also be used.

Input files produced without descriptor value tables (SHORT option in ADAULD or LOG=SHORT
option in ADAMUP) can be processed if the database file to be processed does not contain any
descriptors.

The input for the DELETE function is provided in an input file. Each record contains one or more
ISNs or ISN ranges.

Records may be both added to and deleted from a database file during a single run of ADAMUP.
If the utility writes records to the error file, it will exit with a non-zero status.

Note: FDTs that contain the same fields, but collation descriptors that belong to different

ICU versions are considered to be different. This means you can only load the data into a
file with a different ICU version if the file is empty, and if you use the NEW_FDT parameter.

This utility is a single-function utility.

254 Adabas Utilities

ADAMUP (Mass Add And Delete)

Procedure Flow

LOE Data

Adabas Utilities 255

ADAMUP (Mass Add And Delete)

The sequential files MUPDTA, MUPDVT, MUPTMP, MUPLOB and MUPERR can have multiple
extents. For detailed information about sequential files with multiple extents, see Adabas Basics,

Using Utilities.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Data storage DATAXx Disk
Compressed input |MUPDTA Tape, Disk
data
Descriptor values |MUPDVT Tape, Disk
Rejected data MUPERR Disk, Tape (* see note)
LOB data MUPLOB Disk, Tape Temporary working space, will be deleted
again when ADAMUP terminates
Normal index MUPTMP Disk, Tape Temporary working space, will be deleted
again when ADAMUP terminates
Sort storage SORTx Disk Administration Manual, temporary working
TEMPLOCx space
Control statements |stdin/ Utilities Manual
SYS$INPUT
ADAMUP messages |stdout/ Messages and Codes
SYS$OUTPUT
Temporary storage |TEMPx Disk
Work WORK1 Disk

| Note: (*) A named pipe can be used for this sequential file.

In cases without an active nucleus and no pending AUTORESTART, the WORK may be used as
TEMP by setting the environment variable/logical name TEMP1 to the same value as WORKI.

256

Adabas Utilities

ADAMUP (Mass Add And Delete)

ssed Data
and Descriptor Values

ISMs to ba delatad

LOB I15Ns

The sequential files MUPTMP, MUPLBI, MUPLOG and MUPERR can have multiple extents. For
detailed information about sequential files with multiple extents, see Adabas Basics, Using Utilities.

Adabas Utilities 257

ADAMUP (Mass Add And Delete)

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Data storage DATAX Disk
Rejected data MUPERR Disk, Tape (* see note)
ISNs to be deleted |MUPISN Disk, Tape
LOB ISNs MUPLBI Disk, Tape Temporary working space, will be deleted
again when ADAMUP terminates
Compressed data |MUPLOG Disk, Tape
Normal index MUPTMP Disk, Tape Temporary working space, will be deleted
again when ADAMUP terminates
Sort storage SORTx Disk Administration Manual, temporary working
TEMPLOCx space
Control statements |[stdin/ Utilities Manual
SYS$INPUT
ADAMUP messages |stdout/ Messages and Codes
SYS$OUTPUT
Work WORK1 Disk

| Note: (*) A named pipe can be used for this sequential file.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must be active |Nucleus must NOT be active [Nucleus is NOT required | Checkpoint written
FDT X -
UPDATE | X(* see note 1) X(* see note 2) X(* see note 3) SYNP
SUMMARY X -

| Notes:

1. When deleting records in a file with LOB data.

2. When updating an Adabas system file.

3. Except when deleting records in a file with LOB data.

258

Adabas Utilities

ADAMUP (Mass Add And Delete)

Control Parameters

The following control parameters are available:

M DBID = number
FDT
SUMMARY
UPDATE = number [,FDT]

[ADD [,add_keywords]]
[DELETE [,delete_keywords]]

D [,[NOJFORMAT]
D [LWP = number[K|M]]
DBID

DBID = number

This parameter selects the database to be used.

FDT

FDT

This parameter displays the Field Definition Table (FDT) of the selected file in the database. If re-
cords are to be added to a file, the FDT of the sequential input file containing these records can
also be displayed. This parameter may also be used in an ADD/DELETE specification.

Depending on the context in which the FDT parameter is used, the Field Definition Table contained
in the sequential input file MUPDTA and/or the Field Definition Table contained in the selected
database file is displayed.

Examples

adamup db=2 fdt update=11 add

The FDT stored in the MUPDTA file is displayed.

Adabas Utilities 259

ADAMUP (Mass Add And Delete)

adamup db=2 update=11,fdt add <

The FDT of file 11 in database 2 is displayed.

adamup db=2 fdt update=11,fdt add <

The FDT stored in the MUPDTA file is displayed first; then the FDT of file 11 in database 2 is dis-
played.

SUMMARY
SUMMARY

This parameter displays the Descriptor Space Summary (DSS) on the sequential input file that
contains the compressed records. This display is identical to the one at the end of the ADACMP,
ADAULD or ADAMUP run which generated this input file, and can be used to estimate the space
required in the index.

Additionally, the following information is displayed:

® required SORT size (for default LWP)

® recommended TEMP size (the size required to do the index update in one pass)
" current size of SORT (if present)

® LWP needed for memory-resident sort

® Recommended size of LWP and SORT (if LWP is large enough to allow a smaller SORT size to
be used).

Note: If the default LWP is large enough to do a memory-resident sort, SORT sizes are not
displayed.

See Adabas Basics, Optimization of ADAMUP and ADAINV Processing for further information about
ADAMUP SUMMARY processing.

UPDATE

UPDATE = number [,FDT]
[ADD [,add_keywords]]
[DELETE [,delete_keywords]]
[,[NOJFORMAT]
[LWP = number[K|M]]

This function specifies the file to which records are to be added/deleted. Since ADAMUP requires
exclusive control of the file, it cannot be used for an Adabas system file while the nucleus is active.
You are not allowed to specify a LOB file.

260 Adabas Utilities

ADAMUP (Mass Add And Delete)

ADD

ADD

,DE_MATCH = keyword]
,FDT]

,[LNOINEW_FDT]

,NUMREC = number]
,SKIPREC = number]
,UQ_CONFLICT = keyword]
,RI_CONFLICT = keyword]
,[NOJUSERISN]

This parameter indicates that records are to be added to the file specified by the UPDATE para-
meter.

The input for mass add is produced by the compression utility ADACMP, the unload utility
ADAULD or by a previous run of the mass update utility ADAMUP using the DELETE function
with the LOG option set.

ADAMUP compares the FDT in the sequential input file that contains the compressed records
with the FDT of the database file specified. The FDTs must have identical layouts and must use
the same field names, formats, lengths and options.

Descriptors in the database file can be a subset of the descriptors defined in the FDT in the sequential
input file, but the input file must contain descriptor value table (DVT) entries for all descriptors
defined in the database file. Therefore, input files produced without descriptor value tables (SHORT
option) can only be processed if there are no descriptors currently defined in the database file to
be updated.

If the input for mass update contains LOB data, the Adabas file must have an assigned LOB file.
DE_MATCH = keyword

This parameter is used to indicate which action is to be taken if a descriptor provided with the
input data is not a descriptor in the actual FDT of the file. If keyword = IDENTICAL, ADAMUP
terminates processing and returns an error message. If keyword = SUBSET, ADAMUP ignores a
descriptor which is in the input file, but which has been removed from the database file.

The default is DE_MATCH=IDENTICAL.
[NOINEW_FDT

If NEW_FDT is specified, the FDT of the file is replaced by the FDT of the MUPDTA file. NEW_FDT
can only be specified if the file is empty when ADAMUP is started.

NEW_FDT must be specified if the FDT of the file in the database and the FDT of the MUPDTA
file are different - a mass update is not possible if the FDTs are different and the file is not empty.

Adabas Utilities 261

ADAMUP (Mass Add And Delete)

The default is NONEW_FDT.
NUMREC = number

This parameter specifies the number of records to be added. If NUMREC is specified, ADAMUP
terminates after adding the predefined number of records, unless an end-of-file condition on the
input file causes ADAMUP processing to end. If NUMREC is omitted and SKIPREC is not specified,
all records in the input file are added.

SKIPREC = number

This parameter specifies the number of records in the input file to be skipped before starting to
add records.

UQ_CONFLICT = keyword

This parameter is used to indicate which action is to be taken if duplicate values are found for a
unique descriptor. 'keyword" may take the values ABORT or RESET. If ABORT is specified,
ADAMUP terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, conflicting ISNs are written to the error log, the UQ status of the
descriptors in question is removed and processing continues.

The default is UQ_CONFLICT=ABORT.
RI_CONFLICT

This parameter is used to indicate which action is to be taken if referential integrity is violated.
'keyword" may take the values ABORT or RESET. If ABORT is specified, ADAMUP terminates
execution and returns an error status. The index is marked as not accessible. If RESET is specified,
the violated constraint is removed. In both cases the violating ISNs are stored in the error log.

The default is RI_CONFLICT=ABORT.
[NOJUSERISN

This option indicates whether the ISN to be assigned to each record is to be taken from the input
file or not.

This option should be set to USERISN if the user wants to control ISN assignment for each record
added to the database file. Each ISN provided must be:
® a four-byte binary number immediately preceding each data record;

® within the current limit (MAXISN) for the file - the file's Address Converter is not automatically
extended;

" unique within the specified file.

Otherwise ADAMUP terminates execution and returns an error message.

262 Adabas Utilities

ADAMUP (Mass Add And Delete)

Note that problems could arise if this option is set to USERISN for an input file created by an unload
that is based on a descriptor which is a multiple-value field. This is because the same record may
have been unloaded more than once. Please refer to the ADAULD utility, SORTSEQ parameter
for more information.

If this option is set to NOUSERISN, the ISN for each record is assigned by ADAMUP. However,
the ISN of a DVT record that has been previously re-vectored by a hyperexit will not be changed
by ADAMUP.

The default is NOUSERISN.

DELETE

DELETE
[,DATA_FORMAT = keyword]
[,FDT]
[,ISN_NOT_PRESENT = keyword]
[,LOG = keyword | ,NOLOG]

This parameter indicates that records are to be deleted from the file specified by the UPDATE
parameter. The ISNs of the records to be deleted are given in an input file.

DATA_FORMAT = keyword

This parameter defines the data type of the records in the input file containing the ISNs to be de-
leted. Each record contains one or more ISNs or ISN ranges.

Valid ISNs are within the range 1... MAXISN.

In accordance with the formats supported, '’keyword' may take the following values:

Keyword (Meaning

BINARY |A single ISN is contained in a 4 byte binary value, an ISN range is contained in two consecutive
binary values, with the high-order bit set in the second value.

Blocks in this file start with 2 byte exclusive length field.

Note: ISNs >=2%*31 (2147483648) cannot be deleted with DATA_FORMAT=BINARY.

DECIMAL |Each record has the following layout:
[number[-number] [,number[-number]]...] [;comment]

where ‘number' is decimal number with 1 to 10 digits.

ADAMUP validates all input records in a first step. ADAMUP displays the line number and the
offset for each error that is detected. If an error is detected, ADAMUP terminates execution once
the input file has been completely parsed.

Adabas Utilities 263

ADAMUP (Mass Add And Delete)

The default is DATA_FORMAT = BINARY.

ISN_NOT_PRESENT = keyword

This parameter indicates the action to be taken when an ISN given in the input file of records to
be deleted is:

" not within the current limit (MAXISN) for the file;

= notin the file's Address Converter.

‘keyword' may take the following values:

Keyword [Meaning

ABORT |ADAMUP aborts execution and returns an error message if a conflicting ISN is detected.

IGNORE |ADAMUP writes the conflicting ISNs to the error log and continues processing.

The default is ISN_NOT_PRESENT=IGNORE

LOG = keyword
NOLOG

LOG=keyword indicates that the deleted records are logged in a sequential file. The records are
written in compressed format and are identical to those produced by the compression utility
ADACMP and the unload utility ADAULD. Because each data record is preceded by its ISN, these
ISNs can be used as user ISNs when reloading or mass-adding this file (see the USERISN option

described above).

‘keyword' may take the following values:

Keyword |Meaning

FULL |The descriptor values which are required to build the index, are included in the output file.

SHORT | The descriptor values which are required to build the index, are omitted from the output file.

ADAMUP writes both the compressed data records and the descriptor values generated to a single
file.

The default is NOLOG.

264 Adabas Utilities

ADAMUP (Mass Add And Delete)

[NOJFORMAT

This option may be used to format blocks at the end of the file's Normal Index (NI) and Upper
Index (UI) extents if the new index (after the modifications have been made) requires less space
than the old index did. This may be the result of deletions within the index, recovery of lost index
blocks or re-establishing the padding factor.

Because these blocks are returned to the file's unused blocks, there are no side-effects if the data
stored in these blocks is not deleted. If this option is set to FORMAT, ADAMUP overwrites these
blocks with binary zeros.

The default is NOFORMAT.
LWP = number[K|M]

For the sort of descriptor values, ADAMUP uses a work pool in memory. The default size of the
work pool in most cases results in an optimal performance for ADAMUP. The LWP parameter
allows you to increase the work pool; it defines the additional space added to the default work
pool size in bytes, kilobytes (K) or megabytes (M).

Increasing the work pool size may be useful in the following cases:

® If you notice that in your environment the performance is better with a large work pool.

® If the SORT container is too small for sorting the descriptor values; an adequate LWP parameter
can decrease the required size of the SORT container.

You can use the SUMMARY function to determine the required value for this parameter.

Restart Considerations

ADAMUP has no restart capability. An abnormally terminated ADAMUP must be rerun from the
beginning.

If the Data Storage space becomes exhausted, ADAMUP will not abort, but will attempt to build
the index for the records that have already been loaded; this means that the file is consistent, and
the remaining records can then be loaded with the SKIPREC option after additional Data Storage
space has been allocated.

Adabas Utilities 265

ADAMUP (Mass Add And Delete)

SORT Data Set Placement

It is recommended that the SORT data set does not reside on the same volume as the Associator
and the input file that contains the Descriptor Value Tables.

The SORT data set may be omitted when adding only small amounts of data. ADAMUP then
performs an in-core sort.

Use the SUMMARY function to get information about the required SORT and LWP sizes.

TEMP Data Set Placement

It is recommended that the TEMP data set does not reside on the same volume as the input file
that contains the Descriptor Value Tables and the SORT. Although the size of TEMP is closely related
to the performance when loading the Normal/Main Index, successful execution does not depend
on a given size or the presence of a TEMP.

Use the SUMMARY function to display the recommended TEMP size.

Examples

Example 1:

adamup: dbid=1
adamup: update=10
adamup: add, userisn

File 10 of database 1 is updated by adding new records. The ISN given with each input record is
used.

Example 2:

adamup: dbid=1
adamup: update=10
adamup: delete

The records identified by the ISNs provided on the input file are to be deleted from file 10 of
database 1. The ISNs to be deleted are in binary format.

266 Adabas Utilities

ADAMUP (Mass Add And Delete)

Example 3:

adamup: dbid=1

adamup: update=10

adamup: add, skiprec=1000

adamup:

delete, data_format=decimal, Tog=full

New records are to be added while old ones are deleted from file 10 of database 1. The first thousand
records found on the input file are not added. The ISN for each record added is assigned by
ADAMUP. The ISNs of the records to be deleted are supplied in decimal format on the input file.
All records which have been deleted are logged on an output file. The values required to re-create
the inverted list when reloading are included in the log.

Adabas Utilities 267

268

21 ADANUC (Starting The Database, Defining Nucleus

Parameters)

B FUNCHONAI OVEIVIBW ..ot e e e e 270
B PTOCEAUIE FlOW .. ettt et et et e 272
B CNECKPOINTS .ttt et et e et e e 274
B G0N0l ParaMBIEIS . vt e e 274
= Summary of ADANUC Parametersccoiiiiiiiiiiiiiee et a e e e 299

269

ADANUC (Starting The Database, Defining Nucleus Parameters)

This chapter describes the utility "ADANUC". ADANUC is the database nucleus task.

Functional Overview

The nucleus parameters are used to define the Adabas nucleus runtime environment.

The nucleus parameters are set during nucleus startup.

The nucleus parameters provide the following information:

The database to be used,;

The setting of various Adabas session parameters, such as the maximum Adabas buffer size
and the transaction and user non-activity time limits;

The type and amount of command data to be logged during the Adabas session. These parameters
apply to statistical information and not to the logging of database updates on the Adabas data
protection log.

This utility is a single-function utility.

Notes

1.

If ADANUC terminates with a stop error during nucleus startup, e.g. STP055 or STP997, the
reason is probably that there are not enough operating system resources (for example memory)
available in order to start the nucleus with the specified parameters. You can prevent the stop

error from occurring by reducing the values of some nucleus parameters (for example NT or
LBP).

At the start of the first nucleus session after a database has been created or restored, the Adabas
nucleus initializes all of the blocks of the WORK container. For a large WORK container this
may take a few minutes. The database will only be available after the initialization of the WORK
container has finished.

The default values for the nucleus parameters can be used if there are not more than 20 users
who perform Adabas calls with relatively small Adabas buffers. The following hints describe
conditions under which it may be necessary to use other nucleus parameter values:

= If you temporarily have bad response times for Adabas commands (during an Adabas buffer
flush), or if you get I/O errors during asynchronous I/Os even though your hardware is OK,
consider setting BFIO_PARALLEL_LIMIT.

® If Adabas commands with large adabas buffers are performed, e.g. for LOB processing, con-
sider increasing the value for LAB and LBP.

= If there are multi-threaded applications performing Adabas calls, consider increasing the
NCL parameter.

= If the number of parallel Adabas sessions is greater than 20, increase the NU parameter.

270 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

= If it is important that the autorestart time after a nucleus crash is short, set WRITE_LIMIT to
a small positive value, especially if you are using a large buffer pool.

4. You can run a database in read-only mode by either removing the write permissions from the
Adabas containers or by specifying OPTIONS=READ_ONLY. If you run the database in read-
only mode, the temporary working space on disk is only created if you specify its location ex-
plicitly (environment variables TEMPLOCn or entries TEMPORARY_LOCATION in the DBnnn.INI file).
For further information, see Adabas Basics, Temporary Working Space.

5. If the previous Adabas session was not terminated normally with SHUTDOWN or CANCEL,
Adabas performs an Autorestart: All transactions that were active when the nucleus crashed,
are rolled back, and all missing database updates are written to ASSO and DATA. For this
purpose, all update operations have been logged on the WORK container. Additionally, all
update operations are logged in the NUCPLG file, which is required to recover the current state
of the database, if one or more of the database containers has been corrupted, for example, be-
cause of a disk failure. In case of a nucleus crash, it is necessary that both logs contain the same
information, otherwise the database could contain additional transactions, or transactions could
be lost if you perform a restore/recover later. In order to check this, the PLOG file must still be
available with the same name when an autorestart is performed. If you have renamed the PLOG
file, or moved it to another location, you get the following warning:

HADANUC-W-PLNOF, Last plog not found, so consistency check is not possible. New <«
backup required.

If you get this warning, your database is still consistent, but if you perform a restore/recover
later, it may be that your database then becomes inconsistent. If you create a new backup to be
used as a base for restore/recover, the consistency of the restore/recover is guaranteed again.

6. On UNIX platforms, the IPC resources allocated by the Adabas nucleus are not removed if the
nucleus is not shut down normally with ADAOPR SHUTDOWN or ADAOPR CANCEL. The
nucleus can only be restarted after these resources have been removed, and for this reason the
nucleus executes the command showipc -k <dbid>. Important: if Adabas was not installed as
recommended by user "sag", group "sag", it is necessary to set the environment variable SIPUSER
and/or SIPGROUP. For further information, see Database Monitoring and Tuning, showipc. On
Windows platforms, the operating system automatically removes IPC resources that are no
longer used.

Adabas Utilities 271

ADANUC (Starting The Database, Defining Nucleus Parameters)

Procedure Flow

The sequential files NUCPLG and NUCCLG can have multiple extents. For detailed information
about sequential files with multiple extents, see Adabas Basics, Using Ultilities.

272 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

Data Set Environment Storage Medium |Additional Information
Variable/
Logical Name
Associator ASSOx Disk
Command log NUCCLG Disk, Tape Utilities Manual,
ADACLP
Data storage DATAX Disk
DBnnn.INI Disk Adabas Extended Operations Manual
Protection log NUCPLG Disk Utilities Manual,
ADAPLP
Control statements stdin/ Utilities Manual
SYSSINPUT
ADANUC messages stdout/ Messages and Codes
SYS$OUTPUT
Work WORK1 Disk
CSA dump ADA_CSA_DUMP |Disk Adabas CSA dump
(see ADAOPR RESPONSE_CHECK)
SMP dump SMP_DUMPFILE |Disk SMP dump
Temporary working space [TEMPLOCx Disk Administration Manual (see Temporary
(NUCTMPx, NUCSRTx) Working Space)

Notes:

CSA dump is to be created must be specified.

. In the environment variable/logical name ADA_CSA_DUMP, the directory in which the Adabas

The default directory for the Adabas CSA dump file is the database directory. For the layout

of the file names for Adabas CSA dumps, see ADAOPR, parameter CSA.

ABORT and RESPONSE_CHECK.

For further information about the Adabas CSA dumps, see also the ADAOPR parameters

. In the environment variable/logical name SMP_DUMPFILE, the name of the SMP_DUMPFILE

itself (not a directory) must be specified. An existing file is overwritten.

If the SMP_DUMPFILE is not specified, the SMP dump is written into the Adabas CSA dump

directory with the file name SAGSMP.xxx.hh:mm:ss (UNIX), or SAGSMP.xxx.hh-mm-ss (Win-
dows) where xxx is the database ID and hh:mm:ss/hh-mm-ss is the nucleus start-time.

Adabas Utilities

273

ADANUC (Starting The Database, Defining Nucleus Parameters)

Checkpoints

The following table shows the checkpoints written by the nucleus:

Function Checkpoint written

Nucleus startup SYNC

Nucleus termination |[SYNC

Control Parameters

The following control parameters are available:

D [NOJADATCP

D ADABAS_ACCESS = {ALL | GROUP}
APU = (nl,n2,n3)

D AR_CONFLICT = keyword
BFIO_PARALLEL_LIMIT = number

D [NOIBI

D CLOGBMAX = number [K | M]

D CLOGLAYOUT = [5 | 6]

M DBID = number

D LAB = number [K | M]

D LABX = number [K | M]

D LBP = number [K | M]

D LOGGING = (keyword [,keyword]...

D LPXA = number

D LWP = number [K | M]

D NCL = number

274 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

D NISNHQ = number

D NT = number

D NU = number

D OPTIONS = (keyword[,keywordl...)

D [NOJPLOG

D PORTNUMBER = number

D READ_PARALLEL_LIMITS = (records,blocks,total)
SSLCADIRECTORY = <path>
SSLCAFILE = <path>

M SSLCERTFILE = <path><filename>

M SSLKEYFILE = <path><filename>

D SSLPORTNUMBER = number
SSLPASSWORD = string | <path><filename>
SSLVERIFY = number

D TCPATB = number

D TCPCONNECTIONS = number

D TCPRECEIVER = number

D TNAA = number

D TNAE = number

D TNAX

number

D TT = number

D UNBUFFERED = ALL | CLEAR | (keyword [, keyword [, keywordll)
USEREXITS = (number[,number]...)
WCHARSET = <ICU encoding>

D WRITE_LIMIT = number

Adabas Utilities 275

ADANUC (Starting The Database, Defining Nucleus Parameters)

[NOJADATCP

This parameter enables/disables the TCP/IP receiver.

Note: A valid Entire Net-Work (WCP) license is required, otherwise the TCP parameter

settings will be ignored and only restricted settings such as TCPCONNECTIONS=3 will be
used (see the Adabas Nucleus log file after startup).

The default is NOADATCP.

ADABAS_ACCESS
ADABAS_ACCESS = {ALL | GROUP}
If ADABAS_ACCESS = ALL is specified, all users may perform Adabas calls.

If ADABAS_ACCESS = GROUP is specified, only those users that belong to the group of the user
starting Adabas, for example sag, may perform Adabas calls.

The default is ALL.

Please refer to Adabas Security Features, Using the UNIX Group Concept for further information about
using the ADABAS_ACCESS parameter.

Note: This parameter only applies to local Adabas calls in UNIX environments.

APU
APU = (nl,n2,n3)

This parameter specifies the number and layout of the Adabas Processing Units to be established
for an Adabas session.

Adabas Processing Units optimize the parallel execution of Adabas commands, especially in the
context of NUMA architectures. An Adabas Processing Unit consists of a logical collection of re-
ceiver and worker threads together with a dedicated command queue. The receiver threads pick
up incoming user requests and place them into the command queue, while the worker threads
process the commands in the command queue.

Each Adabas Processing Unit has exactly one command queue and must have at least one receiver
and one worker thread.

Note: If control parameters NT and APU are both specified, the settings of parameter NT
are ignored. The Adabas nucleus is setup with the settings defined for APU.

276 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

nl
Specifies the number of Adabas Processing Units that are defined for the Adabas nucleus. The
minimum value is 1, the maximum value is 8.

n2
Specifies the number of worker threads per Adabas Processing Unit. The minimum value is
1, the maximum value is 100/n1. The overall count of worker threads must not exceed 100.

n3
Specifies the number of receiver threads per Adabas Processing Unit. The minimum value is
1, the maximum value is 100/n1.

Examples

APU=(4,4,2)

This defines an Adabas nucleus with 4 Adabas Processing Units, each with 4 worker and 2 receiver
threads. This value implies a total of 16 worker threads and 8 receiver threads.

APU=(8,2,1)

This defines an Adabas nucleus with 8 Adabas Processing Units, each with 2 worker threads and
1 receiver thread. This value implies a total of 16 worker threads and 8 receiver threads.

APU=(1,6,2)

This defines an Adabas nucleus with 1 Adabas Processing Unit, each with 6 worker threads and
2 receiver threads. This value implies a total of 6 worker threads and 2 receiver threads. Defining
only 1 Adabas Processing Unit results in a runtime environment that is similar to a runtime envir-
onment that is defined using the NT parameter only.

AR_CONFLICT
AR_CONFLICT = keyword

This parameter specifies the action to be taken if a restart detects that the last system crash was
during a buffer flush. The following keywords can be used:

Keyword Meaning

ABORT no restart is performed

CONTINUE |the system tries to perform a restart

Itis recommended to keep the setting AR_CONFLICT=ABORT. Only if the nucleus does not come
up due to an interrupted buffer flush, then temporarily AR_CONFLICT=CONTINUE should be
set.

Adabas Utilities 277

ADANUC (Starting The Database, Defining Nucleus Parameters)

Note: You should be aware of the possibility of inconsistencies in the case of a restart with

AR_CONFLICT=CONTINUE. Consistency should be checked with the ADAINV VERIFY
function in this case.

The default is ABORT.

BFIO_PARALLEL_LIMIT
BFIO_PARALLEL_LIMIT = number

This parameter is used to limit the number of parallel I/O requests by a buffer flush and to allow
earlier processing of concurrent I/Os from other threads. A large buffer flush, for example, can
cause the I/O queue to be very busy, and other I/Os (such as buffer pool read I/Os and WORK
I/Os) can be enqueued for a long time, slowing down command throughput and possibly causing
applications to stall if a buffer flush is active.

If BEIO_PARALLEL_LIMIT is specified, the buffer flush sets up the specified number of I/Os and
waits until these have been processed before issuing the next packet. The maximum value for
‘number” is defined by the operating system, for example by the UNIX kernel parameter
AIO_LISTIO_MAX. Specifying a value of 0 is equivalent to specifying the maximum value allowed.
The default value is 50.

Note: If the value of BFIO_PARALLEL_LIMIT is too high (or equal to 0), this can result in
an I/O error during asynchronous IO (utility error message: ADRERR). The reason for this
is that the memory available within the operating system for asynchronous I/O is exhausted.
You can imagine that the required memory is at least the size of the blocks to be written to
the database plus some additional space. The maximum value for BFIO_PARALLEL_LIMIT
for which you can be sure that this ADRERR error will not occur, depends on the operating
system configuration and on the other processes that are active on the same machine. 50
seems to be a useful value for BEIO_PARALLEL_LIMIT; if the ADRERR error occurs nev-
ertheless, you should check your operating system configuration.

Examples

adanuc: bfio_parallel_Timit = 20

Twenty parallel I/O requests are permitted for a buffer flush.

278 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

adanuc: bfio_parallel_Timit = 0

The number of parallel buffer flush I/Os is unlimited.

[NO]BI

[NOIBI

This option is used to specify whether before images are written to the PLOG (BI) or not (NOBI).

The before images on the PLOG are used during a regenerate in order to verify the data consistency
(for example, whether the appropriate PLOG is being used). If NOBI is set, the PLOG is smaller,
but the consistency verifications cannot be performed.

The default is BI.

Note that if you specify NOBI, this will reduce the amount of consistency checking possible when
using the ADAREC REGENERATE function. See ADAREC for more details.

CLOGBMAX
CLOGBMAX = number[K | M]

This parameter specifies the maximum Adabas buffer length that is logged in the command log.
If an Adabas buffer is larger than the value specified, the buffer is truncated in the command log.
0 means that the complete buffers are always logged.

The default is 4096.

Example

adanuc: clogbmax = 4k

The logging of Adabas buffers is limited to the first 4 kilobytes of each buffer.

CLOGLAYOUT
CLOGLAYOUT = [5]6]

If you specify CLOGLAYOUT=5, the command log has the same layout as for Adabas Version 5
when command logging is enabled. Since this layout does not support the ACBX interface, only
the subset of information that is also available in the old ACB interface is logged for ACBX calls.
The command log can be evaluated with the ADACLP utility that already existed in old versions
of Adabas.

Adabas Utilities 279

ADANUC (Starting The Database, Defining Nucleus Parameters)

If you specify CLOGLAYOUT=6, the command log is generated in the new layout that is supported
by Adabas Version 6. For evaluating the command log, an example program prilogc is provided
— for details see Appendix B.

The default value is 5.

DBID
DBID = number
This mandatory parameter selects the database to be used. ‘number’ is in the range from 1 to 255.

Example:

adanuc: dbid = 2

Database 2 is used.

LAB
LAB = number[K | M]

This parameter specifies the size of the attached buffer area to be used during the Adabas session.
The attached buffer area is used for allocating the user buffers during command execution.

Adabas rounds up the given value to the next multiple of 32 kilobytes to allocate the attached
buffer area.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 1 megabyte, the default value is 1 megabyte, however, if the value specified
is less than the value of the NCL parameter in kilobytes, the value for LAB is automatically increased
to that value.

Notes:

1. The attached buffers must be large enough to contain, for each local client thread, the maximum
total size of user buffers for an Adabas call performed by this thread. Additional space may be
required for the administration of the user buffers and for waste resulting from the different
sizes required for different threads.

2. Attached buffers > 64 KB are allocated in the separate attached buffer extension area (see para-
meter LABX).

280 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

LABX
LABX = number[K | M]

This parameter specifies the size of the attached buffer extension area to be used for LOB processing
or for other Adabas calls that use large Adabas buffer areas. While the regular attached buffers
remain allocated during the whole Adabas session of the users, the attached buffer extensions are
allocated before each Adabas call that requires more than 64 KB of attached buffer space, and they
are released again at the end of the call.

The attached buffer extension area was introduced because storing large buffers in the regular
attached buffer area requires much more space because of fragmentation.

Adabas rounds up the given value to the next multiple of 32 kilobytes to allocate the attached
buffer area.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOQOPR.

The minimum value is 1 megabyte, the default value is 20 megabytes.

LBP
LBP = number[K | M]
This parameter specifies the size in bytes of the Adabas buffer pool during the session.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 32 megabytes, the default value is 100 megabytes.

Note: The actual size of the buffer pool also depends on the NT parameter: if the size specified
for LBP is less than NT * 2M, it is automatically increased to NT * 2M.

There are the following reasons for using a buffer pool in Adabas:

= If the same database block is accessed more than once, physical I/Os for rereading the block can
be avoided;

® Commands that update the database can be finished before all of the corresponding database
blocks have been written to the disk.

If the buffer pool is too small, you have a larger number of I/Os than you would when performing
the same database operations with a sufficient buffer pool size. In some cases, it may even occur
that Adabas cannot successfully process an Adabas command, in which case the command will
get a response code 162 (buffer pool too small).

Adabas Utilities 281

ADANUC (Starting The Database, Defining Nucleus Parameters)

In particular, if you process LOBs, it is recommended that you increase the size of the buffer pool;
it should be possible to put the LOBs into the buffer pool without removing too many other
database blocks. On the other hand, the buffer pool should not be too large, since there is no ad-
vantage in having buffer pool I/Os replaced by operating system paging I/Os.

You can use the ADAOPR parameter DISPLAY=BP_STATISTICS in order to help you find the
optimum size for the buffer pool.

Example:

adanuc: Tbp=32m

32 megabytes are allocated to the Adabas buffer pool.

LOGGING

LOGGING = (keyword [,keyword]...)
This parameter specifies logging of the buffers as defined in the keyword list.

The following keywords may be specified in the keyword list:

Keyword |Meaning

CB log Adabas control block

FB log format buffers

RB log record buffers
SB log search buffer

VB log value buffer

IB log ISN buffer

ABD |log Adabas buffer descriptions
10 log I/O activity

NAT |log Natural information (Requires additional configuration in NATPARM module. Pleaser refer
to the Natural documentation for further information.)

OFF perform no logging

Logging parameters may also be specified while a session is executing by using operator commands
as described in the section on the utility ADAOPR.

282 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example

adanuc: logging=(ch)

Command logging is performed for the current Adabas session; all of the Adabas control blocks
will be logged.

LPXA
LPXA = number

This parameter specifies the number of blocks reserved for data protection information on the
Adabas WORK in the XA context if OPTIONS=XA is specified. These blocks are used to save
protection information for transactions which run in the XA context and are in the pending state
(prepared but not yet committed) at nucleus shutdown or for a long time. Each such transaction
uses at least one of these blocks. If there are no free blocks in this area, Adabas will heuristically
commit such transactions.

The minimum value is 1, and the default value is 10.

LWP
LWP = number[K | M]

This parameter specifies the size of the Adabas work pool, which is a work area in memory to be
used for the Adabas nucleus session.

The Adabas work pool area is used to store the following:

® Descriptor value table (DVT);

® WORK /O areas during command execution.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The default value is 16 M, the minimum value is 500 K, the maximum value is 4000 M.

Adabas Utilities 283

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example:

adanuc: ITwp=750k

The size of the Adabas work pool is 750 Kbytes.

NCL
NCL = number

This parameter specifies the number of client threads locally accessing the database. Normally,
the number of client threads is identical to the number of Adabas user sessions = the number of
user queue elements, which is limited by the NU parameter.However, in the case of multi-threaded
applications, the number of client threads may be larger, since the same Adabas sessions may be
accessed by more than one thread. But on the other hand, in the case of application servers where
the same process uses different Adabas user sessions for different users, it can happen that the
number of client threads is smaller than the number of Adabas user sessions.

The minimum value is 2. The default value is the value for the NU parameter but at least 50. There
is no fixed maximum value for this parameter, it is only limited by the IPC resources that are
available for the operating system (see Increasing System V Resources (does not apply to AIX) for
further information).

Note that Net-Work Version 7 also uses several threads to access the database; please refer to the
Net-Work documentation for further details.
. Notes:

1. The value specified for the NCL parameter should not be too high. When Adabas sessions are
terminated correctly with a close command, the associated message queues are removed, but
if the sessions are terminated abnormally without a close command, the message queues are
not removed. A cleanup of the message queues is only performed when the number of client
message queues is equal to the value specified for the NCL parameter - therefore, it may happen
that Adabas attempts to create more message queues than it is allowed to do by the system, if
the value for the NCL parameter is too high, even though the actual number of active Adabas
users is very small. If this happens, the Adabas commands receive a response 255 (see Messages
and Codes for further information).

2. A cleanup of the message queues can be initiated manually with the ADAOPR FREE_CLQ
command.

284 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

NISNHQ
NISNHQ = number

This parameter specifies the maximum number of records that can be placed into hold at any time
by a single user.

If a user attempts to place more records in the hold status than permitted, he will receive a non-
zero response code, even though there may still be space in the hold queue.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 0 - where 0 means unlimited, the default value is 0 (unlimited).

Example

adanuc: nisnhg=50

The maximum number of records which can be in the hold status for a single user is 50.

NT

NT = number
This parameter specifies the number of threads to be established for the Adabas session.

Each Adabas command is assigned to a thread. A thread is released when the command has been
processed.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 1, the maximum value 100 and the default value is 6.

Notes:

1. Itis strongly recommended to use an NT parameter value greater than 1, because some internal
commands can only be executed if NT >1.If NT is 1, some utilities or applications, such as SQL
Gateway, which use these internal commands, may fail.

2. NT =1 only makes sense in some special situations, for example, if support requests an ADANUC
trace and you want to have the trace of all Adabas commands in one file.

3. Increasing the NT parameter usually implies an overhead, which may reduce the performance.
Therefore, it usually doesn't make sense to use an NT parameter value that is significantly
higher than the number of hardware threads; if you have a large number of hardware threads,

Adabas Utilities 285

ADANUC (Starting The Database, Defining Nucleus Parameters)

the performance may even be better if NT is less than the number of hardware threads, because
the Adabas nucleus is not the only program running on the machine and using CPU time.

4. One reason to increase the value of the NT parameter is if there are several complex commands
in parallel that require a long time to complete. If all nucleus threads are blocked by such
commands, it can happen that short running commands cannot be scheduled for a long time,
and as a result the overall performance of Adabas becomes very low.

5. With previous versions of Adabas, it was possible that short running commands could no longer
be scheduled because complex, long-running commands blocked all threads, which resulted
in very poor overall performance. In order to avoid this situation, now only NT/2 threads can
be used to process such long-running commands in parallel. As a consequence of this, it may
be that you can see several free threads even though there are sufficient commands in the
command queue waiting to be scheduled.

6. If control parameters NT and APU are both specified, the settings of parameter NT are ignored.
The Adabas nucleus is setup with the settings defined for APU.

Example:

adanuc: nt=8

Eight threads are established for the session.

NU

NU = number
This parameter specifies the number of user queue elements to be established for the Adabas session.

A user queue element is assigned to each active Adabas user. A user queue element is assigned
when the user issues an OP command or when the first Adabas command is issued. A user queue
element is released when the user issues a CL command or when the user queue element is deleted
on a timeout.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 2, the default value is 20, the maximum value is 99999.

286 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example:

adanuc: nu=100

The Adabas user queue consists of 100 elements.

Note: The NU parameter is used for two different purposes:
® the number of user queue entries

® the number of communication blocks

For single-threaded applications, the number of required communication blocks is not larger than
the number of user queue elements, but for multi-threaded applications you need one communic-
ation block for each thread of an application that performs Adabas calls. Therefore the required
value of the NU parameter may be much higher than the number of Adabas users.

OPTIONS
OPTIONS = (keyword[,keyword]...)
This parameter is used to define the mode(s) in which the nucleus is started.

The following keywords are permitted:

Keyword Meaning

AUTO_EXPAND If AUTO_EXPAND is selected, the database will increase the existing
container extents or create a new container extent if there is no free
space available for increasing an existing Adabas file or for adding a
new Adabas file. See the section Container Files in the Adabas Basics
section for further information.

AUTORESTART_ONLY The AUTORESTART_ONLY keyword shuts down the nucleus
immediately after its startup sequence has completed. If an autorestart
is pending, the autorestart will be performed. No user commands or
utility calls will be accepted by the nucleus.

