
Adabas for UNIX, Windows and OpenVMS

Adabas Utilities

Version 6.3.1

April 2013



This document applies to Adabas for UNIX, Windows and OpenVMS Version 6.3.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1987-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ADAOS-UTILITIES-631-20130422



Table of Contents

Adabas Utilities ............................................................................................................... vii
1 Conventions ..................................................................................................................... 1

Use of character fonts ................................................................................................. 2
Syntax conventions .................................................................................................... 2
Upper-Case Conversions ........................................................................................... 4
Symbols used in control parameter summaries ........................................................ 6
Order of parameters ................................................................................................... 6
Numeric Values .......................................................................................................... 6
Maximum Values ..................................................................................................... 10
Syntax diagrams in the HTML documentation ......................................................... 7
Obsolete Parameters ................................................................................................... 7

2 Overview ......................................................................................................................... 9
3 ADABAS (Starting The Database Nucleus) .................................................................. 15

Functional Overview ................................................................................................ 16
Procedure Flow ........................................................................................................ 17
Control Parameter .................................................................................................... 18

4 ADABCK (Dump And Restore Database Or Files) ....................................................... 19
Functional Overview ................................................................................................ 20
Procedure Flow ........................................................................................................ 22
Checkpoints .............................................................................................................. 24
Control Parameters .................................................................................................. 25
Restart Considerations ............................................................................................. 37

5 ADACLP (Command Log Report) ................................................................................ 39
Functional Overview ................................................................................................ 40
Procedure Flow ........................................................................................................ 41
Checkpoints .............................................................................................................. 42
Control Parameters .................................................................................................. 42
Specifying Multiple Selection Criteria ..................................................................... 48

6 ADACMP (Compression Of Data) ................................................................................ 49
Functional Overview ................................................................................................ 50
Procedure Flow ........................................................................................................ 51
Checkpoints .............................................................................................................. 52
Control Parameters .................................................................................................. 52
Output ...................................................................................................................... 64
Report ....................................................................................................................... 65
Restart Considerations ............................................................................................. 65

7 ADADBA (DBA Workbench) ........................................................................................ 67
Functional Overview ................................................................................................ 68
Procedure Flow ........................................................................................................ 69

8 ADADBM (Database Modification) .............................................................................. 71
Functional Overview ................................................................................................ 72
Procedure Flow ........................................................................................................ 74
Checkpoints .............................................................................................................. 76

iii



Control Parameters .................................................................................................. 77
Restart Considerations ........................................................................................... 100

9 ADADCU (Decompression Of Data) .......................................................................... 101
Functional Overview .............................................................................................. 102
Procedure Flow ...................................................................................................... 103
Checkpoints ............................................................................................................ 104
Control Parameters ................................................................................................. 105
Input and Output Data ........................................................................................... 113
Restart Considerations ........................................................................................... 114

10 ADADEV (Disk Space Management) ........................................................................ 115
Functional Overview .............................................................................................. 116
Procedure Flow ...................................................................................................... 117
Checkpoints ............................................................................................................ 118
Control Parameters ................................................................................................. 118

11 ADAERR (Error File Report) ..................................................................................... 127
Functional Overview .............................................................................................. 128
Procedure Flow ...................................................................................................... 129
Checkpoints ............................................................................................................ 129
Control Parameter .................................................................................................. 129
Example .................................................................................................................. 130
Rejected Data Records ............................................................................................ 130

12 ADAFDU (File Definition) ......................................................................................... 131
Functional Overview .............................................................................................. 132
Procedure Flow ...................................................................................................... 133
Checkpoints ............................................................................................................ 135
Control Parameters ................................................................................................. 135
Examples ................................................................................................................ 149

13 ADAFIN (File Information Report) ........................................................................... 151
Functional Overview .............................................................................................. 152
Procedure Flow ...................................................................................................... 153
Checkpoints ............................................................................................................ 154
Control Parameters ................................................................................................. 154

14 ADAFRM (Format And Create A New Database) .................................................... 167
Functional Overview .............................................................................................. 168
Procedure Flow ...................................................................................................... 169
Checkpoints ............................................................................................................ 170
Control Parameters ................................................................................................. 170
Restart Considerations ........................................................................................... 174
Control Statement Examples .................................................................................. 174

15 ADAINV (Creating, Removing And Verifying Inverted Lists) ................................. 175
Functional Overview .............................................................................................. 176
Procedure Flow ...................................................................................................... 177
Checkpoints ............................................................................................................ 178
Control Parameters ................................................................................................. 179
Restart Considerations ........................................................................................... 188

Adabas Utilitiesiv

Adabas Utilities



Examples ................................................................................................................ 189
16 ADAMON (Monitoring The Database Nucleus) ....................................................... 195

Functional Overview .............................................................................................. 196
Procedure Flow ...................................................................................................... 197
Checkpoints ............................................................................................................ 197
Control Parameters ................................................................................................. 198

17 ADAMUP (Mass Add And Delete) ........................................................................... 203
Functional Overview .............................................................................................. 204
Procedure Flow ...................................................................................................... 205
Checkpoints ............................................................................................................ 208
Control Parameters ................................................................................................. 209
Restart Considerations ........................................................................................... 215
SORT Data Set Placement ....................................................................................... 215
TEMP Data Set Placement ...................................................................................... 215
Examples ................................................................................................................ 216

18 ADANUC (Starting The Database, Defining Nucleus Parameters) .......................... 217
Functional Overview .............................................................................................. 218
Procedure Flow ...................................................................................................... 220
Checkpoints ............................................................................................................ 222
Control Parameters ................................................................................................. 222
Summary of ADANUC Parameters ....................................................................... 241

19 ADAOPR (Operator Utility) ...................................................................................... 245
Functional Overview .............................................................................................. 246
Procedure Flow ...................................................................................................... 247
Checkpoints ............................................................................................................ 248
Control Parameters ................................................................................................. 248

20 ADAORD (Reorder Database Or Files, Export/Import Files) ................................... 285
Functional Overview .............................................................................................. 286
Procedure Flow ...................................................................................................... 287
Checkpoints ............................................................................................................ 289
Control Parameters ................................................................................................. 289
Restart Considerations ........................................................................................... 298
Examples ................................................................................................................ 298

21 ADAPLP (Protection Log Printout) ........................................................................... 301
Functional Overview .............................................................................................. 302
Procedure Flow ...................................................................................................... 303
Checkpoints ............................................................................................................ 304
Control Parameters ................................................................................................. 304
ADAPLP Output .................................................................................................... 313

22 ADAPRI (Print Adabas Blocks) ................................................................................. 317
Functional Overview .............................................................................................. 318
Procedure Flow ...................................................................................................... 319
Checkpoints ............................................................................................................ 320
Control Parameters ................................................................................................. 320

23 ADAREC (Recovery Of Database Or Files) ............................................................... 323

vAdabas Utilities

Adabas Utilities



Functional Overview .............................................................................................. 324
Procedure Flow ...................................................................................................... 325
Checkpoints ............................................................................................................ 327
ADAREC Input Data .............................................................................................. 327
Control Parameters ................................................................................................. 327
Examples ................................................................................................................ 333
ADAREC Restart Considerations ........................................................................... 340

24 ADAREP (Database Report) ...................................................................................... 341
Functional Overview .............................................................................................. 342
Procedure Flow ...................................................................................................... 343
Checkpoints ............................................................................................................ 343
Control Parameters ................................................................................................. 344

25 ADASCR (Security Functions) ................................................................................... 357
Functional Overview .............................................................................................. 358
Procedure Flow ...................................................................................................... 359
Checkpoints ............................................................................................................ 360
Control Parameters ................................................................................................. 360

26 ADATST (Issuing Adabas Commands) ..................................................................... 377
Functional Overview .............................................................................................. 378
Procedure Flow ...................................................................................................... 379
Checkpoints ............................................................................................................ 379
Control Parameters ................................................................................................. 380

27 ADAULD (File Unloading) ........................................................................................ 395
Functional Overview .............................................................................................. 396
Procedure Flow ...................................................................................................... 398
Checkpoints ............................................................................................................ 400
Control Parameters ................................................................................................. 401
Examples ................................................................................................................ 407
TEMP Data Set Space Estimation ........................................................................... 408
Restart Considerations ........................................................................................... 408

28 ADAVFY (Database Consistency Check) .................................................................. 409
Functional Overview .............................................................................................. 410
Procedure Flow ...................................................................................................... 411
Checkpoints ............................................................................................................ 412
Control Parameters ................................................................................................. 412
Examples ................................................................................................................ 417

A Appendix A - Example Utility Input Files ................................................................. 419
B Appendix B - prilogc ................................................................................................... 423

Adabas Utilitiesvi

Adabas Utilities



Adabas Utilities

This manual describes the Adabas utilities. The database administrator (DBA) uses the Adabas
utilities to create and maintain Adabas databases. For each utility, the following information is
provided:

■ a description of the purpose of the utility;
■ a functional overview of the utility;
■ a description of the utility's control parameters;
■ examples to illustrate the use of the utility, where appropriate.

This manual is intended principally for the DBA. Certain Adabas utilities contain functionality
for modifying or deleting existing database information, so caution is advisedwhen these utilities
are used. Some utilities, such as ADAREP, provide status information only, and can be used freely
by the end user.

Note: The Adabas utilities also contain some undocumented features that can be invoked
using syntax that is not documented (this also includes the FDT syntax as described in the
Administration documentation). Software AG strongly recommends that you do not use
such undocumented features; there is no guarantee that undocumented features will work
correctly and that they will not have negative side effects on the general behaviour of
Adabas.

TheOverview provides a summary of the utilities available and their purpose.

The subsequent documents describe the individual utilities in detail, with one utility per document.

Appendix A contains a description of the demo utility input files provided with the Adabas kit.

Appendix B contains a description of the example program prilogc, which is used for printing a
command log that is created with the nucleus parameter CLOGLAYOUT set to 6.

vii



viii



1 Conventions

■ Use of character fonts ........................................................................................................................ 2
■ Syntax conventions ........................................................................................................................... 2
■ Upper-Case Conversions .................................................................................................................... 4
■ Symbols used in control parameter summaries ....................................................................................... 6
■ Order of parameters .......................................................................................................................... 6
■ Numeric Values ................................................................................................................................ 6
■ Maximum Values ............................................................................................................................. 10
■ Syntax diagrams in the HTML documentation ......................................................................................... 7
■ Obsolete Parameters ......................................................................................................................... 7

1



The following conventions have been used in this manual:

Use of character fonts

References to other manuals are shown in italics.

References to documents or sections within documents are shown in bold face.

Examples of utility output and file contents are shown in a typewriter font, for example:

%ADADBM-I-OPENED, ds DATA2, file DATA2.001 opened
%ADADBM-F-DSSTALL, allocation error DSST

In examples which show both user input and utility output, the typewriter font is used for the
whole example:

adadbm: add_container = data, size = 35
%ADADBM-I-OPENED, ds DATA2, file DATA2.001 opened
%ADADBM-F-DSSTALL, allocation error DSST

Syntax conventions

The syntax of the utility control parameters is as follows.

Items shown in UPPERCASE letters are keywords andmust be entered exactly as shown. You can
enter any keyword with uppercase or lowercase letters.

Items shown in lowercase letters indicate that you have to replace the item by a value of your
choice. If the item is "number", you can specify any decimal number. Only positive numbers or 0
can be specified, no negative numbers are allowed. If the item is "string", you can specify a text
string, i.e. any number of alphanumeric characters. For numbers or strings, it is also possible to
specify hexadecimal values preceded by "0x", "0X". "^x" or "^X"; for numbers specified as hexa-
decimal values, leading zeroesmay be omitted. Other items are possible, for example "descriptor",
in which case your input must be a descriptor name.

Items enclosed in square brackets ("[", "]") are optional.

Items enclosed in curly brackets ("{", "}") are mandatory.

A vertical bar ("|") separates items which are alternatives, i.e. you can enter one item or the other
but not both.

Adabas Utilities2

Conventions



The ellipsis ("...") indicates that you can repeat the immediately preceding element of the syntax
as often as you like.

If an ellipsis is preceded by a comma, i.e. ",...", this means that you can repeat the immediately
preceding element of the syntax as often as you like, with a comma preceding each repetition.

If round brackets are used for a list of elements and only one keyword is supplied, the round
brackets may be omitted if only one element is supplied.

Example 1

RB=0x33445566

Here the string value has been specified as a hexadecimal string; it consists of printable characters
equivalent to the ASCII character string "3DUf".

Example 2

DBID = number

This means that you must type in the keyword "DBID" (using uppercase or lowercase letters or
any combination thereof), followed by the "=" character, followed by a decimal number, for example:

DBID = 27

Example 3

RABN = number [ - number]

This means that you must type in the keyword "RABN" (using uppercase or lowercase letters or
any combination thereof), followed by the "=" character, followed by a decimal number. You can
also provide a hyphen ("-") followed by another decimal number, but this is not required. Here
are a few examples of input that corresponds to this syntax:

RABN = 25
RABN = 1000 - 1125

Example 4

RABN = 0x400

Here the value is specified as a hexadecimal value; it is the equivalent to specifying

RABN = 1024

Example 5

SORTSEQ = { descriptor | ISN }

This means that you must type in the keyword "SORTSEQ" (using uppercase or lowercase letters
or any combination thereof), followed by the "=" character, followed by either a descriptor value
or the keyword "ISN", for example:

3Adabas Utilities

Conventions



SORTSEQ = ISN

Example 6

number[-number] [,number[-number] ] ...

This example shows the use of the ellipsis ("..."). Here, the ellipsis follows the syntax element
"[,number[-number] ]". This means that you can repeat this syntax element as often as you like in
your input line. Here are a few examples of input that corresponds to this syntax:

27
27-50
27-50,68
27,68-90
27-50,68-90
27-50,68-90,102,105,118-140,160

Example 7

As an alternative to example 4, the following syntax specification using the ",..." construction is
also possible:

{ number[-number] },...

This syntax allows all of the combinations shown in example 4.

Example 8

(number[,number]...)

Valid input examples for this syntax are.

(12,23,45)
(123)
123 - only one list element, so brackets can be omitted

Upper-Case Conversions

Parameter names that are specified are always converted to upper case.

For most utility control parameters, the specified parameter values are also converted to upper
case, but this is not always desirable. Starting with Adabas Version 6.1.6, a new convention for
upper-case conversion of control parameter values has been introduced:

■ If you specify “parameter=value”, the value is converted to upper case.
■ If you specify “parameter:value”, the value is not converted to upper case.

Adabas Utilities4

Conventions



Although the option of specifying a colon or an equals sign after a parameter name has been intro-
duced generally via the parser for all parameters, Software AG recommends that you specify a
colon only for those parameterswhere it is explicitly described in the syntax, because the behaviour
described above is only guaranteed for these parameters; due to compatibility reasonswith previous
Adabas versions, the upper-case conversion is handled differently for some other parameters.

Example

Assume the following syntax:

NAME{=|:}string

If you specify

NAME=Production

The parameter value for NAME is set to "PRODUCTION".

If you specify

NAME:Production

The parameter value for NAME is set to "Production".

However, some utility input is not provided as "parameter{=|:}value", for example field, descriptor
or referential constraint definitions. The specifications are converted to upper case by default,
unless the parameter LOWER_CASE_FIELD_NAMES has been specified before the definitions.

Note: After specifyingLOWER_CASE_FIELD_NAMES, none of the definitions are converted
to upper case; then you must specify keywords, for example field options, in upper case.

Example

Without LOWER_CASE_FIELD_NAMES, the field definition

1,aa,8,a,de

is correct and is equivalent to

1,AA,8,A,DE

With LOWER_CASE_FIELD_NAMES, however, this field definition is invalid; in order to define
the field "aa", you must specify

1,aa,8,A,DE

5Adabas Utilities

Conventions



Symbols used in control parameter summaries

The description of each utility contains a table which summarizes the syntax of the control para-
meters that are available for that utility. Some control parameters are preceded by the letter "M"
or the letter "D".

The letter "M" indicates "mandatory", i.e. the you must specify this parameter in your input to the
utility otherwise the utility cannot run. If the letter "M" is not present, the parameter is optional,
i.e. you do not have to specify it.

The letter "D" indicates that the control parameter has a default value. This means that if you do
not specify this parameter explicitly in your input, the utility will use a preset value for the para-
meter.

Order of parameters

The parameters of the utilities are listed in this documentation in alphabetical order, but in some
cases, there are restrictions on the order in which they can or must be specified. Usually, the DBID
parameter has to be specified first, and depending on the utility, there may be more restrictions.

Numeric Values

Numeric values may be specified in the following ways:

■ number
■ number[K], where the value is 1024*number
■ number[M], where the value is 1024*1024*number

number[K] and number[M] are only allowed in cases in which large numeric values are expected.

Adabas Utilities6

Conventions



Maximum Values

Maximum values for numeric parameters are only mentioned if there is a fixed limit that is given
by restrictions within Adabas. They are not mentioned if they result from the fact that a 4 byte
signed or unsigned integer is used to store the variable: in this case, the limit may be defined a
little smaller than the maximum possible integer, for example 4000 M.

Syntax diagrams in the HTML documentation

There is a syntax diagram at the start of each utility description, and these diagrams contain links
to the detailed descriptions of the keywords and parameters that are available. The hyperlinks in
these syntax diagrams are underlined in order to make them visible, but please note that the un-
derlining is not a part of the syntax.

Obsolete Parameters

Sometimes, utility or nucleus parameters will become obsolete when a new version of Adabas is
released. Usually, the obsolete parameters are still accepted by the utility of the nucleus, but you
will receive a PAROBS warning, for example:

%ADANUC-W-PAROBS, parameter NH has become obsolete

7Adabas Utilities

Conventions



8



2 Overview

This chapter gives an overview of the Adabas utilities, which provide all of the functions necessary
to manage an Adabas database.

ADABAS
Start the database nucleus (for Windows only)

This utility starts the database nucleus with the required environment.

ADABCK
Backup and restore database or files

The Adabas backup utility dumps/restores the contents of the database (or a specific file or
files) to/from a sequential data file. The utility can also be used to copy an Adabas backup
copy.

ADACLP
Command log report

This utility prints the command log.

ADACMP
Compression of data

The compression utility compresses user data. The compressed data is used as input for the
mass update utility ADAMUP. The input for this utility is the raw data together with the data
definitions that describe the structure of the data provided.

ADADBA
DBAWorkbench

This utility provides functionality for operating and maintaining Adabas databases and files
via a graphical user interface.

ADADBM
Database modification

9



The ADADBM utility consists of the following functions which can be used to make modific-
ations to the database:
■ TheADD_CONTAINER function adds a new container file to theAssociator orData Storage
data set;

■ The ADD_FIELDS function appends one or more new fields to the end of a file's FDT;
■ The ALLOCATE functions increase the Normal Index, Upper Index, Address Converter or
Data Storage space assigned to a file. The DEALLOCATE functions are the inverse;

■ The CHANGE function changes the standard length of a field in the FDT;
■ The CHANGE_FIELDS function changes a field definition;
■ The DEFINE_REFINT function defines a new referential constraint;
■ TheDELCP function deletes old checkpoint records from the checkpoint file in the specified
range of dates;

■ The DELETE function deletes an Adabas file or a range of files from the database;
■ The DISPLAY function displays the UCB;
■ The DROP_FIELDS function marks the specified fields as not existing, which means that
they can no longer be accessed;

■ The DROP_LOBFILE function is the inverse function of ADAFDU ADD_LOBFILE;
■ The DROP_REFINT function drops an existing referential constraint;
■ The EXTEND_CONTAINER function extends the last container file defined for the database;
■ The NEW_DBID function changes the identifier of the database in use;
■ The NEWWORK function allocates and formats a new Adabas WORK data set;
■ The PGM_REFRESH function is used to disable or enable refreshing an Adabas file inside
an application program with an E1 command;

■ The RECOVER function returns lost space to the FST;
■ The REDUCE_CONTAINER function reduces the size of the last container file defined for
the database;

■ The REFRESH function resets a file or a range of files to the state of zero records loaded;
■ The REMOVE_CONTAINER function deletes a container file;
■ The REMOVE_DROP function, used in conjunction with a subsequent REFRESH, removes
dropped fields from the FDT;

■ The REMOVE_REPLICATION function stops all replication processing and deletes the
replication system files;

■ The RENAME function changes the database name or the name of a loaded file;
■ TheRENUMBER function renumbers a loaded file or exchanges the numbers of loaded files;

Adabas Utilities10

Overview



■ The REPLICATION_FILES function creates the systems files required for Adabas - Adabas
replication;

■ The RESET function removes entries from the UCB;
■ The RESET_REPLICATION_TARGET function resets the replication target flag of Adabas
files;

■ The REUSE function controls the reuse of data storage space or ISNs by Adabas;
■ The SYFMAX function specifies the maximum number of values generated for a system
generated multiple-value field in the file specified.

ADADCU
Decompression of data

TheADADCUutility decompresses records to be usedwith a non-Adabas application program,
or as input for the compression utilityADACMP. The file to be decompressedmust be unloaded
from the database (unload utility ADAULD) before it can be used as input for this utility.With
ADADCU, complete records can be decompressed, fields can be rearranged within a record,
default lengths can be changed, some types of fields can be truncated, formats can be changed
and space can be allocated for the addition of new fields.

ADADEV
Disk space management (UNIX only)

This utility consists of several functions for managing the disk space to be used by Adabas. It
can be used to preallocate space for a database.

ADAERR
Error file report

The ADAERR utility displays the contents of the error files generated by various utilities.

ADAFDU
File definition

The file definition utility ADAFDU defines a file in the database. It only loads the FCB and the
FDT into the database and allocates the requested space for ASSO and DATA for the specified
file.

ADAFIN
File information report

TheADAFINutility displays information about one ormore files, e.g. FDT, descriptor statistics
and the fill percentage of blocks in the Data Storage, Normal Index and Upper/Main Index.

ADAFRM
Format and create a new database

11Adabas Utilities

Overview



The formatting utility ADAFRMallocates and formats the files that are used byAdabas (Asso-
ciator, Data Storage, WORK, TEMP and SORT). It can also format files which have been
preallocated by ADADEV.

ADAINV
Creating, removing and verifying inverted lists

The invert utility ADAINV creates, reinverts or removes inverted lists for a loaded file in a
database or validates specified descriptors.

ADAMON
This utilitymonitors the performance of anAdabas nucleus anddisplays statistics on a terminal.

ADAMUP
Mass add and delete

The ADAMUP utility adds or deletes large numbers of records to/from a file in the database.

ADANUC
Starting the database, defining nucleus parameters

The ADANUC utility starts the database for online operations and defines the runtime envir-
onment.

ADAOPR
Operator utility

The operator utility is used to operate the Adabas nucleus.

ADAORD
Reorder database or files, export/import files

The reorder utility ADAORD provides functions to reorganize a database or files within a
database (REORDER function) and tomigrate files between databases (EXPORT and IMPORT
functions).

ADAPLP
Protection log printout

This utility prints the protection log.

ADAPRI
Print Adabas blocks

The ADAPRI utility prints the contents of a block or a range of blocks in the Associator, Data
Storage, WORK, TEMP or SORT for maintenance or auditing purposes.

ADAREC
Recovery of database or files

This utility reapplies updates made to the database (REGENERATE function).

Adabas Utilities12

Overview



ADAREP
Database report

The ADAREP utility produces the database status report. This report contains information
about the current physical layout and logical contents of the database.

The information in this report includes the following: the amount and location of the space
currently allocated for the Associator and Data Storage; the amount and location of unused
space available forAssociator andData Storage; database file summary; checkpoint information;
information about each file in the database (space allocation, space available, number of records
loaded, MAXISN setting, field definitions).

ADASCR
Security functions

The security utility ADASCR creates, modifies and deletes file protection levels and user
passwords, and enables the record locking capabilities of individual passwords (by using value
criteria for individual database files) to be set or modified. Additionally, the utility is used to
display file and password security information.

ADATST
Issuing Adabas commands

This utility issues commands to an Adabas nucleus.

ADAULD
File unloading

The unload utility ADAULD unloads a file from a database or an Adabas backup copy and
produces compressed records with the same format as those produced by the compression
utility ADACMP. Unloaded records may be used as input for the decompression utility
ADADCUorwith themass update utilityADAMUP. Records can be unloaded from a database
in the sequence in which they are currently stored in Data Storage, in the sequence of a
descriptor or in ISN sequence. However, records can only be unloaded from a backup copy
in the order in which they were stored by the utility.

ADAVFY
Database consistency check

This utility checks the consistency of the database. TheGeneral Control Block (GCB) is validated
togetherwith each File Control Block (FCB) and each FieldDefinition Table (FDT) of the loaded
files. The index structure and Data Storage are validated. If specified, ADAVFY also looks for
lost RABNs.

13Adabas Utilities

Overview



14



3 ADABAS (Starting The Database Nucleus)

■ Functional Overview ........................................................................................................................ 16
■ Procedure Flow ............................................................................................................................... 17
■ Control Parameter ........................................................................................................................... 18

15



This chapter describes the utility "ADABAS".

Note: This utility is only available on Windows platforms.

Functional Overview

The utility ADABAS is used to start the database nucleus with the nucleus parameters that are
specified in the database initialization file (DBxxx.INI) - if you start the database nucleusADANUC
directly without parameters, the DBxxx.INI file is not evaluated, and the default values of the
nucleus parameters are used.

Note: Control parameters and values cannot be entered interactively, and must be entered
at the command prompt when the utility is started.

Adabas Utilities16

ADABAS (Starting The Database Nucleus)



Procedure Flow

1. ADABAS reads the global initialization file%ADADIR%\ETC\ADABAS.INI to get the database
initialization file of the database to be started.

2. ADABAS reads the database initialization file to get the nucleus parameters of the database to
be started.

3. ADABAS starts ADANUC with the parameters read.

Note: Please refer to theExtendedOperations section for further information about the database
initialization files.

17Adabas Utilities

ADABAS (Starting The Database Nucleus)



Control Parameter

The following control parameter is available:

M [DBID =] number

DBID

[DBID =] number

This parameter selects the database to be used.

Example:

Database 20 can be started by entering either

adabas dbid=20

or

adabas 20

Adabas Utilities18

ADABAS (Starting The Database Nucleus)



4 ADABCK (Dump And Restore Database Or Files)

■ Functional Overview ........................................................................................................................ 20
■ Procedure Flow ............................................................................................................................... 22
■ Checkpoints ................................................................................................................................... 24
■ Control Parameters .......................................................................................................................... 25
■ Restart Considerations ..................................................................................................................... 37

19



This chapter describes the utility "ADABCK".

Functional Overview

The backup utility ADABCK provides protection against database corruption by creating Adabas
backup copies. ADABCK should be used at regular intervals.

The utility dumps or restores a database or selected files from/to a database.

Making use of the internal structure of the database, this utility provides optimum performance.
Unused blocks do not have to be read and can be omitted when dumping. Even though such
blocks are not included in the Adabas backup copy, they can be re-created during a restore.

The backup copy can be directly assigned to tape: this option supports consecutive tapes (see Ad-
ministration, Using Utilities).

Furthermore, a backup copymay be directed to stdout in order to support the piping of the backup
data (this feature is only available on UNIX platforms). This feature is enabled by setting the en-
vironment variable (BCK001) to '-' (minus). In this case, the outputmessages are directed to stderr.
The RESTORE and OVERLAY functions can also be used in this way, i.e. a backup copy can be
read from stdin. In this case, the ADABCK control statements must be given in the command line
(see Administration, Using Utilities).

The following functions are available:

■ The COPY function copies an Adabas backup copy;
■ TheDUMP function dumps a database or selected files from a database to one ormore sequential
files, which is called an Adabas backup copy. The nucleus may be active and parallel updates
are permitted on the files to be dumped while the dump is in progress;

■ The EXU_DUMP function dumps a database or selected files from a database to one or more
sequential files, which is called an Adabas backup copy. Only ACC users are permitted on the
files to be dumped while the dump is in progress;

■ The IOSTAT function prints information about the data transfer rate and the I/O waiting times.
■ TheOVERLAY function restores selected files or a database. The files to be restoredmay already
be loaded in the database: ADABCK performs an implicit delete before restoring such files;

■ TheREAD_CHECK function checks the readability (i.e. absence of parity errors) and completeness
of theAdabas backup copy. These checks ensure that the dumpfile can be read by the RESTORE
or OVERLAY function;

■ The RESTORE function restores a database or selected files from an existing Adabas backup
copy. If there are no security definitions for the files in the target database, the corresponding
entries (as they were defined at the time the files were dumped) are set up in the security table
when the file is restored;

Adabas Utilities20

ADABCK (Dump And Restore Database Or Files)



■ The list functions CONTENTS, FILES and SUMMARY display information about an Adabas
backup copy. When the list functions are used, the DBID does not have to be entered first; the
exception to this is when the backup file is in a raw section. In this case, the DBID is required,
but the database itself does not have to be present (UNIX platforms only).

The functions DUMP, EXU_DUMP, OVERLAY and RESTORE are mutually exclusive and only
one of themmay be executed during a single run of this utility. The list functions can only be used
together with the READ_CHECK, RESTORE or OVERLAY function.

If you perform the RESTORE or OVERLAY function and the database is too small or database
containers are missing, ADABCKwill automatically increase the size of the database or create the
missing containers.

Note: The RESTORE and OVERLAY functions can process backup files created with earlier
Adabas versions, but not backup files created with later Adabas versions.

Caution: If you don't use the Adabas INI files, but instead use environment variables to
specify the container file names, and if you forget to assign the environment variables/logical
names before you start ADABCK, a copy of the database will be created in the database
directory. If you perform a file overlay or restore when the Adabas nucleus is active, and
the database has to be extended, the database is extended by the nucleus, and not by AD-
ABCK. In this case, the nucleus extends the database even if OPTION=AUTOEXPANDwas
NOT specified. If you use environment variables to specify the database containers, you
must consider the followingwhen a new container has to be created for the restore/overlay:
it is important that the nucleus was started with the correct environment variable settings
for the new container - because the new containers are created by the nucleus, specifying
the environment variable for the ADABCK process has no effect.

This utility is a single-function utility.

21Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



Procedure Flow

Adabas Utilities22

ADABCK (Dump And Restore Database Or Files)



Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

Output of
DUMP/EXU_DUMPfunction,
input for other functions

Disk, Tape (see note 1)
stdin/
SYS$INPUT (see note 2),
stdout/
SYS$OUTPUT (see note 3)

BCK00nBackup copy

Output of COPY functionDisk, Tape (see note 1)BCKOUT

DiskDATAxData storage

Utilities Manualstdin
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT (see note 4),
stderr/
SYS$ERR (see note 5)

ADABCK messages

DiskWORK1Work

23Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



Notes:

1. A named pipe can be used for this sequential file (UNIX platforms only, see Administration,
Using Utilities for details).

2. For functions other than DUMP or EXU_DUMP (BCK001 only).

3. For DUMP or EXU_DUMP (BCK001 only).

4. If BCK001 is not stdout/SYS$OUTPUT.

5. If BCK001 is stdout/SYS$OUTPUT.

The sequential files BCK00n can have multiple extents. For detailed information about sequential
files with multiple extents, see Administration, Using Utilities.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Checkpoint writtenNucleus is NOT requiredNucleus must NOT be activeNucleus must be activeFunction

-XCONTENTS

-XCOPY

SYNXXX(see note 1)DUMP

SYNXXX(see note 1)EXU_DUMP

-XFILES

SYNCNEW_PLOG

SYNPX(see note 3)X(see note 2)OVERLAY

-XREAD_CHECK

SYNPX(see note 3)X(see note 2)RESTORE

-XSUMMARY

Notes:

1. Nucleus only required when AUTORESTART is pending at the end of this function.

2. For restore of database or system files.

3. For restore of files.

Adabas Utilities24

ADABCK (Dump And Restore Database Or Files)



Control Parameters

The following control parameters are available:

CONTENTS

COPY [= number]

M DBID = number

DUMP = {*|(number[-number][,number[-number]]...)}
[,BLOCKSIZE = number [K|M]]

D [{,DRIVES = number} |
D {,[NO]DUAL } ]

[,ET_SYNC_WAIT = number]
D [,[NO]NEW_PLOG]

EXU_DUMP = {*|(number[-number][,number[-number]]...)}
[[,BLOCKSIZE = number [K|M]]

D [{,DRIVES = number} |
D {,[NO]DUAL} ]
D [,[NO]NEW_PLOG]

FILES = { * | (number[-number][,number[-number]]...)}

IOSTAT

OVERLAY = {*|(number[-number][,number[-number]]...)}
[,FMOVE [=(number [,number [-number]]...)]]
[,FORMAT = (keyword [,keyword])]
[,KEEP_FILE_ALLOC]
[,NEW_DBID = number]
[,RENUMBER = (number[-number] [,number [-number]]...)]]

PARALLEL = keyword

READ_CHECK

RESTORE = {*|(number[-number][,number[-number]]...)}
[,FMOVE [=(number [,number [-number]]...)]]
[,FORMAT = (keyword [,keyword])]
[,NEW_DBID = number]
[,RENUMBER = (number[-number] [,number [-number]]...)]]

SUMMARY

25Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



CONTENTS

CONTENTS

This parameter displays a list of files in an Adabas backup copy created with the DUMP or
EXU_DUMP function.

Example

adabck: contents

Database dumped on 14-JUL-2005 14:49:17

Database 76, DOKU-DATABASE

File 1, CHECKPOINT-FILE , loaded on 12-JUL-2005 14:57:05
File 2, SECURITY-FILE , loaded on 12-JUL-2005 14:57:05
File 3, USER-DATA-FILE , loaded on 12-JUL-2005 14:57:05
File 9, EMPLOYEES-FILE , loaded on 12-JUL-2005 14:57:08
File 11, EMPLOYEES-NAT , loaded on 12-JUL-2005 14:57:09
File 12, VEHICLES , loaded on 12-JUL-2005 14:57:11
File 13, MISCELLANEOUS , loaded on 12-JUL-2005 14:57:10

COPY

COPY [= number]

This function creates a new file from an existing Adabas backup copy. The input file (BCK0xx)
and the output file (BCKOUT) may be on either disk or tape, where xx is either the specified
number, or 01 if no number is explicitly specified.

DBID

DBID = number

This parameter selects the database to be used.

DUMP

DUMP = { * | (number[-number][,number[-number]]...)}
[,BLOCKSIZE = number [K|M]]
[ {,DRIVES = number} |
{, [NO]DUAL } ]
[,ET_SYNC_WAIT = number ]
[,[NO]NEW_PLOG ]

At the file level, this function dumps the files specified by the numbers in the list. LOBfiles specified
are ignored, but the LOB files assigned to all base files are dumped too. An asterisk '*' specifies

Adabas Utilities26

ADABCK (Dump And Restore Database Or Files)



that the complete database is to be dumped. Parallel updates are permitted on the files to be
dumped while the dump is in progress.

If the nucleus is running in parallel (online backup), ADABCK must ensure that all transactions
affecting the dumped files are completed by all users before ADABCK terminates. This is called
ET synchronization - please refer to the section ET Synchronization in Administration for further
information. If you perform a dump at the file level with the option NONEW_PLOG, the ET syn-
chronization is performed at the file level; otherwise the ET synchronization is performed for the
complete database.

If you specify files with referential constraints, all files connected to these files via referential
constraints must also be specified in order to maintain referential integrity.

BLOCKSIZE = number[K|M]

This parameter can be specified to change the I/O transfer blocksize. If PARALLEL is specified,
the default blocksize is 512 KB. The following values can be specified: 64KB, 128KB, 256KB, 512KB,
1MB, 2MB, ... 12MB. The blocksize specified will be used in a subsequent RESTORE function.

DRIVES = number

This parameter limits the maximum number of output devices to be operated in parallel. It can
be used to split a backup file into several extents. The output is sent to BCK0xx.

The default value is 1 and the maximum value is 10.

The parameters DRIVES andDUAL aremutually exclusive, and only one of themmay be specified
in a given call of the DUMP function.

[NO]DUAL

DUAL specifies that two physical copies of the dumped information are to be created. The output
is sent to BCK001 and BCK002.

The default is NODUAL.

The parameters DUAL andDRIVES aremutually exclusive, and only one of themmay be specified
in a given call of the DUMP function.

27Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



ET_SYNC_WAIT = number

This parameter defines the time (in seconds) that ADABCKwaits for ET-logic users to come to ET
status at the end of the DUMP function.

If this parameter is omitted, the value currently in effect for the database nucleus (ADANUC
parameter TT) is taken.

The minimum value is 1 and the maximum value is 32767.

[NO]NEW_PLOG

This option specifies whether or not to close the protection log file and create a new log file at the
end of the DUMP function.

The default for a database dump is NEW_PLOG, and for a file dump it is NONEW_PLOG.

Caution: Before V6.3 SP1 Fix 13, the default for a file dumpwas NEW_PLOG. In most cases,
this change is of no consequence, but if you really need the PLOG switch, you must specify
NEW_PLOG explicitly.

EXU_DUMP

EXU_DUMP = {*|(number[-number][,number[-number]]...)}
[,BLOCKSIZE = number [K|M]]
[ {,DRIVES = number} |
{,[NO]DUAL} ]
[,[NO]NEW_PLOG]

At the file level, this function dumps the files specified by the numbers in the list. LOBfiles specified
are ignored, but the LOB files assigned to all base files are dumped too. An asterisk '*' specifies
that the complete database is to be dumped. Only ACC users are permitted on the files to be
dumped while the dump is in progress. ET-synchronization is not required.

If you specify files with referential constraints, all files connected to these files via referential
constraints must also be specified in order to maintain referential integrity.

Adabas Utilities28

ADABCK (Dump And Restore Database Or Files)



BLOCKSIZE = number[K|M]

This parameter can be specified to change the I/O transfer blocksize. If PARALLEL is specified,
the default blocksize is 512 KB. The following values can be specified: 64KB, 128KB, 256KB, 512KB,
1MB, 2MB, ... 12MB. The blocksize specified will be used in a subsequent RESTORE function.

DRIVES = number

This parameter limits the maximum number of output devices to be operated in parallel. It can
be used to split a backup file into several extents. The output is sent to BCK0xx.

The default value is 1 and the maximum value is 10.

The parameters DRIVES andDUAL aremutually exclusive, and only one of themmay be specified
in a given call of the DUMP function.

[NO]DUAL

DUAL specifies that two physical copies of the dumped information are to be created. The output
is sent to BCK001 and BCK002.

The default is NODUAL.

The parameters DUAL andDRIVES aremutually exclusive, and only one of themmay be specified
in a given call of the DUMP function.

[NO]NEW_PLOG

This option specifies whether or not to close the protection log file and create a new log file at the
end of the EXU_DUMP function.

This option must not be used if dumping single files.

The default is NEW_PLOG for EXU_DUMP=*.

Examples 1-3

In the examples below, the files 1, 2, 4, 6, 7, 8, 10, 11, 12, and 13 are loaded in the selected database.

29Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



Example 1

adabck: dump = * , drives = 2

The database is dumped with two output devices operating in parallel.

Example 2

adabck: exu_dump = 8 , dual

File 8 is dumped and two physical copies are created. Only ACC users are allowed on file 8 while
the dump is in progress.

Example 3

adabck: dump = (8-11,13,6,1-4), et_sync_wait = 5

Files 1, 2, 4, 6, 8, 10, 11 and 13 are dumped. ADABCK allows a maximum of 5 seconds for ET-logic
users to come to ET status.

FILES

FILES = { * | (number[-number][,number[-number]]...)}

This parameter displays status information of the specified files in a dump file.

IOSTAT

IOSTAT

If this parameter is specified, the data transfer rate and the I/O (waiting) times on the various
devices are printed at the end of ADABCK processing.

Example:

adabck db=36 parallel=multi_process dump=\* drives=3 iostat
...
------------------------------------------------------------------
Dump Method : parallel
Blocksizes : DB: 512 KB BCK: 512 KB
DB I/O time : total: 27.09 sec average: 8084 us
BCK 1 I/O time : total: 1.16 sec average: 7606 us
BCK 2 I/O time : total: 0.00 sec average: 944 us
BCK 3 I/O time : total: 1.24 sec average: 1375 us
Wait rates : waits nowaits rate mreq
DB : 1439 1898 43% 8

Adabas Utilities30

ADABCK (Dump And Restore Database Or Files)



Transfer rate : 15215 KB/sec
------------------------------------------------------------------

%ADABCK-I-IOCNT, 2 IOs on dataset WORK
%ADABCK-I-IOCNT, 3147 IOs on dataset DATA
%ADABCK-I-IOCNT, 229 IOs on dataset ASSO
%ADABCK-I-IOCNT, 153 IOs on dataset BCK001
%ADABCK-I-IOCNT, 2 IOs on dataset BCK002
%ADABCK-I-IOCNT, 906 IOs on dataset BCK003

The IOSTAT statistics display the following information:

DumpMethod
Either parallel or non-parallel, depending on the setting of the PARALLEL parameter.

DB I/O time
The total I/O time in seconds and the average time per I/O operation in microseconds for the
access to the ASSO and DATA containers.

BCK n I/O time
The total I/O time in seconds and the average time per I/O operation in microseconds for the
access to the backup files.

Note: The I/O time measured is the time required for the I/O system functions. This may be
different from the physical I/O times actually required to accessing the disks because of
caches in the operating systemor in the storage systemand because of usage of asynchronous
I/O.

Wait rates (only for dump method parallel)
For a parallel backup/restore, the I/Os for the database containers are performed asynchronously.
The wait rate shows for how many ASSO or DATA I/Os a wait operation is required. mreq is
the maximum number of parallel I/O requests for database containers.

Note: Only the I/Os for the real backup or restore are counted. During the startup phase
of ADABCK, some additional I/Os are required; therefore the sum of wait and nowait
I/Os is less than the sum of ASSO and DATA I/Os.

BF sync count (only for a backup in online mode)
In the case of a backup in onlinemode during a buffer flush, synchronizationwith the nucleus
is required in order to guarantee that the modified database blocks written to disk by the
buffer flush are also written to the backup file(s). The BF sync count is the number of these
buffer flush synchronizations.

ET sync time (only for a backup in online mode)
At the end of a backup in online mode, an ET synchronization is required, i.e. ADABCKmust
wait until all ET logic users come to ET status. The ET sync time is the time required for this
ET synchronization.

Transfer rate
This is the number of kilobytes read from or written to the backup file(s) per second.

31Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



Notes:

1. For the transfer rate, only the pure backup/restore time is taken into consideration, but not
the time required for the preparation of the backup/restore. Therefore, the transfer ratemay
be higher than the transfer rate you would get if you compute the transfer rate based on
the total elapsed time of ADABCK.

2. In the case of small backups, rounding errors may occur in the computation. Therefore, for
very small backups the transfer rate is not displayed, because the value would be too inac-
curate.

3. Because usually many database blocks are not filled completely, and because only the net
data are copied to the backup file(s), the transfer rate is less than the rate you would get if
you consider the processed database space.

OVERLAY

OVERLAY = {*|(number[-number][,number[-number]]...)}
[,FMOVE [=(number [,number [-number]]...)]]
[,FORMAT = (keyword [,keyword] ) ]
[,KEEP_FILE_ALLOC]
[,NEW_DBID = number]
[,RENUMBER = (number[-number] [,number [-number]]...)]]

This function restores the files specified by the numbers in the list at file level. LOB files specified
are ignored, but the LOB files assigned to all base files are restored too. The files to be restored
may already be loaded in the database. ADABCK performs an implicit delete before restoring
such files. If only one file of a LOB group is overlaid, the other file of the LOB group is also deleted.
An asterisk ('*') specifies that a restore is to be made at the database level. Exclusive control over
the database container files is required.

Only the specified files are overlayed, even if there are referential integrity constraints to other
files; these referential integrity constraints are removed.

FMOVE [=(number [,number [-number]]...)]

If this keyword is specified, ADABCK reallocates all files to be overlayed or the specified subset
rather than attempting to restore them in the same block ranges as in the backup. Using this
keyword reduces the number of file extents as much as possible.

Adabas Utilities32

ADABCK (Dump And Restore Database Or Files)



FORMAT = (keyword [,keyword])

The keywords ASSO and/or DATAmay be specified. This parameter is used to format Associator
and/or Data Storage blocks. When restoring at the file level, only blocks contained in the unused
areas of the files' extents are formatted.

KEEP_FILE_ALLOC

If this parameter is specified, ADABCK tries to keep the allocation of the file as it currently is in
the database, as opposed to restoring it with the same block ranges as on the backup. This keyword
can, for example, be used when a file has been reorganized since the backup was made or also if
more space has since been preallocated to the file. If the file on the backup hasmore blocks allocated
than are currently available in the database, the remaining blocks will be allocated in an arbitrary
location. This keyword can only be used in conjunction with a file list.

NEW_DBID = number

This parameter can be used to change the identifier of the database to be restored. This parameter
can only be specified when restoring a complete database.

A new identifier can be used to restore a backup copy of an active database into a different set of
container files. The new identifier may not be identical to that of another active database.

If this parameter is omitted, the database identifier remains unchanged.

RENUMBER = (number[-number] [,number [-number]]...)

RENUMBER is used to renumber the files to be overlayed in the target database. The following
restrictions and requirements apply:

■ There must be a 1:1 relationship between the files specified in the OVERLAY file list and the
RENUMBER file list.

■ If you specify a range in the OVERLAY file list, the corresponding range in the RENUMBER
file list must be the same size.

■ Normally it is not necessary to specify LOB files in the OVERLAY file list. However, if the LOB
file is also to be renumbered, the LOB file must also be specified.

■ Files may occur more than once in the OVERLAY file list, for example: (11-55),(44-99). In this
case, you are not allowed to specify different target file numbers for the same source file numbers.
For the example file list, it is correct to specify RENUMBER=(1011-1055,1044-1099), whereas
RENUMBER=(1011-1055,2044-2099) is incorrect.

■ It is not allowed to renumber more than one file to the same target file number.

33Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



PARALLEL

PARALLEL = keyword

This parameter can be specified to increase processing speedwhen creating/restoring frombackups
on slow devices (e.g. tape drives) by using parallel devices. The keyword MULTI_PROCESS can
be used. If PARALLEL=MULTI_PROCESS is specified, the default value of the BLOCKSIZE
parameter changes to 512 KB.

The ADABCK operation is only performed in parallel if the number of backup files (ADABCK
subparameter DRIVES for DUMP or EXU_DUMP) is greater than 1.

Notes:

1. If it is to be used, PARALLELmust be specified after theDBIDparameter and before theDUMP,
EXU_DUMP, OVERLAY or RESTORE parameter.

2. The PARALLEL parameter is not supported on Windows platforms.

3. It is possible to pass the output of ADABCKDUMP or ADABCK EXU_DUMP to named pipes,
which can be directly used as input for anADABCKRESTOREorADABCKOVERLAY in order
to copy a database or some files from one database to another database.

4. The PARALLEL parameter does not improve the performance of the READ_CHECK function.

READ_CHECK

READ_CHECK

This function checks the readability (i.e. absence of parity errors) and completeness of the Adabas
backup copy. These checks aremade to ensure that the dumpfile can be used to restore the database
or files with the RESTORE or OVERLAY function of this utility.

RESTORE

RESTORE = {*|(number[-number][,number[-number]]...)}
[,FMOVE [=(number [,number [-number]]...)]]
[,FORMAT = (keyword [,keyword] ) ]
[,NEW_DBID = number]
[,RENUMBER = (number[-number] [,number [-number]]...)]]

This function restores the files specified by the numbers in the list at the file level. LOBfiles specified
are ignored, but the LOB files assigned to all base files are restored too. If a file list is given, the
files to be restored must not be loaded in the database. An '*' specifies that a restore is to be made
at the database level. In this case, the filesmay already be loaded in the database andwill implicitly
be deleted or substituted by files in the dump with identical file numbers. Exclusive control over
the database container files is required.

Adabas Utilities34

ADABCK (Dump And Restore Database Or Files)



Only the specified files are restored, even if there are referential integrity constraints to other files;
these referential integrity constraints are removed.

Note: You can only use RESTORE=* if the dump file was created with DUMP=* or
EXU_DUMP=*.

FMOVE [=(number [,number [-number]]...)]

If this keyword is specified, ADABCK reallocates all files to be restored or the specified subset
rather than attempting to restore them in the same block ranges as in the backup. Using this
keyword reduces the number of file extents as much as possible.

FORMAT = (keyword [,keyword])

The keywords ASSO and/or DATAmay be specified. This parameter is used to format Associator
and/or Data Storage blocks. When restoring at the file level, only blocks contained in the unused
areas of the files' extents are formatted.

NEW_DBID = number

This parameter can be used to change the identifier of the database to be restored. This parameter
can only be specified when restoring a complete database.

A new identifier can be used to restore a backup copy of an active database into a different set of
container files. The new identifier may not be identical to that of another active database.

If this parameter is omitted, the database identifier remains unchanged.

RENUMBER = (number[-number] [,number [-number]]...)

RENUMBER is used to renumber the files to be restored in the target database. The following re-
strictions and requirements apply:

■ There must be a 1:1 relationship between the files specified in the RESTORE file list and the
RENUMBER file list.

■ If you specify a range in the RESTORE file list, the corresponding range in the RENUMBER file
list must be the same size.

■ Normally it is not necessary to specify LOB files in the RESTORE file list. However, if the LOB
file is also to be renumbered, the LOB file must also be specified.

■ Files may occur more than once in the RESTORE file list, for example: (11-55),(44-99). In this
case, you are not allowed to specify different target file numbers for the same source file numbers.
For the example file list, it is correct to specify RENUMBER=(1011-1055,1044-1099), whereas
RENUMBER=(1011-1055,2044-2099) is incorrect.

■ It is not allowed to renumber more than one file to the same target file number.

35Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



Examples:

It is assumed that none of the files specified in theDUMP examples above are loaded in the selected
database.

adabck: restore = *

The complete database is restored. The output of DUMP=* or EXU_DUMP=*may be used as input
for this example. The nucleus must be inactive.

adabck: restore = 8

File 8 is restored. The output of any of the DUMP/EXU_DUMP examples above can be used as
input for this example. The nucleus may be active (assuming that file 8 is neither the checkpoint
file nor the security file).

adabck: restore = (11-13, 1, 4-8)

Only the outputs of the first and last DUMP/EXU_DUMP example could be used. The output of
the last example would restore files 1, 4, 6, 8, 11 and 13, whereas that of the first example would
restore files 7 and 12 as well.

SUMMARY

SUMMARY

This parameter displays general information and physical layout of the database in the Adabas
backup copy created by a previous run of the DUMP/EXU_DUMP function.

Example

adabck: summary

Database dumped on 14-JUL-2005 14:49:17

Database 76, DOKU-DATABASE

Summary of Database 76 14-JUL-2005 14:49:18

DATABASE NAME DOKU-DATABASE
DATABASE ID 76
MAXIMUM FILE NUMBER LOADED 30
SYSTEM FILES 1 (CHK), 2 (SEC), 3 (USR)

Adabas Utilities36

ADABCK (Dump And Restore Database Or Files)



ACTUAL FILES LOADED 6
CURRENT PLOG NUMBER 13
CURRENT CLOG NUMBER 1

Container Device Extents in Blocks Number of Block Total Size
File Type from to Blocks Size (Megabytes)

-------------------------------------------------------------------------------

ASSO1 file 1 1,536 1,536 2KB 3.00 MB

DATA1 file 1 768 768 4KB 3.00 MB

WORK1 file 1 1,365 1,365 3KB 4.00 MB

-------------------------------------------------------------------------------
10.00 MB
========

Restart Considerations

ADABCK has no restart capability. An abnormally-terminatedADABCK executionmust be rerun
from the beginning.

An interrupted RESTORE/OVERLAY of one or more files will result in lost RABNs which can be
recovered by executing the RECOVER function of the utility ADADBM. An interrupted RE-
STORE/OVERLAY of a database results in a database that cannot be accessed.

37Adabas Utilities

ADABCK (Dump And Restore Database Or Files)



38



5 ADACLP (Command Log Report)

■ Functional Overview ........................................................................................................................ 40
■ Procedure Flow ............................................................................................................................... 41
■ Checkpoints ................................................................................................................................... 42
■ Control Parameters .......................................................................................................................... 42
■ Specifying Multiple Selection Criteria ................................................................................................... 48

39



This chapter describes the utility "ADACLP".

Functional Overview

The ADACLP utility prints the command log with a line width of 132 characters.

Note: ADACLP can only process command logs of nucleus sessions that were started with
theADANUCparameter CLOGLAYOUT=5 (5 is the default value). Please refer toADANUC,
CLOGLAYOUT for further information.

A record is written in the command log for each Adabas command issued. Command logging
must be enabled during Adabas startup with the nucleus parameter LOGGING, or when the
nucleus is already active with the ADAOPR parameter LOGGING.

Note: For performance reasons, theAdabas nucleus determines the command start timestamp
only if command logging has been enabled. For this reason, the command start date and
the command duration are not displayed for Adabas commands that are already active but
not yet finished when command logging is switched on.