CALCULATE_COMMAND_TIME |The CALCULATE_COMMAND_TIME keyword is a switch to enable
or disable the calculation of a command execution time required by
the nucleus, and the value is stored into a control block (Command
Time) field.

Note: Switching on this keyword might have an impact on performance

as the calculation of the command execution time also requires time
itself.

FAULT _TOLERANT_AR When FAULT_TOLERANT _AR is selected, the nucleus behaviour in
the event of an Adabas error during autorestart can be controlled. If
an error occurs for a given file, a detailed entry is made in the nucleus

Adabas Utilities 287

ADANUC (Starting The Database, Defining Nucleus Parameters)

Keyword

Meaning

log, but the autorestart continues. When the autorestart completes, the
DBA can restore and regenerate the file by using ADABCK RESTORE
and ADAREC REGENERATE for the affected file. If however the error
occurred for the index of a file, it is sufficient to rebuild the file's index
by using the REINVERT function of ADAINV. If

FAULT _TOLERANT_AR is not selected, Adabas aborts an autorestart
if an error is detected, and this can cause the database to be in an
inconsistent state.

LOCAL_UTILITIES

If LOCAL_UTILITIES is selected, ADANUC rejects all remote utility
calls, i.e. the Adabas utilities cannot be run from a remote node across
anetwork. This setting is recommended if security is important in your
operating environment.

LOCAL_UTILITIES and UTILITIES_ONLY can be dynamically enabled
or disabled without having to shut the database down (see ADAOPR
for further information).

NOPLOG_FOR_REPLICATION

If this option is selected, all changes in data of the replication system
files will not be written to the protection log.

OPEN_REQUIRED

If OPEN_REQUIRED is selected, an open (OP) command must be
issued as the first command of a user session.

This option should be set if Ink_set_adabas_id is used when calling
Adabas from application servers, and also when using Net-Work,
otherwise in these cases Adabas cannot guarantee transaction integrity
following an ADANUC restart.

READONLY The READONLY option causes ADANUC to run in read-only mode.
Refer to the Administration Manual for more details.
TRUNCATION The TRUNCATION keyword controls the truncation of alphanumeric

fields. If TRUNCATION is set, alphanumeric fields are truncated if
necessary and response code 0 is returned. If TRUNCATION is not
set, response code 55 is returned if truncation occurred.

UTILITIES_ ONLY

If UTILITIES_ONLY is selected, all calls other than for utilities will be
rejected, giving the DBA exclusive control over all of the files in the
database. Note, however, that this restriction only applies to new users;
users who were already active when OPTIONS=UTILITIES_ONLY
was specified can continue processing normally. If you want exclusive
utility control over files or the entire database, use the LOCK function
of ADAOPR instead.

LOCAL_UTILITIES and UTILITIES_ONLY can be dynamically enabled
or disabled without having to shut the database down (see ADAOPR
in this manual for further information).

XA

The keyword XA indicates that the server will support distributed
transaction processing according to the X/Open XA specification. If
the Adabas XA interface is to be used by an application, OPTION=XA
must be used. See XA Support for further information.

288

Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

The default is that no option is set.

Example:

adanuc: options = utilities_only

All non-utility calls are rejected and the DBA has exclusive control over all database files.

[NOJPLOG
[NOIPLOG
PLOG specifies which protection log is to be switched on.

The database cannot be regenerated if the disk is physically damaged and if there is no protection
log. In this case, the database has to be restored using the last database dump. All updates made
since this last dump was taken are then lost.

PLOG is the default.

PORTNUMBER
PORTNUMBER = number
This parameter specifies the TCP/IP port number if ADATCP is enabled.

Setting the PORTNUMBER parameter to 0 disables the non-encrypted communication via TCP/IP.
In this case, the SSLPORTNUMBER parameter must be set. If the PORTNUMBER parameter is
set, the minimum value is 1024, the maximum value is 65535. If the PORTNUMBER parameter is
omitted, it will be set to the default value 49152.

Example:

adanuc: portnumber=63111

Adabas listens on port 63111 for ADATCP connections.

Adabas Utilities 289

ADANUC (Starting The Database, Defining Nucleus Parameters)

READ_PARALLEL_LIMITS
READ_PARALLEL_LIMITS = (records,blocks,total)

For sequential commands, Adabas tries to increase the performance by reading the database blocks
required for the following records in advance and in parallel. This lets you take advantage of disk
striping, and the sequence of I/Os can be optimized. Significant performance improvements can
only be expected when the physical I/O rate is high. A typical case where the READ_PARAL-
LEL_LIMITS parameter can improve the performance is the execution of a batch program in which
a complete large file is read, and this file contains a large number of database blocks that are not
in the buffer pool when the program is started. However, this prefetching of database blocks can
also have a negative impact on the performance:

® Checking which blocks are required for the next records requires a certain amount of CPU time,
and this is superfluous if all blocks are already in the buffer pool.

® If you don’t read the next records of the command sequence, the overhead for reading blocks
for this command sequence is superfluous.

= IfI/Os for too many blocks have been initiated, an I/O required for another command performed
in parallel may be delayed significantly.

The READ_PARALLEL_LIMITS parameter lets you control the read-ahead behaviour. You can
specify 3 numbers with the following meanings:

records
The maximum number of records to be processed next in a command sequence, that are checked
for blocks that are not yet in the buffer pool. The maximum value that can be specified is 65,535.

blocks
The maximum number of blocks read in advance for one command sequence. The number
specified for blocks must be <= the number specified for records, the maximum value is oper-
ating-system dependent.

total
The maximum total number of blocks read in advance at the same time for the whole database.
The number specified for total must be >= the number specified for blocks, the maximum value
is operating-system dependent.

The default is (0,0,0), i.e. no read-ahead is performed.

Note: If the value of the number specified for total is too high, this can result in an I/O error

during asynchronous IO (utility error message: ADRERR). The reason for this is that the
memory available within the operating system for asynchronous I/O is exhausted. You can
imagine that the required memory is at least the size of the blocks to be written to the
database plus some additional space. The maximum value for total for which you can be
sure that this ADRERR error will not occur, depends on the operating system configuration
and on the other processes that are active on the same machine.

290 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example

adanuc: read_parallel_Timits = (100,20,50)

When sequential commands are processed, the next up to 100 records of a command sequence are
checked for required blocks that are not yet in buffer pool. The search for blocks to be read is
stopped when 20 blocks are found, or when the number of blocks found plus the number of blocks
currently read by other commands is 50. Then a read I/O for these blocks is initiated.

SSLCADIRECTORY
SSLCADIRECTORY = <path>

This parameter specifes the directory name where the certificates of the Certificate Authority (CA)
are stored if the SSL-enabled ADATCP feature is to be used.

SSLCAFILE
SSLCAFILE = <path><filename>

This parameter specifes the path and the file name of the CA certificate file or the certificate chain
file if the SSL-enabled ADATCP feature is to be used. If the CA file is specified, the CADIRECTORY
parameter does not need to be set.

SSLCERTFILE
SSLCERTFILE = <path><filename>

This parameter specifes the path and the file name of the certificate file if the SSL-enabled ADATCP
feature is to be used.

Example:

adanuc: sslcertfile=/certificates/adabas_certification.pem

SSLKEYFILE

SSLKEYFILE = <path><filename>

This parameter specifes the path and the file name of the private key file if the SSL-enabled ADATCP
feature is to be used.

Adabas Utilities 291

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example:

adanuc: sslkeyfile=/certificates/adabas_key.pem

SSLPASSWORD
SSLPASSWORD = string | <path><filename>

This parameter specifies the passphrase, or file name which contains the passphrase, which is
needed if the certificates/keys are protected with a passphrase.

y Caution: Please be aware that the passphrase may be readable in the nucleus log file.

SSLPORTNUMBER
SSLPORTNUMBER = number

This parameter specifies the TCP/IP port number if the SSL-enabled ADATCP feature is to be
used.

The minimum value is 1024, the maximum value is 65535. There is no default value.

Example:

adanuc: sslportnumber=64111

Adabas will listen on port 64111 for encrypted ADATCP connections.

SSLVERIFY
SSLVERIFY = number

This parameter specifies the verification level of client certificates if the SSL-enabled ADATCP
feature is to be used.

0
No verification.
1-10
The maximum depth for the certificate chain verification that will be allowed.

292 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

TCPATB
TCPATB = number[K | M]

This parameter specifies the attached buffer size for the ADATCP receivers (similar to LAB/LABX),
but they have their own attached buffer handling that is not based on IPC.

The minimum value is 1 megabyte, the default value is 20 megabytes.

Example:

adanuc: tcpatb=50m

The ADATCP-based attached buffer size is set to 50 megabytes

TCPCONNECTIONS
TCPCONNECTIONS = number

This parameter specifies the maximum possible number of parallel ADATCP connections per re-
ceiver thread.

The minimum value is 1, and the default value is 4294967295.

Example:

adanuc: tcpconnections=1000

Up to 1000 parallel ADATCP connections are accepted.

TCPRECEIVER
TCPRECEIVER = number

This parameter specifies the number of ADATCP receiver threads to be established during Adabas
startup.

The minimum value is 1, the maximum value is 20, and the default value is 4.

Adabas Utilities 293

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example:

adanuc: tcpreceiver=8

The number of receiver threads is set to 8.

TNAA
TNAA = number

This parameter specifies the maximum elapsed time (in seconds) that an access-only user may be
active without issuing an Adabas command. This value can be changed dynamically with the
ADAOPR utility.

The OP command allows you to override this value. See Command Reference, OP command for details.
See Command Reference, Time Limits for a table with timeout conditions.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 900 and the maximum value is 2592000.

Example:

adanuc: tnaa=180

The non-activity time limit for access-only users is 180 seconds.

TNAE
TNAE = number

This parameter specifies the maximum elapsed time (in seconds) that an ET logic user may be
active without issuing an Adabas command. This value can be changed dynamically with the
ADAORPR utility.

The OP command allows you to override this value. See Command Reference, OP command for details.
See Command Reference, Time Limits for a table with timeout conditions.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 900 and the maximum value is 2592000.

294 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example:

adanuc: tnae=180

The non-activity time limit for ET logic users is 180 seconds.

TNAX
TNAX = number

This parameter specifies the maximum elapsed time (in seconds) that an exclusive update user
who does not use ET logic may be active without issuing an Adabas command. This value can be
changed dynamically with the ADAOPR utility.

The OP command allows you to override this value. See Command Reference, OP command for details.
See Command Reference, Time Limits for a table with timeout conditions.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 900 and the maximum value is 2592000.

Example:

adanuc: tnax=180

The non-activity time limit for exclusive update users is 180 seconds.

TT

TT = number

This parameter specifies the maximum elapsed time (in seconds) permitted for a logical transaction
issued by an ET logic user. This value can be changed dynamically with the ADAOPR utility.

The OP command allows you to override this value. See Command Reference, OP command for details.

The time measurement for a logical transaction starts when the first command that places a record
in hold status is issued, and terminates when an ET, BT, or CL command is issued. Adabas takes
the following action when this time limit is exceeded:

1. All database updates made during the transaction are backed out;

2. All records held during the transaction are released;

3. All Command IDs for the user are released;

Adabas Utilities 295

ADANUC (Starting The Database, Defining Nucleus Parameters)

4. Response code 9 is returned on the next call issued by the user.

This time limit does not apply to non-ET logic users. The value specified for TT directly influences
the required size of the Adabas Work data set.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOQOPR.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 300 and the maximum value is 2592000.

Example:

adanuc: tt=50

The transaction time limit for ET logic users is 50 seconds.

UNBUFFERED
UNBUFFERED = ALL | CLEAR | (keyword [, keyword [, keywordl]) «

This parameter is relevant only for UNIX platforms, and if database containers or the protection
log are stored in a file system. Usually, write I/Os are buffered by the file system. However, if you
specify the O_DSYNC option for the corresponding open call, write I/O operations are performed
unbuffered. This may improve the performance, in particular, if specified for WORK and PLOG,
as it is required that the corresponding log information is really on disk at the end of a transaction.
With the parameter UNBUFFERED, the usage of the O_DSYNC operation may be defined.

Note: Usage of this parameter only has impact on the performance of Adabas; which actual

setting of the UNBUFFERED parameter results in the best performance depends on the
operating system and the storage system used - the integrity of the database is guaranteed
for all values of the UNBUFFERED parameter.

The following keywords may be specified in the keyword list:

Keyword Meaning

DATABASE ASSO and DATA containers in a file system are opened with the option O_DSYNC.
NODATABASE |ASSO and DATA containers in a file system are not opened with the option O_DSYNC.

WORK A WORK container in a file system is opened with the option O_DSYNC.
NOWORK A WORK container in a file system is not opened with the option O_DSYNC.
PLOG A protection log in a file system is opened with the option O_DSYNC.
NOPLOG A protection log in a file system is not opened with the option O_DSYNC.

296 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

The keyword ALL is equivalent to (DATABASE, WORK, PLOG).
The keyword CLEAR is equivalent to (NODATABASE, NOWORK, NOPLOG).
The default is (NODATABASE, WORK, PLOG).

Example:

adanuc: unbuffered=(nowork)
O_DSYNC is not used for ASSO and DATA containers because NODATABASE is the default.
O_DSYNC is not used for WORK container because NOWORK has been specified.

O_DSYNC is used for protection logs because PLOG is the default.

USEREXITS

USEREXITS = (keyword [,keyword]...)

This parameter, used in conjunction with the user exit facility, specifies one or more user exits.
The specified user exit(s) must be loadable at execution time.

The keyword can take the values 1, 2, 4, 11 and 14.
. Notes:
1. User exit 1 and 11 are mutually exclusive.

2. User exit 4 is only activated if CLOGLAYOUT=5 is specified. User exit 14 is only activated if
CLOGLAYOUT=6 is specified.

See Adabas Basics, User Exits and Hyperexits for further information about the user exits available.

WCHARSET

WCHARSET = <ICU encoding>

This parameter specifies the default encoding for W fields for user sessions. This encoding is used
if no other encoding is specified in the record buffer of the OP call, or in the format buffer of L or
A/N calls.

Adabas Utilities 297

ADANUC (Starting The Database, Defining Nucleus Parameters)

Example

adanuc: wcharset=utf-16be

WRITE_LIMIT
WRITE_LIMIT = number

This parameter specifies the percentage of modified database blocks in the buffer pool before an
implicit buffer flush is taken. For more information on buffer flushes, refer to Administration,
Database Monitoring and Tuning, Buffer Pool Mangement.

Supported values are 1-50; the default value is 50. For compatibility reasons, values of 0 and 51-
70 are also allowed - they are equivalent to 50.

Notes:

1. Starting with Adabas version 6.4, different flush lists and buffer flushes for temporary blocks
(NUCTMP, NUCSRT) and for database blocks (ASSO, DATA) are introduced to reduce the
number of write I/Os for temporary blocks, when a small value for WRITE_LIMIT is specified.
Temporary blocks should only be written to disk in order to avoid a buffer flush; therefore in-
dependent of the value of WRITE_LIMIT, an implicit buffer flush is taken when the percentage
of modified blocks (temporary blocks and database blocks together) is 50. Such a buffer flush
writes either temporary blocks or database blocks, depending on which kind of modified blocks
constitutes the most data.

2. If you have a large buffer pool, it is useful to specify a small value for WRITE_LIMIT in order
to reduce the time required for an auto restart of the nucleus: during an auto restart, ADANUC
must read the update log in the WORK container and reapply all changes in the database that
had not yet been written to disk. A smaller value for WRITE_LIMIT means a smaller amount
of data not yet written to disk, and therefore less updates to be made during the auto restart.

Example:

adanuc: write_limit=10

An implicit buffer flush is taken when the size of modified database blocks is 10% of the buffer
pool size.

298 Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

Summary of ADANUC Parameters

Parameter Use Min. Value |Max. Value (Default Dynamic
(see note 1) (see note
3)
[NOJADATCP Enable/disable ADATCP NOADATCP No
ADABAS_ACCESS Restrict user access for ALL No
making Adabas calls
APU Adabas processing units None No
AR_ Restart after crash during ABORT No
CONFLICT buffer flush
BFIO_PARALLEL_LIMIT |Limit of parallel buffer 0 (see None 50 Yes
flush IOs note 4)
[NOJBI Write before image to BI No
PLOG
CLOGBMAX Length of Adabas buffers |0 4294967295 4096 No
logged (only for (complete |bytes
CLOGLAYOUT=6) buffers
are
logged)
CLOGLAYOUT Select layout of CLOG 5 6 5 No
DBID Database 1 255 None No
LAB Attached buffer area 1MB 2GB Maximum (1IMB, |No
NCL value *
1024)
LABX Attached buffer extension |1MB None 20MB No
area
LBP Adabas 32MB None 100MB No
Buffer Pool Size (see note
2)
LOGGING Command Logging OFF Yes
LPXA XA data protection area |1 block |65535 10 blocks if the |No
size blocks XA option is set
LWP Length of Adabas 500 KB |4000MB |16 MB No
Work Pool
NCL Number of local client 2 None =NU, but at least|No
threads 50
NISNHQ Maximum Number of ISNs |0 (see None 0 Yes
in Hold per User note 4)
NT Number of Threads 1 100 6 No
Adabas Utilities 299

ADANUC (Starting The Database, Defining Nucleus Parameters)

Parameter Use Min. Value |Max. Value |Default Dynamic
(see note 1) (see note
3)

NU User Queue Size 2 users 99999 users |20 users No

OPTIONS Various Options No option Some

[NOJPLOG Protection Logging PLOG No

PORTNUMBER The number of the TCP/IP |1 65535 49152 No
port

READ_PARALLEL_LIMITS |Optimize read-ahead I/O (0,0,0) Yes
performance

SSLCADIRECTORY Directory name where None No
certificates of the
Certificate Authority (CA)
are stored

SSLCAFILE CA certificate file or None No
certificate chain file

SSLCERTFILE Certificate file for None No
encrypted communication

SSLKEYFILE Private key file for None No
encrypted communication

SSLPORTNUMBER The TCP/IP port for 1024 65535 None No
encrypted communication

SSLPASSWORD Passphrase or file name None No
which contains the
passphrase

SSLVERIFY Verification level of client |1 10 0 No
certificates

TCPATB Attached buffer size for the | 1IM None 20M No
TCP/IP receivers

TCPCONNECTIONS Number of TCP/IP 1 None 4294967295 No
connections

TCPRECEIVER Number of TCP/IP receiver |1 20 4 No
threads

TNAA Non-Activity 20 2592000 900 Yes
Time Limit seconds
(ACC Only Users)

TNAE Non-Activity 20 2592000 900 Yes
Time Limit seconds
(ET Logic Users)

TNAX Non-Activity 20 2592000 900 Yes
Time Limit seconds
(EXU,EXF Users)

300

Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

Parameter Use Min. Value |Max. Value |Default Dynamic
(see note 1) (see note
3)

TT Transaction 20 2592000 300 Yes
Time Limit seconds

UNBUFFERED Setting of the O_DSYNC NODATABASE, |No
option (UNIX platforms WORK, PLOG
only)

USEREXITS User Exit(s) None No
to be used

WCHARSET Default encoding for W None (UTF-8) |No
fields

WRITE_ Buffer Pool 1 (see 50 50 (see note 5) | Yes

LIMIT Modification Limit note 5)

| Notes:

1. "None" means that there is no explicit maximum value, but there may be a limit given by the
available operating system resources, for example via the maximum size of a shared memory

segment.

2. The actual buffer pool size is increased to NT value * 2 MB if the specified value is less. If you
have specified a large buffer pool size that is is not available as shared memory, Adabas tries
to allocate a smaller buffer pool.

3. If the value of a dynamic parameter is changed using ADAOPR, the new value takes effect
immedjiately, without the nucleus having to be restarted. In the case of non-dynamic parameters,
the nucleus must first be stopped and restarted for the new value to take effect.

4. A value of 0 means there is no limit.

5. For compatibility reasons values 0 and 51-70 can also be specified: They are equivalent to 50.

Adabas Utilities

301

302

22 ADAOPR (Operator Utility)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 304
B PIOCEAUIE FIOW ...t et e 305
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 306
B CONEIOl PArAMEIEIS ... e ettt e 306

303

ADAOPR (Operator Utility)

This chapter describes the utility "ADAOPR".

Functional Overview

The DBA uses this utility to operate the Adabas nucleus.

This utility is a multi-function utility.

304 Adabas Utilities

ADAOPR (Operator Utility)

Procedure Flow

Control statements |stdin/ Utilities Manual
SYS$INPUT

ADAOPR messages |stdout/ Messages and Codes
SYS$OUTPUT

Adabas Utilities 305

ADAOPR (Operator Utility)

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Function Nucleus must |Nucleus must |Nucleus is Checkpoint written
be active NOT be active |NOT required
FEOF=PLOG X SYNC (see note 1)
EXT_BACKUP=PREPARE |x SYNX (EXT_BACKUP STARTED)
(see note 2)
EXT_BACKUP=CONTINUE |x SYNX (EXT_BACKUP)

SYNC (FEOF=PLOG) (see note 1)

i Notes:

1. After the FEOF=PLOG checkpoint, ADANUC writes a SYNC checkpoint for the start of the
new PLOG session.

2. Writing the checkpoint for EXT_BACKUP=PREPARE was introduced with Adabas Version 6.3
SP 4, and for Adabas Version 6.4 SP2.

Control Parameters

The following control parameters are available:

ABORT

ADD_REPLICATION [= number]
,FILE = number
,TARGET_DBID = number
,TARGET_FILE number

BFIO_PARALLEL_LIMIT = number
CANCEL

CHANGE_REPLICATION keyword
,REPLICATION_ID = (number [- number] [, number [- number]] ..

CLEAR_FILE_STATS = (number [- number] [, number [- number]l 1 ...)

CSA = string

306 Adabas Utilities

ADAOPR (Operator Utility)

DBID = number

DELETE_REPLICATION = (number [- number] [, number [-

DISPLAY = (keyword [,keywordl...)

ES_ID = number

D [NOJET_SYNC

[NOJEVENTING

EXT_BACKUP = [PREPARE | CONTINUE | ABORT]

FEOF

FILE = number

FREE_CLQ
ID = number

D [NOJIO_TIME

ISN = (number [-

(keyword [,keyword])

number] [,number [- number]] ...)

[UNJLOCK = (number [,number]...)

LOGGING = (keyword [,keyword]...)

LOGIN_ID = string

NISNHQ = number

NODE_ID

strin

OPTIONS

9

(keyword [,keyword]...)

READ_PARALLEL_LIMITS = (records,blocks,total)

RESET = keyword

D [NOJRESPONSE_ABORT

RESPONSE_CHECK

SET_FILE_STATS

SHUTDOWN

(number[-number][,number[-numberl]...)

(number[-number][,number[-number]]...)

number]] ..

Adabas Utilities

307

ADAOPR (Operator Utility)

STATUS = (keyword [,keywordl...)
STOP = (number[-number][,number[-number]]...)
THREAD = number

TNAA

number

TNAE = number

TNAX = number

TT = number

USER_ID = string

WCHARSET = <ICU encoding>
WRITE_LIMIT = [number]

XA_RESPONSE_CHECK = (keyword [,keyword]...)

ABORT
ABORT

This function terminates the Adabas session immediately. All command processing is immediately
stopped. The session is terminated abnormally with a pending AUTORESTART.

ABORT causes the following files to be written to the databases's default directory:

® The CSA dump file, which contains status information from the adabas nucleus. The name of
the file is ADABAS. xxx. hh:mm:ss (UNIX) or ADABAS.xxx. hh-mm-ss (Windows),where xxx is
the database ID and hh:mm:ss (or hh-mm-ss) is the time at which the file was created. ADAOPR
can also display the same information that you can get for a running nucleus for a CSA dump
file if you specify the CSA parameter.

® The SMP dump file, which contains some diagnostic information. The name of the file is
SAGSMP.xxx. hh:mm:ss (UNIX), SAGSMP.xxx. hh-mm-ss (Windows) , where xxx is the database
ID and hh:mm:ss (or hh-mm-ss) is the time at which the file was created.

308 Adabas Utilities

ADAOPR (Operator Utility)

ADD_REPLICATION

ADD_REPLICATION [= number]
,FILE = number
,TARGET_DBID = number
,TARGET_FILE = number

This parameter is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

A new Adabas - Adabas replication is defined with status Inactive. It is optional to specify a non-
zero number as the replication ID.

Note: A value may be specified in the range 1 to 524280.

This number must not be the replication ID of an existing replication. If no number is specified, a
replication ID is created by Adabas. You must specify the source file for the replication, the target
database, and the target file number.

BFIO_PARALLEL_LIMIT

BFIO_PARALLEL_LIMIT = number

This function sets the number of parallel I/O requests by a buffer flush, allowing earlier processing
of concurrent I/Os from other threads. A large buffer flush, for example, can cause the I/O queue
to be very busy, and other I/Os (such as buffer pool read I/Os and WORK 1/Os) can be enqueued
for a long time, slowing down command throughput and possibly causing applications to stall if
a buffer flush is active.

If BFIO_PARALLEL_LIMIT is specified, the buffer flush sets up the specified number of I/Os and
waits until these have been processed before issuing the next packet. The maximum value for
‘number’ is defined by the Adabas system, If a value of 0 is specified, the number of buffer flush
I/Os is unlimited.

CANCEL

CANCEL

This function terminates the Adabas session immediately. A BT command is issued for each active
ET user and the session is terminated.

The communication link to the database is cut but the shared memory is still held. In this case,
display functions are still possible with ADAOPR but parameter modification commands are no
longer permitted.

Adabas Utilities 309

ADAOPR (Operator Utility)

CHANGE_RE

PLICATION

CHANGE_REPLICATION = keyword

, REPLICATION_ID = (number [- number] [, number [- number]l] ..

This parameter is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

CHANGE_REPLICATION can be used to change the status of one or more replications. A replic-
ation can have one of the following status values:

Status Meaning

Inactive Currently no data are replicated to the target file, and no activities have been performed to
initiate the replication.

Prepare This indicates that it is planned to perform the Initial State processing for the replication. This
status is the prerequisite for creating a backup of the files to be replicated using ADABCK
with the parameter REPLICATION.

Initialization | This indicates that ADABCK with the parameter REPLICATION is running and creating a
backup that contains the initial state of files to be replicated.

Recording |Adabas is recording the update transactions within the replication command file and the
replication transaction file, but currently is not replicating the update operations to the target
database.

Active The replication is active; all modifications of the source file are replicated to the target file.

Error An unexpected error occurred during replication. In order to continue replication, a new
initial state processing is required.

The following options can be specified to change the replication status:

Keyword

Meaning

INACTIVE

Currently no data is replicated to the target file, and it is not currently planned to start
the replication. Transactions not yet replicated to the target database are deleted.

INITIALIZATION |Prepare the initial state processing: the status is set to Prepare. Then normally ADABCK

DUMP/EXUDUMP must be called with the parameter REPLICATION for the files to
be replicated; ADABCK first sets the status to Initializing, and then during ET
synchronization, when the current state in the database is the same as on the backup
file, ADABCK sets the status to Recording.

Alternatively you can perform your own initial state processing and then perform
ADAOPR CHANGE_REPLICATION=RECORDING.

RECORDING

One of the following;:

® The data of the file to be replicated have been saved without using ADABCK with
the parameter REPLICATION. The replication status is set to Recording; this means
that new database modifications are recorded to be replicated to the target file as
soon as the copying of the data to the target file has been completed and you set the
status to Active.

310

Adabas Utilities

ADAOPR (Operator Utility)

Keyword

Meaning

Note: Performing ADAOPR CHANGE_REPLICATION = RECORDING is not required

if you use ADABCK with the parameter REPLICATION to save the data; in this case
ADABCK sets the status to Recording.

® The replication is to be stopped, and new database modifications are only recorded;
they will be replicated to the target database as soon as the replication is activated
again.

ACTIVE

file.

The replication is active; all modifications of the source file are replicated to the target

You must specify the replication IDs for which the status change is to be performed.

] Notes:

1. If the list of replications to be modified contains a file with a referential integrity constraint,
you must also specify replications for the related files and the same target database.

2. The following matrix shows the allowed options depending on the current replication status
and the resulting status changes:

Status/Keyword | INACTIVE | INITIALIZATION | RECORDING ACTIVE
Inactive Inactive |Prepare - -
Prepare Inactive |Prepare Recording (see note 1) |-
Initialization |Inactive |Init - -
Recording Inactive |Recording Recording Active
Active Inactive |Prepare Recording (see note 2) | Active
Error Inactive |Prepare - -
| Notes:

1. The recommended way for an initial state processing is to use ADABCK with the parameter
REPLICATION. ADABCK then sets the status first to Initialization, and later to Recording,
when the backup is finished. You must only set the status to Recording if you don’t use ADABCK
for initial state processing, for example because you want to start the replication with an empty

file.

2. Itis not necessary to set the replication to Recording if the target database is shutdown, for ex-
ample, for maintenance reasons. Then the database remains at status Active and the target
database is polled until it is available again. Setting the status to Recording may be useful, for
example, if you want to replicate the updates at night, which were done during the day, and if
your target database should contain the database state of the previous day.

Adabas Utilities

3N

ADAOPR (Operator Utility)

CLEAR_FILE_STATS
CLEAR_FILE_STATS = (number [- number] [, number [- number]l] ...)

This function disables the collection of I/O statistics enabled by SET_FILE_STATS for the specified
file(s).

CSA

CSA = string

‘string' is a file specification of a file containing status information from an Adabas nucleus, a so-
called CSA dump file. This file may be created by an ADAOPR ABORT function, by an abnormal
termination of Adabas, or by response check trapping (refer to the RESPONSE_CHECK function
for further information).

The following naming conventions are used for the file:
UNIX

ADABAS . xxx.hh:mm:ss

ADABAS . xxx.RSPyyy.hh:mm:ss

Windows

ADABAS . xxx.hh-mm-ss

ADABAS . xxx.RSPyyy.hh-mm-ss

(with the NORESPONSE_ABORT option set), where

" “xxx'is the three digit database ID;

= 'yyy'is the trapped three digit response code;

® "hh:mm:ss' is the time the file was created (UNIX),

® "hh-mm-ss'is the time the file was created (Windows)

For example, if the database ID is 5, and the file creation was initiated by a trapped response code

113, the file name will start with ADABAS.005.RSP113, and then the time of creating will be ap-
pended, e.g. ADABAS.005.RSP113.12:16:50 (UNIX) or ADABAS.005.RSP113.12-16-50 (Windows).

The file will be created in the directory that is pointed to by the environment variable/logical name
ADA_CSA_DUMP. The default is the directory from which the nucleus was started. If a file with
the same name already exists in this directory, it will be overwritten.

The DBID and CSA parameters are mutually exclusive.

312 Adabas Utilities

ADAOPR (Operator Utility)

DBID
DBID = number

This parameter selects the database to which all subsequent ADAOPR commands apply. Multiple
DBIDs are supported within one session.

The DBID and CSA parameters are mutually exclusive.

Example:

adaopr: dbid=1
adaopr: shutdown
adaopr: dbid=2
adaopr: shutdown
adaopr: dbid=3
adaopr: shutdown
adaopr: quit

DELETE_REPLICATION

DELETE_REPLICATION = (number [- number] [, number [- number]] ..

This parameter is relevant only for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

The replications with the specified replication IDs are stopped, if they are active, and deleted, in-
cluding the commands and transactions that have not yet been replicated to the target files.

DISPLAY

DISPLAY = (keyword [,keyword]...)
This parameter displays various information during an Adabas session.

The following keywords can be used:

Keyword Meaning

ACTIVITY Database activities display.
BF_STATISTICS Buffer flush statistics display.
BP_STATISTICS Buffer pool statistics display.
COMMANDS Command table display.

CQ Command queue display.
DYNAMIC_PARAMETERS |Dynamic nucleus parameters display.
FILE_IO File I/O display.

Adabas Utilities 313

ADAOPR (Operator Utility)

Keyword Meaning

FP_STATISTICS Format pool statistics display.
HIGH_WATER High water marks display.

HQ Hold queue display.

ICQ Internal command queue display.
I0_TIMES Container I/O times display.
PLOG_STATISTICS Protection log statistics.
REPLICATIONS Adabas - Adabas replications.
RPL_STATS Internally-collected replication statistics.
STATIC_PARAMETERS Static nucleus parameters display.
TCPCONNECTIONS ADATCP connections display.

TT Thread table display.

UCB Utility communication block.

uQ User queue display.

UQ_FILES User file list display.

UQ_FULL Full information about user queue element.
UQ_TIME_LIMITS User time limits display.

The following examples show the information produced by the various keywords, together with
explanations of the information that is displayed.

Some of the following displays include percentages. The corresponding values are always truncated.
An undefined value (divided by 0) is specified with " *%" and an overflow with "***%".

Example: DISPLAY=ACTIVITY

adaopr: display=activity

Database 76

I/0 Activity
Buffer Pool
WORK Read
WORK Write
PLOG Write
NUCTMP
NUCSRT

Pool Hit Rate

ADANUC Version <version number>
Activity on 22-JAN-2014 13:19:30

Total Throwbacks

5,440 Waiting for UQ context
728 Waiting for ISN

647 ET Sync
194 DWP Overflow

Total Interrupts

314

Adabas Utilities

ADAOPR (Operator Utility)

Buffer Pool 99.6% WP Space Wait 0 0
Format pool 98%

The information has the following meaning;:

® I/O ACTIVITY shows the total numbers of:

* physical buffer pool I/Os (physical read I/Os + physical write I/Os);

® read and write I/Os for WORK and PLOG.

= 1/Os for NUCTMP and NUCSRT
® INTERRUPTS shows the current and total number of workpool space waits;
® POOL HIT RATE shows:

® the buffer pool hit rate. This is the relationship between the logical read I/Os and the physical
read I/Os. The buffer pool hit rate is calculated using the following formula:

hit rate (in %) = ((logical read I/0s - physical read I/0s) * 100)
/ Togical read I/0s

® the format pool hit rate. This is the relationship between the number of format buffer requests
(required FBs) and the required format buffers already translated in the format pool (translated
FBs). The format pool hit rate is calculated using the following formula:

hit rate (in %) = ((translated FBs * 100) / required FBs)

* THROWBACKS shows:
* the number of commands waiting for session context because internal commands were running;
® the number of commands waiting because ISNs are held by another user;
® the number of commands waiting for ET synchronization;

® the number of commands thrown back because of dynamic work pool overflow.

EXAMPLE: DISPLAY=BF_STATISTICS

adaopr: disp=bf_statistics
%ADAOPR-T1-STARTED, 18-0CT-2016 16:05:03 Version <version number>

Database 37, startup at 18-0CT-2016 16:04:40
ADANUC Version 6.5.1.0, PID 10448

ADANUC Version 6.5.1.0
Database 37 Buffer Flush Statistics on 18-0CT-2016 16:05:02

Buffer flush statistics:

Adabas Utilities 315

ADAOPR (Operator Utility)

Buffer flush Write Number of Type Size Average I0 Duration Rejected
start time Limit Blocks (MB) time (msec) (sec) Locks
18-0CT-2016 16:04:40 2 4 DB 0.04 0.00 0.00 0
18-0CT-2016 16:04:59 2 128 DB 0.54 0.35 0.04 0
18-0CT-2016 16:05:00 2 128 DB 0.53 0.96 0.12 1
18-0CT-2016 16:05:00 2 9 DB 0.06 0.00 0.00 0
18-0CT-2016 16:05:00 2 5 DB 0.04 3.00 0.01 0
18-0CT-2016 16:05:01 2 126 DB 0.53 0.98 0.12 1
18-0CT-2016 16:05:01 2 7 DB 0.05 11.00 0.07 0
18-0CT-2016 16:05:01 2 12 DB 0.07 0.00 0.00 0
18-0CT-2016 16:05:02 2 128 DB 0.54 0.85 0.10 0
18-0CT-2016 16:05:03 2 131 DB 0.55 0.10 0.01 0
Total number of flushes: 10
Explicit : 1
Write Timit 0
WORK Timit 5
Space 0
Emergency 0
Ignored blocks 4

This display shows the statistics of the buffer flushes; if more than 100 buffer flushes have been
performed in the current nucleus session, the last 100 buffer flushes are displayed. The following
information is displayed for each buffer flush:

® The start time of the buffer flush.

® The current write limit. The write limit for database blocks can be modified via ADAOPR
WRITE_LIMIT. The write limit for temporary blocks cannot be changed.

® The number of blocks included in the buffer flush.
® The type of buffer flush:
® DB means flush of database blocks
® Temp means flush of temporary blocks
* The size in megabytes of the blocks included in the buffer flush.
® The average I/O time of the I/Os performed by the buffer flush in milliseconds.
® The duration of the buffer flush in seconds.

® The number of rejected locks is the number of blocks that were not written immediately during
the buffer flush, because the block was exclusively locked when the buffer flush tried to write
the block. The rejected blocks are either written after having written the other blocks - then the
buffer flush waits until the lock can be granted, or by a separate ignore-blocks buffer flush.

After the table the total number of buffer flushes is displayed, and a breakdown of the reasons for
the buffer flushes.

316 Adabas Utilities

ADAOPR (Operator Utility)

Notes:

1. The above displayed example database uses a small WORK container with the effect that the
condition for a WORK limit buffer flush occurs before the write limit is exceeded. Therefore,
the above example database displays WORK limit buffer flushes, but no write limit buffer
flushes.

2. It may happen that two threads determine at nearly the same time that a buffer flush is required.
Then both threads set a flag that a buffer flush is required. When the first thread has set the
flag, the buffer flush thread starts a buffer flush and resets the flag. Then the second thread sets
the flag again. When the buffer flush is finished, a new buffer flush is started immediately. Be-
cause such unnecessary buffer flushes do not cause errors, no logic is implemented to avoid
such buffer flushes. In the example, the fifth and the eighth buffer flush are such unnecessary
buffer flushes. They are displayed as "Ignored blocks" buffer flushes; therefore 4 Ignored blocks
buffer flushes are displayed, although only 2 blocks were ignored.

EXAMPLE: DISPLAY=BP_STATISTICS

adaopr: display=bp_statistics

ADANUC Version <version number>
Database 34 Buffer Pool Statistics on 5-JUN-2014 13:11:28

Buffer Pool Size : 419,430,400

Pool Allocation RABNs present

Current C 7%) : 32,835,584 ASSO : 33

Highwater (10%) : 42,676,224 DATA 3 5

Internal C 7%) : 30,770,176 WORK 0

Workpool (0%) : 1,408,000 NUCTMP 0
NUCSRT 0

I/0 Statistics Buffer Flushes

Logical Reads g 340 Total 2 3

Physical Reads : 17 To Free Space : 0

Pool Hit Rate : 95.0% Temporary Blocks 2 0
Write Limit (2%): 8,388,600

Physical Writes 3 41 Modified (0%): 108,544

Limit Temp.B.(50%): 209,715,000
Modified T.B.(0%): 0

The information is interpreted as follows:

Adabas Utilities 317

ADAOPR (Operator Utility)

= POOL ALLOCATION shows:

* the size in bytes and percentage of the buffer pool that is currently in use;

" the size in bytes and percentage of the buffer pool high water mark (see also the display for

DISPLAY=HIGH_WATER).
® RABNs PRESENT shows:
* the number of ASSO, DATA and WORK RABNSs currently in the buffer pool.
= I/O STATISTICS shows:

* the total number of logical and physical buffer pool read I/Os (both numbers are required in

order to calculate the buffer pool hit rate);

* the buffer pool hit rate (please refer to the example for DISPLAY=ACTIVITY for the buffer

pool hit-rate formula);
* the total number of physical buffer pool write I/Os.
® BUFFER FLUSHES shows:
" the total number of buffer flushes;
* the total number of buffer flushes that were made in order to get free space;
" the total number of buffer flushes for temporary blocks;
" the size and percentage of the buffer pool WRITE LIMIT for database blocks;
" the size in bytes and percentage of modified database blocks;
" the size and percentage of the buffer pool WRITE LIMIT for temporary blocks;

" the size in bytes and percentage of modified temporary blocks.