Any of the ADACLP parameters selects a subset of the command log information.

This utility is a single-function utility.

Adabas Utilities40

ADACLP (Command Log Report)



Procedure Flow

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

Utilities Manual,
ADACLP

Disk, Tape (* see note)CLPCLGCommand log

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADACLP report

Note: (*) A named pipe can be used for this sequential file (not on OpenVMS, see Adminis-
tration, Using Utilities for details).

The sequential files CLPCLG can havemultiple extents. For detailed information about sequential
files with multiple extents, see Administration, Using Utilities.

41Adabas Utilities

ADACLP (Command Log Report)



Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

D [NO]ADDITIONS_2

CLASS = (keyword[,keyword]...)

CLOG = (number[,number])

COMMAND = (keyword[,keyword]...)

DATE = ([absolute-date][,[absolute-date]])

DBID = number

D DISPLAY = (keyword[,keyword]...)

D ES_ID [=number]

D FILE = (number[-number][,number[-number]]...)

D [NO]HEXADECIMAL

D LOGIN_ID = string

NODE_ID = string

D PAGE = number

D RECORDS = number[-number]

RESPONSE = (number[-number][,number[-number]]...)

D USER_ID = string

D WIDTH = number

Adabas Utilities42

ADACLP (Command Log Report)



[NO]ADDITIONS_2

[NO]ADDITIONS_2

This option can be used to display the Additions 2 field instead of the command ID.

The default is NOADDITIONS_2.

CLASS

CLASS = (keyword [,keyword]...)

This parameter selects the log records whose command codes belong to the specified command
class. All records are selected if neither the CLASS parameter nor the COMMAND parameter is
specified.

CLASS and COMMAND are mutually exclusive.

The following keywords can be used:

USEKEYWORD

Selects control commands such as `open' and `close';CONTROL

Selects find commands;FIND

Selects read commands;READ

Selects update commands.UPDATE

Example:

adaclp: class = find

The log records of the commands S1, S2, S4, S8 and S9 are selected.

CLOG

CLOG = (number [,number])

This parameter is required if the command log iswithin a raw section. It is optional if the command
log is within a file system. The CLOG number and the extension count can be specified. If no ex-
tension count is specified, Adabas will open subsequent extents as necessary. If an extent count
is specified, then only the specified extent will be processed.

Note: This parameter applies to UNIX platforms only.

43Adabas Utilities

ADACLP (Command Log Report)



COMMAND

COMMAND = (keyword [,keyword]...)

This parameter selects the log records with an Adabas command code specified by the keywords.
Up to ten keywords can be defined. If neither theCOMMANDparameter nor theCLASSparameter
is specified, all records are selected.

COMMAND and CLASS are mutually exclusive.

All valid Adabas commands (A1...S9) can be used as keywords (see Command Reference for further
information).

DATE

DATE = ([absolute-date] [,[absolute-date]])

This parameter selects the log records in the range specified by the optional date strings. The date
strings must correspond to the following absolute date and time format:

dd-mmm-yyyy[:hh:mm:ss]

Leading zeroes in the date and time specification may be omitted. Any numbers not specified are
set to 0, for example 28-jul-2012 is equivalent to 28-jul-2012:00:00:00.

By default, all log records are selected.

Examples:

adaclp: date = 8-aug-2012

The log record written on 8-AUG-2012 00:00:00 is selected

adaclp: date = (8-aug-2012:12,)

All log records written from 8-AUG-2012 12:00:00 onwards are selected.

adaclp: date = (,8-aug-2012:12:34)

All log records written up to 8-AUG-2012 12:34:00 are selected.

Adabas Utilities44

ADACLP (Command Log Report)



DBID

DBID = number

This parameter selects the database to be used. This parameter must be specified when the CLOG
to be used is on a raw device.

Note: This parameter applies to UNIX platforms only.

DISPLAY

DISPLAY = (keyword [,keyword]...)

This parameter is used to display various kinds of information from the command log. The
keywords shown in the following table are available. Information for these keywords can only be
displayed if corresponding data was logged during the nucleus session.

MEANINGKEYWORD

CB ■ Command log record number
■ Starting date and time of the command
■ Duration of the command in microseconds
■ User ID specified in the corresponding OP command
■ Node ID
■ Login ID or, if ES_ID was specified, environment-specific ID
■ Selected fields of the control block
■ '*' in column 'X' indicates utility or exclusive file usage
■ The thread which processed the command
■ I/O statistics

Note: For command logs created with versions lower than Version 6.3 SP1, the duration of
the command is displayed in milliseconds.

Format buffer.FB

All fields of the control block. Other information shown for DISPLAY=CB is not shown here.FULL_CB

ISN buffer.IB

IO list.IO

Record buffer.RB

Search buffer.SB

Command statistics of the selected records.STATISTICS

Value buffer.VB

The default is DISPLAY = CB.

45Adabas Utilities

ADACLP (Command Log Report)



ES_ID

ES_ID [ = number]

This parameter causes the environment-specific ID to be displayed instead of the login ID.

If a number is specified, only records with information for the specified environment-specific ID
(process ID) will be selected.

By default, all records are selected.

FILE

FILE = (number [- number] [,number [- number]]...)

This parameter selects the log records with commands that reference the file(s) specified by
number or range of numbers. A maximum of 20 files may be specified.

By default, all records are selected.

[NO]HEXADECIMAL

[NO]HEXADECIMAL

If this parameter is set to HEXADECIMAL, the record buffer and value buffer are displayed in
hexadecimal format (when DISPLAY=RB or DISPLAY=VB is specified).

The default is NOHEXADECIMAL.

LOGIN_ID

LOGIN_ID = string

This parameter selects all records with the specified login ID.

By default, all records are selected.

NODE_ID

NODE_ID = string

This parameter selects the log records from the specified node.

The node identification shown while processing ADAOPR with the parameter DISPLAY = UQ
must be used.

This parameter is valid only if ENTIRE NET-WORK is installed.

Adabas Utilities46

ADACLP (Command Log Report)



PAGE

PAGE = number

This parameter defines the page size, in lines, used for the printout.

The default is 59 lines.

RECORDS

RECORDS = number [-number]

This parameter selects the log records in the specified range of log record numbers. Log record
numbers start with 1 after the log is switched on.

By default, all records are selected.

RESPONSE

RESPONSE = (number [- number] [,number [- number]] ... )

This parameter selects the records with the specified response code or range of response codes.

USER_ID

USER_ID = string

This parameter selects the records with the user ID specified in `string'.

By default, all users are selected.

Example

user_id = *adarep

All records that represent commands issued from the utility ADAREP are selected.

47Adabas Utilities

ADACLP (Command Log Report)



WIDTH

WIDTH = number

This parameter selects the output line width. Valid values are 80 and 132.

The default is 132.

Specifying Multiple Selection Criteria

If multiple selection criteria are specified, they are combined by a logical AND, e.g.

command = l3, file = 5

This selects all L3 commands on file 5.

Adabas Utilities48

ADACLP (Command Log Report)



6 ADACMP (Compression Of Data)

■ Functional Overview ........................................................................................................................ 50
■ Procedure Flow ............................................................................................................................... 51
■ Checkpoints ................................................................................................................................... 52
■ Control Parameters .......................................................................................................................... 52
■ Output ........................................................................................................................................... 64
■ Report ........................................................................................................................................... 65
■ Restart Considerations ..................................................................................................................... 65

49



This chapter describes the utility "ADACMP".

Functional Overview

The compression utility ADACMP compresses user raw data into a form which can be used by
the mass update utility ADAMUP.

The input data for this utility must be contained in a sequential file. LOB field values can also be
provided in separate files.

The logical structure and characteristics of the input data are described by a field definition table
(FDT). These statements specify the level number, field name, standard length and format together
with any definition options that are to be assigned to the field (descriptor, unique descriptor,
multiple-value field, null value suppression, fixed storage, periodic group). See Administration,
FDT Record Structure for more detailed information about the layout of the file in the database and
characteristics of the input data.

Each field in the input recordwithout the option SY (systemgenerated) is compressed. Compression
consists of removing trailing blanks from alphanumeric fields and leading zeros from numeric
fields. Unpacked and packed fields are checked for correct data. Fields defined with the fixed
storage option are not compressed. A user exit is provided to allow additional editing of each input
record with a user-written routine.

System generated fields are either regenerated or decompressed, depending on the keyword
specified for the ADACMP parameter SYFINPUT.

This utility creates three types of output files:

■ Compressed data.
■ Descriptor values.
■ Records with errors.

The sizes of the descriptor values of all descriptors are listed at the end of execution.

If the utility writes records to the error file, it will exit with a non-zero status.

This utility is a single-function utility.

Adabas Utilities50

ADACMP (Compression Of Data)



Procedure Flow

The sequential files CMPDTA, CMPDVT and CMPERR can have multiple extents. For detailed
information about sequential files with multiple extents, seeAdministration,Using Utilities, Adabas

51Adabas Utilities

ADACMP (Compression Of Data)



Sequential Files, Multiple Extents . CMPLOB is a directory that contains files which may be stored
as LOB values in the database.

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

output by ADACMPDisk, Tape (* see note)CMPDTACompressed data

output by ADACMPDisk, Tape (* see note)CMPDVTDescriptor Value Table

output by ADACMPDisk, Tape (* see note)CMPERRRejected data

Utilities ManualDisk, Tape (* see note)CMPFDTInput data FDT

Utilities ManualDisk (* see note)CMPINUser input data

Utilities ManualDiskCMPLOBUser LOB input data

Utilities Manualstdin/
SYS$INPUT

ADACMP
control statements

Messages and Codesstdout/
SYS$OUTPUT

ADACMP messages

Note: (*) A named pipe can be used for this sequential file (seeAdministration,UsingUtilities,
Adabas Sequential Files, Using Named Pipes for details).

If the SINGLE_FILE option is set, the Descriptor Value Table (DVT) and the compressed user data
are written together to the logical name CMPDTA.

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

DBID = number

D [NO]DST

FDT

FIELDS {uncompressed_field_definition | FDT}...{END_OF_FIELDS | . }

Adabas Utilities52

ADACMP (Compression Of Data)



FILE = number

D [NO]LOBS

D [NO]LOWER_CASE_FIELD_NAME

D MAX_DECOMPRESSED_SIZE = number [K|M]

D MUPE_C_L = {1|2|4}

D [NO]NULL_VALUE

D NUMREC = number

D RECORD_STRUCTURE = keyword

SEPARATOR = character | \character

D [NO]SHORT_RECORDS

D [NO]SINGLE_FILE

SKIPREC = number

D SOURCE_ARCHITECTURE = (keyword[,keyword][,keyword])

D SYFINPUT = keyword

D TZ {=|:} [timezone]

D [NO]USEREXIT

D [NO]USERISN

D WCHARSET = char_set

DBID

DBID = number

This parameter selects the database that contains the file to be specified by the FILE parameter.

53Adabas Utilities

ADACMP (Compression Of Data)



[NO]DST

[NO]DST

The parameter DST is required if a daylight saving time indicator is provided for date/time fields
with the option TZ. The daylight saving time indicator must be appended behind the date/time
value as a 2-byte integer value (format F) that contains the number of seconds to be added to the
standard time in order to get the actual time (usually 0 or 3600).

Without the parameter DST, it is not possible to define time values in the hour before the time is
switched back to standard time.

The default is NODST.

Notes:

1. TheDSTparameter is ignored if the FIELDSparameter is specified. In this case, youmust specify
a D element for fields with the daylight saving time indicator.

2. The DST parameter is not compatible with the RECORD_STRUCTURE = NEWLINE_SEPAR-
ATOR parameter because the daylight saving indicator in format F contains non-printable
characters.

Example:

A DT field has the following definition: 1,DT,8,P,DT=E(DATE_TIME),TZ

The following values must then be specified for this field:

■ The local date/time value corresponding to the edit mask DATE_TIME as an 8-byte packed
value

■ The daylight saving time indicator, usually 0 for standard time and 3600 for summer time as a
2-byte fixed point value

Case 1 (DT has a date/time value with daylight saving time): 0x0200910250230000E10
Case 2 (DT has a date/time value with standard time): 0x0200910250230000000

FDT

FDT

If this parameter is the first parameter that is specified, ADACMP reads the FDT information
contained in the sequential file CMPFDT. If it is specified in conjunction with the DBID and FILE
parameters, the FDT of the specified file is displayed.

Adabas Utilities54

ADACMP (Compression Of Data)



FIELDS

FIELDS {uncompressed_field_definition | FDT}...{END_OF_FIELDS | . }

This parameter is used to specify a subset of fields given in the FDT and their format and length.
This means that the input records do not have to contain all of the fields given in the FDT, or that
fields can be provided with a different format or length. The syntax and semantics are the same
as for the format buffer, with the exception that you can also specify an R-element (for LOB refer-
ences) if the decompressed record contains the name of a file containing the LOB value instead of
the LOB value itself. See Administration, Loading and Unloading Data, Uncompressed Data Format for
more detailed information.

While entering the specification list, the FDT function can be used to display the FDT of the file
to be decompressed. The specification list can be terminated or interrupted by entering
END_OF_FIELDS or `.'. The `.' option is an implicit END_OF_FIELDS and is compatible with the
format buffer syntax. FIELDS or END_OF_FIELDS must always be entered on a line by itself,
whereas the `.' may be entered on a line by itself or at the end of the format buffer elements.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

FILE

FILE = number

This parameter specifies the file from which the FDT information is to be read. This parameter
can only be specified after the DBID parameter.

[NO]LOWER_CASE_FIELD_NAMES

[NO]LOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. IfNOLOWER_CASE_FIELD_NAMES is specified,Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the FIELDS parameter.

55Adabas Utilities

ADACMP (Compression Of Data)



[NO]LOBS

[NO]LOBS

This parameter specifieswhether LA andLBfield values are to be stored in a LOBfile after loading
the compressed data into the database:

■ If the parameters DBID and file number have been specified, this parameter is ignored, and the
field is handled as described below;

■ If the parameters DBID and file number have not been specified and LOBS is specified, field
values for LA and LB fields are prepared for storage in a LOB file, except the field is defined as
a descriptor.

■ If the parameters DBID and file number have not been specified andNOLOBS is specified, field
values for LA and LB fields are prepared for storage in the base file. In this case, the length of
field values for LA and LB fields must not exceed 16381 bytes and the compressed record must
fit into a 32 KB DATA block.

Please note that LA and LB fields which are descriptors or parent fields of a derived descriptor,
e.g. a super descriptor, are always handled as described for the NOLOBS parameter.

Default behaviour is as follows:

■ If the parameters DBID and file number have been specified and the file is a base file with cor-
responding LOB file, LOBS is default.

■ If the parameters DBID and file number have been specified and the file is not a base file with
corresponding LOB file, NOLOBS is default.

■ If the parameters DBID and file number have not been specified, LOBS is default.

MAX_DECOMPRESSED_SIZE

MAX_DECOMPRESSED_SIZE = number [K|M]

This parameter specifies the maximum size of a decompressed record in bytes, kilobytes or
megabytes, depending on the specification of "K" or "M" after the number. This parameter is inten-
ded to recognize invalid CMPIN files as early as possible.

The default is 65536. This is also the minimum value.

Notes:

1. This parameter does not include the size of LOB values stored in separate files.

2. The exact definition of this parameter is the size of the I/O buffer required for the largest decom-
pressed record. Only multiples of 256 bytes are used for the I/O buffers, which means that you
must specify a value greater than or equal to the largest decompressed record (including the
preceding length field) rounded up to the next multiple of 256.

Adabas Utilities56

ADACMP (Compression Of Data)



MUPE_C_L

MUPE_C_L = {1|2|4}

If the uncompressed data contain multiple-value fields or periodic groups, they are preceded by
a binary count field with the length of MUPE_C_L bytes.

The default is 1.

[NO]NULL_VALUE

[NO]NULL_VALUE

The parameter NULL_VALUE is required if you are compressing data according to the standard
FDT and the status values of theNC option fields are given in the input data. Normally, such input
data is generated by ADADCU with the NULL_VALUE option set.

The default is NONULL_VALUE.

Example

The definition in the FDT for the field AA is: 1, AA, 2, A, NC

Case 1 (AA has a non-NULL value): input record (hexadecimal) = 00004142

Case 2 (AA has a NULL value): input record (hexadecimal) = FFFF2020

NUMREC

NUMREC = number

This parameter specifies the number of input records to be processed. If this parameter is omitted,
all input records contained on the input file are processed.

Use of this parameter is recommended for the initial execution of ADACMP if the input data file
contains a large number of records. This avoids unnecessary processing of all records in cases
where a data definition error or invalid input data results in a large number of rejected records.

This parameter is also useful for creating small files for test purposes.

57Adabas Utilities

ADACMP (Compression Of Data)



RECORD_STRUCTURE

RECORD_STRUCTURE = keyword

This parameter specifies the type of record separation used in the input file with the environment
variable CMPIN. The following keywords can be used:

MeaningKeyword

The records in the CMPINfile are separated by a two-byte exclusive length field.ELENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte exclusive
length field.

E4LENGTH_PREFIX

The records in theCMPINfile are separated by a two-byte inclusive length field.ILENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte inclusive
length field.

I4LENGTH_PREFIX

The records in the CMPIN file are separated by a new-line character. This
keyword may only be specified if the field values do not contain characters

NEWLINE_SEPARATOR

interpreted as new-line (i.e. if there are only unpacked, alphanumeric and
Unicode fields, and the alphanumeric andUnicode fields contain only printable
characters). This keyword and the USERISN parameter are mutually exclusive.

The records in the CMPIN file contain data that has been transferred from an
IBM host using the FTP site rdw option. ADACMP is able to process such data

RDW

without having to use cvt_fmt first (in previous versions, the unsupported tool
cvt_fmtwas used for such format conversions). For example:

% ftp IBM-host
ftp> binary
200 Representation type is Image
ftp> site rdw
200 Site command was accepted
ftp> get decomp
% setenv CMPIN decomp
% adacmp fdt record_structure=rdw source=(ebcdic,high)

Like RDW, for data decompressed on a mainframe with HEADER=YES.RDW_HEADER

The variable blocked format from BS2000 or IBM.VARIABLE_BLOCKED

The default is ELENGTH_PREFIX.

Adabas Utilities58

ADACMP (Compression Of Data)



SEPARATOR

SEPARATOR = character | \character

If you specify this option, ADACMP expects the fields in the raw data record to be separated by
the character specified. You can omit the apostrophes round the character specification if the
character has no special meaning for the Adabas utilities. The same fields in different records are
then permitted to be of different lengths.

If a format buffer is specified using the FIELDS parameter, the order of the specified field names
must correspond with the order in which the fields are specified in the FDT. A mismatch results
if this is not the case.

If the FDT contains multiple value fields or periodic groups, a format buffer must be specified
with the FIELDS parameter. Members of periodic groups must be ordered by 1) periodic group
index and 2) field sequence in the FDT (see example 2 below).

Because no binary data is expected in the input file using the SEPARATOR option, the RE-
CORD_STRUCTURE parameter will be set to NEWLINE_SEPARATOR.

Example 1

FDT: 1, AA, 2, U
1, AB, 8, U
1, AC, 2, A

CMPIN: 12;12345678;AA
1234;5;BB

adacmp
fdt
separator=\;

or for UNIX

adacmp fdt separator=\\\;

or

adacmp fdt separator='\;'

In this example, 2 records are compressed with the default FDT, the separator character is the
semicolon, and the default record structure is NEWLINE_SEPARATOR. Note that the semicolon
must be preceded by a backslash, otherwise it would be treated as the start of a comment. If you
enter the parameters under UNIX directly from the command line, it is necessary to precede the
backslash and the semicolon by additional backslashes or to put them in quotes or double quotes
since they are special characters.

59Adabas Utilities

ADACMP (Compression Of Data)



Example 2

FDT: 1, XX, PE
2, AA, 8, A
2, AB, 8, U
1, YY, 2, A

Correct: CMPIN: aaaa,1,bbbb,2,yy

Command: adacmp fdt separator=, fields AA1,AB1,AA2,AB2,YY.
First, the field values for the periodic group index 1 are
specified, and then the field values for periodic group index 2.

Invalid: CMPIN: aaaa,bbbb,1,2,yy
Command: adacmp fdt separator=, fields AA1-2,AB1-2,YY.
The fields specification is invalid because the 2nd value of
AA is specified before the 1st value of AB; you will get
the error SEPINV.

In this example, 1 record with fields given in the format buffer is compressed, the separator char-
acter is the comma.

Example 3

FDT: 1, AA, 8, A
1, MA, 1, A, MU

CMPIN: aaaa%2%A%B
bbbb%3%C%D%E

adacmp dbid=9 file=15 separator=%, fields "AA,MAC,1,U,MA1-N"

In this example, 2 records with fields given in the format buffer are compressed, the occurrence
count or the multiple value field MA is different in different records. The separator character is
the percent character.

[NO]SHORT_RECORDS

[NO]SHORT_RECORDS

If SHORT_RECORDS is specified, it is possible to omit fields at the end of the decompressed record
that contain null values.

The default is NOSHORT_RECORDS.

You can only omit complete fields; it is not possible to truncate the last value:

Adabas Utilities60

ADACMP (Compression Of Data)



Example

Assuming you have specified the parameters for a file containing alphanumeric fields AA and
AB:

FIELDS
AA,20,AB,20
END_OF_FIELDS
SHORT_RECORDS

Then the following record is allowed:

"Field AA "

The following record is not allowed:

"Field AA"

[NO]SINGLE_FILE

[NO]SINGLE_FILE

If the SINGLE_FILE option is set, ADACMP writes the Descriptor Value Table (DVT) and the
compressed user data to a single file (CMPDTA) instead of writing them to separate files.

The default is NOSINGLE_FILE.

SKIPREC

SKIPREC = number

This parameter specifies the number of records to be skipped before compression is started.

SOURCE_ARCHITECTURE

SOURCE_ARCHITECTURE = ( keyword [,keyword [,keyword] ] )

This parameter specifies the format (character set, floating-point format and byte order) of the
input data records. The following keywords can be used:

Valid KeywordsKeyword Group

ASCIICharacter set

EBCDIC

IBM_370_FLOATINGFloating-point format

IEEE_FLOATING

61Adabas Utilities

ADACMP (Compression Of Data)



Valid KeywordsKeyword Group

VAX_FLOATING

HIGH_ORDER_BYTE_FIRSTByte order

LOW_ORDER_BYTE_FIRST

If no keyword of a keyword group is specified, the default for this keyword group is the keyword
that corresponds to the architecture of the machine on which ADACMP is running.

Note: The FDT is always input in ASCII format.

Example

If the input records that are to be compressed are in IBM format, the usermust specify the following:

SOURCE_ARCHITECTURE = (EBCDIC, IBM_370_FLOATING, HIGH_ORDER_BYTE_FIRST)

SYFINPUT

SYFINPUT = keyword

This parameter specifies the input used for the compression of system generated fields. The fol-
lowing keywords can be used:

MeaningKeyword

The system generated field values are regenerated by the system in ADACMP.SYSTEM

The system generated field values are taken from the decompressed file.USER

The default is SYFINPUT = USER.

TZ

TZ {=|:} [timezone]

The specified time zonemust be a valid time zone name that is contained in the time zone database
known as the Olson database (http://www.twinsun.com/tz/tz-link.htm). If a time zone has been
specified, this time zone is used for time zone conversions of date/time fields with the option TZ.

The default is UTC,which is used internally to store date/time fieldswith option TZ; no conversion
is required.

If you specify an empty value, no checks are made to ensure that date/time fields are correct.

Adabas Utilities62

ADACMP (Compression Of Data)

http://www.twinsun.com/tz/tz-link.htm


Note: The time zone names are file names. Depending on the platform, these file names
may or may not be case sensitive. Also, the time zone names, depending on the platform,
may or may not be case sensitive.

Examples:

tz:Europe/Berlin

This is correct on all platforms.

TZ=Europe/Berlin

With this specification, TZ is converted to upper case EUROPE/BERLIN. This is correct onWindows,
because file names are not case sensitive on Windows, but it is not correct on Unix, because Unix
file names are case sensitive.

[NO]USEREXIT

[NO]USEREXIT

This option specifies whether a user exit is to be taken or not. If USEREXIT is specified, the envir-
onment variable ADAUEX_6/logical name ADABAS$USEREXIT_6must point to a loadable user-
written routine.

See Administration, User Exits and Hyperexits for more details.

The default is NOUSEREXIT.

[NO]USERISN

[NO]USERISN

If this option is set to USERISN, the ISN for each record in the input file will be assigned by the
user.

If USERISN is specified, the user must give the ISN to be assigned to each record as a four-byte
binary number immediately preceding each data record.

ISNs may be assigned in any order and must be unique (for the file). The ISNmust not exceed the
maximum number of records (MAXISN) specified for the file (see the file definition utility
ADAFDU for more detailed information).

ADACMP does not check for unique ISNs or for ISNs which exceed MAXISN. These checks are
performed by themass update utility ADAMUP (if an error is detected, theADAMUP run termin-
ates with an error message).

If this option is set to NOUSERISN, the ISN is assigned by Adabas.

63Adabas Utilities

ADACMP (Compression Of Data)



The default is NOUSERISN.

WCHARSET

WCHARSET = char_set

This parameter specifies the default encoding used in the decompressed file based on the encoding
names listed at http://www.iana.org/assignments/character-sets - most of the character sets listed
there are supported by ICU, which is used by Adabas for internationalization support.

The default is UTF-8.

Output

The ADACMP utility outputs three files:

1. Compressed data

2. Descriptor values

3. Records with errors

Compressed Data Records

The data records which ADACMP has processed, modified and compressed are output together
with the FDT information to a sequential file. This file is used as input for the mass update utility
ADAMUP.

If the output file contains no records (no records on the input file or all records rejected), the output
may still be used as input for the mass update utility ADAMUP.

Descriptor-Value Table File

This file contains the descriptor value tables (DVT).

Compressed data records and descriptor value tables are written to one file if the SINGLE_FILE
option is specified.

Adabas Utilities64

ADACMP (Compression Of Data)

http://www.iana.org/assignments/character-sets


Rejected Data Records

Any records rejected byADACMParewritten to theADACMPerror file. The contents of this error
file should be displayed using the ADAERR utility. Do not print the error file using the standard
operating system print utilities since the records contain unprintable characters.

See the ADAERR utility for further information.

Report

The ADACMP report begins with a display of the field definition entered if CMPFDT is used for
input. Any statement which contains a syntax error will be printed with a message immediately
following the statement.

Following the display of the data-definition statements, a descriptor summary, the number of input
records processed, the number of input records rejected, and the number of input records com-
pressed are printed.

Restart Considerations

ADACMP does not have a restart capability. An interrupted ADACMP run must be re-started
from the beginning.

ADACMPdoes not change the database; therefore, no considerations need to bemade concerning
database status before restarting ADACMP.

65Adabas Utilities

ADACMP (Compression Of Data)



66



7 ADADBA (DBA Workbench)

■ Functional Overview ........................................................................................................................ 68
■ Procedure Flow ............................................................................................................................... 69

67



This chapter describes the utility "ADADBA".

Functional Overview

The DBAWorkbench is a graphical user interface that is used to create, operate and maintain
Adabas databases and files on the local node.

The Adabas Workbench is no longer supported starting with Version 6.2. On those platforms for
which the DBAWorkbench was delivered for Version 6.1, the Workbench will still be delivered,
but the functionality is frozen to the functionality that was availablewith Version 6.1. New features
that were introduced for Version 6.2, such as date/time fields, are not supported.

The DBAWorkbench can be started either from the command line in the same manner as any
other utility (UNIX andWindows), or by clicking the icon for the DBAWorkbench in the Adabas
folder on the desktop (Windows only).

Additional information is available as context-sensitive online help when the DBAWorkbench is
running.

Adabas Utilities68

ADADBA (DBA Workbench)



Procedure Flow

69Adabas Utilities

ADADBA (DBA Workbench)



70



8 ADADBM (Database Modification)

■ Functional Overview ........................................................................................................................ 72
■ Procedure Flow ............................................................................................................................... 74
■ Checkpoints ................................................................................................................................... 76
■ Control Parameters .......................................................................................................................... 77
■ Restart Considerations ................................................................................................................... 100

71



This chapter describes the utility "ADADBM".

Functional Overview

TheADADBMutility consists of the following functionswhichmay be used tomakemodifications
to the database:

■ The ADD_CONTAINER function adds a new container file to the Associator or Data Storage
data set;

■ The ADD_FIELDS function adds new fields to the end of a file's FDT;
■ The ALLOCATE NI, UI, AC or DS function increases the Normal Index, Upper Index, Address
Converter or Data Storage space assigned to a file;

■ The CHANGE function changes the standard length of a field in the Field Definition Table
(FDT);

■ The CHANGE_FIELDS function modifies one or more field specifications in a file;
■ The DEALLOCATE functions are the inverse functions of ALLOCATE. The NI, UI, AC or DS
function returns the Normal Index, Upper Index, Address Converter or Data Storage space
which is no longer required by a file to the free space table (FST);

■ The DELCP function deletes old checkpoint records from the checkpoint file in the specified
range of dates;

■ The DELETE function deletes a single Adabas file or a range of Adabas files from the database;
■ The DISPLAY function displays the utility communication block (UCB);
■ The DROP_FIELDS function marks the specified fields as not existing, which means that they
can no longer be accessed ;

■ The DROP_LOBFILE function is the inverse function of ADAFDU ADD_LOBFILE;
■ The DROP_REFINT function drops an existing referential constraint;
■ The EXTEND_CONTAINER function extends the last container file defined for the database;
■ The NEW_DBID function changes the identifier of the database in use;
■ The NEWWORK function allocates and formats a new Adabas WORK data set;
■ The PGM_REFRESH function enables or disables refreshing anAdabas file inside an application
program with an E1 command;

■ The RECOVER function returns lost space to the free space table;
■ The REDUCE_CONTAINER function reduces the size of the last container file defined for the
database;

■ The REFRESH function resets a single file or a range of files to the state of zero records loaded;

Adabas Utilities72

ADADBM (Database Modification)



■ The REMOVE_CONTAINER function removes a container file from the Associator, or Data
Storage data set;

■ The REMOVE_DROP function, used in conjunction with a subsequent REFRESH, removes
dropped fields from the FDT;

■ TheREMOVE_REPLICATION function stops all replicationprocessing anddeletes the replication
system files;

■ The RENAME function changes the database name or names of loaded files;
■ The RENUMBER function renumbers a loaded file or exchanges the numbers of loaded files;
■ The REPLICATION_FILES function creates the system files required for Adabas - Adabas rep-
lication;

■ The RESET function removes entries from the UCB;
■ The RESET_REPLICATION_TARGET function resets the replication target flag of Adabas files;
■ The REUSE function controls the reusage of Data Storage space or ISNs by Adabas;
■ The SYFMAX function specifies themaximumnumber of values generated for a systemgenerated
multiple-value field in the file specified.

This utility is a multi-function utility.

73Adabas Utilities

ADADBM (Database Modification)



Procedure Flow

Online Mode

If the Adabas nucleus is active, ADADBM calls the nucleus tomodify the database containers. For
some tasks, no checkpoints are written, but the activity is logged in the database log, and in the
case of a recovery, the activity is re-executed automatically.

Adabas Utilities74

ADADBM (Database Modification)



Offline Mode

If the Adabas nucleus is not active, ADADBM itself modifies the database containers.

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

Utilities ManualstdinControl statements

Messages and CodesstdoutADADBMmessages

Utilities Manual:
ADANUC, ADAPLP

DiskNUCPLGProtection Log
(online mode only)

NewWORK data set for the NEWWORK function. After this
function is performed, the Work environment variable/logical
name must be changed to point to the newWork data set.

DiskTEMP1Temporary storage
(offline mode only)

DiskWORK1Work

75Adabas Utilities

ADADBM (Database Modification)



Checkpoints

The following table shows the nucleus requirements for each function and the checkpointswritten:

Checkpoint writtenNucleus is NOT
required

Nucleus must NOT
be active

Nucleus must
be active

Function

SYNPXADD_CONTAINER

SYNP (offline)XADD_FIELDS

SYNX (online)

SYNPXALLOCATE

-XCHANGE

SYNP (offline)XCHANGE_FIELDS

SYNX (online)

SYNPXDEALLOCATE

SYNPXDELCP

SYNP (offline)XDELETE

SYNX (online)

-XDISPLAY

SYNP (offline)XDROP_FIELDS

SYNX (online)

SYNPXDROP_LOBFILE

SYNPfor ASSO or DATAfor WORKEXTEND_CONTAINER

SYNPX (see note 1)NEW_DBID

SYNPX (see note 1)NEWWORK

SYNPXPGM_REFRESH

SYNPXRECOVER

SYNPfor ASSO or DATAREDUCE_CONTAINER

SYNPXREFRESH

SYNPXREMOVE_CONTAINER

SYNP (offline)XREMOVE_REPLICATION

SYNPXRENAME

SYNPXRENUMBER

SYNP (offline)XREPLICATION_FILES

SYNX (online)
(see note 2)

Adabas Utilities76

ADADBM (Database Modification)



Checkpoint writtenNucleus is NOT
required

Nucleus must NOT
be active

Nucleus must
be active

Function

SYNXXRESET

RESET_REPLICATION_TARGET

SYNPXREUSE

SYNP (offline)XSYFMAX

SYNX (online)

Notes:

1. Function requires exclusive access to the database container files

2. In addition,ADADBMorADAFDUcheckpoints are generated (also in offlinemode) to indicate
the system file numbers deleted or generated.

Control Parameters

The following control parameters are available:

ADD_CONTAINER = keyword
D [,BLOCKSIZE=number[K] ]

,SIZE = number [B|M]

ADD_FIELDS = number {field_specification|FDT} ... END_OF_FIELDS

ALLOCATE = keyword, FILE = number [,RABN = number],
SIZE = number [B|M]

CHANGE = number, FIELD = string, LENGTH = number

CHANGE_FIELDS = number {field_specification|FDT} ... END_OF_FIELDS

M DBID = number

DEALLOCATE = keyword, FILE = number [,RABN = number],
SIZE = numberB

DEFINE_REFINT = number constraint_specification

DELCP = { * | ([absolute-date] [,[absolute-date]]) }

DELETE = (number [-number][,number[-number]]...)

DISPLAY = UCB

77Adabas Utilities

ADADBM (Database Modification)



DROP_FIELDS = number {field_name|FDT} ... END_OF_FIELDS

DROP_LOBFILE = number

DROP_REFINT = number, NAME {=|:}constraint_name

EXTEND_CONTAINER = keyword, SIZE = number [B|M]

D [NO]LOWER_CASE_FIELD_NAMES

NEW_DBID = number

NEWWORK [,BLOCKSIZE=number[K] ], SIZE = number [B|M]

PGM_REFRESH = keyword, FILE = number

RECOVER

REDUCE_CONTAINER = keyword, SIZE = number B

REFRESH = (number [-number][,number[-number]]...)

REMOVE_CONTAINER = keyword

[NO]REMOVE_DROP

REMOVE_REPLICATION

RENAME = number, NAME {=|:} string

RENUMBER = (number, number)

REPLICATION_FILES = (file1, file2, file3, file4)

RESET = UCB, IDENT = { (number [,number]...) | * }

RESET_REPLICATION_TARGET = number

REUSE = (keyword [,keyword]), FILE = number

SYFMAX = number, FILE = number

Adabas Utilities78

ADADBM (Database Modification)



ADD_CONTAINER

ADD_CONTAINER = keyword
[,BLOCKSIZE=number[K] ]
,SIZE = number [B|M]

The ADD_CONTAINER function adds a new container file to an existing Associator or Data
Storage dataset in accordance with the keyword used. The keyword can take the values ASSO or
DATA .

The new container file may be allocated on the same device as the current container files or it may
be allocated on a different device type.

The placement of the new container file depends on the environment variable/logical nameASSOx
or DATAx. This has to be set to a legal file name with its whole path name. If ASSOx or DATAx
is not set, the container files are created in the current directory.

Notes:

1. If you add a newDATA container, free space is required on the existing Associator for the Data
Storage Space Table (DSST): 1 byte is required for each newDATA block. Therefore, you should
add a new ASSO container first if the existing Associator is full.

2. If you add a new container while the Adabas nucleus is active, the container is not added by
ADADBM, but by ADANUC. In this case, you should consider the following, depending on
the way the container files are specified: if the container files are specified as environment
variables/logical names, you can only add the new container if you have already defined the
corresponding environment variable/logical name for the current nucleus session. If you haven't,
you have to terminate the current nucleus session before you can add the new container. If, on
the other hand, the container files are specified in the DBnnn.INI files (which, for example, are
generated if you use the Workbench to administrate Adabas), you can enter the new container
in the file just before you add the container, since the nucleus re-reads the file before the con-
tainer is added (please refer to the Adabas Extended Operation for further information about the
DBnnn.INI files).

BLOCKSIZE = number[K]

This parameter specifies the block size in bytes (or in kilobytes, if "K" is specified after the number)
of the new container file.

Adabas rounds up the value you specify to the next multiple of 1K. The minimum block size is
1K and maximum block size is 32K.

The default value for BLOCKSIZE is the block size of the last container file of the dataset in question
that is currently present in the database.

79Adabas Utilities

ADADBM (Database Modification)



SIZE = number [B|M]

This parameter specifies the number of blocks (B) or megabytes (M) to be allocated for the new
container file. By default, the size is given in megabytes.

Example

adadbm: add_container=data, size=10
%ADADBM-I-CREATED, dataset DATA2 , file /FS/fs0395/Adabas/adadb/db076/DATA2 created
%ADADBM-I-FUNC, function ADD_CONTAINER executed

A new container file of 10 megabytes is added to the Data Storage. The block size is the same as
the block size of DATA1.

ADD_FIELDS

ADD_FIELDS = number {field_specification|FDT}... END_OF_FIELDS

TheADD_FIELDS function adds one ormore newfields to the end of the file defined by `number'.
Specifying a LOB file is not permitted. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

Note: It is not possible to add derived descriptors using ADADBM - you should use the
utility ADAINV to do this instead.

field_specification

The field specification list is entered in the same way as the FDT input in ADAFDU:

level-number, name [,length] [,format] [(,option)...]

The first field to be added must be a level-one field.

The NN option is not permitted. DE is only permitted when the Adabas nucleus is active and to-
gether with the NU or NC option. Otherwise use the ADAINV utility to give the new fields
descriptor status. UQ is only permitted together with the DE option.

Note: When you add system-generated fields (fields with the field option SY) to a file, these
fields have null values in the records that are already in the database - this is the same be-
haviour as for fields without the SY option.

Adabas Utilities80

ADADBM (Database Modification)



FDT

This parameter displays the FDT of the file to which the fields are to be added.

Example

adadbm: add_fields=12
adadbm: fdt

Field Definition Table:

Level I Name I Length I Format I Options I Flags
-------------------------------------------------------------------------------

1 I AA I 15 I A I DE,UQ,NU I
1 I AB I 4 I F I FI I
1 I AC I 8 I A I DE I
1 I CD I I I I
2 I AD I 20 I A I DE,NU I SP
2 I AE I 20 I A I NU I
2 I AF I 10 I A I DE,NU I
1 I AG I 2 I U I NU I SP
1 I AH I 1 I A I DE,FI I
1 I AI I 1 I A I FI I
1 I AJ I 6 I U I NU I SP
1 I AK I I I I
2 I AL I 3 I A I NU I
2 I AM I 4 I P I NU,MU I

-------------------------------------------------------------------------------
Type I Name I Length I Format I Options I Parent field(s) Fmt

-------------------------------------------------------------------------------
SUPER I AN I 4 I B I NU I AJ ( 5 - 6 ) U

I I I I I AJ ( 3 - 4 ) U
-------------------------------------------------------------------------------
SUPER I AO I 22 I A I NU I AG ( 1 - 2 ) U

I I I I I AD ( 1 - 20 ) A
-------------------------------------------------------------------------------

adadbm: 01,dd,1,a
adadbm: 01,gr
adadbm: 02,g1,20,a,fi
adadbm: fdt

Field Definition Table:

Level I Name I Length I Format I Options I Flags
-------------------------------------------------------------------------------

1 I AA I 15 I A I DE,UQ,NU I
1 I AB I 4 I F I FI I
1 I AC I 8 I A I DE I

81Adabas Utilities

ADADBM (Database Modification)



1 I CD I I I I
2 I AD I 20 I A I DE,NU I SP
2 I AE I 20 I A I NU I
2 I AF I 10 I A I DE,NU I
1 I AG I 2 I U I NU I SP
1 I AH I 1 I A I DE,FI I
1 I AI I 1 I A I FI I
1 I AJ I 6 I U I NU I SP
1 I AK I I I I
2 I AL I 3 I A I NU I
2 I AM I 4 I P I NU,MU I
1 I DD I 1 I A I I
1 I GR I I I I
2 I G1 I 20 I A I FI I

-------------------------------------------------------------------------------
Type I Name I Length I Format I Options I Parent field(s) Fmt

-------------------------------------------------------------------------------
SUPER I AN I 4 I B I NU I AJ ( 5 - 6 ) U

I I I I I AJ ( 3 - 4 ) U
-------------------------------------------------------------------------------
SUPER I AO I 22 I A I NU I AG ( 1 - 2 ) U

I I I I I AD ( 1 - 20 ) A
-------------------------------------------------------------------------------

adadbm: end_of_fields
%ADADBM-I-FUNC, function ADD_FIELDS executed

ALLOCATE

ALLOCATE = keyword, FILE = number [,RABN = number], SIZE = number [B|M]

Depending on the keyword specified (AC, DS, NI or UI), the ALLOCATE function increases the
Normal Index (NI), Upper Index (UI), Address Converter (AC) or Data Storage (DS) by a given
size. Each extent for the required type is checked to see whether it can be extended or not. A new
extent is created if none of the current extents can be extended.

This function lets the DBAoverride the automatic extensionmethod and can be used to preallocate
smaller or larger extents. This can be useful when adding a large number of records. Exclusive
control of the file is NOT required for this function.

Adabas Utilities82

ADADBM (Database Modification)



FILE = number

This parameter specifies the file to be extended.

RABN = number

This parameter specifies the allocation start RABN. ForNI or UI allocation for a LOB file, the block
size of the RABN specifiedmust be less than 16 KB. For DS allocation for a LOB file, the block size
of the RABN specified must be 32 KB.

SIZE = number [B|M]

This parameter specifies the size of the expansion area. If a 'B' is appended to size, the size is in
blocks, otherwise it is in megabytes.

Example

adadbm: allocate=ni, file=11, size=100b
%ADADBM-I-ALLOC, 100 NI blocks allocated (611 - 710)

adadbm: allocate=ds, file=11, size=10
%ADADBM-I-DEALLOC, 2560 DS blocks allocated (245 - 2804)

CHANGE

CHANGE = number, FIELD = string, LENGTH = number

This function changes the standard length of a field in the file specified by number. Specifying a
LOB file is not permitted. The length of fixed storage fields (option FI) and floating point fields
(format G) cannot be changed.

Changing the length of a field does not lead to any modifications within the Data Storage, but
may affect programs that use the standard length.

Fields defined with the option SY=OPUSER cannot be changed.

83Adabas Utilities

ADADBM (Database Modification)



FIELD = string

This parameter specifies the fieldwhose standard length is to be changed. The fieldmust be defined
in the Field Definition Table for this file.

LENGTH = number

This parameter defines the new standard length of the field.

Example

adadbm: change=12, field=ac, len=11
%ADADBM-I-FUNC, function CHANGE executed

CHANGE_FIELDS

CHANGE_FIELDS = number {field_specification|FDT}... END_OF_FIELDS

The CHANGE_FIELDS function modifies one or more field specifications of the file defined by
`number'. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

The changes that are allowed depend on the existence of records in the file. The following restric-
tions apply to all files:

■ The field level number must not change;
■ A group must either remain a group or may be converted to a periodic group if it is defined on
level 1;

■ A periodic group must either remain a periodic group or may be converted to a non-periodic
group;

■ A field that is not a group or periodic group must not be converted to a group or a periodic
group.

The following additional restrictions apply to non-empty files:

■ Field length: the new length must be compatible with the new field format and field options.
Such a change changes the behaviour of adabas commands in which the field length is not
specified in the format buffer;

■ Field format: Amay be changed toW and vice versa. It is the responsibility of the user to ensure
that the field contains UTF-8 values if the format is changed from A to W. After changing the

Adabas Utilities84

ADADBM (Database Modification)



format fromW to A, the field will contain UTF-8 values. Please note that the format specified
in the format buffer of Adabas commands must be identical to the format in the field definition
for A and W fields - therefore it may be necessary to adapt existing programs accordingly.
Other changes of the field format except for the change between A and W are not allowed.

■ Field options: it is not allowed to add or remove the options DE, FI, MU and UQ.

The following field option changes are allowed:

CommentsNew Field OptionsOld Field Options

No check is made to see whether the values in the database
are compliant with the date/time edit mask specified. TZmay
not be set for edit mask names DATE, TIME and NATDATE.

Caution: Usually, the semantics of the field values defined
with the TZ option and the field values defined without the
TZ option are different: the fieldwithout the TZ value usually

DT set, TZ not set or
set

DT not set

contains local time values, whereas the fieldwith the TZ value
contains UTC values. The field values are not updated
automatically; it is the user's responsibility to ensure that
necessary updates are made.

Specifying a date/time edit mask for the field in the format
buffer is no longer allowed.

DT not setDT set

The behaviour of cross-platform calls changes.HF not setHF set

HF setHF not set

The behaviour of calls accessing the field with variable length
changes.

LA or LB setLA and LB not set

LA not set, LB setLA set

Only allowed if there is no LOB file defined for the file or if
the field is a descriptor of the parent of a derived descriptor.

LB not set, LA setLB set

The behaviour of calls accessing the field with variable length
changes.

NB setNB not set

After this change, the field is no longer mandatory in the
format buffer for N1/N2 commands; if not specified, the field
gets the Adabas null value.

FI, NC, NU and NN
not set

NC and NN set

After this change, the field is no longer mandatory in the
format buffer for N1/N2 commands; if not specified, the field
gets the SQL null value.

NC set, NN not setNC and NN set

Empty values are converted to NULL values. Note that NC
set -> NU not set because NU and NC are mutually exclusive.

NC setNU set

The behaviour of cross-platform calls changes.NV not setNV set

NV setNV not set

85Adabas Utilities

ADADBM (Database Modification)



CommentsNew Field OptionsOld Field Options

The behaviour ofA1,N1 andN2 commands changes. The field
format must be compatible with the SY option. Note that no
check ismade to ensure that the existing values are reasonable.

SY setSY not set

The behaviour of A1, N1 and N2 commands changes.SY not setSY set

TR setTR not set

Values in the database will be converted from UTC to local
time when you specify a date/time edit mask.

TZ set, DTunchangedTZ not set DT set

Values in the database are no longer converted from UTC to
local time when you specify a date/time edit mask.

TZ not setTZ set

field_specification

The field specification list is entered in the same way as the FDT input in ADAFDU:

level-number, name [,length] [,format] [(,option)...]

The first field to be added must be a level-one field.

FDT

This parameter displays the FDT of the file to which the fields are to be added.

DBID

DBID = number

This parameter selects the database to be used.

Note: Utility functions which require or allow the nucleus to be shut down need logical as-
signments for the data sets.

Examples

adadbm: dbid=76
%ADADBM-I-DBOFF, database 76 accessed offline

adadbm: dbid=76
%ADADBM-I-DBON, database 76 accessed online

Adabas Utilities86

ADADBM (Database Modification)



DEALLOCATE

DEALLOCATE = keyword, FILE = number [,RABN = number],
SIZE = numberB

DEALLOCATE = AC, DS, NI or UI

Depending on the keyword specified (AC, DS, NI or UI), this function releases a given amount of
space from the Address Converter (AC), Data Storage (DS), Normal Index (NI) or Upper Index
(UI).

If too much space is allocated to an extent, either automatically or manually, the DBA can release
this space and return it to the Free Space Table (FST).

Deallocation is done for only one extent at a time. To release space from multiple extents, DEAL-
LOCATE has to be called several times.

FILE = number

This parameter specifies the file.

RABN = number

This parameter specifies the first RABN to be deallocated. If this parameter is omitted, deallocation
starts at the end of the last extent.

SIZE = numberB

This parameter specifies the size of the area to be deallocated, in blocks.

Example

adadbm: deallocate=ni, file=11, size=110b
SIZE=110B

^
%ADADBM-E-VALUP, value has to be less-equal 100
%ADADBM-I-ABORTED, 14-NOV-2002 14:44:01, elapsed time: 00:00:00

87Adabas Utilities

ADADBM (Database Modification)



adadbm: deallocate=ni, file=11, size=100b
%ADADBM-I-DEALLOC, 100 NI blocks deallocated (611 - 710)

adadbm: deallocate=ni, file=11, size=10b
%ADADBM-I-DEALLOC, 10 NI blocks deallocated (323 - 332)

DEFINE_REFINT

DEFINE_REFINT = number constraint_specification

This function adds a referential constraint to the file 'number', which contains a foreign key. The
syntax for the constraint is the same as that used in the FDT file for ADAFDU and is described in
Administration, FDT Record Structure, Referential Constraints. The constraint is also included in the
FDT of the primary file, therefore, the constraint namemust not already be defined in the primary
file.

Adding a referential constraint is not allowed if the file specified as the primary file is defined
with PGM_REFRESH=YES.

If there are violations of the referential integrity, adding of the constraint will fail - no updates are
performed on the data of the file in order to establish referential integrity.

DELCP

DELCP = { * | ([absolute-date] [,[absolute-date]]) }

This function deletes checkpoint records from the checkpoint file.

If an asterisk '*' is entered, all checkpoint records are deleted.

Examples

adadbm: delcp=13-NOV-2006:15:09:48
%ADADBM-I-DELCP, 1 record deleted from CHECKPOINT file

adadbm: delcp=(13-NOV-2006:15:09:48,)
%ADADBM-I-DELCP, 81 records deleted from CHECKPOINT file

adadbm: delcp=(,14-NOV-2006:14:37:24)
%ADADBM-I-DELCP, 41 records deleted from CHECKPOINT file

adadbm: delcp=(14-NOV-2006:14:37:25,14-NOV-1996:14:38:15)
%ADADBM-I-DELCP, 42 records deleted from CHECKPOINT file

adadbm: delcp=*
%ADADBM-I-DELCP, 20 records deleted from CHECKPOINT file

Adabas Utilities88

ADADBM (Database Modification)



DELETE

DELETE = (number [-number][,number[-number]]...)

The DELETE function deletes one or more files or ranges of files from the database and returns
all space which was allocated for this file to the Free Space Table (FST). LOB files specified are ig-
nored, but the LOB files assigned to all base files specified are deleted too. There must not be a
referential constraint between a file that is to be deleted and another file, which is not specified.

ADADBM does not request confirmation of the files to be deleted, i.e. care should be taken when
entering the file numbers.

Example

adadbm: delete=(4-11,14)
%ADADBM-I-DELETED, file 11 deleted
%ADADBM-I-DELETED, file 14 deleted

DISPLAY

DISPLAY = UCB

TheDISPLAY function displays the utility communication block. This function can also be executed
during a pending AUTORESTART.

Example:

adadbm: display=ucb

Date/Time Entry Id Utility Mode Files
--------- -------- ------- ---- -----

14-NOV-2006 14:38:40 233 adaopr UTO 11
14-NOV-2006 14:38:42 234 adabck ACC *

The display shows the following items:

■ DATE/TIME shows the date and time on which the given files were locked.
■ ENTRY ID shows the allocated identification of the entry.
■ UTILITY shows the name of the utility.
■ MODE shows the mode in which the files are being accessed.
■ FILES shows the file numbers of the files that are locked.

89Adabas Utilities

ADADBM (Database Modification)



DROP_FIELDS

DROP_FIELDS = number {field_name|FDT}... END_OF_FIELDS

The DROP_FIELDS function drops one or more fields from the file defined by `number' - the
specified fields are marked as no longer existing and they cannot be accessed. Specifying a LOB
file is not permitted. The function is completed by entering END_OF_FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

If you specify a group or a periodic group, all of the fields that belong to the group or periodic
group are dropped. You must not specify a field that is a descriptor or from which a descriptor is
derived - if you want to drop such a field, you must first release all corresponding descriptors
with ADAINV.

Once the DROP_FIELDS function has been executed, you can redefine the names of the dropped
fields, for example using ADADBM's ADD_FIELDS function.

Notes:

1. The DROP_FIELDS function does not physically remove the fields. You should not drop and
then add fields repeatedly, since this can cause the data records or the FDT of the file in question
to overflow.

2. ADAMUP is not able to load data into a file that contains the same visible fields but which
contains different dropped fields.

FDT

This parameter displays the FDT of the file from which the fields are to be dropped.

DROP_LOBFILE

DROP_LOBFILE = number ↩

The number must specify the file number of a base file with an empty assigned LOB file to be de-
leted.

DROP_LOBFILE is not allowed if the assigned LOB file is not empty.

Adabas Utilities90

ADADBM (Database Modification)



DROP_REFINT

DROP_REFINT = number, NAME {=|:} constraint_name

The function removes a referential constraint from the file specified by 'number', which contains
the foreign key. The constraint is also removed from the FDT of the primary file.

EXTEND_CONTAINER

EXTEND_CONTAINER = keyword, SIZE = number [B|M]

The EXTEND_CONTAINER function extends the last Associator, Data Storage orWORK container
file defined for the database in accordance with the keyword used. The keyword can take the
values ASSO, DATA or WORK.

Note: The WORK container can only be extended in the offline mode.

SIZE = number [B|M]

This parameter specifies the size of the expansion area in blocks (B) or megabytes (M). By default,
the size is in megabytes.

[NO]LOWER_CASE_FIELD_NAMES

[NO]LOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. IfNOLOWER_CASE_FIELD_NAMES is specified,Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parametermust be specifiedbefore theADD_FIELDS,CHANGE_FIELDSorDEFINE_REFINT
parameters.

NEW_DBID

NEW_DBID = number

This function is used to change the identifier of the database in use. The new identifier may not
already be in use by another active database.

91Adabas Utilities

ADADBM (Database Modification)



Example

adadbm: new_dbid=77
%ADADBM-I-FUNC, function NEW_DBID executed

NEWWORK

NEWWORK [,BLOCKSIZE = number[K] ], SIZE = number [B|M]

This function removes the existing WORK1 container file and replaces it with a newWORK1
container file. The newWORK1 container file is allocated and then formatted, if required.

Before a newWORK can be created, the nucleus and all utilities using the database must have
been successfully terminated. Since this function requires the currentWORK, itmust not be deleted
beforeNEWWORKhas been executed. TEMP1must point to the newwork filewhen this function
is used.

Note: The newWORK can be directed to a disk section or to a file system. If TEMP1 points
to the same disk section as WORK1, then ADADBM tries to extend/reduce the existing
WORKfile. In each case the name of the newWORK container file isWORK1. If the function
completes successfully, the old WORK1 gets deleted.

BLOCKSIZE = number[K]

This parameter specifies the block size in bytes (or in kilobytes, if "K" follows the number) of the
new container file.

Adabas rounds up the value you specify to the next multiple of 1024.

The minimum block size allowed is 3072 and the maximum block size allowed is 32768.

In addition to these minimum and maximum values, the following size restrictions apply in gen-
eral to the block sizes for ASSO and WORK:

MAX (ASSOBLS) < WORKBLS

where MAX(ASSOBLS) represents the largest ASSO block size and WORKBLS represents the
WORK block size.

The default value for BLOCKSIZE is the block size of the old WORK file.

Adabas Utilities92

ADADBM (Database Modification)



SIZE = number [B|M]

This parameter specifies the number of blocks or megabytes to be allocated for the newWORK
file. By default, the size is in megabytes. The minimum value is 200 blocks or the equivalent value
in megabytes.

PGM_REFRESH

PGM_REFRESH = keyword, FILE = number

This function is used to disable or enable refreshing an Adabas file inside an application program
with an E1 command (ISN = 0, CID = BLANK). Specifying a LOBfile is not permitted. The keyword
can take the values YES or NO. It is not allowed to set PGM_REFRESH=YES for files that are
primary files of referential constraints.

FILE = number

This parameter specifies the file for which refreshing is to be enabled/disabled.

RECOVER

RECOVER

This function returns lost space within the Associator and Data Storage to the Free Space Table
(FST).

Space can be lost by a non-successful termination of an Adabas utility.

Example

adadbm: recover
%ADADBM-I-FUNC, function RECOVER executed

REDUCE_CONTAINER

REDUCE_CONTAINER = keyword, SIZE = number B

The REDUCE_CONTAINER function deallocates free space at the end of the Associator or Data
Storage container defined for the database in accordance with the keyword used. The keyword
can take the values ASSO or DATA.

The requested number of blocks must not be in use at the end of the container specified. If the
complete space of one ormore container extents is to be released, the container extents are removed.
Note that the message informing you that a container extent is removed is not displayed by
ADADBM if ADADBM is executed online - instead, it is included in the nucleus log.

93Adabas Utilities

ADADBM (Database Modification)



If less blocks than requested are free at the end of the container, all free space at the end of the
container is deallocated, and the following warning is displayed:

%ADADBM-W-PREDCONT, not all requested blocks removed

SIZE = number B

This parameter specifies the size by which the container is to be reduced, in blocks.

REFRESH

REFRESH = (number [-number][,number[-number]]...)

This function resets the files specified by `number' to the state of zero records loaded. Only the
first extents forNormal Index, Address Converter andData Storage are kept. The remaining extents
are returned to the Free Space Table (FST). TheUpper Index is rebuilt and the unusedUpper Index
extents are then returned to the Free Space Table. LOB files specified are ignored, but the LOB
files assigned to all base files specified are refreshed too. The primary file of a referential integrity
constraint may be refreshed only if the foreign file of the referential constraint is also refreshed.

ADADBMdoes not request confirmation of the files to be refreshed, i.e. care should be takenwhen
entering the file numbers.

This function is useful for clearing a test file in a test environment. This method is faster than de-
leting and reloading the file.

Files using the ADAM feature cannot be refreshed.

If the REMOVE_DROP function has been specified, dropped fields are removed from the FDT.

Example

adadbm: refresh=13
%ADADBM-I-REFRESH, file 13 refreshed

REMOVE_CONTAINER

REMOVE_CONTAINER = keyword

This function removes the last database container file from an existing Associator or Data Storage
data set in accordance with the keyword used. The keyword can take the values ASSO or DATA.

The container file to be removed must not be in use when this function is executed, i.e. all of the
blocks in the file must be free.

The container file will be deleted from the file system or from the raw disk section.

Adabas Utilities94

ADADBM (Database Modification)



Before a container file can be removed, the nucleus and all of the utilities using the database must
have terminated successfully.

Example

adadbm: remove_container=data
%ADADBM-I-DMCONREM, container DATA2 removed

REMOVE_DROP

[NO]REMOVE_DROP

If you specify REMOVE_DROP, subsequent REFRESH functions will remove dropped fields from
the FDT.

If you specify NOREMOVE_DROP, subsequent REFRESH functions will not remove dropped
fields from the FDT.

The default is NOREMOVE_DROP.

Example

adadbm: remove_drop
adadbm: refresh=2
%ADADBM-I-REFRESH, file 2 refreshed
adadbm: refresh=3
%ADADBM-I-REFRESH, file 3 refreshed
adadbm: noremove_drop
adadbm: refresh=4
%ADADBM-I-REFRESH, file 4 refreshed

File 2 has been refreshed and dropped fields have been removed from the FDT. File 3 has been
refreshed and dropped fields have been removed from the FDT. File 4 has been refreshed and
dropped fields have not been removed from the FDT.

REMOVE_REPLICATION

REMOVE_REPLICATION

This function stops all replication processing and deletes all replication system files.

Note: This function is only relevant for customers who are using the Adabas Event Replic-
ator with Adabas - Adabas replication.

95Adabas Utilities

ADADBM (Database Modification)



RENAME

RENAME = number, NAME {=|:} string

This function changes the name of a file or a database. `number' is the number of the file whose
name is to be changed. If `number' is 0, the name of the database is changed.

NAME {=|:} string

`string' is the new name of the specified file or database. If you specify an equals sign, the value
given for 'string' will be converted to upper case; if you specify a colon, no upper-case conversion
is performed.

Example

adadbm: rename=11, name=employee-file
%ADADBM-I-FUNC, function RENAME executed

RENUMBER

RENUMBER = (number, number)

This function changes the file number of a loaded Adabas file. If, however, the file's new number
already belongs to a loaded file, the numbers of these files are exchanged.

The first `number' is the file number currently assigned to the file. The second `number' is the new
file number to be assigned to the file.

Example:

adadbm: renumber=(12,14)
%ADADBM-I-RENUM, File 12 renumbered to 14
%ADADBM-I-RENUM, File 14 renumbered to 12

REPLICATION_FILES

REPLICATION_FILES = (file1, file2, file3, file4)

This functions performs all of the necessary initialization steps for theAdabas - Adabas replication
and creates the replication system files.

file1
The metadata file.

file2
The replication transaction file.

Adabas Utilities96

ADADBM (Database Modification)



file3
The replication command file.

file4
LOB file for the replication command file.

Note: This function is only relevant for customers who are using the Adabas Event Replic-
ator with Adabas - Adabas replication.

RESET

RESET = UCB, IDENT = { (number [,number]...) | * }

UCB

This function removes one ormore entries from the utility communication block (UCB). This option
can also be used during a pending AUTORESTART.

The UCB is used to control access to certain resources (the whole database, one or more files, etc.)
within a database. It saves information about the Adabas utilities processing the database and the
resources attached to them.

An entry is made in the UCB each time a utility is granted access to a resource. This entry contains
information about the utility and the resources it locks. The utility automatically removes the entry
when the resource is no longer required. Please refer to the DISPLAY=UCB function of this utility
for information about how to display the contents of the UCB.

However, certain special conditions (e.g. an aborted ADAMUP) can cause entries to remain in the
UCBand keep allocated resources locked. TheRESET function releases these resources by removing
one or more entries from the UCB.

Resetting a UCB entry also removes the associated entry from the user queue and returns lost
blocks to the free space table if the nucleus is active. Otherwise, the resource can be returned to
the free space table by using the RECOVER function.

IDENT = { (number [,number]...) | * }

This parameter specifies the unique ID of the entry to be removed. '*' removes all entries.

If the RESET UCB function is used offline, only `*' may be specified.

97Adabas Utilities

ADADBM (Database Modification)



Example

adadbm: reset=ucb, ident=233
%ADADBM-I-RESUCB1, 1 entry deleted from UCB

adadbm: reset=ucb, ident=(235,234)
%ADADBM-I-RESUCB, 2 entries deleted from UCB

adadbm: reset=ucb, ident=*
%ADADBM-I-RESUCB1, 1 entry deleted from UCB

RESET_REPLICATION_TARGET

RESET_REPLICATION_TARGET = number

This function resets the replication target flag of Adabas files, after which they are handled as
normal files again. If you specify 0, the replication target flag of all replication target files is reset;
if you specify a file number, the replication target flag of the file with this file number is reset.

Notes:

1. This function is only relevant for customers who are using the Adabas Event Replicator with
Adabas - Adabas replication.

2. After performing this function, a replication to this replication target is no longer possible - if
the replication to this replication target is still active, a newupdate transaction on the replication
source will set the replication to status Error. If you want to replicate data to this replication
target again, a new initial state processing is required.

REUSE

REUSE = (keyword [,keyword]), FILE = number

The REUSE function controls the reuse of Data Storage space or ISNs by Adabas.

The File Control Block (FCB) for the specified file is modified to indicate the type of allocation
technique to be used when adding new records or moving updated records.

The valid keywords are [NO]DS and [NO]ISN.

If the DS keyword is specified, Adabas scans the Data Storage Space Table (DSST) in order to
locate a block with sufficient space. In this case, the first block found with sufficient space is used.

If the NODS keyword is specified, then all newly-added records, together with records that have
to be moved to another block (as a result of record expansion caused by updating), are placed in

Adabas Utilities98

ADADBM (Database Modification)



the last used block in the Data Storage extent allocated to the file. If there is not sufficient space in
this block, the next block is used.

DS and NODS are mutually exclusive. The default is REUSE = DS.

If the ISN keyword is specified, Adabas may reuse the ISN of a deleted record.

If the NOISN keyword is specified, Adabas does not reuse the ISN of a deleted record for a new
record. Each new record will be assigned the next-highest unused ISN.

ISN and NOISN are mutually exclusive. The default is REUSE = NOISN.

FILE = number

This parameter specifies the file.

Example

adadbm: reuse=nods, file=11
%ADADBM-I-FUNC, function REUSE executed

adadbm: reuse=(ds,isn), file=12
%ADADBM-I-FUNC, function REUSE executed

SYFMAX

SYFMAX = number, FILE = number

This parameter specifies themaximumnumber of values generated for a systemgeneratedmultiple-
value field in the file specified. There is no explicit maximum value, but you should bear in mind,
that you can get a record overflow if the value is defined too high; the compressed data record
should also fit into one DATA block is SYFMAXvalues are defined for system generatedmultiple-
value fields. If the SYFMAX value is decreased and a record contains more values for system
generated fields than the new value of SYFMAX, the excess values are removed during the next
update operation for this record.

99Adabas Utilities

ADADBM (Database Modification)



FILE = number

This parameter specifies the file.

Restart Considerations

ADADBM has no restart capability. At the end of each function, however, the system reports
whether execution was successfully completed or not. If it is not successfully completed, the
function has to be re-started.

Adabas Utilities100

ADADBM (Database Modification)



9 ADADCU (Decompression Of Data)

■ Functional Overview ....................................................................................................................... 102
■ Procedure Flow ............................................................................................................................. 103
■ Checkpoints ................................................................................................................................. 104
■ Control Parameters ........................................................................................................................ 105
■ Input and Output Data .................................................................................................................... 113
■ Restart Considerations ................................................................................................................... 114

101



This chapter describes the utility "ADADCU".

Functional Overview

ThedecompressionutilityADADCUdecompresses records produced by theADACMP,ADAMUP
and ADAULD utilities.

The output of the decompression utility ADADCU can be used as input for a program using
standard operating system file access methods.

It can also be used as input for the compression utility ADACMP once any required changes have
been made to the data structure or once the data definitions of the file have been changed. A
warning message is issued if the decompressed output file (DCUOUT file) created by the utility
is empty.

ADADCU also decompresses files produced with the SINGLE option of the utilities ADAULD
and ADACMP, but no parameter is required since this can be determined by the utility.

With ADADCU, the following functions are available:

■ Complete records can be decompressed to the formats and lengths described in the FDT. A one-
byte count field precedes each multiple-value field or periodic group in the output record.

■ LOB field values can also be stored in separate files; the generated file names are put into the
decompressed records.

■ Several fields can be decompressed.

If several fields are decompressed, the fields can be re-arranged within a record, i.e. the record
structure may be changed as follows:

■ Field lengths can be changed;
■ Field formats can be changed;
■ Space can be allocated for subsequent addition of new fields using the literal element or blank
element.

If the utility writes records to the error file, it will exit with a non-zero status.

This utility is a single-function utility.

Adabas Utilities102

ADADCU (Decompression Of Data)



Procedure Flow

103Adabas Utilities

ADADCU (Decompression Of Data)



DCULOB is a directorywhere LOBvalues are stored in separate files. The sequential filesDCUDTA
and DCUERR can have multiple extents. For detailed information about sequential files with
multiple extents, see Administration, Using Utilities.

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

Output of ADACMP or ADAULDDisk, Tape (* see note)DCUDTACompressed
data records

Output of ADADCUDisk, Tape (* see note)DCUERRRejected data

Output of ADADCU
Utilities Manual

Disk, Tape (* see note)DCUFDTOutput data FDT

Utilities ManualDisk, Tape (* see note)DCUOUTDecompressed records

Utilities ManualDiskDCULOBLOB data

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADADCUmessages

Note: (*) A named pipe can be used for this sequential file (not on OpenVMS, see Adminis-
tration, Using Utilities for details).

Checkpoints

The utility writes no checkpoints.

Adabas Utilities104

ADADCU (Decompression Of Data)



Control Parameters

The following control parameters are available:

D [NO]DCUFDT

D [NO]DST

FDT

FIELDS {field_specification | FDT},...{END_OF_FIELDS | .}

D [NO]LOWER_CASE_FIELD_NAMES

D MAX_DECOMPRESSED_SIZE = number [K|M]

D MUPE_C_L = {1|2|4}

MUPE_OCCURRENCES

D [NO]NULL_VALUE

D NUMREC = number

D RECORD_STRUCTURE = keyword

SKIPREC = number

D TARGET_ARCHITECTURE = (keyword[,keyword[,keyword]])

D [NO]TRUNCATION

TZ {=|:} [timezone]

D [NO]USERISN

WCHARSET = char_set

105Adabas Utilities

ADADCU (Decompression Of Data)



[NO]DCUFDT

[NO]DCUFDT

If this option is set to DCUFDT, the FDT information of the decompressed records is written to
the sequential file DCUFDT. The default is NODCUFDT.

If you have used the FIELDS parameter (see below), the fields are written to the sequential file
DCUFDT in the order specified in FIELDS. Thus, the fields in DCUFDT might be in a different
order to those in the original FDT.

[NO]DST

[NO]DST

The parameter DST is required if a daylight saving time indicator is to be provided for date/time
fieldswith the option TZ. The daylight saving time indicatorwill be appended behind the date/time
value as a 2-byte integer value (format F) containing the number of seconds to be added to the
standard time to get the actual time (usually 0 or 3600).

This parameter is required if there are records containing date/time values with the option TZ in
the hour before the time is switched back to standard time, otherwise these values are written to
the error file.

The default is NODST.

Notes:

1. TheDSTparameter is ignored if the FIELDSparameter is specified. In this case, youmust specify
a D element for fields with the daylight saving time indicator.

2. The DST parameter is not compatible with the RECORD_STRUCTURE = NEWLINE_SEPAR-
ATOR parameter because the daylight saving indicator in format F contains non-printable
characters.

FDT

FDT

This parameter displays the FDT of the file containing the compressed records.

Adabas Utilities106

ADADCU (Decompression Of Data)



FIELDS

FIELDS {field_specification | FDT},...{ END_OF_FIELDS | . }

This parameter is used to specify a subset of fields given in the FDT and their format and length.
This means that the decompressed records created do not have to contain all of the fields given
in the FDT, or that fields can be decompressed with a different format or length. The syntax and
semantics are the same as for the format buffer, with the exception that you can also specify an R-
element (for LOB references) if the decompressed record contains the name of a file containing
the LOB value instead of the LOB value itself. See Administration, Loading And Unloading Data,
Uncompressed Data Format for further information.

While entering the specification list, the FDT function can be used to display the FDT of the file
to be decompressed. The specification list can be terminated or interrupted by entering
END_OF_FIELDS or `.'. The `.' option is an implicit END_OF_FIELDS and is compatible with the
format buffer syntax. FIELDS or END_OF_FIELDS must always be entered on a line by itself,
whereas the `.' may be entered on a line by itself or at the end of the format buffer elements. Pro-
cessing may be continued after setting any option or parameter by entering FIELDS.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

Example

adadcu: fields
adadcu: ; This is a comment line
adadcu: AA,AB,6,A,AC,P ; - inline comment -
adadcu: AD,AF,CBC,CB1-N . ; implicit END_OF_FIELDS

Field AA is output with default length and format, field AB with 6 byte alphanumeric and field
ACwith default length packed. FieldsADandAF are output in default length and format, followed
by the one-byte binary multiple field count of field CB and all its occurrences.

[NO]LOWER_CASE_FIELD_NAMES

[NO]LOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. IfNOLOWER_CASE_FIELD_NAMES is specified,Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the FIELDS parameter.

107Adabas Utilities

ADADCU (Decompression Of Data)



MAX_DECOMPRESSED_SIZE

MAX_DECOMPRESSED_SIZE = number [K|M]

This parameter specifies the maximum size of a decompressed record in bytes, kilobytes or
megabytes, depending on the specification of "K" or "M" after the number. This parameter is inten-
ded to prevent very large decompressed record files from being created unintentionally (if you
didn’t consider that a file contained LOB data).

The default is 65536. This is also the minimum value.

Note: The exact definition of this parameter is the size of the I/O buffer required for the
largest decompressed record. Onlymultiples of 256 bytes are used for the I/O buffers, which
means that youmust specify a value greater than or equal to the largest decompressed record
(including the preceding length field) rounded up to the next multiple of 256.

MUPE_C_L

MUPE_C_L = {1|2|4}

If the data contain multiple-value fields or periodic groups, they are preceded by a binary count
field with the length of MUPE_C_L bytes in the decompressed data.

The default is 1.

MUPE_OCCURRENCES

MUPE_OCCURRENCES

This parameter is used to print a list of all multiple fields and periodic groups together with their
maximum occurrence. Such information is important because the decompressed data can become
very large; if the range specified is too large, it is even possible to exceed the limit for the size of
a decompressed record.

Example

The FDT of the file containing the compressed records is as follows:

1,AA,4,A,NU
1,PE,PE
2,PA,2,A,NU
2,PB,2,A,NU,MU
1,MM,2,U,NU,MU
1,X1,4,B

MUPE_OCCURRENCES might produce something of the form:

Adabas Utilities108

ADADCU (Decompression Of Data)



Name Max occurrence
---------------------
PE 4
PB 8
MM 12

%ADADCU-I-DCUREC, Number of decompressed records: 5023
%ADADCU-I-DCUIR, Number of incorrect records: 0

The file can then be decompressed as follows:

adadcu fields "AA,PA1-4,PB1-4(1-8),MM1-12,P,X1" ↩

Note: A record is considered to be incorrect if it has too many occurrences of a periodic
group containing an MU field, and thus causes an internal overflow. It is not possible to
decompress this record including the periodic group.

[NO]NULL_VALUE

[NO]NULL_VALUE

This parameter can be used to decompress records according to the standard FDT if the record
contains NC option fields and their status values (S-elements). It is required if one or more fields
have the null value, otherwise these records are put in the error file.

Example

If the FDT entry for field AA is: 1, AA, 2, A, NC, the effect of NULL_VALUE is as follows:

■ NULL_VALUE: 1st output record (in hex) 00004141 (AA has a value), 2nd output record (in
hex) FFFF2020 (AA has the null value).

■ NONULL_VALUE: 1st output record (in hex) 4141 (AA has a value), 2nd output record (in hex)
AA is null, therefore the record will be put into the error file.

The default is NONULL_VALUE.

NUMREC

NUMREC = number

This parameter specifies the number of records to be read from the input file and decompressed.
If NUMREC is not specified and SKIPREC is also not specified, all records are processed.

109Adabas Utilities

ADADCU (Decompression Of Data)



Example

adadcu: numrec = 100

100 records are read and decompressed.

RECORD_STRUCTURE

RECORD_STRUCTURE = keyword

This parameter specifies the type of record separation used in the output filewith the logical name
DCUOUT. The following keywords can be used:

MeaningKeyword

The records in the DCUOUT file are separated by a two-byte exclusive length
field. There is no separator character and the use of this format is not subject to
any restrictions.

ELENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte exclusive
length field.

E4LENGTH_PREFIX

The records in the DCUOUT file are separated by a two-byte inclusive length
field. There is no separator character and the use of this format is not subject to
any restrictions.

ILENGTH_PREFIX

The records in the decompressed data file are separated by a 4-byte inclusive
length field.

I4LENGTH_PREFIX

The records in the DCUOUT file are separated by a new-line character. If the
DCUOUT file is to be used as input for ADACMP, this keyword can only be

NEWLINE_SEPARATOR

specified if the field values of the output do not contain the new-line character
(i.e. if there are only unpacked, alphanumeric and Unicode fields, and if the
alphanumeric and Unicode fields only contain printable characters).
This keyword and the USERISN parameter are mutually exclusive.

The records in the DCUOUT file are formatted such that they can be transferred
to an IBM host using the FTP site rdw option.

RDW

Like RDW, for decompressed records that can be compressed on a mainframe
with HEADER=YES.

RDW_HEADER

The records are stored as blocks. Each record begins with an inclusive four-byte
length field.

VARIABLE_BLOCKED

The default is ELENGTH_PREFIX.

Adabas Utilities110

ADADCU (Decompression Of Data)



SKIPREC

SKIPREC = number

This parameter specifies the number of records to be skipped before decompression is started.

TARGET_ARCHITECTURE

TARGET_ARCHITECTURE = (keyword[,keyword[,keyword]])

This parameter specifies the format (character set, floating-point format and byte order) of the
output data records. The following keywords can be used:

Valid KeywordsKeyword Group

ASCIICharacter set

EBCDIC

IBM_370_FLOATINGFloating-point format

IEEE_FLOATING

VAX_FLOATING

HIGH_ORDER_BYTE_FIRSTByte order

LOW_ORDER_BYTE_FIRST

If no keyword of a keyword group is specified, the default for this keyword group is the keyword
that corresponds to the architecture of the machine on which ADADCU is running.

Note: The FDT is always output in ASCII format.

Example

If the output records are to be decompressed into IBM format, the usermust specify the following:

TARGET_ARCHITECTURE = (EBCDIC, IBM_370_FLOATING, HIGH_ORDER_BYTE_FIRST)

111Adabas Utilities

ADADCU (Decompression Of Data)



[NO]TRUNCATION

[NO]TRUNCATION

This option enables or disables the truncation of alphanumeric field values.

NOTRUNCATION is the default. In this case, all the records with truncated alphanumeric field
values are written to the error file.

Numeric valuesmay not be truncated, and the valuemust fit into the standard or specified length.
If truncated numeric values occur, the records concerned are written to the error file.

TZ

TZ {=|:} [timezone]

The specified time zonemust be a valid time zone name that is contained in the time zone database
known as the Olson database (http://www.twinsun.com/tz/tz-link.htm). If a time zone has been
specified, this time zone is used for time zone conversions of date/time fields with the option TZ.

The default is UTC,which is used internally to store date/time fieldswith option TZ; no conversion
is required.

If you specify an empty value, no checks are made to ensure that date/time fields are correct.

Note: The time zone names are file names. Depending on the platform, these file names
may or may not be case sensitive. Also, the time zone names, depending on the platform,
may or may not be case sensitive.

Examples:

tz:Europe/Berlin

This is correct on all platforms.

TZ=Europe/Berlin

With this specification, TZ is converted to upper case EUROPE/BERLIN. This is correct onWindows,
because file names are not case sensitive on Windows, but it is not correct on Unix, because Unix
file names are case sensitive.

Adabas Utilities112

ADADCU (Decompression Of Data)

http://www.twinsun.com/tz/tz-link.htm


[NO]USERISN

[NO]USERISN

This parameter indicates whether the ISN is to be output together with each decompressed record
or not. The user can specify whether the ISN currently assigned to the record is to be output with
the decompressed data or whether it is to be omitted. If the user intends to reload the file with the
same ISNs, the USERISN option must be set.

This parameter cannot be specified ifRECORD_STRUCTURE=NEWLINE_SEPARATOR is specified.

If this parameter is omitted, the ISN is not output with each record.

NOUSERISN is the default.

Example

adadcu: userisn

The ISN is output with each record.

WCHARSET

WCHARSET = char_set

This parameter specifies the default encoding used in the decompressed file based on the encoding
names listed at http://www.iana.org/assignments/character-sets - most of the character sets listed
there are supported by ICU, which is used by Adabas for internationalization support.

Input and Output Data

The input for ADADCUmust be a file containing compressed records such as those output by the
unload utility ADAULD or by the compression utility ADACMP.

ADADCU decompresses each input record in accordance with the FIELDS specifications and
writes the resulting record to the file with the logical name DCUOUT. The records are written in
variable-length format. By default, the records are separated by a two-byte exclusive length field
(see the parameter RECORD_STRUCTURE in this section for more detailed information).

If USERISN is specified, the data record is preceded by its ISN in the form of a four-byte binary
number.

113Adabas Utilities

ADADCU (Decompression Of Data)

http://www.iana.org/assignments/character-sets


ADADCU Output

The sequential file DCUFDT (field definition information of the decompressed records) can be
used as input for the file definition utility ADAFDU or for the compression utility ADACMP.

Rejected Data Records

Any records rejected byADADCUarewritten to theADADCUerror file. The contents of this error
file should be displayed using the ADAERR utility. Do not print the error file using the standard
operating system print utilities since the records contain unprintable characters.

See the ADAERR utility for further information.

Restart Considerations

ADADCU does not have a restart capability. An interrupted ADADCU run must be re-executed
from the beginning.

ADADCU does not update the database, therefore, no considerations regarding the status of the
database need to be made before re-executing an interrupted ADADCU execution.

Adabas Utilities114

ADADCU (Decompression Of Data)



10 ADADEV (Disk Space Management)

■ Functional Overview ....................................................................................................................... 116
■ Procedure Flow ............................................................................................................................. 117
■ Checkpoints ................................................................................................................................. 118
■ Control Parameters ........................................................................................................................ 118

115



This chapter describes the utility "ADADEV".

Note: This utility only applies to UNIX platforms.

Functional Overview

The ADADEV utility provides several functions for managing disk space to be used by Adabas
via the raw disk I/O interface.

ADADEV requires READ/WRITE access to the specified disk-section device file. See Installation,
Installing Adabas for information about raw disk-section usage in your system.

Each disk section used by Adabas must be initialized once with ADADEV. Preallocation for
Adabas container files or for Adabas sequential files is not necessary, but can be useful sometimes.
Disk space is allocated automatically when creating container extents with ADAFRM or when
creating Adabas sequential files with an Adabas utility. If space has not been preallocated, a best-
fit algorithm is used for container extents. For Adabas sequential files, one half of the largest
available free space is allocated if it is larger than 1 MB. If the allocated space is exceeded, an
automatic extension is performed if the immediate right neighbour is a free space area.

The number of container extents and sequential files per raw section is limited to 338.

This utility is a multi-function utility.

Adabas Utilities116

ADADEV (Disk Space Management)



Procedure Flow

Additional InformationStorage MediumEnvironment
Variable

Data Set

Utilities ManualstdinControl statements

Messages and CodesstdoutADADEV messages

Disk, Tape (see note 2)DEVxyz (see note 1)Adabas sequential file

Notes:

1. xyz = PLG, CLG, 00n, OUT, ERR, LOG, EXP, DTA, DVT.

2. A named pipe can be used for this sequential file (seeAdministration, UsingUtilities for details).

The sequential files DEVPLG, DEVCLG, DEV00n, DEVOUT, DEVERR, DEVEXP, DEVDTA,
DEVDVT andDEVLOG can havemultiple extents. For detailed information about sequential files
with multiple extents, see Administration, Using Utilities.

117Adabas Utilities

ADADEV (Disk Space Management)



Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

ALLOCATE = keyword[,START_SECTOR = number]
[,BLOCKSIZE = numberKB] ,SIZE = number [B|M]

CHANGE = (keyword,keyword)

COMBINE = keyword, DESTINATION = string

COPY = keyword, DESTINATION = string

DBID = number

DEALLOCATE = {*|keyword}

FREE_SPACE

INITIALIZE

LAYOUT

D [NO]MOUNTCHECK

MOVE = keyword, DESTINATION = string

NEW_DBID = (container-name, new-dbid)

REALLOCATE = {*|keyword}

RESET

RESIZE

M SECTION = string

UNLOCK = keyword

Adabas Utilities118

ADADEV (Disk Space Management)



ALLOCATE

ALLOCATE = keyword[,START_SECTOR = number]
[,BLOCKSIZE = numberKB] ,SIZE = number [B|M]

In accordance with the keyword specified, this function allocates space for an Adabas container
file or Adabas sequential file. The space is allocated using a best-fit algorithm if no start sector is
specified. The keyword can take the values ASSOx, DATAx, WORKx, TEMPx and SORTx (where
x is a number between 1 and the maximum number of extents allowed, as described in Adminis-
tration,UsingUtilities), PLG, CLG, BCK, BCKOUT, RECOUT, ERR,MUPLOG,MUPTMP,ORDEXP,
DTA or DVT. The DBID parameter must be set before space can be allocated to an ASSO, DATA
or WORK file, or to PLG, CLG, BCK, BCKOUT or RECOUT.

The DBA can use this function to preallocate container files or Adabas sequential files. Reasons
for using it include performance aspects, avoiding fragmentation (by specifying the start sectors)
and reserving space for a database that is to be created in the future.

If ADADBM or ADAFRM are used to create a container file in a disk section, the preallocated
space is taken if it is available. If there was no preallocation made, the allocation is made using a
best-fit algorithm. The same sizes must be used when preallocating and creating container files.

START_SECTOR = number

This parameter specifies the sector at which allocation is to start.

BLOCKSIZE = numberKB

Values up to 32KB can be used to specify the container block-size when the allocation is being
made in blocks. The defaults are 2KB for ASSO container files, 4KB for all other container files and
1 KB for Adabas sequential files.

SIZE = number [B|M]

This parameter specifies the size of the area to be allocated in blocks ormegabytes. If 'B' is appended
to the number, the size is in blocks. By default, the size is given in megabytes.

119Adabas Utilities

ADADEV (Disk Space Management)



CHANGE

CHANGE = (keyword, keyword)

This function changes the type of the container file or Adabas sequential file specified by the first
keyword into the type specified by the second keyword.

The following keyword combinations are allowed:

ToFrom

TEMP1, SORT1, SORT2WORK1

WORK1, SORT1, SORT2TEMP1

WORK1, TEMP1, SORT2SORT1

WORK1, TEMP1, SORT1SORT2

MUPLOGDTA

DTAMUPLOG

PLG (* see note)RECOUT

BCK (* see note)BCKOUT

Note: (*) If RECOUT [BCKOUT] is a copy of PLG.n [BCK00n], the new Adabas sequential
file name will be the corresponding name.

The DBID parameter must be set before the keywords WORK1, RECOUT or BCKOUT are used.

The WORK1 container of a given database can only be changed to a SORT or TEMP container if
there is no autorestart pending.

COMBINE

COMBINE = keyword, DESTINATION = string

This parameter combinesmultiple Adabas sequential file extents into a single extent. The keyword
can take the values PLG.n, CLG.n, BCK00n, BCKOUT, RECOUT.n, ERR, MUPLOG, ORDEXP,
DTA or DVT. The keywords can also be followed by an extent label (m). In some cases, the DBID
parameter must be set (see ALLOCATE for further information).

A COMBINE can start at an arbitrary extent, but must end with the final (end-of-file) extent. All
subsequent extents can be specified interactively, or by predefined environment variables. If
DEVxyz is set, the first extent is taken from the default path name. If DEVxyz is not set, Adabas
looks in the current disk section to find the first extent.

`string' is either the path name of the device file that represents the raw interface of a disk section,
the path name of a tape device, the (path) name of a non-existent file of a file system or a period
(".").

Adabas Utilities120

ADADEV (Disk Space Management)



See Administration, Using Utilities for further information.

Example 1:

In this example, PLOG 2 of database 100 consists of 3 extents that are all located at the same disk
section /dev/rdsk/c4d0s2.

SettingEnvironment Variable

/dev/rdsk/c4d0s2 /dev/rdsk/c4d0s2DEVPLG

The ADADEV commands are as follows:

adadev: section=/dev/rdsk/...
adadev: dbid=100
adadev: combine=plg.2(1)
adadev: destination=PLOG_2

All extents of PLOG 2 are combined into one file which will be written into the file system under
the name PLOG_2. The section must be specified twice in DEVPLG so that it can flip-flop.

Example 2:

In this example, PLOG 3 of database 100 consists of 9 extents, and the extents 5 to 9 are distributed
across four disk sections:

SettingEnvironment Variable

/dev/rdsk/c3d0s2 # contains PLG.3(5) and PLG.3(9) EOFDEVPLG

/dev/rdsk/c4d0s2 # contains PLG.3(6)DEVPLG2

/dev/rdsk/c5d0s2 # contains PLG.3(7)DEVPLG3

/dev/rdsk/c6d0s2 # contains PLG.3(8)DEVPLG4

The ADADEV commands are as follows:

adadev: section=/dev/rdsk/...
adadev: dbid=100
adadev: combine=plg.3(5)
adadev: destination=PLOG.3(5)

Extents 5 to 9 of PLOG 3 are combined into one extent in PLOG 3 with the extent number 5 and
the EOF label. The combined PLOG extent is created in the current directory under the name
PLOG.3(5).

121Adabas Utilities

ADADEV (Disk Space Management)



COPY

COPY = keyword, DESTINATION = string

This function copies a container file (ASSO1, DATA1, etc.) or an Adabas sequential file (RECOUT,
DVT, etc.) from its present location to a specified destination (DESTINATION=string).

Valid keywords for the container files are ASSOx, DATAx and WORKx, where x is a number
between 1 and the maximum number of extents allowed, as described in Administration, Using
Utilities.

Valid keywords for the Adabas sequential files are PLG.n, CLG.n, BCK00n, BCKOUT, RECOUT.n,
ERR,MUPLOG,ORDEXP,DTA, andDVT. The `n' extension on theAdabas sequential file keywords
designates an extent number.

If a container file is to be copied, you must first set the appropriate environment variable (e.g.
ASSO1) to the source location before the copy is attempted.

If anAdabas sequential file is to be copied into the current disk section, as specified by the SECTION
parameter (e.g. SECTION=/dev/c5d0s2), the environment variable DEVxyz (where xyz may take
the values PLG, CLG, 00n, OUT, ERR, LOG, EXP, DTA, and DVT) must be set to the Adabas se-
quential file or device file.

The DESTINATION keywordmay be specified as either a path name for a raw disk section, a path
name of a tape device, a path name of a non-existent file in the file system, a named pipe or a
period `.', which indicates that the file will be copied into the current disk section.

In some cases, the DBID must be specified in order to uniquely identify the file before the COPY
function can be executed: please refer to theALLOCATE function for a list of those files that require
the DBID.

Examples:

adadev: section=/dev/rlv02
adadev: dbid=23
adadev: copy=WORK1, destination=/FS/fs0395/SAG/ada/db023/WORK1.023

WORK1 is copied from a raw device to a file system.

The environment variable WORK1 has the value /FS/fs0395/SAG/ada/db023/WORK1.023.

Adabas Utilities122

ADADEV (Disk Space Management)



adadev: section=/dev/rlv02
adadev: dbid=023
adadev: copy=WORK1, destination=.

WORK1 is copied from a file system to the currently-selected raw device.

DBID

DBID = number

This parameter specifies the database of an ASSO, DATA or WORK container file, or of a PLG,
CLG, BCK, BCKOUT or RECOUT Adabas sequential file.

DEALLOCATE

DEALLOCATE = { * | keyword }

In accordancewith the keyword specified, this function deallocates space fromanAdabas container
file or Adabas sequential file, or from all of the extents of a given database (DEALLOCATE=*).
The keyword can take the values ASSOx, DATAx, WORKx, TEMPx , SORTx, NUCTMPx and
NUCSRTx (where x is a number between 1 and the maximum number of extents allowed, as de-
scribed in Administration, Using Utilities), PLG, PLG.n, PLG*, CLG, CLG.n, CLG*, BCK, BCK00n,
BCK*, BCKOUT, RECOUT, RECOUT.n, ERR, MUPLOG, MUPTMP, ORDEXP, DTA or DVT. The
Adabas sequential file keywords can also be followed by an extent label (m) or (*). In some cases,
the DBID parameter must be set (see ALLOCATE for further information).

The DBA can use this function to deallocate space from container files, e.g. when a database is no
longer required or e.g. when a PLOG extent is saved to tape. The deallocated space is managed
as free space and can be allocated to other containers.

FREE_SPACE

FREE_SPACE

This function displays the areas of free space on the current disk section. It is a subset of the
LAYOUT function. In order to make it easier to allocate space in units of the default block sizes,
this function also lists the size of the free areas in units of 2KB and 4KB.

123Adabas Utilities

ADADEV (Disk Space Management)



INITIALIZE

INITIALIZE

Some sectors at the beginning of each disk section are used tomanage the allocated and free space
areas. This function initializes thismanagement part. Each disk section to be used byAdabasmust
be initialized beforehand. When a disk section is accessed for Adabas purposes, the first step is
for the management part to be verified. A disk section can only be initialized if this verification
fails.

LAYOUT

LAYOUT

This function provides a summary of the disk section usage. It lists the container and Adabas se-
quential areas aswell as the free space areas. It also displays the status of a container area (allocated
or created). Adabas sequential files can also have the status "during creation". This means that the
Adabas sequential file is growing: some of the allocated space has been used up, but some of it is
still free.

Following a power failure, TEMP and SORT containers may be locked for read or write (status:
rlocked or wlocked). Please refer to the UNLOCK function in this section for further information
about unlocking container files.

[NO]MOUNTCHECK

[NO]MOUNTCHECK

If MOUNTCHECK is used, ADADEV checks if a file system is mounted on the disk specified in
the ADADEV SECTION parameter. If a file system is mounted, ADADEV terminates. This check
can be skipped if NOMOUNTCHECK is specified before the SECTION parameter is used.

The default is MOUNTCHECK.

MOVE

MOVE = keyword, DESTINATION = string

MOVE is essentially the same as COPY, however, with the difference that the source file is removed
(see COPY for further information).

Adabas Utilities124

ADADEV (Disk Space Management)



NEW_DBID

NEW_DBID = (container-name, new-dbid)

This function changes theDBID ofAdabas fileswithin raw sections (for example, when the number
of a database has been changed and the PLOGs are to be applied to the database with the new
number).

The following can be specified for container-name:

■ all containers/sequential files with an associated database ID (ASSO, DATA, PLG ...)
■ wildcard character '*' with PLOG and CLOG (PLG*, CLG*) to change all files within the section
■ when specifying a given PLOG (e.g. PLG.175) and there are sequential file extents (PLG.175(1)
etc.), all these occurrences are changed

The following cannot be specified for container-name:

■ containers without a DBID (SORT, DTA, ...)
■ specific PLOG file extents (e.g. "PLG.175(1)")

Example

The following example shows how to change the DBID from 1 to 2:

adadev section=xxx dbid=1 new_dbid=(asso1,2)
adadev section=xxx dbid=1 new_dbid=(plg.175,2)
adadev section=xxx dbid=1 new_dbid=(plg\*,2)

REALLOCATE

REALLOCATE = { * | keyword }

This function deallocates space and directly allocates it in a single step. The keyword can take the
same values as for the DEALLOCATE function. Adabas sequential file areas that are <=50 KB are
always deallocated.

This function can be used as a short cut when deallocating a container file and then allocating it
again at the same location. It is particularly useful if ADAFRM aborts while creating a database,
with some container files already created and preallocated at given start sectors.

There is a flag for each container in a disk section, which indicateswhether the container or Adabas
sequential file has actually been created or whether the space has only been allocated for it. For
security reasons, an existing container or Adabas sequential file cannot be overwritten just by
creating it again: it must be deallocated or reallocated first.

125Adabas Utilities

ADADEV (Disk Space Management)



RESET

RESET

The management part of the current disk section is set to binary zero if the section is initialized.
This function is used if a disk sectionwhich has the same start sector as an overlapping, initialized
disk section is to be initialized.

RESIZE

RESIZE

If a new, overlapping disk section is used with the same start sector as the current disk section,
this function updates the size of the section to the size of the new section. The new section can be
larger or smaller than the current section. If it is larger, the free space at the end of the section is
increased. If it is smaller, existing free space at the end of the section is decreased.

SECTION

SECTION = string

This parameter selects the disk section to be used. The (path) name of the device file that represents
the raw I/O interface of the disk section must be specified.

UNLOCK

UNLOCK = keyword

This parameter is used to unlock a container of an abnormally terminated utility (for example kill
-9). The keyword can take the values TEMP1, SORT1 or SORT2.

Following a power failure, locked container files must be unlocked using the UNLOCK function
in order to use them further. If an Adabas sequential file consists of more than one physical extent,
the last extent is marked with EOF in the status field.

Adabas Utilities126

ADADEV (Disk Space Management)



11 ADAERR (Error File Report)

■ Functional Overview ....................................................................................................................... 128
■ Procedure Flow ............................................................................................................................. 129
■ Checkpoints ................................................................................................................................. 129
■ Control Parameter ......................................................................................................................... 129
■ Example ...................................................................................................................................... 130
■ Rejected Data Records ................................................................................................................... 130

127



This chapter describes the utility "ADAERR".

Functional Overview

The ADAERR utility displays the contents of error files generated by the utilities

■ ADACMP
■ ADADCU
■ ADAINV
■ ADAMUP
■ ADAREC

This utility is a single-function utility.

Adabas Utilities128

ADAERR (Error File Report)



Procedure Flow

Additional InformationStorage MediumEnvironment
Variable/
Logical Name

Data Set

Disk, Tape (* see note)ERRINError data

stdout/
SYS$OUTPUT

Error messages

Note: (*) A named pipe can be used for this sequential file (not on Open VMS, see Adminis-
tration, Using Utilities for details).

The sequential file ERRIN can have multiple extents. For detailed information about sequential
files with multiple extents, see Administration, Using Utilities.

Checkpoints

The utility writes no checkpoints.

Control Parameter

The following control parameter is available:

D [NO]DUMP

129Adabas Utilities

ADAERR (Error File Report)



[NO]DUMP

[NO]DUMP

If NODUMP is specified, only a description (length of record, ISN of the record etc.) of each error
record will be output, but not the actual record content. See the section Rejected Data Records in
this section for information on the contents of the error records.

If DUMP is specified, the record content will be dumped in addition to the record description. For
ADACMP, the decompressed recordwill be dumped,whereas forADADCU the compressed record
will be dumped.

The default is NODUMP.

Example

$ adaerr

%ADAERR-I-STARTED, 11-OCT-2006 18:59:20, Version 6.1.1
%ADAERR-I-RECNOTF, Record NOT found for ISN 317 in file 49
%ADAERR-I-PLOGRB, from record 1 in block 6 on PLOG 1
%ADAERR-I-IOCNT, 1 IO on dataset ERRIN
%ADAERR-I-TERMINATED, 11-OCT-2006 18:59:20, elapsed time: 00:00:01

Rejected Data Records

Any records rejected by the following utilities arewritten to the error file in variable-length format.

■ ADACMP
■ ADADCU
■ ADAINV
■ ADAMUP
■ ADAREC

The structure of the error records is contained as a header file in the Adabas distribution kit -
$ADADIR/$ADAVERS/inc/iodesam.h on Unix, %ADADIR%\%ADAVERS%\..\inc\iodesam.h
on Windows.

Adabas Utilities130

ADAERR (Error File Report)



12 ADAFDU (File Definition)

■ Functional Overview ....................................................................................................................... 132
■ Procedure Flow ............................................................................................................................. 133
■ Checkpoints ................................................................................................................................. 135
■ Control Parameters ........................................................................................................................ 135
■ Examples ..................................................................................................................................... 149

131



This chapter describes the utility "ADAFDU".

Functional Overview

The file definition utility ADAFDU defines a new base file and/or a LOB file in a database. It does
not require the Adabas nucleus to be active.

The field definitions for a base file, including special descriptor definitions and referential integrity
definitions for foreign keys, are read from the sequential file FDUFDT; the field definition of a
LOB file is predefined. Additional input for ADAFDU is provided by parameters.

See Administration, FDT Record Structure for information about the syntax and use of the data
definitions to define the logical structure of the file in the database.

SeeAdministration, LoadingAndUnloadingData, File Space Estimation for information about formulae
for calculating the Associator and Data Storage space requirements for a file.

This utility is a single-function utility.

Adabas Utilities132

ADAFDU (File Definition)



Procedure Flow

Offline Mode

If the nucleus is not active, ADAFDU itself creates the new file in ASSO and DATA

133Adabas Utilities

ADAFDU (File Definition)



Online Mode

If the nucleus is active, ADAFDU calls the nucleus to create the new file in ASSO and DATA. In
this case, no checkpoint is written, but the file creation is logged in the database log, and in case
of a recovery, the file is created automatically.

Adabas Utilities134

ADAFDU (File Definition)



Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAFDU messages

Disk,Tape (* see note)FDUFDTFDT information

Utilities Manual
ADAPLP

DiskNUCPLGProtection Log

Note: (*) A named pipe can be used for this sequential file (not on OpenVMS, see Adminis-
tration, Using Utilities for details).

Checkpoints

The utility writes a SYNP checkpoint if it is performed offline. If the utility is performed online,
the file definition is written to the PLOG, a SYNX checkpoint is written.

Control Parameters

The following control parameters are available:

ACBLOCKSIZE = numberK

ACRABN = number

ADAM_KEY = key

D ADAM_OVERFLOW = number

D ADAM_PARAMETER = number

ADD_LOBFILE = (number,number)

D ASSOPFAC = number

D [NO]BT

D [NO]CIPHER

135Adabas Utilities

ADAFDU (File Definition)



D CONTIGUOUS = ([AC], [,DS] [,NI] [,UI])

D DATAPFAC = number

M DBID = number

DSBLOCKSIZE = numberK

DSRABN = number

D DSSIZE = number[B|M]

FDT

FILE = number

D [NO]FORMAT

LOBFILE = number [,LOBSIZE = number[B|M]]

D [NO]LOWER_CASE_FIELD_NAMES

D MAXISN = number

D NAME{=|:} string

NIBLOCKSIZE = numberK|(numberK,numberK)

NIRABN = number|(number,number)

D NISIZE = number[B|M]|(number[B|M],number[B|M])

[NO]PGM_REFRESH

D REUSE = (keyword [,keyword])

SYFMAX = number

UIBLOCKSIZE = numberK|(numberK,numberK)

UIRABN = number|(number,number)

D UISIZE = number[B|M]|(number[B|M],number[B|M])

Adabas Utilities136

ADAFDU (File Definition)



ACBLOCKSIZE

ACBLOCKSIZE = numberK

This parameter allows you to specify a block size for the allocation of the address converter extent.

Example:

acblocksize = 6k

The address converter will be allocated with a block size of 6 kilobytes.

If the database does not contain enough space with this block size, ADAFDU aborts.

ACRABN

ACRABN = number

This parameter specifies the RABN at which the space allocation for the Address Converter is to
start.

This parameter can be used to allocate the Address Converter to a given container file extent.

If this parameter is omitted, ADAFDU assigns the starting RABN.

ADAM_KEY

ADAM_KEY = key

If this parameter is specified, the file is defined as anADAMfile. The key can be either a descriptor
name or the keyword `ISN'. If an ADAM key is used, it must be defined with the UQ option in
the FDT. It must not be a sub-, super-, phonetic or hyperdescriptor. It must not be amultiple-value
field or a field within a periodic group. It must not have the NU/NC option.

ADAM_OVERFLOW

ADAM_OVERFLOW = number

This parameter specifies the number of DATA overflow blocks for the file. Overflow blocks are
required in case ADAM-calculated blocks get full. The overflow blocks are taken from the end of
the file's DATA blocks.

137Adabas Utilities

ADAFDU (File Definition)



At least one overflow block must be allocated.

The maximum is DSSIZE - 1.

Note: When checking the maximum value, and DSSIZE is specified in megabytes, it is as-
sumed that the Data Storage block size is 32 - independent of the actual value. If you want
to specify a larger value for ADAM_OVERFLOW, which is possible with a smaller Data
Storage block size, DSSIZE must be specified in blocks.

The default is 1.

ADAM_PARAMETER

ADAM_PARAMETER = number

This parameter specifies the number of consecutive ISNs to be stored in one block if the keyword
`ISN' is specified for the ADAM_KEY parameter.

If the ADAM key is a descriptor with fixed-point format, the parameter specifies the number of
consecutive values for one block. For other key formats, it specifies an offset into the values. See
Administration for more information.

A value may be specified in the range 1 to 10000.

The default value is 8.

ADD_LOBFILE

ADD_LOBFILE = (number, number)

The parameter ADD_LOBFILE is used to create a LOB file and assign it to an existing base file
that is specified by the first number, the base file must not yet have an assigned LOB file. A LOB
file, with the file number specified by the second number, is generated and assigned to the base
file, and the base file is enabled for LOB processing. A file with the specified file number must not
yet exist. The maximum number that can be specified is 32000. You can specify the parameters
describing the data storage, the address converter, the normal and upper index of the LOB file,
but the following should be taken into consideration:

■ The block size for LOB file data blocks must be 32 KB.
■ The block size for LOB NI and UI blocks must be < 16 KB.

Adabas Utilities138

ADAFDU (File Definition)



It is not possible to specify FILE if you specify ADD_LOBFILE, and vice versa.

Because there are some predefined requirements for a LOB file, not all the other ADAFDU para-
meters make sense in connection with ADD_LOBFILE, for example the ADAM_* parameters.
These parameters are ignored by ADAFDU when the LOB file is added.

ASSOPFAC

ASSOPFAC = number

This parameter specifies the padding factor to be used for the file's index. The number specified
is the percentage of each index blockwhich is not to be used by a subsequent run of themass update
utility ADAMUP. This padding area is reserved for future use if additional entries have to be added
to the block by theAdabas nucleus. This avoids the necessity of having to relocate overflow entries
to another block.

A value may be specified in the range 0 to 95.

A small padding factor (0 to 10) should be specified if little or no descriptor updating is expected.
A larger padding factor (10 to 50) should be specified if there is a large amount of descriptor up-
dating in which new descriptor values are created.

You can change the padding factor at a later time using the utility ADAORD.

The default padding factor is 5.

[NO]BT

[NO]BT

If NOBT is specified, this file will be a no-BT file, which means that modifications to this file are
not made within normal transaction logic, and all modifications are kept in the database even if
a transaction is backed out.

BT is the default.