Example: DISPLAY=COMMANDS

adaopr: display=commands

ADANUC Version <version number>

Database 76 Commands on 19-JAN-2014 14:58:10
ADABAS Commands: 9,884
Al 892 L2 553 0P
BT 736 L3 1,124 RC
Cl 40 L4 569 RE
C3 0 L5 420 RI
C5 10 L6 436 S1
CL 32 L9 456 S2
El 1,006 LF 20 S4
ET 72 MC 0 S8

25
89

1,511
81

12
230

318

Adabas Utilities

ADAOPR (Operator Utility)

HI 0 N1 877 S9 50
L1 643 N2 0

This command displays the total numbers of Adabas commands issued in the current session. For
MC commands, the value displayed is the number of MC calls plus the number of single Adabas
commands contained in the MC calls.

A read command that is issued while the multifetch option is set is counted as a single command.
Updates made by utilities are not included in the display.

Note: The command counts can be reset by ADAOPR RESET=COMMANDS.

Example: DISPLAY=CQ

adaopr: display=cq
ADANUC Version <version number>

Database 2 Command Queue on 14-NOV-2014 13:41:53

No Node Id Login Id ES Id APU Cmd File Status

1 PC0O001 miller 3316 1 RC 13 Ready to run
2 PC0001 jones 1360 2 S8 13 Running

3 PCO001 smith 6148 1 RC 13 Ready to run
4 PCO001 miller 4208 1 S8 13 Running

5 PC0001 jones 5224 2 S9 13 Ready to run
6 PCO001 dba 7024 2 Ul 0 Running

7 PCO001 brown 3140 2 Sl 13 Running

8 PCO001 meyer 6180 2 S8 13 Running

9 PC0O001 smith 4756 1 S1 13 Running

10 PCO001 king 1240 2 ET 0 Ready to run
11 PC0O001 meyer 836 2 RC 13 Ready to run
12 PCO001 brown 6272 1 L6 13 Ready to run

Selected: 12, Used: 12, Queue Size: 13
This display shows the current command-queue entries:

® NODE ID shows the node identification string.
® LOGIN ID shows the login user identification string;
= ES ID shows the environment-specific identification (for example, the process ID);

" APU shows the assigned Adabas Processing Unit of the command queue entry if the nucleus
parameter APU is set. If APU has not been specified, the column APU is not displayed;

® CMD shows the command string;

® FILE shows the file number;

Adabas Utilities 319

ADAOPR (Operator Utility)

" STATUS shows the status of the command-queue entry.

The final line of the display shows how many command queue entries were selected according
to the currently active selection criteria, and how many entries are used in total in the command
queue.

The possible status values are shown in the following table:

Status Meaning

Completed Command processing completion;

Marked For Deletion Command is marked for delete, user is no longer active;

New Command is ready to be inserted in the scheduling queue;

Ready To Run Placed in queue and ready for scheduling;

Running Running in a thread (see DISPLAY=TT);

Waiting For Complex Complex command is waiting to run;

Waiting For Et Sync Waiting for ET synchronization;

Waiting For Group Commit |Waiting for group ET. No entry in thread table;

Waiting For Isn <isn> Waiting for ISN in file shown in column "File" in the display. No entry in
thread table;

Waiting For Space Waiting for working space. No entry in thread table.

Waiting For Uge Waiting for user queue entry. The required entry is locked by an active internal
command,;

Note: The display may show command codes such as "U0", which are only used internally

by Adabas (for example, during a utility run).
The "RUNNING" and "COMPLETED" values may differ even if the user has not specified
an explicit selection criterion.

Example: DISPLAY=DYNAMIC_PARAMETERS

adaopr: display=dynamic_parameters

ADANUC Version <version number>

Database 76 Dynamic Parameters on 19-JAN-2014 14:58:10
Resources: NISNHQ : 100 WRITE_LIMIT: -
Time Slices: TNAA : 900 TNAX : 900

TNAE = 900 TT : 300
Logging: CLOG : OFF

320 Adabas Utilities

ADAOPR (Operator Utility)

Read Timits: 200, 10, 30
Response check with ABORT : 84,160,164-182,243,251-252

This display shows the current values of the dynamic nucleus parameters.

Example: DISPLAY=FILE_lO

adaopr: display=file_io

ADANUC Version <version number>

Database 76 File 1/0 on 19-JAN-2014 14:58:10
Reads Hit
File Logical Physical Rate Writes
11 145,341 180 99% 2,869
12 99,070 148 99% 2,149

This display shows the logical and physical reads, their hit rate and the writes the buffer pool
manager has made for every file since the file I/O statistiscs for the file in question were enabled
(ADAOPR SET_FILE_STATS) - files for which the I/O statistics have not been enabled or for which
no I/Os were performed are not displayed.

Notes:

1. The formula for the hit rate value is given in the description of DISPLAY=ACTIVITY.

2. A write operation is only counted if the block was not yet marked as modified. This means that
the physical write I/Os either already done in a previous buffer flush or still pending to be
performed in the next buffer flush are counted.

Example: DISPLAY=FP_STATISTICS

adaopr: display=fp_statistics

ADANUC Version <version number>
Database 76 Format Pool Statistics on 19-JAN-2014 14:58:10

Maximum Local Pool Size: 251,656

Maximum Global Pool Size: 251,656

Pool Allocation Pool Contents

Local Current (22%) : 57,540 Local Format Buffers: 162
Local Highwater (27%) : 70,000 Global Format Buffers: 1

Adabas Utilities 321

ADAOPR (Operator Utility)

Global Current (0%) : 84

Global Highwater (0%) : 84

Pool Statistics Local Global

Scans 11,780 3

Hits 11,547 2

Hit Rate 98% 66%
Replacements 0 0

Overflows 0 0

This display shows the format pool statistics:

® POOL ALLOCATION shows:
" the size in bytes and percentage of the local and global format pools that are currently in use;
" the size in bytes and percentage of the local and global format pool high water marks.

® POOL STATISTICS shows:

" the total number of scans and hits of valid format buffers in the format pool (both numbers
are required in order to calculate the format pool hit rate);

* the format pool hit rate (please refer to the example DISPLAY=ACTIVITY for the format pool
hit-rate formula);

® the total number of valid format buffers that are overwritten in the format pool (replacements).

® Overflows. This is the number of times that a format buffer exceeded the format pool size,
resulting each time in a response 42.

= POOL CONTENTS shows:
® the number of valid local format buffers in the format pool;

® the number of valid global format buffers in the format pool.

Example: DISPLAY=HIGH_WATER

adaopr: display=high_water
ADANUC Version <version number>

Database 2 High Water Marks on 21-NOV-2014 11:44:19
Area/Entry Size In Use High Water % Date/Time
User Queue 100 13 13 13 21-NOV-2014 11:44:00
Command Queue = 12 13 - 21-NOV-2014 11:44:19
APU 01 = 2 12 - 21-NOV-2014 11:44:02
APU 02 = 13 15 - 21-NOV-2014 11:44:00
Hold Queue = 2 2 - 21-NOV-2014 11:44:00

322 Adabas Utilities

ADAOPR (Operator Utility)

Client Queue 100 13 13 13 21-NOV-2014 11:44:00
HQ User Limit = = 1 - 21-NOV-2014 11:44:00
Threads 6 4 6 100 21-NOV-2014 11:44:00
Workpool 524,288,000 0 131,072,016 25 21-NOV-2014 11:42:16
ISN Sort 65,536,000 = 380,000 0 21-NOV-2014 11:44:04
Complex Search 65,536,000 = 0 0
Attached Buffer 1,048,576 219,136 219,136 20 21-NOV-2014 11:44:02
ATBX (MB) 20 0 0 0
Buffer Pool(KB) 2,048,000 957,962 1,009,978 49 21-NOV-2014 11:42:16
Protection Area 127,990
Active Area 38,397 = 4 0 21-NOV-2014 11:44:04
Group Commit 50 1 1 2 21-NOV-2014 11:42:17

Transaction Time 3,000 = 0 0

This display shows the high water marks for the current session:

" SIZE shows the size in bytes of pools and buffers. For queues, threads and hold queue user
limit, it shows the number of entries.

® IN USE shows the size in bytes or number of entries currently in use.
* HIGH WATER shows the maximum quantity required simultaneously for the given area/entry.

" % shows the relationship between the high water mark and the size. If the high water mark ex-
ceeds the size, the value in this column can be larger than 100 %. For example, this can occur if
the value is decreased by ADAOPR, or if the original area has been dynamically increased. This
is normal Adabas behaviour, and no changes of Adabas parameters are required.

* DATE/TIME shows the date/time at which the high water mark occurred for the first time. There
is no output in this column if the high water mark is 0.

The entries in the column AREA/ENTRY correspond to the ADANUC parameters NU (user queue),
NCL (client queue), NISNHQ (hold queue user limit), NT (threads), APU (Adabas Processing
Units, only displayed if the nucleus parameter APU is set), LWP (workpool), LBP (buffer pool),
LAB (attached buffer), TT (transaction time). The hold queue and the command queue have no
predefined size and are increased dynamically if required.

The entry "ACTIVE AREA" is the largest part of WORK part 1 that can be used by a single trans-
action. If a transaction's protection information spans more space than allowed by "Active Area",
it receives a response 9 (LP), the nucleus displays a PLOVFL message and a value of more than
100 in the "%" column of the highwater display.

Users who have set user-specific timeout values in their OP call are not included in the values for
Transaction Time.

Note: 1. Values for Attached Buffer and Command Queue are not displayed correctly if the

nucleus cannot be contacted by ADAOPR (for example, if the ADAOPR parameter CSA is
used.

Adabas Utilities 323

ADAOPR (Operator Utility)

2. Threads are used in a round-robin manner. Therefore, the high water mark for threads
will be the same as the value shown in the Size column in most cases.

3. During an autorestart following an abnormal nucleus termination, user queue elements
are created for those users who are active during the time interval and for who the updates
must be recovered. Therefore, directly after the start of the new nucleus session, the high
water mark for the user queue can be relatively high, while the number of user queue ele-
ments in use is small.

Example: DISPLAY=HQ

adaopr: file=11, display=hq

ADANUC Version <version number>

Database 76 Hold Queue on 19-JAN-2014 14:58:10
Id Node Id Login Id ES Id User Id File ISN Locks Flg
15 sunxxx01 miller 6974 *adatst 11 2,222 X M
19 sunxxx01 smith 7056 *adatst 11 2 X

Selected: 2, Used: 8, Queue Size: 160

This display shows the current hold-queue entries:

ID shows the internal user identification of the user holding the ISN;

NODE ID shows the node identification string. The local node is represented by an empty string;
LOGIN ID shows the login user identification string;

ES ID shows the environment-specific identification (for example, process ID);

USER ID shows the user identification. Adabas utilities use the utility name preceded by an
asterisk as the USER ID;

FILE shows the number of the Adabas file in which the ISN is located;
ISN shows the number of the ISN in hold;
LOCKS shows the kind of lock for the ISN, where X = exclusive lock , S = shared lock.

Note: Sis displayed for shared locks starting with Adabas version 6.3 SP 1; in previous
releases R is displayed.

An M for FLG indicates that the record has been modified.

The final line of the display shows how many hold queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Entries are displayed in unsorted sequence.

324 Adabas Utilities

ADAOPR (Operator Utility)

Example: DISPLAY=ICQ

adaopr: display=icq
ADANUC Version <version number>

Database 76 Internal Command Queue on 19-JAN-2014 14:58:10

Id Node Id Login Id ES Id Command Status

00000002 *system 00000000 SHUT Running
Selected: 1, Used: 1, Queue Size: 101

This display shows the internal command queue:

Command |Meaning

AR Autorestart
BT Back out transaction
BTCL Back out open transaction and close user

CANCEL |Cancel nucleus

DELUQE |Release file list and delete user queue element

ETSYNC |Start an ET-SYNC status check after a global transaction has received a timeout
SHUT Shut down nucleus

STOP STOP from ADAOPR

TIMEOUT |Non-activity timeout

The status of internal commands can be READY TO RUN, RUNNING, WAITING FOR ET SYNC
or WAITING FOR UQE.

The final line of the display shows how many internal command queue entries were selected ac-
cording to the currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=IO_TIMES

adaopr: display=io_times

ADANUC Version <version number>

Database 76 I0 Statistics on 19-NOV-2014 12:16:48
Number of I0s Maximum I0 time Average I0 time
ASSO Read g 735574 14397 1

Adabas Utilities 325

ADAOPR (Operator Utility)

ASSO Write
DATA Read

DATA Write
WORK Read
WORK Write
NUCSRT Read
NUCSRT Write :
NUCTMP Read
NUCTMP Write :

12136
2023257
444

4

660
4060
4060

30

896

i e i R e R e N e

The number of I0s shows the number of physical read and write I/O accesses to ASSO, DATA,
WORK, NUCSRT and NUCTMP.

The maximum IO time shows the maximum duration of a single I/O read and write access to
ASSO, DATA, WORK, NUCSRT and NUCTMP in microseconds.

The average IO time shows the average time of a single I/O access to ASSO, DATA, WORK,
NUCSRT and NUCTMP in microseconds.

Logging of I/O times is only available if ADAOPR IO_TIME is enabled..

Example: DISPLAY=PLOG_STATISTICS

adaopr: display=plog_statistics

Database 76

PLOG Environment

NUCPLG (active)

Active PLOG

Session Number
Extent

Active Since
Duration

Allocated Space
Used Space ¢ 0%)

Average Growth Rate :

ADANUC Version <version number>

PLOG Statistics

37
2

19-JAN-2014 14:59:41
00:00:01

24,683 KB
32 KB
115,200 KB/h

on 19-JAN-2014 14:59:41

: /FS/fsxxxx/sag/ada6180102/ada/db076/NUCPLG

326

Adabas Utilities

ADAOPR (Operator Utility)

Example: DISPLAY=REPLICATIONS

adaopr: display=replications
ADANUC Version <version number>

Database 34 Replications on 19-JAN-2014 09:47:48
ID From FNR To DB To FNR Status Remark

1 111 37 111 Inactive

86 86 37 86 Active

2 transactions pending:

To DB Transactions

From FNR Commands
86 5
111 0

This display shows the Adabas - Adabas replications currently defined. This is only relevant for
customers who are using the Adabas Event Replicator with Adabas - Adabas replication.

Note: Replications to other replication targets, for example SQL databases, are not displayed.
Such replications can only be displayed with the administration tools of the event replication.

The display shows the following information:

“ID” is the ID of the replication that is also used in the replication administration.

"From FNR” is the file number of the file to be replicated to another Adabas file.
® “To DB” and “To FNR” are the database ID and file number of the target file for the replication.

"Status" can have the following values and meanings:

Adabas Utilities 327

ADAOPR (Operator Utility)

Status Meaning

Inactive Currently no data are replicated to the target file, and at the moment no activities have
been made to initiate the replication.

Prepare This status indicates that it is planned to perform the initial state processing for the
replication. This status is the prerequisite for creating a backup of files to be replicated via
ADABCK with parameter REPLICATION.

Initialization | This status indicates that ADABCK with parameter REPLICATION is running and creates
a backup containing the initial state of files to be replicated.

Recording |Adabas is currently recording the update transactions within the replication command file
and the replication transaction file, but currently does not replicate the update operations
to the target database.

Active The replication is active; all modifications of the source file are replicated to the target file.

Error An unexpected error occurred during replication. In order to continue replication, a new
initial state processing is required.

® “Pending Transactions” is the number of transactions that have not yet been replicated to the

target file.

Notes:

1. The number contains both transactions that have already been committed but not yet replicated
to the target database, and transactions that are still open and which can only be replicated
after an end of transaction.

2. If a transaction contains commands to be replicated to more than one target database, the
transaction is counted only once, independent of the number of target databases. Therefore
the total number of pending transactions can be smaller than the sum of the transactions for
the different target databases.

® “Pending Commands” is the number of commands that have not yet replicated to the target

file.

Notes:

1. The number contains both commands belonging to transactions that have already been
committed but not yet replicated to the target database, and commands belonging to transac-
tions that are still open and which can only be replicated after an end of transaction.

2. If a file is replicated to more than one target file, database modification commands of the
source file are counted only once, independent of the number of target files to which a com-
mand has to be replicated.

If ADAOPR DISPLAY=REPLICATIONS is executed in non-interactive mode, ADAOQOPR returns
one of the following exit status values:

328

Adabas Utilities

ADAOPR (Operator Utility)

Value |Meaning

0 At least one replication has been defined, and no replication is in status Error.

12 |There is a replication in status Error.

15 |Replication has not been activated, or no replication has been defined.

Example: DISPLAY=RPL_STATS

adaopr: start_rpl_stats
adaopr: display=rpl_stats

ADANUC Version <version number>
Database 6 Replication Statistics on 18-JUL-2016 11:24:47

Replication Statistics Summary - All Times in usec

Transact not yet Repl (Cur/Max) 0 2

Replicated Transactions 281

Transact Repl Time (Avg/Min/Max) 3,055 9 171,013
Transact Latency (Avg/Min/Max) 3,173 14 171,021
Replicated Commands 4,984

Command Repl Time (Avg/Min/Max) 1 1 18
Replicated Al Commands 1,536

A1l Repl Time (Avg/Min/Max) 1 1 11
Replicated E1 Commands 1,711

El Repl Time (Avg/Min/Max) 1 1 12
Replicated NX Commands 1,737

NX Repl Time (Avg/Min/Max) 1 1 18
Command Wait Counter 2

Command Wait Time (Avg/Min/Max) 15,518 41 30,995

Notes:

1. Before displaying the replication statistics, the replication statistics must be activated with the
command START_RPL_STATISTICS.

2. On Windows 7, the functions currently used to get the current time only have an accuracy of
1 millisecond; if the millisecond has not changed since the previous call, the time is increased
by 1 microsecond. This means that the time values displayed are not very precise - if a value is
significantly less than 1000, this only means that the time is less than one millisecond, but it
will be probably significantly larger than the value displayed.

The display shows the following information:

Adabas Utilities 329

ADAOPR (Operator Utility)

Value

Meaning

Transact not yet Repl

The number of replications that have been committed, but have not yet been
replicated. If the values are large, this means that the system is overloaded;
Adabas is not able to replicate update operations in time. An exception where
large values are normal is when the target database is down; then no
transactions can be replicated, and the number of transactions not yet replicated
increases.

Replicated Transactions

The number of transactions that have been replicated since the replication
statistics were activated.

Transact Repl Time

The time to replicate a single transaction.

Transact Latency

The time between the commit of a transaction in the source database and the
commit of the replicated transaction in the target database.

Note: When the target database is down, transactions must wait for replication

until the database is up again. This means you will get large values for
transaction latency.

Replicated Commands

The number of commands that have been replicated since the replication
statistics were activated.

Command Repl Time

The time required to replicate one command.

Replicated A1 Commands

The number of A1 commands that have been replicated since the replication
statistics were activated.

Command Al Repl Time

The time required to replicate one Al command.

Replicated E1 Commands

The number of E1 commands that have been replicated since the replication
statistics were activated.

Command E1 Repl Time |The time required to replicate one E1 command.

Replicated NX Commands|The number of N1 or N2 commands that have been replicated since the
replication statistics were activated.

Command NX Repl Time |The time required to replicate one N1 or N2 command.

Command Wait Counter

If more than one transaction is replicated at the same time, it may happen that
the replication of a command must wait for the termination of the replication
of another command belonging to another transaction in order to guarantee
the consistency of the replication. The counter shows how often this happened
since the replication statistics were activated.

Command Wait Time

The time until the replication of a command could continue when the command
replication had to wait for the termination of the replication of another command
belonging to another transaction.

330

Adabas Utilities

ADAOPR (Operator Utility)

Example: DISPLAY=STATIC_PARAMETERS

adaopr: display=static_parameters
ADANUC Version <version number>

Database 22 Static Parameters on 21-NOV-2014 11:13:25
Resources: LAB g 1,048,576 NT s 6
LBP g 104,857,600 NU 2 50
LWP : 1,000,000 NCL 2 50
LABX g 20,971,520
APU : (2, 3, 2)
TCP/IP Port: 49152

TCP/IP Receiver: 4

Logging: PLOG, BI
Options: AUTO_EXPAND

This display shows the static nucleus parameters.

Note: The nucleus parameter APU is only displayed if it has been specified.

Example: DISPLAY=TCPCONNECTIONS

adaopr: display=tcpconnections

ADANUC Version <version number>

Database 100 Connections on 3-SEP-2018 09:59:37
Conn ID Recv ID User ID Remote Host IP Address ©
Port
___ -
I

Example: DISPLAY=TT

adaopr: display=tt
ADANUC Version <version number>

Database 2 Thread Table on 21-NOV-2014 11:49:38
No APU Cmd Count File Cmd Status
1 2 120,715 13 S9 Complex, waiting for DATA / 2785
2 1 120,146 13 S8 Complex, waiting for TEMP / 35794
3 2 124,364 0 Free

Adabas Utilities 331

ADAOPR (Operator Utility)

4 1 122,300 13 S8 Complex, waiting for TEMP / 168654
5 2 120,325 13 S8 Complex, active
6 1 123,210 13 S1 Simple , active

This display shows the entries in the thread table. The number of displayed entries is simultaneously

the high water mark for threads.

® APU shows the assigned Adabas Processing Unit of the thread if the nucleus parameter APU

is set. If APU has not been specified, the column APU is not displayed.

® CMD COUNT shows the total number of Adabas commands processed from the corresponding
thread context. The sum of these counts will normally differ from the sum shown by DIS-

PLAY=COMMANDS, because internal commands are also counted.

® FILE shows the file number of the Adabas command that is currently being processed from the
corresponding thread context. The file number is 0 if the corresponding thread context is not

active, or if the command is a global one which is not linked to a particular file.

® CMD shows the command string of the Adabas command that is currently being processed
from the corresponding thread context. There is no output in this column if the corresponding
thread context is not active.

= STATUS shows the command type and the status of the corresponding thread context.

Possible command types are:

® Update
® Simple

® Complex

Possible entries for the thread status are shown in the following table:

Status Meaning

free available for allocation
ready ready to run

active running

waiting for io
<rabn>/<block type>

waiting for I/o completion of block
<rabn>

waiting for
<rabn>/<block type>

waiting for access/update synchronization of
block <rabn>

waiting for space
<size> bytes

waiting for <size> bytes of work pool
space

PLOG processing

Log entries for PLOG and WORK are created.

332

Adabas Utilities

ADAOPR (Operator Utility)

Status Meaning

Waiting for PLOG processing | The thread wants to perform PLOG processing, but another thread is already
performing PLOG processing - only one thread can create log entries at the
same time.

Note: The thread status entries are displayed one by one. Therefore, it can

happen that for more than one thread status “PLOG processing” is displayed,
or that status “Waiting for PLOG processing” is displayed for a thread,
although for no other thread status “PLOG processing” is displayed.

Note: The display of the thread status is done for one thread after another. For this reason,

it can happen that status "PLOG processing" is displayed for more than one thread, or that
status "Waiting for PLOG processing" is displayed, although for no other thread status
"PLOG processing" is displayed.

The block type can be ASSO, DATA, WORK, FILE or PLOG.

Example: DISPLAY=UCB

adaopr: display=uchb

ADANUC Version <version number>

Database 76 UcB on 19-JAN-2014 14:59:45
Date/Time Entry Id Utility Mode Files
19-JAN-2014 14:59:41 42 adaopr UTO 13

This display shows the utility communication block.

® DATE/TIME shows the date and time on which the given files were locked.
® ENTRY ID shows the allocated identification of the entry.
= UTILITY shows the name of the utility.
® MODE shows the mode in which the files are being accessed. The possibilities are:
® ACC open for access
® UPD open for update
® EXU open for exclusive update (parallel access allowed)
® UTO open for utilities only
® UTI open for exclusive access (no parallel access or update allowed)

= Files shows the file numbers of the files that are locked.

Adabas Utilities 333

ADAOPR (Operator Utility)

Example: DISPLAY=UQ

adaopr: di

Da

Id
26
23
20
19
18
16
17
14
13
12
11

Selected:

splay=uq

tabase 76

Node Id
sunxxx01
sunxxx01
sunxxx01
sunxxx01
sunxxx01
sunxxx01
sunxxx01
sunxxx01
sunxxx01
sunxxx01
sunxxx01

11, Used:

ADANUC Version <version number>
User Queue

dba
smith
jones
jones
smith
smith
jones
miller
dba
dba
dba

11, Queue Size:

ES Id User Id

4638 HHHHHHHF
3967 *adatst
3651 *adatst
4025 DBADMIN

100

This display shows the current user queue entries.

" ID shows the internal user identification;

® NODE ID shows the node identification string;

® LOGIN ID shows the login identification string;

" ESID is the process ID of the client process;

on 19-JAN-2014 14:58:10

Type Status
uT

ET E
ET I
ET IE
ET

ET

ET R

AC

EX,ET E
EX RU

Note: ES ID means "Environment Specific ID". This term was used, because in previous

Adabas versions on Windows, instead of the process ID, a random number was used as
the ESID in order to avoid double usage of the same Adabas session ID - this was because
on Windows, the process IDs could be reused after a short time. After adding a timestamp
to the Adabas session ID, reusage of the same Adabas session ID can no longer happen,
therefore the process ID can also be used as the ES ID on Windows. The timestamp is

displayed only with ADAOPR DISPLAY=UQ_FULL.

® USER ID shows the user identification specified in Additions 1 in the Open command for the
current Adabas session;

Note: If you don't use the nucleus option OPEN_REQUIRED, the USER ID information

is deleted following a non-activity timeout. When this happens, the USER ID is displayed
as "######4#". 1f the nucleus option OPEN_REQUIRED is used, not only the user inform-

334

Adabas Utilities

ADAOPR (Operator Utility)

ation, but also the complete user queue element is deleted; this means that DISPLAY=UQ

no longer displays such user queue elements.

® TYPE shows the user type:

® AC access only user

= ET ET user

® EX exclusive update user

® EX,ET exclusive update user with ET logic
= UT utility user.
" STATUS shows the status of the user:

" E user at ET status

® G global timeout (XA)

® T user session started with an implicit OPEN

® P pending ET (XA)

= T user has received a time-out

® U user specific timeout interval value

R restricted file list

Note: The description for the components of the Adabas session ID (Node ID, Login ID, ES

ID and the timestamp not displayed by ADAOPR DISPLAY=UQ) is only correct if the
function Ink_set_adabas_id is not used (see Command Reference). This function lets you

define your own Adabas session IDs.

The final line of the display shows how many user queue entries were selected according to the

currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=UQ_FILES

adaopr: display=uq_files

Database 76

Id
26
23
20
19
18

Type

uT
ET
ET
ET
ET

ADANUC Version <version number>
User Files

Mode Files
UpPD 11-12
UPD 11-12
UpD 11-12
UPD 11-12

on 19-JAN-2014 14:58:10

Adabas Utilities

335

ADAOPR (Operator Utility)

16
14
13
12
11

Selected: 10,

ET UPD

ET UpPD

AC

EX,ET EXU

EX ACC
EXU

Used: 11,

11-12
11-12

14
11
13

Queue

Size: 100

This display shows the file lists for active users.

=]D shows the internal user identification;

® TYPE shows the user type (please refer to the DISPLAY=UQ example for more information).

® MODE shows the mode in which the files are being accessed:

® ACC open for access

® EXF open for exclusive access (no parallel access or update allowed)

UPD open for update

® UTO open for utilities only

EXU open for exclusive update (parallel access allowed)

UTI open for exclusive access (no parallel access or update allowed)

® FILES shows the Adabas file list of the user entry. If the list is too large to be displayed in one
line, several lines will be used: file numbers are not omitted.

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=UQ_FULL

adaopr: disp=uq_full

Database 36

User Entry:

Time Stamps:

Time Limits:

Id
Node Id
User Id

Full

Timestamp Id

User Type

Session Start :
Trans. Start :
Last Activity :

TT

ADANUC Version <version number>
User Queue Entry on 3-SEP-2014 17:12:24

8 ES Id : 17937
sunada05 Login Id : smith
*adaopr

3-SEP-2014 17:12:18:182,671

ur User Status

3-SEP-2014 17:12:17

0 TNA : 0

336

Adabas Utilities

ADAOPR (Operator Utility)

Resources:

Activity:

Settings:

ISN Lists
Open Files

ADABAS Calls

User Encoding :

0 ISNs Held

1 Transactions

User Entry:

Time Stamps:

Time Limits:

Resources:

Activity:

Settings:

This display shows detailed information about user queue elements.

Id

Node Id

User Id
Timestamp Id

User Type

Session Start :

Trans. Start

Last Activity :

TT
ISN Lists
Open Files

ADABAS Calls

User Encoding :

UTF-8

6 ES Id
sunada05 Login Id
JONES001

3-SEP-2014 17:11:32:113,750
ET User Status
3-SEP-2014 17:11:31
3-SEP-2014 17:11:56
3-SEP-2014 17:11:56

300 TNA

0 ISNs Held
1

3 Transactions

UTF-8

0
0
15808
jones
300
1
1

Additionally to the information shown by ADAOPR DISPLAY=UQ, the following information is

shown:

® TIMESTAMP ID shows the timestamp added to the Adabas session ID to guarantee the uniquenes
of the Adabas session ID;

® The timestamps show when the current Adabas user session was started, when the last transaction
of the session was started, and when the last activity for the session was performed.;

® The time limits show the transaction time limit and the non-activity time limit defined for the
Adabas user session;

Note: Normally the time limits are the default values defined via ADANUC parameters,

but it is possible to override these default values in the Open command of the Adabas
user session.

" Resources shows the number of ISN lists currently active for the Adabas user session, the
number of ISNs in the hold queue for the session, and the number of Adabas files in use in the

session;

Adabas Utilities

337

ADAOPR (Operator Utility)

" Activity displays the number of Adabas calls and the number of transactions performed in the
Adabas user session.

" Settings displays the default user encoding for W fields used in the current Adabas sessions as
specified in the Open command of the session. If nothing was specified, the default UTF8 is
used.

Example: DISPLAY=UQ_TIME_LIMITS

adaopr: display=uq_time_limits

ADANUC Version <version number>

Database 76 User Time Limits on 19-JAN-2010 14:58:10
TNAA Interval 0 00:15:00 TNAX Interval 0 00:15:00
TNAE Interval g 00:15:00 TT Interval g 00:05:00

Id St Limit Timeout Interval Remaining Time Start Date/Time

23 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00

22 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00

21 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10

20 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10

19 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00

18 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:04:50 19-JAN-2014 14:58:00

17 TNAA 00:15:00 00:15:00 19-JAN-2014 14:58:10

16 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10

14 TNAE 00:15:00 00:15:00 19-JAN-2014 14:58:10
TT 00:05:00 00:05:00 19-JAN-2014 14:58:10

13 TNAA 00:15:00 00:10:01 19-JAN-2014 14:53:11

12 TNAE 00:15:00 00:10:01 19-JAN-2014 14:53:11
TT 00:05:00

11 U TNAX 00:40:00 00:34:57 19-JAN-2014 14:53:07

Selected: 12, Used: 14, Queue Size: 100
This display shows the current timeout limits for the user queue entries.

" ID shows the internal user identification;
= ST shows the status of the entry. Possible values are:

® U user specific timeout value

338 Adabas Utilities

ADAOPR (Operator Utility)

* T a timeout is pending, response 9 has not been collected yet by the client.

LIMIT describes the timeout type;
TIMEOUT INTERVAL shows the current active timeout intervals.

REMAINING TIME shows the amount of time remaining until the next timeout mark.
START DATE/TIME shows the starting date and time of the entry.

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

ES ID
ES_ID = number

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL, UQ_TIME_LIMITS. Only entries with the specified environment-specific ID are dis-
played.

[NOJET_SYNC
[NOJET_SYNC

This option controls the behaviour of the FEOF=PLOG function. It must be specified before spe-
cifying FEOF=PLOG. Refer to the FEOF=PLOG function for more information.

The default is NOET_SYNC.

[NOJEVENTING

[NOJEVENTING

This starts and stops the Adabas Event Analytics for a running adanuc process. The adanuc process
will start to generate events based on the Adabas Event Analytics configuration in the database
INI file. If Adabas Event Analytics is configured to send the events to the Analytics Server, please
make sure that the Analytics Server is started.

Note: If Adabas Event Analytics is not configured, the default events will be written to a
NUCELG file located in the database directory.

The default is NOEVENTING.

Adabas Utilities 339

ADAOPR (Operator Utility)

EXT_BACKUP
EXT_BACKUP = [PREPARE | CONTINUE | ABORT]

This function is used to backup a database using an external backup system, which can be consid-
erably faster with very large databases than using ADABCK.

The keyword PREPARE prepares the database for backup. During this phase, the following restric-
tions apply:

" new transactions will be stalled

" no updating utility functions (e.g. ADADBM) can be started

® the functions SHUTDOWN, CANCEL, LOCK, STOPUSER, UNLOCK and FEOF=PLOG are not
permitted once the EXT_BACKUP = PREPARE call has finished processing

* all non-activity timeout checks are disabled

The keyword CONTINUE is used to resume normal database operations following completion
of the external backup. The following actions are performed:

" open a new PLOG with a new session number

" re-enable non-activity timeout checks

" re-enable update utilities

® wake up all waiting users (start of new transactions)

The keyword ABORT is used to abort an external backup for which a PREPARE has already been
issued. In this case, the PLOG isn't switched and no checkpoint is written.

@ Caution: Take care to ensure that your external restore does not overwrite the protection

logs created after the external backup. Without the protection logs, you cannot re-apply the
changes perforrmed after the external backup with ADAREC REGENERATE.

Example

The following scenario shows a backup and restore using a third-party backup tool (tar is not a
real alternative, and is used for demonstration purposes only):

Dumping the database

340 Adabas Utilities

ADAOPR (Operator Utility)

% adaopr db=37 ext_backup=prepare
%ADAQPR-T-STARTED, 23-JAN-2015 11:49:08, Version 6.3.4.01 (Solaris 64Bit)

Database 37, startup at 22-JAN-2015 13:54:47
ADANUC Version 6.3.4.01, PID 18302

%ADAOPR-TI-EXTBPREP, preparing for external backup, 23-JAN-2015 11:49:09

%ADAOPR-T-TERMINATED, 23-JAN-2015 11:49:09, elapsed time: 00:00:01
% adaopr db=37 ext_backup=continue
%ADAOPR-T-STARTED, 23-JAN-2015 11:49:20, Version 6.3.4.01 (Solaris 64Bit)

Database 37, startup at 22-JAN-2015 13:54:47
ADANUC Version 6.3.4.01, PID 18302
During ET Sync (phase 2), for external backup

%ADAOPR-T-EXTBCONT, continue from external backup, 23-JAN-2015 11:49:21
%ADAQPR-T-TERMINATED, 23-JAN-2015 11:49:21, elapsed time: 00:00:01

% adarep
adarep: checkpoints=(23-jan-2015,24-jan-2015)

Name Date/Time Session User Id / Function

SYNX 23-JAN-2015 11:49:09 95 ADAOPR EXT_BACKUP STARTED
SYNX 23-JAN-2015 11:49:21 95 ADAQOPR EXT_BACKUP

SYNC 23-JAN-2015 11:49:21 95 ADAOPR FEOF=PLOG

SYNC 23-JAN-2015 11:49:21 96 ADANUC 6.3.4.01

Restoring and recovering the database

% tar xvf $BACKUPDIR/backup.tar # external restore

% mv $ADADIR/db037/pl0g.0096 . 4 Assume current directory is not $ADADIR/db037
% adastart 37

% adarep

adarep: checkpoints=(23-jan-2015,24-jan-2015)

Name Date/Time Session User Id / Function

SYNX 23-JAN-2015 11:49:09 95 ADAOPR EXT_BACKUP STARTED
SYNC 23-JAN-2015 13:06:41 96 ADANUC 6.3.4.01

adarep: @

%ADAREP-T-TERMINATED, 23-JAN-2015 13:07:47, elapsed time: 00:00:03
% setenv RECPLG plog.0096 # Set RECPLG for ADAREC (C shell)
% adarec dbid=37 regenerate=* plog=96

After the restore, the checkpoint file contains the EXT_BACKUP STARTED checkpoint written by
EXT_BACKUP=PREPARE, but not the checkpoints written by EXT_BACKUP=CONTINUE. The

Adabas Utilities 341

ADAOPR (Operator Utility)

session number displayed for the current nucleus session is the number of the first PLOG that
must be used for ADAREC REGENERATE for re-applying the changes done after the external
backup.

The external backup is logged in the ADANUC log file

%ADANUC-T-DBSTART, Database 37, session 16 started, 14-NOV-2012 16:17:10
%ADANUC-T-EXTBPREP, preparing for external backup, 14-NOV-2012 16:18:30
%ADANUC-T-DBSTART, Database 37, session 17 started, 14-NOV-2012 16:18:45
%ADANUC-T-PLOGCRE, plog NUCPLG, file 'plogs/plog.0017' created

ZADANUC-T-EXTBCONT, continue from external backup, 14-NOV-2012 16:18:45

FEOF
FEOF = (keyword [,keywordl)

In accordance with the keywords specified, the log file(s) are closed and a new log file is created.

Keyword | Meaning

CLOG |closes command log file.

PLOG |closes protection log file.

This depends on the [NO]JET_SYNC option:

If ET_SYNC is specified:

The current protection log file (PLOG) will be closed when all currently active ET logic users have
come to ET status, and a new PLOG is created with the next higher PLOG number.

ELOG |closes event log file.

The ELOG-keyword is only applicable if Adabas Analytics for LUW (EAL) is installed.

The FEOF command will be rejected if the keyword PLOG is used while running ADAREC RE-
GENERATE =* (see ADAREC for more detailed information).

FILE
FILE = number

This influences the output of the DISPLAY options HQ, ICQ, UQ, UQ_FILES, UQ_FULL and
UQ_TIME_LIMITS. Only entries related to the specified file number are displayed.

342 Adabas Utilities

ADAOPR (Operator Utility)

FREE_CLQ
FREE_CLQ

Normally, obsolete entries in the client queue are released automatically when the client queue is
full. With ADAOPR FREE_CLQ), you can enforce the client queue cleanup before the client queue
becomes full.

ID

ID = number

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries related to the specified internal ID are displayed.

[NOJIO_TIME
[NOJIO_TIME

The parameter IO_TIME enables logging of the I/O times for the ASSO, DATA, WORK, NUCSRT
and NUCTMP containers. The times are given in microseconds.

If logging of I/O times is already enabled, enabling it again resets all I/O time and I/O counter
statistics.

The default is NOIO_TIME.

ISN
ISN = (number [- number] [,number [- number]l 1 ...)

This function influences the output of the DISPLAY option HQ. Only entries related to the specified
ISNs are displayed.

[UNJLOCK
[UNJLOCK = (number [,number]...)

The file(s) specified by the file number(s) are locked or unlocked. The specified files are locked
for all non-utility use; Adabas utilities can use the file(s) normally. Specifying 0 means lock/unlock
the complete database.

For users who have one or more files to be locked in their open file list, a STOP <user-ID> command
is issued internally. Refer to the description of the ADAOPR STOP parameter for more details.

Notes:

Adabas Utilities 343

ADAOPR (Operator Utility)

1. You can also lock non-existent file numbers; if you subsequently create files with these numbers,
the files are locked.

2. Locking a LOB file does not prevent users from storing LOB data in the LOB file; disabling the
access to LOB data in the LOB file is part of locking the corresponding base file. Locking a LOB
file is only useful if you plan to use this file number for a base file at some time in the future.

3. LOCK=0 is equivalent to OPTIONS=UTILITIES_ONLY plus stopping all users; UNLOCK=0 is
equivalent to OPTIONS=NOUTILITIES_ONLY.

4. If files were locked on the file level, they must also be unlocked on the file level; UNLOCK=0
does NOT unlock such files.

LOGGING

LOGGING = (keyword [,keyword]...)

This parameter starts command logging for the buffers specified in the list of keywords.

The following keywords can be used:

Keyword | Meaning

CB Enables logging of control block

FB Enables logging of format buffers

RB Enables logging of record buffers

SB Enables logging of search buffer

VB Enables logging of value buffer

IB Enables logging of ISN buffer

ABD |Enables logging of Adabas buffer descriptions

10 Enables 1/O list logging

NAT |Enableslogging of Natural information (Requires additional configuration in NATPARM module.
Pleaser refer to the Natural documentation for further information.)

OFF Stops logging of all buffers, but keeps the command log file open

If the nucleus was started with LOGGING=OFF and buffer logging is requested, then the CLOG
file will be created.

344

Adabas Utilities

ADAOPR (Operator Utility)

LOGIN_ID
LOGIN_ID = string

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries with a login ID that begin with the specified string
will be selected. Please note that the string specification must be case sensitive. If you want to select
explicitly a login ID shorter than 8 characters, but not other login IDs beginning with this login
ID, you must add "* " (Windows platforms) or "\ " (non-Windows platforms) to the login ID.

NISNHQ
NISNHQ = number

This parameter specifies the maximum number of records that can be placed into hold at any time
by a single user.

If the specified value is less than the corresponding high-water value, a warning is issued.

The minimum value is 0, where 0 means unlimited.

NODE_ID
NODE_ID = string

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries with a node ID that begin with the specified string
will be selected. Please note that the string specification must be case sensitive. If you want to select
explicitly a node ID shorter than 8 characters, but not other node IDs beginning with this node
ID, you must add """ (Windows platforms) or "\ " (non-Windows platforms) to the node ID.

OPTIONS
OPTIONS = (keyword[,keyword])

The available keywords are:

Keyword Meaning

[NOJLOCAL_UTILITIES|If LOCAL_UTILITIES is specified, the nucleus rejects all remote utility calls, i.e.
the Adabas utilities cannot be run from a remote node across a network.

[NOJUTILITIES_ONLY |If UTILITIES_ONLY is selected, all calls other than for utilities will be rejected.
Note, however, that this restriction only applies to new users; users who were
already active when OPTIONS=UTILITIES_ONLY was specified can continue
processing normally. If you want exclusive utility control over files or the entire
database, use the LOCK function of ADAOPR instead.

These options can be disabled using the prefix 'NO', e.g. OPTIONS=NOUTILITIES_ONLY.

Adabas Utilities 345

ADAOPR (Operator Utility)

READ_PARALLEL_LIMITS
READ_PARALLEL_LIMITS = (records,blocks,total)

This parameter is used to modify the nucleus parameter READ_PARALLEL_LIMITS. Please refer
to the description in ADANUC for further information.

This parameter is used to modify the nucleus parameter READ_PARALLEL_LIMITS. Please refer
to the description in ADANUC for further information.

RESET

RESET = keyword

RESET=HIGH_WATER resets the high water mark values to the value currently in use.
RESET=COMMANDS resets the command counts displayed by ADAOPR DISPLAY=COMMANDS.

RESET=RPL_STATS resets the replication statistic counters for all replicator threads, or in combin-
ation with the THREAD parameter for a specific thread only.This keyword is only relevant for
customers who are using the Adabas Event Replicator with Adabas - Adabas Replication.

[NOJRESPONSE_ABORT
[NOJRESPONSE_ABORT

If response checking is enabled with the RESPONSE_CHECK parameter of ADAOPR, the RE-
SPONSE_ABORT option determines whether the nucleus aborts when one of the specified responses

occurs (RESPONSE_ABORT), or whether the nucleus resumes operation and a database section
file is written to disk (NORESPONSE_ABORT).

The setting of the [NOJRESPONSE_ABORT option can only be changed before the RE-
SPONSE_CHECK parameter. The same applies for XA_RESPONSE_CHECK.

The default is NORESPONSE_ABORT.

Refer to the RESPONSE_CHECK parameter for further information.

RESPONSE_CHECK
RESPONSE_CHECK = [(number[-number][,number[-numberl]...)]

This function enables the DBA to gather information if one of a list of Adabas response codes occurs.
The information written may be used to analyze possible problems in the database's operation. If
a response check for an Adabas response code is enabled, the database section file is written to
disk if this response code occurs.

346 Adabas Utilities

ADAOPR (Operator Utility)

Depending on the setting of the RESPONSE_ABORT option, the nucleus either aborts or continues
operation:

* if the RESPONSE_ABORT option is set, the database section file (Adabas.xxx.hh:mm:ss [UNIX],
or Adabas.xxx.hh-mm-ss [Windows]) is written to the database's default directory. The database
section file is also called the CSA dump file. See ADANUC and the environment variable
ADA_CSA_DUMP for more information.

When the CSA dump file is written, the SMP dump file is also written (UNIX platforms only);
the name of the SMP dump file is SMPPOS.APP:hh:mm:ss.

® if the NORESPONSE_ABORT option is set (default setting), the nucleus continues running and
the database section file (Adabas.xxx.RSPyyy.hh:mm:ss [UNIX], or Adabas.xxx.RSPyyy.hh-mm-
ss [Windows]) is written to the database's default directory. See ADANUC and the environment
variable ADA_CSA_DUMP for more information. Only one dump is generated for one response
code; if a response code occurs, the RESPONSE_CHECK option is deactivated for that response
code, but if it has been activated for other response codes, it remains active for the other response
codes.

Refer to the RESPONSE_ABORT action for further information.
By default, no response is trapped and the nucleus continues operation.

To disable response trapping, use "RESPONSE_CHECK =" without arguments.

SET_FILE_STATS
SET_FILE_STATS = [(number[-number][,number[-number]]...)]

This function enables the file level I/O statistics for the specified files. Only these files will be dis-
played by DISPLAY = FILE_IO.

SHUTDOWN
SHUTDOWN

This function terminates the Adabas session normally. No new users are accepted. ET-user updating
is continued until the end of the current transaction for each user. When all update activity has
ended as described above, the Adabas session is terminated.

The communication link to the database is cut but the shared memory is still held. In this case,
display functions are still possible with ADAOPR but parameter modification commands are no
longer permitted.

Adabas Utilities 347

ADAOPR (Operator Utility)

STATUS
STATUS = (keyword [,keyword] ,...)

This function influences the output of the DISPLAY parameter options HQ, ICQ, UQ, UQ_FILES,
UQ_TIME_LIMITS, UQ_FULL. Only entries in the specified state will be displayed.

The valid keywords are:

Keyword Meaning

[NOJTIMEOUT User without or with "T" status.
[NOJET_STATUS |Users at "ET" status with open transactions.
[NOJPENDING_ET |Users without or with "P" status.

STOP

STOP = (number[-number][,number[-numberl]...)

This parameter terminates the user with the specified ID (internal identification). The ID can be
retrieved with DISPLAY = UQ.

The message "Stop handling started for n users" is displayed, where "n" is the number of users
who will be stopped.

. Note: Utilities cannot always be stopped in this way.
The actions that Adabas takes when a user is stopped depend on the user type, and also whether

the nucleus requires an explicit OP (open) command at the start of a user session, as shown in the
following table.

The abbreviation SUQE used in the table means "Stop user queue element", and consists of the
following actions: release all Command IDs, scratch the file list, scratch the user ID, scratch the
user type, set response 9 for the next call.

User Type Adabas Actions without ADANUC Adabas Actions with ADANUC
OPTIONS=0OPEN_REQUIRED OPTIONS=0OPEN_REQUIRED
ACC For ID user: SUQE session closed

For non-ID user: session closed
ET, ET Status For ID user: SUQE session closed

For non-ID user: session closed

ET, no ET Status Backout transaction, SUQE Backout transaction, session closed
EX SUQE, CLSE checkpoint session closed
EX, ET with ET status|SUQE, CLSE checkpoint session closed

348 Adabas Utilities

ADAOPR (Operator Utility)

User Type Adabas Actions without ADANUC Adabas Actions with ADANUC
OPTIONS=OPEN_REQUIRED OPTIONS=OPEN_REQUIRED

EX, ET, no ET status |Backout transaction, SUQE, CLSE checkpoint|Backout transaction, session closed

UT session closed session closed

If a STOP command is issued for a user while running

ADAREC REGENERATE = *

it will be rejected.

THREAD

THREAD = number

This parameter is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas Replication.

If you specify the parameter is before DISPLAY=RPL_STATS, the replication statistics are displayed
only for the replicator thread specified. Thread numbering starts with 1. If you specify “THREAD="
without a number, the subsequent DISPLAY=RPL_STATS will display the statistics for all threads
and the summary of all threads.

TNAA

TNAA = number

This parameter sets the non-activity time limit (in seconds) for access-only users who have not
explicitly specified a TNAA value in the OP command (see Command Reference, OP command).

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

TNAE

TNAE = number

This parameter sets the non-activity time limit (in seconds) for ET logic users who have not explicitly
specified a TNAE value in the OP command (see Command Reference, OP command).

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

Adabas Utilities 349

ADAOPR (Operator Utility)

TNAX
TNAX = number

This parameter sets the non-activity time limit (in seconds) for EXU and EXF users who have not
explicitly specified a TNAX value in the OP command (see Command Reference, OP command).

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

TT

TT = number

This parameter sets the transaction time limit for ET logic users who have not explicitly specified
a TT value in the OP command (see Command Reference, OP command).

If the specified value is less than the corresponding high-water value, a warning is issued.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

USER_ID
USER_ID = string

This function influences the output of the DISPLAY parameter options CQ, HQ, ICQ, UQ,

UQ_FILES, UQ_TIME_LIMITS, UQ_FULL. Only entries with a user ID that begin with the specified
string will be selected. Please note that the string specification must be case sensitive. If you want
to select explicitly a user ID shorter than 8 characters, but not other user IDs beginning with this
user ID, you must add "* " (Windows platforms) or "\ " (non-Windows platforms) to the user ID.

WCHARSET

WCHARSET = <ICU encoding>

This parameter specifies the default encoding for W fields for user sessions. This encoding is used
if no other encoding is specified in the record buffer of the OP call, or in the format buffer of L or
A/N calls.

350 Adabas Utilities

ADAOPR (Operator Utility)

Example

adanuc: wcharset=utf-16be

WRITE_LIMIT
WRITE _LIMIT = [number]

This parameter specifies the percentage of modified blocks permitted in the buffer pool before an
implicit buffer flush is taken.

Note that "WRITE_LIMIT=" (keeping the equals sign but omitting the number) is equivalent to
"WRITE_LIMIT=0".

The minimum value is 0 and the maximum value is 70; 0 means that Adabas will dynamically
choose an appropriate value.

XA_RESPONSE_CHECK
XA_RESPONSE_CHECK = (keyword [,keyword]l ,...)

This function enables the DBA to gather information if one of a list of XA response codes occurs.
The information written may be used to analyze possible problems in the database's operation. If
a response check for an XA response code is enabled, the database section file is written to disk if
this response code occurs.

Depending on the setting of the RESPONSE_ABORT option, the nucleus either aborts or continues
operation:

= if the RESPONSE_ABORT option is set, the database section file (Adabas.xxx.hh:mm:ss) is
written to the database's default directory;

= if the NORESPONSE_ABORT option is set (default setting), the nucleus continues running and
the database section file (Adabas.xxx.XAyyyyhh:mm:ss) is written to disk (refer to the ADAOPR
FILE parameter for further information).

By default, no response is trapped and the nucleus continues operation.

Refer to the RESPONSE_ABORT option for further information.

To disable response trapping, use "XA_RESPONSE_CHECK =" without arguments.
The following keywords are supported:

XA_RBROLLBACK
XA_RBCOMMEFAIL
XA_RBDEADLOCK
XA_RBINTEGRITY

Adabas Utilities 351

ADAOPR (Operator Utility)

XA_RBOTHER
XA_RBPROTO
XA_RBTIMEOUT
XA_RBTRANSIENT
XA_NOMIGRATE
XA_HEURHAZ
XA_HEURCOM
XA_HEURRB
XA_HEURMIX
XA_RETRY
XAER_ASYNC
XAER_RMERR
XAER_NOTA
XAER_INVAL
XAER_PROTO
XAER_RMFAIL
XAER_DUPID
XAER_OUTSIDE
XA_RBROLLBACK

For more information, see XA Support.

352

Adabas Utilities

23 ADAORD (Reorder Database Or Files, Export/Import Files)

B FUNCHONAI OVEIVIBW ..ot e e e e 354
B PTOCEAUIE FlOW .ottt et e 355
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 357
B G0N0l ParaMEIErS . et 357
B RES A CONSIAIAtIONS . .eeeee e e 366
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 366

353

ADAORD (Reorder Database Or Files, Export/Import Files)

This chapter describes the utility "ADAORD".

Functional Overview

The reorder utility ADAORD provides functions to reorganize a whole database (REORDER) and
to migrate files between databases (EXPORT/IMPORT).

Depending on the function selected, ADAORD produces or requires a sequential file (ORDEXP).
The main reasons for running ADAORD are:
® To change the layout of a complete database. This includes increasing or decreasing the maximum

number of files permitted;

® To change the space allocation or placement of a file, to reduce the number of logical extents
assigned to its index, Address Converter or Data Storage and to change or re-establish the
padding factors;

® To create one or more test files that all contain the same data. This procedure requires a file to
be exported and then imported using a different file number;

® To archive and subsequently reestablish a file, independent of its original placement and the
database device types used.

When exporting files from a database, the Adabas nucleus is not required. If a system file is pro-
cessed, the nucleus must be inactive. For detailed information, please refer to the table of nucleus
requirements.

When importing files into a database, the Adabas nucleus is not required to be active. The nucleus
may be either started or shut down during this procedure.

When reordering the database, the nucleus must be inactive.

Note: The IMPORT and IMPORT_RENUMBER functions can process export files created
with earlier Adabas versions, but not export files created with later Adabas versions.

This utility is a single-function utility.

354 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

Procedure Flow

The sequential file ORDEXP can have multiple extents, but only if you are using raw devices. For
detailed information about sequential files with multiple extents, see Adabas Basics, Using Utilities.

Adabas Utilities 355

ADAORD (Reorder Database Or Files, Export/Import Files)

ADAORD

IMPORT /
IMPORT_RENUMBER

Export Copy

The sequential file ORDEXP can have multiple extents, but only if you are using raw devices. For
detailed information about sequential files with multiple extents, see Adabas Basics, Using Utilities.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name

Associator ASSOx Disk

Data storage DATAX Disk

Export copy ORDEXP Disk, Tape (* see note) | Export (out),

Reorder (in/out),
other functions (in)

Control statements |stdin/ Utilities Manual
SYSSINPUT

ADAORD messages |stdout/ Messages and Codes
SYS$OUTPUT

Work storage WORK1 Disk

356 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

Note: (*) A named pipe cannot be used for this sequential file (see Adabas Basics, Using
Utilities for details).

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must be active |Nucleus must NOT be active |Nucleus is NOT required | Checkpoint written
CONTENTS X -

EXPORT X(* see note) X SYNX

IMPORT X(* see note) X SYNP
IMPORT_ X(* see note) X SYNP
RENUMBER

REORDER X X SYNP

Note: (*) When processing an Adabas system file

In the case of the EXPORT function, ADAORD writes a single checkpoint and removes the UCB
entry when all of the specified files have been exported and the sequential output file (ORDEXP)
has been closed.

In the case of the IMPORT function, ADAORD writes a checkpoint and informs the nucleus that
the file has been loaded every time a file is successfully imported.

The UCB entry is removed when all of the specified files have been imported. When the utility is
executed offline, writing multiple checkpoints increases the probability of a checkpoint block
(CPB) overflow. The checkpoint file should, therefore, always be present to allow the Adabas
nucleus to be started in order to empty the CPB.

In the case of the REORDER function, ADAORD writes a single checkpoint and removes the UCB
entry when the function terminates.

Control Parameters

The following control parameters are available:

CONTENTS

DBID = number

Adabas Utilities 357

ADAORD (Reorder Database Or Files, Export/Import Files)

EXPORT = (number[-number][,number[-number]]...)
[,FDT]

D [,SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)]

FILES = (number[[-number], number[-number]]

IMPORT = (number[-number][,number[-numberl]...)
,ACRABN = number]

,ASSOPFAC number]
,DATAPFAC number]
,DSRABN = number]

, LOBACRABN number]
, LOBDSRABN number]
,LOBNIRABN number]
,LOBSIZE = numberM]

,LOBUIRABN = number]

)

[,DSSIZE = number[B|M]]

oo 1

,MAXISN = number]

,NIRABN = number | (number,number)]

,NISIZE = number[B|M]|(number[B|M],number[B|M])]

,UIRABN = number | (number,number)]

LUISIZE = number[B|M]|(number[B|M],number[B|M])]

IMPORT_RENUMBER = (number, number[,number])
[,ACRABN = number]
[,ASSOPFAC = number]
[,DATAPFAC = number]
[,DSRABN = number] [,DSSIZE = number[B|M]]
[,LOBACRABN = number]
[,LOBDSRABN = number]
[,LOBNIRABN = number]
[,LOBSIZE = numberM]
[,LOBUIRABN = number]
[.MAXISN = number]
[,NIRABN = number|(number,number)]
[.NISIZE = number[B|M]|(number[B|MI],number[B|MI1)]
[,UIRABN = number|(number,number)]
[.UISIZE = number[B|MI|(number[B|M],number[B|MI)]
REORDER = *
CONTENTS
CONTENTS

This function displays the list of files contained in the sequential output file (ORDEXP) created
by a previous run of the EXPORT function.

358

Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

DBID
DBID = number

This parameter selects the database to be used.

EXPORT

EXPORT = (number[-numberI[,number[-numberl]...)
[,FDT]
[,SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)]

This function exports (copies) one or more files from the database to a sequential output file (OR-
DEXP). In order to maintain referential integrity in the export copy, all files that are connected via
referential constraints to a specified file are also exported. The file numbers specified are only
taken into consideration if they are the file numbers of base files; the corresponding LOB files for
the selected files are exported automatically with the base files without having to be specified. An
EXPORT consists of copying each file's Data Storage, together with the information that is required
to reestablish its index. All of the files to be processed are written to ORDEXP in the sequence in
which they are specified. Overlapping ranges and numbers are removed.

Note: If the checkpoint file is included in the file list, it will be processed last.

FDT
This parameter displays the FDT of the file to be processed.
SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)

This parameter controls the sequence in which the Data Storage is processed. If specifies either
the field name of a descriptor, subdescriptor or superdescriptor, or the keyword 'ISN' or 'PHYS-
ICAL".

The default is physical sequence.

The following values can be specified:

Value Sequence

descriptor_name|If the name of a descriptor, sub- or superdescriptor is specified, the data records are
processed in ascending logical sequence of the descriptor values to which the field name
refers.

A field with the MU, MC or NU option or one that is contained in a periodic group or a
sub- or superdescriptor derived from such a field must not be specified.

Logical sequence can be used only if a single file has been selected.

Adabas Utilities 359

ADAORD (Reorder Database Or Files, Export/Import Files)

Value Sequence

ISN If ISN is specified, the data records are processed in ascending ISN sequence.

PHYSICAL If PHYSICAL is specified or if the SORTSEQ parameter is omitted, the data records are
processed in the physical sequence in which they are stored in the Data Storage.

The performance when processing in logical sequence and ISN sequence is better if the database
is online (provided that the buffer pool is large enough).

If one value is specified for SORTSEQ, that value is valid for all files. If more than one value is
specified, the number of values must be the same as the number of file ranges specified for the
EXPORT parameter. In this case, the first file range is exported in the first specified sort sequence,
the second file range is exported in the second specified sort sequence, and so on.

Example

EXPORT = (1, 20-30, 40)
SORTSEQ = (AA, PHYSICAL, ISN)

File 1 is exported in the sequence of descriptor AA, files 20-30 are exported in physical sequence
and file 40 is exported in ISN sequence.

FILES

FILES = (number[[-number], number[-numberl] ...)

This parameter is used to display information concerning the status of the specified files contained
on the sequential input file (ORDEXP).

IMPORT

IMPORT = (number[-number][,number[-numberl]...)

[,ACRABN = number]

[,ASSOPFAC = number]

[,DATAPFAC = number]

[,DSRABN = number] [,DSSIZE = number[B|M]]
[,LOBACRABN = number]

[,LOBDSRABN = number]

[,LOBNIRABN = number]

[,LOBSIZE = numberM]

[,LOBUIRABN = number]

[,MAXISN = number]

[,NIRABN = number|(number,number)]

[,NISIZE = number[B|M]|(number[B|M],number[B|M])]
[,UIRABN = number|(number,number)]

[,UISIZE = number[B|M]|(number[B|M],number[B|M])]

This function imports one or more files into a database, using the data on the sequential file (OR-
DEXP) produced by a previous run of ADAORD. In order to maintain referential integrity, all

360 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

files connected via referential constraints to a specified file are also imported. The file numbers
specified are only taken into consideration if they are the file numbers of base files; the correspond-
ing LOB files for the selected files are imported automatically with the base files without having
to be specified. The file numbers specified are sorted into ascending sequence. Overlapping ranges
and numbers are removed.

The file numbers specified must not be loaded in the database.

By default, ADAORD controls the file placement and the allocation quantities. The parameters
that can be used to overwrite these defaults may be used only if a single file has been selected.

Please refer to the IMPORT_RENUMBER function for the description of the parameters.

IMPORT_RENUMBER

IMPORT_RENUMBER = (number, number[,number])

,ACRABN = number]

,ASSOPFAC number]

,DATAPFAC = number]

,DSRABN = number] [,DSSIZE = number[B|M]]

, LOBACRABN = number]

,LOBDSRABN = number]

,LOBNIRABN = number]

,LOBSIZE = numberM]

,LOBUIRABN = number]

,MAXISN = number]

,NIRABN = number | (number,number)]

,NISIZE = number[B|M1| (number[B|M],number[B|MI)]
,UIRABN = number | (number,number)]

,UISIZE = number[B|M1| (number[B|M],number[B|MI)]

e

This function imports a file into a database, using the data on the sequential file (ORDEXP) produced
by a previous run of ADAORD. It is not possible to import and renumber a file that is connected
to another file via referential integrity. Constraints must either dropped before exporting the files,
or the files must be imported without renumbering and be renumbered later ADADBM RENUM-
BER). The first number given defines the base file to be imported, and the second number is the
new file number to be assigned to the file. The third, optional number is the new file number for
the LOB file. If the third number is not specified, the LOB file number (if it exists) remains un-
changed.

The new file number must not be loaded in the database.

Unless otherwise specified, ADAORD controls the file placement and the allocation quantities.

Adabas Utilities 361

ADAORD (Reorder Database Or Files, Export/Import Files)

ACRABN = number

This parameter specifies the RABN at which the space allocation for the Address Converter (AC)
is to start.

If this parameter is omitted, ADAORD assigns the starting RABN.

ASSOPFAC = number

This parameter specifies the new padding factor to be used for the file's index. The number specified
is the percentage of each index block which is not to be used by ADAORD or a subsequent run of
the mass update utility ADAMUP. This padding area is reserved for future use if additional entries
have to be added to the block by the Adabas nucleus. This avoids the necessity of having to relocate
overflow entries to another block.

A value may be specified in the range of 0 to 95.

A small padding factor (0 to 10) should be specified if little or no descriptor updating is expected.
A larger padding factor (10 to 50) should be specified if a large amount of descriptor updating is
expected in which new descriptor values are created.

If this parameter is omitted, the current padding factor in effect for the file's index is used.
DATAPFAC = number

This parameter specifies the new padding factor to be used for the file's Data Storage. The number
specified is the percentage of each data block which is not to be used by ADAORD. This padding
area is reserved for future use if any record in a block requires additional space as result of record
updating by the Adabas nucleus. This avoids the necessity of having to relocate overflow entries
to another block.

A value may be specified in the range of 0 to 95.

A small padding factor (0 to 10) should be specified if there is little or no record expansion. A larger
padding factor (10 to 50) should be specified if there is a large amount of record updating which
will cause expansion.

If this parameter is omitted, the current padding factor in effect for the file's Data Storage is used.

362 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

DSRABN = number

This parameter specifies the RABN at which the space allocation for the file's Data Storage (DS)
is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
DSSIZE = number[B|M]

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Data Storage (DS). By default, the size is given in megabytes.

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

LOBACRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Address Con-
verter (AC) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
LOBDSRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Data Storage
(DS) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
LOBNIRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Normal Index
(NI) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.

LOBSIZE=numberM

This parameter specifies the number of megabytes to be initially assigned to the LOB file's Data
Storage (DS). The AC size, NI size and Ul size for the LOB file are derived from this size.

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

Adabas Utilities 363

ADAORD (Reorder Database Or Files, Export/Import Files)

LOBUIRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Upper Index
(U]) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.
MAXISN = number

This parameter specifies the highest permissible ISN for the file. ADAORD uses this parameter
to determine the amount of space to be allocated for the file's Address Converter (AC).

Because there is no automatic extension of the initial allocation, a value that is smaller than the
file's current first free ISN will cause ADAORD to terminate execution and return an error status
if there are ISNs outside the Address Converter.

If this parameter is omitted, the value of MAXISN currently in effect for the file's Address Converter
is used.

A contiguous-best-try allocation is used.
NIRABN = number|(number,number)

This parameter specifies the RABN(s) at which the space allocation for the file's Normal Index
(NI) is to start. Adabas usually stores small descriptor values (<= 253 bytes) in small index blocks
(block size <16 KB) and large descriptor values in large index blocks (block size >=16 KB. For this
reason, it is possible to specify 2 RABNSs - if you specify 2 RABNs, one must have a block size <
16 KB, and the other must have a block size >=16 KB.

If this parameter is omitted, ADAORD assigns the start RABN.
NISIZE = number[B|M]|(number[B|M],number[B|M])

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Normal Index (NI). By default, the size is given in megabytes. If two values are specified and
the NIRABN parameter is also specified, the first value corresponds to the first value of the NIRABN
parameter, and the second value corresponds to the second value of the NIRABN parameter. If
two values are specified and the NIRABN parameter is not specified, the first value specifies the
size of small normal index blocks (< 16 KB), and the second value specifies the size of large NI
blocks (>= 16 KB).

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

364 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

UIRABN = number|(number,number)

This parameter specifies the RABN(s) at which the space allocation for the file's Upper Index (UI)
is to start. Adabas usually stores small descriptor values (<= 253 bytes) in small index blocks (block
size <16 KB) and large descriptor values in large index blocks (block size >=16 KB. For this reason,
it is possible to specify 2 RABNs - if you specify 2 RABNs, one must have a block size <16 KB,
and the other must have a block size >=16 KB.

If this parameter is omitted, ADAORD assigns the start RABN.
UISIZE = number[B|M]|(number[B|M],number[B|M])

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Upper Index (UI). By default, the size is given in megabytes. If two values are specified and
the UIRABN parameter is also specified, the first value corresponds to the first value of the UIRABN
parameter, and the second value corresponds to the second value of the UIRABN parameter. If
two values are specified and the UIRABN parameter is not specified, the first value specifies the
size of small upper index blocks (<16 KB), and the second value specifies the size of large Ul blocks
(>=16 KB).

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

REORDER
REORDER = *

This function is used to change the layout of a whole database. It rearranges the database's global
areas, eliminates fragmentation in the DSST and the files' Address Converter, Data Storage, Normal
Index and Upper Index extents by physically changing their placement. It also re-establishes the
files' padding factors. Exclusive control of the database container files is required.

A REORDER database implicitly exports the files, deletes them from the database and then re-
imports them. The sequential file (ORDEXP) that is created during the REORDER is kept.

Note: ADAORD uses a best-fit algorithm for the allocation of the disk space for the files.

Therefore, it may occur that the first container of a given type remains empty if it is followed
by another container with adequate block size which is smaller than the first one.

Adabas Utilities 365

ADAORD (Reorder Database Or Files, Export/Import Files)

Restart Considerations

ADAORD has no restart capability.
An abnormally terminated EXPORT must be rerun from the beginning.

An abnormally terminated IMPORT of one or more files will result in lost RABNSs for the last file
being imported. These RABNs can be recovered by executing ADADBM's RECOVER function.
The files preceding the one being processed when the interrupt occurred will be available in the
database. Therefore, the IMPORT function should be rerun starting with the file number at which
the interrupt occurred.

An abnormally terminated IMPORT_RENUMBER will result in lost RABNs for the file being im-
ported. These RABNs can be recovered by executing ADADBM's RECOVER function. The IM-
PORT_RENUMBER function has to be rerun from the beginning.

An abnormally terminated REORDER at the database level may result in a database that cannot
be accessed if the interrupt occurred while reordering the database's global areas (GCB, FST, DSST,
etc.). In this case, either a new empty database has to be created using ADAFRM or the old database
has to be reestablished from an Adabas backup copy, using ADABCK's RESTORE database function.
If the interrupt occurred during the re-import phase, it will result in lost RABNs for the last file
being imported. These RABNs can be recovered by executing ADADBM's RECOVER function.
The files preceding the one being processed when the interrupt occurred will be available in the
database. The remaining files can be obtained from the sequential work file (ORDEXP) by using
ADAORD's IMPORT function.

Examples

In the examples below, the files 1, 2, 4, 6, 7, 8, 10, 11, 12 and 25 are loaded in database 1. Database
2 contains files 3, 6 and 11.

Example 1

adaord: dbid

=1
adaord: export =

(1-4,7,10-25)

Files 1, 2, 4,7, 10, 11, 12 and 25 are exported from database 1.

366 Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)

Example 2

adaord: dbid

= 2
adaord: import =

(1-10,12)

Files 1,2, 4,7,10 and 12 are imported into database 2. It is not possible to specify "import=(1-12)"
because ADAORD first checks to see if one of the files to be imported is already loaded , and if it
is, then the whole import is rejected - in this case file 11 is already loaded.

Example 3

adaord: dbid = 2
adaord: import_renumber = (11,19), acrabn = 131, datapfac = 20

File 11 is imported into database 2 using a new file number of 19 (because 11 is already in use).
The file's Address Converter (AC) is to be allocated at ASSO RABN 131. The new padding factor
for the Data Storage (DS) is 20 percent.

Example 4

adaord: dbid =1
adaord: reorder = *

The whole database is reordered.

Adabas Utilities 367

368

24 ADAPLP (Protection Log Printout)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 370
B PIOCEAUIE FIOW ...t et e 371
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 372
B CONEIOl PArAMEIEIS ... e ettt e 372
B ADAPLP QUIPUL ...ttt e et e e e e e e e e e 381

369

ADAPLP (Protection Log Printout)

This chapter describes the utility "ADAPLP".

Functional Overview

The ADAPLP utility prints the Protection Log or WORK.
This utility is a multi-function utility.

] Note: LOB values are split into several records in a LOB file; when LOB values are stored

in the database, the Protection Log contains the log records for the modifications of the LOB
file. This means that ADAPLP does not display the LOB values as one value, but rather it
displays the modifications of the corresponding records in the LOB file instead. It is not
possible to decompress the LOB file records because the LOB records are too large to fit
into one block, and the continued Protection Log records cannot be decompressed.

370 Adabas Utilities

ADAPLP (Protection Log Printout)

Procedure Flow

ADAPLP
- o
' F"I.P'F"I.EI:
e S ___::' . - =
PLPLEX ASE0
Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Protection log PLPPLG Disk, Tape |Utilities Manual
Protection log (last extent) | PLPLEX Disk Only required if you process a PLOG with an
extension count > 1 and if you use the
DECOMPRESS or DELTA option: you must provide
the last PLOG extent before the PLOG extent to be
processed.
Control statements stdin/ Utilities Manual
SYS$INPUT
ADAPLP report stdout/ Messages and Codes
SYS$OUTPUT
Work storage WORK1 Disk

Adabas Utilities

371

ADAPLP (Protection Log Printout)

The sequential file PLPPLG can have multiple extents. For information about sequential files with
multiple extents, see Adabas Basics, Using Ultilities.

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

M DATASET = keyword
DBID = number
D [NOJDECOMPRESSED
DELTA
D [NO]DUMP
FILES = (number [-number][,number [-number]]...)
D [NOJHEADER
INTERNAL_ID = number
ISN = (number [,number] ...)
MODIFIED_RABN = number
NOFILETYPE
NONULL

PLOG = (number [,number])

M RABN = {*|number[-number]}
RECORD ={*| (number [- number] [, number [- numberl]...) }
SEQ = number

D [NOJSHORT

372 Adabas Utilities

ADAPLP (Protection Log Printout)

THREAD = number
TSN = number

D TYPE = (keyword [,keyword]...)
USER_ID = string

D [NOIWXA

DATASET

DATASET = keyword

This parameter selects the file containing the Protection Log information to be processed. The
keyword can take the values PLOG or WORK. The parameter PLOG must be specified first if
DATASET=PLOG is to be specified and the protection log is located on a raw device.

DBID
DBID = number
This parameter selects the database to be used.

This parameter must be used when DATASET=WORK is requested, or if DATASET=PLOG and
the protection log is within a raw section. This parameter must be the first parameter to be specified.
Otherwise, if this parameter is not specified, the DBID stored in the PLOG is used.

[NOJDECOMPRESSED
[NOJDECOMPRESSED

This option indicates whether for each selected DATA record from a protection log, one line per
field is printed with the field name and its decompressed value in hex (DECOMPRESSED) or not
(NODECOMPRESSED).

For an inserted record, an after image containing the field values of the record after the insert is
displayed.

For an updated record, a before image containing the field values before the update, and an after
image containing the field values of the record after the update are displayed.

For a deleted record, a before image containing the field values before the delete operation is dis-
played.

If you specify DECOMPRESSED and NONULL, no output is produced for the following:

* Fields with NU or NC option with null-value;

Adabas Utilities 373

ADAPLP (Protection Log Printout)

® MU fields with NU or NC option without a value that is not the null-value;

® PE groups containing only fields with NU or NC option without a value that is not the null-
value;

® Group names if the group is not PE.
The default is NODECOMPRESSED.

Note: Decompression (DECOMPRESSED output) is not possible for CONTINUED records.

CONTINUED records are created if a PLOG record plus the block header is larger than 32
KB in the PLOG or larger than the block size used for WORK.

Example output for DECOMPRESSED (without NONULL option)

>>> After Image <K<K

Length = 20, ISN = 2

Field : AA: ~30372E31322E3034

Group : AB

Field : AC: 720
Field : AE: 720
Field : AD: 720
Field : AF: 720

Field : AG: 20

Field : AH: ~0000000C

Group : Al

MU-field : AI, count = ~01
AT(C 1): 720

Field : Ad: 720

Field : AK: 720202020202020202020

Field : AL: 7202020

Group : A2

Field : AN: 7202020202020

Field : AM: 7202020202020202020202020202020

Field : AO: 7202020202020

Field : AP: 720

PE-group : AQ, count = 701
PE index (1)
Field : AR: 7202020
Field : AS: ~000000000C
MU-field : AT, count = 701
ATC 1): ~000000000C
End of PE-group : AQ

Group : A3
Field : AU: 73030
Field : AV: 73030

PE-group : AW, count = ~01
PE index (1)

374 Adabas Utilities

ADAPLP (Protection Log Printout)

Field : AX: 7~3030303030303030
Field : AY: 7~3030303030303030
End of PE-group : AW
MU-field : AZ, count = 701

AZ(1): ~202020

Example output for DECOMPRESSED (with NONULL option)

>>> After Image <K<K

Length = 15, ISN = 2

Field : AA: 7~30372E31322E3034
Field : AF: 720

Field : AG: 720

DELTA

DELTA

This parameter indicates that only changed fields after an update are displayed.

For an inserted record, the same output is produced as with the options DECOMPRESSED,
NONULL.

For an updated record, a Delta containing the modified field values is displayed. Note that for
MU/PE fields, the value count displayed can be smaller than the displayed MU/PE indices if the
MUY/PE count has been decreased - this is because all field values have been set to the null value.

If a record is deleted, no output is produced, however, you can see the deletion if you display
protection log entries of the type CE.

Note: Decompression (DELTA output) is not possible for CONTINUED records. CONTIN-

UED records are created if a PLOG record plus the block header is larger than 32 KB in the
PLOG or larger than the block size used for WORK.

[NOJDUMP

[NOJIDUMP

This option indicates whether the variable part of a Protection Log record is included in the printout
(DUMP) or not (NODUMP).

If DUMP is specified, the variable part of each Protection Log record is displayed in both hexa-
decimal and uninterpreted ASCII format.

DUMP implicitly resets SHORT.

Adabas Utilities 375

ADAPLP (Protection Log Printout)

The default is NODUMP.

FILES

FILES = (number [-number][,number [-number]]...)

The Protection Log records are only displayed if they belong to the file(s) specified by this para-
meter.

Only records of the types DA, DV, EXT, INDEX and FCB are displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

[NOJHEADER
[NOJHEADER

This option indicates whether for each block of the Protection Log a header is displayed (HEADER)
or not (NOHEADER).

The default is HEADER.

INTERNAL_ID
INTERNAL_ID = number

This option displays only the records with the specified internal ID.

ISN

ISN = (number [,number] ...)

The Protection Log records are only displayed if they belong to the ISNs specified by this parameter.
Only records of the types DA and DV are displayed. Please refer to the tables at the end of this
section for a description of the various types of Protection Log records. This parameter can only
be used in conjunction with the FILE parameter.

376 Adabas Utilities

ADAPLP (Protection Log Printout)

MODIFIED_RABN
MODIFIED_RABN = number
This option displays only the records in which modifications for the specified RABN are logged.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

NOFILETYPE
NOFILETYPE

This keyword specifies that record types that are independent of file numbers (for example ET
and BT records) will be displayed in addition to the record types that are bound to file numbers.

Example

adaplp dbid=6 file=25 type=(da,dv,et,bt) nofiletype

The DA and DVT records of file 25 together with all ET and BT records will be displayed.

NONULL

NONULL

The NONULL parameter is only relevant if the DECOMPRESSED parameter is also specified.
Please refer to the DECOMPRESSED parameter for further information.

PLOG
PLOG = (number[,number])

This parameter is required if DATASET=PLOG is specified and the protection log is within a raw
section. It is optional if the protection log is within a file system. The PLOG number and the exten-
sion count can be specified. If an extension count is specified, then only the specified extent will
be processed. If no extension count is specified, Adabas will open subsequent extents when neces-
sary. The parameter PLOG must be specified before DATASET=PLOG is specified.