Note: The following points should be considered if the nucleus crashes:

■ All database modifications for a no-BT file issued before the last ET command are applied to
the database.

■ It is not definedwhether databasemodifications for a no-BT file issued after the last ET command
are applied to the database or not.

139Adabas Utilities

ADAFDU (File Definition)



[NO]CIPHER

[NO]CIPHER

This option can be used to enable or disable data record ciphering.

Ciphering prevents the unauthorized analysis of Adabas container files. If ciphering is enabled,
data records are ciphered when they are stored in a database by either the Adabas nucleus or by
the mass update utility ADAMUP. The data records are then deciphered when they are requested
by a user or application: this means that the ciphering is completely transparent to the user or
application. See Administration, Adabas Security Facilities for further information about ciphering.

The default is NOCIPHER.

CONTIGUOUS

CONTIGUOUS = ( [AC] [,DS] [,NI] [,UI] )

This parameter is used to control ADAFDU's space allocations. If specified, ADAFDU ensures
that only the first logical extent of the types specified is used.

By default, ADAFDU makes contiguous-best-try allocations.

DATAPFAC

DATAPFAC = number

This parameter specifies the padding factor to be used for the file's Data Storage. The number
specified is the percentage of each data block which is not to be used when subsequently adding
new records to the file with the mass update utility ADAMUP or with the Adabas nucleus. This
padding area is reserved for future use if any record in the block requires additional space as a
result of record updating by the Adabas nucleus. This avoids the necessity of having to relocate
the record to another block.

A value in the range 0 to 95 may be specified.

A small padding factor (0 to 10) should be specified if there is little or no record expansion. A larger
padding factor (10 to 50) should be specified if there is a large amount of record updating which
will cause expansion.

You can change the padding factor at a later time using the utility ADAORD.

The default padding factor is 5.

Adabas Utilities140

ADAFDU (File Definition)



DBID

DBID = number

This parameter selects the database to be used.

DSBLOCKSIZE

DSBLOCKSIZE = numberK

This parameter allows you to specify a block size for the allocation of the data storage extent.

Example:

dsblocksize = 6k

Data storage will be allocated with a block size of 6 kilobytes.

If the database does not contain enough space with this block size, ADAFDU aborts.

DSRABN

DSRABN = number

This parameter specifies the RABN at which the space allocation for Data Storage is to start.

This parameter can be used to allocate Data Storage to a given container file extent.

If this parameter is omitted, ADAFDU assigns the starting RABN.

DSSIZE

DSSIZE = number [B|M]

This parameter specifies the number of blocks or megabytes to be assigned to Data Storage. By
default, the size is given in megabytes.

The value specified for DSSIZE determines the size of the logical extent allocated to Data Storage
for the file.

A contiguous-best-try allocation is made unless CONTIGUOUS=DS has been specified.

This parameter is mandatory for ADAM files - the dependencies between the parameters
ADAM_OVERFLOW and DSSIZE are described for the parameter ADAM_OVERFLOW.

For non-ADAM files, this parameter can be omitted; in this case Adabas calculates a reasonable
number of blocks to be used for Data Storage. If the size that is actually required is larger, the file
is automatically increased.

141Adabas Utilities

ADAFDU (File Definition)



FDT

FDT

If this parameter is specified, the FDT contained in the sequential file FDUFDT is displayed.

FILE

FILE = number

This parameter is requiredwhen a base file is to be created; it specifies the file number to be assigned
to the file.

The `number' specified must not be currently assigned to another file in the database and must
not exceed the maximum file number defined for the database. The maximum number that can
be specified is 32000.

File numbers can be assigned in any sequence.

It is not possible to specify FILE if you specify ADD_LOBFILE, and vice versa.

[NO]FORMAT

[NO]FORMAT

This option is used to control whether the RABNs allocated for the file's index and Data Storage
are to be formatted or not. The RABNs of the file's Address Converter are always formatted.

The default is NOFORMAT.

LOBFILE

LOBFILE = number [, LOBSIZE = number[B|M]]

If LOBFILE is specified, a LOB file with the specified number is generated and assigned to the
base file to be created, and the base file is enabled for LOB processing. A LOBfilewith the specified
file number must not already exist. The maximum number that can be specified is 32000. You
should take the following into consideration:

■ The block size for LOB file data blocks will be 32 KB.
■ The block size for LOB NI and UI blocks will be < 16 KB.
■ LOBSIZE specifies the size inData storage of the LOBfile, analogously to the parameter DSSIZE.
■ Adabas calculates reasonable sizes for the Address converter, the normal and upper index of
the LOB file. If you want to specify these values yourself, you should create the base file first
without specifying LOBFILE, and then you should call ADAFDU again and add the LOB file
with the ADD_LOBFILE parameter.

Adabas Utilities142

ADAFDU (File Definition)



[NO]LOWER_CASE_FIELD_NAMES

[NO]LOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. IfNOLOWER_CASE_FIELD_NAMES is specified,Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

MAXISN

MAXISN = number

This parameter specifies the highest ISN expected in the file. The file definition utility ADAFDU
uses this parameter to determine the amount of space to be allocated for the file's Address Con-
verter (AC). The default value for MAXISN is 5000.

A contiguous-best-try allocation is made unless CONTIGUOUS=AC has been specified.

Note: The value is rounded up to the number of ISNs that fit into the Address converter
blocks required to store MAXISN ISNs in the Address converter, the exact value used as
MAXISN for the file is:
(MAXISN specified / (Address converter block size / 4) + 1) * (Address converter block size
/ 4) -1. For example, using an Address converter with a block size of 4KB, the default value
of 5000 is increased to (5000 / (4096 / 4) + 1) * (4096 / 4) -1 = 5119.

143Adabas Utilities

ADAFDU (File Definition)



NAME

NAME {=|:} string

This parameter specifies the name to be assigned to the file. This name will appear together with
data about this file in the database status report produced by the report utility ADAREP. A max-
imum of 16 characters are permitted. If you specify an equals sign, the value given for 'string' will
be converted to upper case; if you specify a colon, no upper-case conversion is performed

The default value is FILE-n, where n is the file number.

NIBLOCKSIZE

NIBLOCKSIZE = numberK|(numberK,numberK)

This parameter allows you to specify a block size for the allocation of the Normal Index. Note that
the Normal Index requires a block size >= 16 KB for large index values > 253 bytes, while a smaller
block is allocated for descriptors with smaller descriptor values. The followingmust be taken into
consideration:

■ If you specify one block size, the file is created with all normal index blocks having this size.
■ If you specify two block sizes, one value should be < 16K, and one value should be >= 16K. You
should also specify two values for NISIZE; the first value for NIBLOCKSIZE corresponds to the
first value of NISIZE, and the second value for NIBLOCKSIZE corresponds to the second value
of NISIZE.

Examples:

niblocksize = 6k

The normal index will be allocated with a block size of 6 kilobytes.

niblocksize = (8k,32k)
nisize = (1000b,10m)

The normal index will be allocated with 1000 blocks of block size 8 KB and 10 MB of block size 32
KB.

If the database does not contain enough space with this block size, ADAFDU aborts.

Adabas Utilities144

ADAFDU (File Definition)



NIRABN

NIRABN = number|(number,number)

This parameter specifies the RABN at which the space allocation for the Normal Index is to start.
This parameter can be used to allocate the Normal Index to a given container file extent.

If two RABNs have been specified, one should have a block size < 16KB, and the other should
have a block size of >= 16KB.

If this parameter is omitted, ADAFDU assigns the starting RABNs.

If both NIBLOCKSIZE and NIRABN are specified, the block sizes of the RABNs specified as
NIRABN must be equal to the values specified as NIBLOCKSIZE.

NISIZE

NISIZE = number [B|M]|(number [B|M],number [B|M])

This parameter defines the number of blocks or megabytes to be assigned to the Normal Index.
By default, the size is in megabytes.

If the block size cannot be derived from the NIBLOCKSIZE or the NIRABN parameter, the first
value for NISIZE is used for blocks < 16KB, and the second value is used for blocks >= 16KB.

A contiguous-best-try allocation is made unless CONTIGUOUS=NI has been specified.

If this parameter is omitted, Adabas calculates a reasonable number of blocks to be used for the
normal index.

Examples:

adafdu: nisize = 100b

If the block size cannot be derived from the NIBLOCKSIZE or NIRABN parameter, 100 blocks
with block size < 16KB are allocated for the Normal Index.

adafdu: nisize = (10m,1000b)

If the block size cannot be derived from theNIBLOCKSIZE orNIRABNparameter, 10MB of blocks
with block size < 16KB and 1000 blocks of block size >= 16KB are allocated for the Normal Index.

145Adabas Utilities

ADAFDU (File Definition)



[NO]PGM_REFRESH

[NO]PGM_REFRESH

If PGM_REFRESH is specified, the file can be refreshed by an E1 command (reset to a state of zero
records loaded) when it is loaded.

The default is NOPGM_REFRESH.

REUSE

REUSE = ( keyword [,keyword] )

The REUSE parameter controls the reuse of Data Storage space or ISNs by Adabas.

REUSE = [NO]DS

NODS causes all newly-added records, together with records that have to be moved to another
block (as a result of record expansion caused by updating) to be placed in the last used block in
the Data Storage extent allocated to the file. If there is not sufficient space in this block, the next
block is used.

If the DS keyword is specified, Adabas will scan the Data Storage Space Table (DSST) in order to
locate a block with sufficient space. In this case, the first block found with sufficient space will be
used.

The file control block for the specified file is modified to indicate the type of allocation to be used
when adding new records or moving updated records.

The default value is DS.

REUSE = [NO]ISN

If REUSE is set to NOISN, Adabas does not reuse the ISN of a deleted record for a new record.
Each new record will be assigned the next-highest unused ISN.

The ISN keyword specifies that Adabas may reuse the ISN of a deleted record.

The default value is NOISN.

Adabas Utilities146

ADAFDU (File Definition)



Examples

adafdu: reuse = (isn, ds)

ISNs of deleted records can be reassigned to new records. TheDSST is scanned for free spacewhen
a record is added to the database or when an updated record is moved in the database.

adafdu: reuse = isn

Reuse of data storage and ISNs is allowed.

adafdu: reuse = <cr>

Reuse of data storage and no reuse of ISNs is specified. This is the default setting.

SYFMAX

SYFMAX = number

This parameter specifies themaximumnumber of values generated for a systemgeneratedmultiple-
value field. There is no explicit maximum value, but you should bear in mind, that you can get a
record overflow if the value is defined too high; the compressed data record should also fit into
one DATA block is SYFMAX values are defined for system generated multiple-value fields.

The default value is 1.

UIBLOCKSIZE

UIBLOCKSIZE = numberK|(numberK,numberK)

This parameter allows you to specify a block size for the allocation of the Upper Index. Note that
the Upper Index requires a block size >= 16 KB for large index values > 253 bytes, while a smaller
block is allocated for descriptors with smaller descriptor values. The followingmust be taken into
consideration:

■ If you specify one block size, the file is created with all normal index blocks having this size.
■ If you specify two block sizes, one value should be < 16K, and one value should be >= 16K. You
should also specify two values for UISIZE; the first value for UIBLOCKSIZE corresponds to the
first value of UISIZE, and the second value for UIBLOCKSIZE corresponds to the second value
of UISIZE.

147Adabas Utilities

ADAFDU (File Definition)



Examples:

uiblocksize = 6k

The upper index will be allocated with a block size of 6 kilobytes.

uiblocksize = (8k,32k)
uisize = (1000b,10m)

The upper index will be allocated with 1000 blocks of block size 8 KB and 10 MB of block size 32
KB.

If the database does not contain enough space with this block size, ADAFDU aborts.

UIRABN

UIRABN = number|(number,number)

This parameter specifies the RABN at which the space allocation for the Upper Index is to start.
This parameter can be used to allocate the Upper Index to a given container file extent.

If two RABNs have been specified, one should have a block size < 16KB, and the other should
have a block size of >= 16KB.

If both UIBLOCKSIZE and UIRABN are specified, the block sizes of the RABNs specified as UIR-
ABN must be equal to the values specified as UIBLOCKSIZE.

If this parameter is omitted, ADAFDU assigns the starting RABN.

UISIZE

UISIZE = number [B | M]

This parameter defines the number of blocks or megabytes to be assigned to the Upper Index. By
default, the size is in megabytes.

If the block size cannot be derived from the UIBLOCKSIZE or the UIRABN parameter, the first
value for UISIZE is used for blocks < 16KB, and the second value is used for blocks >= 16KB.

A contiguous-best-try allocation is made unless CONTIGUOUS=UI has been specified.

If this parameter is omitted, Adabas calculates a reasonable number of blocks to be used for the
upper index.

Adabas Utilities148

ADAFDU (File Definition)



Examples

Example:

adafdu: dbid = 1, file = 6, maxisn = 20000, dssize = 100B,
adafdu: assopfac = 10, datapfac = 10,
adafdu: uisize = 20b, nisize = 5

File 6 is to be loaded. The maximum number of expected records preset for the file is 20000. 100
blocks are allocated for Data Storage. The Associator and Data Storage block padding factors are
both 10 percent. 20 blocks are allocated for theUpper Index and 5megabytes for theNormal Index.
The Normal Index ISN size is implicitly set to 2.

Example:

adafdu: dbid = 1, file = 7, maxisn = 350000,
adafdu: assopfac = 5, datapfac = 15,
adafdu: dssize = 100,
adafdu: uisize = 2, nisize = 30

File 7 is to be loaded. The maximum number of expected records preset for the file is 350000. The
Associator padding factor is 5 percent. TheData Storage padding factor is 15 percent. 100megabytes
are allocated for Data Storage. The Normal Index ISN size is implicitly set to 4.

Example:

adafdu: dbid = 1, file = 8,
adafdu: maxisn = 10000, dssize = 20,
adafdu: uisize = 10b, nisize = 50b

File 8 is to be loaded. The maximum number of expected records preset for the file is 10000. 20
megabytes are allocated to Data Storage. The padding factor for both the Associator and Data
Storage is 5 percent (default).

149Adabas Utilities

ADAFDU (File Definition)



Example:

adafdu: dbid = 1, file = 9, maxisn = 55000, dssize = 2000b, dsrabn = 30629,
adafdu: uisize = 50b, nisize = 300b,
adafdu: assopfac = 20, datapfac = 10

File 9 is to be loaded. The maximum number of expected records preset for the file is 55000. 2000
blocks are allocated for Data Storage. The Data Storage allocation will start at RABN 30629. 50
blocks are allocated for theUpper Index. 300 blocks are allocated for theNormal Index. The padding
factor for the Associator is 20 percent. The padding factor for Data Storage is 10 percent.

Example:

adafdu: dbid = 1, file = 10, maxisn = 20000

File 10 is to be loaded. The maximum number of records expected for the file is set to 20000. All
space allocation will be calculated by Adabas.

Adabas Utilities150

ADAFDU (File Definition)



13 ADAFIN (File Information Report)

■ Functional Overview ....................................................................................................................... 152
■ Procedure Flow ............................................................................................................................. 153
■ Checkpoints ................................................................................................................................. 154
■ Control Parameters ........................................................................................................................ 154

151



This chapter describes the utility "ADAFIN".

Functional Overview

The file information utility ADAFIN displays

■ the FDT,
■ descriptor information, and
■ the number of blocks in the Data Storage, Normal Index or Upper Index and their usage

of one or more selected files.

This utility is a multi-function utility.

Adabas Utilities152

ADAFIN (File Information Report)



Procedure Flow

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAFIN messages

DiskWORK1Work

153Adabas Utilities

ADAFIN (File Information Report)



Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

ADAM_DS = keyword

M DBID = number

DESCRIPTOR = { = | : }{ * | (string [,string]...) }

FDT

M FILE = { * | (number [-number] [,number [-number]]...) }

D [NO]HISTOGRAM

USAGE = (keyword [,keyword [,keyword]])

ADAM_DS

ADAM_DS = keyword

This parameter can be used in conjunction with USAGE=DS for ADAM files. It selects the data
section of the ADAM file for which information is to be displayed. The following keywords can
be used:

MeaningKeyword

All of the DS space is selectedFULL

Only the ADAM area is selectedADAM

Only the ADAM overflow area is selectedOVERFLOW

Adabas Utilities154

ADAFIN (File Information Report)



DBID

DBID = number

This parameter selects the database to be used.

DESCRIPTOR

DESCRIPTOR = { = | : }{ * | (string [,string]...) }

This function defines the list of descriptors for which information is to be displayed. If more than
one file is selected, information may only be requested for all descriptors (DESCRIPTOR = *).

The DESCRIPTOR function can only be executed if the selected files are not opened for update
with the nucleus running. This function can only be selected in conjunctionwith the FILEparameter.

The DESCRIPTOR function does not synchronize against parallel updates (for example ADAINV
REINVERT).

Examples

adafin: file=13, descriptor=ca

Database 76, File 13 (MISCELLANEOUS ) 27-OCT-2006 08:08:17

Descriptor CA , Format: A , Options: NU

min max ave
---------------------------------------------------------
Length 1 233 20.59
ISNs per value 1 2 1.08

Values: different: 86 total: 93
ASSO-Blocks: NI: 2 UI: 1

adafin: file=(11,12), descriptor=*
Database 1, File 11 (EMPLOYEES-NAT ) 27-OCT-2006 08:09:39

Descriptor AA , Format: A , Options: UQ

min max ave
-------------------------------------------------------------------------
Length 8 8 8.00
ISNs per value 1 1 1.00

Values: different: 1,107 total: 1,107
ASSO-Blocks: NI: 5 UI: 1

155Adabas Utilities

ADAFIN (File Information Report)



Descriptor AE , Format: A , Options: None

min max ave
-------------------------------------------------------------------------
Length 3 17 6.78
ISNs per value 1 19 1.37

Values: different: 804 total: 1,107
ASSO-Blocks: NI: 4 UI: 1

Descriptor AH , Format: P , Options: NC

min max ave
-------------------------------------------------------------------------
Length 4 4 4.00
ISNs per value 1 43 1.20

Values: different: 921 total: 1,107
ASSO-Blocks: NI: 4 UI: 1

Descriptor AJ , Format: A , Options: NU

min max ave
-------------------------------------------------------------------------
Length 3 20 8.52
ISNs per value 1 141 3.60

Values: different: 307 total: 1,107
ASSO-Blocks: NI: 3 UI: 1

Descriptor AO , Format: A , Options: None

min max ave
-------------------------------------------------------------------------
Length 6 6 6.00
ISNs per value 1 99 6.62

Values: different: 167 total: 1,107
ASSO-Blocks: NI: 2 UI: 1

Descriptor AP , Format: A , Options: NU

min max ave
-------------------------------------------------------------------------
Length 2 25 12.56
ISNs per value 1 75 4.67

Adabas Utilities156

ADAFIN (File Information Report)



Values: different: 237 total: 1,107
ASSO-Blocks: NI: 3 UI: 1

Descriptor AZ , Format: A , Options: NU,MU

min max ave
-------------------------------------------------------------------------
Length 3 3 3.00
ISNs per value 1 843 86.28

Values: different: 21 total: 1,812
ASSO-Blocks: NI: 2 UI: 1

Super-Descriptor H1 , Format: B , Options: NU
Parent field(s): AU ( 1 - 2) U

AV ( 1 - 2) U

min max ave
-------------------------------------------------------------------------
Length 4 4 4.00
ISNs per value 1 93 4.17

Values: different: 259 total: 1,081
ASSO-Blocks: NI: 2 UI: 1

Phonetic-Descriptor PH , Format: A , Options: None
Parent field(s): AE A

min max ave
-------------------------------------------------------------------------
Length 3 3 3.00
ISNs per value 1 33 1.82

Values: different: 608 total: 1,107
ASSO-Blocks: NI: 3 UI: 1

Sub-Descriptor S1 , Format: A , Options: None
Parent field(s): AO ( 1 - 4) A

min max ave
-------------------------------------------------------------------------
Length 4 4 4.00
ISNs per value 1 208 85.15

Values: different: 13 total: 1,107
ASSO-Blocks: NI: 2 UI: 1

157Adabas Utilities

ADAFIN (File Information Report)



Super-Descriptor S2 , Format: A , Options: None
Parent field(s): AO ( 1 - 6) A

AE ( 1 - 20) A

min max ave
-------------------------------------------------------------------------
Length 9 23 12.78
ISNs per value 1 5 1.05

Values: different: 1,052 total: 1,107
ASSO-Blocks: NI: 6 UI: 1

Super-Descriptor S3 , Format: A , Options: NU,PE
Parent field(s): AR ( 1 - 3) A

AS ( 1 - 9) P

min max ave
-------------------------------------------------------------------------
Length 12 12 12.00
ISNs per value 1 25 2.15

Values: different: 1,567 total: 3,383
ASSO-Blocks: NI: 10 UI: 1

Highest PE-occurrence: 5

Database 1, File 12 (VEHICLES ) 10-OCT-2006 14:30:39

Descriptor AA , Format: A , Options: UQ,NU

min max ave
-------------------------------------------------------------------------
Length 6 10 7.91
ISNs per value 1 1 1.00

Values: different: 772 total: 772
ASSO-Blocks: NI: 4 UI: 1

Descriptor AC , Format: A , Options: None

min max ave
-------------------------------------------------------------------------
Length 1 8 7.74
ISNs per value 1 24 1.16

Values: different: 662 total: 773

Adabas Utilities158

ADAFIN (File Information Report)



ASSO-Blocks: NI: 3 UI: 1

Descriptor AD , Format: A , Options: NU

min max ave
-------------------------------------------------------------------------
Length 2 14 6.63
ISNs per value 1 179 17.17

Values: different: 45 total: 773
ASSO-Blocks: NI: 1 UI: 1

Descriptor AF , Format: A , Options: NU

min max ave
-------------------------------------------------------------------------
Length 3 10 4.95
ISNs per value 1 135 11.36

Values: different: 68 total: 773
ASSO-Blocks: NI: 1 UI: 1

Descriptor AH , Format: A , Options: FI

min max ave
-------------------------------------------------------------------------
Length 1 1 1.00
ISNs per value 169 329 257.66

Values: different: 3 total: 773
ASSO-Blocks: NI: 1 UI: 1

Super-Descriptor AO , Format: A , Options: NU
Parent field(s): AG ( 1 - 2) U

AD ( 1 - 20) A

min max ave
-------------------------------------------------------------------------
Length 4 16 8.63
ISNs per value 1 45 4.29

Values: different: 180 total: 773
ASSO-Blocks: NI: 2 UI: 1

Total of 18 descriptors

Information about all descriptors in the specified files is displayed.

159Adabas Utilities

ADAFIN (File Information Report)



FDT

FDT

This parameter displays the Field Definition Tables (FDTs) of the files selected with the FILE
parameter. This function can only be selected in conjunction with the FILE parameter.

Example

adafin: file=9, fdt
Database 1, File 9 (EMPLOYEES ) 27-OCT-2006 08:11:42

Field Definition Table:

Level I Name I Length I Format I Options I Flags I Encoding
-------------------------------------------------------------------------------

1 I AA I 8 I A I DE,UQ I I
1 I AB I I I I I
2 I AC I 20 I W I NU I I
2 I AE I 20 I W I NU I SP I
2 I AD I 20 I W I NU I I
1 I AF I 1 I A I FI I I
1 I AG I 1 I A I FI I I
1 I AH I 8 I U I DE I I
1 I A1 I I I I I
2 I AI I 20 I W I NU,MU I I
2 I AJ I 20 I W I DE,NU I I
2 I AK I 10 I A I NU I I
2 I AL I 3 I A I NU I I
1 I A2 I I I I I
2 I AN I 6 I A I NU I I
2 I AM I 15 I A I NU I I
1 I AO I 6 I A I DE I SB,SP I
1 I AP I 25 I W I DE,NU I I
1 I AQ I I I PE I I
2 I AR I 3 I A I NU I SP I
2 I AS I 5 I P I NU I SP I
2 I AT I 5 I P I NU,MU I I
1 I A3 I I I I I
2 I AU I 2 I U I I SP I
2 I AV I 2 I U I NU I SP I
1 I AW I I I PE I I
2 I AX I 8 I U I NU I I
2 I AY I 8 I U I NU I I
1 I AZ I 3 I A I DE,NU,MU I I

-------------------------------------------------------------------------------
Type I Name I Length I Format I Options I Parent field(s) Fmt

-------------------------------------------------------------------------------
COLL I CN I1,144 I I NU,HE I AE de__PHONEBOOK

I I I I I PRIMARY

Adabas Utilities160

ADAFIN (File Information Report)



-------------------------------------------------------------------------------
SUPER I H1 I 4 I B I NU I AU ( 1 - 2 ) U

I I I I I AV ( 1 - 2 ) U
-------------------------------------------------------------------------------
SUB I S1 I 4 I A I I AO ( 1 - 4 ) A
-------------------------------------------------------------------------------
SUPER I S2 I 26 I A I NU I AO ( 1 - 6 ) A

I I I I I AE ( 1 - 20 ) W
-------------------------------------------------------------------------------
SUPER I S3 I 12 I A I NU,PE I AR ( 1 - 3 ) A

I I I I I AS ( 1 - 9 ) P
-------------------------------------------------------------------------------

FILE

FILE = { * | (number [-number] [,number [-number]]...) }

This parameter selects one or more files from a database and displays information about these
files in accordance with the following parameter. Specifying FILE = * selects all files.

[NO]HISTOGRAM

[NO]HISTOGRAM

If the HISTOGRAM option is selected, a graphical overview of the descriptor-value length distri-
butionswill be provided in all the information that is subsequently displayed by theDESCRIPTOR
function.

If HISTOGRAM is used, it must be specified before the DESCRIPTOR parameter.

Using the HISTOGRAM option does not lead to additional I/Os on the data sets.

The default is NOHISTOGRAM.

Example (with HISTOGRAM)

adafin: file=9, histogram, descriptor=ap
Database 1, File 9 (EMPLOYEES ) 27-OCT-2006 08:12:44

Descriptor AP , Format: W , Options: NU

min max ave
-------------------------------------------------------------------------
Length 2 26 12.71
ISNs per value 1 75 4.61

Values: different: 240 total: 1,107
ASSO-Blocks: NI: 3 UI: 1

161Adabas Utilities

ADAFIN (File Information Report)



Histogram of descriptor value length for descriptor AP

Length | 25% 50% 75% 100%| Frequency
-------+--------------+--------------+--------------+---------------+----------

2 |* | 1
3 |* | 22
5 |* | 7
6 |* | 26
7 |****** | 124
8 |**** | 83
9 |****** | 117
10 |****** | 119
11 |*** | 67
12 |**** | 83
13 |* | 23
14 |** | 47
15 |** | 46
16 |** | 46
17 |* | 29
18 |***** | 101
19 |* | 27
20 |* | 29
21 |* | 33
22 |* | 17
23 |* | 20
24 |* | 21
25 |* | 5
26 |* | 14

-------------------------------------------------------------------------------

adafin:

The information that is displayed has the following meaning:

MeaningKeyword

Each value n shown in this column indicates that there is a descriptor value with a length of n
bytes in the file.
The range of values in this column lies between the minimum (column "min") and maximum
(column "max") values shown in the table before the histogram.

Length

The value shown in this column indicates the number of descriptor values for the given descriptor
length.
The sum of the values in the frequency column is equal to the total number of values for the
descriptor in question.

Frequency

If all of the descriptor values are of the same length, the histogramwill be of an unusual type, e.g.:

Adabas Utilities162

ADAFIN (File Information Report)



adafin: file=9, histogram, descriptor=aa
Database 1, File 9 (EMPLOYEES ) 27-OCT-2006 08:15:16

Descriptor AA , Format: A , Options: UQ

min max ave
-------------------------------------------------------------------------
Length 8 8 8.00
ISNs per value 1 1 1.00

Values: different: 1,107 total: 1,107
ASSO-Blocks: NI: 5 UI: 1

Histogram of descriptor value length for descriptor AA

Length | 25% 50% 75% 100%| Frequency
-------+--------------+--------------+--------------+---------------+----------

8 |************************************************************| 1,107
-------------------------------------------------------------------------------

This histogram shows that the file only contains descriptor values that have a length of 8 bytes.
The file contains a total of 1107 values for the descriptor AA.

Example (with NOHISTOGRAM)

adafin: file=9, histogram, descriptor=ap
Database 1, File 9 (EMPLOYEES ) 27-OCT-2006 08:14:24

Descriptor AP , Format: W , Options: NU

min max ave
-------------------------------------------------------------------------
Length 2 26 12.71
ISNs per value 1 75 4.61

Values: different: 240 total: 1,107
ASSO-Blocks: NI: 3 UI: 1

163Adabas Utilities

ADAFIN (File Information Report)



USAGE

USAGE = (keyword [,keyword [,keyword]])

Depending on the keyword specified, this parameter displays the percentage of used blocks in
the file.

MeaningKeyword

Displays statistics of used blocks in the Data Storage;DS

Displays statistics of used blocks in the Normal Index;NI

Displays statistics of used blocks in the Main/Upper Index.UI

Example

adafin: file=13, usage=ds

Database 76, File 13 (MISCELLANEOUS ) 27-OCT-2006 08:16:18

DS - Blocks allocated = 50 , used = 49 , unused = 1

Records: Number = 179
Length: max = 1,991 , min = 260 , avg = 997.47

0%: 0 blocks
5%: 0 blocks

10%: 0 blocks
15%: 0 blocks
20%: 0 blocks
25%: 0 blocks
30%: 0 blocks
35%: 0 blocks
40%: 0 blocks
45%: 0 blocks
50%: 0 blocks
55%: 0 blocks
60%: 0 blocks
65%: 0 blocks
70%:**** 2 blocks
75%: 0 blocks
80%:** 1 block
85%:************* 6 blocks
90%:***************************** 13 blocks
95%:************************************************************* 27 blocks

100%: 0 blocks

Information about the used data blocks of file 13 in database 76 is displayed. 50 DS blocks are al-
located, of which 49 are in use and 1 is unused. The total number of records is 179, with the record

Adabas Utilities164

ADAFIN (File Information Report)



length varying between a maximum of 1991 and a minimum of 260. The average record length is
997.47. The following lines give an overview of the number of blocks that are used up to a given
level. The majority of the blocks (27) is used up to between 90% and 95%.

Example (for ADAM file)

adafin: file = 8
adafin: adam_ds = full
adafin: usage = ds

Database 30, File 8 (ADAM_FILE ) 11-OCT-2006 12:08:57

ADAM key = FF ADAM parameter = 5 ADAM_DS = FULL

DS - Blocks used for ADAM = 94
Total overflow blocks = 1, used = 1

Records: Number = 3863
In ADAM area= 3860 , ovfl = 3
Length: max = 9 , min = 9 , avg = 9.00

0%: ******** 10 blocks
5%: *** 4 blocks

10%: 0 blocks
15%: 0 blocks
20%: 0 blocks
25%: 0 blocks
30%: * 1 block
35%: 0 blocks
40%: 0 blocks
45%: 0 blocks
50%: * 1 block
55%: 0 blocks
60%: 0 blocks
65%: ************************************************** 74 blocks
70%: 0 blocks
75%: 0 blocks
80%: 0 blocks
85%: 0 blocks
90%: 0 blocks
95%: *** 3 blocks
100%: * 2 blocks

Information about all data blocks of file 8, which is an ADAM file, is displayed. The ADAM
parameter is set to 5. 94 blocks are used for the ADAM area, with 1 block reserved for overflow.
The ADAM area contains 3860 records, and 3 records are in the overflow area.

165Adabas Utilities

ADAFIN (File Information Report)



166



14 ADAFRM (Format And Create A New Database)

■ Functional Overview ....................................................................................................................... 168
■ Procedure Flow ............................................................................................................................. 169
■ Checkpoints ................................................................................................................................. 170
■ Control Parameters ........................................................................................................................ 170
■ Restart Considerations ................................................................................................................... 174
■ Control Statement Examples ............................................................................................................ 174

167



This chapter describes the utility "ADAFRM".

Functional Overview

The utility ADAFRM creates the container files (ASSO, DATA, WORK) assigned to the database
and establishes the database including the database system files. It can also be used to format the
TEMP and SORT files.

For the raw device interface, the utility ADADEV can be used if placement control is required.
Raw devices and files in the file system may be used for database container files.

You can create up to 255 ASSO and 255 DATA container files. You can add more containers later
using ADADBM's ADD_CONTAINER function.

After ADAFRM creates the container files, it initializes the global Adabas blocks, inserts the 3
Adabas system files (checkpoint file, ET data file, security file) and allocates space for them. The
checkpoint file is allocated 3000 records, the ET data file is allocated 3000 records and the security
file is allocated 200 records.

Block sizes from 1 kilobyte to 32 kilobytes may be used for database container files.

If you try to reformat a container file, the utility terminates with an error message. This ensures
that the database is not accidentally overwritten.

Note: OnOpenVMS, container files are allocated using the contiguous-best-trymethod. For
this reason, you should ensure that your disk space is as defragmented as possible in order
to avoid reduced performance.

This utility is a single function utility.

Adabas Utilities168

ADAFRM (Format And Create A New Database)



Procedure Flow

If a database is to be formatted:

Additional InformationStorage MediumEnvironment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAFRMmessages

DiskWORK1Work

If a TEMP or SORT is to be formatted:

169Adabas Utilities

ADAFRM (Format And Create A New Database)



Additional InformationStorage MediumEnvironment
Variable/
Logical Name

Data Set

DiskSORTxSort storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAFRMmessages

DiskTEMPxTemporary storage

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are only used when establishing a new database:

D ASSOBLOCKSIZE = (number[K] [,number[K]] ... )

M ASSOSIZE = (number[B|M] [,number[B|M]]...)

D DATABLOCKSIZE = (number[K] [,number[K]] ... )

M DATASIZE = (number[B|M] [,number[B|M]]...)

DBID = number

D NAME {=|:} string

M SORTSIZE = (number[M] [,number[M]] ... )

D SYSFILES = (number, number, number)

M TEMPSIZE = (number[M] [,number[M]] ... )

D WORKBLOCKSIZE = number[K]

M WORKSIZE = number[M | B]

Adabas Utilities170

ADAFRM (Format And Create A New Database)



ASSOBLOCKSIZE

ASSOBLOCKSIZE = (number[K] [,number[K]] ... )

This parameter specifies the block sizes that are to be used for the Associator container file(s). The
first block size corresponds to ASSO1, the second to ASSO2 etc.

If block sizes are not specified, the default of 4K will be used.

For ASSO1, only blocks sizes from 2K to 8K can be specified. For ASSO2 to ASSOn, block sizes
between 1K and 32K are permitted.

Note: The ASSOBLOCKSIZE parameter should be specified once for each ASSOSIZE that
is specified, i.e. these parameters should be specified in pairs. If ASSOSIZE is specifiedmore
frequently than ASSOBLOCKSIZE, then the last specified block size will be used for the
containers that do not have a block size specified. The default value will be used if ASSOB-
LOCKSIZE is not specified at all.

ASSOSIZE

ASSOSIZE = (number[M|B] [,number[M|B]]...) ↩

This parameter specifies the number of blocks or megabytes to be assigned to the Associator.

If the Associator is to be contained in more than one physical file, the size of each file must be
specified.

If a `B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

DATABLOCKSIZE

DATABLOCKSIZE = (number[K] [,number[K]] ... )

This parameter specifies the block sizes that are to be used for the Data Storage container file(s).
The first block size corresponds to DATA1, the second to DATA2 etc.

If block sizes are not specified, the default of 32K will be used.

Note: The DATABLOCKSIZE parameter should be specified once for each DATASIZE that
is specified, i.e. these parameters should be specified in pairs. If DATASIZE is specified
more frequently than DATABLOCKSIZE, then the last specified block size will be used for
the containers that do not have a block size specified. The default value will be used if
DATABLOCKSIZE is not specified at all.

171Adabas Utilities

ADAFRM (Format And Create A New Database)



DATASIZE

DATASIZE = (number[B|M] [,number[B|M]]...) ↩

This parameter specifies the number of blocks or megabytes to be assigned to the Data Storage.

If the Data Storage is to be contained in more than one file, the size of each file must be specified.

If a `B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

DBID

DBID = number

This parameter selects the database to be created.

The minimum value is 1 and the maximum value is 255.

Note: This parameter only needs to be set when formatting ASSO, DATA and WORK. It
must not be entered when formatting only SORT or TEMP.

NAME

NAME {=|:} string

This parameter specifies the name to be assigned to the database. This name will appear in the
title of the database status report produced by the report utility ADAREP. If you specify an equals
sign, the value given for 'string' will be converted to upper case; if you specify a colon, no upper-
case conversion is performed.

A maximum of 16 characters may be specified.

If this parameter is omitted, a default value of `GENERAL-DATABASE' is assigned.

SORTSIZE

SORTSIZE = (number[M] [,number[M]] ... )

This parameter specifies the number of megabytes to be assigned to the SORT dataset.

If the SORT dataset consists more than one extent, the size of each extent must be specified. Up
to 50 extents can be specified. The SORT dataset can be formatted independently.

Adabas Utilities172

ADAFRM (Format And Create A New Database)



SYSFILES

SYSFILES = (number, number, number)

This parameter specifies the file numbers to be reserved for the Adabas system files. These file
numbers must not be used subsequently for user files.

The first value specifies the file number of the checkpoint file.

The second value specifies the file number of the security file.

The third value specifies the file number of the user data file.

The default setting is SYSFILES=(1, 2, 3).

TEMPSIZE

TEMPSIZE = (number [M] [,number[M]] ... )

This parameter defines the number of megabytes to be assigned to TEMPx.

If the TEMP dataset is to be contained in more than one physical file, the size of each file must be
specified.

This component may be formatted independently.

WORKBLOCKSIZE

WORKBLOCKSIZE = number[K]

This parameter specifies the block size that is to be used for the WORK file.

If no block size is specified, the default of 16K will be used.

WORKSIZE

WORKSIZE = number [B|M]

This parameter defines the number of blocks or megabytes to be assigned to WORK1.

If a `B' is appended to the number, the size is in blocks, otherwise it is in megabytes.

173Adabas Utilities

ADAFRM (Format And Create A New Database)



Restart Considerations

ADAFRMdoes not have a restart capability. An interruptedADAFRM runmust be restarted from
the beginning. Associator, Data Storage and WORK must be formatted together.

The files created during an earlier run have to be deleted first.

Control Statement Examples

Example: Formatting a database

adafrm: dbid = 1, name = DATABASE_1
adafrm: assosize = (200M, 100M), assoblocksize = (2K, 4K)
adafrm: datasize = (500M, 500M, 2M), datablocksize = (4K, 16k)
adafrm: worksize = 50M, workblocksize = 16K

A new database is established with the number 1 and the name "DATABASE_1". Two ASSO con-
tainer files are created: ASSO1 has a size of 200 megabytes and a blocksize of 2 kilobytes, and
ASSO2 has a size of 100megabytes and a blocksize of 4 kilobytes. There are threeDATA containers.
DATA1 and DATA3 have a blocksize of 4 kilobytes, DATA2 has a blocksize of 16 kilobytes. There
is a single WORK container file with a block size of 16 kilobytes. The file numbers 1, 2 and 3 will
be used for the 3 system files.

Example: Formatting SORT and TEMP

adafrm: sortsize = (10M,10M)
adafrm: tempsize = 10M

Explanation: Two container files, each 10 megabytes in length, are to be formatted as SORT1 and
SORT2. A container file, 10 megabytes in length, is to be formatted as TEMP1.

Adabas Utilities174

ADAFRM (Format And Create A New Database)



15 ADAINV (Creating, RemovingAndVerifying Inverted Lists)

■ Functional Overview ....................................................................................................................... 176
■ Procedure Flow ............................................................................................................................. 177
■ Checkpoints ................................................................................................................................. 178
■ Control Parameters ........................................................................................................................ 179
■ Restart Considerations ................................................................................................................... 188
■ Examples ..................................................................................................................................... 189

175



This chapter describes the utility "ADAINV".

Functional Overview

The inverted list utility ADAINV creates, removes and verifies inverted lists for loaded files in a
database. It does not require the Adabas nucleus to be active. The nucleusmay, however, be active
or shut down while ADAINV is running. The following functions are available:

■ The INVERT function establishes new descriptors;
■ The REINVERT function performs an implicit RELEASE and INVERT;
■ The RELEASE function removes existing descriptors;
■ The RESET_UQ function removes the unique status from descriptors;
■ The SET_UQ function establishes a unique status for existing descriptors;
■ The SUMMARY function displays the descriptor space summary for the specified descriptors
and the required sizes to process these descriptors;

■ The VERIFY function checks the integrity of inverted lists.

A LOB file can only be specified for the functions REINVERT, SUMMARY and VERIFY.

These functions are mutually exclusive and only one of them may be executed each time this
utility is run.

If the utility writes records to the error file, it will exit with a non-zero status.

This utility is a single-function utility.

Adabas Utilities176

ADAINV (Creating, Removing And Verifying Inverted Lists)



Procedure Flow

177Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



The sequential file INVERR can have multiple extents. For detailed information about sequential
files with multiple extents, see Administration, Using Utilities.

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

output of ADAINVDisk, Tape (* see note)INVERRRejected data

Administration Manual, temporary working
space

DiskSORTx
TEMPLOCx

Sort storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAINV messages

DiskTEMPxTemporary storage

DiskWORK1Work storage

Note: (*) A named pipe can be used for this sequential file (not on OpenVMS, see Adminis-
tration, Using Utilities for details).

In cases without an active nucleus and no pending AUTORESTART, the WORK may be used as
TEMP by setting the environment variable/logical name TEMP1 to the path name or raw disk
section of a WORK container.

Checkpoints

Checkpoints

The following table shows the nucleus requirements for each function and the checkpointswritten:

Nucleus operations
allowed

Checkpoint writtenNucleus is NOT
required

Nucleus must NOT be
active

Nucleus must
be active

Function

RSYNPXINVERT

SYNPXX(* see note)REINVERT

RSYNPXRELEASE

RSYNPXRESET_UQ

RSYNPXSET_UQ

WXSUMMARY

RSYNXXX(* see note)VERIFY

Adabas Utilities178

ADAINV (Creating, Removing And Verifying Inverted Lists)



Note: (*) When processing an Adabas system file.

R: read operations allowed for the processed file.
W: read und write operations allowed for the processed file.

Control Parameters

The following control parameters are available:

M DBID = number

INVERT = number,
FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT},
... [END_OF_FIELDS]
[,FDT]

D [,LWP = number[K]]
D [,UQ_CONFLICT = keyword]

D [NO]LOWER_CASE_FIELD_NAMES

REINVERT = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]

D [,[NO]FORMAT]
D [,LWP = number[K]]
D [,UQ_CONFLICT = keyword]

RELEASE = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]

D [,[NO]FORMAT]

RESET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]

SET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]

D [,UQ_CONFLICT = keyword]

SUMMARY = number,
{ALL_FIELDS | FIELDS
{descriptor_name | derived_descriptor_definition | FDT},
... [END_OF_FIELDS]}
[,FDT]

D [,FULL]

179Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



VERIFY = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}

D [,ERRORS = number]
[,FDT]

D [,LWP = number[K]]

DBID

DBID = number

This parameter selects the database to be used.

INVERT

INVERT = number,
FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT},
... [END_OF_FIELDS]
[,FDT]
[,LWP = number[K]]
[,UQ_CONFLICT = keyword]

This function establishes new elementary, sub-, super-, hyper-, phonetic and collation descriptors
at any time after a file has been initially loaded. `number' specifies the file containing the fields to
be inverted. You are not allowed to specify the number of a LOB file.

FDT

This parameter displays the FDT of the selected file. This optionmay be specified before or within
the field specification list.

FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]

This parameter specifies fields to be inverted. It can contain one or more

■ field name,
■ phonetic descriptor or
■ sub-, super-, hyper- or collation descriptor

specifications, each starting on a separate line. See Administration, FDT Record Structure for valid
specifications of field names, phonetic, sub-, super-, hyper- or collation descriptors.

The options UQ and TR are used to specify whether the field in question is a unique descriptor
or whether index truncation will be performed. See Administration, Definition Options for further
information about the UQ and TR options.

Adabas Utilities180

ADAINV (Creating, Removing And Verifying Inverted Lists)



Note: Only fields for which the values are stored in the base file can be used as descriptors
or parent fields of derived descriptors. For this reason, an invert function will be aborted
if a field to be inverted or a parent field of a derived descriptor to be created has the LA or
LB option and values are stored in the LOB file. LA and LB fields can be used as descriptors
or parent fields of derived descriptors, but then all values are limited to 16 KB – 3, and the
base record including these LA or LB field values must fit into one data block.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

LWP = number[K]

This parameter specifies the size of the Work Pool in bytes or in kilobytes (K) to be used for the
sort while creating the inverted lists.

You can use the SUMMARY function to determine the required value for this parameter.

The minimum size is 0 bytes and the default size is 0 bytes.

UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. `keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINV terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, theUQ status of the descriptors in question is removed and processing
continues.

The default is UQ_CONFLICT = ABORT.

[NO]LOWER_CASE_FIELD_NAMES

[NO]LOWER_CASE_FIELD_NAMES

If LOWER_CASE_FIELD_NAMES is specified, Adabas field names are not converted to upper
case. IfNOLOWER_CASE_FIELD_NAMES is specified,Adabas field names are converted to upper
case. The default is NOLOWER_CASE_FIELD_NAMES.

This parameter must be specified before the FIELDS parameter.

181Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



REINVERT

REINVERT = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[,[NO]FORMAT]
[,LWP = number[K]]
[,UQ_CONFLICT = keyword]

This function performs an implicit RELEASE and INVERT. This reduces the probability of a typing
error, especially for sub- and superdescriptors.

Note: Thepurpose ofADAINVREINVERT is to recreate a descriptor if the index tree becomes
unbalanced as a result of a large number of updates, or if an index error occurred.Descriptors
are always recreatedwith the same definition as before; if youwant to change the definition
of a descriptor, for example a superdescriptor, you must perform ADAINV RELEASE fol-
lowed by ADAINV INVERT with the new descriptor definition.

ALL_FIELDS

This parameter specifies that all descriptors of the selected file are to be released/inverted.

FDT

This parameter displays the FDT of the selected file. This optionmay be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors to be released/reinverted. It can be followed by one or
more field names, each starting on a separate line. See Administration, FDT Record Structure for a
description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

Adabas Utilities182

ADAINV (Creating, Removing And Verifying Inverted Lists)



[NO]FORMAT

If a descriptor is released or reinverted, the new index created is generally smaller than the old
index and requires less disk space. The FORMAT option can be used to format the blocks that are
no longer used by the index but which are still allocated to the file.

The default is NOFORMAT.

LWP = number[K]

This parameter specifies the size of the Work Pool to be used for the sort. This is an internal sort
to recover lost index blocks when rebuilding the upper index.

You can use the SUMMARY function to determine the required value for this parameter.

The minimum size is 0 bytes and the default size is 0 bytes.

UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. `keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINV terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, theUQ status of the descriptors in question is removed and processing
continues.

The default is UQ_CONFLICT = ABORT.

RELEASE

RELEASE = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[,[NO]FORMAT]

This function removes elementary, sub-, super-, hyper-, phonetic and collation descriptors from
the file specified by `number'. You are not allowed to specify the number of a LOB file.

183Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



ALL_FIELDS

This parameter specifies that all descriptors of the selected file are to be released.

FDT

This parameter displays the FDT of the selected file. This optionmay be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors to be released. It can be followed by one or more field
names, each starting on a separate line. See Administration, FDT Record Structure for a description
of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

[NO]FORMAT

If a descriptor is released or reinverted, the new index created is generally smaller than the old
index and requires less disk space. The FORMAT option can be used to format the blocks that are
no longer used by the index but which are still allocated to the file.

The default is NOFORMAT.

RESET_UQ

RESET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]

This function removes the unique status from elementary, sub-, hyper-, super- and collation
descriptors defined in the file specified by `number'. You are not allowed to specify the number
of a LOB file.

Adabas Utilities184

ADAINV (Creating, Removing And Verifying Inverted Lists)



ALL_FIELDS

This parameter specifies that the unique status is to be removed from all unique descriptors in the
specified file.

FDT

This parameter displays the Field Definition Table (FDT) of the selected file. This option may be
specified before or within the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors that are to have unique status removed. It can be followed
by one or more field names, each starting on a separate line. See Administration, FDT Record
Structure for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

SET_UQ

SET_UQ = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,FDT]
[,UQ_CONFLICT = keyword]

This function establishes the unique status for elementary, sub-, hyper-, super- and collation
descriptors defined in the file specified by `number'. You are not allowed to specify the number
of a LOB file.

ALL_FIELDS

This parameter specifies that the unique status is to be established for all elementary, sub-, hyper-
, super- and collation descriptors defined in the specified file.

185Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



FDT

This parameter displays the FDT of the selected file. This optionmay be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors for which the unique status is to be established. It can be
followed by one or more field names, each starting on a separate line. See Administration, FDT
Record Structure for a description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

UQ_CONFLICT = keyword

This parameter determines which action is to be taken when duplicate values are found for a
unique descriptor. `keyword' may take the values ABORT or RESET. If ABORT is specified,
ADAINV terminates execution and returns an error status if duplicate descriptor values are found.
If RESET is specified, theUQ status of the descriptors in question is not established and processing
continues.

The default is UQ_CONFLICT = ABORT

SUMMARY

SUMMARY = number,
{ALL_FIELDS | FIELDS
{descriptor_name | derived_descriptor_definition | FDT},
... [END_OF_FIELDS]}
[,FDT]
[,FULL]

This function displays the descriptor space summary (DSS) for the specified descriptors and the
required sizes to process the descriptors.

Note: Processing the exact sizewould be too complicated. It may be that sizes a little smaller
than those displayed are sufficient. If the file is updated during or after the SUMMARY
function, the displayed values might also be too small.

Adabas Utilities186

ADAINV (Creating, Removing And Verifying Inverted Lists)



ALL_FIELDS

This parameter specifies that all descriptors of the selected files are to be checked.

FDT

This parameter displays the FDT of the selected file. This optionmay be specified before or within
the fields specification list.

FIELDS {descriptor_name | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptors for which the unique status is to be established. It can be
followed by one or more field names, phonetic descriptors, subdescriptors, superdescriptors, hy-
perdescriptors or collation descriptors, each starting on a separate line. You can specify fields that
are descriptors or fields that are not descriptors. See Administration, FDT Record Structure for a
description of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

FULL

If this is specified, each descriptor is displayed along with the sizes that are required for the
descriptor. This can be helpful if not all of the specified fields are to be processed.

VERIFY

VERIFY = number,
{ALL_FIELDS | FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]}
[,ERRORS = number]
[,FDT]
[,LWP = number[K]]

This function checks the integrity of inverted lists of the file specified by `number'.

187Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



ALL_FIELDS

This parameter specifies that all descriptors of the selected file are to be checked.

ERRORS = number

This parameter specifies the number of errors that have to be reported in order to terminate the
verification of a descriptor.

The default is 20.

FDT

This parameter displays the FDT of the selected file. This optionmay be specified before or within
the fields specification list.

FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

This parameter specifies the descriptor fields to be verified. It can be followed by one ormore field
names, each starting on a separate line. See Administration, FDT Record Structure for a description
of valid field name specifications.

If the field definitions are terminated with the END_OF_FIELDS parameter, this parameter must
be specified in upper casewhen the LOWER_CASE_FIELD_NAMESparameter is used. In addition,
the FDTparametermust also be specified in upper casewhen the LOWER_CASE_FIELD_NAMES
parameter is used.

LWP = number[K]

This parameter specifies the size of theWork Pool to be used for the sortwhile verifying the inverted
lists.

You can use the SUMMARY function to determine the required value for this parameter.

The minimum size is 0 bytes and the default size is 0 bytes.

Restart Considerations

ADAINVhas no restart capability. However, itmay ormay not be possible to re-start an abnormally
terminated ADAINV from the beginning.

If ADAINV terminates abnormally, it can usually be restarted from the beginning. However, if
ADAINV has modified the index, the following points have to be considered:

Adabas Utilities188

ADAINV (Creating, Removing And Verifying Inverted Lists)



■ The function REINVERT ... FIELDS is the same as the function RELEASE ... FIELDS followed
by the function INVERT ... FIELDS. So if ADAINV has aborted in the INVERT phase, perform
the function INVERT ... FIELDS to restart the operation.

■ If ADAINV is performed offline, there is a very small amount of time where a few records that
together form a logical unit are written to disk. If ADAINV terminates after the first of these
records has been written and before the last has been written, ADAINV cannot be restarted. In
this case, the function REINVERT ... ALL_FIELDS is required. This cannot happen if ADAINV
is performed online.

■ If ADAINV terminates abnormally, it can happen that some index blocks are lost. These index
blocks can only be recovered by the function REINVERT ... ALL_FIELDS or by using the utility
ADAORD or by using the utilities ADAULD and ADAMUP.

Examples

Example 1

adainv: dbid=1
adainv: invert=10, fields
adainv: HO

The elementary field HO in file 10 of database 1 is inverted.

Example 2

adainv: dbid=1
adainv: invert=10
adainv: lwp=600k
adainv: fields
adainv: ph=phon(na)
adainv: sp=na(1,3),yy(1,2),uq
adainv: bb,uq

Three new descriptors are established for file 10 in database 1. PH is a phonetic descriptor based
on the field NA. SP is a unique superdescriptor derived from bytes 1 to 3 of field NA and bytes 1
to 2 of field YY. The elementary field BB is changed to descriptor status and the unique flag is set.
The size of the work pool to be used for the sort is increased to 600 K.

189Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



Example 3

adainv: dbid=1
adainv: release=10
adainv: fields
adainv: ho
adainv: ph

The two descriptors HO and PH from the examples above are released.

Example 4

adainv: dbid = 1, verify = 10
adainv: errors = 5
adainv: fields
adainv: sp
adainv: na
adainv: end_of_fields

The descriptors SP andNAare verified. The descriptor value table entries generated for descriptor
NA are checked against the decompressed values of this field. Verification is terminated if more
than five errors are reported for each descriptor.

Example 5

adainv: dbid = 1, reinvert = 10
adainv: fields
adainv: na

The descriptor NA in file 10 of database 1 is to be reinverted (this may be necessary if errors are
reported in example 4).

Example 6

adainv: db=12
adainv: reinvert=9
adainv: all_fields

The complete index is recreated for file 9 in database 12.

The following output is produced:

Adabas Utilities190

ADAINV (Creating, Removing And Verifying Inverted Lists)



%ADAINV-I-FILE, file 9, EMPLOYEES

%ADAINV-I-UIUPD, upper index being modified

%ADAINV-I-SORTDESC, sorting descriptor KA
%ADAINV-I-LOADDESC, loading descriptor KA

%ADAINV-I-SORTDESC, sorting descriptor S3
%ADAINV-I-LOADDESC, loading descriptor S3

%ADAINV-I-SORTDESC, sorting descriptor S2
%ADAINV-I-LOADDESC, loading descriptor S2

%ADAINV-I-SORTDESC, sorting descriptor PA
%ADAINV-I-LOADDESC, loading descriptor PA

%ADAINV-I-SORTDESC, sorting descriptor FB
%ADAINV-I-LOADDESC, loading descriptor FB

%ADAINV-I-SORTDESC, sorting descriptor AA
%ADAINV-I-LOADDESC, loading descriptor AA

%ADAINV-I-SORTDESC, sorting descriptor BC
%ADAINV-I-LOADDESC, loading descriptor BC

%ADAINV-I-SORTDESC, sorting descriptor CN
%ADAINV-I-LOADDESC, loading descriptor CN

%ADAINV-I-SORTDESC, sorting descriptor JA
%ADAINV-I-LOADDESC, loading descriptor JA

%ADAINV-I-SORTDESC, sorting descriptor H1
%ADAINV-I-LOADDESC, loading descriptor H1

%ADAINV-I-SORTDESC, sorting descriptor EA
%ADAINV-I-LOADDESC, loading descriptor EA

%ADAINV-I-SORTDESC, sorting descriptor LC
%ADAINV-I-LOADDESC, loading descriptor LC

%ADAINV-I-SORTDESC, sorting descriptor S1
%ADAINV-I-LOADDESC, loading descriptor S1

%ADAINV-I-SORTDESC, sorting descriptor AC
%ADAINV-I-LOADDESC, loading descriptor AC

%ADAINV-I-NULLDESC, no values for descriptor IJ
%ADAINV-I-LOADDESC, loading descriptor IJ

%ADAINV-I-NULLDESC, no values for descriptor IB
%ADAINV-I-LOADDESC, loading descriptor IB

191Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



%ADAINV-I-NULLDESC, no values for descriptor FI
%ADAINV-I-LOADDESC, loading descriptor FI

%ADAINV-I-UIUPD, upper index being modified
%ADAINV-I-DSPASSES, data storage passes : 17
%ADAINV-I-REMOVED, dataset SORT1, file C:\Program Files\Software AG\Adabas/db012
\SORT01_3664.012 removed
%ADAINV-I-IOCNT, 1 IOs on dataset SORT
%ADAINV-I-IOCNT, 85 IOs on dataset DATA
%ADAINV-I-IOCNT, 49 IOs on dataset ASSO

Notes:

1. The message NULLDESC indicates that no descriptor values exist for this descriptor. This may
happen for fields defined with option NU or NC if the field contains the null value/SQL null
values for all records.

2. The message DSPASSES shows how often the data records of the file were read. In this case the
number of data storage passes is 17, i.e. the data recordswere reread for each descriptor, because
no TEMP container was defined where descriptor values can be saved. The number of data
storage passes can be reduced by defining a TEMP container. This is recommended in particular
for large files, because it reduces the number of required I/O operations significantly. The
ADAINV parameter SUMMARY can be used to find out which size is useful for the TEMP
container.

3. The message REMOVED shows that a temporary SORT container created by ADAINV was
deleted. You can also use a persistent SORT container, which is not created and deleted by
ADAINV (see ADAFRM for further details).

Example 7

adainv: dbid = 1, set_uq=10
adainv: fields
adainv: na
adainv: end_of_fields
adainv: uq_conflict=reset

The unique status is to be established for the descriptor NA in file 10 of database 1. If there is more
than one ISN per descriptor value, the conflicting ISNs are written to the error log and the unique
status is removed.

Adabas Utilities192

ADAINV (Creating, Removing And Verifying Inverted Lists)



Example 8

adainv: dbid = 1, reset_uq=10
adainv: fields
adainv: sp

The unique status is to be removed from the descriptor SP in file 10 of database 1.

Example 9

adainv: db=33
adainv: summary=112
adainv: fields
adainv: ab
adainv: ae
adainv: s1=ap(1,1),aq(1,1),ar(1,1)
adainv: s2=ac(1,3),ad(1,8),ae(1,9)
adainv: s3=ao(2,3)

This produces the following output:

Descriptor summary:
===================

Descriptor AB : 1,194,469 bytes, 581,209 occ
Descriptor AE : 3,605,545 bytes, 538,769 occ
Descriptor S1 : 1,566,501 bytes, 581,209 occ
Descriptor S2 : 1,520,169 bytes, 72,389 occ
Descriptor S3 : 1,340,949 bytes, 446,983 occ

Required sizes to process these descriptors:
============================================

- SORTSIZE (LWP= 0 KB) = 8 MB
- LWP for incore sort = 13,230 KB
- TEMPSIZE (1 pass) = 24 MB
- TEMPSIZE (2 passes) = 13 MB
- TEMPSIZE (recommended minimum size) = 5 MB

%ADAINV-I-IOCNT, 1710 IOs on dataset DATA
%ADAINV-I-IOCNT, 3 IOs on dataset ASSO
%ADAINV-I-TERMINATED, 24-NOV-2006 14:15:06, elapsed time: 00:04:03

193Adabas Utilities

ADAINV (Creating, Removing And Verifying Inverted Lists)



194



16 ADAMON (Monitoring The Database Nucleus)

■ Functional Overview ....................................................................................................................... 196
■ Procedure Flow ............................................................................................................................. 197
■ Checkpoints ................................................................................................................................. 197
■ Control Parameters ........................................................................................................................ 198

195



This chapter describes the utility "ADAMON".

Note: This utility is not available on Windows platforms.

Functional Overview

TheADAMONutility is used tomonitor anAdabas sessionwith the aim of collecting performance
data. The type of information collected is determined by the setting of the DISPLAY parameter;
the information is usually displayed on a "per second" basis. The information collected can be
presented as a set of numbers or as a basic graphical output. An ADAMON session is terminated
by typing CTRL/C, or when the value specified for the LOOP parameter has been reached - then
a statistical summary of the monitored session is displayed.

This utility is a multi-function utility.

Adabas Utilities196

ADAMON (Monitoring The Database Nucleus)



Procedure Flow

Additional InformationStorage MediumEnvironment Variable/
Logical Name

Data Set

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAMON
messages

Checkpoints

The utility writes no checkpoints.

197Adabas Utilities

ADAMON (Monitoring The Database Nucleus)



Control Parameters

The following control parameters are available:

D [NO]DATETIME

M DBID = number

D DISPLAY = keyword

D [NO]GRAPHICAL

D INTERVAL = number

D LOOPS = number

DATETIME

[NO]DATETIME

If this parameter is set to DATETIME, each monitoring line with non-graphical output will be
preceded by the current date and time. The default is NODATETIME.

DBID

DBID = number

This parameter selects the database to be used. The database must be active for all functions with
the exception of DISPLAY = BACKUP.

DISPLAY

DISPLAY = keyword

This parameter displays database information in accordance with the keyword specified. The
display is refreshed at intervals specified by the parameter INTERVAL (default of 3 seconds).
Please refer to the DISPLAY examples in the section ADAOPR for explanations of the information
displayed.

The following keywords are available:

Adabas Utilities198

ADAMON (Monitoring The Database Nucleus)



MeaningKeyword

Displays the throughput of a database, for example the number of commands per second.
This keyword is the default if the nucleus is active.

ACTIVITY

Displays a graph which monitors the execution of an ADABCK DUMP or RESTORE
function. The values displayed are normalized to full blocksizes, which can be different

BACKUP

from the real backup/restore space because of 'used size compression'. The output is always
graphically oriented. This keyword can also be used if the nucleus is not active. This
keyword is the default if the nucleus is not active.

Displays some important highwater values. The output is always graphically oriented.
The bold line gives the current value in percent, the dashed line shows the highwater

HIGH_WATER

value. If there is only a bold line, the current and the high water values are identical. The
'Write Limit' line shows the number of modified blocks in percent until the flush limit is
reached - at 100%, usually a buffer flush will be started. The number given within the line
shows the modified space in bytes. The 'WP1 Flush' line shows the number of modified
WORKpart 1 blocks from themost recent buffer flush record - if the 100%point is reached,
a buffer flush will be started. The 'Hit rate' lines show the overall hit rate (dashed line)
and the current rate that occurred during the measured interval (bold line). The 'ASSO'
and 'DATA' lines show the ratio between used and total allocated container space. The
'PLOG' line shows the ratio between the used and allocated space for the protection log.
The numbers in these data set lines are either given in KB, MB or GB units. Note that the
PLOG on file system always shows 100%

Displays some counters and exceptions that occurred during index update (for internal
reasons).

INDEX

Displays the number of physical I/Os of the specific Adabas container files, per second.
For each container type (ASSO, DATA) only the first 10 extents can be displayed. I/Os to
upper extents are collected in ASSOx or DATAx.

IO

Furthermore, if an exceptional situation is detected during collection of the data, additional inform-
ation is displayed on the screen. In the non-graphical mode it is displayed in the final column, in
the graphical mode, the status is shown in the base line. The following status information can be
detected:

BF_ACTIVE
A buffer flush is in progress.

SPACE_WAIT
Threads waiting for work pool space on complex commands.

ET_SYNC
The nucleus is in ET_SYNC mode, which means no new transactions will be started.

HYX
The nucleus is executing a hyperexit.

UEX
The nucleus is executing a user exit.

LARGE_DWP
The internal work pool is so large that it extends into the buffer pool.

199Adabas Utilities

ADAMON (Monitoring The Database Nucleus)



SHUTDOWN-P
Nucleus shutdown in progress.

SHUTDOWN-C
Nucleus shutdown completed.

CRASHED
Nucleus abnormally terminated.

If an AUTORESTART is executing, ADAMON can monitor and display the phase number (1, 2,
3 or 4) and the number of processed blocks. Usually, phase 3 takes themost time, and the percentage
of processed blocks is displayed. This is done independently of the selected function. When the
AUTORESTART completes, it PT_RETs to the function requested.

GRAPHICAL

[NO]GRAPHICAL

Setting this option to GRAPHICAL switches the output to the graphical format. For the display
functions BACKUP and HIGH_WATER, only the graphical format is supported. The default is
NOGRAPHICAL.

INTERVAL

INTERVAL = number

This parameter specifies the data-collection sampling interval in seconds.

The default interval is 3 seconds.

LOOPS

LOOPS = number

This parameter limits the number of data collection loops.

By default, ADAMON loops continuously. Data collection can be terminated with CTRL/C.

Adabas Utilities200

ADAMON (Monitoring The Database Nucleus)



Examples

Example 1:

adamon dbid=1

Display the activity of database 1.

Example 2:

adamon dbid=2
adamon display=high_water

Display the high-water marks of database 2.

Example 3:

adamon dbid=3
adamon display=io graphical

Display the I/O activity of database 3 with graphical output.

Example 4:

adamon dbid=4
adamon interval=10

Display the activity of database 4, and refresh the content of the screen every 10 seconds.

201Adabas Utilities

ADAMON (Monitoring The Database Nucleus)



202



17 ADAMUP (Mass Add And Delete)

■ Functional Overview ....................................................................................................................... 204
■ Procedure Flow ............................................................................................................................. 205
■ Checkpoints ................................................................................................................................. 208
■ Control Parameters ........................................................................................................................ 209
■ Restart Considerations ................................................................................................................... 215
■ SORT Data Set Placement .............................................................................................................. 215
■ TEMP Data Set Placement .............................................................................................................. 215
■ Examples ..................................................................................................................................... 216

203



This chapter describes the utility "ADAMUP".

Functional Overview

The mass update utility ADAMUP adds records to, or deletes records from a file in a database. It
does not require the Adabas nucleus to be active.

The output files produced by the compression utility ADACMP or the unload utility ADAULD
may be used as input for a mass add.

Note: The ADAMUP ADD function can process MUPDTA/MUPDVT files created with
earlierAdabas versions, but notMUPDTA/MUPDVTfiles createdwith laterAdabas versions.

Input files produced byADACMP or ADAULDwith the SINGLE_FILE option or from a previous
run of ADAMUP using the DELETE function with the LOG option can also be used.

Input files producedwithout descriptor value tables (SHORToption inADAULDor LOG=SHORT
option in ADAMUP) can be processed if the database file to be processed does not contain any
descriptors.

The input for the DELETE function is provided in an input file. Each record contains one or more
ISNs or ISN ranges.

Records may be both added to and deleted from a database file during a single run of ADAMUP.

If the utility writes records to the error file, it will exit with a non-zero status.

This utility is a single-function utility.

Adabas Utilities204

ADAMUP (Mass Add And Delete)



Procedure Flow

205Adabas Utilities

ADAMUP (Mass Add And Delete)



The sequential files MUPDTA, MUPDVT, MUPTMP, MUPLOB and MUPERR can have multiple
extents. For detailed information about sequential files with multiple extents, see Administration,
Using Utilities.

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

Tape, DiskMUPDTACompressed input
data

Tape, DiskMUPDVTDescriptor values

Disk, Tape (* see note)MUPERRRejected data

Temporary working space, will be deleted
again when ADAMUP terminates

Disk, TapeMUPLOBLOB data

Temporary working space, will be deleted
again when ADAMUP terminates

Disk, TapeMUPTMPNormal index

Administration Manual, temporary working
space

DiskSORTx
TEMPLOCx

Sort storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAMUP messages

DiskTEMPxTemporary storage

DiskWORK1Work

Note: (*) A named pipe can be used for this sequential file (not on OpenVMS, see Adminis-
tration, Using Utilities for details).

In cases without an active nucleus and no pending AUTORESTART, the WORK may be used as
TEMP by setting the environment variable/logical name TEMP1 to the same value as WORK1.

Adabas Utilities206

ADAMUP (Mass Add And Delete)



The sequential files MUPTMP, MUPLBI, MUPLOG and MUPERR can have multiple extents. For
detailed information about sequential fileswithmultiple extents, seeAdministration,UsingUtilities.

207Adabas Utilities

ADAMUP (Mass Add And Delete)



Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

Disk, Tape (* see note)MUPERRRejected data

Disk, TapeMUPISNISNs to be deleted

Temporary working space, will be deleted
again when ADAMUP terminates

Disk, TapeMUPLBILOB ISNs

Disk, TapeMUPLOGCompressed data

Temporary working space, will be deleted
again when ADAMUP terminates

Disk, TapeMUPTMPNormal index

Administration Manual, temporary working
space

DiskSORTx
TEMPLOCx

Sort storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAMUP messages

DiskWORK1Work

Note: (*) A named pipe can be used for this sequential file (not on OpenVMS, see Adminis-
tration, Using Utilities for details).

Checkpoints

The following table shows the nucleus requirements for each function and the checkpointswritten:

Checkpoint writtenNucleus is NOT requiredNucleus must NOT be activeNucleus must be activeFunction

-XFDT

SYNPX(* see note 3)X(* see note 2)X(* see note 1)UPDATE

-XSUMMARY

Notes:

1. When deleting records in a file with LOB data.

2. When updating an Adabas system file.

3. Except when deleting records in a file with LOB data.

Adabas Utilities208

ADAMUP (Mass Add And Delete)



Control Parameters

The following control parameters are available:

M DBID = number

FDT

SUMMARY

UPDATE = number [,FDT]
[ADD [,add_keywords]]
[DELETE [,delete_keywords]]

D [,[NO]FORMAT]
D [LWP = number[K]]

DBID

DBID = number

This parameter selects the database to be used.

FDT

FDT

This parameter displays the Field Definition Table (FDT) of the selected file in the database. If re-
cords are to be added to a file, the FDT of the sequential input file containing these records can
also be displayed. This parameter may also be used in an ADD/DELETE specification.

Depending on the context inwhich the FDTparameter is used, the FieldDefinition Table contained
in the sequential input file MUPDTA and/or the Field Definition Table contained in the selected
database file is displayed.

SUMMARY

SUMMARY

This parameter displays the Descriptor Space Summary (DSS) on the sequential input file that
contains the compressed records. This display is identical to the one at the end of the ADACMP,
ADAULD or ADAMUP runwhich generated this input file, and can be used to estimate the space
required in the index.

Because the information has to be obtained from the last block of the input file on magnetic tape,
a mechanical fast wind is required and some delay should be expected.

209Adabas Utilities

ADAMUP (Mass Add And Delete)



Additionally, the following information is displayed:

■ required SORT size (for default LWP)
■ recommended TEMP size (the size required to do the index update in one pass)
■ current size of SORT (if present)
■ LWP needed for memory-resident sort
■ Recommended size of LWP and SORT (if LWP is large enough to allow a smaller SORT size to
be used).

Note: If the default LWP is large enough to do a memory-resident sort, SORT sizes are not
displayed.

UPDATE

UPDATE = number [,FDT]
[ADD [,add_keywords]]
[DELETE [,delete_keywords]]
[,[NO]FORMAT]
[LWP = number[K]]

This function specifies the file to which records are to be added/deleted. Since ADAMUP requires
exclusive control of the file, it cannot be used for an Adabas system file while the nucleus is active.
You are not allowed to specify a LOB file.

ADD

ADD
[,DE_MATCH = keyword]
[,FDT]
[,[NO]NEW_FDT]
[,NUMREC = number]
[,SKIPREC = number]
[,UQ_CONFLICT = keyword]
[,RI_CONFLICT = keyword]
[,[NO]USERISN]

This parameter indicates that records are to be added to the file specified by the UPDATE para-
meter.

The input for mass add is produced by the compression utility ADACMP, the unload utility
ADAULD or by a previous run of the mass update utility ADAMUP using the DELETE function
with the LOG option set.

ADAMUP compares the FDT in the sequential input file that contains the compressed records
with the FDT of the database file specified. The FDTs must have identical layouts and must use
the same field names, formats, lengths and options.

Adabas Utilities210

ADAMUP (Mass Add And Delete)



Descriptors in the database file can be a subset of the descriptors defined in the FDT in the sequential
input file, but the input file must contain descriptor value table (DVT) entries for all descriptors
defined in the database file. Therefore, input files producedwithout descriptor value tables (SHORT
option) can only be processed if there are no descriptors currently defined in the database file to
be updated.

If the input for mass update contains LOB data, the Adabas file must have an assigned LOB file.

DE_MATCH = keyword

This parameter is used to indicate which action is to be taken if a descriptor provided with the
input data is not a descriptor in the actual FDT of the file. If keyword = IDENTICAL, ADAMUP
terminates processing and returns an error message. If keyword = SUBSET, ADAMUP ignores a
descriptor which is in the input file, but which has been removed from the database file.

The default is DE_MATCH=IDENTICAL.

[NO]NEW_FDT

If NEW_FDT is specified, the FDT of the file is replaced by the FDT of theMUPDTAfile. NEW_FDT
can only be specified if the file is empty when ADAMUP is started.

NEW_FDT must be specified if the FDT of the file in the database and the FDT of the MUPDTA
file are different - a mass update is not possible if the FDTs are different and the file is not empty.

The default is NONEW_FDT.

NUMREC = number

This parameter specifies the number of records to be added. If NUMREC is specified, ADAMUP
terminates after adding the predefined number of records, unless an end-of-file condition on the
input file causesADAMUPprocessing to end. IfNUMREC is omitted and SKIPREC is not specified,
all records in the input file are added.

SKIPREC = number

This parameter specifies the number of records in the input file to be skipped before starting to
add records.

UQ_CONFLICT = keyword

This parameter is used to indicate which action is to be taken if duplicate values are found for a
unique descriptor. 'keyword` may take the values ABORT or RESET. If ABORT is specified,
ADAMUP terminates execution and returns an error status if duplicate UQ descriptor values are
found. If RESET is specified, conflicting ISNs are written to the error log, the UQ status of the
descriptors in question is removed and processing continues.

The default is UQ_CONFLICT=ABORT.

211Adabas Utilities

ADAMUP (Mass Add And Delete)



RI_CONFLICT

This parameter is used to indicate which action is to be taken if referential integrity is violated.
'keyword` may take the values ABORT or RESET. If ABORT is specified, ADAMUP terminates
execution and returns an error status. The index is marked as not accessible. If RESET is specified,
the violated constraint is removed. In both cases the violating ISNs are stored in the error log.

The default is RI_CONFLICT=ABORT.

[NO]USERISN

This option indicates whether the ISN to be assigned to each record is to be taken from the input
file or not.

This option should be set to USERISN if the user wants to control ISN assignment for each record
added to the database file. Each ISN provided must be:

■ a four-byte binary number immediately preceding each data record;
■ within the current limit (MAXISN) for the file - the file's Address Converter is not automatically
extended;

■ unique within the specified file.

Otherwise ADAMUP terminates execution and returns an error message.

Note that problems could arise if this option is set toUSERISN for an input file created by an unload
that is based on a descriptor which is a multiple-value field. This is because the same record may
have been unloaded more than once. Please refer to the ADAULD utility, SORTSEQ parameter
for more information.

If this option is set to NOUSERISN, the ISN for each record is assigned by ADAMUP. However,
the ISN of a DVT record that has been previously re-vectored by a hyperexit will not be changed
by ADAMUP.

The default is NOUSERISN.

DELETE

DELETE
[,DATA_FORMAT = keyword]
[,FDT]
[,ISN_NOT_PRESENT = keyword]
[,LOG = keyword | ,NOLOG]

This parameter indicates that records are to be deleted from the file specified by the UPDATE
parameter. The ISNs of the records to be deleted are given in an input file.

Adabas Utilities212

ADAMUP (Mass Add And Delete)



DATA_FORMAT = keyword

This parameter defines the data type of the records in the input file containing the ISNs to be de-
leted. Each record contains one or more ISNs or ISN ranges.

Valid ISNs are within the range 1...MAXISN.

In accordance with the formats supported, `keyword' may take the following values:

MeaningKeyword

A single ISN is contained in a 4 byte binary value, an ISN range is contained in two consecutive
binary values, with the high-order bit set in the second value.

BINARY

Blocks in this file start with 2 byte exclusive length field.

Note: ISNs >= 2**31 (2147483648) cannot be deleted with DATA_FORMAT=BINARY.

Each record has the following layout:DECIMAL

[number[-number] [,number[-number]]...] [;comment]

where `number' is decimal number with 1 to 10 digits.

ADAMUP validates all input records in a first step. ADAMUP displays the line number and the
offset for each error that is detected. If an error is detected, ADAMUP terminates execution once
the input file has been completely parsed.

The default is DATA_FORMAT = BINARY.

ISN_NOT_PRESENT = keyword

This parameter indicates the action to be taken when an ISN given in the input file of records to
be deleted is:

■ not within the current limit (MAXISN) for the file;
■ not in the file's Address Converter.

`keyword' may take the following values:

MeaningKeyword

ADAMUP aborts execution and returns an error message if a conflicting ISN is detected.ABORT

ADAMUP writes the conflicting ISNs to the error log and continues processing.IGNORE

The default is ISN_NOT_PRESENT=IGNORE

LOG = keyword

213Adabas Utilities

ADAMUP (Mass Add And Delete)



NOLOG

LOG=keyword indicates that the deleted records are logged in a sequential file. The records are
written in compressed format and are identical to those produced by the compression utility
ADACMPand the unload utility ADAULD. Because each data record is preceded by its ISN, these
ISNs can be used as user ISNs when reloading or mass-adding this file (see the USERISN option
described above).

`keyword' may take the following values:

MeaningKeyword

The descriptor values which are required to build the index, are included in the output file.FULL

The descriptor values which are required to build the index, are omitted from the output file.SHORT

ADAMUPwrites both the compressed data records and the descriptor values generated to a single
file.

The default is NOLOG.

[NO]FORMAT

This option may be used to format blocks at the end of the file's Normal Index (NI) and Upper
Index (UI) extents if the new index (after the modifications have been made) requires less space
than the old index did. This may be the result of deletions within the index, recovery of lost index
blocks or re-establishing the padding factor.

Because these blocks are returned to the file's unused blocks, there are no side-effects if the data
stored in these blocks is not deleted. If this option is set to FORMAT, ADAMUP overwrites these
blocks with binary zeros.

The default is NOFORMAT.

LWP = number[K]

This parameter specifies the size of theWork Pool to be used for the sort during ADAMUP execu-
tion.

The minimum size and the default size is 0 bytes.

Adabas Utilities214

ADAMUP (Mass Add And Delete)



Restart Considerations

ADAMUP has no restart capability. An abnormally terminated ADAMUPmust be rerun from the
beginning.

If the Data Storage space becomes exhausted, ADAMUP will not abort, but will attempt to build
the index for the records that have already been loaded; this means that the file is consistent, and
the remaining records can then be loaded with the SKIPREC option after additional Data Storage
space has been allocated.

SORT Data Set Placement

It is recommended that the SORT data set does not reside on the same volume as the Associator
and the input file that contains the Descriptor Value Tables.

The SORT data set may be omitted when adding only small amounts of data. ADAMUP then
performs an in-core sort.

Use the SUMMARY function to get information about the required SORT and LWP sizes.

TEMP Data Set Placement

It is recommended that the TEMP data set does not reside on the same volume as the input file
that contains theDescriptorValue Tables and the SORT.Although the size of TEMP is closely related
to the performance when loading the Normal/Main Index, successful execution does not depend
on a given size or the presence of a TEMP.

Use the SUMMARY function to display the recommended TEMP size.

215Adabas Utilities

ADAMUP (Mass Add And Delete)



Examples

Example 1:

adamup: dbid=1
adamup: update=10
adamup: add, userisn

File 10 of database 1 is updated by adding new records. The ISN given with each input record is
used.

Example 2:

adamup: dbid=1
adamup: update=10
adamup: delete

The records identified by the ISNs provided on the input file are to be deleted from file 10 of
database 1. The ISNs to be deleted are in binary format.

Example 3:

adamup: dbid=1
adamup: update=10
adamup: add, skiprec=1000
adamup: delete, data_format=decimal, log=full

New records are to be addedwhile old ones are deleted fromfile 10 of database 1. The first thousand
records found on the input file are not added. The ISN for each record added is assigned by
ADAMUP. The ISNs of the records to be deleted are supplied in decimal format on the input file.
All records which have been deleted are logged on an output file. The values required to re-create
the inverted list when reloading are included in the log.

Adabas Utilities216

ADAMUP (Mass Add And Delete)



18 ADANUC (Starting The Database, Defining Nucleus

Parameters)
■ Functional Overview ....................................................................................................................... 218
■ Procedure Flow ............................................................................................................................. 220
■ Checkpoints ................................................................................................................................. 222
■ Control Parameters ........................................................................................................................ 222
■ Summary of ADANUC Parameters .................................................................................................... 241

217



This chapter describes the utility "ADANUC". ADANUC is the database nucleus task.

Functional Overview

The nucleus parameters are used to define the Adabas nucleus runtime environment.

The nucleus parameters are set during nucleus startup.

The nucleus parameters provide the following information:

■ The database to be used;
■ The setting of various Adabas session parameters, such as the maximum Adabas buffer size
and the transaction and user non-activity time limits;

■ The type and amount of commanddata to be loggedduring theAdabas session. These parameters
apply to statistical information and not to the logging of database updates on the Adabas data
protection log.

This utility is a single-function utility.

Notes

1. If ADANUC terminates with a stop error during nucleus startup, e.g. STP055 or STP997, the
reason is probably that there are not enough operating system resources (for examplememory)
available in order to start the nucleus with the specified parameters. You can prevent the stop
error from occurring by reducing the values of some nucleus parameters (for example NT or
LBP).

2. At the start of the first nucleus session after a database has been created or restored, the Adabas
nucleus initializes all of the blocks of the WORK container. For a large WORK container this
may take a fewminutes. The databasewill only be available after the initialization of theWORK
container has finished.

3. The default values for the nucleus parameters can be used if there are not more than 20 users
who perform Adabas calls with relatively small Adabas buffers. The following hints describe
conditions under which it may be necessary to use other nucleus parameter values:
■ If you temporarily have bad response times for Adabas commands (during an Adabas buffer
flush), or if you get I/O errors during asynchronous I/Os even though your hardware is OK,
consider setting BFIO_PARALLEL_LIMIT.

■ If Adabas commands with large adabas buffers are performed, e.g. for LOB processing, con-
sider increasing the value for LAB and LBP.

■ If there are multi-threaded applications performing Adabas calls, consider increasing the
NCL parameter.

■ If the number of parallel Adabas sessions is greater than 20, increase the NU parameter.

Adabas Utilities218

ADANUC (Starting The Database, Defining Nucleus Parameters)



■ If it is important that the autorestart time after a nucleus crash is short, set WRITE_LIMIT to
a small positive value, especially if you are using a large buffer pool.

4. You can run a database in read-only mode by either removing the write permissions from the
Adabas containers or by specifying OPTIONS=READ_ONLY. If you run the database in read-
only mode, the temporary working space on disk is only created if you specify its location ex-
plicitly (environment variables TEMPLOCn or entries TEMPORARY_LOCATION in theDBnnn.INI file).
For further information, see Administration, Temporary Working Space.

5. If the previous Adabas session was not terminated normally with SHUTDOWN or CANCEL,
Adabas performs an Autorestart: All transactions that were active when the nucleus crashed,
are rolled back, and all missing database updates are written to ASSO and DATA. For this
purpose, all update operations have been logged on the WORK container. Additionally, all
update operations are logged in theNUCPLGfile, which is required to recover the current state
of the database, if one or more of the database containers has been corrupted, for example, be-
cause of a disk failure. In case of a nucleus crash, it is necessary that both logs contain the same
information, otherwise the database could contain additional transactions, or transactions could
be lost if you perform a restore/recover later. In order to check this, the PLOG file must still be
availablewith the same namewhen an autorestart is performed. If you have renamed the PLOG
file, or moved it to another location, you get the following warning:

%ADANUC-W-PLNOF, Last plog not found, so consistency check is not possible. New ↩
backup required.

If you get this warning, your database is still consistent, but if you perform a restore/recover
later, it may be that your database then becomes inconsistent. If you create a new backup to be
used as a base for restore/recover, the consistency of the restore/recover is guaranteed again.

6. You can define the nucleus parameters in the Adabas INI files via the DBAWorkbench (not on
OpenVMS). However, these parameters are not used when you execute ADANUC directly. If
you want to start the nucleus with the nucleus parameters that are defined in the Adabas INI
files,without using theDBAWorkbench, you can use theAdabas ExtendedOperation command
adastart (see Adabas Extended Operations, Administration Commands). On Windows platforms,
there is also the utility ADABAS for starting ADANUC with the nucleus parameters in the
Adabas INI files.

7. On UNIX platforms, the IPC resources allocated by the Adabas nucleus are not removed if the
nucleus is not shut down normally with ADAOPR SHUTDOWN or ADAOPR CANCEL. The
nucleus can only be restarted after these resources have been removed, and for this reason the
nucleus executes the command showipc -k <dbid>. Important: if Adabas was not installed as
recommended by user "sag", group "sag", it is necessary to set the environment variable SIPUSER
and/or SIPGROUP. For further information, seeAdministration, showipc. OnWindows platforms,
the operating system automatically removes IPC resources that are no longer used.

219Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



Procedure Flow

The sequential files NUCPLG and NUCCLG can have multiple extents. For detailed information
about sequential files with multiple extents, see Administration, Using Utilities.

Adabas Utilities220

ADANUC (Starting The Database, Defining Nucleus Parameters)



Additional InformationStorage MediumEnvironment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

Utilities Manual,
ADACLP

Disk, TapeNUCCLGCommand log

DiskDATAxData storage

Utilities Manual,
ADAPLP

DiskNUCPLGProtection log

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADANUC messages

DiskWORK1Work

Adabas CSA dump
(see ADAOPR RESPONSE_CHECK)

DiskADA_CSA_DUMPCSA dump

SMP dumpDiskSMP_DUMPFILESMP dump

Administration Manual (see Temporary
Working Space)

DiskTEMPLOCxTemporary working space
(NUCTMPx, NUCSRTx)

Notes:

1. In the environment variable/logical nameADA_CSA_DUMP, the directory inwhich theAdabas
CSA dump is to be created must be specified.

2. The default directory for the Adabas CSA dump file is the database directory. For the layout
of the file names for Adabas CSA dumps, see ADAOPR, parameter CSA.

3. For further information about the Adabas CSA dumps, see also the ADAOPR parameters
ABORT and RESPONSE_CHECK.

4. In the environment variable/logical name SMP_DUMPFILE, the name of the SMP_DUMPFILE
itself (not a directory) must be specified. An existing file is overwritten.

5. If the SMP_DUMPFILE is not specified, the SMP dump is written into the Adabas CSA dump
directorywith the file name SAGSMP.xxx.hh:mm:ss (UNIX), SAGSMP.xxx.hh-mm-ss (Windows)
and SAGSMP-xxx-hh-mm-ss (OpenVMS) where xxx is the database ID and hh:mm:ss/hh-mm-
ss is the nucleus start-time.

221Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



Checkpoints

The following table shows the checkpoints written by the nucleus:

Checkpoint writtenFunction

SYNCNucleus startup

SYNCNucleus termination

Control Parameters

The following control parameters are available:

D ADABAS_ACCESS = {ALL | GROUP}

D AR_CONFLICT = keyword

BFIO_PARALLEL_LIMIT = number

D [NO]BI

D CLOGBMAX = number [K | M]

D CLOGLAYOUT = [5 | 6]

M DBID = number

D LAB = number [K | M]

D LABX = number [K | M]

D LBP = number [K | M]

D LOGGING = (keyword [,keyword]...)

D LPXA = number

D LWP = number [K | M]

D MGC = number

D NCL = number

D NISNHQ = number

Adabas Utilities222

ADANUC (Starting The Database, Defining Nucleus Parameters)



D NT = number

D NU = number

D OPTIONS = (keyword[,keyword]...)

D [NO]PLOG

D READ_PARALLEL_LIMITS = (records,blocks,total)

D TNAA = number

D TNAE = number

D TNAX = number

D TT = number

D TZ = ['timezone']

D UNBUFFERED = ALL | CLEAR | (keyword [, keyword [, keyword]])

USEREXITS = (number[,number]...)

D WRITE_LIMIT = number

ADABAS_ACCESS

ADABAS_ACCESS = {ALL | GROUP}

If ADABAS_ACCESS = ALL is specified, all users may perform Adabas calls.

If ADABAS_ACCESS = GROUP is specified, only those users that belong to the group of the user
starting Adabas, for example sag, may perform Adabas calls.

The default is ALL.

Please refer toAdministration,Database Security Overview, Using the UNIXGroup Concept for further
information about using the ADABAS_ACCESS parameter.

Note: This parameter only applies to local Adabas calls in UNIX environments.

223Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



AR_CONFLICT

AR_CONFLICT = keyword

This parameter specifies the action to be taken if a restart detects that the last system crash was
during a buffer flush. The following keywords can be used:

MeaningKeyword

no restart is performedABORT

the system tries to perform a restartCONTINUE

It is recommended to keep the settingAR_CONFLICT=ABORT. Only if the nucleus does not come
up due to an interrupted buffer flush, then temporarily AR_CONFLICT=CONTINUE should be
set.

Note: You should be aware of the possibility of inconsistencies in the case of a restart with
AR_CONFLICT=CONTINUE. Consistency should be checked with the ADAINV VERIFY
function in this case.

The default is ABORT.

BFIO_PARALLEL_LIMIT

BFIO_PARALLEL_LIMIT = number

This parameter is used to limit the number of parallel I/O requests by a buffer flush and to allow
earlier processing of concurrent I/Os from other threads. A large buffer flush, for example, can
cause the I/O queue to be very busy, and other I/Os (such as buffer pool read I/Os and WORK
I/Os) can be enqueued for a long time, slowing down command throughput and possibly causing
applications to stall if a buffer flush is active.

If BFIO_PARALLEL_LIMIT is specified, the buffer flush sets up the specified number of I/Os and
waits until these have been processed before issuing the next packet. The maximum value for
´number´ is defined by the operating system, for example by the UNIX kernel parameter
AIO_LISTIO_MAX. Specifying a value of 0 is equivalent to specifying themaximumvalue allowed.
The default value is 50.

Note: If the value of BFIO_PARALLEL_LIMIT is too high (or equal to 0), this can result in
an I/O error during asynchronous IO (utility error message: ADRERR). The reason for this
is that thememory availablewithin the operating system for asynchronous I/O is exhausted.
You can imagine that the required memory is at least the size of the blocks to be written to
the database plus some additional space. Themaximumvalue for BFIO_PARALLEL_LIMIT
for which you can be sure that this ADRERR error will not occur, depends on the operating
system configuration and on the other processes that are active on the same machine. 50
seems to be a useful value for BFIO_PARALLEL_LIMIT; if the ADRERR error occurs nev-
ertheless, you should check your operating system configuration.

Adabas Utilities224

ADANUC (Starting The Database, Defining Nucleus Parameters)



Examples

adanuc: bfio_parallel_limit = 20

Twenty parallel I/O requests are permitted for a buffer flush.

adanuc: bfio_parallel_limit = 0

The number of buffer flush I/Os is unlimited.

[NO]BI

[NO]BI

This option is used to specify whether before images are written to the PLOG (BI) or not (NOBI).

The before images on the PLOG are used during a regenerate in order to verify the data consistency
(for example, whether the appropriate PLOG is being used). If NOBI is set, the PLOG is smaller,
but the consistency verifications cannot be performed.

The default is BI.

Note that if you specify NOBI, this will reduce the amount of consistency checking possible when
using the ADAREC REGENERATE function. See ADAREC for more details.

CLOGBMAX

CLOGBMAX = number[K | M]

This parameter specifies the maximum Adabas buffer length that is logged in the command log.
If an Adabas buffer is larger than the value specified, the buffer is truncated in the command log.
0 means that the complete buffers are always logged.

The default is 0 (the complete buffers are logged).

Example

adanuc: clogbmax = 4k

The logging of Adabas buffers is limited to the first 4 kilobytes of each buffer.

225Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



CLOGLAYOUT

CLOGLAYOUT = [5|6]

If you specify CLOGLAYOUT=5, the command log has the same layout as for Adabas Version 5
when command logging is enabled. Since this layout does not support the ACBX interface, only
the subset of information that is also available in the old ACB interface is logged for ACBX calls.
The command log can be evaluated with the ADACLP utility that already existed in old versions
of Adabas.

If you specify CLOGLAYOUT=6, the command log is generated in the new layout that is supported
by Adabas Version 6. For evaluating the command log, an example program prilogc is provided
– for details see Appendix B.

The default value is 5.

DBID

DBID = number

This mandatory parameter selects the database to be used. `number' is in the range from 1 to 255.

Example:

adanuc: dbid = 2

Database 2 is used.

LAB

LAB = number[K | M]

This parameter specifies the size of the attached buffer area to be used during the Adabas session.
The attached buffer area is used for allocating the user buffers during command execution.

Adabas rounds up the given value to the next multiple of 32 kilobytes to allocate the attached
buffer area.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

Theminimumvalue is 1megabyte, the default value is 1megabyte, however, if the value specified
is less than the value of theNCLparameter in kilobytes, the value for LAB is automatically increased
to that value.

Adabas Utilities226

ADANUC (Starting The Database, Defining Nucleus Parameters)



Notes:

1. The attached buffersmust be large enough to contain, for each local client thread, themaximum
total size of user buffers for an Adabas call performed by this thread. Additional space may be
required for the administration of the user buffers and for waste resulting from the different
sizes required for different threads.

2. Attached buffers > 64 KB are allocated in the separate attached buffer extension area (see para-
meter LABX).

LABX

LABX = number[K | M]

This parameter specifies the size of the attached buffer extension area to be used for LOBprocessing
or for other Adabas calls that use large Adabas buffer areas. While the regular attached buffers
remain allocated during the whole Adabas session of the users, the attached buffer extensions are
allocated before each Adabas call that requires more than 64 KB of attached buffer space, and they
are released again at the end of the call.

The attached buffer extension area was introduced because storing large buffers in the regular
attached buffer area requires much more space because of fragmentation.

Adabas rounds up the given value to the next multiple of 32 kilobytes to allocate the attached
buffer area.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 1 megabyte, the default value is 20 megabytes.

LBP

LBP = number[K | M]

This parameter specifies the size in bytes of the Adabas buffer pool during the session.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 16 megabytes, the default value is 100 megabytes.

Note: The actual size of the buffer pool also depends on theNTparameter: if the size specified
for LBP is less than NT * 2M, it is automatically increased to NT * 2M.

There are the following reasons for using a buffer pool in Adabas:

227Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



■ If the same database block is accessedmore than once, physical I/Os for rereading the block can
be avoided;

■ Commands that update the database can be finished before all of the corresponding database
blocks have been written to the disk.

If the buffer pool is too small, you have a larger number of I/Os than youwould when performing
the same database operations with a sufficient buffer pool size. In some cases, it may even occur
that Adabas cannot successfully process an Adabas command, in which case the command will
get a response code 162 (buffer pool too small).

In particular, if you process LOBs, it is recommended that you increase the size of the buffer pool;
it should be possible to put the LOBs into the buffer pool without removing too many other
database blocks. On the other hand, the buffer pool should not be too large, since there is no ad-
vantage in having buffer pool I/Os replaced by operating system paging I/Os.

You can use the ADAOPR parameter DISPLAY=BP_STATISTICS in order to help you find the
optimum size for the buffer pool.

Example:

adanuc: lbp=16m

16 megabytes are allocated to the Adabas buffer pool.

LOGGING

LOGGING = (keyword [,keyword]...)

This parameter specifies logging of the buffers as defined in the keyword list.

The following keywords may be specified in the keyword list:

MeaningKeyword

log Adabas control blockCB

log format buffersFB

log record buffersRB

log search bufferSB

log value bufferVB

log ISN bufferIB

log Adabas buffer descriptionsABD

log I/O activityIO

perform no loggingOFF

Adabas Utilities228

ADANUC (Starting The Database, Defining Nucleus Parameters)



Logging parametersmay also be specifiedwhile a session is executing by using operator commands
as described in the section on the utility ADAOPR.

Example

adanuc: logging=(cb)

Command logging is performed for the current Adabas session; all of the Adabas control blocks
will be logged.

LPXA

LPXA = number

This parameter specifies the number of blocks reserved for data protection information on the
Adabas WORK in the XA context if OPTIONS=XA is specified. These blocks are used to save
protection information for transactions which run in the XA context and are in the pending state
(prepared but not yet committed) at nucleus shutdown or for a long time. Each such transaction
uses at least one of these blocks. If there are no free blocks in this area, Adabas will heuristically
commit such transactions.

The minimum value is 1, and the default value is 10.

LWP

LWP = number[K | M]

This parameter specifies the size of the Adabas work pool, which is a work area in memory to be
used for the Adabas nucleus session.

The Adabas work pool area is used to store the following:

■ Descriptor value table (DVT);
■ WORK I/O areas during command execution.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The default value is 16 M, the minimum value is 500 K.

229Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



Example:

adanuc: lwp=750k

The size of the Adabas work pool is 750 Kbytes.

MGC

MGC = number

This parameter specifies the maximum group-commit count. This defines the maximum limit of
ET command grouping before the PLOG buffers are written back to disk. If this limit is reached,
and the final I/O has been performed, all remaining users will be posted.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 1, the default value is 50 and the maximum value is 500.

Example:

adanuc: mgc=80

The maximum group-commit count is 80.

NCL

NCL = number

This parameter specifies the number of client threads locally accessing the database.

Theminimum value is 2. The default value is the value for the NU parameter but at least 50. There
is no fixed maximum value for this parameter, it is only limited by the IPC resources that are
available for the operating system.

Note that Net-Work Version 7 also uses several threads to access the database; please refer to the
Net-Work documentation for further details.

Note: The value specified for the NCL parameter should not be too high. When Adabas
sessions are terminated correctlywith a close command, the associatedmessage queues are
removed, but if the sessions are terminated abnormally without a close command, the
message queues are not removed. A cleanup of themessage queues is only performedwhen
the number of client message queues is equal to the value specified for the NCL parameter
- therefore, it may happen that Adabas attempts to create more message queues than it is
allowed to do by the system, if the value for the NCL parameter is too high, even though

Adabas Utilities230

ADANUC (Starting The Database, Defining Nucleus Parameters)



the actual number of active Adabas users is very small. If this happens, the Adabas com-
mands receive a response 255 (seeMessages and Codes for further information).

NISNHQ

NISNHQ = number

This parameter specifies the maximum number of records that can be placed into hold at any time
by a single user.

If a user attempts to place more records in the hold status than permitted, he will receive a non-
zero response code, even though there may still be space in the hold queue.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 0 - where 0 means unlimited, the default value is 0 (unlimited).

Example

adanuc: nisnhq=50

The maximum number of records which can be in the hold status for a single user is 50.

NT

NT = number

This parameter specifies the number of threads to be established for the Adabas session.

Each Adabas command is assigned to a thread. A thread is released when the command has been
processed.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 1, the maximum value 100 and the default value is 6.

Notes:

1. It is strongly recommended to use anNT parameter value greater than 1, because some internal
commands can only be executed if NT > 1. If NT is 1, some utilities or applications, such as SQL
Gateway, which use these internal commands, may fail.

2. NT = 1 onlymakes sense in some special situations, for example, if support requests anADANUC
trace and you want to have the trace of all Adabas commands in one file.

231Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



3. Increasing the NT parameter usually implies an overhead, whichmay reduce the performance.
Therefore, it usually doesn't make sense to use an NT parameter value that is significantly
higher than the number of hardware threads; if you have a large number of hardware threads,
the performancemay even be better if NT is less than the number of hardware threads, because
the Adabas nucleus is not the only program running on the machine and using CPU time.

4. One reason to increase the value of the NT parameter is if there are several complex commands
in parallel that require a long time to complete. If all nucleus threads are blocked by such
commands, it can happen that short running commands cannot be scheduled for a long time,
and as a result the overall performance of Adabas becomes very low.

5. With previous versions of Adabas, it was possible that short running commands could no longer
be scheduled because complex, long-running commands blocked all threads, which resulted
in very poor overall performance. In order to avoid this situation, now only NT/2 threads can
be used to process such long-running commands in parallel. As a consequence of this, it may
be that you can see several free threads even though there are sufficient commands in the
command queue waiting to be scheduled.

Example:

adanuc: nt=8

Eight threads are established for the session.

NU

NU = number

This parameter specifies the number of user queue elements to be established for theAdabas session.

A user queue element is assigned to each active Adabas user. A user queue element is assigned
when the user issues an OP command or when the first Adabas command is issued. A user queue
element is releasedwhen the user issues a CL command orwhen the user queue element is deleted
on a timeout.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

The minimum value is 2, the default value is 20.

Adabas Utilities232

ADANUC (Starting The Database, Defining Nucleus Parameters)



Example:

adanuc: nu=100

The Adabas user queue consists of 100 elements.

Note: The NU parameter is used for two different purposes:

■ the number of user queue entries
■ the number of communication blocks

For single-threaded applications, the number of required communication blocks is not larger than
the number of user queue elements, but for multi-threaded applications you need one communic-
ation block for each thread of an application that performs Adabas calls. Therefore the required
value of the NU parameter may be much higher than the number of Adabas users.

OPTIONS

OPTIONS = (keyword[,keyword]...)

This parameter is used to define the mode(s) in which the nucleus is started.

The following keywords are permitted:

MeaningKeyword

If AUTO_EXPAND is selected, the database will increase the existing container
extents or create a new container extent if there is no free space available for

AUTO_EXPAND

increasing an existingAdabas file or for adding a newAdabas file. See the section
Container Files in the Administration section for further information.

The AUTORESTART_ONLY keyword shuts down the nucleus immediately
after its startup sequence has completed. If an autorestart is pending, the

AUTORESTART_ONLY

autorestartwill be performed.No user commands or utility callswill be accepted
by the nucleus.

When FAULT_TOLERANT_AR is selected, the nucleus behaviour in the event
of an Adabas error during autorestart can be controlled. If an error occurs for a

FAULT_TOLERANT_AR

given file, a detailed entry is made in the nucleus log, but the autorestart
continues. When the autorestart completes, the DBA can restore and regenerate
the file by using ADABCK RESTORE and ADAREC REGENERATE for the
affected file. If however the error occurred for the index of a file, it is sufficient
to rebuild the file's index by using the REINVERT function of ADAINV. If
FAULT_TOLERANT_AR is not selected, Adabas aborts an autorestart if an error
is detected, and this can cause the database to be in an inconsistent state.

If LOCAL_UTILITIES is selected, ADANUC rejects all remote utility calls, i.e.
the Adabas utilities cannot be run from a remote node across a network. This
setting is recommended if security is important in your operating environment.

LOCAL_UTILITIES

233Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



MeaningKeyword

LOCAL_UTILITIES and UTILITIES_ONLY can be dynamically enabled or
disabled without having to shut the database down (see ADAOPR for further
information).

If OPEN_REQUIRED is selected, an open (OP) command must be issued as the
first command of a user session.

OPEN_REQUIRED

This option should be set if lnk_set_adabas_id is usedwhen callingAdabas from
application servers, and also when using Net-Work, otherwise in these cases
Adabas cannot guarantee transaction integrity following an ADANUC restart.

The READONLY option causes ADANUC to run in read-only mode. Refer to
the Administration Manual for more details.

READONLY

The TRUNCATION keyword controls the truncation of alphanumeric fields. If
TRUNCATION is set, alphanumeric fields are truncated if necessary and response

TRUNCATION

code 0 is returned. If TRUNCATION is not set, response code 55 is returned if
truncation occurred.

If UTILITIES_ONLY is selected, all calls other than for utilities will be rejected,
giving the DBA exclusive control over all of the files in the database. Note,

UTILITIES_ONLY

however, that this restriction only applies to new users; users whowere already
activewhenOPTIONS=UTILITIES_ONLYwas specified can continue processing
normally. If you want exclusive utility control over files or the entire database,
use the LOCK function of ADAOPR instead.

LOCAL_UTILITIES and UTILITIES_ONLY can be dynamically enabled or
disabledwithout having to shut the database down (seeADAOPR in thismanual
for further information).

The keyword XA indicates that the server will support distributed transaction
processing according to the X/OpenXA specification. If theAdabas XA interface

XA

is to be used by an application, OPTION=XA must be used. See Administration,
XA Support for further information.

The default is that no option is set.

Example:

adanuc: options = utilities_only

All non-utility calls are rejected and the DBA has exclusive control over all database files.

Adabas Utilities234

ADANUC (Starting The Database, Defining Nucleus Parameters)



[NO]PLOG

[NO]PLOG

PLOG specifies which protection log is to be switched on.

The database cannot be regenerated if the disk is physically damaged and if there is no protection
log. In this case, the database has to be restored using the last database dump. All updates made
since this last dump was taken are then lost.

PLOG is the default.

READ_PARALLEL_LIMITS

READ_PARALLEL_LIMITS = (records,blocks,total)

For sequential commands, Adabas tries to increase the performance by reading the database blocks
required for the following records in advance and in parallel. This lets you take advantage of disk
striping, and the sequence of I/Os can be optimized. Significant performance improvements can
only be expected when the physical I/O rate is high. A typical case where the READ_PARAL-
LEL_LIMITS parameter can improve the performance is the execution of a batch program inwhich
a complete large file is read, and this file contains a large number of database blocks that are not
in the buffer pool when the program is started. However, this prefetching of database blocks can
also have a negative impact on the performance:

■ Checkingwhich blocks are required for the next records requires a certain amount of CPU time,
and this is superfluous if all blocks are already in the buffer pool.