Adabas Utilities 377

ADAPLP (Protection Log Printout)

Example:

Section layout

250000 260000 10001 30 PLG.36 created
377000 378000 1001 30 PLG.36(3) created

adaplp: plog=36
adaplp: dataset=plog

PLG.36 will be opened

adaplp: plog=(36,3)
adaplp: dataset=plog

PLG.36(3) will be opened.

RABN

RABN ={*| number [- number] }

This parameter selects one block or a range of consecutive blocks on the WORK or Protection Log
file. The information contained in the specified blocks is displayed.

"

If you specify "*", all blocks are displayed.

Notes:

1. If you start ADAPLP without specifying RABN, the utility will run, but will not produce any
output.

2. After specifying the RABN parameter, the requested output is generated immediately. Therefore,
you must specify all other parameters required for the output generation, for example the
DATASET parameter, before the RABN parameter.

378 Adabas Utilities

ADAPLP (Protection Log Printout)

Example

adaplp: rabn 123

adaplp: rabn = 123 - 1246

RECORD

RECORD ={*| (number [- number] [, number [- numberl]...) }

This parameter selects the records or ranges of records to be printed. All of the records are printed
if ™' or nothing is specified.

Example:

adaplp: record = (2-5,9,11)
The records 2, 3, 4, 5, 9 and 11 are written while printing one or more PLOG blocks.
SEQUENCE

SEQUENCE = number

This option displays only the records written by the specified sequence number.

[NOJSHORT

[NOJSHORT

This option indicates whether only Protection Log block headers are printed out (SHORT), or
whether all the records in each block are included in the display (NOSHORT).

SHORT implicitly resets DUMP.

By default, the Protection Log block header is displayed followed by all of the records contained
in the block.

The default is NOSHORT.

Adabas Utilities 379

ADAPLP (Protection Log Printout)

THREAD

THREAD = number

This option displays only the records with the specified thread.

TSN

TSN = number

This option displays only the records with the specified transaction sequence number (TSN).
Only records of the type BT, C5, CL, DA, DV, ET and XA are displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

TYPE

TYPE = (keyword [,keyword]...)

This option displays only the protection log records specified by the given keyword(s). Each
keyword corresponds to one or more protection log record types, as shown in the following table.

Keyword | Protection Log record type

AB AB

ASSO |the record type AC and all record types that are selected by the keywords EXT, FCB and INDEX
AT AT

BF BS, BE, BF

BT BT
C1 C1
C5 C5
CE CE
CF CF
CT CT
DA DA

DATA |all record types that are selected by the keywords BT, CE, DA, DV, ET and OP.
DC DC

DT DT

ET ET, CL

EXT ACEXT, UIEXT, NIEXT, DSEXT

FCB FCBDS, FCBIX, SPISN

INDEX |FE, INDEX, IB, INSRU, REMRU

380 Adabas Utilities

ADAPLP (Protection Log Printout)

Keyword | Protection Log record type

opP oP

XA all record types that are selected by the keywords YB, YD, YF and YP
YB YB

YD YD

YF YF

YP YP

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

The default is to display all protection log record types.

USER_ID

USER_ID = string

This option displays only the records which start with the specified user ID.

Only records of the type BT, C1, C5, CL, DA, DV, ET, FCBDS, FCBIX, INDEX and XA are displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

[NOJWXA
[NOTWXA

This option alternates between the WORK part 1 ring buffer NOWXA) and WORK part 1 XA area
(WXA).

The default is NOWXA.

ADAPLP Output

Each block of the Protection Log or WORK is preceded by a header, which consists of the following:

* the block sequence number;
" the size of the block;
® the number of the session that the block belongs to (identical to the PLOG number);

* the time stamp showing when the block was created (internal time stamp for WORK).

The output for a record consists of the following entries:

Adabas Utilities 381

ADAPLP (Protection Log Printout)

" arecord sequence number (starting at 1 for each block);

® the internal length of the record;

® the command sequence number (uniquely identifies a command);

" the type of PLOG record (see the following table for more information);

= the number of the thread that executed the command.

In addition, most records also have the following entries:

" the internal user identification (in hexadecimal notation) that is uniquely assigned for each
command that opens a transaction.

The table below shows the types of PLOG records:

Type Description

AB logs WORK wrap around (WORK only).

AC logs the relocation of a record during backout transaction (WORK only).

ACEXT |logs the extension of the address converter (WORK only).

AT logs the adding of a field (ADADBM).

BE logs the end of a buffer flush (WORK only).

BF logs the start and end of a buffer flush (WORK only).

BS logs the start of a buffer flush (WORK only).

BT logs the start of BT processing.

C1 log record from a C1 command. Contains the checkpoint name (PLOG only).

C5 log record from a C5 command (PLOG only).

CE indicates the last entry of a command (last entry with this sequence number). If the command
was a delete operation, the file number and the ISN of the deleted record is displayed.
Example
>>> DELETE FILE 10 ISN 2 <KX

CF logs the creation of an FDT (ADAFDU).

CL logs the CLOSE of a user.

CT logs the creation of a file (ADAFDU).

DA logs a data record change. The file, RABN, and ISN of the data record are displayed. The record
is either an after image (AlI), a before image (BI), or a delta image (DI) and is displayed when
DUMP is enabled. "TSN' is an internal transaction sequence number. All entries that originate
from one transaction have the same TSN (see also the description of the ET command in the
Command Reference Manual). The output of "WB' is only displayed if DATASET=WORK has
been specified. It shows the WORK block where the previous PLOG record of the same TSN can
be found. A “clu’ value that is not zero indicates an exclusive or privileged user.

DC logs the dropping of a field (ADADBM).

382 Adabas Utilities

ADAPLP (Protection Log Printout)

Type Description

DSEXT |logs the extension of data storage (WORK only).

DT logs the deletion of a file (ADADBM).

DV logs a descriptor update (should always be preceded by a DA record). The entries for the file,
ISN, TSN, clu, and WB are the same as for the DA record type.

ET log entry from an ET command. The ET TSN gives the TSN of the last user data written by an ET
command.

FCBDS |logs an FCB change for data storage (WORK only).

FCBIX |logs an FCB change for the normal index (WORK only).

FE logs a change of an index block's first entry (WORK only).

IB logs an index block that is modified (WORK only).

INDEX |logs an index block that is split (WORK only).

INSRU |logs the insertion of an index block into a reusage chain (WORK only).

NIEXT |logs the extension of the normal index (WORK only).

0] logs the OPEN of a user.

REMRU |logs the deletion of an index block from a reusage chain (WORK only).

SPISN |logs changes in ISN reusage or space reusage.

UIEXT |logs the extension of the upper index (WORK only).

YB logs the backout of a transaction within the XA protocol.

YD logs the discarding of a heuristically terminated transaction within the XA protocol .

YF logs the final commit of a transaction within the XA protocol.

YP logs the preliminary commit of a transaction within the XA protocol.

There are also several flags that may be displayed with DA or DV records:

Flag Description

Al the data of this PLOG record contain an after image of the data record (record type DA).
BACKOUT indicates that the record was written during a backout within a single command.

BI the data of this PLOG record contain a before image of the data record (record type DA).
BT indicates that the record was written during the backout of a transaction.

DI the data of this PLOG record contain a delta image of the data record (record type DA).
FDATA indicates that this is the first DA record of this command.

FIRST_ENTRY |indicates that this is the first record with a given sequence number.

HIMERGE merge of the highest index level.

HISPLIT split of the highest index level.

USERD transaction carries user data.

Adabas Utilities

383

384

25 ADAPRI (Print Adabas Blocks)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 386
B PIOCEAUIE FIOW ...t et e 387
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 388
B CONEIOl PArAMEIEIS ... e ettt e 388

385

ADAPRI (Print Adabas Blocks)

This chapter describes the utility "ADAPRI".

Functional Overview

The ADAPRI utility prints the contents of a block (or range of blocks) in the Associator, Data
Storage, WORK, TEMP, or SORT for maintenance or auditing purposes.

The output is in hexadecimal and ASCII format. Subsequent identical lines and blocks are sup-
pressed.

This utility is a multi-function utility.

386 Adabas Utilities

ADAPRI (Print Adabas Blocks)

Procedure Flow

Associator ASS0Ox Disk

Data storage DATAX Disk

Sort storage SORTx Disk

Control statements |stdin/ Utilities Manual
SYSSINPUT

ADAPRI output |stdout/
SYS$OUTPUT

Temporary storage | TEMPx Disk

Work storage WORK1 Disk

Adabas Utilities

387

ADAPRI (Print Adabas Blocks)

Assignments to the ASSO container files are required in order to be able to process the DATA or
WORK container files.

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

DATASET = keyword

DBID number

RABN = number [- number]
DATASET

DATASET = keyword

This parameter specifies the part of the database to be dumped. Valid keywords are:

Keyword | Meaning

ASSO | Associator
DATA |Data Storage
SORT |Sort Area

TEMP |Temporary Area
WORK |Work Area

Example

adapri: dataset = asso, rabn = 123 - 321

The Associator is dumped from RABN 123 to RABN 321

388 Adabas Utilities

ADAPRI (Print Adabas Blocks)

DBID

DBID = number

This parameter selects the database to be used.

This parameter is not required if DATASET = TEMP or SORT.
RABN

RABN = number [- number]

This parameter specifies one RABN or a range of RABNs to be dumped.

Examples

adapri: dbid = 1, dataset = data, rabn = 123

DATA RABN 123 of database 1 is to be dumped.

adapri: dataset = sort, rabn = 123 - 129

The RABNSs from 123 to 129 on the data set SORT are to be dumped.

Adabas Utilities

389

390

26 ADARBA (RBAC Administration)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 392
B PIOCEAUIE FIOW ...t et e 393
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 394
B CONEIOl PArAMEIEIS ... e ettt e 394

391

ADARBA (RBAC Administration)

This chapter describes the utility "ADARBA".

Functional Overview

The ADARBA utility is used to administrate the RBAC security definitions, which are stored in
the RBAC system file in the database.

ADARBA creates and modifies basic security objects such as users and roles, and is used to grant
or revoke permissions. See Authorization for Adabas Ultilities for further information.

The database to be used must be online.

| Note: Each ADARBA command represents a transaction. This means that modifications to

the security definitions take effect immediately.

A\ Important: Access to this utility should be strictly limited to the person or persons responsible
for database security.

This utility is a multi-function utility.

392 Adabas Utilities

ADARBA (RBAC Administration)

Procedure Flow

Adabas Utilities 393

ADARBA (RBAC Administration)

Data Set Logical Name Storage Medium Additional Information
RBAC Definitions Database/RBAC System File

Control statements |stdin/SYS$INPUT Utilities Manual
ADARBA messages|stdout/SYS$OUTPUT Messages and Codes

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

[NOJABORT

CREATE , {OPERATION|USER|OBJECT|ROLE} = string

M DBID = number

DROP , {OPERATION|USER|OBJECT|ROLE} = string

[NOJECHO

GRANT ,ROLE = string [,T0]
GRANT ,OPERATION = string [,0BJECT = string] [,T0]

GRANT ,OPERATION = { ANY|DELETE|INSERT|READ|UPDATE}

,ROLE = string

,USER = string

LIST ,{OPERATION|USER|OBJECT|ROLE} [= string]

LIST ,ASSIGNMENT, {USER|PERMISSION}

REVOKE ,ROLE = string [,FROM] ,USER
REVOKE ,0PERATION = string [,0BJECT

REVOKE ,OPERATION = { ANY|DELETE|INSERT|READ|UPDATE}

,ROLE = string
[NOJSTAT

Notes:

string

,ROLE = string

,OBJECT = number [,T0] <

string] [,FROM] ,ROLE = string

,0BJECT = number [,FROM] <

394

Adabas Utilities

ADARBA (RBAC Administration)

1. String values are case-sensitive.

2. With reference to GRANT and REVOKE, it is recommended to specify the parts of the assignment
in the order shown above.

[NOJABORT
[NOJABORT
This function turns forced termination on or off.

If ABORT is specified, ADARBA terminates execution in case of an error and returns an error
status.

If ADARBA is executed in interactive mode, the default is NOABORT.
If ADARBA is called with parameters, the default is ABORT.

| Note: [NOJABORT can be specified in interactive mode or, if an input script is used to
provide the RBAC security definitions, in the input script.

Example:

adarba: abort
%4ADARBA-I-INP, abort
%ADARBA-I-PAR, forced termination enabled

For this ADARBA session, forced termination is enabled.

CREATE
CREATE , {OPERATION|USER|OBJECT|ROLE} = string
This function creates an RBAC definition of a given type and value.

The value assigned to items of type USER must be a valid logon credential; e.g. user identification.
These values are platform-specific:

® Unix/Linux: user_identification

= Windows: domain\user_identification

See Authorization for Adabas Ultilities for further information.

Adabas Utilities 395

ADARBA (RBAC Administration)

Example:

adarba: create,user=domain\userid

The user definition domain\ userid for Windows is created.

DBID
DBID = number
This parameter selects the database to be used.

. Note: The nucleus must be running.
Example:

adarba: dbid=200

The database currently being used is database 200.

DROP

DROP , {OPERATION|USER|OBJECT|ROLE} = string

This function deletes an RBAC definition with the given type and value. If this RBAC definition
is referenced by a user or permission assignment, the corresponding assignment is revoked impli-
citly to avoid incomplete RBAC definitions.

Example:

adarba: drop,user=NEWUSER

The user definition NEWUSER is deleted.

[NOJECHO

[NOJECHO <

This function turns the echo of the command input on or off. The default is ECHO.

. Note: [NOJECHO can be specified in interactive mode or, if an input script is used to provide
the RBAC security definitions, in the input script.

396 Adabas Utilities

ADARBA (RBAC Administration)

Example:

adarba: echo
%ADARBA-T-INP, echo
%ADARBA-T-PAR, echo input enabled

For this ADARBA session, echo input is enabled.

GRANT (User Assignment)
GRANT ,ROLE = string [,TO] ,USER = string
This function grants a role to a user.

Example:

adarba: grant,role=NEWROLE,to,user=NEWUSER

The user NEWUSER is assigned the role NEWROLE.

GRANT (Permission Assignment)
GRANT ,OPERATION = string [,0BJECT = string] [,TO] ,ROLE = string
This function grants a role the permission to perform an operation on an object.

Example:

adarba: grant,operation=ada.uti.opr,to,role=ANYROLE

The role ANYROLE is assigned the permission to perform the operation ada.uti.opr on the default
object (DBID.CURRENT).

GRANT (Command Assignment)

GRANT ,OPERATION = { ANY|DELETE|INSERT|READ|UPDATE} ,0BJECT = number [,T0] ,ROLE = <
string

This function grants a role the permission to perform the corresponding Adabas commands on
an Adabas file of the default database (DBID.CURRENT).

The predefined operations DELETE, INSERT, READ and UPDATE are used to group the Adabas
direct commands according to their functionality. ANY is a short notation for DELETE, INSERT,
READ and UPDATE .

OBJECT is interpreted as the Adabas file number if the value is a valid Adabas file number. Other
values, in particular DBID.CURRENT, are accepted as object but not interpreted.

Adabas Utilities 397

ADARBA (RBAC Administration)

Examples:

adarba: grant,operation=read,object=12,to,role=ANYROLE

The role ANYROLE is assigned the permission to perform the operation READ on file number 12
of the current database.

adarba: grant,operation=any,object=12,to,role=ANYROLE

The role ANYROLE is assigned the permission to perform the operations DELETE, INSERT, READ
and UPDATE on file number 12 of the current database.

LIST

LIST ,{OPERATION|USER|OBJECT|ROLE} [= string]

This function displays the RBAC definition, if a string value is supplied and the specified definition
exists.

This function displays all active RBAC definitions of the type specified if no value is supplied.

Examples:

adarba: list,role=PUBLIC
PUBLIC

The role PUBLIC is displayed.

adarba: list,role=
PUBLIC

The role PUBLIC is displayed because it is the only active role definition.
LIST ASSIGNMENT

LIST ,ASSIGNMENT , {USER|PERMISSION}

This function displays, according to the type specified, all active user or permission assignments.

398 Adabas Utilities

ADARBA (RBAC Administration)

Example:

adarba: list,assignment,user
PUBLIC,PUBLIC

All user assignments are displayed.

REVOKE (User Assignment)
REVOKE ,ROLE = string [,FROM] ,USER = string
This function revokes a role, which was granted to the user.

Example:

adarba: revoke,role=NEWROLE, from,user=NEWUSER

The role NEWROLE is revoked from user NEWUSER.

REVOKE (Permission Assignment)
REVOKE ,0PERATION = string [,0BJECT = string] [,FROM] ,ROLE = string
This function revokes a permission, which a role was granted, to execute an operation on an object.

Example:

adarba: revoke,operation=ada.uti.dbm,from,role=NEWROLE

The permission, which the role NEWROLE had been granted, to perform the operation ada.uti.dbm
on the default object DBID.CURRENT, is revoked.

REVOKE (Command Assignment)

REVOKE ,OPERATION = { ANY|DELETE|INSERT|READ|UPDATE} ,0BJECT = number [,FROM] ,ROLE «
= string

This function revokes a permission, which a role was granted, to perform the corresponding
Adabas commands on an Adabas file of the default database (DBID.CURRENT).

The predefined operations DELETE, INSERT, READ and UPDATE are used to group Adabas
direct commands according to their functionality. ANY is a short notation for DELETE, INSERT,
READ and UPDATE .

OBJECT is interpreted as the Adabas file number if the value is a valid Adabas file number.

Adabas Utilities 399

ADARBA (RBAC Administration)

Examples:

adarba: revoke,operation=read,object=12,from,role=NEWROLE

The permission, which the role NEWROLE had been granted, to perform the operation READ on
file number 12 of the current database, is revoked.

adarba: revoke,operation=any,object=12,from,role=NEWROLE

The permission, which the role NEWROLE had been granted, to perform the operations DELETE,
INSERT, READ, and UPDATE on file number 12 of the current database, is revoked.

[NOJSTAT
[NOISTAT
This function enables or disables the display of command statistics. The default is STAT.

| Note: [NOJSTAT can be specified in interactive mode or, if an input script is used to provide
the RBAC security definitions, in the input script.

Example:

adarba: stat
%ZADARBA-T-INP, stat
%ZADARBA-I-PAR, command statistics enabled

Command statistics are enabled for this ADARBA session.

400 Adabas Utilities

27 ADAREC (Recovery Of Database Or Files)

B FUNCHONAI OVEIVIBW ..ot e e e e 402
B PTOCEAUIE FlOW .ottt et e 403
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 405
B ADAREC INPUE DA ...ttt ettt e e e et e e e e e e e e 405
B GO0l ParAMOrS ... oo 405
B EXAMPIES oottt e et e e e e e et e e e e e e e et e e aeaaa e 412
B ADAREC Restart CONSIAErAtIONSovveeeieee e, 418

401

ADAREC (Recovery Of Database Or Files)

This chapter describes the utility "ADAREC".

Functional Overview

The ADAREC utility consists of the following database recovery functions:

® The CLOSE function writes a clean end-of-file to an abnormally-terminated Protection Log file
within a disk section (UNIX platforms only).

® The LIST function lists information about a Protection Log.

® The REGENERATE function re-applies all of the updates made between two specified check-
points. The checkpoints used are normally the result of a checkpoint command (C1) but may
also be internal checkpoints taken by OP commands from EXU users or utility actions. If the
whole database is to be regenerated, certain files may be excluded by using the EXCLUDE_FILES
option. The files specified with this option are not regenerated, and the updates that are excluded
are reported.

If REGENERATE terminates at a SYNP checkpoint, ADAREC "looks ahead" on the current PLOG
to find an alternative restart point for the next run of this PLOG. The utility then displays a list of
other utility functions that have to be executed before ADAREC can be restarted. If one or more
SYNP checkpoints were found, ADAREC terminates

® with exit code 14, if the PLOG contains further transactions to be applied via a restart of ADAREC,
* otherwise with exit code 12.
The calculated restart point can be reset or overridden by entering BLOCK = or CHECKPOINT =.

Refer to the database report utility ADAREP in this manual for a description of the possible system
checkpoint types.

Normally, REGENERATE completes all fully-logged and confirmed transactions. This function
is most frequently used when the database (or one or more files) has been restored to a previous
status with the RESTORE function of the ADABCK utility.

If the utility writes records to the error file, it will exit with a non-zero status.

Notes:

1. If ADAREC is used more than once at the same time to regenerate files, you should first increase
the value of the nucleus parameter LBP - this is because ADAREC performs a large number of
database updates, and failure to provide a large enough value of LBP may lead to an Adabas
response code 162 being returned.

2. Exit code 12 was introduced with Version 6.3 SP2 - previous releases of Adabas always termin-
ated with exit code 14 when a SYNP checkpoint was found.

402 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

This utility is a single-function utility.

Procedure Flow

ADAREC
CLOSE

(UNIX platforms only)
Data Set Environment | Storage Additional Information
Variable Medium

Protection log| RECPLG |Disk (* see note)

] Note: (*) The CLOSE function works only on protection log files in raw disk sections.

Adabas Utilities 403

ADAREC (Recovery Of Database Or Files)

REGENERATE Function

Control statements |stdin/ Utilities Manual
SYSSINPUT

ADAREC messages |stdout/ Messages and Codes
SYS$OUTPUT

Rejected data RECERR Disk, Tape (* see note) |Output of ADAREC

Protection log RECPLG Disk, Tape

404 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

| Note: (*) Anamed pipe can be used for this sequential file.

The sequential file RECPLG can have multiple extents. For detailed information about sequential
files with multiple extents, see Adabas Basics, Using Ultilities.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoints written:

Function Nucleus must be active |Nucleus must NOT be active |Nucleus is NOT required | Checkpoint written
LIST X -

REGENERATE | X SYNX
ADAREC Input Data

Data protection information, in the form of "before' and "after' images of all updated records, is
written to the Protection Log during each Adabas session. This information is needed to regenerate
the updates.

Control Parameters

The following control parameters are available:

CLOSE = PLOG-number[(extent-number)]

M DBID = number

LIST keyword

REGENERATE = {* [,EXCLUDE_FILES =

(number[-number] [,number[-number] 1 ...) } |
(number[-number] [,number[-number] 1 ...)
PLOG = number

D [,[NOIBI_CHECK]

[,BLOCK = ([number][,number])
,CHECKPOINT = ([stringll,stringl)]
D [,[NOJERROR_LOG]
D [,ON_ERROR = keyword]

Adabas Utilities 405

ADAREC (Recovery Of Database Or Files)

CLOSE

CLOSE = PLOG-number[(extent-number)]

The CLOSE function writes a clean end-of-file to an abnormally-terminated Protection Log file
within a disk section. This function must be executed before such a Protection Log file can be used
as input for the REGENERATE function.

The CLOSE function may be run when an AUTORESTART is pending or after the AUTORESTART
has been performed.

This function can still be used even if subsequent Adabas sessions have created other Protection
Log data files.

PLOG-number and extent-number specify the Adabas Protection Log number and the extent
number of the Protection Log file to be closed. These numbers are displayed by the LAYOUT
function of ADADEV.

. Note: This function only applies to UNIX platforms.

Example:

adarec: db=1

%ADAREC-I-DBON, database 1 accessed online

adarec: close=93

adarec:

Protection log 93 - 20-JUL-2005 13:12:54 closed successfully

The CLOSE function closes Protection Log 93 of database 1.

DBID

DBID = number
This parameter selects the database to be used.

. Note: Program functions which do not require the nucleus to be running need the environ-

ment variables/logical names set for the container files.

406 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

LIST

[PLOG=number,] LIST = keyword

Valid keywords are BRIEF, FULL and RESTART. BRIEEF lists the Protection Log number and its
creation date. FULL lists additional information about the records on the Protection Log, e.g. the
checkpoints, the number of modifications for each file, etc. RESTART displays the restart points
that ADAREC writes when it encounters checkpoints while processing.

Note: The timestamps displayed for checkpoints are the timestamps that were made when

the checkpoints were included in the PLOG. When offline checkpoints are created, the
checkpoints are first written to the checkpoint block in the ASSO. The next time the nucleus
is started, they are written to the checkpoint file with the actual checkpoint creation date,
and to the PLOG with the current date. This implies that the timestamps for offline check-
points displayed with ADAREP CHECKPOINT and by ADAREC LIST are different.

The LIST=FULL function also checks the structure of the Protection Log to ensure that it is internally
consistent. If a structural error is detected, a message is output indicating the error type as well
as the record and block numbers.

If the Protection Log is within a disk section, the PLOG parameter must be set before LIST can be
specified.

Examples

adarec: list=brief
Protection log 1 - 26-0CT-2006 11:39:03

The creation date of PLOG 1 is displayed.

REGENERATE

This function is used to regenerate a whole database or files within a database.

Database Regeneration

REGENERATE = PLOG = number
,EXCLUDE_FILES = (number[-number][,number[-number]]...)]
,[NOIBI_CHECK]
,BLOCK = ([number][,number]),
CHECKPOINT = ([stringll,stringl)]
,[NOJERROR_LOG]

[,ON_ERROR = keyword]

/oo

/i

Adabas Utilities 407

ADAREC (Recovery Of Database Or Files)

This option of the REGENERATE function regenerates a database. A file exclusion list can be used
to exclude certain files from the regenerate. ET logic is supported.

During REGENERATE processing, ADAREC sets the database to utility-only mode. Processing
terminates if a SYNP checkpoint is encountered. In this case, ADAREC inspects the Protection
Log in order to calculate an alternative restart point. This restart point is then displayed together
with a list of utility functions that must be executed before processing can be continued. The next
call to REGENERATE automatically sets up at this point. The use of the calculated restart point
can be overridden by specifying "BLOCK="or "CHECKPOINT=" (that is, supplying empty values
for these keywords). This procedure is repeated until the end of the PLOG is reached. After
ADAREC has terminated, the database remains in utility-only mode, because more calls to RE-
GENERATE may follow. After the database regeneration has finished, you can enable the database
for normal processing with the ADAOPR command OPTIONS=NOUTILITIES_ONLY.

[NOIBI_CHECK

If this option is set to B CHECK, ADAREC checks the consistency of the before images in the
Protection Log against the data in the database (is the ISN in use; does the record exist; is there a
before image mismatch?). If a mismatch is encountered, ADAREC issues messages containing the
relevant information and does not perform the update.

If this option is set to NOBI_CHECK, the consistency check is still made and the ERROR_LOG is
implicitly enabled; however, on finding a Bl inconsistency, the update is made and the mismatch
is reported to the ERROR_LOG (see below). If errors are encountered, only the first error for each
file will be displayed, all subsequent errors are logged to the ERROR_LOG. Note that the index
might become inconsistent in this case.

However, if the PLOG was written with the NOBI option of the nucleus, it will not contain any
before images and the BI_CHECK option cannot be set.

The default is Bl CHECK.
BLOCK = ([number][,number])

This parameter specifies the numbers of the blocks in the Protection Log files that contain the
corresponding checkpoint names. The block numbers can be taken from ADAREC LIST=FULL.

CHECKPOINT = ([string][,string])

This parameter specifies the starting and ending checkpoint names. The checkpoint names can be
taken from the ADAREP database status report or ADAREC LIST=FULL.

If processing is to start at the beginning of the Protection Log file, the first parameter must be
omitted.

408 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

[NOJERROR_LOG

Setting this option to ERROR_LOG enables the automatic logging of any BI inconsistencies that
may be detected when using the NOBI_CHECK option. The contents of the error file produced
can be examined using the ADAERR utility. Do not print this error file using the standard operating
system print utilities, since the records contain nonprintable characters. See ADAERR for further
information.

The default is NOERROR_LOG.
EXCLUDE_FILES = (number[-number][, number[-number]]...)

This parameter specifies the files to be excluded when regenerating a complete database. The up-
dates that are excluded are written to a report.

ON_ERROR = keyword

Valid keywords are ABORT and EXCLUDE. The keyword used determines what action to take if
ADAREC detects non-fatal errors during processing (e.g. response code 17, file not loaded). ABORT
abnormally terminates regenerate processing, and EXCLUDE excludes the file in question from
the regenerate if Data Storage errors occur (nucleus response codes 17, 49, 75, 77 and 113).

If, however, an error occurs while updating a file's index (nucleus response codes 75, 76, 77, 98,
165, 166, 167 and 176), only the regeneration of the Data Storage for this file will continue. When
the regeneration process is complete, the index of this file is marked as invalid. The ADAINV
REINVERT function with the ALL_FIELDS option then has to be run for this file (please refer to
the ADAINV utility in this manual for more detailed information). If index errors occur and if the
regenerate includes several Protection Logs, all of the Protection Logs should be processed before
reinverting the index. Reinverting the index each time a Protection Log results in index errors
would waste considerable amounts of time and computer resources.

The default is ON_ERROR=EXCLUDE.

PLOG = number

This parameter specifies the log number of the Adabas Protection Log to be used as input for the
REGENERATE function. This number can be found with ADAREC using the LIST = BRIEF function.

Adabas Utilities 409

ADAREC (Recovery Of Database Or Files)

File Regeneration

REGENERATE = (number[-number][,number[-number]]...), PLOG = number
[,[NOIBI_CHECK]
[,BLOCK = ([number]l[,numberl]),
CHECKPOINT = ([stringll,stringl)]
[,[NOJERROR_LOG]
[,ON_ERROR = keyword]

This option of the REGENERATE function re-applies all updates in a Protection Log for the specified
files or ranges of files. LOB files specified are ignored, but the LOB files assigned to all base files
specified are dumped too.

During regenerate processing, ADAREC locks the files for exclusive use. The regenerate terminates
if a SYNP checkpoint is found while processing a protection log. In this case, ADAREC inspects
the Protection Log in order to calculate an alternative restart point. This restart point is then dis-
played with a list of utility functions that must be executed before processing can be continued.
The next call to REGENERATE automatically sets up at this point. The use of the calculated restart
point can be overridden by specifying "BLOCK=" or "CHECKPOINT=" (that is, supplying empty
values for these keywords). This procedure is repeated until the end of the Protection Log is
reached.

The files remain locked, because more calls to REGENERATE may follow. After the files regener-
ation is finished, you must unlock the files with the ADAOPR command UNLOCK.

The following functions are not allowed while ADAREC is active:

= ADAOPR ET_SYNC FEOF =PLOG
= ADABCK DUMP
= ADAOPR STOP to a sub-user while the associated ADAREC user exists

[NO]BI_CHECK

If this option is set to BI_CHECK, ADAREC checks the consistency of the before images in the
Protection Log against the data in the database (is the ISN in use; does the record exist; is there a
before image mismatch?). If a mismatch is encountered, ADAREC issues messages containing the
relevant information and does not perform the update.

If this option is set to NOBI_CHECK, the consistency check is still made and the ERROR_LOG is
implicitly enabled; however, on finding a BI inconsistency, the update is made and the mismatch
is reported to the ERROR_LOG (see below). If errors are encountered, only the first error for each
file will be displayed, all subsequent errors are logged to the ERROR_LOG. Note that the index
might become inconsistent in this case.

NOBI_CHECK improves performance at the expense of possible loss of data consistency. We advise
you therefore not to use NOBI_CHECK for mission critical databases.

410 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

The default is Bl CHECK.
BLOCK = ([number] [[number])

This parameter specifies the blocks in the Protection Log files that contain the corresponding
checkpoint names. The block numbers can be taken from ADAREC LIST=FULL.

CHECKPOINT = ([string] [,string])

This parameter specifies the starting and ending checkpoint names. The checkpoint names can be
taken from the ADAREP database status report.

If processing is to start at the beginning of the Protection Log file, the first parameter must be
omitted. However, if the first checkpoint name is supplied, it must be found in the first Protection
Log file.

If processing is to stop at the end of the last Protection Log file, the second checkpoint name must
be omitted.

[NOJERROR_LOG

Setting this option to ERROR_LOG enables the automatic logging of any BI inconsistencies that
may be detected when using the NOBI_CHECK option. The contents of the error file produced
can be examined using the ADAERR utility. . Please refer to the ADAERR utility in this manual
for more detailed information.

The default is NOERROR_LOG.
ON_ERROR = keyword

Valid keywords are ABORT and EXCLUDE. The keyword used determines what action to take if
ADAREC detects non-fatal errors during processing (e.g. response code 17, file not loaded). ABORT
abnormally terminates regenerate processing, and EXCLUDE excludes the file in question from
the regenerate if Data Storage errors occur (nucleus response codes 17, 49, 75, 77 and 113).

If, however, an error occurs while updating a file's index (nucleus response codes 75, 76, 77, 98,
165, 166, 167 and 176), only the regeneration of the Data Storage for this file will continue. When
the regeneration process is complete, the index of this file is marked as invalid. The ADAINV
REINVERT function with the ALL_FIELDS option then has to be run for this file (please refer to
the ADAINYV utility in this manual for more detailed information). If index errors occur and if the
regenerate includes several Protection Logs, all of the Protection Logs should be processed before
reinverting the index. Reinverting the index each time a Protection Log results in index errors
would waste considerable amounts of time and computer resources.

The default is ON_ERROR=EXCLUDE.

Adabas Utilities 411

ADAREC (Recovery Of Database Or Files)

PLOG = number

This parameter specifies the log number of the Adabas Protection Log to be used as input for the
REGENERATE function. This number can be found with ADAREC using the LIST = BRIEF function.

Examples

Example 1

In this example, database 2 is to be regenerated using the Protection Log 2. File 12 is to be excluded
from the regenerate.

adarec: regenerate=*,plog=2

adarec: exclude_files=12

adarec:

Protection log 2 - 26-0CT-2006 11:48:59

Block 3 - checkpoint SYNC - 11:49:00 - USERID ADANUC <version>
%ADAREC-T-CHKIGN, Checkpoint ignored

The following utility functions were executed in the original session:

Block 4 - checkpoint SYNP - 11:50:02 - USERID ADADBM REFRESH=13
Block 5 - checkpoint SYNX - 11:50:03 - USERID ADADBM RESET=UCB,IDENT=7
Block 6 - checkpoint SYNP - 11:50:03 - USERID ADADBM RECOVER

Re-execute all SYNP utility functions starting from block 4.

REGENERATE summary

Calculated RESTART point - BLOCK=6,CHECKPOINT=SYNP

Processing of the Protection Log terminated at the SYNP checkpoint in block 4. However, no updates
were found on looking ahead and processing can be continued from the calculated restart point
inblock 6. ADAREC displays a list of the utility functions that must be executed before processing
continues. The next call to REGENERATE=* will automatically continue at this calculated restart
point.

412 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

adarec: regenerate=*,plog=2

%adarec-I-restartp, calculated restart point - block=6,checkpoint=synp
adarec: exclude_files=12

adarec:

Protection log 2 - 26-0CT-2006 11:48:59.86
Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
HADAREC-T-CHKSTP, starting checkpoint

1 modifications in file 11
1 modifications EXCLUDED from file 12

4 ET commands issued
Block 7 - checkpoint SYNC - 11:52:38.98 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 2 processed

Processing of the Protection Log continues at the calculated restart point. The regenerate terminates
successfully.

Example 2

In this example, database 2 is to be regenerated using the Protection Log 2. Processing is to start
at the checkpoint SYNP in block 6 of the Protection Log. If Data Storage errors occur, the file in
question will be excluded from the regenerate. If index errors occur, the file's index will be excluded
from the regenerate and marked as invalid.

adarec: regenerate=*,plog=2,block=6,checkpoint=synp
adarec: on_error=exclude
adarec:

Protection Tog 2 - 26-0CT-2006 11:48:59.86

%AADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC
%ADAREC-W-RECUPD, Updates performed between Nucleus and REGENERATE'S startup
SADAREC-W-RECCMD, 1 N1 command(s)

Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
%ADAREC-T-CHKSTP, starting checkpoint

1 modifications in file 11

Adabas Utilities 413

ADAREC (Recovery Of Database Or Files)

3 ET commands issued
%ZADAREC-E-ISNINUSE, ISN 774 in use in file 12
LADAREC-T1-PLOGRB, from record 14 in block 7 in PLOG 2
%ADAREC-T-UPDEXC, ALL following updates in file 12 will be EXCLUDED
1 modifications EXCLUDED from file 12
1 ET command issued
Block 7 - checkpoint SYNC - 11:52:38.98 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 2 processed

An ISN conflict occurred in file 12 and all subsequent updates to this file were excluded. The cause
of the error has to be investigated. However, the nucleus was started without "OPTIONS=UTILIT-

IES_ONLY' and an N1 command was issued before the regenerate was started.

The Protection Log was processed to its end, the abort system message is used only to indicate a

fatal error.

Example 3

This example is similar to the previous one, with the exception that processing will abort if Data

Storage or index errors are encountered.

adarec: regenerate=*,plog=2,block=6,checkpoint=synp
adarec: on_error=abort

adarec:

Protection log 2 - 26-0CT-2006 11:48:59.86

HADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

%ADAREC-W-RECUPD, Updates performed between Nucleus and REGENERATE'S startup

HADAREC-W-RECCMD, 1 N1 command(s)

Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
HADAREC-T-CHKSTP, starting checkpoint

1 modifications in file 11

3 ET commands issued

414

Adabas Utilities

ADAREC (Recovery Of Database Or Files)

SADAREC-E-ISNINUSE, ISN 774 in use in file 12
%4ADAREC-I-PLOGRB, from record 14 in block 7 in PLOG 2

An ISN conflict occurred in file 12 and further processing was aborted.
Example 4

In this example, database 2 is to be regenerated using the Protection Log 3. The before images in
the Protection Log will be checked against the data in the database and mismatches will be displayed
on the terminal.

adarec: regenerate=*,plog=3
adarec:

Protection log 3 - 26-0CT-2006 12:10:25.12
%SADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL O
%ADAREC-T-CHKIGN, Checkpoint ignored

1 ET command issued
%AADAREC-E-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAREC-I-PLOGRB, from record 7 in block 2 in PLOG 3
HADAREC-TI-UPDEXC, ALL following updates in file 11 will be EXCLUDED

1 modifications EXCLUDED from file 11
1 modifications in file 12

3 ET commands issued
Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
HADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 3 processed

One before image mismatch occurred during processing. As a result, one update was excluded
from file 11.

Having restored the files, the same example can be rerun with no consistency check of the before
images and with BI error logging enabled.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

Adabas Utilities 415

ADAREC (Recovery Of Database Or Files)

adarec: regenerate=*,plog=3,nobi_check
adarec:

Protection log 3 - 26-0CT-2006 12:10:25.12
%ZADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL O
%ADAREC-T-CHKIGN, Checkpoint ignored

AADAREC-W-RECMIS, Before image mismatch for ISN 3 in file 11
%4ADAREC-I-PLOGRB, from record 7 in block 2 in PLOG 3

1 modifications in file 11
1 modifications in file 12

4 ET commands issued

1 BI_CHECK error in file 11
Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
HADAREC-I-CHKIGN, Checkpoint ignored
REGENERATE summary

1 BI_CHECK error in file 11

Protection log 3 processed
One BI_CHECK error occurred during processing.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

The source of the errors is written to an error file which can be displayed using the ADAERR
utility. The first error is logged and also written to the error file. All subsequent errors are written
to ERROR_LOG.

The following error file was produced:

416 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

%#ADAERR-E-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAERR-T-PLOGRB, from record 7 in block 2 in PLOG 3

Example 5

In this example, database 2 is to be regenerated using the Protection Log 3.

adarec: regenerate=*,plog=3
adarec:

Protection log 3 - 26-0CT-2006 12:10:25.12
%AADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL O
%ADAREC-T-CHKIGN, Checkpoint ignored

%ADAREC-E-ERRIUP, Error response 165 during index update
%ADAREC-E-Adabas_165, * Invalid descriptor name in DVT
%ADAREC-I1-DESNAM, Descriptor name XA

HADAREC-T-ISNFILE, from ISN 3 in file 11

%ADAREC-T-PLOGRB, from record 7 in block 2 in PLOG 3
%ADAREC-T-REINVERT, REINVERT all descriptors to re-establish INDEX
%#ADAREC-T-REGDAT, Regenerating ONLY data-storage for file 11

1 modifications in file 11
1 modifications in file 12

4 ET commands issued
Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 3 processed

An invalid descriptor name was encountered during processing. As a result, only the data storage
of file 11 was regenerated. All of the descriptors will have to be reinverted in order to reestablish
the index.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

If index errors occur and if the regenerate includes several Protection Logs, all of the Protection
Logs should be processed before reinverting the index. Reinverting the index each time a Protection
Log results in index errors would waste considerable amounts of time and computer resources.

Adabas Utilities 417

ADAREC (Recovery Of Database Or Files)

Example 6

In this example, database 2 is to be regenerated using the Protection Log 4 after the regenerate
processing of Protection Log 3 resulted in an index error.

adarec: regenerate=*,plog=4
adarec:

Protection log 4 - 26-0CT-2006 12:12:00.15
Block 1 - checkpoint SYNC - 12:12:00.15 - USERID ADANUC <version>
AADAREC-T-CHKIGN, Checkpoint ignored

%AADAREC-E-FCBNAC, file 11's index not accessible
%4ADAREC-T1-REGDAT, Regenerating ONLY data-storage for file 11

1 modifications in file 11
1 modifications in file 12

4 ET commands issued
Block 2 - checkpoint SYNC - 12:12:19.35 - USERID ADANUC SHUTDOWN
%ADAREC-T-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 4 processed

The index error that occurred while processing Protection Log 3 (see example 5) means that file
11's index is no longer accessible. Only the Data Storage of file 11 is regenerated, whereas both
the Data Storage and the index of file 12 are regenerated.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

ADAREC Restart Considerations

An interrupted ADAREC run which leaves a UCB entry has to be re-started from the beginning.
Because modifications have already been made, a RESTORE database or RESTORE file has to be
executed before re-starting ADAREC. However, if there is no UCB entry, the database has not
been modified and ADAREC can be re-started.

418 Adabas Utilities

ADAREC (Recovery Of Database Or Files)

An abnormally terminated ADAREC (RESTORE/RECOVER) leaves the database in a consistent

state, although it is not possible to tell exactly in which state. ADAREC cannot determine which

transactions have already been recovered, so it is necessary to repeat the RESTORE operation and
restart the ADAREC from the beginning in order to ensure that everything is recovered.

Having performed the first update, ADAREC writes a ‘started' checkpoint to the checkpoint file,
e.g.

SYNX 22-MAR-2007 16:49:46 192 ADAREC REG STARTED

Adabas Utilities 419

420

28 ADAREP (Database Report)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 422
B PIOCEAUIE FIOW ...t et e 423
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 423
B CONEIOl PArAMEIEIS ... e ettt e 424

421

ADAREP (Database Report)

This chapter describes the utility "ADAREP".

Functional Overview

The ADAREP utility generates the database status report. This contains information about the
current physical layout and logical contents of the database. Unless otherwise stated, the functions
can be executed when the nucleus is active or inactive.

The information contained in this report includes:

® The amount and location of space currently allocated for the Associator and Data Storage;

® The amount and location of unused space available for the Associator and Data Storage;

® Database file summary;

® Checkpoint information;

® Security information;

* Information about each file in the database (space allocation, space available, number of records

loaded, MAXISN setting, field definitions, etc.);

Only the CHECKPOINTS control parameter (see description below) requires the nucleus to be
active.

This utility is a multi-function utility.

422 Adabas Utilities

ADAREP (Database Report)

Procedure Flow

ADANUC
ADAREP
Data Set Environment |Storage | Additional Information
Variable/ Medium
Logical Name
Associator ASSOx Disk
Control statements |stdin/ Utilities Manual
SYS$INPUT
ADAREP report |stdout/ Messages and Codes,
SYS$OUTPUT Utilities Manual

Checkpoints

The utility writes no checkpoints.

Adabas Utilities 423

ADAREP (Database Report)

Control Parameters

The following control parameters are available:

CHECKPOINTS = { * | ([absolute-date] [,[absolute-date] 1) }
CONSTRAINTS

CONTENTS

COUNT
M DBID = number
D [NOJIFDT

FILES = { * | (number [-numberl[,number[-number]]...) }
D [NOJFULL

FREE_SPACE

LAYOUT

SUMMARY

CHECKPOINTS

CHECKPOINTS = { * | ([absolute-date] [,[absolute-datel]) !}

This function displays selected information from the checkpoint list and requires the nucleus to
be active.

Five types of system checkpoints (SYNP, SYNC, SYNX, OPEN and CLSE) are written to the
checkpoint file and to the protection log, together with the user checkpoints written by C1 com-
mands.

SYNC indicates a checkpoint made during nucleus initialization, termination or cancel processing;
during the ADAOPR function FEOF = PLOG; due to ADABCK NEW_PLOG processing; or during
the function ADAOPR EXT_BACKUP=CONTINUE.

SYNP indicates a checkpoint made by an Adabas utility that requires privileged control, i.e. the
module can make updates without using the nucleus. A SYNP checkpoint is, for example, written
at the end of an ADAMUP UPDATE run.

SYNX indicates a checkpoint made by a utility that requires exclusive control of one or more files.
A SYNX checkpoint is, for example, written by ADAULD.

424 Adabas Utilities

ADAREP (Database Report)

An OPEN checkpoint is written by the OP command of EXU/EXF users.
A CLSE checkpoint is written by the CL command of EXU/EXF users.

Note: If the ADAREC 'REGENERATE' function is executed using the Protection Log, this
utility stops at each SYNP checkpoint since DBA intervention is required.

If an asterisk "* is entered, all checkpoints are displayed.

The date strings must correspond to the following absolute data and time format:

dd-mmm-yyyy[:hh[:mm[:ss]1]]

Leading zeroes in the date and time specification may be omitted. Any numbers not specified are
set to 0, for example 28-jul-2006 is equivalent to 28-jul-2006:00:00:00.

The following table shows the possible values for parameter CHECKPOINTS, and the corresponding
checkpoints displayed by this value:

Value specified for parameter Checkpoints displayed for this specification

CHECKPOINTS

*or(,) All checkpoints

absolute-date Only the checkpoints written exactly at the date and time specified

(absolute-date,) Checkpoints written from date and time specified onwards

(,absolute-date) Checkpoints written up to the date and time specified

(absolute-date,absolute-date) Checkpoints written from first date and time value specified onwards
up to the second date and time value specified

Example

adarep: checkpoints=*

Name Date/Time Session User Id / Function
SYNP 28-JUL-2006 12:50:34 8 ADADBM DELCP

SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
SYNX 28-JUL-2006 12:50:37 8 ADABCK DUMP=*

OPEN 28-JUL-2006 17:23:53 8 otto

OPEN 28-JUL-2006 17:24:15 8 otto

CLSE 28-JUL-2006 17:24:24 8 otto

All checkpoints are displayed.

The column "User ID / Function" contains

Adabas Utilities 425

ADAREP (Database Report)

® for user checkpoints created via OP/CL commands for EXU/EXF users or via C1 command: the
user specified in the Additions 1 field of the relevant OP command;

= for utility checkpoints: the utility function executed.

Taking the output of the example above (checkpoints=*), the selection criteria can be used to filter
the checkpoints selected as shown below.

Specifying

checkpoints=28-jul-2006:12:50:36

will produce the following output:

Name Date/Time Session User Id / Function
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
Specifying

checkpoints=(28-jul-2006:12:50:36,)

will produce the following output:

Name Date/Time Session User Id / Function
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
SYNX 28-JUL-2006 12:50:37 8 ADABCK DUMP=*
OPEN 28-JUL-2006 17:23:53 8 otto
8
8

OPEN ~ 28-JUL-2006 17:24:15 otto
CLSE 28-JUL-2006 17:24:24 otto

Specifying

checkpoints=(,28-jul-2006:12:50:36)

will produce the following output:

426 Adabas Utilities

ADAREP (Database Report)

Name Date/Time Session User Id / Function
SYNP 28-JUL-2006 12:50:34 8 ADADBM DELCP

SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
Specifying

checkpoints=(28-jul-2006:17, 28-jul-2006:17:24)

will produce the following output:

Name Date/Time Session User Id / Function
OPEN 28-0UL-2006 17:23:53 5 otto
CONSTRAINTS
CONSTRAINTS

This function displays information about all referential constraints in the database that you specify
with the DBID parameter.

Example

adarep: constraints
Primary file Foreign file Name Action

9 (AA) <--- 12 (AC) HO DX UX

The referential constraint HO links the primary key field AA in the primary file 9 with the foreign
key field AC in the foreign file 12. The associated actions are delete no action (DX) and update no
action (UX).

CONTENTS

CONTENTS

This function displays information about the files in the database that you specify with the DBID
parameter.

Adabas Utilities 427

ADAREP (Database Report)

Example

adarep: contents

Content of Database 163 30-MAY-2017 11:36:07

Index Extents Pad % flags

File Filename loaded on Top ISN Tevel N U A D A D ALRCPM
1 EMPLOYEES 30-MAY-2017 1,107 31 1 1 1 5 5 R M
2 VEHICLES 30-MAY-2017 773 31 1 1 1 5 5 R M
3 MISCELLANEQUS 30-MAY-2017 1,779 31 1 1 1 5 5 R M
60 EMPL-REF 30-MAY-2017 1,107 31 1 1 1 5 5 R M
251 SECURITY-FILE 30-MAY-2017 0 31 1 1 1 5 5 R M
254 USER-DATA-FILE 30-MAY-2017 0 31 1 1 1 5 5 R M
255 CHECKPOINT-FILE 30-MAY-2017 0 31 1 1 1 5 5 S M

Allocated blocks

File Filename NI Ul AC DS
1 EMPLOYEES 90 15 10 75

2 VEHICLES 40 20 2 40

3 MISCELLANEOQUS 50 10 10 50

60 EMPL-REF 90 15 10 75
251 SECURITY-FILE 2 2 1 5
254 USER-DATA-FILE 24 2 6 57
255 CHECKPOINT-FILE 1 1 6 32
Total 297 65 45 334

File Filename NI Ul DS
1 EMPLOYEES 2 18

2 VEHICLES 16 12 26

3 MISCELLANEOUS 17 5 23

60 EMPL-REF 4 2 18
251 SECURITY-FILE 2 1 4
254 USER-DATA-FILE 24 1 56
255 CHECKPOINT-FILE 1 0 31
Total 68 23 176

The column "Extents' shows the number of logical extents currently assigned to the Normal Index
(N), the Main/Upper Indices (U), the Address Converter (A) and Data Storage (D).

428 Adabas Utilities

ADAREP (Database Report)

The column "Pad' shows the block padding factors in percent defined for the Associator (A) and
Data Storage (D) (please refer to the ASSOPFAC and DATAPFAC parameters of ADAFDU,
ADAMUP or ADAORD for more detailed information).

The column "Flags' contains the following information:

Subcolumn|Flag |Meaning
A A |Indicates an Adam file
L L [Fileisa LOB file
B |File is a base file with a corresponding LOB file
R R |ISN and space reusage enabled for the file
I |ISN reusage, but no space reusage enabled for the file
S |Space reusage, but no ISN reusage enabled for the file
C C |Ciphering enabled for the file
P P |Program Refresh enabled for the file
M M | The file was modified since the last backup

If ISNs are to be reused, the ISNs of deleted records can be reassigned to new records. If space is
to be reused, the space released within a block as a result of deleting a record can be reused for a
new record (please refer to the REUSE parameter of ADADBM or ADAFDU for more detailed

information).

The second and third tables show the number of blocks allocated for Normal Index (NI)
Main/Upper Indices (UI), Address Converter (AC) and Data Storage (DS) for each file. The remain-
ing columns show the number of unused blocks in the Main/Upper Indices (UI) and Data Storage
(DS).

COUNT

COUNT

This parameter displays the record count of the files in the database that you specify with the
DBID parameter.

Example

adarep: count

Record Count of Database 2 20-APR-2017 16:08:52
File Filename Records loaded

1 CHECKPOINT-FILE 0

2 SECURITY-FILE 0

3 USER-DATA-FILE 0

Adabas Utilities 429

ADAREP (Database Report)

9 EMPLOYEES 1,272

11 EMPLOYEES-NAT 1,107

12 VEHICLES 773

13 MISCELLANEQUS 1,779

14 LOBFILE of 9 210
DBID

DBID = number
This parameter selects the database to be used. Multiple DBIDs are supported within one session.

The DBID parameter must be the first ADAREP parameter specified.

Example

adarep: dbid 1, contents

adarep: dbid = 2, contents

adarep:.dbid 3, contents
[NOJFDT
[NOJFDT

If this parameter is set to FDT, the Field Definition Tables (FDTs) will be included in the status
information subsequently displayed by the FILES function.

The default is NOFDT.
FILES

FILES = { * | (number [-number][,number [-numberl]...) }

This function displays status information for the files selected.

430 Adabas Utilities

ADAREP (Database Report)

Example

adarep: fdt

adarep: file=9

Database 216, File 9 (EMPLOYEES) 30-MAY-2017 11:50:36
Highest Index Level: 3 Padding Factors: ASSO 5%, DATA 5%
Top ISN: 1,272 Maximum ISN expected: 8,191
SYFMAX : 9

Records loaded: 1,272 Corresponding LOB file: 14
Last FDT Modification: 4-SEP-2014 14:49:36.510905

Last ADABCK dump 5 30-MAY-2017 11:49:32

ISN reusage: Enabled, inactive Space reusage: Enabled

Program refresh: Disabled Ciphering: Disabled

Modified since last backup
Record spanning: Disabled

Container Block Extent Extents in Blocks Allocated Unused
File Size Type from to Blocks MB Blocks MB
ASSO
2 32KB AC 7,682 7,682 1 0 0 0
1 8KB NI 55 99 45 0 15 0
1 8KB Ul 100 107 8 0 0 0
1 8KB Ul 110 119 10 0 3 0
DATA:
1 32KB DS 14 45 32 1 21 0

Level I Name I Length I Format I Options I Flags I Encoding
1 I A0 I I I I I
2 I AA I 8 I A I DE,UQ,NC,NN I RP I
2 I AB I I I I I
3 I AC I 4 I F I DE I I
3 I AD I 8 I B I NU,HF I I
3 I AE I 0 I A I NU,NV,NB, LA I I
1 I BO I I I I I
2 I BA 1 40 I W I NU I I
2 I BB I 40 I W I NU I I
2 I BC I 50 I W I DE,NU I SP I
1 I CA I 1 I A I FI I I
1 I DA 1 1 I A I FI I I

Adabas Utilities 431

ADAREP (Database Report)

N NN NN

NN NN N

W W W w w

w W W w w

EA
FO
FA
FB
FC
FD
F1
FE
FF
FG
FH
FI
10
TA
18
IC
1D
1E
11
IF
16
TH
1
1J
JA
KA
L0
LA
LB
LC
MA
NO
NA
NB
00
0A

0B

PA
QA
RA
SO
SA
SB
SC
TC

TU

60
40
10

15
15
15
80

40
40
10

15
15
15
80

B~ oo Ww

wW N

> > > = = > > > > > > > = = e

= > > > > > >

G U U >

—

> T >

— > > =

DE,NC
PE
NU, MU
DE, NU
NU
NU

NU

NU

NU

NU
DE,NU,MU
PE
NU, MU
DE, NU
NU

NU

NU

NU

NU

NU

NU
DE,NU,MU
DE

DE,NU

PE

NU

NU
DE,NU,MU
NU

NU
PE
NU
DT(DATE)
NU
DT(DATE)
DE,NU,MU

NU,NV,NB, LB

PE

NU

NU
NU,MU,NV,NB, LB
DT(TIMESTAMP)
SY=TIME,CR

MU
DT(TIMESTAMP)
SY=TIME

SB,SP

SP
SP

SP
SP

432

Adabas Utilities

ADAREP (Database Report)

Type I Name I Length I Format I Options I Parent field(s) Fmt
CoLL I CN I1,144 I I NU,HE [BC de@collation=phonebook
I I I I I PRIMARY
SUPER I HI I 5 I B I NU I NA (1 2) U
I I I I I NB (1 3) U
SUB I S1 I 2 I A I I JA (1 2) A
SUPER I sz 1 46 I A I NU I JA (1 6) A
I I I I I BC (1 40) W
SUPER I S3 1 9 I A I NU,PE I LA (1 3)
I I I I I LB (1 6) P

Type I Name I Refer. I Primaryl Foreign I Rules
I I file I field I field I

PRIMARY I HO I 12 1 AA I AC I DELETE_NOACTION UPDATE_NOACTION

The FILES parameter displays the file number and file name, the highest index level, the padding
factors for ASSO and DATA, the highest and maximum ISNs, the number of records loaded, the
corresponding base file number or LOB file number if it exists, as well as the switches for ISN re-
usage, space reusage, program refresh and ciphering. The time and date of the last FDT modification
are also displayed.

The layout of the ASSO and DATA elements of a file are displayed: the block size on which the
various list elements are stored, the location of these extents and the number of corresponding
blocks/megabytes allocated or unused.

In addition, the FDT function displays the Field Definition Table of the file.

The flags which can be displayed in the Field Definition Table are as follows:

Flag [Meaning

HY |the field is part of a hyperdescriptor
P |the field is phoneticized

SB |part of this field is subdescriptor

SP |part of superdescriptor

Adabas Utilities 433

ADAREP (Database Report)

FREE_SPACE

FREE_SPACE

This function displays a summary of free blocks in ASSO and DATA. This is a subset of the inform-
ation that is displayed by the LAYOUT function.

Example

adarep: free_space

Free space of Database 76

Container
File

28-N0V-2006 12:

Extents in Blocks

from

to

Number of
Blocks

bl1:24

DATA:
1
2
3-4
[NOJFULL

[NOJFULL

611

245
769
869

1,546

768
868
888

936

524
100
20

2,048

4,096
3,072
6,144

If FULL is specified together with FDT, the following additional information is displayed for the

FDT:

® Dropped fields are included in the display of the fields of the file (but without the field names).

® The ICU version is included in the display of collation descriptors.

The default is NOFULL.

434

Adabas Utilities

ADAREP (Database Report)

LAYOUT

LAYOUT

This function displays a summary of the blocks in ASSO and DATA and reports lost blocks. Lost
blocks are blocks that are not listed in the Free Space Table (FST) and are not allocated to a file,
the DSST or the database's global area. This function also reports double-allocated blocks.

Example

adarep: layout

Layout of Database 76 28-N0V-2006 12:51:24
Container Extents in Blocks Number of Block Extent File
File from to Blocks Size Type Number

ASSO
1 1 30 30 4,096 CB
1 31 31 1 4,096 FCB 1
1 32 32 1 4,096 FDT 1
1 33 35 3 4,096 AC 1
1 36 36 1 4,096 UI 1
1 37 37 1 4,096 NI 1
1 38 38 1 4,096 FCB 2
1 39 39 1 4,096 FDT 2
1 40 40 1 4,096 AC 2
1 41 42 2 4,096 UI 2
1 43 43 1 4,096 NI 2
1 44 44 1 4,096 FCB 3
1 45 45 1 4,096 FDT 3
1 46 48 3 4,096 AC 3
1 49 50 2 4,096 UI 3
1 51 62 12 4,096 NI 3
1 63 152 90 4,096 NI 9
1 153 167 15 4,096 UI 9
1 168 168 1 4,096 FCB 9
1 169 169 1 4,096 FDT 9
1 170 170 1 4,096 NI 14
1 171 172 2 4,096 UI 14
1 173 173 1 4,096 FCB 14
1 174 174 1 4,096 FDT 14
1 175 264 90 4,096 NI 11
1 265 279 15 4,096 UI 11
1 280 280 1 4,096 FCB 11
1 281 281 1 4,096 FDT 11
1 282 321 40 4,096 NI 12
1 322 341 20 4,096 UI 12

Adabas Utilities 435

ADAREP (Database Report)

342
343
344
394
404
405
407
,561
,562
,563
,564
,573
,582
,583

P PPN PP

RN NN NN

DATA:
1
5
6
14
46
171
203
213
223

T T T T T W Y

LAYOUT provides a summary of all blocks in ASSO and DATA. The locations and lengths of
sections of contiguous blocks, the block size, the type of usage and the numbers of the corresponding
files are displayed. These blocks may be free (FREE) or used for the Global Blocks (CB), the File
Control Block (FCB), the FCB extension (FCBE), the FCB Root Block (FCBR), the Field Definition
Table (FDT), the Free Space Table (FST), the Data Space Storage Table (DSST), the Normal Index
(NI), the Upper/Main Index (UI), the Address Converter (AC) or the Data Storage (DS).

Note: The first FCBR block and the first FST block are part of the global blocks. For this

reason, the layout only displays FCBR and FST blocks if the database contains more than
one of these blocks.

SUMMARY

SUMMARY

SUMMARY provides general information about the database and the physical layout of ASSO,

DATA and WORK.

(NSRRI RCRE G RN NG CRE G) SR)

342
343
393
403
404
406

,560
,561
,562
,563
,572
,581
,582
,880

4

5
13
45
170
202
212
222
640

32
125
32
10
10
418

B T S S

32,
32,
32,
32,
32,
32,

32,
32,
32,
32,
32,
32,
32,
32,
32,

,096
,096
,096
,096
,096
,096
,096
,768
768
768
768
768
768
768

768
768
768
768
768
768
768
768
768

FCB
FDT
NI
UI
FCB
FDT
FREE
DSST
AC
AC
AC
AC
AC
FREE

DS
DS
DS
DS
DS
DS
DS
DS
FREE

12
12
13
13
13
13

14
11
12
13

W N =

11
12
13

436

Adabas Utilities

ADAREP (Database Report)

Example

adarep: summary

Summary of Database 76

DATABASE NAME

28-JUL-2015 12:51:24

DOKU-DATABASE

DATABASE 1ID 76
MAXIMUM NUMBER OF FILES 30
SYSTEM FILES 1 (CHK), 2 (SEC), 3 (USR)
150 (RBAC)
ACTUAL FILES LOADED 6
AC SIZE 3
CURRENT PLOG NUMBER 8
CURRENT CLOG NUMBER 0
SECURITY ACTIVE
Container Device Extents in Blocks Number of Block Total Size
File Type from to Blocks Size (Megabytes)
ASSO1 file 1 1,536 1,536 2,048 3.00
ASS02 raw 1,537 1,546 10 2,048 0.02
DATA1L file 1 768 768 4,096 3.00
DATA?2 raw 769 868 100 3,072 0.29
DATA3 file 869 878 10 6,144 0.06
DATA4 file 879 888 10 6,144 0.06
WORK1 file 1 1,365 1,365 3,072 4.00
10.43

The device type can be "raw" (raw section), "file" (file system) or "worm" (write once, read many
device. e.g. optical disk).

The security information is only displayed when database security has been activated. Otherwise,
the information is not displayed.

The RBAC system file is only displayed when it has been defined. Otherwise, the information is
not displayed.

Note: If the database is running in READONLY mode, WORKT1 is not displayed.

Adabas Utilities 437

438

29 ADASCR (Security Functions)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 440
B PIOCEAUIE FIOW ...t et e 441
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 442
B CONEIOl PArAMEIEIS ... e ettt e 442

439

ADASCR (Security Functions)

This chapter describes the utility "ADASCR".

Functional Overview

The security utility ADASCR creates, modifies and deletes file protection levels and user passwords,
and enables the security capabilities of individual passwords. Additionally, the utility is used to
display file and password security information. The output of the export functionality of ADASCR
can be used to apply some of all of the security definitions of a database to another database.

Access to this utility should be strictly limited to the person or persons responsible for database
security (DBA).

Multiple functions may be specified within a single run of ADASCR. There is no restriction on the
number of functions which may be specified.

The affected database(s) must be online.
All updates resulting from ADASCR take effect immediately.
This utility is a multi-function utility.

| Note: To copy existing security definitions from one hardware architecture or operating
system to another you must use the EXPORT control parameter. You cannot copy the security
definitions from one hardware architecture to another by using ADAULD/ADADCU and
ADACMP/ADAMUP - this is because the data stored in the security file are stored in a
platform-dependent internal format.

440 Adabas Utilities

ADASCR (Security Functions)

Procedure Flow

Exported Security
Definitions

Data Set Logical Name/ Storage Medium | Additional Information
Environment variable

Control Statements stdin/ Utilities Manual
SYS$INPUT

ADASCR Messages stdout/ Messages and Codes
SYS$OUTPUT

Exported Security Definitions| SCROUT Disk Utilities Manual

Adabas Utilities 441

ADASCR (Security Functions)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

CHANGE

DBID =

DELETE

DISPLAY

(=

|:)} (string, string)
number

string

[PASSWORDS |
PERMISSIONS, PASSWORD {=|:} {* | string} |
PROTECTIONS,

FILE = {* | (number[-number][,number[-number]]...

VALUE_CRITERIA, PASSWORD ({=|:} {* | string}]

EXPORT = {PASSWORDS,

INSERT

{=

[TARGET_ARCHITECTURE = KEYWORD,]
PASSWORD {=|:} {* | string} |
PROTECTIONS,

[TARGET_ARCHITECTURE = KEYWORD,]

FILE = {* | (number[-number][,number[-numberl]...

VALUE_CRITERIA,

[TARGET_ARCHITECTURE = KEYWORD,]
FILE = {* | (number[-number][,number[-number]]...

PASSWORD = {* | string}}

:} string, FILE = (number[-number][,number[-number]]...
L,ACCESS = (number[,number]...)

UPDATE (number[,number]...)

PROTECT = (number[-number][,number[-number]]...)

,ACCESS = (number([,number]...)
,UPDATE = (number[,number]...)

SECURITY_BY_VALUE {=|:} string, FILE = number

,ACCESS_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *
,UPDATE_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *

442

Adabas Utilities

ADASCR (Security Functions)

*The search/access buffer string parameters must be followed by <Newline> with no preceding
comma.

ADASCR Definitions for Examples

In the following examples assume that the following ADASCR definitions have been made before:

PROTECT=9,ACCESS=9,UPDATE=9
PROTECT=9,NAME=(**,AC,AD,BC),ACCESS=(0,14,14,14) ,UPDATE=(0,14,14,14)
PROTECT=9,NAME=(FC,FD,IC,ID),ACCESS=(14,14,14,14),UPDATE=(0,0,0,0)
PROTECT=11,ACCESS=1,UPDATE=2

PROTECT=11,NAME=(**,AA,AC,AE) ,ACCESS=(0,6,3,5),UPDATE=(0,9,9,7)
PROTECT=11,NAME=(AD,AI,AJ,AK),ACCESS=(4,10,10,10),UPDATE=(8,12,12,12)
PROTECT=11,NAME=(AL,AR,AS,AT),ACCESS=(10,7,7,7),UPDATE=(12,9,9,9)
PROTECT=11,NAME=(AX,AY,AZ),ACCESS=(11,11,8),UPDATE=(13,13,10)
PROTECT=(12,13),ACCESS=(12,13),UPDATE=(12,13)
INSERT=000009CD,FILE=(9,12,13),ACCESS=(0,0,0),UPDATE=(13,13,13)
INSERT=00110203,FILE=(11),ACCESS=(2),UPDATE=(3)
INSERT=00110304,FILE=(11),ACCESS=(3),UPDATE=(4)

INSERT=00110506, FILE=(11),ACCESS=(5),UPDATE=(6)
INSERT=00110809,FILE=(11),ACCESS=(8),UPDATE=(9)
INSERT=09CDO9CD,FILE=(9,12,13),ACCESS=(13,13,13),UPDATE=(13,13,13)
SECURITY_BY_VALUE=09CD0O9CD, FILE=9,ACCESS_CRITERION, SEARCH_BUFFER=CA,1,EQ,0,CA,1,EQ.
VALUE_BUFFER=AU

UPDATE_CRITERION, SEARCH_BUFFER=CA, 1, EQ.

VALUE_BUFFER=U

CHANGE

CHANGE {=|:} (string, string)

This function changes an existing password.

The password specified by the first string must be an existing password.

The value specified by the second string must not be the same as an existing password. A password
may be between 1 and 8 characters long. If less than 8 characters are specified, trailing blanks are
added. The password may not contain any special characters or embedded blanks.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

All entries in effect for the password specified by the first string remain in effect for the new
password.

Adabas Utilities 443

ADASCR (Security Functions)

Example

adascr: change:(000009CD,000009cd)
%ADASCR-T-PWCHA, password "000009CD" changed to "000009cd"

The password OLDPW1 is changed to NEWPWI.

DBID
DBID = number
This parameter selects the current database.

| Note: The nucleus must be running.

Example

adascr: dbid=155

The database currently being used is database 155.

DELETE

DELETE = string

This function deletes the existing password specified by the string, together with its associated
permission levels and Security by Value criteria.

Example

adascr: delete=000009CD
%ADASCR-T-PWDEL, password "000009CD" deleted

The password USERPW1 is deleted.

DISPLAY

DISPLAY = { PASSWORDS |
PERMISSIONS, PASSWORD {=|:} {* | string) |
PROTECTIONS, FILE = {* | (number[-number][,number[-number]]...)} |
VALUE_CRITERIA, PASSWORD {=|:} {* | string}!

This function shows current security information for files and passwords, as defined by the
ADASCR utility.

Details of file protection levels, passwords, password permission levels and Security by Value
criteria may be displayed.

444 Adabas Utilities

ADASCR (Security Functions)

FILE = {* | number[-number][,number[-number]]...}

The FILE parameter provides the list, range or ranges of files for which the preceding DISPLAY
function is to be applied.

PASSWORDS

The PASSWORDS parameter prints a list of the passwords currently contained in the security file
in ascending, alphanumeric sequence.

Example

adascr: display=passwords

List of defined passwords for Database 155 ("ALPHA-TS")

FORTYTWO
GEMON
USERPWI
VOYAGER

Total of 4 defined passwords
PERMISSIONS

The PERMISSIONS parameter prints a list of the access and update capabilities of the specified
password for each currently loaded file, by comparing the password permission information
against the current file protection levels.

Where respective access or update capability is granted, this is shown by the letter Y; conversely,
where the capability is not granted, this is shown by the letter N.

Where access or update permissions for a given file are granted and additional Security by Value
restrictions apply to that file, this is indicated by enclosing brackets, i.e. (Y).

If field level security is defined for a file, and the permission for field access or update of a field
is different from the file permission, the field and the corresponding permissions are displayed,
too.

Adabas Utilities 445

ADASCR (Security Functions)

Example

adascr: display=permissions,password=09CD09CD

password :

"09CDO9CD"

| ACCESS | UPDATE

AC
AD
BC
FC
FD
IC
ID
CN
S2

—~
ZE < < =Zz==Z===<<=Z====Z==Z=<<=<<<

~— —

—~

—_~ =
Z=<<=Z===< < < <

~

~— —

Note: CN and S2 are a collation descriptor and a superdescriptor; for derived descriptors

no update permission is displayed, because they cannot be updated explicitly.

PROTECTIONS

DISPLAY=PROTECTIONS displays the protection information for the specified files. For fields
with access or update protection level greater than 0, the protection information is displayed, too.

Example:

adascr: disp=protections,file=(9-11,14)

FILE

FIELD

| ACCESS | UPDATE

AC
AD
BC
FC
FD
IC

446

Adabas Utilities

ADASCR (Security Functions)

11

ID
CN
S2

AA
AC
AE
AD
Al
AJ
AK
AL
AR
AS
AT
AX
AY
AZ
PH
S2
S3
S4

[EET

1w o —m B B O

14

~ O W N

Note: CN and S2 in file 9 and PH, S2, S3 and 5S4 are collation descriptors, superdescriptors

or phonetic descriptors; for derived descriptors no update permission is displayed, because
they cannot be updated explicitly.

VALUE_CRITERIA

The VALUE_CRITERIA parameter prints all Security by Value criteria currently defined for the
specified password.

Example:

adascr: display=value_criteria,password=*

There

There

There

There

There

There

are

are

are

are

are

are

no

no

no

no

no

no

value

value

value

value

value

value

criteria defined

criteria defined

criteria defined

criteria defined

criteria defined

criteria defined

for

for

for

for

for

for

password
password
password
password
password

password

"000009CD"

"00110203"

"00110304"

"00110506"

"00110809"

"09CD0000"

Adabas Utilities

447

ADASCR (Security Functions)

password : "09CD09CD"

| File | Security by Value criterion

|------ d========c====c============-=cs=======================

9 | ACCESS_CRITERION
| SEARCH_BUFFER: "CA,1,EQ,0,CA,1,EQ."
| VALUE_BUFFER: "AU"
| UPDATE_CRITERION
| SEARCH_BUFFER: "CA,1,EQ."
|

|
|
|
|
|
| VALUE_BUFFER: "U"

Total of 7 defined passwords

EXPORT

EXPORT = {PASSWORDS,
[TARGET_ARCHITECTURE = keyword,]
PASSWORD {=|:} {* | string} |
PROTECTIONS,
[TARGET_ARCHITECTURE = keyword,]

FILE = {* | (number[-number][,number[-number]]...

VALUE_CRITERIA,
[TARGET_ARCHITECTURE = keyword,]

FILE = {* | (number[-number][,number[-number]l]..

PASSWORD {=|:} {* | string}}

S

This function exports the current security settings (password definitions, file protection levels and
security by value criteria) to the sequential file SCROUT. The output in the file SCROUT can be
used as ADASCR input in order to import the security definitions into another database.

Note: If the SCROUT file already exists, the current security settings are appended to the

existing file.

The security definitions may be exported either in mainframe syntax to import them on mainframe
platforms (TARGET_ARCHITECTURE=MAINFRAME) or in open systems syntax to import them
on opens systems platforms (TARGET_ARCHITECTURE=OPEN_SYSTEMS - this is the default

448

Adabas Utilities

ADASCR (Security Functions)

PASSWORDS

PASSWORDS,

TARGET_ARCHITECTURE = keyword,
PASSWORD {=|:} {*|string}

The PASSWORDS parameter exports password permission levels (access and update) and the
associated file or file list for the given password/passwords.

The TARGET_ARCHITECTURE parameter defines the syntax of the target platform. The following
keywords can be used:

Keyword Meaning

MAINFRAME |Export the defined password/passwords in mainframe syntax.

OPEN_SYSTEMS |Export the defined password/passwords in open systems syntax.

The default TARGET_ARCHITECTURE is OPEN_SYSTEMS.

The PASSWORD parameter specifies the password for which the security settings have to be ex-
ported. It is also possible to export all defined passwords in the database - this can be done by
specifying an asterisk for this parameter.

Example (export for open systems):

adascr: export=passwords,target_architecture=open_systems,password=09CD09CD
%ADASCR-T-PWEXP, Password 09CD09CD and its access and update levels successfully <«
exported.

i Note: target_architecture=open_systems is optional and can be omitted.
This results in the following output for SCROUT:
INSERT=09CD09CD,FILE=(9,12,13),ACCESS=(13,13,13),UPDATE=(13,13,13)

Example (export for mainframe):

adascr: export=passwords,target_architecture=mainframe,password=09CD09CD
HADASCR-T-PWEXP, Password 09CD09CD and its access and update levels successfully <
exported.

This results in the following output for SCROUT:

Adabas Utilities 449

ADASCR (Security Functions)

ADASCR INSERT PW=09CD0O9CD,FILE=9,ACC=13,UPD=13
ADASCR FILE=12,ACC=13,UPD=13
ADASCR FILE=13,ACC=13,UPD=13

PROTECTIONS

PROTECTIONS,
TARGET_ARCHITECTURE = keyword,
FILE = {*|(number[-number][,number[-numberll..)}

The PROTECTIONS parameter exports the protection levels of the given file, file range or ranges.

The TARGET_ARCHITECTURE parameter defines the syntax of the target platform. The following
keywords can be used:

Keyword Meaning

MAINFRAME |Export the defined password/passwords in mainframe syntax.

OPEN_SYSTEMS |Export the defined password/passwords in open systems syntax.

The default TARGET_ARCHITECTURE is OPEN_SYSTEMS.
The FILE parameter specifies the files for which protection levels are to be exported.

Example (export for open systems):

adascr: export=protections,file=(9,11,13)

#ADASCR-T-PREXP, Protection settings for file 9 successfully exported.
%ADASCR-T-PREXP, Protection settings for file 11 successfully exported.
%ADASCR-T-PREXP, Protection settings for file 13 successfully exported.

This results in the following output for SCROUT:

PROTECT=9,ACCESS=9,UPDATE=9
PROTECT=9,NAME=(**,AC,AD,BC),ACCESS=(0,14,14,14) ,UPDATE=(0,14,14,14)
PROTECT=9,NAME=(FC,FD,IC,ID),ACCESS=(14,14,14,14),UPDATE=(0,0,0,0)
PROTECT=11,ACCESS=1,UPDATE=2
PROTECT=11,NAME=(**,AA,AC,AE),ACCESS=(0,6,3,5),UPDATE=(0,9,9,7)
PROTECT=11,NAME=(AD,AI,AJ,AK),ACCESS=(4,10,10,10),UPDATE=(8,12,12,12)
PROTECT=11,NAME=(AL,AR,AS,AT) ,ACCESS=(10,7,7,7),UPDATE=(12,9,9.9)
PROTECT=11,NAME=(AX,AY,AZ) ,ACCESS=(11,11,8),UPDATE=(13,13,10)
PROTECT=13,ACCESS=13,UPDATE=13
PROTECT=13,NAME=(**) ,ACCESS=(0) ,UPDATE=(0)

450 Adabas Utilities

ADASCR (Security Functions)

Example (export for mainframe):

adascr: export=protections,target_architecture=mainframe,file=11
%ADASCR-T-PREXP, Protection settings for file 11 successfully exported.

This results in the following output for SCROUT:

ADASCR PROTECT FILE=11,ACC=1,UPD=2

ADASCR PROTECT FILE=11,NAME=(AA,AC,AE,AD),ACC=(6,3,5,4),UPD=(9,9,7,8)
ADASCR PROTECT FILE=11,NAME=(AF,AG,AH,AI),ACC=(0,0,0,10),UPD=(0,0,0,12)
ADASCR PROTECT FILE=11,NAME=(AJ,AK,AL,AN),ACC=(10,10,10,0),UPD=(12,12,12,0)
ADASCR PROTECT FILE=11,NAME=(AM,AQ,AP,AR),ACC=(0,0,0,7),UPD=(0,0,0,9)
ADASCR PROTECT FILE=11,NAME=(CAS,AT,AU,AV),ACC=(7,7,0,0),UPD=(9,9,0,0)
ADASCR PROTECT FILE=11,NAME=(AX,AY,AZ),ACC=(11,11,8),UPD=(13,13,10)

VALUE_CRITERIA

VALUE_CRITERIA,

TARGET_ARCHITECTURE = (keyword [,keywordl),
FILE = {*|(number[-number][,number[-numberll..)},
PASSWORD {=|:} {*|string}

The VALUE_CRITERIA parameter exports defined security-by-value settings for a specific file,
for the password specified by “string’.