■ If you don’t read the next records of the command sequence, the overhead for reading blocks
for this command sequence is superfluous.

■ If I/Os for toomany blocks have been initiated, an I/O required for another commandperformed
in parallel may be delayed significantly.

The READ_PARALLEL_LIMITS parameter lets you control the read-ahead behaviour. You can
specify 3 numbers with the following meanings:

records
Themaximumnumber of records to be processed next in a command sequence, that are checked
for blocks that are not yet in the buffer pool. Themaximumvalue that can be specified is 65,535.

blocks
The maximum number of blocks read in advance for one command sequence. The number
specified for blocks must be <= the number specified for records, the maximum value is oper-
ating-system dependent.

total
Themaximum total number of blocks read in advance at the same time for thewhole database.
The number specified for totalmust be >= the number specified for blocks, themaximumvalue
is operating-system dependent.

235Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



The default is (0,0,0), i.e. no read-ahead is performed.

Note: If the value of the number specified for total is too high, this can result in an I/O error
during asynchronous IO (utility error message: ADRERR). The reason for this is that the
memory available within the operating system for asynchronous I/O is exhausted. You can
imagine that the required memory is at least the size of the blocks to be written to the
database plus some additional space. The maximum value for total for which you can be
sure that this ADRERR error will not occur, depends on the operating system configuration
and on the other processes that are active on the same machine.

Example

adanuc: read_parallel_limits = (100,20,50)

When sequential commands are processed, the next up to 100 records of a command sequence are
checked for required blocks that are not yet in buffer pool. The search for blocks to be read is
stoppedwhen 20 blocks are found, orwhen the number of blocks found plus the number of blocks
currently read by other commands is 50. Then a read I/O for these blocks is initiated.

TNAA

TNAA = number

This parameter specifies the maximum elapsed time (in seconds) that an access-only user may be
active without issuing an Adabas command. This value can be changed dynamically with the
ADAOPR utility.

TheOP command allows you to override this value. SeeCommandReference,OP command for details.

See Command Reference, Time Limits for a table with timeout conditions.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 900 and the maximum value is 2592000.

Example:

adanuc: tnaa=180

The non-activity time limit for access-only users is 180 seconds.

Adabas Utilities236

ADANUC (Starting The Database, Defining Nucleus Parameters)



TNAE

TNAE = number

This parameter specifies the maximum elapsed time (in seconds) that an ET logic user may be
active without issuing an Adabas command. This value can be changed dynamically with the
ADAOPR utility.

TheOP command allows you to override this value. SeeCommandReference,OP command for details.

See Command Reference, Time Limits for a table with timeout conditions.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 900 and the maximum value is 2592000.

Example:

adanuc: tnae=180

The non-activity time limit for ET logic users is 180 seconds.

TNAX

TNAX = number

This parameter specifies the maximum elapsed time (in seconds) that an exclusive update user
who does not use ET logic may be active without issuing an Adabas command. This value can be
changed dynamically with the ADAOPR utility.

TheOP command allows you to override this value. SeeCommandReference,OP command for details.

See Command Reference, Time Limits for a table with timeout conditions.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 900 and the maximum value is 2592000.

237Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



Example:

adanuc: tnax=180

The non-activity time limit for exclusive update users is 180 seconds.

TT

TT = number

This parameter specifies themaximumelapsed time (in seconds) permitted for a logical transaction
issued by an ET logic user. This value can be changed dynamically with the ADAOPR utility.

TheOP command allows you to override this value. SeeCommandReference,OP command for details.

The timemeasurement for a logical transaction starts when the first command that places a record
in hold status is issued, and terminates when an ET, BT, or CL command is issued. Adabas takes
the following action when this time limit is exceeded:

1. All database updates made during the transaction are backed out;

2. All records held during the transaction are released;

3. All Command IDs for the user are released;

4. Response code 9 is returned on the next call issued by the user.

This time limit does not apply to non-ET logic users. The value specified for TT directly influences
the required size of the Adabas Work data set.

The high water mark for this parameter can be displayed using the DISPLAY parameter in
ADAOPR.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 300 and the maximum value is 2592000.

Example:

adanuc: tt=50

The transaction time limit for ET logic users is 50 seconds.

Adabas Utilities238

ADANUC (Starting The Database, Defining Nucleus Parameters)



TZ

TZ = ['timezone']

The specified time zone must be a valid time zone name that contained in the time zone database
known as the Olson database (http://www.twinsun.com/tz/tz-link.htm). If a time zone has been
specified, this time zone is used for time zone conversions of date/time fields with the option TZ,
unless a user has specified his own time zone in the OP command.

The default is none. If no time zone is specified, a time zone conversion can only be done for users
who specified a time zone in the OP command - other users get an Adabas response code 48.

UNBUFFERED

UNBUFFERED = ALL | CLEAR | (keyword [, keyword [, keyword]]) ↩

This parameter is relevant only for UNIX platforms, and if database containers or the protection
log are stored in a file system. Usually, write I/Os are buffered by the file system. However, if you
specify the O_DSYNC option for the corresponding open call, write I/O operations are performed
unbuffered. This may improve the performance, in particular, if specified for WORK and PLOG,
as it is required that the corresponding log information is really on disk at the end of a transaction.
With the parameter UNBUFFERED, the usage of the O_DSYNC operation may be defined.

Note: Usage of this parameter only has impact on the performance of Adabas; which actual
setting of the UNBUFFERED parameter results in the best performance depends on the
operating system and the storage system used - the integrity of the database is guaranteed
for all values of the UNBUFFERED parameter.

The following keywords may be specified in the keyword list:

MeaningKeyword

ASSO and DATA containers in a file system are opened with the option O_DSYNC.DATABASE

ASSO and DATA containers in a file system are not opened with the option O_DSYNC.NODATABASE

AWORK container in a file system is opened with the option O_DSYNC.WORK

AWORK container in a file system is not opened with the option O_DSYNC.NOWORK

A protection log in a file system is opened with the option O_DSYNC.PLOG

A protection log in a file system is not opened with the option O_DSYNC.NOPLOG

The keyword ALL is equivalent to (DATABASE, WORK, PLOG).

The keyword CLEAR is equivalent to (NODATABASE, NOWORK, NOPLOG).

The default is (NODATABASE, WORK, PLOG).

239Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)

http://www.twinsun.com/tz/tz-link.htm


Example:

adanuc: unbuffered=(nowork)

O_DSYNC is not used for ASSO and DATA containers because NODATABASE is the default.

O_DSYNC is not used for WORK container because NOWORK has been specified.

O_DSYNC is used for protection logs because PLOG is the default.

USEREXITS

USEREXITS = (keyword [,keyword]...)

This parameter, used in conjunction with the user exit facility, specifies one or more user exits.
The specified user exit(s) must be loadable at execution time.

The keyword can take the values 1, 2, 4, 11 and 14.

Notes:

1. User exit 1 and 11 are mutually exclusive.

2. User exit 4 is only activated if CLOGLAYOUT=5 is specified. User exit 14 is only activated if
CLOGLAYOUT=6 is specified.

See Administration,User Exits and Hyperexits for further information about the user exits available.

WRITE_LIMIT

WRITE_LIMIT = number

This parameter specifies the percentage of modified blocks permitted in the buffer pool before an
implicit buffer flush is taken.

A number in the range from 0 to 70may be specified; 0means that Adabaswill dynamically choose
an appropriate value.

Note: If you have a large buffer pool, it is useful to specify a small value for WRITE_LIMIT
in order to reduce the time required for an auto restart of the nucleus: during an auto restart,
ADANUCmust read the update log in theWORK container and reapply all changes in the
database that had not yet been written to disk. A smaller value for WRITE_LIMIT means
a smaller amount of data not yet written to disk, and therefore less updates to be made
during the auto restart.

Adabas Utilities240

ADANUC (Starting The Database, Defining Nucleus Parameters)



Example:

adanuc: write_limit=40

An implicit buffer flush is taken when 40% of the blocks in the buffer pool have been modified.

Summary of ADANUC Parameters

Dynamic
(see note
3)

DefaultMax. ValueMin.
Value

UseParameter

Restrict user access for
making Adabas calls

ADABAS_ACCESS

NoABORTRestart after crash during
buffer flush

AR_
CONFLICT

Yes0None (see
note 4)

0Limit of parallel buffer
flush IOs

BFIO_PARALLEL_LIMIT

NoBIWrite before image to
PLOG

[NO]BI

No0 (complete)Length of Adabas buffers
logged

CLOGBMAX

No5Select layout of CLOGCLOGLAYOUT

NoNone2551DatabaseDBID

1MBNone1MBAttached buffer areaLAB

20MBNone1MBAttached buffer extension
area

LABX

No100MBNone (see
note 1)

16MBMaximum Adabas
Buffer Pool Size

LBP

YesOFFCommand LoggingLOGGING

No10 blocks if the
XA option is set

65535 blocks1 blockXA data protection area
size

LPXA

No500 KBNone16 MBLength of Adabas
Work Pool

LWP

No505001Maximum Group-
Commit Count

MGC

No=NU, but at least
50

None2Number of local client
threads

NCL

Yes0None0MaximumNumber of ISNs
in Hold per User

NISNHQ

241Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



Dynamic
(see note
3)

DefaultMax. ValueMin.
Value

UseParameter

No61001Number of ThreadsNT

No20 usersNone2 usersUser Queue SizeNU

SomeNo optionVarious OptionsOPTIONS

NoPLOGProtection Logging[NO]PLOG

Yes(0,0,0)65535 for
records. The

(0,0,0)Optimize read-ahead I/O
performance

READ_PARALLEL_LIMITS

maximum
values for
blocks and
total depend
on the
operating
system.

Yes900
seconds

259200020Non-Activity
Time Limit
(ACC Only Users)

TNAA

Yes900
seconds

259200020Non-Activity
Time Limit
(ET Logic Users)

TNAE

Yes900
seconds

259200020Non-Activity
Time Limit
(EXU,EXF Users)

TNAX

Yes300
seconds

259200020Transaction
Time Limit

TT

NoNODATABASE,
WORK, PLOG

Setting of the O_DSYNC
option (UNIX platforms
only)

UNBUFFERED

NoNoneUser Exit(s)
to be used

USEREXITS

YesNone (see note 2)700Buffer Pool
Modification Limit

WRITE_
LIMIT

Notes:

1. A limit may be given by the operating system, for example via the maximum size of a shared
memory segment.

2. If not specified, Adabas dynamically chooses an appropriate value.

3. If the value of a dynamic parameter is changed using ADAOPR, the new value takes effect
immediately, without the nucleus having to be restarted. In the case of non-dynamic parameters,
the nucleus must first be stopped and restarted for the new value to take effect.

Adabas Utilities242

ADANUC (Starting The Database, Defining Nucleus Parameters)



4. A value of 0 means there is no limit.

243Adabas Utilities

ADANUC (Starting The Database, Defining Nucleus Parameters)



244



19 ADAOPR (Operator Utility)

■ Functional Overview ....................................................................................................................... 246
■ Procedure Flow ............................................................................................................................. 247
■ Checkpoints ................................................................................................................................. 248
■ Control Parameters ........................................................................................................................ 248

245



This chapter describes the utility "ADAOPR".

Functional Overview

The DBA uses this utility to operate the Adabas nucleus.

This utility is a multi-function utility.

Adabas Utilities246

ADAOPR (Operator Utility)



Procedure Flow

Additional InformationStorage MediumEnvironment
Variable/
Logical Name

Data Set

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAOPR messages

247Adabas Utilities

ADAOPR (Operator Utility)



Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Checkpoint writtenNucleus is NOT requiredNucleus must NOT be activeNucleus must be activeFunction

SYNCFEOF=PLOG

Control Parameters

The following control parameters are available:

ABORT

BFIO_PARALLEL_LIMIT = number

CANCEL

CLEAR_FILE_STATS = (number [- number] [, number [- number] ] ... )

CSA = string

DBID = number

DISPLAY = (keyword [,keyword]...)

ES_ID = number

D [NO]ET_SYNC

EXT_BACKUP = [PREPARE | CONTINUE | ABORT]

FEOF = (keyword [,keyword])

FILE = number

FREE_CLQ = number

ID = number

D [NO]IO_TIME

ISN = ( number [- number] [,number [- number] ] ... )

Adabas Utilities248

ADAOPR (Operator Utility)



[UN]LOCK = (number [,number]...)

LOGGING = (keyword [,keyword]...)

LOGIN_ID = number

MGC = number

NISNHQ = number

NODE_ID = string

OPTIONS = (keyword [,keyword]...)

READ_PARALLEL_LIMITS = (records,blocks,total)

RESET = keyword

D [NO]RESPONSE_ABORT

RESPONSE_CHECK = (number[-number][,number[-number]]...)

SET_FILE_STATS = (number[-number][,number[-number]]...)

SHUTDOWN

STATUS = (keyword [,keyword]...)

STOP = (number[-number][,number[-number]]...)

TNAA = number

TNAE = number

TNAX = number

TT = number

USER_ID = string

WRITE_LIMIT = [number]

XA_RESPONSE_CHECK = (keyword [,keyword]...)

249Adabas Utilities

ADAOPR (Operator Utility)



ABORT

ABORT

This function terminates theAdabas session immediately. All commandprocessing is immediately
stopped. The session is terminated abnormally with a pending AUTORESTART.

ABORT causes the following files to be written to the databases's default directory:

■ The CSA dump file, which contains status information from the adabas nucleus. The name of
the file is ADABAS.xxx.hh:mm:ss (UNIX), ADABAS.xxx.hh-mm-ss (Windows) or ADABAS-
xxx-hh-mm-ss (OpenVMS),where xxx is the database ID and hh:mm:ss (or hh-mm-ss) is the
time at which the file was created. ADAOPR can also display the same information that you
can get for a running nucleus for a CSA dump file if you specify the CSA parameter.

■ The SMP dump file, which contains some diagnostic information. The name of the file is
SAGSMP.xxx.hh:mm:ss (UNIX), SAGSMP.xxx.hh-mm-ss (Windows) or SAGSMP-xxx-hh-mm-
ss where xxx is the database ID and hh:mm:ss (or hh-mm-ss) is the time at which the file was
created.

BFIO_PARALLEL_LIMIT

BFIO_PARALLEL_LIMIT = number

This function sets the number of parallel I/O requests by a buffer flush, allowing earlier processing
of concurrent I/Os from other threads. A large buffer flush, for example, can cause the I/O queue
to be very busy, and other I/Os (such as buffer pool read I/Os and WORK I/Os) can be enqueued
for a long time, slowing down command throughput and possibly causing applications to stall if
a buffer flush is active.

If BFIO_PARALLEL_LIMIT is specified, the buffer flush sets up the specified number of I/Os and
waits until these have been processed before issuing the next packet. The maximum value for
´number´ is defined by the Adabas system, If a value of 0 is specified, the number of buffer flush
I/Os is unlimited.

CANCEL

CANCEL

This function terminates the Adabas session immediately. A BT command is issued for each active
ET user and the session is terminated.

The communication link to the database is cut but the shared memory is still held. In this case,
display functions are still possible with ADAOPR but parameter modification commands are no
longer permitted.

Adabas Utilities250

ADAOPR (Operator Utility)



CLEAR_FILE_STATS

CLEAR_FILE_STATS = (number [- number] [, number [- number] ] ... )

This function disables the collection of I/O statistics enabled by SET_FILE_STATS for the specified
file(s).

CSA

CSA = string

`string' is a file specification of a file containing status information from an Adabas nucleus, a so-
called CSA dump file. This file may be created by an ADAOPR ABORT function, by an abnormal
termination of Adabas, or by response check trapping (refer to the RESPONSE_CHECK function
for further information).

The following naming conventions are used for the file:

UNIX

ADABAS.xxx.hh:mm:ss
ADABAS.xxx.RSPyyy.hh:mm:ss

Windows

ADABAS.xxx.hh-mm-ss
ADABAS.xxx.RSPyyy.hh-mm-ss

OpenVMS

ADABAS-xxx-hh-mm-ss
ADABAS-xxx-RSPyyy.hh-mm-ss

(with the NORESPONSE_ABORT option set), where

■ `xxx' is the three digit database ID;
■ `yyy' is the trapped three digit response code;
■ `hh:mm:ss' is the time the file was created (UNIX),
■ `hh-mm-ss' is the time the file was created (Windows and OpenVMS)

For example, if the database ID is 5, and the file creation was initiated by a trapped response code
113, the file name will start with ADABAS.005.RSP113, and then the time of creating will be ap-
pended, e.g. ADABAS.005.RSP113.12:16:50 (UNIX) or ADABAS.005.RSP113.12-16-50 (Windows)
or ADABAS-005-RSP113.12-16-50 (OpenVMS).

251Adabas Utilities

ADAOPR (Operator Utility)



The filewill be created in the directory that is pointed to by the environment variable/logical name
ADA_CSA_DUMP. The default is the directory from which the nucleus was started. If a file with
the same name already exists in this directory, it will be overwritten.

The DBID and CSA parameters are mutually exclusive.

DBID

DBID = number

This parameter selects the database to which all subsequent ADAOPR commands apply. Multiple
DBIDs are supported within one session.

The DBID and CSA parameters are mutually exclusive.

Example:

adaopr: dbid=1
adaopr: shutdown
adaopr: dbid=2
adaopr: shutdown
adaopr: dbid=3
adaopr: shutdown
adaopr: quit

DISPLAY

DISPLAY = (keyword [,keyword]...)

This parameter displays various information during an Adabas session.

The following keywords can be used:

MeaningKeyword

Database activities display.ACTIVITY

Buffer pool statistics display.BP_STATISTICS

Command table display.COMMANDS

Command queue display.CQ

Dynamic nucleus parameters display.DYNAMIC_PARAMETERS

File I/O display.FILE_IO

Format pool statistics display.FP_STATISTICS

High water marks display.HIGH_WATER

Hold queue display.HQ

Internal command queue display.ICQ

Adabas Utilities252

ADAOPR (Operator Utility)



MeaningKeyword

Container I/O times display.IO_TIMES

Protection log statistics.PLOG_STATISTICS

Adabas - Adabas replications.REPLICATIONS

Static nucleus parameters display.STATIC_PARAMETERS

Thread table display.TT

Utility communication block.UCB

User queue display.UQ

User file list display.UQ_FILES

Full information about user queue element.UQ_FULL

User time limits display.UQ_TIME_LIMITS

The following examples show the information produced by the various keywords, together with
explanations of the information that is displayed.

Someof the followingdisplays include percentages. The corresponding values are always truncated.
An undefined value (divided by 0) is specified with " *%" and an overflow with "***%".

Example: DISPLAY=ACTIVITY

adaopr: display=activity

ADANUC Version <version number>
Database 76 Activity on 22-JAN-2010 13:19:30

I/O Activity Total Throwbacks Total
------------ ----- ---------- -----
Buffer Pool 5,440 Waiting for UQ context 87
WORK Read 728 Waiting for ISN 53
WORK Write 647 ET Sync 0
PLOG Write 194 DWP Overflow 0
NUCTMP 1,600
NUCSRT 531

Pool Hit Rate Total Interrupts Current Total
------------- ----- ---------- ------- -----
Buffer Pool 99.6% WP Space Wait 0 0
Format pool 98%

The information has the following meaning:

■ I/O ACTIVITY shows the total numbers of:
■ physical buffer pool I/Os (physical read I/Os + physical write I/Os);

253Adabas Utilities

ADAOPR (Operator Utility)



■ read and write I/Os for WORK and PLOG.
■ I/Os for NUCTMP and NUCSRT

■ INTERRUPTS shows the current and total number of workpool space waits;
■ POOL HIT RATE shows:

■ the buffer pool hit rate. This is the relationship between the logical read I/Os and the physical
read I/Os. The buffer pool hit rate is calculated using the following formula:

hit rate (in %) = ((logical read I/Os - physical read I/Os) * 100)
/ logical read I/Os

■ the format pool hit rate. This is the relationship between the number of format buffer requests
(required FBs) and the required format buffers already translated in the format pool (translated
FBs). The format pool hit rate is calculated using the following formula:

hit rate (in %) = ((translated FBs * 100) / required FBs)

■ THROWBACKS shows:
■ the number of commandswaiting for session context because internal commandswere running;
■ the number of commands waiting because ISNs are held by another user;
■ the number of commands waiting for ET synchronization;
■ the number of commands thrown back because of dynamic work pool overflow.

EXAMPLE: DISPLAY=BP_STATISTICS

adaopr: display=bp_statistics

ADANUC Version <version number>
Database 76 Buffer Pool Statistics on 19-JAN-2010 14:58:10

Buffer Pool Size : 524,288,000

Pool Allocation RABNs present
--------------- -------------
Current ( 14%) : 73,517,056 ASSO : 11,909
Highwater ( 14%) : 73,517,056 DATA : 3
Internal ( 3%): 15,728,640 WORK : 2,766
Workpool ( 0%) 881,664 NUCTMP : 0

NUCSRT : 0

I/O Statistics Buffer Flushes
-------------- --------------
Logical Reads : 98,201 Total : 1
Physical Reads : 11,914 To Free Space : 0

Adabas Utilities254

ADAOPR (Operator Utility)



Pool Hit Rate : 87.9%
Write Limit ( 5%): 26,214,400

Physical Writes : 2,711 Modified ( 2%): 11,329,536

The information is interpreted as follows:

■ POOL ALLOCATION shows:
■ the size in bytes and percentage of the buffer pool that is currently in use;
■ the size in bytes and percentage of the buffer pool high water mark (see also the display for
DISPLAY=HIGH_WATER).

■ RABNs PRESENT shows:
■ the number of ASSO, DATA and WORK RABNs currently in the buffer pool.

■ I/O STATISTICS shows:
■ the total number of logical and physical buffer pool read I/Os (both numbers are required in
order to calculate the buffer pool hit rate);

■ the buffer pool hit rate (please refer to the example for DISPLAY=ACTIVITY for the buffer
pool hit-rate formula);

■ the total number of physical buffer pool write I/Os.
■ BUFFER FLUSHES shows:

■ the total number of buffer flushes;
■ the total number of buffer flushes that were made in order to get free space;
■ the size in bytes and percentage of the buffer pool write limit. If the modified bytes in the
buffer pool reach this limit, an automatic buffer flush is started. The buffer pool write limit
is automatically adjusted if not explicitly set in ADANUC or ADAOPR;

■ the size in bytes and percentage of the currently modified bytes in the buffer pool.

Example: DISPLAY=COMMANDS

adaopr: display=commands

ADANUC Version <version number>
Database 76 Commands on 19-JAN-2010 14:58:10

ADABAS Commands: 9,884

A1 892 L2 553 OP 25
BT 736 L3 1,124 RC 89
C1 40 L4 569 RE 0
C3 0 L5 420 RI 0
C5 10 L6 436 S1 1,511

255Adabas Utilities

ADAOPR (Operator Utility)



CL 32 L9 456 S2 81
E1 1,006 LF 20 S4 12
ET 72 MC 0 S8 230
HI 0 N1 877 S9 50
L1 643 N2 0

This command displays the total numbers of Adabas commands issued in the current session. For
MC commands, the value displayed is the number of MC calls plus the number of single Adabas
commands contained in the MC calls.

A read command that is issued while the multifetch option is set is counted as a single command.

Updates made by utilities are not included in the display.

Note: The command counts can be reset by ADAOPR RESET=COMMANDS.

Example: DISPLAY=CQ

adaopr: display=cq

ADANUC Version <version number>
Database 76 Command Queue on 19-JAN-2010 14:58:10

No Node Id Login Id ES Id Cmd File Status
-- ------- -------- ----- --- ---- -----
1 sunxxx01 miller 21243798 E1 12 Ready to run
2 sunxxx01 jones 21231788 E1 12 Running
3 sunxxx01 smith 21230756 L2 12 Ready to run
4 sunxxx01 miller 21227398 S1 12 Running
5 sunxxx01 smith 21247630 S1 12 Running
6 sunxxx01 jones 21246388 A1 12 Ready to run
7 sunxxx01 jones 21219466 S1 11 Ready to run
8 sunxxx01 smith 21237160 L6 11 Ready to run
9 sunxxx01 miller 21246610 A1 11 Running
10 sunxxx01 miller 21246896 S1 11 Running
11 sunxxx01 dba 21244730 U0 0 Running

Selected: 11, Used: 11, Queue Size: 20

This display shows the current command-queue entries:

■ NODE ID shows the node identification string.
■ LOGIN ID shows the login user identification string;
■ ES ID shows the environment-specific identification (for example, the process ID);
■ CMD shows the command string;
■ FILE shows the file number;

Adabas Utilities256

ADAOPR (Operator Utility)



■ STATUS shows the status of the command-queue entry.

The final line of the display shows how many command queue entries were selected according
to the currently active selection criteria, and how many entries are used in total in the command
queue.

The possible status values are shown in the following table:

MeaningStatus

Command processing completion;Completed

Command is marked for delete, user is no longer active;Marked For Deletion

Command is ready to be inserted in the scheduling queue;New

Placed in queue and ready for scheduling;Ready To Run

Running in a thread (see DISPLAY=TT);Running

Complex command is waiting to run;Waiting For Complex

Waiting for ET synchronization;Waiting For Et Sync

Waiting for group ET. No entry in thread table;Waiting For Group Commit

Waiting for ISN in file shown in column "File" in the display. No entry in
thread table;

Waiting For Isn <isn>

Waiting for working space. No entry in thread table.Waiting For Space

Waiting for user queue entry. The required entry is locked by an active internal
command;

Waiting For Uqe

Note: The display may show command codes such as "U0", which are only used internally
by Adabas (for example, during a utility run).
The "RUNNING" and "COMPLETED" values may differ even if the user has not specified
an explicit selection criterion.

Example: DISPLAY=DYNAMIC_PARAMETERS

adaopr: display=dynamic_parameters

ADANUC Version <version number>
Database 76 Dynamic Parameters on 19-JAN-2010 14:58:10

Resources: NISNHQ : 100 WRITE_LIMIT: -

Time Slices: TNAA : 900 TNAX : 900
TNAE : 900 TT : 300

Group Commit: MGC : 50

Logging: CLOG : OFF

257Adabas Utilities

ADAOPR (Operator Utility)



Read limits: 200, 10, 30

Response check with ABORT : 84,160,164-182,243,251-252

This display shows the current values of the dynamic nucleus parameters.

Example: DISPLAY=FILE_IO

adaopr: display=file_io

ADANUC Version <version number>
Database 76 File I/O on 19-JAN-2010 14:58:10

Reads Hit
File Logical Physical Rate Writes
---- ------- -------- ---- ------
11 145,341 180 99% 2,869
12 99,070 148 99% 2,149

This display shows the logical and physical reads, their hit rate and the writes the buffer pool
manager has made for every file since the file I/O statistiscs for the file in question were enabled
(ADAOPR SET_FILE_STATS) - files for which the I/O statistics have not been enabled or for which
no I/Os were performed are not displayed.

Notes:

1. The formula for the hit rate value is given in the description of DISPLAY=ACTIVITY.

2. A write operation is only counted if the block was not yet marked as modified. This means that
the physical write I/Os either already done in a previous buffer flush or still pending to be
performed in the next buffer flush are counted.

Example: DISPLAY=FP_STATISTICS

adaopr: display=fp_statistics

ADANUC Version <version number>
Database 76 Format Pool Statistics on 19-JAN-2010 14:58:10

Maximum Local Pool Size: 251,656
Maximum Global Pool Size: 251,656

Pool Allocation Pool Contents
--------------- -------------

Adabas Utilities258

ADAOPR (Operator Utility)



Local Current ( 22%) : 57,540 Local Format Buffers: 162
Local Highwater ( 27%) : 70,000 Global Format Buffers: 1

Global Current ( 0%) : 84
Global Highwater ( 0%) : 84

Pool Statistics Local Global
--------------- ----- ------
Scans 11,780 3
Hits 11,547 2
Hit Rate 98% 66%

Replacements 0 0
Overflows 0 0

This display shows the format pool statistics:

■ POOL ALLOCATION shows:
■ the size in bytes and percentage of the local and global format pools that are currently in use;
■ the size in bytes and percentage of the local and global format pool high water marks.

■ POOL STATISTICS shows:
■ the total number of scans and hits of valid format buffers in the format pool (both numbers
are required in order to calculate the format pool hit rate);

■ the format pool hit rate (please refer to the example DISPLAY=ACTIVITY for the format pool
hit-rate formula);

■ the total number of valid format buffers that are overwritten in the format pool (replacements).
■ Overflows. This is the number of times that a format buffer exceeded the format pool size,
resulting each time in a response 42.

■ POOL CONTENTS shows:
■ the number of valid local format buffers in the format pool;
■ the number of valid global format buffers in the format pool.

Example: DISPLAY=HIGH_WATER

adaopr db=076 display=high_water

ADANUC Version <Version number>
Database 76 High Water Marks on 19-JAN-2010 10:52:08

Area/Entry Size In Use High Water % Date/Time
---------- ---- ------ ---------- - ---------
User Queue 100 14 14 14 19-JAN-2010 10:50:48
Command Queue - 11 11 - 19-JAN-2010 10:50:54

259Adabas Utilities

ADAOPR (Operator Utility)



Hold Queue - 100 100 - 19-JAN-2010 10:46:04
Client Queue 50 1 5 5 19-JAN-2010 10:46:13
HQ User Limit 100 - 83 83 19-JAN-2010 10:47:26
Threads 6 6 6 100 19-JAN-2010 10:45:54
Workpool 16,777,216 0 4,194,320 25 19-JAN-2010 10:46:04

ISN Sort 2,097,152 - 2,095,784 99 19-JAN-2010 10:51:58
Complex Search 2,097,152 - 126,324 6 19-JAN-2010 10:45:54

Attached Buffer 98,304 67,584 67,584 68 19-JAN-2010 10:52:17
Buffer Pool 6,291,456 1,627,136 1,627,136 25 19-JAN-2010 10:52:08
Protection Area 1,000

Active Area 300 - 146 48 19-JAN-2010 10:50:58
Group Commit 50 0 1 2 19-JAN-2010 10:45:46
Transaction Time 300 - 158 52 19-JAN-2010 10:50:28

This display shows the high water marks for the current session:

■ SIZE shows the size in bytes of pools and buffers. For queues, threads and hold queue user
limit, it shows the number of entries.

■ IN USE shows the size in bytes or number of entries currently in use.
■ HIGHWATER shows the maximum quantity required simultaneously for the given area/entry.
■ % shows the relationship between the high water mark and the size. If the high water mark ex-
ceeds the size, the value in this column can be larger than 100 %. For example, this can occur if
the value is decreased by ADAOPR, or if the original area has been dynamically increased. This
is normal Adabas behaviour, and no changes of Adabas parameters are required.

■ DATE/TIME shows the date/time atwhich the highwatermark occurred for the first time. There
is no output in this column if the high water mark is 0.

The entries in the columnAREA/ENTRY correspond to theADANUCparametersNU (user queue),
NCL (client queue), NISNHQ (hold queue user limit), NT (threads), LWP (workpool), LBP (buffer
pool), LAB (attached buffer), MGC (group commit), TT (transaction time). The hold queue and
the command queue have no predefined size and are increased dynamically if required.

The entry "ACTIVE AREA" is the largest part of WORK part 1 that can be used by a single trans-
action. If a transaction's protection information spans more space than allowed by "Active Area",
it receives a response 9 (LP), the nucleus displays a PLOVFL message and a value of more than
100 in the "%" column of the highwater display.

Users who have set user-specific timeout values in their OP call are not included in the values for
Transaction Time.

Note: 1. Values for Attached Buffer and CommandQueue are not displayed correctly if the
nucleus cannot be contacted by ADAOPR (for example, if the ADAOPR parameter CSA is
used.
2. Threads are used in a round-robin manner. Therefore, the high water mark for threads
will be the same as the value shown in the Size column in most cases.

Adabas Utilities260

ADAOPR (Operator Utility)



Example: DISPLAY=HQ

adaopr: file=11, display=hq

ADANUC Version <version number>
Database 76 Hold Queue on 19-JAN-2010 14:58:10

Id Node Id Login Id ES Id User Id File ISN Locks Flg
-- ------- -------- ----- ------- ---- --- ----- ---
15 sunxxx01 miller 6974 *adatst 11 2,222 X M
19 sunxxx01 smith 7056 *adatst 11 2 X

Selected: 2, Used: 8, Queue Size: 160

This display shows the current hold-queue entries:

■ ID shows the internal user identification of the user holding the ISN;
■ NODE ID shows the node identification string. The local node is represented by an empty string;
■ LOGIN ID shows the login user identification string;
■ ES ID shows the environment-specific identification (for example, process ID);
■ USER ID shows the user identification. Adabas utilities use the utility name preceded by an
asterisk as the USER ID;

■ FILE shows the number of the Adabas file in which the ISN is located;
■ ISN shows the number of the ISN in hold;
■ LOCKS shows the kind of lock for the ISN, where X = exclusive lock , S = shared lock.

Note: S is displayed for shared locks starting with Adabas version 6.3 SP 1; in previous
releases R is displayed.

■ An M for FLG indicates that the record has been modified.

The final line of the display shows how many hold queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Entries are displayed in unsorted sequence.

261Adabas Utilities

ADAOPR (Operator Utility)



Example: DISPLAY=ICQ

adaopr: display=icq

ADANUC Version <version number>
Database 76 Internal Command Queue on 19-JAN-2010 14:58:10

Id Node Id Login Id ES Id Command Status
-- ------- -------- ----- ------- ------

00000002 *system 00000000 SHUT Running

Selected: 1, Used: 1, Queue Size: 101

This display shows the internal command queue:

MeaningCommand

AutorestartAR

Back out transactionBT

Back out open transaction and close userBTCL

Cancel nucleusCANCEL

Release file list and delete user queue elementDELUQE

Start an ET-SYNC status check after a global transaction has received a timeoutETSYNC

Shut down nucleusSHUT

STOP from ADAOPRSTOP

Non-activity timeoutTIMEOUT

The status of internal commands can be READY TO RUN, RUNNING, WAITING FOR ET SYNC
or WAITING FOR UQE.

The final line of the display shows how many internal command queue entries were selected ac-
cording to the currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=IO_TIMES

adaopr: display=io_times

ADANUC Version <version number>
Database 76 IO Statistics on 19-NOV-2010 12:16:48

Number of IOs Maximum IO time Average IO time
------------- --------------- ---------------

ASSO Read : 735574 14397 1

Adabas Utilities262

ADAOPR (Operator Utility)



ASSO Write : 12136 2 1
DATA Read : 2023257 13910 1
DATA Write : 444 1 1
WORK Read : 4 1 1
WORK Write : 660 2 1
NUCSRT Read : 4060 940 1
NUCSRT Write : 4060 1 0
NUCTMP Read : 30 1 1
NUCTMP Write : 896 1 1

The number of IOs shows the number of physical read and write I/O accesses to ASSO, DATA,
WORK, NUCSRT and NUCTMP.

The maximum IO time shows the maximum duration of a single I/O read and write access to
ASSO, DATA, WORK, NUCSRT and NUCTMP in microseconds.

The average IO time shows the average time of a single I/O access to ASSO, DATA, WORK,
NUCSRT and NUCTMP in microseconds.

Logging of I/O times is only available if ADAOPR IO_TIME is enabled..

Example: DISPLAY=PLOG_STATISTICS

adaopr: display=plog_statistics

ADANUC Version <version number>
Database 76 PLOG Statistics on 19-JAN-2010 14:59:41

PLOG Environment
----------------
NUCPLG (active) : /FS/fsxxxx/sag/ada6180102/ada/db076/NUCPLG

Active PLOG
-----------
Session Number : 37
Extent : 2

Active Since : 19-JAN-2010 14:59:41
Duration : 00:00:01

Allocated Space : 24,683 KB
Used Space ( 0%) : 32 KB
Average Growth Rate : 115,200 KB/h

263Adabas Utilities

ADAOPR (Operator Utility)



Example: DISPLAY=REPLICATIONS

adaopr: display=replications
ADANUC Version <version number>

Database 34 Replications on 27-JUN-2012 09:47:48

ID From FNR To DB To FNR Status Remark
-- -------- ----- ------ ------ ------
1 111 37 111 Inactive
86 86 37 86 Active

2 transactions pending:
---------------------------

To DB Transactions
----- ------------

37 2

5 commands pending:
-------------------------

From FNR Commands
-------- --------

86 5
111 0

This display shows the Adabas - Adabas replications currently defined. This is only relevant for
customers who are using the Adabas Event Replicator with Adabas - Adabas replication.

Note: Replications to other replication targets, for example SQLdatabases, are not displayed.
Such replications can only be displayedwith the administration tools of the event replication.

The display shows the following information:

■ “ID” is the ID of the replication that is also used in the replication administration.
■ "From FNR” is the file number of the file to be replicated to another Adabas file.
■ “To DB” and “To FNR” are the database ID and file number of the target file for the replication.
■ "Status" can have the following values and meanings:

Adabas Utilities264

ADAOPR (Operator Utility)



MeaningStatus

Currently no data are replicated to the target file, and at the moment no activities have
been made to initiate the replication.

Inactive

This status indicates that it is planned to perform the initial state processing for the
replication. This status is the prerequisite for creating a backup of files to be replicated via
ADABCK with parameter REPLICATION.

Prepare

This status indicates that ADABCKwith parameter REPLICATION is running and creates
a backup containing the initial state of files to be replicated.

Initialization

Adabas is currently recording the update transactionswithin the replication command file
and the replication transaction file, but currently does not replicate the update operations
to the target database.

Recording

The replication is active; all modifications of the source file are replicated to the target file.Active

An unexpected error occurred during replication. In order to continue replication, a new
initial state processing is required.

Error

■ “Pending Transactions” is the number of transactions that have not yet been replicated to the
target file.

Notes:

1. The number contains both transactions that have already been committed but not yet replicated
to the target database, and transactions that are still open and which can only be replicated
after an end of transaction.

2. If a transaction contains commands to be replicated to more than one target database, the
transaction is counted only once, independent of the number of target databases. Therefore
the total number of pending transactions can be smaller than the sum of the transactions for
the different target databases.

■ “Pending Commands” is the number of commands that have not yet replicated to the target
file.

Notes:

1. The number contains both commands belonging to transactions that have already been
committed but not yet replicated to the target database, and commands belonging to transac-
tions that are still open and which can only be replicated after an end of transaction.

2. If a file is replicated to more than one target file, database modification commands of the
source file are counted only once, independent of the number of target files to which a com-
mand has to be replicated.

If ADAOPR DISPLAY=REPLICATIONS is executed in non-interactive mode, ADAOPR returns
one of the following exit status values:

265Adabas Utilities

ADAOPR (Operator Utility)



MeaningValue

At least one replication has been defined, and no replication is in status Error.0

There is a replication in status Error.12

Replication has not been activated, or no replication has been defined.15

Example: DISPLAY=STATIC_PARAMETERS

adaopr: display=static_parameters

ADANUC Version <version number>
Database 76 Static Parameters on 19-JAN-2010 14:58:10

Resources: LAB : 98,304 NT : 6
LBP : 6,291,456 NU : 100
LWP : 170,000 NCL : 50

Logging: PLOG, BI
Options: TRUNCATION

Cloglayout: 5

This display shows the static nucleus parameters.

Example: DISPLAY=TT

adaopr: display=tt

ADANUC Version <version number>
Database 76 Thread Table on 19-JAN-2010 14:58:10

No Cmd Count File Cmd Status
-- --------- ---- --- ------
1 10,566 0 U0 Update , active
2 21,475 11 S1 Complex, active
3 10,382 12 S1 Simple , active
4 2,516 12 S1 Simple , active
5 3,782 11 A1 Update , active
6 1,713 12 E1 Update , active

This display shows the entries in the thread table. The number of displayed entries is simultaneously
the high water mark for threads.

Adabas Utilities266

ADAOPR (Operator Utility)



■ CMDCOUNT shows the total number of Adabas commands processed from the corresponding
thread context. The sum of these counts will normally differ from the sum shown by DIS-
PLAY=COMMANDS, because internal commands are also counted.

■ FILE shows the file number of the Adabas command that is currently being processed from the
corresponding thread context. The file number is 0 if the corresponding thread context is not
active, or if the command is a global one which is not linked to a particular file.

■ CMD shows the command string of the Adabas command that is currently being processed
from the corresponding thread context. There is no output in this column if the corresponding
thread context is not active.

■ STATUS shows the command type and the status of the corresponding thread context.

Possible command types are:

■ Update
■ Simple
■ Complex

Possible entries for the thread status are shown in the following table:

MeaningStatus

available for allocationfree

ready to runready

runningactive

waiting for I/o completion of block
<rabn>

waiting for io
<rabn>/<block type>

waiting for access/update synchronization of
block <rabn>

waiting for
<rabn>/<block type>

waiting for <size> bytes of work pool
space

waiting for space
<size> bytes

The block type can be ASSO, DATA, WORK, FILE or PLOG.

Example: DISPLAY=UCB

adaopr: display=ucb

ADANUC Version <version number>
Database 76 UCB on 19-JAN-2010 14:59:45

Date/Time Entry Id Utility Mode Files
--------- -------- ------- ---- -----

19-JAN-2010 14:59:41 42 adaopr UTO 13

267Adabas Utilities

ADAOPR (Operator Utility)



This display shows the utility communication block.

■ DATE/TIME shows the date and time on which the given files were locked.
■ ENTRY ID shows the allocated identification of the entry.
■ UTILITY shows the name of the utility.
■ MODE shows the mode in which the files are being accessed. The possibilities are:

■ ACC open for access
■ UPD open for update
■ EXU open for exclusive update (parallel access allowed)
■ UTO open for utilities only
■ UTI open for exclusive access (no parallel access or update allowed)

■ Files shows the file numbers of the files that are locked.

Example: DISPLAY=UQ

adaopr: display=uq

ADANUC Version <version number>
Database 76 User Queue on 19-JAN-2010 14:58:10

Id Node Id Login Id ES Id User Id Type Status
-- ------- -------- ----- ------- ---- ------
26 sunxxx01 dba 4473 *adaopr UT
23 sunxxx01 smith 3075 ET E
20 sunxxx01 jones 3178 ET I
19 sunxxx01 jones 1946 ET IE
18 sunxxx01 smith 4689 ET
16 sunxxx01 smith 4661 ET
17 sunxxx01 jones 4638 ######## T
14 sunxxx01 miller 4379 ET R
13 sunxxx01 dba 3967 *adatst AC
12 sunxxx01 dba 3651 *adatst EX,ET E
11 sunxxx01 dba 4025 DBADMIN EX RU

Selected: 11, Used: 11, Queue Size: 100

This display shows the current user queue entries.

■ ID shows the internal user identification;
■ NODE ID shows the node identification string;
■ LOGIN ID shows the login identification string;
■ USER ID shows the user identification;

Adabas Utilities268

ADAOPR (Operator Utility)



■ TYPE shows the user type:
■ AC access only user
■ ET ET user
■ EX exclusive update user
■ EX,ET exclusive update user with ET logic
■ UT utility user.

■ STATUS shows the status of the user:
■ E user at ET status
■ G global timeout (XA)
■ I user session started with an implicit OPEN
■ P pending ET (XA)
■ R restricted file list
■ T user has received a time-out
■ U user specific timeout interval value

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=UQ_FILES

adaopr: display=uq_files

ADANUC Version <version number>
Database 76 User Files on 19-JAN-2010 14:58:10

Id Type Mode Files
-- ---- ---- -----
26 UT
23 ET UPD 11-12
20 ET UPD 11-12
19 ET UPD 11-12
18 ET UPD 11-12
16 ET UPD 11-12
14 ET UPD 11-12
13 AC
12 EX,ET EXU 14
11 EX ACC 11

EXU 13

Selected: 10, Used: 11, Queue Size: 100

269Adabas Utilities

ADAOPR (Operator Utility)



This display shows the file lists for active users.

■ ID shows the internal user identification;
■ TYPE shows the user type (please refer to the DISPLAY=UQ example for more information).
■ MODE shows the mode in which the files are being accessed:

■ ACC open for access
■ EXF open for exclusive access (no parallel access or update allowed)
■ EXU open for exclusive update (parallel access allowed)
■ UPD open for update
■ UTI open for exclusive access (no parallel access or update allowed)
■ UTO open for utilities only

■ FILES shows the Adabas file list of the user entry. If the list is too large to be displayed in one
line, several lines will be used: file numbers are not omitted.

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

Example: DISPLAY=UQ_FULL

adaopr: file=13, display=uq_full

ADANUC Version <version number>
Database 34 Full User Queue Entry on 9-MAR-2010 11:20:43

User Entry: Id : 7 ES Id : 14251
Node Id : sunxxx05 Login Id : dba
User Id : *adaopr

User Type : UT User Status :

Time Stamps: Session Start : 9-MAR-2010 11:20:43
Trans. Start :
Last Activity :

Time Limits: TT : 0 TNA : 0

Resources: ISN Lists : 0 ISNs Held : 0
Open Files : 0

Activity: ADABAS Calls : 1 Transactions : 0

Settings: User Encoding : UTF-8
-------------------------------------------------------------------------------

Adabas Utilities270

ADAOPR (Operator Utility)



User Entry: Id : 6 ES Id : 13462
Node Id : sunxxx05 Login Id : smith
User Id : SMITH001

User Type : ET User Status :

Time Stamps: Session Start : 9-MAR-2010 11:20:23
Trans. Start : 9-MAR-2010 11:20:23
Last Activity : 9-MAR-2010 11:20:23

Time Limits: TT : 3,600 TNA : 900

Resources: ISN Lists : 0 ISNs Held : 3
Open Files : 1

Activity: ADABAS Calls : 21 Transactions : 1

Settings: User Encoding : UTF-8
Time zone : Europe/Berlin

This display shows detailed information about user queue elements.

Example: DISPLAY=UQ_TIME_LIMITS

adaopr: display=uq_time_limits

ADANUC Version <version number>
Database 76 User Time Limits on 19-JAN-2010 14:58:10

TNAA Interval : 00:15:00 TNAX Interval : 00:15:00
TNAE Interval : 00:15:00 TT Interval : 00:05:00

Id St Limit Timeout Interval Remaining Time Start Date/Time
-- -- ----- ---------------- -------------- ---------------
23 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10

TT 00:05:00
22 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10

TT 00:05:00
21 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10

TT 00:05:00 00:05:00 19-JAN-2010 14:58:10
20 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10

TT 00:05:00 00:05:00 19-JAN-2010 14:58:10
19 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10

TT 00:05:00
18 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10

TT 00:05:00 00:04:50 19-JAN-2010 14:58:00
17 TNAA 00:15:00 00:15:00 19-JAN-2010 14:58:10
16 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10

TT 00:05:00 00:05:00 19-JAN-2010 14:58:10

271Adabas Utilities

ADAOPR (Operator Utility)



14 TNAE 00:15:00 00:15:00 19-JAN-2010 14:58:10
TT 00:05:00 00:05:00 19-JAN-2010 14:58:10

13 TNAA 00:15:00 00:10:01 19-JAN-2010 14:53:11
12 TNAE 00:15:00 00:10:01 19-JAN-2010 14:53:11

TT 00:05:00
11 U TNAX 00:40:00 00:34:57 19-JAN-2010 14:53:07

Selected: 12, Used: 14, Queue Size: 100

This display shows the current timeout limits for the user queue entries.

■ ID shows the internal user identification;
■ ST shows the status of the entry. Possible values are:

■ U user specific timeout value
■ T a timeout is pending, response 9 has not been collected yet by the client.

■ LIMIT describes the timeout type;
■ TIMEOUT INTERVAL shows the current active timeout intervals.
■ REMAINING TIME shows the amount of time remaining until the next timeout mark.
■ START DATE/TIME shows the starting date and time of the entry.

The final line of the display shows how many user queue entries were selected according to the
currently active selection criteria, and how many entries are used in total.

ES_ID

ES_ID = number

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL, UQ_TIME_LIMITS. Only entries with the specified environment-specific ID are dis-
played.

[NO]ET_SYNC

[NO]ET_SYNC

This option controls the behaviour of the FEOF=PLOG function. It must be specified before spe-
cifying FEOF=PLOG. Refer to the FEOF=PLOG function for more information.

The default is NOET_SYNC.

Adabas Utilities272

ADAOPR (Operator Utility)



EXT_BACKUP

EXT_BACKUP = [PREPARE | CONTINUE | ABORT]

This function is used to backup a database using an external backup system, which can be consid-
erably faster with very large databases than using ADABCK.

The keyword PREPAREprepares the database for backup. During this phase, the following restric-
tions apply:

■ new transactions will be stalled
■ no updating utility functions (e.g. ADADBM) can be started
■ the functions SHUTDOWN, CANCEL, LOCK, STOPUSER, UNLOCK and FEOF=PLOG are not
permitted once the EXT_BACKUP = PREPARE call has finished processing

■ all non-activity timeout checks are disabled

The keyword CONTINUE is used to resume normal database operations following completion
of the external backup. The following actions are performed:

■ open a new PLOG with a new session number
■ re-enable non-activity timeout checks
■ re-enable update utilities
■ wake up all waiting users (start of new transactions)

The keyword ABORT is used to abort an external backup for which a PREPARE has already been
issued. In this case, the PLOG isn't switched and no checkpoint is written.

Example

The following scenario shows a backup and restore using a third-party backup tool (tar is not a
real alternative, and is used for demonstration purposes only):

Dumping the database

% adaopr dbid=37 ext_backup=prepare
%ADAOPR-I-STARTED, 14-NOV-2012 16:18:30, T-Version 6.3.99.00 (Solaris 64Bit)

Database 37, startup at 14-NOV-2012 16:18:10
ADANUC T-Version 6.3.99.00, PID 15245

%ADAOPR-I-EXTBPREP, preparing for external backup, 14-NOV-2012 16:18:30

%ADAOPR-I-TERMINATED, 14-NOV-2012 16:18:30, elapsed time: 00:00:00
% tar cvf $BACKUPDIR/backup.tar ASSO* DATA* # external dump
<external backup output>
% adaopr dbid=1 ext_backup=continue
%ADAOPR-I-STARTED, 14-NOV-2012 16:18:45, T-Version 6.3.99.00 (Solaris 64Bit)

273Adabas Utilities

ADAOPR (Operator Utility)



Database 37, startup at 14-NOV-2012 16:18:10
ADANUC T-Version 6.3.99.00, PID 15245
During ET Sync (phase 2), for external backup

%ADAOPR-I-EXTBCONT, continue from external backup, 14-NOV-2012 16:18:45

%ADAOPR-I-TERMINATED, 14-NOV-2012 16:18:45, elapsed time: 00:00:00

Restoring and recovering the database

% tar xvf $BACKUPDIR/backup.tar # external restore
% adastart 37
% setenv RECPLG plog.0017 # Set RECPLG for ADAREC (C shell)
% adarec dbid=37 regenerate=* plog=17

The external backup is logged in the ADANUC log file

%ADANUC-I-DBSTART, Database 37, session 16 started, 14-NOV-2012 16:17:10
%ADANUC-I-EXTBPREP, preparing for external backup, 14-NOV-2012 16:18:30
%ADANUC-I-DBSTART, Database 37, session 17 started, 14-NOV-2012 16:18:45
%ADANUC-I-PLOGCRE, plog NUCPLG, file 'plogs/plog.0017' created
%ADANUC-I-EXTBCONT, continue from external backup, 14-NOV-2012 16:18:45

FEOF

FEOF = (keyword [,keyword])

In accordance with the keywords specified, the log file(s) are closed and a new log file is created.

MeaningKeyword

closes command log file.CLOG

closes protection log file.PLOG

This depends on the [NO]ET_SYNC option:
If ET_SYNC is specified:
The current protection log file (PLOG) will be closed when all currently active ET logic users have
come to ET status, and a new PLOG is created with the next higher PLOG number.

If NOET_SYNC is specified:
The current PLOG extent will be closed when the next PLOG block is written, and a new extent
of the same PLOG will be created. The PLOG number is not incremented and the users do not
have to be synchronized at ET status.
Example (PLOG is on raw device): if the current PLOG is PLG.5, then the command "adaopr db=1
et_sync feof=plog" results in the PLOGs PLG.5 and PLG.6, whereas the command "adaopr db=1
noet_sync feof=plog" results in the PLOGs PLG.5(1) and PLG.5(2).
Example (PLOG is in file system): if the current PLOG isNUCPLG.0005, then the command "adaopr
db=1 et_sync feof=plog" results in the PLOGs NUCPLG.0005 and NUCPLG.0006, whereas the

Adabas Utilities274

ADAOPR (Operator Utility)



MeaningKeyword

command "adaopr db=1 noet_sync feof=plog" results in the PLOGs NUCPLG.0005(1) and
NUCPLG.0005(2).