The TARGET_ARCHITECTURE parameter defines the syntax and also the byte order of the target
platform. The following keywords can be used:

Keyword Group |Valid Keywords

Syntax MAINFRAME
OPEN_SYSTEMS

Byte Order |HIGH_ORDER_BYTE_FIRST
LOW_ORDER_BYTE_FIRST

The default TARGET_ARCHITECTURE is OPEN_SYSTEMS.
The default byte order corresponds to the architecture of the machine on which ADASCR is running.

Note: If you export security-by-value definitions from open systems to mainframe platforms,
a warning will be issued if the search buffer contains W-formatted fields. This is because
W-formatted fields are not supported on mainframe platforms in security-by-value defini-
tions. Any search buffer that contains W-formatted fields will not be exported.

The FILE parameter specifies the file list or range(s) of files for which security-by-value definitions
are to be exported. Multiple specifications of the same file number are not permitted.

The PASSWORD parameter specifies the password for which security-by-value definitions are to
be exported. If you specify an asterisk, the export will be for all defined passwords.

Adabas Utilities 451

ADASCR (Security Functions)

Example (export for open systems):

adascr: export=value_criteria,file=9,PASSWORD=*
There are no value criteria defined for password

There

There

There

There

There

are no value criteria defined for

are no value criteria defined for

are no value criteria defined for

are no value criteria defined for

are no value criteria defined for

password
password
password
password

password

"000009CD"

"00110203"

"00110304"

"00110506"

"00110809"

"09CD0O000"

%ADASCR-T-SBVEXP, Security by value settings on file 9 for password 09CD0O9CD succ
essfully exported.

This results in the following output for SCROUT:

SECURITY_BY_VALUE=09CDO9CD,FILE=9,ACCESS_CRITERION,SEARCH_BUFFER=CA,1,EQ,0,CA,1,E

Q

VALUE_BUFFER=AU

UPDATE_CRITERION, SEARCH_BUFFER=CA,1,EQ.

VALUE_

BUFFER=U

Example (export for mainframe):

adascr: export=protections,target_architecture=mainframe,file=11
%ADASCR-T-PREXP, Protection settings for file 11 successfully exported.

This results in the following output for SCROUT:

ADASCR
ADASCR
ADASCR
ADASCR
ADASCR
ADASCR
ADASCR

PROTECT
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT
PROTECT

FILE=11,ACC=1,UPD=2

FILE=11,NAME=(AA,AC,AE,AD),ACC=(6,3,5,4),UPD=(9,9,7,8)
FILE=11,NAME=(AF,AG,AH,AT),ACC=(0,0,0,10),UPD=(0,0,0,12)

FILE=11,NAME=(AJ,AK,AL,AN),ACC=(10,10,10,0),UPD=(12,12,12,0)

FILE=11,NAME=(AM,AO,AP,AR),ACC=(0,0,0,7),UPD=(0,0,0,9)
FILE=11,NAME=(AS,AT,AU,AV),ACC=(7,7,0,0),UPD=(9,9,0,0)
FILE=11,NAME=(CAX,AY, AZ) 6 ACC=(11,11,8),UPD=(13,13,10)

452

Adabas Utilities

ADASCR (Security Functions)

Example for Export on Windows and Subsequent Import on UNIX

This example shows how to export existing security settings of a Windows Adabas database 33
in order to subsequently import them into a UNIX Adabas database 34.

The export function of ADASCR is used as follows:

>adascr db=33 export=passwords,password=*

HADASCR-T1-STARTED, 12-JAN-2017 16:17:29, Version 6.5.1.0 (Windows 64Bit)
%ADASCR-T1-DBON, database 6 accessed online

HADASCR-T-PWEXP, Password 000009CD and its access and update Tevels successfully
exported.

HADASCR-T-PWEXP, Password 00110203 and its access and update Tevels successfully
exported.

AADASCR-T-PWEXP, Password 00110304 and its access and update Tevels successfully
exported.

%ADASCR-T-PWEXP, Password 00110506 and its access and update Tevels successfully
exported.

%ADASCR-T-PWEXP, Password 00110809 and its access and update Tevels successfully
exported.

%ADASCR-T-PWEXP, Password 09CD0000 and its access and update Tevels successfully
exported.

HADASCR-T-PWEXP, Password 09CD09CD and its access and update levels successfully
exported.

%ADASCR-T-TERMINATED, 12-JAN-2017 16:17:30, elapsed time: 00:00:01

>adascr db=33 export=protections,file=(9,11)

%ADASCR-T1-STARTED, 12-JAN-2017 16:17:55, Version 6.5.1.0 (Windows 64Bit)
%#ADASCR-T1-DBON, database 6 accessed online

#ADASCR-T-PREXP, Protection settings for file 9 successfully exported.
%#ADASCR-T-PREXP, Protection settings for file 11 successfully exported.

HADASCR-T-TERMINATED, 12-JAN-2017 16:17:55, elapsed time: 00:00:00

D:\ada_build\ada\v6_5>adascr db=33 export=value_criteria,file=9,password=*
%#ADASCR-TI-STARTED, 12-JAN-2017 16:18:30, Version 6.5.1.0 (Windows 64Bit)
%#ADASCR-T1-DBON, database 33 accessed online

adascr: target_architecture=(open_systems,high_order_byte_first)

adascr: file=9

adascr: password=09CD09CD

%ADASCR-T-SBVEXP, Security by value settings on file 9 for password 09CD0O9CD succ
essfully exported.

adascr: q

%ADASCR-T-TERMINATED, 12-JAN-2017 16:19:46, elapsed time: 00:01:16

The file “scrout.txt” can now be edited as required, for example, to secure more files other than
the ones exported with the given password.

Now copy the exported text file “scrout.txt” to the desired target platform, in this case to a UNIX
platform. Import the exported security settings using ADASCR with the following statement:

Adabas Utilities 453

ADASCR (Security Functions)

>adascr db=34 + < scrout.txt

%ADASCR-T-STARTED, 12-JAN-2017 17:16:59, Version 6.5.1.0 (Solaris 64Bit)
%ADASCR-T1-DBON, database 34 accessed online

%ADASCR-T-PWINS, password "000009CD" inserted

HADASCR-T-PWINS, password "00110203" inserted

%ADASCR-T-PWINS, password "00110304" inserted

HADASCR-T-PWINS, password "00110506" inserted

%ADASCR-T-PWINS, password "00110809" inserted

%ADASCR-T-PWINS, password "09CD0000" inserted

HADASCR-T-PWINS, password "09CD09CD" inserted

HADASCR-T-FILPRO, protections (access 9, update 9) set for file 9
%ADASCR-I-FIELDPRO, protections (access 0, update 0) set for field ** in file 9
5ADASCR-T-FIELDPRO, protections (access 14, update 14) set for field AC in file 9

%ADASCR-T-FIELDPRO, protections (access 14, update 14) set for field AD in file 9
HADASCR-TI-FIELDPRO, protections (access 14, update 14) set for field BC in file 9

%ADASCR-T1-FIELDPRO, protections (access 14, update 0) set for field FC in file
%#ADASCR-T-FIELDPRO, protections (access 14, update 0) set for field FD in file
%ADASCR-T1-FIELDPRO, protections (access 14, update 0) set for field IC in file
5ADASCR-T-FIELDPRO, protections (access 14, update 0) set for field ID in file
HADASCR-I-FILPRO, protections (access 1, update 2) set for file 11
HADASCR-T-FIELDPRO, protections (access 0, update 0) set for field ** in file 11
%ADASCR-T1-FIELDPRO, protections (access 6, update 9) set for field AA in file 11
%ADASCR-TI-FIELDPRO, protections (access 3, update 9) set for field AC in file 11
%ADASCR-I-FIELDPRO, protections (access 5, update 7) set for field AE in file 11
%ADASCR-TI-FIELDPRO, protections (access 4, update 8) set for field AD in file 11
%ADASCR-T-FIELDPRO, protections (access 10, update 12) set for field AI in file 1
1

%ADASCR-T-FIELDPRO, protections (access 10, update 12) set for field AJ in file 1
1

%ADASCR-T-FIELDPRO, protections (access 10, update 12) set for field AK in file 1
1

HADASCR-T1-FIELDPRO, protections (access 10, update 12) set for field AL in file 1
1

5ADASCR-T-FIELDPRO, protections (access 7, update 9) set for field AR in file 11
%ADASCR-T-FIELDPRO, protections (access 7, update 9) set for field AS in file 11

7,
1

O O O O

%ADASCR-T-FIELDPRO, protections (access update 9) set for field AT in file 11
#ADASCR-T-FIELDPRO, protections (access 11, update 13) set for field AX in file 1
1

%ADASCR-T-FIELDPRO, protections (access 11, update 13) set for field AY in file 1
1

%ADASCR-T-FIELDPRO, protections (access 8, update 10) set for field AZ in file 11

HADASCR-T-SEVINS, Value criteria for file 9 added to password "09CD09CD"
%ADASCR-T-TERMINATED, 12-JAN-2017 17:17:00, elapsed time: 00:00:01

You can check the imported security settings with the DISPLAY control parameter of ADASCR:

454 Adabas Utilities

ADASCR (Security Functions)

adascr
adascr: dbid=34 display=passwords

List of defined passwords for Database 34 ("GENERAL_DATABASE")
MYSECRET

Total of 1 defined password

adascr: dbid=34 display=permissions,password=MYSECRET

password : "MYSECRET"

FILE | ACCESS | UPDATE

1 | Yooy
2 | Y ooy
3 | Yooy
9| ()| ()
11 | NN
2] M] W
13] M
14 | NN

() Further value restrictions apply where brackets shown.

adascr: db=34 display=protections,file=(9,12,13)

FILE | ACCESS | UPDATE

9 | 7 11
12 | 2 | 2
13 | 4 4

adascr: db=34 display=value_criteria,password=MYSECRET

password : "MYSECRET"
| File | Security by Value criterion

| 9 | ACCESS_CRITERION

| | SEARCH_BUFFER: "AZ,2,GE."

| | VALUE_BUFFER: "FR"

| | UPDATE_CRITERION

| | SEARCH_BUFFER: "AH,8,GE,D,AH,8,LE,D,AA,8,LE. "
| | VALUE_BUFFER: "195201011952020160000000"

Adabas Utilities 455

ADASCR (Security Functions)

| 12 | ACCESS_CRITERION

| | SEARCH_BUFFER: "AM,3,GE."

| | VALUE_BUFFER: 0x33000C

| | UPDATE_CRITERION

| | SEARCH_BUFFER: "AM,3,GE."

| | VALUE_BUFFER: 0x50000C

| 13 | ACCESS_CRITERION

| | SEARCH_BUFFER: "BO,GE."

| | VALUE_BUFFER: 0x01000000

| | UPDATE_CRITERION

| | SEARCH_BUFFER: "BO,3,GE."

| | VALUE_BUFFER: 0xFF0201

| ,,,
INSERT

INSERT {=|:} string, FILE = (number[-number][,number[-number]]...)

,ACCESS = (number[,number]...)
,UPDATE = (number[,number]...)

This function inserts a password specified by 'string' into the password table.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

The password may be between 1 and 8 characters long. If less than 8 characters are specified,
trailing blanks are added. The password may not contain any special characters or embedded
blanks.

ACCESS = (number[,number]...)

The ACCESS parameter specifies the access protection levels to be associated with the files or file
ranges specified in the FILE parameter. Each protection level corresponds to one file or one file
range. A value may be specified in the range 0 - 14. The protection levels must be specified in the
same order as the corresponding files or file ranges in the FILE parameter.

FILE = (number[-number[,number[-number]]...)

The FILE parameter specifies the file list or range(s) of files for which permission levels are being
provided. Multiple specifications of the same file number are not permitted.

456 Adabas Utilities

ADASCR (Security Functions)

UPDATE = (number[,number]...)

The UPDATE parameter specifies the update protection levels to be associated with the files or
file ranges specified in the FILE parameter. Each protection level corresponds to one file or one
file range. A value may be specified in the range 0 - 14. The protection levels must be specified in
the same order as the corresponding files or file ranges in the FILE parameter.

Example

adascr: insert=userpwx, file=(1,2,3),
access=(7,7,7), update=(0,8,8)

adascr: insert=userpwy, file=(1,2,3),
access=(7,2,2), update=(8,0,0)

adascr: insert=userpwz, file=(1-3,5),
access=(2,3), update=(4,6)

PROTECT

PROTECT = (number[-number][,number[-number]l]...)
[,NAME = (field_name [, field_name] ..)]
,ACCESS = (number[,number]...)
,UPDATE (number[,number]...)

This function inserts (or updates) the access and/or update protection levels for the file(s) specified
or for fields within a file:

® If NAME is not specified, file protection levels are defined. Multiple specifications of the same
file number are not allowed.

® If NAME is specified, field protection levels are defined. Specifying NAME is only allowed, if
a single file number has been specified. Multiple specifications of the same field name are not
allowed. If the name of a group or a periodic group is specified, the specified field protection
levels are set for all component fields of the group / periodic group, which are not specified
themselves in the list of field names. For fields not specified explicitly or implicitly as component
of a group or periodic group, the field protection levels are not changed.

® Default for file and field protection level is access protection level 0 and update protection level
0.

Adabas Utilities 457

ADASCR (Security Functions)

ACCESS = (number[,number]...)

Values may be specified in the range O - 15.

If NAME is not specified, the UPDATE parameter specifies the update protection levels to be
associated with the file(s) specified in the PROTECT parameter. Each protection level corresponds
to one file or one file range. The protection levels must be specified in the same order as the
corresponding files or file ranges in the PROTECT parameter. The number of values specified
must be identical to the number of files or file ranges in the PROTECT parameter.

If NAME is specified, the UPDATE parameter specifies the update protection levels to be asso-
ciated with the fields specified via NAME. Each protection level corresponds to one field name.
If you set the protection level lower than that of the file, the file protection level becomes effective
field protection level. The protection levels must be specified in the same order as the corres-
ponding field names in the NAME parameter. The number of values specified must be identical
to the number of field names in the NAME parameter.

Note that the maximum protection level for update for the INSERT function is 14, whereas the
PROTECT function allows a maximum of 15. Therefore, with UPDATE=15, a file or field can be
protected to prevent any user from updating it.

UPDATE = (number[,number]...)

Values may be specified in the range 0 - 15.

If NAME is not specified, the ACCESS parameter specifies the access protection levels to be as-
sociated with the file(s) specified in the PROTECT parameter. Each protection level corresponds
to one file or one file range. The protection levels must be specified in the same order as the
corresponding files or file ranges in the PROTECT parameter. The number of values specified
must be identical to the number of files or file ranges in the PROTECT parameter.

If NAME is specified, the ACCESS parameter specifies the access protection levels to be associated
with the fields specified via NAME. Each protection level corresponds to one field name. If you
set the protection level lower than that of the file, the file protection level becomes effective field
protection level. The protection levels must be specified in the same order as the corresponding
field names in the NAME parameter. The number of values specified must be identical to the
number of field names in the NAME parameter.

Note that the maximum protection level for access for the PROTECT function is 15, whereas the
INSERT function allows a maximum of only 14. Therefore, with ACCESS=15, a file or field can be
protected to prevent any user from accessing it.

458 Adabas Utilities

ADASCR (Security Functions)

Example

adascr: protect=25,access=7,update=11

adascr: protect=25,name=(AA,AB,AC),access=(6,8,7),update=(14,13,12)
adascr: protect=(1,2,3),access=(7,7,7),update=(8,8,8)

adascr: protect=(4-6),access=10,update=12

In the second example, assume that AA is an elementary field, and AB is a group consisting of
elementary fields AC, AD and AE. Then the following table shows the resulting protection levels:

Field AA Group AB
Field AC|Field AD|Field AE
Access protection level | ¢ 7 8 8
Update protection level |14 12 13 13

If the file number of a security-protected file is subsequently changed as a result of running the
RENUMBER function of the ADADBM utility, the PROTECT function has to be reexecuted in order
to reestablish the security protection levels for the file. The passwords also have to be reestablished,
since they reflect the old file number.

SECURITY_BY_VALUE

SECURITY_BY_VALUE {=|:} string, FILE = number
,ACCESS_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *
,UPDATE_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *

* The search/access buffer string parameters must be followed by <Newline> with no preceding
comma.

This function inserts (or updates) the Security by Value criteria for a specific file, for the given
password specified by ‘string'. The password must already have been inserted into the security
file, using the INSERT function. Each password can have Security by Value criteria defined for a
maximum of 99 files.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

Adabas Utilities 459

ADASCR (Security Functions)

ACCESS_CRITERION

The ACCESS_CRITERION keyword must precede the search buffer and value buffer which will
define the criterion for restricting access to data using the provided password.

In order for the access value criterion to be specified, the ACCESS password permission level for
the file must also have previously been set (i.e. non-zero); in the case where the level is not set,
the ACCESS_CRITERION keyword cannot be specified.

FILE = number

The FILE parameter specifies the file for which the value criteria are to be defined. Exactly one file
must be specified and the file must be currently loaded in the database.

UPDATE_CRITERION

The UPDATE_CRITERION keyword must precede the search buffer and value buffer which will
define the criterion for restricting the update of data using the provided password.

In order for the update value criterion to be specified, the UPDATE password permission level

for the file must also have previously been set (i.e. non-zero); in the case where the level is not set,
the UPDATE_CRITERION keyword cannot be specified.

SEARCH_BUFFER = string

The SEARCH_BUFFER parameter is used to provide the search expressions for the access/update
criterion. Syntax and examples of search buffer construction are provided in Command Reference,
Calling Adabas, Search and Value Buffers.

Certain restrictions apply to the search buffer when used for defining Security by Value criteria;
soft coupling and sub-, super-, hyper- and phonetic descriptors are not supported.

If the required criterion is that no restrictions should apply, then the associated search buffer
should be specified containing only the terminator, i.e.:

SEARCH_BUFFER = .

In this case, the VALUE_BUFFER parameter is not required and does not need to be supplied.

460 Adabas Utilities

ADASCR (Security Functions)

VALUE_BUFFER = string

The VALUE_BUFFER parameter is used to provide the corresponding values for the search ex-
pressions for the access/update value criterion, specified in the preceding search buffer. The string
may be specified either directly, as an alphanumeric string or as a string using hexadecimal notation.

Example

adascr:

adascr:
adascr:
adascr:

adascr:
adascr:
adascr:
adascr:

security_by_value=fortytwo, file=10,
access_criterion, search_buffer=CA,4,U,LT.
value_buffer=1707

update_criterion, search_buffer=A,4,S,CA,4,D,AA,0,AA.
value_buffer=01001599MS

security_by_value=g6mon, file=3
access_criterion, search_buffer=.
update_criterion, search_buffer=AC,3.
value_buffer=HAM

If the either the access or update protection level for the specified file is zero, the associated value
criterion will not be tested when the password is used for accessing/updating records for that file.

Adabas Utilities 461

462

30 ADATST (Issuing Adabas Commands)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 464
B PIOCEAUIE FIOW ...t et e 465
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 465
B CONEIOl PArAMEIEIS ... e ettt e 466

463

ADATST (Issuing Adabas Commands)

This chapter describes the utility "ADATST".

Functional Overview

The ADATST utility is used to fill the control block and the necessary buffers in order to issue
Adabas commands.

Both the old ACB Adabas command interface and the new ACBX command interface are supported.
For more information on the command interfaces please refer to the Command Reference document-
ation. Note that the ACB interface can be considered as a subset of the ACBX interface: Fields in
the old ACB Adabas control block are also contained in the new ACBX control block (or the ABDs
— the Adabas buffer descriptions) with the difference that some ACB fields are smaller then the
corresponding fields in the new interface. In particular the buffer lengths have been increased that
now Adabas buffers greater than 64 KB are possible. Switching between the interfaces is possible,
but when you switch back to the old ACB interface you must be aware of the restrictions of the
old ACB interface.

This utility is a multi-function utility.

464 Adabas Utilities

ADATST (Issuing Adabas Commands)

Procedure Flow

ADANUC

ADTST

Data Set

Environment
Variable/
Logical Name

Storage
Medium

Additional Information

Control statements

stdin/
SYS$INPUT

Utilities Manual

ADATST messages

stdout/
SYS$OUTPUT

Messages and Codes

Checkpoints

The utility writes no checkpoints.

Adabas Utilities

465

ADATST (Issuing Adabas Commands)

Control Parameters

Note: In the following, "string" is an ASCII string or Ox followed by hexadecimal data.

The following control parameters are available:

Al {=|:} string
A2 {=|:} string
A3 {=|:} string

Ad {=|:} string
A5 {=|:} string
A6 {=|:} string
ABD

ALOOP [= number]

CB
CBDUMP
CC = string
CID = string
CO01 = string
C02 = string
C03 = string
C04 = string
C05 = string
C06 = string
C07 = string
C08 = string
M DBID = number

466 Adabas Utilities

ADATST (Issuing Adabas Commands)

DLOOP

ELOOP

ERRORS = number

EXECUTE = { number |
FB [{=]|:} string]
FB2 [f{=|:} string]

FB3 [f{=|:} string]

FBL = number

FB2L [= number]

FB3L [= number]

FILE

number

ISNQ }

GO [= { number | ISNQ }]

IB [= (number [,number]...)]

IBL = number

D INTERFACE = keyword

ISN = number

ISND

number

ISNI = number

ISNL = { number | ISN
ISNQ = number
LOOP

MB = (number_buffers,

D [NOJOUTPUT

OVERWRITE_RB = string

OVERWRITE_RB2

OVERWRITE_RB3

string

string

}

number_isns)

Adabas Utilities

467

ADATST (Issuing Adabas Commands)

Adabas Utilities

ADATST (Issuing Adabas Commands)

A1
Al {=]:} string
This parameter sets the Additions 1 field.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A2
A2 {=|:} string
This parameter sets the Additions 2 field.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A3
A3 {=]:} string
This parameter sets the Additions 3 field.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A4
A4 {=|:} string
This parameter sets the Additions 4 field.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A5
A5 {=|:} string
This parameter sets the Additions 5 field.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

Adabas Utilities 469

ADATST (Issuing Adabas Commands)

A6
A6 {=]:} string
This parameter sets the Additions 6 field.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

ABD
ABD

This parameter is available only after specifying INTERFACE=ACBX. It displays the Adabas buffer
definitions for the Adabas buffers that are currently defined.

ALOOP
ALOOP [= number]

This parameter opens a loop to add more lines. number' is a line number. If a line number is
specified, new lines are added from that point, overwriting existing lines; if no number is specified,
new lines are added at the end. Close the loop with ELOOP.

CB
CB
This function displays the contents of the control block.

If the parameter INTERFACE=ACB is specified, only the fields contained in the old ACB Adabas
control block are displayed.

If the parameter INTERFACE=ACBX is specified, the fields contained in the new ACBX Adabas
control block but not in the old ACB Adabas control block are also displayed.

CBDUMP
CBDUMP

This function dumps the control block in hex.

470 Adabas Utilities

ADATST (Issuing Adabas Commands)

cC

CC = string

This parameter specifies the command code.

CID

CID= string

This parameter specifies the command ID.
Cco1

CO01l = string

This parameter sets the command option 1.
CO2

C02 = string

This parameter sets the command option 2.
Cco3

C03 = string

This parameter sets the command option 3.
CO4

C04 = string

This parameter sets the command option 4.
C05

C05 = string

This parameter sets the command option 5.

Adabas Utilities

471

ADATST (Issuing Adabas Commands)

CO6

C06 = string

This parameter sets the command option 6.

co7

C07 = string

This parameter sets the command option 7.

Cco8

C08 = string

This parameter sets the command option 8.

DBID

DBID = number

This parameter specifies the database to be used.

DLOOP

DLOOP

This function displays a saved command loop.

ELOOP

ELOOP

This function terminates a loop.
ERRORS

ERRORS = number

This parameter specifies the number of errors permitted before termination occurs.

472

Adabas Utilities

ADATST (Issuing Adabas Commands)

EXECUTE
EXECUTE = { number | ISNQ }

This parameter executes a loop 'n' times, where 'n'is specified by ‘number' or by ISNQ. Enter
CTRL/C to terminate a loop.

FB
FB [{=|:} string]

This parameter is used to display the first format buffer or enter data into the format buffer. The
length is set implicitly.

FB2

FB2 [{=|:} string]

This parameter is used to display the second format buffer or enter data into the format buffer.
The length is set implicitly.

FB3
FB3 [{=]:} string]

This parameter is used to display the third format buffer or enter data into the format buffer. The
length is set implicitly.

FBL

FBL = number

This parameter defines the first format buffer length in the control block.

FB2L
FB2L = number

This parameter defines the second format buffer length in the control block.

Adabas Utilities 473

ADATST (Issuing Adabas Commands)

FB3L
FBL3 = number

This parameter defines the third format buffer length in the control block.

FILE
FILE = number

This parameter specifies the file number.

GO
GO [= { number | ISNQ } 1

This function calls Adabas once or 'n' times, where 'n' is specified by 'number' or ISNQ. Enter
CTRL/C to terminate a loop.

IB
IB [= (number [,number]...)]

This parameter is used to display the ISN buffer or enter ISNs. The length is set implicitly.

IBL

IBL = number

This parameter specifies the ISN buffer length in the control block.

INTERFACE

INTERFACE = keyword

This parameter is used to switch between the old and new Adabas command interface. Valid
keywords are ACB and ACBX. The default is ACB. After INTERFACE = ACB has been specified,
Adabas calls are performed with the old ACB Adabas interface - any fields that are only contained
in the new ACBX Adabas control block and additional format buffers and record buffers are ignored.
You can switch between the old and the new Adabas interface in one Adabas session.

474 Adabas Utilities

ADATST (Issuing Adabas Commands)

ISN

ISN = number

This parameter sets ISN with the number supplied.

ISND
ISND = number

This parameter subtracts number' from ISN.

ISNI
ISNI = number

This parameter adds ‘number' to ISN.

ISNL

ISNL = { number | ISN |}

This parameter is used to set the ISN lower limit with the number supplied, or to move the ISN
from the control block into the ISN lower limit.

ISNQ
ISNQ = number

This parameter specifies the ISN quantity with the number supplied.

LOOP

LOOP

This function defines the start of a loop. All commands that follow will be saved until an ELOOP
is entered.

Adabas Utilities 475

ADATST (Issuing Adabas Commands)

MB

MB = (number_buffers, number_isns)

This parameter defines the number of multifetch buffers and the number of IS entries that can be
stored in a multifetch buffer. number_buffers may be a number between 0 and 3. number_isns
must be a number >0.

The MB parameter can only be specified after INTERFACE = ACBX has been specified.. Since
multifetch buffers are pure output buffers, it is not possible to enter content into the multifetch
buffers.

Once multifetch buffers have been specified, you can display their contents with the RB, RB 2 and
RB3 parameters.

[NOJOUTPUT
[NOJOUTPUT

If this option is set to NOOUTPUT, no messages are output when calling Adabas 'n' times. Only
error messages will be printed.

The default is OUTPUT.

OVERWRITE_RB
OVERWRITE_RB = string

This parameter specifies the name of an existing file to which the contents of the first record buffer
are written. The current contents of the file will be overwritten.

OVERWRITE_RB2
OVERWRITE_RB2 = string

This parameter specifies the name of an existing file to which the contents of the second record
buffer are written. The current contents of the file will be overwritten.

476 Adabas Utilities

ADATST (Issuing Adabas Commands)

OVERWRITE_RB3

OVERWRITE_RB3 = string

This parameter specifies the name of an existing file to which the contents of the third record
buffer are written. The current contents of the file will be overwritten.

RB
RB [{=|:} string]

This parameter is used to display the first record buffer or enter data into the first record buffer.
For input to a file, the length is set implicitly.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

If you display the first record buffer, and at least one multifetch buffer has been defined with the
MB parameter, the first multifetch buffer is also displayed.

RB2
RB2 [{=|:} string]

This parameter is used to display the second record buffer or enter data into the second record
buffer. For input to a file, the length is set implicitly.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

If you display the second record buffer, and at least two multifetch buffers have been defined with
the MB parameter, the second multifetch buffer is also displayed.

RB3
RB3 [{=|:} string]

This parameter is used to display the third record buffer or enter data into the third record buffer.
For input to a file, the length is set implicitly.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

If you display the third record buffer, and at three multifetch buffer have been defined with the
MB parameter, the third multifetch buffer is also displayed.

Adabas Utilities 477

ADATST (Issuing Adabas Commands)

RBL

RBL = number

This parameter specifies the first record buffer length in the control block.
RB2L

RBZ2L = number

This parameter specifies the second record buffer length in the control block.

RB3L

RB3L = number

This parameter specifies the third record buffer length in the control block.
READ_RB

READ_RB = string

This parameter specifies the name of a file that is read into the first record buffer.
READ_RB2

READ_RBZ2 = string

This parameter specifies the name of a file that is read into the second record buffer.

READ_RB3

READ_RB3 = string

This parameter specifies the name of a file that is read into the third record buffer.
RESPONSE

RESPONSE = number

This parameter displays the error text for the given nucleus response code.

478

Adabas Utilities

ADATST (Issuing Adabas Commands)

SB
SB [{=]:} string]

This parameter is used to display the search buffer or enter data into the search buffer. The length
is set implicitly.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

SBL
SBL = number

This parameter specifies the search buffer length in the control block.

SEC_PWD

SEC_PWD = string

This parameter sets the password for the credential that is used for authentication..
The credentials are checked by the Adabas server during command processing.

When used, the control parameter SEC_UID must also be set, if either value is missing or invalid
an Adabas error is returned.

SEC_UID
SEC_UID = string
This parameter sets the user ID credential that is used for authentication.
The credentials are checked by the Adabas server during command processing.

When used, the control parameter SEC_PWD must also be set, if either value is missing or invalid
an Adabas error is returned.

TIME
TIME

This function marks the current time, and displays the difference between this and the last time
mark.

Adabas Utilities 479

ADATST (Issuing Adabas Commands)

[NOJTRACE
[NOJTRACE

This option traces execute loops.

The default is NOTRACE.
VB
VB [{=]|:} string]

This parameter is used to display the value buffer or enter data into the value buffer. The length
is set implicitly. If ‘string' equals RB, the record buffer is moved into the value buffer.

If you specify an equals sign, the value given for 'string’ will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

VBL

VBL = number

This parameter specifies the value buffer length in the control block.
WAIT

WAIT [= seconds]

This parameter causes ADATST to wait for a given period. The waiting time is entered in seconds.
Once the time is set, you can wait for the same period by entering "'WAIT" without any additions.

The default time is 10 seconds.

Example

adatst: wait = 15

ADATST waits for fifteen seconds.

480 Adabas Utilities

ADATST (Issuing Adabas Commands)

WRITE_RB
WRITE_RB = string

This parameter specifies the name of a file to which the contents of the first record buffer are
written. The record buffer is only written if a file with the specified name does not already exist.

WRITE_RB2
WRITE_RB2 = string

This parameter specifies the name of a file to which the contents of the second record buffer are
written. The record buffer is only written if a file with the specified name does not already exist.

WRITE_RB3
WRITE_RB3 = string

This parameter specifies the name of a file to which the contents of the third record buffer are
written. The record buffer is only written if a file with the specified name does not already exist.

Adabas Utilities 481

482

31 apauw (File Unloading)

B FUNCHONAI OVEIVIBW ..ot e e e e 484
B PTOCEAUIE FlOW .ottt et e 486
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 488
B G0N0l ParaMEIErS . et 489
B XAMIDIES L.ttt 495
= TEMP Data Set Space ESMAtioNoooiiiiiiiii e 496
B RES A CONSIAEIAtIONS .. eeeee e e 496

483

ADAULD (File Unloading)

This chapter describes the utility "ADAULD".

Functional Overview

The utility ADAULD unloads an Adabas file, i.e. records are retrieved from a database or an
Adabas backup copy, and written to a sequential file.

The main reasons for unloading a file are:

* To change the space allocation, to reduce the number of logical extents assigned to the index,
Address Converter or Data Storage, and/or to change the padding factor. In this case, the file
has to be unloaded, deleted and reloaded. These features are also available with ADAORD;

® To create one or more test files, all containing the same data. This procedure requires a file to
be unloaded and then reloaded using a different file number. This feature is also available with
ADAORD;

® To extract data from a file for subsequent input to ADAMUP. This is useful for moving records
from a production database to an archive database;

® To re-establish a file that has been archived on an Adabas backup copy.
When unloading a file from a database, the records may be unloaded in:

Logical sequence
The records are unloaded in an ascending sequence based on the values of a user-specified
descriptor;

ISN sequence
The records are unloaded in ascending ISN sequence;

Physical sequence
The records are unloaded in the order in which they are physically located in Data Storage.

Unloading in logical or ISN sequence requires the nucleus to be active. The nucleus is not required
when unloading in physical sequence, provided ADAULD has access to the database container
files.

When unloading from an Adabas backup copy, the records are unloaded in the sequence in which
they were stored by ADABCK. This is generally in ascending data RABN sequence. However, this
sequence cannot be guaranteed when the DRIVES option was used or when the dump was made
online (please refer to the DRIVES option of the utility ADABCK for more detailed information).

The unloaded records are output in compressed format and are identical to the records produced
by the compression utility ADACMP. Since each data record is preceded by its ISN, these ISNs
can be used as user ISNs when reloading the file (please refer to the USERISN option of the utility
ADAMUP for more detailed information).

484 Adabas Utilities

ADAULD (File Unloading)

The user can specify that the descriptor values required to recreate the index for the file are omitted
during the UNLOAD process (SHORT option). This reduces the unload processing time. This
option must not be used if the output is intended as direct input for ADAMUP.

| Note: If the file contains collation descriptors, the ICU version is not changed for the unloaded

data. You can load the data with ADAMUP to a file with the same fields, but a different
ICU version only if the file is empty, and if you use the NEW_FDT option for ADAMUP.

After completion, ADAULD returns one of the following exit status values:

0
Records have been successfully unloaded, and no database corruption was detected.

12
The unload was successful, but corrupted data records were detected, which were not unloaded.
It is recommended that you run ADAVFY in order to obtain more information about the
database corruptions.

15
The unload was successful, but no records were unloaded. In scripts, you can check for this
status value if further activities are required only after unloading at least one record.

255
Unload was not successful.

This utility is a single-function utility.

Adabas Utilities 485

ADAULD (File Unloading)

Procedure Flow

BACKUP_COPY Function

The sequential files ULD00On, ULDDTA, ULDDVT can have multiple extents. For detailed inform-
ation about files with multiple extents, see Adabas Basics, Using Utilities.

486 Adabas Utilities

ADAULD (File Unloading)

 ADANUC
ADAULD

DBID uLooTA
i - Unloaded

Mk Cata

- z
______ g

Ll_ninaagd
Descriptor Walues

DBID Function

The sequential files ULDDTA, ULDDVT can have multiple extents. For detailed information about
files with multiple extents, see Adabas Basics, Using Ultilities.

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name

Associator ASS0x Disk, Tape see note 2

Data storage DATAXx Disk, Tape see note 2

Backup copy ULDO0On Disk, Tape Output of ADABCK's DUMP function,

input for ADAULD

Unloaded data ULDDTA Disk, Tape (see note 1)

Unloaded descriptor values { ULDDVT Disk, Tape (see note 1)

Control statements stdin/ Utilities Manual
SYSSINPUT

Adabas Utilities 487

ADAULD (File Unloading)

Data Set Environment |Storage Additional Information
Variable/ Medium
Logical Name

ADAULD messages stdout/ Messages and Codes
SYS$OUTPUT

Temporary storage TEMPx Disk, Tape see note 3 and 4

Work storage WORK1 Disk, Tape see note 2

Notes:

1. A named pipe can be used for this sequential file.

2. Required by offline unload. Will also increase the speed of online unload using physical sequence.

. Only required if unloading from a backup copy with the online option being used. If the utility
is executed offline, WORK may be used as TEMP if there is no Autorestart pending, by setting

the environment variable TEMP1 to the same value as WORK1.

4. The ADAULD BACKUP_COPY function does not read the DBxxx.INI file to find TEMP,
therefore you must specify TEMP via environment variables.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Function Nucleus must be active |Nucleus must NOT be active |[Nucleus is NOT required | Checkpoint written
BACKUP_COPY X -
DBID X(see note 1) X(see note 3) X(see note2) SYNX

Notes:

. When unloading in logical sequence or ISN sequence or when the database container file cannot
be accessed by ADAULD (e.g. when unloading from a remote node). Also applies if a file contains
LOB data, because LOB data must be unloaded in logical sequence. Also applies if the search
buffer and value buffer are provided.

. When unloading in physical sequence and ADAULD has access to the database container files.
. When unloading an Adabas system file.

488 Adabas Utilities

ADAULD (File Unloading)

Control Parameters

The following control parameters are available:

BACKUP_COPY =

number, FILE = number

[,FDT]

[,NUMREC = number]

[,[NOJONLINE]

[, [NOJSHORT | [NOJSINGLE_FILE 1]
[,SKIPREC = number]
[,[NOJUSEREXIT]

DBID = number , FILE = number

D

D

D
L

D L
L
L

D L
L
{
L

D L

BACKUP_COPY

BACKUP_COPY =

,FDT]

,[NOJLITERAL]

,NUMREC = number]

,SEARCH_BUFFER = string, VALUE_BUFFER = string]
, [NOJSHORT | [NOJSINGLE_FILE 1]

,SKIPREC = number]

,SORTSEQ = { string | ISN } 1]

,STARTISN = number]

,[NOJUSEREXIT]

number

,FILE = number

,FDT]

,NUMREC = number]

,[NOJONLINE]

,[INOISHORT | [NOJSINGLE_FILE]
,SKIPREC = number]
,[NOJUSEREXIT]

A

This function unloads records from an Adabas backup copy. You are not allowed to specify a LOB
file. "BACKUP_COPY=number" specifies the ID of the database from which the backup copy was
derived, and "FILE=number" specifies the file number. Both offline and online backup copies can
be used. If a LOB file is assigned to the file specified, a partial reload using the ADAMUP parameters
NUMREC, SKIPREC is not possible.

Adabas Utilities

489

ADAULD (File Unloading)

FDT

This parameter displays the FDT of the file to be unloaded.
FILE = number

This parameter specifies the file to be unloaded.

NUMREC = number

This parameter limits the number of data records retrieved from the file when unloading. All records
are unloaded if NUMREC is omitted and SKIPREC is not specified. You cannot use NUMREC if
a LOB file is assigned to the file to be reloaded.

[NOJONLINE

This option indicates whether the backup copy might contain online data storage blocks for the
file to be unloaded.

If the backup copy is expected to contain online data storage blocks, two passes are made when
processing the backup copy. This is because the most recent version of each data storage block
has to be found. Setting this option to NOONLINE unloads in one pass and saves a considerable
amount of processing time, at the risk of ADAULD terminating with an error message if an online
data storage block is detected.

The default used depends on whether or not the Adabas nucleus was active when the backup was
made.

[NOJSHORT

This option indicates whether the descriptor values used to build up the index should be included
in the output or omitted.

If SHORT is specified, no descriptor values are unloaded.

If the output is intended as direct input for the mass update utility, the file must be unloaded in
NOSHORT mode.

SHORT and SINGLE_FILE are mutually exclusive.

NOSHORT is the default.

490 Adabas Utilities

ADAULD (File Unloading)

[NOJSINGLE_FILE

If this option is set to SINGLE_FILE, ADAULD writes the DVT and DATA information to a single
data set (ULDDTA).

SINGLE_FILE and SHORT are mutually exclusive.