The FEOF command will be rejected if the keyword PLOG is used while running ADAREC RE-
GENERATE = * (see ADAREC for more detailed information).

FILE

FILE = number

This influences the output of the DISPLAY options HQ, ICQ, UQ, UQ_FILES, UQ_FULL and
UQ_TIME_LIMITS. Only entries related to the specified file number are displayed.

FREE_CLQ

FREE_CLQ

Normally, obsolete entries in the client queue are released automatically when the client queue is
full. With ADAOPR FREE_CLQ, you can enforce the client queue cleanup before the client queue
becomes full.

ID

ID = number

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries related to the specified internal ID are displayed.

[NO]IO_TIME

[NO]IO_TIME

The parameter IO_TIME enables logging of the I/O times for the ASSO, DATA, WORK, NUCSRT
and NUCTMP containers. The times are given in microseconds.

If logging of I/O times is already enabled, enabling it again resets all I/O time and I/O counter
statistics.

The default is NOIO_TIME.

275Adabas Utilities

ADAOPR (Operator Utility)



ISN

ISN = ( number [- number] [,number [- number] ] ... )

This function influences the output of theDISPLAYoptionHQ.Only entries related to the specified
ISNs are displayed.

[UN]LOCK

[UN]LOCK = (number [,number]...)

The file(s) specified by the file number(s) are locked or unlocked. The specified files are locked
for all non-utility use; Adabas utilities can use the file(s) normally.

For userswho have one ormore files to be locked in their open file list, a STOP <user-ID> command
is issued internally. Refer to the description of the ADAOPR STOP parameter for more details.

Notes:

1. You can also lock non-existent file numbers; if you subsequently create fileswith these numbers,
the files are locked.

2. Locking a LOB file does not prevent users from storing LOB data in the LOB file; disabling the
access to LOB data in the LOB file is part of locking the corresponding base file. Locking a LOB
file is only useful if you plan to use this file number for a base file at some time in the future.

LOGGING

LOGGING = (keyword [,keyword]...)

This parameter starts command logging for the buffers specified in the list of keywords.

The following keywords can be used:

MeaningKeyword

Enables logging of control blockCB

Enables logging of format buffersFB

Enables logging of record buffersRB

Enables logging of search bufferSB

Enables logging of value bufferVB

Enables logging of ISN bufferIB

Enables logging of Adabas buffer descriptionsABD

Enables I/O list loggingIO

Stops logging of all buffers, but keeps the command log file openOFF

Adabas Utilities276

ADAOPR (Operator Utility)



If the nucleus was started with LOGGING=OFF and buffer logging is requested, then the CLOG
file will be created.

LOGIN_ID

LOGIN_ID = number

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries with the specified login ID are displayed.

MGC

MGC = number

This parameter specifies the maximum group-commit count. This defines the maximum limit of
ET command grouping before the PLOG buffers are written back to disk. If this limit is reached,
and the final IO has been performed, all remaining users will be posted.

If the specified value is less than the corresponding high-water value, a warning is issued.

The minimum value is 1, the maximum value is 500.

NISNHQ

NISNHQ = number

This parameter specifies the maximum number of records that can be placed into hold at any time
by a single user.

If the specified value is less than the corresponding high-water value, a warning is issued.

The minimum value is 0, where 0 means unlimited.

NODE_ID

NODE_ID = string

This function influences the output of the DISPLAY options CQ, HQ, ICQ, UQ, UQ_FILES,
UQ_FULL and UQ_TIME_LIMITS. Only entries for the specified node are displayed.

277Adabas Utilities

ADAOPR (Operator Utility)



OPTIONS

OPTIONS = (keyword[,keyword])

The available keywords are:

MeaningKeyword

If LOCAL_UTILITIES is specified, the nucleus rejects all remote utility calls, i.e.
the Adabas utilities cannot be run from a remote node across a network.

[NO]LOCAL_UTILITIES

If UTILITIES_ONLY is selected, all calls other than for utilities will be rejected.
Note, however, that this restriction only applies to new users; users who were

[NO]UTILITIES_ONLY

already active when OPTIONS=UTILITIES_ONLY was specified can continue
processing normally. If you want exclusive utility control over files or the entire
database, use the LOCK function of ADAOPR instead.

These options can be disabled using the prefix `NO', e.g. OPTIONS=NOUTILITIES_ONLY.

READ_PARALLEL_LIMITS

READ_PARALLEL_LIMITS = (records,blocks,total)

This parameter is used to modify the nucleus parameter READ_PARALLEL_LIMITS. Please refer
to the description in ADANUC for further information.

RESET

RESET = keyword

RESET=HIGH_WATER resets the high water mark values to the value currently in use.

RESET=COMMANDSresets the commandcountsdisplayedbyADAOPRDISPLAY=COMMANDS.

[NO]RESPONSE_ABORT

[NO]RESPONSE_ABORT

If response checking is enabled with the RESPONSE_CHECK parameter of ADAOPR, the RE-
SPONSE_ABORToptiondetermineswhether the nucleus abortswhenone of the specified responses
occurs (RESPONSE_ABORT), or whether the nucleus resumes operation and a database section
file is written to disk (NORESPONSE_ABORT).

The setting of the [NO]RESPONSE_ABORT option can only be changed before the RE-
SPONSE_CHECK parameter. The same applies for XA_RESPONSE_CHECK (not on OpenVMS).

The default is NORESPONSE_ABORT.

Refer to the RESPONSE_CHECK parameter for further information.

Adabas Utilities278

ADAOPR (Operator Utility)



RESPONSE_CHECK

RESPONSE_CHECK = [(number[-number][,number[-number]]...)]

This function enables theDBA to gather information if one of a list of Adabas response codes occurs.
The information written may be used to analyze possible problems in the database's operation. If
a response check for an Adabas response code is enabled, the database section file is written to
disk if this response code occurs.

Depending on the setting of the RESPONSE_ABORToption, the nucleus either aborts or continues
operation:

■ if the RESPONSE_ABORToption is set, the database section file (Adabas.xxx.hh:mm:ss [UNIX],
or Adabas.xxx.hh-mm-ss [Windows] or Adabas-xxx-hh-mm-ss [OpenVMS]) is written to the
database's default directory. The database section file is also called the CSA dump file. See
ADANUC and the environment variable ADA_CSA_DUMP for more information.

When the CSA dump file is written, the SMP dump file is also written (UNIX platforms only);
the name of the SMP dump file is SMPPOS.APP:hh:mm:ss.

■ if the NORESPONSE_ABORT option is set (default setting), the nucleus continues running and
the database section file (Adabas.xxx.RSPyyy.hh:mm:ss [UNIX], or Adabas.xxx.RSPyyy.hh-mm-
ss [Windows] orAdabas-xxx-RSPyyy-hh-mm-ss [OpenVMS]) iswritten to the database's default
directory. SeeADANUCand the environment variableADA_CSA_DUMP formore information.
Only one dump is generated for one response code; if a response code occurs, the RE-
SPONSE_CHECK option is deactivated for that response code, but if it has been activated for
other response codes, it remains active for the other response codes.

Refer to the RESPONSE_ABORT action for further information.

By default, no response is trapped and the nucleus continues operation.

To disable response trapping, use "RESPONSE_CHECK =" without arguments.

Note: Some response codes can be generated outside the nucleus (e.g. by ADALNK and
ENTIRE NET-WORK). If this happens, they cannot be trapped by Adabas. The response
codes in question for ADALNK are: 9, 17, 22, 40, 146-154, 241, 252, 255.

279Adabas Utilities

ADAOPR (Operator Utility)



SET_FILE_STATS

SET_FILE_STATS = [(number[-number][,number[-number]]...)]

This function enables the file level I/O statistics for the specified files. Only these files will be dis-
played by DISPLAY = FILE_IO.

SHUTDOWN

SHUTDOWN

This function terminates theAdabas session normally.No newusers are accepted. ET-user updating
is continued until the end of the current transaction for each user. When all update activity has
ended as described above, the Adabas session is terminated.

The communication link to the database is cut but the shared memory is still held. In this case,
display functions are still possible with ADAOPR but parameter modification commands are no
longer permitted.

STATUS

STATUS = (keyword [,keyword] ,... )

This function influences the output of the DISPLAY parameter options HQ, ICQ, UQ, UQ_FILES,
UQ_TIME_LIMITS, UQ_FULL. Only entries in the specified state will be displayed.

The valid keywords are:

MeaningKeyword

User without or with "T" status.[NO]TIMEOUT

Users at "ET" status with open transactions.[NO]ET_STATUS

Users without or with "P" status.[NO]PENDING_ET

STOP

STOP = (number[-number][,number[-number]]...)

This parameter terminates the user with the specified ID (internal identification). The ID can be
retrieved with DISPLAY = UQ.

The message "Stop handling started for n users" is displayed, where "n" is the number of users
who will be stopped.

Note: Utilities cannot always be stopped in this way.

Adabas Utilities280

ADAOPR (Operator Utility)



The actions that Adabas takes when a user is stopped depend on the user type, and also whether
the nucleus requires an explicit OP (open) command at the start of a user session, as shown in the
following table.

The abbreviation SUQE used in the table means "Stop user queue element", and consists of the
following actions: release all Command IDs, scratch the file list, scratch the user ID, scratch the
user type, set response 9 for the next call.

Adabas Actions with ADANUC
OPTIONS=OPEN_REQUIRED

Adabas Actions without ADANUC
OPTIONS=OPEN_REQUIRED

User Type

session closedFor ID user: SUQEACC

For non-ID user: session closed

session closedFor ID user: SUQEET, ET Status

For non-ID user: session closed

Backout transaction, session closedBackout transaction, SUQEET, no ET Status

session closedSUQE, CLSE checkpointEX

session closedSUQE, CLSE checkpointEX, ET with ET status

Backout transaction, session closedBackout transaction, SUQE, CLSE checkpointEX, ET, no ET status

session closedsession closedUT

If a STOP command is issued for a user while running

ADAREC REGENERATE = *

it will be rejected (see ADAREC in this manual for more information).

TNAA

TNAA = number

This parameter sets the non-activity time limit (in seconds) for access-only users who have not
explicitly specified a TNAA value in the OP command (see Command Reference, OP command).

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

281Adabas Utilities

ADAOPR (Operator Utility)



TNAE

TNAE = number

This parameter sets the non-activity time limit (in seconds) for ET logic userswho have not explicitly
specified a TNAE value in the OP command (see Command Reference, OP command).

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

TNAX

TNAX = number

This parameter sets the non-activity time limit (in seconds) for EXU and EXF users who have not
explicitly specified a TNAX value in the OP command (see Command Reference, OP command).

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

TT

TT = number

This parameter sets the transaction time limit for ET logic users who have not explicitly specified
a TT value in the OP command (see Command Reference, OP command).

If the specified value is less than the corresponding high-water value, a warning is issued.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the maximum value is 2592000.

USER_ID

USER_ID = string

This function influences the output of the DISPLAY parameter options CQ, HQ, ICQ, UQ,
UQ_FILES, UQ_TIME_LIMITS, UQ_FULL. Only entries in the specified user IDwill be displayed.

Adabas Utilities282

ADAOPR (Operator Utility)



WRITE_LIMIT

WRITE_LIMIT = [number]

This parameter specifies the percentage of modified blocks permitted in the buffer pool before an
implicit buffer flush is taken.

Note that "WRITE_LIMIT=" (keeping the equals sign but omitting the number) is equivalent to
"WRITE_LIMIT=0".

The minimum value is 0 and the maximum value is 70; 0 means that Adabas will dynamically
choose an appropriate value.

XA_RESPONSE_CHECK

XA_RESPONSE_CHECK = (keyword [,keyword] ,... )

This function enables the DBA to gather information if one of a list of XA response codes occurs
(not on OpenVMS). The information written may be used to analyze possible problems in the
database's operation. If a response check for an XA response code is enabled, the database section
file is written to disk if this response code occurs.

Depending on the setting of the RESPONSE_ABORToption, the nucleus either aborts or continues
operation:

■ if the RESPONSE_ABORT option is set, the database section file (Adabas.xxx.hh:mm:ss) is
written to the database's default directory;

■ if the NORESPONSE_ABORT option is set (default setting), the nucleus continues running and
the database section file (Adabas.xxx.XAyyyy.hh:mm:ss) is written to disk (refer to theADAOPR
FILE parameter for further information).

By default, no response is trapped and the nucleus continues operation.

Refer to the RESPONSE_ABORT option for further information.

To disable response trapping, use "XA_RESPONSE_CHECK =" without arguments.

The following keywords are supported:

XA_RBROLLBACK
XA_RBCOMMFAIL
XA_RBDEADLOCK
XA_RBINTEGRITY
XA_RBOTHER
XA_RBPROTO
XA_RBTIMEOUT
XA_RBTRANSIENT
XA_NOMIGRATE

283Adabas Utilities

ADAOPR (Operator Utility)



XA_HEURHAZ
XA_HEURCOM
XA_HEURRB
XA_HEURMIX
XA_RETRY
XAER_ASYNC
XAER_RMERR
XAER_NOTA
XAER_INVAL
XAER_PROTO
XAER_RMFAIL
XAER_DUPID
XAER_OUTSIDE
XA_RBROLLBACK

For more information, see Administration, XA Support.

Adabas Utilities284

ADAOPR (Operator Utility)



20 ADAORD (Reorder DatabaseOr Files, Export/Import Files)

■ Functional Overview ....................................................................................................................... 286
■ Procedure Flow ............................................................................................................................. 287
■ Checkpoints ................................................................................................................................. 289
■ Control Parameters ........................................................................................................................ 289
■ Restart Considerations ................................................................................................................... 298
■ Examples ..................................................................................................................................... 298

285



This chapter describes the utility "ADAORD".

Functional Overview

The reorder utility ADAORDprovides functions to reorganize a whole database (REORDER) and
to migrate files between databases (EXPORT/IMPORT).

Depending on the function selected, ADAORD produces or requires a sequential file (ORDEXP).

The main reasons for running ADAORD are:

■ To change the layout of a complete database. This includes increasing or decreasing themaximum
number of files permitted;

■ To change the space allocation or placement of a file, to reduce the number of logical extents
assigned to its index, Address Converter or Data Storage and to change or re-establish the
padding factors;

■ To create one or more test files that all contain the same data. This procedure requires a file to
be exported and then imported using a different file number;

■ To archive and subsequently reestablish a file, independent of its original placement and the
database device types used.

When exporting files from a database, the Adabas nucleus is not required. If a system file is pro-
cessed, the nucleus must be inactive. For detailed information, please refer to the table of nucleus
requirements.

When importing files into a database, the Adabas nucleus is not required to be active. The nucleus
may be either started or shut down during this procedure.

When reordering the database, the nucleus must be inactive.

Note: The IMPORT and IMPORT_RENUMBER functions can process export files created
with earlier Adabas versions, but not export files created with later Adabas versions.

This utility is a single-function utility.

Adabas Utilities286

ADAORD (Reorder Database Or Files, Export/Import Files)



Procedure Flow

The sequential file ORDEXP can have multiple extents, but only if you are using raw devices. For
detailed information about sequential fileswithmultiple extents, seeAdministration,UsingUtilities.

287Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)



The sequential file ORDEXP can have multiple extents, but only if you are using raw devices. For
detailed information about sequential fileswithmultiple extents, seeAdministration,UsingUtilities.

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

Export (out),
Reorder (in/out),
other functions (in)

Disk, Tape (* see note)ORDEXPExport copy

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAORD messages

DiskWORK1Work storage

Adabas Utilities288

ADAORD (Reorder Database Or Files, Export/Import Files)



Note: (*) A named pipe cannot be used for this sequential file (see Administration, Using
Utilities for details).

Checkpoints

The following table shows the nucleus requirements for each function and the checkpointswritten:

Checkpoint writtenNucleus is NOT requiredNucleus must NOT be activeNucleus must be activeFunction

-XCONTENTS

SYNXXX(* see note)EXPORT

SYNPXX(* see note)IMPORT

SYNPXX(* see note)IMPORT_
RENUMBER

SYNPXXREORDER

Note: (*) When processing an Adabas system file

In the case of the EXPORT function, ADAORD writes a single checkpoint and removes the UCB
entry when all of the specified files have been exported and the sequential output file (ORDEXP)
has been closed.

In the case of the IMPORT function, ADAORD writes a checkpoint and informs the nucleus that
the file has been loaded every time a file is successfully imported.

The UCB entry is removed when all of the specified files have been imported. When the utility is
executed offline, writing multiple checkpoints increases the probability of a checkpoint block
(CPB) overflow. The checkpoint file should, therefore, always be present to allow the Adabas
nucleus to be started in order to empty the CPB.

In the case of the REORDER function, ADAORDwrites a single checkpoint and removes the UCB
entry when the function terminates.

Control Parameters

The following control parameters are available:

CONTENTS

DBID = number

289Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)



EXPORT = (number[-number][,number[-number]]...)
[,FDT]

D [,SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)]

FILES = (number[[-number], number[-number]] ...)

IMPORT = (number[-number][,number[-number]]...)
[,ACRABN = number]
[,ASSOPFAC = number]
[,DATAPFAC = number]
[,DSRABN = number] [,DSSIZE = number[B|M] ]
[,LOBACRABN = number]
[,LOBDSRABN = number]
[,LOBNIRABN = number]
[,LOBSIZE = numberM]
[,LOBUIRABN = number]
[,MAXISN = number]
[,NIRABN = number|(number,number)]
[,NISIZE = number[B|M]|(number[B|M],number[B|M])]
[,UIRABN = number|(number,number)]
[,UISIZE = number[B|M]|(number[B|M],number[B|M])]

IMPORT_RENUMBER = (number, number[,number])
[,ACRABN = number]
[,ASSOPFAC = number]
[,DATAPFAC = number]
[,DSRABN = number] [,DSSIZE = number[B|M] ]
[,LOBACRABN = number]
[,LOBDSRABN = number]
[,LOBNIRABN = number]
[,LOBSIZE = numberM]
[,LOBUIRABN = number]
[,MAXISN = number]
[,NIRABN = number|(number,number)]
[,NISIZE = number[B|M]|(number[B|M],number[B|M])]
[,UIRABN = number|(number,number)]
[,UISIZE = number[B|M]|(number[B|M],number[B|M])]

REORDER = *

CONTENTS

CONTENTS

This function displays the list of files contained in the sequential output file (ORDEXP) created
by a previous run of the EXPORT function.

Adabas Utilities290

ADAORD (Reorder Database Or Files, Export/Import Files)



DBID

DBID = number

This parameter selects the database to be used.

EXPORT

EXPORT = (number[-number][,number[-number]]...)
[,FDT]
[,SORTSEQ = ({descriptor_name|ISN|PHYSICAL},...)]

This function exports (copies) one or more files from the database to a sequential output file (OR-
DEXP). In order to maintain referential integrity in the export copy, all files that are connected via
referential constraints to a specified file are also exported. The file numbers specified are only
taken into consideration if they are the file numbers of base files; the corresponding LOB files for
the selected files are exported automatically with the base files without having to be specified. An
EXPORT consists of copying each file's Data Storage, togetherwith the information that is required
to reestablish its index. All of the files to be processed are written to ORDEXP in the sequence in
which they are specified. Overlapping ranges and numbers are removed.

Note: If the checkpoint file is included in the file list, it will be processed last.

FDT

This parameter displays the FDT of the file to be processed.

SORTSEQ = ({descriptor_name|ISN|PHYSICAL} ,... )

This parameter controls the sequence in which the Data Storage is processed. If specifies either
the field name of a descriptor, subdescriptor or superdescriptor, or the keyword `ISN' or `PHYS-
ICAL'.

The default is physical sequence.

The following values can be specified:

SequenceValue

If the name of a descriptor, sub- or superdescriptor is specified, the data records are
processed in ascending logical sequence of the descriptor values to which the field name
refers.

descriptor_name

A field with the MU, MC or NU option or one that is contained in a periodic group or a
sub- or superdescriptor derived from such a field must not be specified.

Logical sequence can be used only if a single file has been selected.

291Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)



SequenceValue

If ISN is specified, the data records are processed in ascending ISN sequence.ISN

If PHYSICAL is specified or if the SORTSEQ parameter is omitted, the data records are
processed in the physical sequence in which they are stored in the Data Storage.

PHYSICAL

The performance when processing in logical sequence and ISN sequence is better if the database
is online (provided that the buffer pool is large enough).

If one value is specified for SORTSEQ, that value is valid for all files. If more than one value is
specified, the number of values must be the same as the number of file ranges specified for the
EXPORT parameter. In this case, the first file range is exported in the first specified sort sequence,
the second file range is exported in the second specified sort sequence, and so on.

Example

EXPORT = (1, 20-30, 40)
SORTSEQ = (AA, PHYSICAL, ISN)

File 1 is exported in the sequence of descriptor AA, files 20-30 are exported in physical sequence
and file 40 is exported in ISN sequence.

FILES

FILES = (number[[-number], number[-number]] ...)

This parameter is used to display information concerning the status of the specified files contained
on the sequential input file (ORDEXP).

IMPORT

IMPORT = (number[-number][,number[-number]]...)
[,ACRABN = number]
[,ASSOPFAC = number]
[,DATAPFAC = number]
[,DSRABN = number] [,DSSIZE = number[B|M] ]
[,LOBACRABN = number]
[,LOBDSRABN = number]
[,LOBNIRABN = number]
[,LOBSIZE = numberM]
[,LOBUIRABN = number]
[,MAXISN = number]
[,NIRABN = number|(number,number)]
[,NISIZE = number[B|M]|(number[B|M],number[B|M])]
[,UIRABN = number|(number,number)]
[,UISIZE = number[B|M]|(number[B|M],number[B|M])]

This function imports one or more files into a database, using the data on the sequential file (OR-
DEXP) produced by a previous run of ADAORD. In order to maintain referential integrity, all

Adabas Utilities292

ADAORD (Reorder Database Or Files, Export/Import Files)



files connected via referential constraints to a specified file are also imported. The file numbers
specified are only taken into consideration if they are the file numbers of base files; the correspond-
ing LOB files for the selected files are imported automatically with the base files without having
to be specified. The file numbers specified are sorted into ascending sequence. Overlapping ranges
and numbers are removed.

The file numbers specified must not be loaded in the database.

By default, ADAORD controls the file placement and the allocation quantities. The parameters
that can be used to overwrite these defaults may be used only if a single file has been selected.

Please refer to the IMPORT_RENUMBER function for the description of the parameters.

IMPORT_RENUMBER

IMPORT_RENUMBER = (number, number[,number])
[,ACRABN = number]
[,ASSOPFAC = number]
[,DATAPFAC = number]
[,DSRABN = number] [,DSSIZE = number[B|M] ]
[,LOBACRABN = number]
[,LOBDSRABN = number]
[,LOBNIRABN = number]
[,LOBSIZE = numberM]
[,LOBUIRABN = number]
[,MAXISN = number]
[,NIRABN = number|(number,number)]
[,NISIZE = number[B|M]|(number[B|M],number[B|M])]
[,UIRABN = number|(number,number)]
[,UISIZE = number[B|M]|(number[B|M],number[B|M])]

This function imports a file into a database, using the data on the sequential file (ORDEXP) produced
by a previous run of ADAORD. It is not possible to import and renumber a file that is connected
to another file via referential integrity. Constraints must either dropped before exporting the files,
or the filesmust be importedwithout renumbering and be renumbered later (ADADBMRENUM-
BER). The first number given defines the base file to be imported, and the second number is the
new file number to be assigned to the file. The third, optional number is the new file number for
the LOB file. If the third number is not specified, the LOB file number (if it exists) remains un-
changed.

The new file number must not be loaded in the database.

Unless otherwise specified, ADAORD controls the file placement and the allocation quantities.

293Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)



ACRABN = number

This parameter specifies the RABN at which the space allocation for the Address Converter (AC)
is to start.

If this parameter is omitted, ADAORD assigns the starting RABN.

ASSOPFAC = number

This parameter specifies the newpadding factor to be used for the file's index. The number specified
is the percentage of each index block which is not to be used by ADAORD or a subsequent run of
themass update utility ADAMUP. This padding area is reserved for future use if additional entries
have to be added to the block by theAdabas nucleus. This avoids the necessity of having to relocate
overflow entries to another block.

A value may be specified in the range of 0 to 95.

A small padding factor (0 to 10) should be specified if little or no descriptor updating is expected.
A larger padding factor (10 to 50) should be specified if a large amount of descriptor updating is
expected in which new descriptor values are created.

If this parameter is omitted, the current padding factor in effect for the file's index is used.

DATAPFAC = number

This parameter specifies the new padding factor to be used for the file's Data Storage. The number
specified is the percentage of each data block which is not to be used by ADAORD. This padding
area is reserved for future use if any record in a block requires additional space as result of record
updating by the Adabas nucleus. This avoids the necessity of having to relocate overflow entries
to another block.

A value may be specified in the range of 0 to 95.

A small padding factor (0 to 10) should be specified if there is little or no record expansion. A larger
padding factor (10 to 50) should be specified if there is a large amount of record updating which
will cause expansion.

If this parameter is omitted, the current padding factor in effect for the file's Data Storage is used.

Adabas Utilities294

ADAORD (Reorder Database Or Files, Export/Import Files)



DSRABN = number

This parameter specifies the RABN at which the space allocation for the file's Data Storage (DS)
is to start.

If this parameter is omitted, ADAORD assigns the start RABN.

DSSIZE = number[B|M]

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Data Storage (DS). By default, the size is given in megabytes.

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

LOBACRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Address Con-
verter (AC) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.

LOBDSRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Data Storage
(DS) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.

LOBNIRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Normal Index
(NI) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.

LOBSIZE=numberM

This parameter specifies the number of megabytes to be initially assigned to the LOB file's Data
Storage (DS). The AC size, NI size and UI size for the LOB file are derived from this size.

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

295Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)



LOBUIRABN=number

This parameter specifies the RABN at which the space allocation for the LOB file's Upper Index
(UI) is to start.

If this parameter is omitted, ADAORD assigns the start RABN.

MAXISN = number

This parameter specifies the highest permissible ISN for the file. ADAORD uses this parameter
to determine the amount of space to be allocated for the file's Address Converter (AC).

Because there is no automatic extension of the initial allocation, a value that is smaller than the
file's current first free ISN will cause ADAORD to terminate execution and return an error status
if there are ISNs outside the Address Converter.

If this parameter is omitted, the value ofMAXISN currently in effect for the file's Address Converter
is used.

A contiguous-best-try allocation is used.

NIRABN = number|(number,number)

This parameter specifies the RABN(s) at which the space allocation for the file's Normal Index
(NI) is to start. Adabas usually stores small descriptor values (<= 253 bytes) in small index blocks
(block size < 16 KB) and large descriptor values in large index blocks (block size >= 16 KB. For this
reason, it is possible to specify 2 RABNs - if you specify 2 RABNs, one must have a block size <
16 KB, and the other must have a block size >=16 KB.

If this parameter is omitted, ADAORD assigns the start RABN.

NISIZE = number[B|M]|(number[B|M],number[B|M])

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Normal Index (NI). By default, the size is given in megabytes. If two values are specified and
theNIRABNparameter is also specified, the first value corresponds to the first value of theNIRABN
parameter, and the second value corresponds to the second value of the NIRABN parameter. If
two values are specified and the NIRABN parameter is not specified, the first value specifies the
size of small normal index blocks (< 16 KB), and the second value specifies the size of large NI
blocks (>= 16 KB).

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

Adabas Utilities296

ADAORD (Reorder Database Or Files, Export/Import Files)



UIRABN = number|(number,number)

This parameter specifies the RABN(s) at which the space allocation for the file's Upper Index (UI)
is to start. Adabas usually stores small descriptor values (<= 253 bytes) in small index blocks (block
size < 16 KB) and large descriptor values in large index blocks (block size >= 16 KB. For this reason,
it is possible to specify 2 RABNs - if you specify 2 RABNs, one must have a block size < 16 KB,
and the other must have a block size >=16 KB.

If this parameter is omitted, ADAORD assigns the start RABN.

UISIZE = number[B|M]|(number[B|M],number[B|M])

This parameter specifies the number of blocks (B) or megabytes (M) to be initially assigned to the
file's Upper Index (UI). By default, the size is given in megabytes. If two values are specified and
theUIRABNparameter is also specified, the first value corresponds to the first value of theUIRABN
parameter, and the second value corresponds to the second value of the UIRABN parameter. If
two values are specified and the UIRABN parameter is not specified, the first value specifies the
size of small upper index blocks (< 16KB), and the second value specifies the size of largeUI blocks
(>= 16 KB).

If this parameter is omitted, ADAORD calculates the size based on the old number of blocks alloc-
ated and the difference between the old and new padding factor.

REORDER

REORDER = *

This function is used to change the layout of a whole database. It rearranges the database's global
areas, eliminates fragmentation in theDSST and the files' Address Converter, Data Storage,Normal
Index and Upper Index extents by physically changing their placement. It also re-establishes the
files' padding factors. Exclusive control of the database container files is required.

A REORDER database implicitly exports the files, deletes them from the database and then re-
imports them. The sequential file (ORDEXP) that is created during the REORDER is kept.

Note: ADAORD uses a best-fit algorithm for the allocation of the disk space for the files.
Therefore, it may occur that the first container of a given type remains empty if it is followed
by another container with adequate block size which is smaller than the first one.

297Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)



Restart Considerations

ADAORD has no restart capability.

An abnormally terminated EXPORT must be rerun from the beginning.

An abnormally terminated IMPORT of one or more files will result in lost RABNs for the last file
being imported. These RABNs can be recovered by executing ADADBM's RECOVER function.
The files preceding the one being processed when the interrupt occurred will be available in the
database. Therefore, the IMPORT function should be rerun starting with the file number at which
the interrupt occurred.

An abnormally terminated IMPORT_RENUMBERwill result in lost RABNs for the file being im-
ported. These RABNs can be recovered by executing ADADBM's RECOVER function. The IM-
PORT_RENUMBER function has to be rerun from the beginning.

An abnormally terminated REORDER at the database level may result in a database that cannot
be accessed if the interrupt occurredwhile reordering the database's global areas (GCB, FST, DSST,
etc.). In this case, either a new empty database has to be created usingADAFRMor the old database
has to be reestablished fromanAdabas backup copy, usingADABCK'sRESTOREdatabase function.
If the interrupt occurred during the re-import phase, it will result in lost RABNs for the last file
being imported. These RABNs can be recovered by executing ADADBM's RECOVER function.
The files preceding the one being processed when the interrupt occurred will be available in the
database. The remaining files can be obtained from the sequential work file (ORDEXP) by using
ADAORD's IMPORT function.

Examples

In the examples below, the files 1, 2, 4, 6, 7, 8, 10, 11, 12 and 25 are loaded in database 1. Database
2 contains files 3, 6 and 11.

Example 1

adaord: dbid = 1
adaord: export = (1-4,7,10-25)

Files 1, 2, 4, 7, 10, 11, 12 and 25 are exported from database 1.

Adabas Utilities298

ADAORD (Reorder Database Or Files, Export/Import Files)



Example 2

adaord: dbid = 2
adaord: import = (1-10,12)

Files 1, 2, 4, 7, 10 and 12 are imported into database 2. It is not possible to specify "import=(1-12)"
because ADAORD first checks to see if one of the files to be imported is already loaded , and if it
is, then the whole import is rejected - in this case file 11 is already loaded.

Example 3

adaord: dbid = 2
adaord: import_renumber = (11,19), acrabn = 131, datapfac = 20

File 11 is imported into database 2 using a new file number of 19 (because 11 is already in use).
The file's Address Converter (AC) is to be allocated at ASSO RABN 131. The new padding factor
for the Data Storage (DS) is 20 percent.

Example 4

adaord: dbid = 1
adaord: reorder = *

The whole database is reordered.

299Adabas Utilities

ADAORD (Reorder Database Or Files, Export/Import Files)



300



21 ADAPLP (Protection Log Printout)

■ Functional Overview ....................................................................................................................... 302
■ Procedure Flow ............................................................................................................................. 303
■ Checkpoints ................................................................................................................................. 304
■ Control Parameters ........................................................................................................................ 304
■ ADAPLP Output ............................................................................................................................ 313

301



This chapter describes the utility "ADAPLP".

Functional Overview

The ADAPLP utility prints the Protection Log or WORK.

This utility is a multi-function utility.

Note: LOB values are split into several records in a LOB file; when LOB values are stored
in the database, the Protection Log contains the log records for themodifications of the LOB
file. This means that ADAPLP does not display the LOB values as one value, but rather it
displays the modifications of the corresponding records in the LOB file instead. It is not
possible to decompress the LOB file records because the LOB records are too large to fit
into one block, and the continued Protection Log records cannot be decompressed.

Adabas Utilities302

ADAPLP (Protection Log Printout)



Procedure Flow

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

Utilities ManualDisk, TapePLPPLGProtection log

Only required if you process a PLOG with an
extension count > 1 and if you use the

DiskPLPLEXProtection log (last extent)

DECOMPRESS orDELTAoption: youmust provide
the last PLOG extent before the PLOG extent to be
processed.

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAPLP report

DiskWORK1Work storage

303Adabas Utilities

ADAPLP (Protection Log Printout)



The sequential file PLPPLG can havemultiple extents. For information about sequential files with
multiple extents, see Administration, Using Utilities.

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

M DATASET = keyword

DBID = number

D [NO]DECOMPRESSED

DELTA

D [NO]DUMP

FILES = (number [-number][,number [-number]]...)

D [NO]HEADER

INTERNAL_ID = number

ISN = (number [,number] ... )

MODIFIED_RABN = number

NOFILETYPE

NONULL

PLOG = (number [,number])

M RABN = {*|number[-number]}

RECORD ={*| (number [- number] [, number [- number]]...) }

SEQ = number

D [NO]SHORT

Adabas Utilities304

ADAPLP (Protection Log Printout)



THREAD = number

TSN = number

D TYPE = (keyword [,keyword]...)

USER_ID = string

D [NO]WXA

DATASET

DATASET = keyword

This parameter selects the file containing the Protection Log information to be processed. The
keyword can take the values PLOG or WORK. The parameter PLOG must be specified first if
DATASET=PLOG is to be specified and the protection log is located on a raw device.

DBID

DBID = number

This parameter selects the database to be used.

This parameter must be used when DATASET=WORK is requested, or if DATASET=PLOG and
the protection log iswithin a raw section. This parametermust be the first parameter to be specified.
Otherwise, if this parameter is not specified, the DBID stored in the PLOG is used.

[NO]DECOMPRESSED

[NO]DECOMPRESSED

This option indicates whether for each selected DATA record from a protection log, one line per
field is printed with the field name and its decompressed value in hex (DECOMPRESSED) or not
(NODECOMPRESSED).

For an inserted record, an after image containing the field values of the record after the insert is
displayed.

For an updated record, a before image containing the field values before the update, and an after
image containing the field values of the record after the update are displayed.

For a deleted record, a before image containing the field values before the delete operation is dis-
played.

If you specify DECOMPRESSED and NONULL, no output is produced for the following:

■ Fields with NU or NC option with null-value;

305Adabas Utilities

ADAPLP (Protection Log Printout)



■ MU fields with NU or NC option without a value that is not the null-value;
■ PE groups containing only fields with NU or NC option without a value that is not the null-
value;

■ Group names if the group is not PE.

The default is NODECOMPRESSED.

Note: Decompression (DECOMPRESSED output) is not possible for CONTINUED records.
CONTINUED records are created if a PLOG record plus the block header is larger than 32
KB in the PLOG or larger than the block size used for WORK.

Example output for DECOMPRESSED (without NONULL option)

>>> After Image <<<

Length = 20, ISN = 2

Field : AA: ^30372E31322E3034
Group : AB
Field : AC: ^2020202020202020202020202020202020202020
Field : AE: ^2020202020202020202020202020202020202020
Field : AD: ^2020202020202020202020202020202020202020
Field : AF: ^20
Field : AG: ^20
Field : AH: ^0000000C
Group : A1
MU-field : AI, count = ^01

AI( 1): ^2020202020202020202020202020202020202020
Field : AJ: ^2020202020202020202020202020202020202020
Field : AK: ^20202020202020202020
Field : AL: ^202020
Group : A2
Field : AN: ^202020202020
Field : AM: ^202020202020202020202020202020
Field : AO: ^202020202020
Field : AP: ^20202020202020202020202020202020202020202020202020
PE-group : AQ, count = ^01

PE index (1)
Field : AR: ^202020
Field : AS: ^000000000C
MU-field : AT, count = ^01

AT( 1): ^000000000C
End of PE-group : AQ
Group : A3
Field : AU: ^3030
Field : AV: ^3030
PE-group : AW, count = ^01

PE index (1)

Adabas Utilities306

ADAPLP (Protection Log Printout)



Field : AX: ^3030303030303030
Field : AY: ^3030303030303030
End of PE-group : AW
MU-field : AZ, count = ^01

AZ( 1): ^202020

Example output for DECOMPRESSED (with NONULL option)

>>> After Image <<<

Length = 15, ISN = 2

Field : AA: ^30372E31322E3034
Field : AF: ^20
Field : AG: ^20

DELTA

DELTA

This parameter indicates that only changed fields after an update are displayed.

For an inserted record, the same output is produced as with the options DECOMPRESSED,
NONULL.

For an updated record, a Delta containing the modified field values is displayed. Note that for
MU/PE fields, the value count displayed can be smaller than the displayed MU/PE indices if the
MU/PE count has been decreased - this is because all field values have been set to the null value.

If a record is deleted, no output is produced, however, you can see the deletion if you display
protection log entries of the type CE.

Note: Decompression (DELTA output) is not possible for CONTINUED records. CONTIN-
UED records are created if a PLOG record plus the block header is larger than 32 KB in the
PLOG or larger than the block size used for WORK.

[NO]DUMP

[NO]DUMP

This option indicateswhether the variable part of a Protection Log record is included in the printout
(DUMP) or not (NODUMP).

If DUMP is specified, the variable part of each Protection Log record is displayed in both hexa-
decimal and uninterpreted ASCII format.

DUMP implicitly resets SHORT.

307Adabas Utilities

ADAPLP (Protection Log Printout)



The default is NODUMP.

FILES

FILES = (number [-number][,number [-number]]...)

The Protection Log records are only displayed if they belong to the file(s) specified by this para-
meter.

Only records of the types DA, DV, EXT, INDEX and FCB are displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

[NO]HEADER

[NO]HEADER

This option indicateswhether for each block of the Protection Log a header is displayed (HEADER)
or not (NOHEADER).

The default is HEADER.

INTERNAL_ID

INTERNAL_ID = number

This option displays only the records with the specified internal ID.

ISN

ISN = (number [,number] ... )

The Protection Log records are only displayed if they belong to the ISNs specified by this parameter.
Only records of the types DA and DV are displayed. Please refer to the tables at the end of this
section for a description of the various types of Protection Log records. This parameter can only
be used in conjunction with the FILE parameter.

Adabas Utilities308

ADAPLP (Protection Log Printout)



MODIFIED_RABN

MODIFIED_RABN = number

This option displays only the records in which modifications for the specified RABN are logged.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

NOFILETYPE

NOFILETYPE

This keyword specifies that record types that are independent of file numbers (for example ET
and BT records) will be displayed in addition to the record types that are bound to file numbers.

Example

adaplp dbid=6 file=25 type=(da,dv,et,bt) nofiletype

The DA and DVT records of file 25 together with all ET and BT records will be displayed.

NONULL

NONULL

The NONULL parameter is only relevant if the DECOMPRESSED parameter is also specified.
Please refer to the DECOMPRESSED parameter for further information.

PLOG

PLOG = (number[,number])

This parameter is required if DATASET=PLOG is specified and the protection log is within a raw
section. It is optional if the protection log is within a file system. The PLOG number and the exten-
sion count can be specified. If an extension count is specified, then only the specified extent will
be processed. If no extension count is specified, Adabaswill open subsequent extents when neces-
sary. The parameter PLOG must be specified before DATASET=PLOG is specified.

309Adabas Utilities

ADAPLP (Protection Log Printout)



Example:

Section layout

.

.

.
250000 260000 10001 30 PLG.36 created

377000 378000 1001 30 PLG.36(3) created

adaplp: plog=36
adaplp: dataset=plog

PLG.36 will be opened

adaplp: plog=(36,3)
adaplp: dataset=plog

PLG.36(3) will be opened.

RABN

RABN ={*| number [- number] }

This parameter selects one block or a range of consecutive blocks on theWORK or Protection Log
file. The information contained in the specified blocks is displayed.

If you specify "*", all blocks are displayed.

Note: If you start ADAPLP without specifying RABN, the utility will run, but will not pro-
duce any output.

Example

adaplp: rabn = 123

adaplp: rabn = 123 - 1246

Adabas Utilities310

ADAPLP (Protection Log Printout)



RECORD

RECORD ={*| (number [- number] [, number [- number]]...) }

This parameter selects the records or ranges of records to be printed. All of the records are printed
if `*' or nothing is specified.

Example:

adaplp: record = (2-5,9,11)

The records 2, 3, 4, 5, 9 and 11 are written while printing one or more PLOG blocks.

SEQUENCE

SEQUENCE = number

This option displays only the records written by the specified sequence number.

[NO]SHORT

[NO]SHORT

This option indicates whether only Protection Log block headers are printed out (SHORT), or
whether all the records in each block are included in the display (NOSHORT).

SHORT implicitly resets DUMP.

By default, the Protection Log block header is displayed followed by all of the records contained
in the block.

The default is NOSHORT.

THREAD

THREAD = number

This option displays only the records with the specified thread.

311Adabas Utilities

ADAPLP (Protection Log Printout)



TSN

TSN = number

This option displays only the records with the specified transaction sequence number (TSN).

Only records of the type BT, C5, CL, DA, DV, ET and XA (not on OpenVMS) are displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

TYPE

TYPE = (keyword [,keyword]...)

This option displays only the protection log records specified by the given keyword(s). Each
keyword corresponds to one or more protection log record types, as shown in the following table.

Protection Log record typeKeyword

ABAB

the record type AC and all record types that are selected by the keywords EXT, FCB and INDEXASSO

ATAT

BS, BE, BFBF

BTBT

C1C1

C5C5

CECE

CFCF

CTCT

DADA

all record types that are selected by the keywords BT, CE, DA, DV, ET and OP.DATA

DCDC

DTDT

ET, CLET

ACEXT, UIEXT, NIEXT, DSEXTEXT

FCBDS, FCBIX, SPISNFCB

FE, INDEX, IB, INSRU, REMRUINDEX

OPOP

all record types that are selected by the keywords YB, YD, YF and YPXA

YB (not on OpenVMS)YB

YD (not on OpenVMS)YD

Adabas Utilities312

ADAPLP (Protection Log Printout)



Protection Log record typeKeyword

YF (not on OpenVMS)YF

YP (not on OpenVMS)YP

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

The default is to display all protection log record types.

USER_ID

USER_ID = string

This option displays only the records which start with the specified user ID.

Only records of the type BT, C1, C5, CL, DA,DV, ET, FCBDS, FCBIX, INDEX andXAare displayed.

Please refer to the tables at the end of this section for a description of the various types of Protection
Log records.

[NO]WXA

[NO]WXA

This option alternates between theWORKpart 1 ring buffer (NOWXA) andWORKpart 1 XA area
(WXA).

The default is NOWXA.

ADAPLP Output

Each block of the Protection Log orWORK is preceded by a header, which consists of the following:

■ the block sequence number;
■ the size of the block;
■ the number of the session that the block belongs to (identical to the PLOG number);
■ the time stamp showing when the block was created (internal time stamp for WORK).

The output for a record consists of the following entries:

■ a record sequence number (starting at 1 for each block);
■ the internal length of the record;
■ the command sequence number (uniquely identifies a command);

313Adabas Utilities

ADAPLP (Protection Log Printout)



■ the type of PLOG record (see the following table for more information);
■ the number of the thread that executed the command.

In addition, most records also have the following entries:

■ the internal user identification (in hexadecimal notation) that is uniquely assigned for each
command that opens a transaction.

The table below shows the types of PLOG records:

DescriptionType

logs WORK wrap around (WORK only).AB

logs the relocation of a record during backout transaction (WORK only).AC

logs the extension of the address converter (WORK only).ACEXT

logs the adding of a field (ADADBM).AT

logs the end of a buffer flush (WORK only).BE

logs the start and end of a buffer flush (WORK only).BF

logs the start of a buffer flush (WORK only).BS

logs the start of BT processing.BT

log record from a C1 command. Contains the checkpoint name (PLOG only).C1

log record from a C5 command (PLOG only).C5

indicates the last entry of a command (last entry with this sequence number). If the command
was a delete operation, the file number and the ISN of the deleted record is displayed.

Example

CE

>>> DELETE FILE 10 ISN 2 <<<

logs the creation of an FDT (ADAFDU).CF

logs the CLOSE of a user.CL

logs the creation of a file (ADAFDU).CT

logs a data record change. The file, RABN, and ISN of the data record are displayed. The record
is either an after image (AI), a before image (BI), or a delta image (DI) and is displayed when
DUMP is enabled. `TSN' is an internal transaction sequence number. All entries that originate

DA

from one transaction have the same TSN (see also the description of the ET command in the
Command Reference Manual). The output of `WB' is only displayed if DATASET=WORK has
been specified. It shows the WORK block where the previous PLOG record of the same TSN can
be found. A `clu' value that is not zero indicates an exclusive or privileged user.

logs the dropping of a field (ADADBM).DC

logs the extension of data storage (WORK only).DSEXT

logs the deletion of a file (ADADBM).DT

Adabas Utilities314

ADAPLP (Protection Log Printout)



DescriptionType

logs a descriptor update (should always be preceded by a DA record). The entries for the file,
ISN, TSN, clu, and WB are the same as for the DA record type.

DV

log entry from an ET command. The ET TSN gives the TSN of the last user data written by an ET
command.

ET

logs an FCB change for data storage (WORK only).FCBDS

logs an FCB change for the normal index (WORK only).FCBIX

logs a change of an index block's first entry (WORK only).FE

logs an index block that is modified (WORK only).IB

logs an index block that is split (WORK only).INDEX

logs the insertion of an index block into a reusage chain (WORK only).INSRU

logs the extension of the normal index (WORK only).NIEXT

logs the OPEN of a user.OP

logs the deletion of an index block from a reusage chain (WORK only).REMRU

logs changes in ISN reusage or space reusage.SPISN

logs the extension of the upper index (WORK only).UIEXT

logs the backout of a transaction within the XA protocol (not on OpenVMS).YB

logs the discarding of a heuristically terminated transaction within the XA protocol (not on
OpenVMS).

YD

logs the final commit of a transaction within the XA protocol (not on OpenVMS).YF

logs the preliminary commit of a transaction within the XA protocol (not on OpenVMS).YP

There are also several flags that may be displayed with DA or DV records:

DescriptionFlag

the data of this PLOG record contain an after image of the data record (record type DA).AI

indicates that the record was written during a backout within a single command.BACKOUT

the data of this PLOG record contain a before image of the data record (record type DA).BI

indicates that the record was written during the backout of a transaction.BT

the data of this PLOG record contain a delta image of the data record (record type DA).DI

indicates that this is the first DA record of this command.FDATA

indicates that this is the first record with a given sequence number.FIRST_ENTRY

merge of the highest index level.HIMERGE

split of the highest index level.HISPLIT

transaction carries user data.USERD

315Adabas Utilities

ADAPLP (Protection Log Printout)



316



22 ADAPRI (Print Adabas Blocks)

■ Functional Overview ....................................................................................................................... 318
■ Procedure Flow ............................................................................................................................. 319
■ Checkpoints ................................................................................................................................. 320
■ Control Parameters ........................................................................................................................ 320

317



This chapter describes the utility "ADAPRI".

Functional Overview

The ADAPRI utility prints the contents of a block (or range of blocks) in the Associator, Data
Storage, WORK, TEMP, or SORT for maintenance or auditing purposes.

The output is in hexadecimal and ASCII format. Subsequent identical lines and blocks are sup-
pressed.

This utility is a multi-function utility.

Adabas Utilities318

ADAPRI (Print Adabas Blocks)



Procedure Flow

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

DiskDATAxData storage

DiskSORTxSort storage

Utilities Manualstdin/
SYS$INPUT

Control statements

stdout/
SYS$OUTPUT

ADAPRI output

DiskTEMPxTemporary storage

DiskWORK1Work storage

319Adabas Utilities

ADAPRI (Print Adabas Blocks)



Assignments to the ASSO container files are required in order to be able to process the DATA or
WORK container files.

Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

DATASET = keyword

DBID = number

RABN = number [- number]

DATASET

DATASET = keyword

This parameter specifies the part of the database to be dumped. Valid keywords are:

MeaningKeyword

AssociatorASSO

Data StorageDATA

Sort AreaSORT

Temporary AreaTEMP

Work AreaWORK

Example

adapri: dataset = asso, rabn = 123 - 321

The Associator is dumped from RABN 123 to RABN 321

Adabas Utilities320

ADAPRI (Print Adabas Blocks)



DBID

DBID = number

This parameter selects the database to be used.

This parameter is not required if DATASET = TEMP or SORT.

RABN

RABN = number [- number]

This parameter specifies one RABN or a range of RABNs to be dumped.

Examples

adapri: dbid = 1, dataset = data, rabn = 123

DATA RABN 123 of database 1 is to be dumped.

adapri: dataset = sort, rabn = 123 - 129

The RABNs from 123 to 129 on the data set SORT are to be dumped.

321Adabas Utilities

ADAPRI (Print Adabas Blocks)



322



23 ADAREC (Recovery Of Database Or Files)

■ Functional Overview ....................................................................................................................... 324
■ Procedure Flow ............................................................................................................................. 325
■ Checkpoints ................................................................................................................................. 327
■ ADAREC Input Data ....................................................................................................................... 327
■ Control Parameters ........................................................................................................................ 327
■ Examples ..................................................................................................................................... 333
■ ADAREC Restart Considerations ...................................................................................................... 340

323



This chapter describes the utility "ADAREC".

Functional Overview

The ADAREC utility consists of the following database recovery functions:

■ The CLOSE function writes a clean end-of-file to an abnormally-terminated Protection Log file
within a disk section (UNIX platforms only).

■ The LIST function lists information about a Protection Log.
■ The REGENERATE function re-applies all of the updates made between two specified check-
points. The checkpoints used are normally the result of a checkpoint command (C1) but may
also be internal checkpoints taken by OP commands from EXU users or utility actions. If the
whole database is to be regenerated, certain filesmay be excluded by using the EXCLUDE_FILES
option. The files specifiedwith this option are not regenerated, and the updates that are excluded
are reported.

If REGENERATE terminates at a SYNP checkpoint, ADAREC "looks ahead" on the current PLOG
to find an alternative restart point for the next run of this PLOG. The utility then displays a list of
other utility functions that have to be executed before ADAREC can be restarted. If one or more
SYNP checkpoints were found, ADAREC terminates with status 14 (setting the status to 14 was
introducedwith version 6.1.7.1 - previousAdabas versions terminatedwith status 0). The calculated
restart point can be reset or overridden by entering BLOCK = or CHECKPOINT =. Refer to the
database report utility ADAREP in thismanual for a description of the possible system checkpoint
types.

Normally, REGENERATE completes all fully-logged and confirmed transactions. This function
is most frequently used when the database (or one or more files) has been restored to a previous
status with the RESTORE function of the ADABCK utility.

If the utility writes records to the error file, it will exit with a non-zero status.

Note: If ADAREC is used more than once at the same time to regenerate files, you should
first increase the value of the nucleus parameter LBP - this is because ADAREC performs
a large number of database updates, and failure to provide a large enough value of LBP
may lead to an Adabas response code 162 being returned.

This utility is a single-function utility.

Adabas Utilities324

ADAREC (Recovery Of Database Or Files)



Procedure Flow

(UNIX platforms only)

Additional InformationStorage
Medium

Environment
Variable

Data Set

Disk (* see note)RECPLGProtection log

Note: (*) The CLOSE function works only on protection log files in raw disk sections.

325Adabas Utilities

ADAREC (Recovery Of Database Or Files)



REGENERATE Function

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAREC messages

Output of ADARECDisk, Tape (* see note)RECERRRejected data

Disk, TapeRECPLGProtection log

Adabas Utilities326

ADAREC (Recovery Of Database Or Files)



Note: (*) A named pipe can be used for this sequential file (not on OpenVMS, see Adminis-
tration, Using Utilities for details).

The sequential file RECPLG can have multiple extents. For detailed information about sequential
files with multiple extents, see Administration, Using Utilities.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpointswritten:

Checkpoint writtenNucleus is NOT requiredNucleus must NOT be activeNucleus must be activeFunction

-XCLOSE

-XLIST

SYNXXREGENERATE

ADAREC Input Data

Data protection information, in the form of `before' and `after' images of all updated records, is
written to the Protection Log during eachAdabas session. This information is needed to regenerate
the updates.