The default is NOSINGLE_FILE.
SKIPREC = number

This parameter specifies the number of records to be skipped before unloading is started. You
cannot use SKIPREC if a LOB file is assigned to the file to be reloaded.

[NOJUSEREXIT

A user-written routine is dynamically loaded. A pointer to an input parameter block and a pointer
to an output parameter are passed with each call (please see the include file adauex.h for more
information). For each record retrieved from the database, the decision can be made whether to
unload the record (write it to the unload file), skip it or terminate execution immediately.

The environment variable/logical name ADAUEX_7 must point to a user-written routine.
See Adabas Basics, User Exits and Hyperexits for more details.

NOUSEREXIT is the default.

DBID

DBID = number

,FILE = number
,FDT]
,[NOJLITERAL
,NUMREC = number]
,SEARCH_BUFFER = string]
,[NOISHORT | [NOJSINGLE_FILE]

,SKIPREC = number]

,SORTSEQ = { string | ISN }]
,STARTISN = number]
,LNOJUSEREXIT]

oo

,VALUE_BUFFER = string]

This function unloads records from the specified database.

Adabas Utilities 491

ADAULD (File Unloading)

FDT

This parameter displays the FDT of the file to be unloaded.

FILE = number

This parameter specifies the file to be unloaded. You are not allowed to specify a LOB file.
[NOJLITERAL

If this option is set to LITERAL, leading blanks and lower case characters can be specified in the
value buffer and remain relevant in the string, i.e. they are not removed or converted to upper
case. If NOLITERAL is set, lower case characters will be transformed to upper case, and leading
blanks will be suppressed except when the value is specified as a hexadecimal value.

NOLITERAL is the default.
NUMREC = number

This parameter limits the number of data records retrieved from the file when unloading. All records
of the file are unloaded if NUMREC is omitted and SKIPREC or STARTISN are not specified.

SEARCH_BUFFER = string

This parameter is used to restrict the unloaded records to those which meet the selection criterion
provided. The selection criterion must be provided according to the syntax for search buffer entries
as described in the Command Reference Manual.

The maximum length of this parameter is 200 bytes. For complex entries, use the following
method:

adauld: search_buffer=aa,20,a,d,\
> ab,10,a.

ADAULD will concatenate this to:

aa,20,a,d,ab,10,a.

The values which correspond to the selection criterion are provided by the VALUE_BUFFER
parameter.

492 Adabas Utilities

ADAULD (File Unloading)

[NOJSHORT

This option indicates whether the descriptor values used to build up the index should be included
in the output or omitted.

If SHORT is specified, no descriptor values are unloaded.

If the output is intended as direct input for the mass update utility, the file must be unloaded in
NOSHORT mode.

SHORT and SINGLE_FILE are mutually exclusive.

NOSHORT is the default.
[NOJSINGLE_FILE

If this option is set to SINGLE_FILE, ADAULD writes the DVT and DTA information to a single
data set (ULDDTA).

SINGLE_FILE and SHORT are mutually exclusive.

The default is NOSINGLE_FILE.
SKIPREC = number

This parameter specifies the number of data records to be skipped before unloading is started.

When used together with the STARTISN parameter, positioning is carried out before skipping.
SORTSEQ = string

This parameter controls the sequence in which the file is unloaded. If specified, it may either
contain the field name of a descriptor, sub- or superdescriptor (1) or the keyword ISN' (2). The
default is physical sequence (3).

1. Logical sequence

If a string specifies a field name of a descriptor or sub/superdescriptor, the records are unloaded
in ascending logical sequence of the descriptor values to which the field name refers. The field
name must not refer to a descriptor contained within a periodic group.

If the field name refers to a descriptor which is a multiple-value field, the same record may be
unloaded more than once (once for each different descriptor value in the record). Therefore, it
is not recommended to use this type of descriptor to control the unload sequence.

If the field name refers to a descriptor defined with the NU or NC option, the records with a
null value for the descriptor are not unloaded.

Adabas Utilities 493

ADAULD (File Unloading)

2. ISN sequence

If "ISN' is specified, the records are unloaded in ascending ISN sequence.

3. Physical sequence

If the SORTSEQ parameter is omitted, the records are unloaded in the physical sequence in
which they are stored in the Data Storage.

If a search buffer has been specified and the SORTSEQ parameter has been omitted, the records
are unloaded in ascending ISN sequence.

STARTISN = number

If the SORTSEQ = ISN option is used or a search buffer is provided, the STARTISN parameter may
be specified to start unloading at a given ISN rather than from the lowest ISN in the file. If the
specified ISN does not exist, unloading starts at the next highest ISN found.

[NOJUSEREXIT

A user-written routine is dynamically loaded. A pointer to an input parameter block and a pointer
to an output parameter are passed with each call (please see the include file adauex.h for more
information). For each record retrieved from the database, the decision can be made whether to
unload the record (write it to the unload file), skip it or terminate execution immediately.

The environment variable/logical name ADAUEX_7 must point to a user-written routine.
See Adabas Basics, User Exits and Hyperexits for more details.

NOUSEREXIT is the default.
VALUE_BUFFER = string

If a selection criterion is specified with the SEARCH_BUFFER parameter, this parameter is used
to supply the values which correspond to the selection criterion. The maximum length of this
parameter is 2000 bytes.

Note: See also [NO]JLITERAL, which controls the conversion of the value buffer to upper

case.

494 Adabas Utilities

ADAULD (File Unloading)

Examples

Example 1

adauld: backup_copy = 3, file = 6

File 6 on the backup copy of database 3 is unloaded. A TEMP data set and two passes through the
backup copy may be required, depending on the default setting of the [NOJONLINE option.

Example 2

adauld: backup_copy = 3, file = 6
adauld: single, noonline

The same file is unloaded. Both data records and descriptor value table entries are written to the
same output file. The backup copy is processed in one pass as no online blocks are expected. No
TEMP data set is required.

Example 3

adauld: dbid = 3, file = 6, skiprec = 100

File 6 in database 3 is unloaded. The records are unloaded in the physical sequence in which they
are stored in the Data Storage. The first 100 records found are not written to the output files.

Example 4

adauld: dbid = 3, file = 6
adauld: numrec = 10
adauld: sortseq = ab
adauld: short

Ten records from file 6 in database 3 are unloaded. The values of the descriptor AB are used to
control the sequence in which the records are retrieved. The values required to re-create the inverted
list when reloading are omitted.

Adabas Utilities 495

ADAULD (File Unloading)

Example 5

adauld: dbid = 3, file = 6, sortseq = isn, startisn = 123

File 6 in database 3 is unloaded. The records are unloaded in ascending ISN sequence starting at
ISN 123.

TEMP Data Set Space Estimation

When unloading from an Adabas backup copy without the NOONLINE option set, the TEMP
data set is required to accumulate information about online block occurrences.

The formula TRH=DRH/1000 can be used as a rough estimate with the default TEMP block size
(4 kilobytes).

The following formula may be used to calculate the exact requirements:
X = ENTIRE ((DRH / BSTD) * 4)

TRH = X + ENTIRE (X / BSTD / 8) + 1

where:

ENTIRE

the next highest integer

BSTD
TEMP block size in bytes.

DRH
highest Data Storage RABN in the database on the backup copy. The SUMMARY function of
the ADABCK utility can be used to obtain this number.

TRH
highest RABN required on TEMP.

Restart Considerations

ADAULD has no restart capability. An interrupted ADAULD run must be re-executed from the
beginning.

496 Adabas Utilities

32 ADAVFY (Database Consistency Check)

B FUNCHONAI OVEIVIEWttt et e e e e e e e 498
B PIOCEAUIE FIOW ...t et e 499
B CNECKPOINTS ettt ettt e et e ettt e et e e e e 500
B CONEIOl PArAMEIEIS ... e ettt e 500
B XAMIDIES L.ttt 504

497

ADAVFY (Database Consistency Check)

The following topics are covered:

Functional Overview

The ADAVFY utility checks the consistency of the database. The General Control Block (GCB) is
validated together with each File Control Block (FCB) and each Field Definition Table (FDT) of
the loaded files. The index structure and Data Storage are validated. ADAVFY can also search for
lost RABNS.

Running ADAVFY against an active nucleus, or running in parallel with utilities that perform
database updates, may result in errors being reported. This is because further updates can be made
before the utility terminates and some of these updates are only reflected in the nucleus buffer
pool. ADAVFY does not require the Adabas nucleus to be active; it processes the database offline.

In general, ADAVFY only displays consistency errors that it detects and it does not modify the
database. However, there are some errors in FCB and FDT that will be corrected by ADAVFY in
offline mode when ADAVFY finds them, for example, an invalid value of the record counter in
the FCB for the number of records in the file.

This utility is a multi-function utility.

498 Adabas Utilities

ADAVFY (Database Consistency Check)

Procedure Flow

Associator ASSOx Disk, Tape

Data storage DATAX Disk, Tape

Control statements |stdin/ Utilities Manual
SYSSINPUT

ADAVFY messages |stdout/ Messages and Codes
SYS$OUTPUT

Work WORK1 Disk, Tape

Adabas Utilities 499

ADAVFY (Database Consistency Check)

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

AC

DATA

M DBID = number

D ERRORS = number
FCB
FIELD

D FILES = { * | (number [-number][,number[-number]]...) }
FROM = number - number
INDEX

D LEVEL = number
LOB_REFERENCES
LOST
RECORD

The parameters AC, DATA, FCB, FIELD, INDEX, LOST and RECORD immediately invoke the
corresponding verification function. The remaining parameters are only evaluated if they have
been specified before such a parameter.

500 Adabas Utilities

ADAVFY (Database Consistency Check)

AC
AC

This function validates from the Address Converter to the Data Storage and checks that records
can be found in the specified Data Storage for the files specified with the FILES parameter (see
also DATA).

DATA
DATA

This function verifies Data Storage for the specified file number(s). This function validates from
the Address Converter to the Data Storage and from the Data Storage to the Address Converter
for the files specified with the FILES parameter. The ADAVFY DATA function corrects the following
error in offline mode if it is detected: the FCB contains a record counter for the number of records
in the file, and if this counter has an incorrect value, it will be corrected.

DBID

DBID = number

This parameter selects the database to be verified.

ERRORS
ERRORS = number

This parameter specifies the number of errors to be reported before the verification of a single file
terminates. The minimum number allowed is 1. The default value is 20.

FCB
FCB

This function validates the file control block together with the Field Definition Table for the files
specified with the FILES parameter (see also INDEX).

Adabas Utilities 501

ADAVFY (Database Consistency Check)

FIELD
FIELD

This function validates the Data Storage. It checks the record structure and validates the contents
of unpacked, packed and floating point values for the specified files.

FILES

FILES = { * | (number[-numberl][,number[-numberl]...) }

This parameter specifies the files to be verified. If an asterisk ™*' is entered, all files will be verified.
The FILES parameter is required for all functions except the LOST function.

The default is no files.

FROM

FROM = number - number

The values specified are used in conjunction with the LEVEL option to print various structures.
Please refer to the LEVEL parameter in this section for more detailed information.

INDEX
INDEX

This function verifies the complete index to level 1 (Normal Index). This includes verification of
the FCB and FDT.

ADAVFY also counts the number of used, free, reusable and lost NI (Normal Index, index level
1), MI (Main Index, index level 2) and UI (Upper Index, index level 3 or greater) blocks.

Example:

%ADAVFY-T-INDSTR, Index verification

%ADAVFY-I-INDCNT, NI: used: 210, free: 1773, reusage: 17, lost: O
HADAVEY-T-INDCNT, UI: used: 1, free: 87, reusage: 2, lost: 1
%ZADAVFY-T-INDCNT, MI: used: 9, free: 87, reusage: 2, lost: 1
HADAVFY-T-INDEND, Index verification completed =

Notes:

1. Used index blocks are index blocks that are currently in use.
2. Free index blocks are index blocks that have not yet been used.

3. Reusable index blocks are index blocks that already have been used, but that have become
empty again and were included in the reusage queue. These blocks can be used again.

502 Adabas Utilities

ADAVFY (Database Consistency Check)

4. Lostindex blocks are index blocks that are not currently used and that are missing in the reusage
queue, and therefore cannot be used again. A value of 1 lost block is normal - this can happen
after running ADAINV REINVERT.

5. The number of free, reusable and lost MI and UI blocks is the same, because these blocks are
taken from the same logical extent. Please note that the numbers displayed are the numbers for
MI and Ul together - if you use additional space for MI blocks, this also reduces the number of
space available for Ul blocks.

LEVEL

LEVEL = number

This parameter specifies how much information ADAVFY should output concerning the internal
structures. Specifying this parameter does not affect the degree of verification performed. If this
parameter is used, it must be specified before the function in question.

The default value is the highest possible index level plus 1.

with INDEX function

Level n|prints information about index level n and higher

Level 0 | prints more detailed structure of the index blocks

The FROM option is used to specify an index RABN range. Only the RABNSs specified will be
dumped.

with AC/DATA/RECORD/FIELD functions

Level 2 |prints which RABNs processed

Level 1| prints record structure (when RECORD or FIELD is used), or where each ISN points (when DATA
or AC is used), or which ISN with LOB ID is verified (when LOB_REFERENCES is used)

Level 0|dumps fields within records

with LOB_REFERENCES function

Level 0|dumps the ISN with LOB ID list found from the base file, and ISN with LOB record from the LOB
file

Adabas Utilities 503

ADAVFY (Database Consistency Check)

with LOST function

‘Level 0 ‘dumps the physical structure of the database

LOB_REFERENCES
This function verifies LOB references between the LOB file and the base file.

LOST

LOST

If this option is specified, ADAVFY searches for lost RABNs in the database. If any lost RABN's
are found, the space can be recovered by using the RECOVER function of ADADBM.

RECORD
RECORD

This function validates the Data Storage and checks the structure of each record for the specified
files (see also FIELD).

Examples

Example 1

adavfy: dbid=3,file=*,data,field,index

All files of database 3 are validated using the functions DATA, FIELD and INDEX. This combination
of functions gives the maximum degree of validation.

Example 2

adavfy: dbid=3, file=7, level=l, field

File 7 of database 3 is validated. The record structure in Data Storage is validated, as well as the
contents of unpacked, packed and floating point fields. ADAVFY prints a list of the RABNs which
have been processed and, for each record processed, its offset in the corresponding RABN, its
length and its ISN.

504 Adabas Utilities

A Appendix A - Example Utility Input Files

The Adabas kit contains example utility input data - this allows you to try out some of the Adabas

utilities, and to load example data into the database so that you can gain experience of using
Adabas.

The following Adabas demo files are provided with the Adabas kit:

File Number |Adabas File Name Description
9 EMPLOYEES File used for the C example program (see Command Reference)
11 EMPLOYEES-NAT |File used as example file by Natural containing employees data
12 VEHICLES File used as example file by Natural containing vehicles data
13 MISCELLANEOUS|Example for a file containing a large number of fields
14 LOBFILE of 9 Lob file of the Adabas file EMPLOYEES

| Notes:

1. For creating the Adabas demo database (an Adabas database containing the Adabas demo files)
on UNIX the command crdemodb <dbid> is available, on Windows there is an icon "Create
Demo Database".

The Adabas kit contains the following utility input files in the directory” $ADAPROGDIR/demodb”
on UNIX or in the subdirectory “Adabas\demodb” of the installation directory on Windows:

File Name Description

LoadDemo.bsh (UNIX)|Script to load all demo files provided via ADAFDU, ADACMP and ADAMUP
loadall.bat (Windows)

loadfile.bat Script to load one of the demo files via ADACMP and ADAMUP - called by
(Only Windows) loadall.bat
emp.cmp ADACMP parameters for the EMPLOYEES file

505

Appendix A - Example Utility Input Files

File Name Description

emp.cmpin Decompressed demo data to be loaded via ADACMP and ADAMUP in the
EMPLOYEES file

emp.fdt FDUFDT file containing the FDT of the EMPLOYEES file

emp.fdu ADAFDU parameters for the EMPLOYEES file

emp_nat.cmp

ADACMP parameters for the EMPLOYEES_NAT file

emp_nat.cmpin

Decompressed demo data to be loaded via ADACMP and ADAMUP in the
EMPLOYEES_NAT file

emp_nat.fdt

FDUEFDT file containing the FDT of the EMPLOYEES_NAT file

emp_nat.fdu

ADAFDU parameters for the EMPLOYEES_NAT file

mis.cmp ADACMP parameters for the MISCELLANEOUS file

mis.cmpin Decompressed demo data to be loaded via ADACMP and ADAMUP in the
MISCELLANEOQUS file

mis.fdt FDUEFDT file containing the FDT of the MISCELLANEOUS file

mis.fdu ADAFDU parameters for the MISCELLANEOUS file

napp_backup.csh
(Only UNIX)

Example script for External Backup on Network Appliance filers

napp_conf
(Only UNIX)

Example configuration file for External Backup on Network Appliance filers

napp_restore.csh
(Only UNIX)

Example script for External Restore on Network Appliance filers

ordexp.demo

ORDEXP file containing all Adabas demo files.

veh.cmp ADACMP parameters for the VEHICLES file

veh.cmpin Decompressed demo data to be loaded via ADACMP and ADAMUP in the
VEHICLES file

veh.fdt FDUFDT file containing the FDT of the VEHICLES file

veh.fdu ADAFDU parameters for the VEHICLES file

506

Adabas Utilities

B Appendix B - prilogc

prilogc is an example program for printing a command log that is created with the nucleus para-
meter CLOGLAYOUT set to 6.

The Adabas kit does not contain an official utility for creating printable output from a command
log created with the ADANUC parameter CLOGLAYOUT=6, but there is an example C program
prilogc, which can be modified by the user to adapt the output. This program is not officially
supported by Software AG - and it is not guaranteed that it will also be provided with future
versions of Adabas.

The source file prilogc.c is located in the subdirectory “Adabas/examples/server” on both UNIX
and Windows. This directory also contains a make file makefile to build the executable; the usage
is described in the make file. The required header files are located in the subdirectory Adabas /inc
of the installation directory on both UNIX and Windows.

The executable of prilogc is provided in $ADATOOLS on UNIX, and in %ADATOOLS% on Win-
dows, which is included in the PATH setting provided by the Adabas installation.

prilogc expects that the environment variable PRICLG is set to the command log to be evaluated;
parameters that can be specified for prilogc can be displayed by entering the following:

prilogc -h

507

508

C Appendix C - Adabas Checkpoints

The following checkpoints are written by the Adabas utilities:

SYNC
A checkpoint made during nucleus initialization, termination or cancel processing; during the
ADAOPR function FEOF = PLOG; due to ADABCK NEW_PLOG processing; or during the
function ADAOPR EXT_BACKUP=CONTINUE.

SYNP
A checkpoint made by a utility that requires privileged control. Such utilities can perform
updating without using the Adabas nucleus.

SYNX
A checkpoint made by a utility that requires exclusive control (EXF) of one or more files.

The following tables shows which utilities or utility functions write which checkpoints. Where
appropriate, information about the online/offline status of the database is also provided.

Utility Utility Function Checkpoint|Database Online/Offline, Comments
ADABCK |DUMP SYNX The nucleus is only required when there is an
AUTORESTART pending at the end of this function.
EXU_DUMP SYNC The nucleus is only required when there is an
AUTORESTART pending at the end of this function.
OVERLAY SYNP The nucleus must NOT be active for overlay of the

database or system files.

The nucleus is not required for overlay of files.

RESTORE SYNP The nucleus must NOT be active for restore of the
database or system files.

The nucleus is not required for restore of files.

ADACVT SYNP ADACVT writes a SYNP checkpoint following
successful completion.

509

Appendix C - Adabas Checkpoints
Utility Utility Function Checkpoint|Database Online/Offline, Comments
ADADBM|ADD_CONTAINER SYNP
ADD_FIELDS SYNP offline
SYNX online
ALLOCATE SYNP
BT SYNP offline
CHANGE_FILEDS SYNP offline
SYNX online
DEALLOCATE SYNP
DELCP SYNP
DELETE SYNP offline
SYNX online
DROP_FIELDS SYNP offline
SYNX online
DROP_LOBFILE SYNP
EXTEND_CONTAINER SYNP
NEW_DBID SYNP
NEWWORK SYNP
PGM_REFRESH SYNP
RBAC_FILE SYNP
RECORDSPANNING SYNP
RECOVER SYNP
REDUCE_CONTAINER SYNP
REFRESH SYNP
REMOVE_CONTAINER SYNP
REMOVE_REPLICATION |SYNP offline
RENAME SYNP
RENUMBER SYNP
REPLICATION_FILES SYNP offline
SYNX online
RESET SYNX
REUSE SYNP
SECURITY SYNP offline
SYFMAX SYNP offline
SYNX online
ADAFDU |- SYNP offline
SYNX online

510

Adabas Utilities

Appendix C - Adabas Checkpoints

Utility Utility Function Checkpoint|Database Online/Offline, Comments
ADAINV |INVERT SYNP
REINVERT SYNP
RELEASE SYNP
RESET_UQ SYNP
SET_UQ SYNP
VERIFY SYNX
ADAMUP |UPDATE SYNP
ADANUC |On startup and termination |[SYNC
ADAOPR |FEOF=PLOG SYNC online
After the FEOF=PLOG checkpoint, ADANUC writes
a SYNC checkpoint for the start of the new PLOG
session.
EXT_BACKUP=PREPARE |SYNX online
Written at EXT_BACKUP started
EXT_BACKUP=CONTINUE [SYNC online
Written at FEOF=PLOG
SYNX online
Written at EXT_BACKUP terminated
ADAORD |EXPORT SYNX
IMPORT SYNP
IMPORT_RENUMBER SYNP
REORDER SYNP
ADAREC |REGENERATE SYNX
ADAULD |DBID SYNX

Adabas Utilities

511

512

	Adabas Utilities
	Table of Contents
	Adabas Utilities
	1 Conventions
	Use of Character Fonts
	Syntax Conventions
	Upper-Case Conversions
	Field Specifications
	Symbols used in control parameter summaries
	Order of parameters
	Numeric Values
	Maximum Values
	Syntax Diagrams in the HTML Documentation
	Procedure Flow
	Obsolete Parameters

	2 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	3 Overview
	4 ADABAS (Starting The Database Nucleus)
	Functional Overview
	Procedure Flow
	Control Parameter
	DBID

	5 ADABCK (Dump And Restore Database Or Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CONTENTS
	COPY
	DBID
	DUMP
	BLOCKSIZE = number[K|M]
	DRIVES = number
	[NO]DUAL
	ET_SYNC_WAIT = number
	[NO]NEW_PLOG
	REPLICATION

	EXU_DUMP
	BLOCKSIZE = number[K|M]
	DRIVES = number
	[NO]DUAL
	[NO]NEW_PLOG
	REPLICATION
	Examples for DUMP/EXUDUMP

	FILES
	IOSTAT
	OVERLAY
	FMOVE [=(number [,number [-number]]...)]
	FORMAT = (keyword [,keyword])
	KEEP_FILE_ALLOC
	NEW_DBID = number
	RENUMBER = (number[-number] [,number [-number]]...)
	REPLICATION

	PARALLEL
	READ_CHECK
	RESTORE
	FMOVE [=(number [,number [-number]]...)]
	FORMAT = (keyword [,keyword])
	NEW_DBID = number
	REPLICATION
	Examples for RESTORE/OVERLAY

	SUMMARY

	Restart Considerations

	6 ADACLP (Command Log Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]ADDITIONS_2
	CLASS
	CLOG
	COMMAND
	DATE
	DBID
	DISPLAY
	ES_ID
	FILE
	[NO]HEXADECIMAL
	LOGIN_ID
	NODE_ID
	PAGE
	RECORDS
	RESPONSE
	USER_ID
	Example

	WIDTH

	Specifying Multiple Selection Criteria

	7 ADACMP (Compression Of Data)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DBID
	[NO]DST
	FDT
	FIELDS
	FILE
	[NO]LOWER_CASE_FIELD_NAMES
	[NO]LOBS
	MAX_DECOMPRESSED_SIZE
	MUPE_C_L
	[NO]NULL_VALUE
	NUMREC
	RECORD_STRUCTURE
	SEPARATOR
	[NO]SHORT_RECORDS
	[NO]SINGLE_FILE
	SKIPREC
	SOURCE_ARCHITECTURE
	Example

	SYFINPUT
	TZ
	[NO]USEREXIT
	[NO]USERISN
	WCHARSET

	Output
	Compressed Data Records
	Descriptor-Value Table File
	Rejected Data Records

	Report
	Restart Considerations

	8 ADACVT (Convert a Database from a previous Version)
	Functional Overview
	Procedure Flow
	Checkpoints
	ADACVT Control Parameters
	DBID
	CONVERT

	Restart Considerations

	9 ADADBM (Database Modification)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADD_CONTAINER
	BLOCKSIZE = number[K]
	SIZE = number [B|M]
	Example

	ADD_FIELDS
	field_specification
	FDT
	Example

	ALLOCATE
	FILE = number
	RABN = number
	SIZE = number [B|M]
	Example

	BT
	FILE = number
	Examples

	CHANGE
	FIELD = string
	LENGTH = number
	Example

	CHANGE_FIELDS
	field_specification
	FDT

	DBID
	Examples

	DEALLOCATE
	DEALLOCATE = AC, DS, NI or UI
	FILE = number
	RABN = number
	SIZE = numberB
	Example

	DEFINE_REFINT
	DELCP
	Examples

	DELETE
	DELETE_DATABASE
	DISPLAY
	DROP_FIELDS
	FDT

	DROP_LOBFILE
	DROP_REFINT
	EXTEND_CONTAINER
	SIZE = number [B|M]

	[NO]LOWER_CASE_FIELD_NAMES
	NEW_DBID
	NEWWORK
	BLOCKSIZE = number[K]
	SIZE = number [B|M]

	PGM_REFRESH
	FILE = number

	RBAC_FILE
	Example

	RECORDSPANNING
	FILE = number
	Examples

	RECOVER
	Example

	REDUCE_CONTAINER
	SIZE = number B

	REFRESH
	REMOVE_CONTAINER
	REMOVE_DROP
	REMOVE_REPLICATION
	RENAME
	NAME {=|:} string
	Example

	RENUMBER
	REPLICATION_FILES
	RESET
	UCB
	IDENT = { (number [,number]...) | * }

	RESET_REPLICATION_TARGET
	REUSE
	FILE = number

	SECURITY
	ACTIVE
	WARN
	Default Mode

	SYFMAX
	FILE = number

	Restart Considerations

	10 ADADCU (Decompression Of Data)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]DCUFDT
	[NO]DST
	FDT
	FIELDS
	Example

	[NO]LOWER_CASE_FIELD_NAMES
	MAX_DECOMPRESSED_SIZE
	MUPE_C_L
	MUPE_OCCURRENCES
	Example

	[NO]NULL_VALUE
	Example

	NUMREC
	Example

	RECORD_STRUCTURE
	SKIPREC
	TARGET_ARCHITECTURE
	Example

	[NO]TRUNCATION
	TZ
	[NO]USERISN
	Example

	WCHARSET

	Input and Output Data
	ADADCU Output
	Rejected Data Records

	Restart Considerations

	11 ADADEV (Disk Space Management)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ALLOCATE
	START_SECTOR = number
	BLOCKSIZE = numberKB
	SIZE = number [B|M]

	CHANGE
	COMBINE
	COPY
	DBID
	DEALLOCATE
	FREE_SPACE
	INITIALIZE
	LAYOUT
	[NO]MOUNTCHECK
	MOVE
	NEW_DBID
	REALLOCATE
	RESET
	RESIZE
	SECTION
	UNLOCK

	12 ADAELA (Event Analytics Administration)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADD_SERVER
	ADD_NUCELG
	ADD_EVENTTYPE
	ADD_FILTER
	DBID
	DISABLE
	DISPLAY
	ENABLE
	REMOVE
	REMOVE = SERVER
	REMOVE = NUCELG
	REMOVE = EVENTTYPE, NAME=string [,END_OF_EVENTTYPE]

	13 ADAELP (Event Log Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DBID
	EVENT_TIMESTAMP
	HOSTNAME
	LIST
	USER_ID

	Specifying Multiple Selection Criteria

	14 ADAERR (Error File Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameter
	[NO]DUMP

	Example
	Rejected Data Records

	15 ADAFDU (File Definition)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ACBLOCKSIZE
	ACRABN
	ADAM_KEY
	ADAM_OVERFLOW
	ADAM_PARAMETER
	ADD_LOBFILE
	ASSOPFAC
	[NO]BT
	[NO]CIPHER
	CONTIGUOUS
	DATAPFAC
	DBID
	DSBLOCKSIZE
	DSRABN
	DSSIZE
	FDT
	FILE
	[NO]FORMAT
	LOBFILE
	[NO]LOWER_CASE_FIELD_NAMES
	MAXISN
	NAME
	NIBLOCKSIZE
	NIRABN
	NISIZE
	[NO]PGM_REFRESH
	REUSE
	REUSE = [NO]DS
	REUSE = [NO]ISN
	Examples

	SYFMAX
	UIBLOCKSIZE
	UIRABN
	UISIZE

	Examples

	16 ADAFIN (File Information Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADAM_DS
	DBID
	DESCRIPTOR
	Examples

	FDT
	Example

	FILE
	[NO]HISTOGRAM
	Example (with HISTOGRAM)
	Example (with NOHISTOGRAM)

	USAGE
	Example
	Example (for ADAM file)

	17 ADAFRM (Format And Create A New Database)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ASSOBLOCKSIZE
	ASSOSIZE
	DATABLOCKSIZE
	DATASIZE
	DBID
	NAME
	SORTSIZE
	SYSFILES
	TEMPSIZE
	WORKBLOCKSIZE
	WORKSIZE

	Restart Considerations
	Control Statement Examples

	18 ADAINV (Creating, Removing And Verifying Inverted Lists)
	Functional Overview
	Procedure Flow
	Checkpoints
	Checkpoints

	Control Parameters
	DBID
	INVERT
	FDT
	FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]
	LWP = number[K|M]
	UQ_CONFLICT = keyword

	[NO]LOWER_CASE_FIELD_NAMES
	REINVERT
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	[NO]FORMAT
	LWP = number[K|M]
	UQ_CONFLICT = keyword

	RELEASE
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	[NO]FORMAT

	RESET_UQ
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

	SET_UQ
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	UQ_CONFLICT = keyword

	SUMMARY
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]
	FULL

	VERIFY
	ALL_FIELDS
	ERRORS = number
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	LWP = number[K|M]

	Restart Considerations
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	19 ADAMON (Monitoring The Database Nucleus)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATETIME
	DBID
	DISPLAY
	GRAPHICAL
	INTERVAL
	LOOPS
	RCMD
	SUMMARY
	SUMMARY_COMPARE
	SUMMARY_COMPARE_FILES
	SUMMARY_INPUT
	Examples

	20 ADAMUP (Mass Add And Delete)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DBID
	FDT
	SUMMARY
	UPDATE
	ADD
	DELETE
	[NO]FORMAT
	LWP = number[K|M]

	Restart Considerations
	SORT Data Set Placement
	TEMP Data Set Placement
	Examples

	21 ADANUC (Starting The Database, Defining Nucleus Parameters)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]ADATCP
	ADABAS_ACCESS
	APU
	AR_CONFLICT
	BFIO_PARALLEL_LIMIT
	[NO]BI
	CLOGBMAX
	CLOGLAYOUT
	DBID
	LAB
	LABX
	LBP
	LOGGING
	LPXA
	LWP
	NCL
	NISNHQ
	Example

	NT
	NU
	OPTIONS
	[NO]PLOG
	PORTNUMBER
	READ_PARALLEL_LIMITS
	SSLCADIRECTORY
	SSLCAFILE
	SSLCERTFILE
	SSLKEYFILE
	SSLPASSWORD
	SSLPORTNUMBER
	SSLVERIFY
	TCPATB
	TCPCONNECTIONS
	TCPRECEIVER
	TNAA
	TNAE
	TNAX
	TT
	UNBUFFERED
	USEREXITS
	WCHARSET
	WRITE_LIMIT

	Summary of ADANUC Parameters

	22 ADAOPR (Operator Utility)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ABORT
	ADD_REPLICATION
	BFIO_PARALLEL_LIMIT
	CANCEL
	CHANGE_REPLICATION
	CLEAR_FILE_STATS
	CSA
	DBID
	DELETE_REPLICATION
	DISPLAY
	Example: DISPLAY=ACTIVITY
	EXAMPLE: DISPLAY=BF_STATISTICS
	EXAMPLE: DISPLAY=BP_STATISTICS
	Example: DISPLAY=COMMANDS
	Example: DISPLAY=CQ
	Example: DISPLAY=DYNAMIC_PARAMETERS
	Example: DISPLAY=FILE_IO
	Example: DISPLAY=FP_STATISTICS
	Example: DISPLAY=HIGH_WATER
	Example: DISPLAY=HQ
	Example: DISPLAY=ICQ
	Example: DISPLAY=IO_TIMES
	Example: DISPLAY=PLOG_STATISTICS
	Example: DISPLAY=REPLICATIONS
	Example: DISPLAY=RPL_STATS
	Example: DISPLAY=STATIC_PARAMETERS
	Example: DISPLAY=TCPCONNECTIONS
	Example: DISPLAY=TT
	Example: DISPLAY=UCB
	Example: DISPLAY=UQ
	Example: DISPLAY=UQ_FILES
	Example: DISPLAY=UQ_FULL
	Example: DISPLAY=UQ_TIME_LIMITS

	ES_ID
	[NO]ET_SYNC
	[NO]EVENTING
	EXT_BACKUP
	FEOF
	FILE
	FREE_CLQ
	ID
	[NO]IO_TIME
	ISN
	[UN]LOCK
	LOGGING
	LOGIN_ID
	NISNHQ
	NODE_ID
	OPTIONS
	READ_PARALLEL_LIMITS
	RESET
	[NO]RESPONSE_ABORT
	RESPONSE_CHECK
	SET_FILE_STATS
	SHUTDOWN
	STATUS
	STOP
	THREAD
	TNAA
	TNAE
	TNAX
	TT
	USER_ID
	WCHARSET
	WRITE_LIMIT
	XA_RESPONSE_CHECK

	23 ADAORD (Reorder Database Or Files, Export/Import Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CONTENTS
	DBID
	EXPORT
	FDT
	SORTSEQ = ({descriptor_name|ISN|PHYSICAL} ,...)

	FILES
	IMPORT
	IMPORT_RENUMBER
	ACRABN = number
	ASSOPFAC = number
	DATAPFAC = number
	DSRABN = number
	DSSIZE = number[B|M]
	LOBACRABN=number
	LOBDSRABN=number
	LOBNIRABN=number
	LOBSIZE=numberM
	LOBUIRABN=number
	MAXISN = number
	NIRABN = number|(number,number)
	NISIZE = number[B|M]|(number[B|M],number[B|M])
	UIRABN = number|(number,number)
	UISIZE = number[B|M]|(number[B|M],number[B|M])

	REORDER

	Restart Considerations
	Examples

	24 ADAPLP (Protection Log Printout)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATASET
	DBID
	[NO]DECOMPRESSED
	DELTA
	[NO]DUMP
	FILES
	[NO]HEADER
	INTERNAL_ID
	ISN
	MODIFIED_RABN
	NOFILETYPE
	NONULL
	PLOG
	RABN
	RECORD
	SEQUENCE
	[NO]SHORT
	THREAD
	TSN
	TYPE
	USER_ID
	[NO]WXA

	ADAPLP Output

	25 ADAPRI (Print Adabas Blocks)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATASET
	Example

	DBID
	RABN
	Examples

	26 ADARBA (RBAC Administration)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]ABORT
	CREATE
	DBID
	DROP
	[NO]ECHO
	GRANT (User Assignment)
	GRANT (Permission Assignment)
	GRANT (Command Assignment)
	LIST
	LIST ASSIGNMENT
	REVOKE (User Assignment)
	REVOKE (Permission Assignment)
	REVOKE (Command Assignment)
	[NO]STAT

	27 ADAREC (Recovery Of Database Or Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	ADAREC Input Data
	Control Parameters
	CLOSE
	DBID
	LIST
	Examples

	REGENERATE
	Database Regeneration
	File Regeneration

	Examples
	ADAREC Restart Considerations

	28 ADAREP (Database Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CHECKPOINTS
	Example

	CONSTRAINTS
	CONTENTS
	COUNT
	DBID
	Example

	[NO]FDT
	FILES
	Example

	FREE_SPACE
	[NO]FULL
	LAYOUT
	SUMMARY

	29 ADASCR (Security Functions)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADASCR Definitions for Examples
	CHANGE
	DBID
	DELETE
	DISPLAY
	FILE = {* | number[-number][,number[-number]]...}
	PASSWORDS
	PERMISSIONS
	PROTECTIONS
	VALUE_CRITERIA

	EXPORT
	PASSWORDS
	PROTECTIONS
	VALUE_CRITERIA
	Example for Export on Windows and Subsequent Import on UNIX

	INSERT
	ACCESS = (number[,number]...)
	FILE = (number[-number[,number[-number]]...)
	UPDATE = (number[,number]...)

	PROTECT
	ACCESS = (number[,number]...)
	UPDATE = (number[,number]...)

	SECURITY_BY_VALUE
	ACCESS_CRITERION
	FILE = number
	UPDATE_CRITERION
	SEARCH_BUFFER = string
	VALUE_BUFFER = string

	30 ADATST (Issuing Adabas Commands)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	A1
	A2
	A3
	A4
	A5
	A6
	ABD
	ALOOP
	CB
	CBDUMP
	CC
	CID
	CO1
	CO2
	CO3
	CO4
	CO5
	CO6
	CO7
	CO8
	DBID
	DLOOP
	ELOOP
	ERRORS
	EXECUTE
	FB
	FB2
	FB3
	FBL
	FB2L
	FB3L
	FILE
	GO
	IB
	IBL
	INTERFACE
	ISN
	ISND
	ISNI
	ISNL
	ISNQ
	LOOP
	MB
	[NO]OUTPUT
	OVERWRITE_RB
	OVERWRITE_RB2
	OVERWRITE_RB3
	RB
	RB2
	RB3
	RBL
	RB2L
	RB3L
	READ_RB
	READ_RB2
	READ_RB3
	RESPONSE
	SB
	SBL
	SEC_PWD
	SEC_UID
	TIME
	[NO]TRACE
	VB
	VBL
	WAIT
	Example

	WRITE_RB
	WRITE_RB2
	WRITE_RB3

	31 ADAULD (File Unloading)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	BACKUP_COPY
	FDT
	FILE = number
	NUMREC = number
	[NO]ONLINE
	[NO]SHORT
	[NO]SINGLE_FILE
	SKIPREC = number
	[NO]USEREXIT

	DBID
	FDT
	FILE = number
	[NO]LITERAL
	NUMREC = number
	SEARCH_BUFFER = string
	[NO]SHORT
	[NO]SINGLE_FILE
	SKIPREC = number
	SORTSEQ = string
	STARTISN = number
	[NO]USEREXIT
	VALUE_BUFFER = string

	Examples
	TEMP Data Set Space Estimation
	Restart Considerations

	32 ADAVFY (Database Consistency Check)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	AC
	DATA
	DBID
	ERRORS
	FCB
	FIELD
	FILES
	FROM
	INDEX
	LEVEL
	LOB_REFERENCES
	LOST
	RECORD

	Examples

	A Appendix A - Example Utility Input Files
	B Appendix B - prilogc
	C Appendix C - Adabas Checkpoints