Control Parameters

The following control parameters are available:

CLOSE = PLOG-number[(extent-number)]

M DBID = number

LIST = keyword

REGENERATE = {* [,EXCLUDE_FILES =
(number[-number] [,number[-number] ] ... ) } |
(number[-number] [,number[-number] ] ... )
PLOG = number

D [,[NO]BI_CHECK]
[,BLOCK = ([number][,number])

,CHECKPOINT = ([string][,string])]
D [,[NO]ERROR_LOG]
D [,ON_ERROR = keyword]

327Adabas Utilities

ADAREC (Recovery Of Database Or Files)



CLOSE

CLOSE = PLOG-number[(extent-number)]

The CLOSE function writes a clean end-of-file to an abnormally-terminated Protection Log file
within a disk section. This functionmust be executed before such a Protection Log file can be used
as input for the REGENERATE function.

TheCLOSE functionmaybe runwhen anAUTORESTART is pending or after theAUTORESTART
has been performed.

This function can still be used even if subsequent Adabas sessions have created other Protection
Log data files.

PLOG-number and extent-number specify the Adabas Protection Log number and the extent
number of the Protection Log file to be closed. These numbers are displayed by the LAYOUT
function of ADADEV.

Note: This function only applies to UNIX platforms.

Example:

adarec: db=1
%ADAREC-I-DBON, database 1 accessed online
adarec: close=93
adarec:

Protection log 93 - 20-JUL-2005 13:12:54 closed successfully

The CLOSE function closes Protection Log 93 of database 1.

DBID

DBID = number

This parameter selects the database to be used.

Note: Program functions which do not require the nucleus to be running need the environ-
ment variables/logical names set for the container files.

Adabas Utilities328

ADAREC (Recovery Of Database Or Files)



LIST

[PLOG=number,] LIST = keyword

Valid keywords are BRIEF, FULL and RESTART. BRIEF lists the Protection Log number and its
creation date. FULL lists additional information about the records on the Protection Log, e.g. the
checkpoints, the number of modifications for each file, etc. RESTART displays the restart points
that ADAREC writes when it encounters checkpoints while processing.

The LIST=FULL function also checks the structure of the Protection Log to ensure that it is internally
consistent. If a structural error is detected, a message is output indicating the error type as well
as the record and block numbers.

If the Protection Log is within a disk section, the PLOG parameter must be set before LIST can be
specified.

Examples

adarec: list=brief

Protection log 1 - 26-OCT-2006 11:39:03

The creation date of PLOG 1 is displayed.

REGENERATE

This function is used to regenerate a whole database or files within a database.

Database Regeneration

REGENERATE = *, PLOG = number
[,EXCLUDE_FILES = (number[-number][,number[-number]]...)]
[,[NO]BI_CHECK]
[,BLOCK = ([number][,number]),

CHECKPOINT = ([string][,string])]
[,[NO]ERROR_LOG]
[,ON_ERROR = keyword]

This option of the REGENERATE function regenerates a database. A file exclusion list can be used
to exclude certain files from the regenerate. ET logic is supported.

During REGENERATE processing, ADAREC sets the database to utility-only mode. Processing
terminates if a SYNP checkpoint is encountered. In this case, ADAREC inspects the Protection
Log in order to calculate an alternative restart point. This restart point is then displayed together
with a list of utility functions that must be executed before processing can be continued. The next
call to REGENERATE automatically sets up at this point. The use of the calculated restart point

329Adabas Utilities

ADAREC (Recovery Of Database Or Files)



can be overridden by specifying "BLOCK=" or "CHECKPOINT=" (that is, supplying empty values
for these keywords). This procedure is repeated until the end of the PLOG is reached. After
ADAREC has terminated, the database remains in utility-only mode, because more calls to RE-
GENERATEmay follow.After the database regeneration has finished, you can enable the database
for normal processing with the ADAOPR command OPTIONS=NOUTILITIES_ONLY.

[NO]BI_CHECK

If this option is set to BI_CHECK, ADAREC checks the consistency of the before images in the
Protection Log against the data in the database (is the ISN in use; does the record exist; is there a
before imagemismatch?). If a mismatch is encountered, ADAREC issues messages containing the
relevant information and does not perform the update.

If this option is set to NOBI_CHECK, the consistency check is still made and the ERROR_LOG is
implicitly enabled; however, on finding a BI inconsistency, the update is made and the mismatch
is reported to the ERROR_LOG (see below). If errors are encountered, only the first error for each
file will be displayed, all subsequent errors are logged to the ERROR_LOG. Note that the index
might become inconsistent in this case.

However, if the PLOG was written with the NOBI option of the nucleus, it will not contain any
before images and the BI_CHECK option cannot be set.

The default is BI_CHECK.

BLOCK = ([number][,number])

This parameter specifies the numbers of the blocks in the Protection Log files that contain the
corresponding checkpoint names. The block numbers can be taken from ADAREC LIST=FULL.

CHECKPOINT = ([string][,string])

This parameter specifies the starting and ending checkpoint names. The checkpoint names can be
taken from the ADAREP database status report or ADAREC LIST=FULL.

If processing is to start at the beginning of the Protection Log file, the first parameter must be
omitted.

[NO]ERROR_LOG

Setting this option to ERROR_LOG enables the automatic logging of any BI inconsistencies that
may be detected when using the NOBI_CHECK option. The contents of the error file produced
can be examined using theADAERRutility. Do not print this error file using the standard operating
system print utilities, since the records contain nonprintable characters. See ADAERR for further
information.

The default is NOERROR_LOG.

Adabas Utilities330

ADAREC (Recovery Of Database Or Files)



EXCLUDE_FILES = (number[-number][,number[-number]]...)

This parameter specifies the files to be excluded when regenerating a complete database. The up-
dates that are excluded are written to a report.

ON_ERROR = keyword

Valid keywords are ABORT and EXCLUDE. The keyword used determines what action to take if
ADARECdetects non-fatal errors during processing (e.g. response code 17, file not loaded). ABORT
abnormally terminates regenerate processing, and EXCLUDE excludes the file in question from
the regenerate if Data Storage errors occur (nucleus response codes 17, 49, 75, 77 and 113).

If, however, an error occurs while updating a file's index (nucleus response codes 75, 76, 77, 98,
165, 166, 167 and 176), only the regeneration of the Data Storage for this file will continue. When
the regeneration process is complete, the index of this file is marked as invalid. The ADAINV
REINVERT function with the ALL_FIELDS option then has to be run for this file (please refer to
the ADAINV utility in this manual for more detailed information). If index errors occur and if the
regenerate includes several Protection Logs, all of the Protection Logs should be processed before
reinverting the index. Reinverting the index each time a Protection Log results in index errors
would waste considerable amounts of time and computer resources.

The default is ON_ERROR=EXCLUDE.

PLOG = number

This parameter specifies the log number of the Adabas Protection Log to be used as input for the
REGENERATE function. This number can be foundwithADARECusing the LIST =BRIEF function.

File Regeneration

REGENERATE = (number[-number][,number[-number]]...), PLOG = number
[,[NO]BI_CHECK]
[,BLOCK = ([number][,number]),

CHECKPOINT = ([string][,string])]
[,[NO]ERROR_LOG]
[,ON_ERROR = keyword]

This option of the REGENERATE function re-applies all updates in a Protection Log for the specified
files or ranges of files. LOB files specified are ignored, but the LOB files assigned to all base files
specified are dumped too.

During regenerate processing, ADAREC locks the files for exclusive use. The regenerate terminates
if a SYNP checkpoint is found while processing a protection log. In this case, ADAREC inspects
the Protection Log in order to calculate an alternative restart point. This restart point is then dis-
played with a list of utility functions that must be executed before processing can be continued.
The next call to REGENERATE automatically sets up at this point. The use of the calculated restart
point can be overridden by specifying "BLOCK=" or "CHECKPOINT=" (that is, supplying empty

331Adabas Utilities

ADAREC (Recovery Of Database Or Files)



values for these keywords). This procedure is repeated until the end of the Protection Log is
reached.

The files remain locked, because more calls to REGENERATE may follow. After the files regener-
ation is finished, you must unlock the files with the ADAOPR command UNLOCK.

The following functions are not allowed while ADAREC is active:

■ ADAOPR ET_SYNC FEOF = PLOG
■ ADABCK DUMP
■ ADAOPR STOP to a sub-user while the associated ADAREC user exists

[NO]BI_CHECK

If this option is set to BI_CHECK, ADAREC checks the consistency of the before images in the
Protection Log against the data in the database (is the ISN in use; does the record exist; is there a
before imagemismatch?). If a mismatch is encountered, ADAREC issues messages containing the
relevant information and does not perform the update.

If this option is set to NOBI_CHECK, the consistency check is still made and the ERROR_LOG is
implicitly enabled; however, on finding a BI inconsistency, the update is made and the mismatch
is reported to the ERROR_LOG (see below). If errors are encountered, only the first error for each
file will be displayed, all subsequent errors are logged to the ERROR_LOG. Note that the index
might become inconsistent in this case.

NOBI_CHECK improves performance at the expense of possible loss of data consistency.We advise
you therefore not to use NOBI_CHECK for mission critical databases.

The default is BI_CHECK.

BLOCK = ([number] [,number])

This parameter specifies the blocks in the Protection Log files that contain the corresponding
checkpoint names. The block numbers can be taken from ADAREC LIST=FULL.

CHECKPOINT = ([string] [,string])

This parameter specifies the starting and ending checkpoint names. The checkpoint names can be
taken from the ADAREP database status report.

If processing is to start at the beginning of the Protection Log file, the first parameter must be
omitted. However, if the first checkpoint name is supplied, it must be found in the first Protection
Log file.

If processing is to stop at the end of the last Protection Log file, the second checkpoint name must
be omitted.

Adabas Utilities332

ADAREC (Recovery Of Database Or Files)



[NO]ERROR_LOG

Setting this option to ERROR_LOG enables the automatic logging of any BI inconsistencies that
may be detected when using the NOBI_CHECK option. The contents of the error file produced
can be examinedusing theADAERRutility. Do not print this error file using the standardOpenVMS
print utilities, since the records contain non-printable characters. Please refer to the ADAERR
utility in this manual for more detailed information.

The default is NOERROR_LOG.

ON_ERROR = keyword

Valid keywords are ABORT and EXCLUDE. The keyword used determines what action to take if
ADARECdetects non-fatal errors during processing (e.g. response code 17, file not loaded). ABORT
abnormally terminates regenerate processing, and EXCLUDE excludes the file in question from
the regenerate if Data Storage errors occur (nucleus response codes 17, 49, 75, 77 and 113).

If, however, an error occurs while updating a file's index (nucleus response codes 75, 76, 77, 98,
165, 166, 167 and 176), only the regeneration of the Data Storage for this file will continue. When
the regeneration process is complete, the index of this file is marked as invalid. The ADAINV
REINVERT function with the ALL_FIELDS option then has to be run for this file (please refer to
the ADAINV utility in this manual for more detailed information). If index errors occur and if the
regenerate includes several Protection Logs, all of the Protection Logs should be processed before
reinverting the index. Reinverting the index each time a Protection Log results in index errors
would waste considerable amounts of time and computer resources.

The default is ON_ERROR=EXCLUDE.

PLOG = number

This parameter specifies the log number of the Adabas Protection Log to be used as input for the
REGENERATE function. This number can be foundwithADARECusing the LIST =BRIEF function.

Examples

Example 1

In this example, database 2 is to be regenerated using the Protection Log 2. File 12 is to be excluded
from the regenerate.

333Adabas Utilities

ADAREC (Recovery Of Database Or Files)



adarec: regenerate=*,plog=2
adarec: exclude_files=12
adarec:

Protection log 2 - 26-OCT-2006 11:48:59

Block 3 - checkpoint SYNC - 11:49:00 - USERID ADANUC <version>
%ADAREC-I-CHKIGN, Checkpoint ignored

The following utility functions were executed in the original session:

Block 4 - checkpoint SYNP - 11:50:02 - USERID ADADBM REFRESH=13

Block 5 - checkpoint SYNX - 11:50:03 - USERID ADADBM RESET=UCB,IDENT=7

Block 6 - checkpoint SYNP - 11:50:03 - USERID ADADBM RECOVER

Re-execute all SYNP utility functions starting from block 4.

REGENERATE summary

Calculated RESTART point - BLOCK=6,CHECKPOINT=SYNP

Processing of the ProtectionLog terminated at the SYNP checkpoint in block 4.However, no updates
were found on looking ahead and processing can be continued from the calculated restart point
in block 6. ADARECdisplays a list of the utility functions that must be executed before processing
continues. The next call to REGENERATE=* will automatically continue at this calculated restart
point.

adarec: regenerate=*,plog=2
%adarec-I-restartp, calculated restart point - block=6,checkpoint=synp
adarec: exclude_files=12
adarec:

Protection log 2 - 26-OCT-2006 11:48:59.86

Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
%ADAREC-I-CHKSTP, starting checkpoint

1 modifications in file 11
1 modifications EXCLUDED from file 12

4 ET commands issued

Block 7 - checkpoint SYNC - 11:52:38.98 - USERID ADANUC SHUTDOWN
%ADAREC-I-CHKIGN, Checkpoint ignored

Adabas Utilities334

ADAREC (Recovery Of Database Or Files)



REGENERATE summary

Protection log 2 processed

Processing of the Protection Log continues at the calculated restart point. The regenerate terminates
successfully.

Example 2

In this example, database 2 is to be regenerated using the Protection Log 2. Processing is to start
at the checkpoint SYNP in block 6 of the Protection Log. If Data Storage errors occur, the file in
questionwill be excluded from the regenerate. If index errors occur, the file's indexwill be excluded
from the regenerate and marked as invalid.

adarec: regenerate=*,plog=2,block=6,checkpoint=synp
adarec: on_error=exclude
adarec:

Protection log 2 - 26-OCT-2006 11:48:59.86

%ADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC
%ADAREC-W-RECUPD, Updates performed between Nucleus and REGENERATE'S startup
%ADAREC-W-RECCMD, 1 N1 command(s)

Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
%ADAREC-I-CHKSTP, starting checkpoint

1 modifications in file 11

3 ET commands issued

%ADAREC-E-ISNINUSE, ISN 774 in use in file 12
%ADAREC-I-PLOGRB, from record 14 in block 7 in PLOG 2
%ADAREC-I-UPDEXC, ALL following updates in file 12 will be EXCLUDED

1 modifications EXCLUDED from file 12

1 ET command issued

Block 7 - checkpoint SYNC - 11:52:38.98 - USERID ADANUC SHUTDOWN
%ADAREC-I-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 2 processed

335Adabas Utilities

ADAREC (Recovery Of Database Or Files)



An ISN conflict occurred in file 12 and all subsequent updates to this file were excluded. The cause
of the error has to be investigated. However, the nucleus was started without `OPTIONS=UTILIT-
IES_ONLY' and an N1 command was issued before the regenerate was started.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

Example 3

This example is similar to the previous one, with the exception that processing will abort if Data
Storage or index errors are encountered.

adarec: regenerate=*,plog=2,block=6,checkpoint=synp
adarec: on_error=abort
adarec:

Protection log 2 - 26-OCT-2006 11:48:59.86

%ADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC
%ADAREC-W-RECUPD, Updates performed between Nucleus and REGENERATE'S startup
%ADAREC-W-RECCMD, 1 N1 command(s)

Block 6 - checkpoint SYNP - 11:50:03.86 - USERID ADADBM RECOVER
%ADAREC-I-CHKSTP, starting checkpoint

1 modifications in file 11

3 ET commands issued

%ADAREC-E-ISNINUSE, ISN 774 in use in file 12
%ADAREC-I-PLOGRB, from record 14 in block 7 in PLOG 2

An ISN conflict occurred in file 12 and further processing was aborted.

Example 4

In this example, database 2 is to be regenerated using the Protection Log 3. The before images in
the Protection Logwill be checked against the data in the database andmismatcheswill be displayed
on the terminal.

adarec: regenerate=*,plog=3
adarec:

Protection log 3 - 26-OCT-2006 12:10:25.12

%ADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL 0

Adabas Utilities336

ADAREC (Recovery Of Database Or Files)



%ADAREC-I-CHKIGN, Checkpoint ignored

1 ET command issued

%ADAREC-E-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAREC-I-PLOGRB, from record 7 in block 2 in PLOG 3
%ADAREC-I-UPDEXC, ALL following updates in file 11 will be EXCLUDED

1 modifications EXCLUDED from file 11
1 modifications in file 12

3 ET commands issued

Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
%ADAREC-I-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 3 processed

One before image mismatch occurred during processing. As a result, one update was excluded
from file 11.

Having restored the files, the same example can be rerun with no consistency check of the before
images and with BI error logging enabled.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

adarec: regenerate=*,plog=3,nobi_check
adarec:

Protection log 3 - 26-OCT-2006 12:10:25.12

%ADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL 0
%ADAREC-I-CHKIGN, Checkpoint ignored

%ADAREC-W-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAREC-I-PLOGRB, from record 7 in block 2 in PLOG 3

1 modifications in file 11
1 modifications in file 12

4 ET commands issued

1 BI_CHECK error in file 11

337Adabas Utilities

ADAREC (Recovery Of Database Or Files)



Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
%ADAREC-I-CHKIGN, Checkpoint ignored

REGENERATE summary

1 BI_CHECK error in file 11

Protection log 3 processed

One BI_CHECK error occurred during processing.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

The source of the errors is written to an error file which can be displayed using the ADAERR
utility. The first error is logged and also written to the error file. All subsequent errors are written
to ERROR_LOG.

The following error file was produced:

%ADAERR-E-RECMIS, Before image mismatch for ISN 3 in file 11
%ADAERR-I-PLOGRB, from record 7 in block 2 in PLOG 3

Example 5

In this example, database 2 is to be regenerated using the Protection Log 3.

adarec: regenerate=*,plog=3
adarec:

Protection log 3 - 26-OCT-2006 12:10:25.12

%ADAREC-W-UTIENA, OPTIONS=UTILITIES enabled in nucleus by ADAREC

Block 1 - checkpoint SYNC - 12:10:25.12 - USERID ADANUC 3.2/0 PL 0
%ADAREC-I-CHKIGN, Checkpoint ignored

%ADAREC-E-ERRIUP, Error response 165 during index update
%ADAREC-E-Adabas_165, * Invalid descriptor name in DVT
%ADAREC-I-DESNAM, Descriptor name XA
%ADAREC-I-ISNFILE, from ISN 3 in file 11
%ADAREC-I-PLOGRB, from record 7 in block 2 in PLOG 3
%ADAREC-I-REINVERT, REINVERT all descriptors to re-establish INDEX
%ADAREC-I-REGDAT, Regenerating ONLY data-storage for file 11

1 modifications in file 11

Adabas Utilities338

ADAREC (Recovery Of Database Or Files)



1 modifications in file 12

4 ET commands issued

Block 2 - checkpoint SYNC - 12:11:44.30 - USERID ADANUC SHUTDOWN
%ADAREC-I-CHKIGN, Checkpoint ignored

REGENERATE summary

Protection log 3 processed

An invalid descriptor namewas encountered during processing. As a result, only the data storage
of file 11 was regenerated. All of the descriptors will have to be reinverted in order to reestablish
the index.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

If index errors occur and if the regenerate includes several Protection Logs, all of the Protection
Logs should be processed before reinverting the index. Reinverting the index each time a Protection
Log results in index errors would waste considerable amounts of time and computer resources.

Example 6

In this example, database 2 is to be regenerated using the Protection Log 4 after the regenerate
processing of Protection Log 3 resulted in an index error.

adarec: regenerate=*,plog=4
adarec:

Protection log 4 - 26-OCT-2006 12:12:00.15

Block 1 - checkpoint SYNC - 12:12:00.15 - USERID ADANUC <version>
%ADAREC-I-CHKIGN, Checkpoint ignored

%ADAREC-E-FCBNAC, file 11's index not accessible
%ADAREC-I-REGDAT, Regenerating ONLY data-storage for file 11

1 modifications in file 11
1 modifications in file 12

4 ET commands issued

Block 2 - checkpoint SYNC - 12:12:19.35 - USERID ADANUC SHUTDOWN
%ADAREC-I-CHKIGN, Checkpoint ignored

339Adabas Utilities

ADAREC (Recovery Of Database Or Files)



REGENERATE summary

Protection log 4 processed

The index error that occurred while processing Protection Log 3 (see example 5) means that file
11's index is no longer accessible. Only the Data Storage of file 11 is regenerated, whereas both
the Data Storage and the index of file 12 are regenerated.

The Protection Log was processed to its end, the abort system message is used only to indicate a
fatal error.

ADAREC Restart Considerations

An interrupted ADAREC run which leaves a UCB entry has to be re-started from the beginning.
Because modifications have already been made, a RESTORE database or RESTORE file has to be
executed before re-starting ADAREC. However, if there is no UCB entry, the database has not
been modified and ADAREC can be re-started.

An abnormally terminated ADAREC (RESTORE/RECOVER) leaves the database in a consistent
state, although it is not possible to tell exactly in which state. ADAREC cannot determine which
transactions have already been recovered, so it is necessary to repeat the RESTORE operation and
restart the ADAREC from the beginning in order to ensure that everything is recovered.

Having performed the first update, ADAREC writes a `started' checkpoint to the checkpoint file,
e.g.

SYNX 22-MAR-2007 16:49:46 192 ADAREC REG STARTED

Adabas Utilities340

ADAREC (Recovery Of Database Or Files)



24 ADAREP (Database Report)

■ Functional Overview ....................................................................................................................... 342
■ Procedure Flow ............................................................................................................................. 343
■ Checkpoints ................................................................................................................................. 343
■ Control Parameters ........................................................................................................................ 344

341



This chapter describes the utility "ADAREP".

Functional Overview

The ADAREP utility generates the database status report. This contains information about the
current physical layout and logical contents of the database. Unless otherwise stated, the functions
can be executed when the nucleus is active or inactive.

The information contained in this report includes:

■ The amount and location of space currently allocated for the Associator and Data Storage;
■ The amount and location of unused space available for the Associator and Data Storage;
■ Database file summary;
■ Checkpoint information;
■ Information about each file in the database (space allocation, space available, number of records
loaded, MAXISN setting, field definitions, etc.);

Only the CHECKPOINTS control parameter (see description below) requires the nucleus to be
active.

This utility is a multi-function utility.

Adabas Utilities342

ADAREP (Database Report)



Procedure Flow

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

DiskASSOxAssociator

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codes,
Utilities Manual

stdout/
SYS$OUTPUT

ADAREP report

Checkpoints

The utility writes no checkpoints.

343Adabas Utilities

ADAREP (Database Report)



Control Parameters

The following control parameters are available:

CHECKPOINTS = { * | ( [absolute-date] [,[absolute-date] ] ) }

CONSTRAINTS

CONTENTS

M DBID = number

D [NO]FDT

FILES = { * | (number [-number][,number[-number]]...) }

D [NO]FULL

FREE_SPACE

LAYOUT

SUMMARY

CHECKPOINTS

CHECKPOINTS = { * | ( [absolute-date] [,[absolute-date]] ) }

This function displays selected information from the checkpoint list and requires the nucleus to
be active.

Five types of system checkpoints (SYNP, SYNC, SYNX, OPEN and CLSE) are written to the
checkpoint file and to the protection log, together with the user checkpoints written by C1 com-
mands.

SYNC indicates a checkpoint made during nucleus initialization, shutdown or cancel processing;
during the ADAOPR function FEOF = PLOG; or due to ADABCK NEW_PLOG processing.

SYNP indicates a checkpoint made by an Adabas utility that requires privileged control, i.e. the
module canmake updates without using the nucleus. A SYNP checkpoint is, for example, written
at the end of an ADAMUP UPDATE run.

SYNX indicates a checkpoint made by a utility that requires exclusive control of one or more files.
A SYNX checkpoint is, for example, written by ADAULD.

An OPEN checkpoint is written by the OP command of EXU/EXF users.

Adabas Utilities344

ADAREP (Database Report)



A CLSE checkpoint is written by the CL command of EXU/EXF users.

Note: If the ADAREC `REGENERATE' function is executed using the Protection Log, this
utility stops at each SYNP checkpoint since DBA intervention is required.

If an asterisk `*' is entered, all checkpoints are displayed.

The date strings must correspond to the following absolute data and time format:

dd-mmm-yyyy[:hh[:mm[:ss]]]

Leading zeroes in the date and time specification may be omitted. Any numbers not specified are
set to 0, for example 28-jul-2006 is equivalent to 28-jul-2006:00:00:00.

The following table shows thepossible values for parameterCHECKPOINTS, and the corresponding
checkpoints displayed by this value:

Checkpoints displayed for this specificationValue specified for parameter
CHECKPOINTS

All checkpoints* or (,)

Only the checkpoints written exactly at the date and time specifiedabsolute-date

Checkpoints written from date and time specified onwards(absolute-date,)

Checkpoints written up to the date and time specified(,absolute-date)

Checkpointswritten fromfirst date and time value specified onwards
up to the second date and time value specified

(absolute-date,absolute-date)

Example

adarep: checkpoints=*

Name Date/Time Session User Id / Function
---- --------- ------- ------------------
SYNP 28-JUL-2006 12:50:34 8 ADADBM DELCP
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
SYNX 28-JUL-2006 12:50:37 8 ADABCK DUMP=*
OPEN 28-JUL-2006 17:23:53 8 otto
OPEN 28-JUL-2006 17:24:15 8 otto
CLSE 28-JUL-2006 17:24:24 8 otto

All checkpoints are displayed.

The column "User ID / Function" contains

345Adabas Utilities

ADAREP (Database Report)



■ for user checkpoints created via OP/CL commands for EXU/EXF users or via C1 command: the
user specified in the Additions 1 field of the relevant OP command;

■ for utility checkpoints: the utility function executed.

Taking the output of the example above (checkpoints=*), the selection criteria can be used to filter
the checkpoints selected as shown below.

Specifying

checkpoints=28-jul-2006:12:50:36

will produce the following output:

Name Date/Time Session User Id / Function
---- --------- ------- ------------------
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED

Specifying

checkpoints=(28-jul-2006:12:50:36,)

will produce the following output:

Name Date/Time Session User Id / Function
---- --------- ------- ------------------
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED
SYNX 28-JUL-2006 12:50:37 8 ADABCK DUMP=*
OPEN 28-JUL-2006 17:23:53 8 otto
OPEN 28-JUL-2006 17:24:15 8 otto
CLSE 28-JUL-2006 17:24:24 8 otto

Specifying

checkpoints=(,28-jul-2006:12:50:36)

will produce the following output:

Adabas Utilities346

ADAREP (Database Report)



Name Date/Time Session User Id / Function
---- --------- ------- ------------------
SYNP 28-JUL-2006 12:50:34 8 ADADBM DELCP
SYNX 28-JUL-2006 12:50:36 8 ADABCK DUMP=* STARTED

Specifying

checkpoints=(28-jul-2006:17, 28-jul-2006:17:24)

will produce the following output:

Name Date/Time Session User Id / Function
---- --------- ------- ------------------
OPEN 28-JUL-2006 17:23:53 8 otto

CONSTRAINTS

CONSTRAINTS

This function displays information about all referential constraints in the database that you specify
with the DBID parameter.

Example

adarep: constraints

Primary file Foreign file Name Action
---------------------------------------------------

9 (AA) <--- 12 (AC) HO DX UX

The referential constraint HO links the primary key field AA in the primary file 9 with the foreign
key field AC in the foreign file 12. The associated actions are delete no action (DX) and update no
action (UX).

CONTENTS

CONTENTS

This function displays information about the files in the database that you specify with the DBID
parameter.

347Adabas Utilities

ADAREP (Database Report)



Example

adarep: contents

Content of Database 76 25-AUG-2006 12:51:06

Index Extents Pad % flags
File Filename loaded on Top ISN level N U A D A D AISCP
-------------------------------------------------------------------------------

1 CHECKPOINT-FILE 25-AUG-2006 4 3 1 1 1 1 5 5 S
2 USER-DATA-FILE 25-AUG-2006 0 3 1 1 1 1 5 5 IS
3 SECURITY-FILE 25-AUG-2006 0 3 1 1 1 1 5 5 IS
11 EMPLOYEE-FILE 12-AUG-2006 72 3 20 12 4 9 5 5 I
12 VEHICLES 12-AUG-2006 171 3 1 1 5 9 5 5 IS
13 MISCELLANEOUS 12-AUG-2006 179 3 2 1 1 1 3 5 IS

Allocated blocks Unused blocks
File Filename NI UI AC DS NI UI DS
-------------------------------------------------------------------------------

1 CHECKPOINT-FILE 1 1 5 32 1 0 31
2 USER-DATA-FILE 24 2 5 57 24 1 56
3 SECURITY-FILE 2 2 1 5 2 1 4
11 EMPLOYEE-FILE 109 26 4 68 97 13 64
12 VEHICLES 40 20 6 48 30 12 44
13 MISCELLANEOUS 113 100 3 50 33 32 1

-------------------------------------------------------------------------------
Total 289 151 24 260 187 59 200

The column `Extents' shows the number of logical extents currently assigned to the Normal Index
(N), the Main/Upper Indices (U), the Address Converter (A) and Data Storage (D).

The column `Pad' shows the block padding factors in percent defined for the Associator (A) and
Data Storage (D) (please refer to the ASSOPFAC and DATAPFAC parameters of ADAFDU,
ADAMUP or ADAORD for more detailed information).

The column `Flags' contains the following information:

MeaningFlagSubcolumn

Indicates an Adam fileAA

File is a LOB fileLL

File is a base file with a corresponding LOB fileB

ISN and space reusage enabled for the fileRR

ISN reusage, but no space reusage enabled for the fileI

Adabas Utilities348

ADAREP (Database Report)



MeaningFlagSubcolumn

Space reusage, but no ISN reusage enabled for the fileS

Ciphering enabled for the fileCC

Program Refresh enabled for the filePP

If ISNs are to be reused, the ISNs of deleted records can be reassigned to new records. If space is
to be reused, the space released within a block as a result of deleting a record can be reused for a
new record (please refer to the REUSE parameter of ADADBM or ADAFDU for more detailed
information).

The second table shows the number of blocks allocated forNormal Index (NI)Main/Upper Indices
(UI), Address Converter (AC) and Data Storage (DS) for each file. The remaining columns show
the number of unused blocks in the Main/Upper Indices (UI) and Data Storage (DS).

DBID

DBID = number

This parameter selects the database to be used. Multiple DBIDs are supported within one session.

The DBID parameter must be the first ADAREP parameter specified.

Example

adarep: dbid = 1, contents
.
.

adarep: dbid = 2, contents
.
.

adarep: dbid = 3, contents

[NO]FDT

[NO]FDT

If this parameter is set to FDT, the Field Definition Tables (FDTs) will be included in the status
information subsequently displayed by the FILES function.

The default is NOFDT.

349Adabas Utilities

ADAREP (Database Report)



FILES

FILES = { * | (number [-number][,number [-number]]...) }

This function displays status information for the files selected.

Example

adarep: fdt
adarep: file=9
Database 1, File     9  (EMPLOYEES       )          28-JAN-2010 14:15:54

Highest Index Level:          3     Padding Factors:       ASSO   5%, DATA   5%
Top ISN:                  1,272     Maximum ISN expected:                 8,191
Records loaded:           1,272     Corresponding LOB file:                  14
Last FDT Modification:              11-NOV-2009 13:53:32.447000

ISN reusage:     Enabled, inactive  Space reusage:    Enabled
Program refresh: Disabled           Ciphering:        Disabled

Container  Block  Extent    Extents in Blocks       Allocated         Unused
  File     Size   Type       from          to      Blocks   MB      Blocks   MB
-------------------------------------------------------------------------------

ASSO:
        2  32KB   AC        2,562       2,562           1    0           0    0
        1   4KB   NI           63         152          90    0          35    0
        1   4KB   UI          153         167          15    0           0    0

DATA:
        1  32KB   DS           14          45          32    1          23    0

-------------------------------------------------------------------------------

Field Definition Table:

   Level  I Name I Length I Format I   Options         I Flags   I Encoding
-------------------------------------------------------------------------------
  1       I  A0  I        I        I                   I         I
   2      I  AA  I    8   I    A   I DE,UQ,NC,NN       I RP      I
   2      I  AB  I        I        I                   I         I
    3     I  AC  I    4   I    F   I DE                I         I
    3     I  AD  I    8   I    B   I NU,HF             I         I
    3     I  AE  I    0   I    A   I NU,NV,NB,LA       I         I
  1       I  B0  I        I        I                   I         I
   2      I  BA  I   40   I    W   I NU                I         I
   2      I  BB  I   40   I    W   I NU                I         I
   2      I  BC  I   50   I    W   I DE,NU             I SP      I
  1       I  CA  I    1   I    A   I FI                I         I

Adabas Utilities350

ADAREP (Database Report)



  1       I  DA  I    1   I    A   I FI                I         I
  1       I  EA  I    4   I    P   I DE,NC             I         I
  1       I  F0  I        I        I PE                I         I
   2      I  FA  I   60   I    W   I NU,MU             I         I
   2      I  FB  I   40   I    W   I DE,NU             I         I
   2      I  FC  I   10   I    A   I NU                I         I
   2      I  FD  I    3   I    A   I NU                I         I
   2      I  F1  I        I        I                   I         I
    3     I  FE  I    6   I    A   I NU                I         I
    3     I  FF  I   15   I    A   I NU                I         I
    3     I  FG  I   15   I    A   I NU                I         I
    3     I  FH  I   15   I    A   I NU                I         I
    3     I  FI  I   80   I    A   I DE,NU,MU          I         I
  1       I  I0  I        I        I PE                I         I
   2      I  IA  I   40   I    W   I NU,MU             I         I
   2      I  IB  I   40   I    W   I DE,NU             I         I
   2      I  IC  I   10   I    A   I NU                I         I
   2      I  ID  I    3   I    A   I NU                I         I
   2      I  IE  I    5   I    A   I NU                I         I
   2      I  I1  I        I        I                   I         I
    3     I  IF  I    6   I    A   I NU                I         I
    3     I  IG  I   15   I    A   I NU                I         I
    3     I  IH  I   15   I    A   I NU                I         I
    3     I  II  I   15   I    A   I NU                I         I
    3     I  IJ  I   80   I    A   I DE,NU,MU          I         I
  1       I  JA  I    6   I    A   I DE                I SB,SP   I
  1       I  KA  I   66   I    W   I DE,NU             I         I
  1       I  L0  I        I        I PE                I         I
   2      I  LA  I    3   I    A   I NU                I SP      I
   2      I  LB  I    6   I    P   I NU                I SP      I
   2      I  LC  I    6   I    P   I DE,NU,MU          I         I
  1       I  MA  I    4   I    G   I NU                I         I
  1       I  N0  I        I        I                   I         I
   2      I  NA  I    2   I    U   I                   I SP      I
   2      I  NB  I    3   I    U   I NU                I SP      I
  1       I  O0  I        I        I PE                I         I
   2      I  OA  I    8   I    U   I NU                I         I
          I      I        I        I DT=E(DATE)
   2      I  OB  I    8   I    U   I NU                I         I
          I      I        I        I DT=E(DATE)
  1       I  PA  I    3   I    A   I DE,NU,MU          I         I
  1       I  QA  I    7   I    P   I                   I         I
  1       I  RA  I    0   I    A   I NU,NV,NB,LB       I         I
  1       I  S0  I        I        I PE                I         I
   2      I  SA  I   80   I    W   I NU                I         I
   2      I  SB  I    3   I    A   I NU                I         I
   2      I  SC  I    0   I    A   I NU,MU,NV,NB,LB    I         I
-------------------------------------------------------------------------------
   Type   I Name I Length I Format I   Options         I Parent field(s)   Fmt
-------------------------------------------------------------------------------
 COLL     I  CN  I1,144   I        I NU,HE             I BC  de@collation=phoneb
ook

351Adabas Utilities

ADAREP (Database Report)



          I      I        I        I                   I     PRIMARY
-------------------------------------------------------------------------------
 SUPER    I  H1  I    5   I    B   I NU                I NA (   1 -   2 )   U
          I      I        I        I                   I NB (   1 -   3 )   U
-------------------------------------------------------------------------------
 SUB      I  S1  I    2   I    A   I                   I JA (   1 -   2 )   A
-------------------------------------------------------------------------------
 SUPER    I  S2  I   46   I    A   I NU                I JA (   1 -   6 )   A
          I      I        I        I                   I BC (   1 -  40 )   W
-------------------------------------------------------------------------------
 SUPER    I  S3  I    9   I    A   I NU,PE             I LA (   1 -   3 )   A
          I      I        I        I                   I LB (   1 -   6 )   P
-------------------------------------------------------------------------------
                            Referential Integrity
-------------------------------------------------------------------------------
   Type   I Name I Refer. I PrimaryI Foreign I Rules
          I      I file   I  field I  field  I
-------------------------------------------------------------------------------
 PRIMARY  I  HO  I    12  I   AA    I   AC    I DELETE_NOACTION  UPDATE_NOACTION

-------------------------------------------------------------------------------   ↩
           

The FILES parameter displays the file number and file name, the highest index level, the padding
factors for ASSO and DATA, the highest and maximum ISNs, the number of records loaded, the
corresponding base file number or LOB file number if it exists, as well as the switches for ISN re-
usage, space reusage, program refresh and ciphering. The time anddate of the last FDTmodification
are also displayed.

The layout of the ASSO and DATA elements of a file are displayed: the block size on which the
various list elements are stored, the location of these extents and the number of corresponding
blocks/megabytes allocated or unused.

In addition, the FDT function displays the Field Definition Table of the file.

The flags which can be displayed in the Field Definition Table are as follows:

MeaningFlag

the field is part of a hyperdescriptorHY

the field is phoneticizedP

part of this field is subdescriptorSB

part of superdescriptorSP

Adabas Utilities352

ADAREP (Database Report)



FREE_SPACE

FREE_SPACE

This function displays a summary of free blocks inASSO andDATA. This is a subset of the inform-
ation that is displayed by the LAYOUT function.

Example

adarep: free_space

Free space of Database 76 28-NOV-2006 12:51:24

Container Extents in Blocks Number of Block
File from to Blocks Size

-------------------------------------------------------------------------------

ASSO:
1-2 611 1,546 936 2,048

DATA:
1 245 768 524 4,096
2 769 868 100 3,072

3-4 869 888 20 6,144

[NO]FULL

[NO]FULL

If FULL is specified together with FDT, dropped fields will be included in the display of the FDT
information (but without the field names).

The default is NOFULL.

LAYOUT

LAYOUT

This function displays a summary of the blocks in ASSO and DATA and reports lost blocks. Lost
blocks are blocks that are not listed in the Free Space Table (FST) and are not allocated to a file,
the DSST or the database's global area. This function also reports double-allocated blocks.

353Adabas Utilities

ADAREP (Database Report)



Example

adarep: layout

Layout of Database 76 28-NOV-2006 12:51:24

Container Extents in Blocks Number of Block Extent File
File from to Blocks Size Type Number

-------------------------------------------------------------------------------

ASSO:
1 1 30 30 4,096 CB
1 31 31 1 4,096 FCB 1
1 32 32 1 4,096 FDT 1
1 33 35 3 4,096 AC 1
1 36 36 1 4,096 UI 1
1 37 37 1 4,096 NI 1
1 38 38 1 4,096 FCB 2
1 39 39 1 4,096 FDT 2
1 40 40 1 4,096 AC 2
1 41 42 2 4,096 UI 2
1 43 43 1 4,096 NI 2
1 44 44 1 4,096 FCB 3
1 45 45 1 4,096 FDT 3
1 46 48 3 4,096 AC 3
1 49 50 2 4,096 UI 3
1 51 62 12 4,096 NI 3
1 63 152 90 4,096 NI 9
1 153 167 15 4,096 UI 9
1 168 168 1 4,096 FCB 9
1 169 169 1 4,096 FDT 9
1 170 170 1 4,096 NI 14
1 171 172 2 4,096 UI 14
1 173 173 1 4,096 FCB 14
1 174 174 1 4,096 FDT 14
1 175 264 90 4,096 NI 11
1 265 279 15 4,096 UI 11
1 280 280 1 4,096 FCB 11
1 281 281 1 4,096 FDT 11
1 282 321 40 4,096 NI 12
1 322 341 20 4,096 UI 12
1 342 342 1 4,096 FCB 12
1 343 343 1 4,096 FDT 12
1 344 393 50 4,096 NI 13
1 394 403 10 4,096 UI 13
1 404 404 1 4,096 FCB 13
1 405 406 2 4,096 FDT 13
1 407 2,560 2,154 4,096 FREE
2 2,561 2,561 1 32,768 DSST

Adabas Utilities354

ADAREP (Database Report)



2 2,562 2,562 1 32,768 AC 9
2 2,563 2,563 1 32,768 AC 14
2 2,564 2,572 9 32,768 AC 11
2 2,573 2,581 9 32,768 AC 12
2 2,582 2,582 1 32,768 AC 13
2 2,583 2,880 298 32,768 FREE

DATA:
1 1 4 4 32,768 DS 1
1 5 5 1 32,768 DS 2
1 6 13 8 32,768 DS 3
1 14 45 32 32,768 DS 9
1 46 170 125 32,768 DS 14
1 171 202 32 32,768 DS 11
1 203 212 10 32,768 DS 12
1 213 222 10 32,768 DS 13
1 223 640 418 32,768 FREE

LAYOUT provides a summary of all blocks in ASSO and DATA. The locations and lengths of
sections of contiguous blocks, the block size, the type of usage and the numbers of the corresponding
files are displayed. These blocks may be free (FREE) or used for the Global Blocks (CB), the File
Control Block (FCB), the FCB extension (FCBE), the FCB Root Block (FCBR), the Field Definition
Table (FDT), the Free Space Table (FST), the Data Space Storage Table (DSST), the Normal Index
(NI), the Upper/Main Index (UI), the Address Converter (AC) or the Data Storage (DS).

Note: The first FCBR block and the first FST block are part of the global blocks. For this
reason, the layout only displays FCBR and FST blocks if the database contains more than
one of these blocks.

SUMMARY

SUMMARY

SUMMARY provides general information about the database and the physical layout of ASSO,
DATA and WORK.

Example

adarep: summary

Summary of Database 76 28-NOV-2006 12:51:24

DATABASE NAME DOKU-DATABASE
DATABASE ID 76
MAXIMUM NUMBER OF FILES 30
SYSTEM FILES 1 (CHK), 2 (SEC), 3 (USR)
ACTUAL FILES LOADED 6

355Adabas Utilities

ADAREP (Database Report)



AC SIZE 3
CURRENT PLOG NUMBER 8
CURRENT CLOG NUMBER 0

Container Device Extents in Blocks Number of Block Total Size
File Type from to Blocks Size (Megabytes)

-------------------------------------------------------------------------------

ASSO1 file 1 1,536 1,536 2,048 3.00
ASSO2 raw 1,537 1,546 10 2,048 0.02

DATA1 file 1 768 768 4,096 3.00
DATA2 raw 769 868 100 3,072 0.29
DATA3 file 869 878 10 6,144 0.06
DATA4 file 879 888 10 6,144 0.06

WORK1 file 1 1,365 1,365 3,072 4.00

-------------------------------------------------------------------------------
10.43
=====

The device type can be "raw" (raw section), "file" (file system) or "worm" (write once, read many
device. e.g. optical disk).

Adabas Utilities356

ADAREP (Database Report)



25 ADASCR (Security Functions)

■ Functional Overview ....................................................................................................................... 358
■ Procedure Flow ............................................................................................................................. 359
■ Checkpoints ................................................................................................................................. 360
■ Control Parameters ........................................................................................................................ 360

357



This chapter describes the utility "ADASCR".

Functional Overview

The security utilityADASCR creates,modifies anddeletes file protection levels anduser passwords,
and enables the security capabilities of individual passwords. Additionally, the utility is used to
display file and password security information. The output of the export functionality of ADASCR
can be used to apply some of all of the security definitions of a database to another database.

Access to this utility should be strictly limited to the person or persons responsible for database
security (DBA).

Multiple functions may be specifiedwithin a single run of ADASCR. There is no restriction on the
number of functions which may be specified.

The affected database(s) must be online.

All updates resulting from ADASCR take effect immediately.

This utility is a multi-function utility.

Note: To copy existing security definitions from one hardware architecture or operating
system to another youmust use the EXPORT control parameter. You cannot copy the security
definitions from one hardware architecture to another by using ADAULD/ADADCU and
ADACMP/ADAMUP - this is because the data stored in the security file are stored in a
platform-dependent internal format.

Adabas Utilities358

ADASCR (Security Functions)



Procedure Flow

Additional InformationStorage MediumLogical Name/
Environment variable

Data Set

Utilities Manualstdin/
SYS$INPUT

Control Statements

Messages and Codesstdout/
SYS$OUTPUT

ADASCR Messages

Utilities ManualDiskSCROUTExported Security Definitions

359Adabas Utilities

ADASCR (Security Functions)



Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

CHANGE {=|:} (string, string)

M DBID = number

DELETE = string

DISPLAY = [PASSWORDS,
PERMISSIONS, PASSWORD = {* | string} |
FILE = {* | (number[-number][,number[-number]]...)} |
VALUE_CRITERIA, PASSWORD = {* | string}]

EXPORT = {PASSWORDS,
D [TARGET_ARCHITECTURE = KEYWORD,]

PASSWORD = {* | string} |
PROTECTIONS,

D [TARGET_ARCHITECTURE = KEYWORD,]
FILE = {* | (number[-number][,number[-number]]...)} |
VALUE_CRITERIA,

D [TARGET_ARCHITECTURE = KEYWORD,]
FILE = {* | (number[-number][,number[-number]]...)}
PASSWORD = {* | string}}

INSERT {=|:} string, FILE = (number[-number][,number[-number]]...)
,ACCESS = (number[,number]...)
,UPDATE = (number[,number]...)

PROTECT = (number[-number][,number[-number]]...)
,ACCESS = (number[,number]...)
,UPDATE = (number[,number]...)

SECURITY_BY_VALUE {=|:} string, FILE = number
,ACCESS_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *
,UPDATE_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *

Adabas Utilities360

ADASCR (Security Functions)



*The search/access buffer string parameters must be followed by <Newline> with no preceding
comma.

CHANGE

CHANGE {=|:} (string, string)

This function changes an existing password.

The password specified by the first string must be an existing password.

The value specified by the second stringmust not be the same as an existing password. A password
may be between 1 and 8 characters long. If less than 8 characters are specified, trailing blanks are
added. The password may not contain any special characters or embedded blanks.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

All entries in effect for the password specified by the first string remain in effect for the new
password.

Example

adascr: change = (oldpw1,newpw1)

The password OLDPW1 is changed to NEWPW1.

DBID

DBID = number

This parameter selects the current database.

Note: The nucleus must be running.

Example

adascr: dbid = 155

The database currently being used is database 155.

361Adabas Utilities

ADASCR (Security Functions)



DELETE

DELETE = string

This function deletes the existing password specified by the string, together with its associated
permission levels and Security by Value criteria.

Example

adascr: delete = userpw1

The password USERPW1 is deleted.

DISPLAY

DISPLAY = [PASSWORDS |
PERMISSIONS, PASSWORD = {* | string} |
PROTECTIONS,
FILE = {* | (number[-number][,number[-number]]...)} |
VALUE_CRITERIA, PASSWORD = {* | string}]

This function shows current security information for files and passwords, as defined by the
ADASCR utility.

Details of file protection levels, passwords, password permission levels and Security by Value
criteria may be displayed.

FILE = {* | number[-number][,number[-number]]...}

The FILE parameter provides the list, range or ranges of files for which the preceding DISPLAY
function is to be applied.

PASSWORDS

The PASSWORDS parameter prints a list of the passwords currently contained in the security file
in ascending, alphanumeric sequence.

Adabas Utilities362

ADASCR (Security Functions)



Example

adascr: display = passwords

List of defined passwords for Database 155 ("ALPHA-TS")

FORTYTWO
G6MON
USERPW1
VOYAGER

Total of 4 defined passwords

PERMISSIONS

The PERMISSIONS parameter prints a list of the access and update capabilities of the specified
password for each currently loaded file, by comparing the password permission information
against the current file protection levels.

Where respective access or update capability is granted, this is shown by the letter Y; conversely,
where the capability is not granted, this is shown by the letter N.

Where access or update permissions for a given file are granted and additional Security by Value
restrictions apply to that file, this is indicated by enclosing brackets, i.e. (Y).

Example

adascr: display = permissions, password = fortytwo

Password : "FORTYTWO"

FILE | ACCESS | UPDATE
-----|--------|-------

1 | N | N
2 | Y | N
3 | N | N
4 | N | (Y)
6 | Y | Y
10 | (Y) | (Y)

-----|--------|-------

( ) Further value restrictions apply where brackets shown.

363Adabas Utilities

ADASCR (Security Functions)



PROTECTIONS

The PROTECTIONS parameter prints file protection information for the specified range of files,
irrespective of whether or not the files specified are currently loaded.

Example:

display = protections, file = (4-10)

FILE | ACCESS | UPDATE
-----|--------|-------

4 | 1 | 3
6 | 0 | 0
10 | 3 | 6

-----|--------|-------

VALUE_CRITERIA

The VALUE_CRITERIA parameter prints all Security by Value criteria currently defined for the
specified password.

Example:

display = value_criteria, password = *

Password : "FORTYTWO"

| File | Security by Value criterion
|-------|-----------------------------------------------------
| 4 | ACCESS_CRITERION
| | SEARCH_BUFFER=.
| | VALUE_BUFFER=
| | UPDATE_CRITERION
| | SEARCH_BUFFER=AA,4,A,GE.
| | VALUE_BUFFER=LENA
| 10 | ACCESS_CRITERION
| | SEARCH_BUFFER=CA,4,U,LT.
| | VALUE_BUFFER=1707
| | UPDATE_CRITERION
| | SEARCH_BUFFER=CA,4,S,CA,4,D,AA,O,AA.
| | VALUE_BUFFER=01001599MS
|-------|-----------------------------------------------------

Password : "G6MON"

| File | Security by Value criterion

Adabas Utilities364

ADASCR (Security Functions)



|-------|-----------------------------------------------------
| 4 | ACCESS_CRITERION
| | SEARCH_BUFFER=.
| | VALUE_BUFFER=
| | UPDATE_CRITERION
| | SEARCH_BUFFER=AA,3.
| | VALUE_BUFFER=HAM
|-------|-----------------------------------------------------

No value criteria defined for password "USERPWD1".

No value criteria defined for password "VOYAGER".

EXPORT

EXPORT = {PASSWORDS,
[TARGET_ARCHITECTURE = keyword,]
PASSWORD = {* | string} |
PROTECTIONS,
[TARGET_ARCHITECTURE = keyword,]
FILE = {* | (number[-number][,number[-number]]...)} |
VALUE_CRITERIA,
[TARGET_ARCHITECTURE = keyword,]
FILE = {* | (number[-number][,number[-number]]...)},
PASSWORD = {* | string}}

This function exports the current security settings (password definitions, file protection levels and
security by value criteria) to the sequential file SCROUT. The output in the file SCROUT can be
used as ADASCR input in order to import the security definitions into another database.

The security definitions may be exported either in mainframe syntax to import them on to main-
frame platforms or in open systems syntax to import them on to open systems platforms.

The following examples for the EXPORT parameter assume that the following security definitions
have already been made:

INSERT=MYSECRET,FILE=(9,12,13),ACCESS=(7,2,4),UPDATE=(11,2,4)

PROTECT=9,ACCESS=7,UPDATE=11
PROTECT=12,ACCESS=2,UPDATE=2
PROTECT=13,ACCESS=4,UPDATE=4

SECURITY_BY_VALUE=MYSECRET,FILE=13,ACCESS_CRITERION,SEARCH_BUFFER=B0,GE.
VALUE_BUFFER=0x01000000
UPDATE_CRITERION,SEARCH_BUFFER=B0,3,GE.
VALUE_BUFFER=0xFF0201

SECURITY_BY_VALUE=MYSECRET,FILE=12,ACCESS_CRITERION,SEARCH_BUFFER=AM,3,GE.

365Adabas Utilities

ADASCR (Security Functions)



VALUE_BUFFER=0x33000C
UPDATE_CRITERION,SEARCH_BUFFER=AM,3,GE.
VALUE_BUFFER=0x50000C

SECURITY_BY_VALUE=MYSECRET,FILE=9,ACCESS_CRITERION,SEARCH_BUFFER=AZ,2,GE.
VALUE_BUFFER=FR
UPDATE_CRITERION,SEARCH_BUFFER=AH,8,GE,D,AH,8,LE,D,AA,8,LE. ↩
VALUE_BUFFER=195201011952020160000000

PASSWORDS

PASSWORDS,
TARGET_ARCHITECTURE = keyword,
PASSWORD = {*|string}

The PASSWORDS parameter exports password permission levels (access and update) and the
associated file or file list for the given password/passwords.

The TARGET_ARCHITECTUREparameter defines the syntax of the target platform. The following
keywords can be used:

MeaningKeyword

Export the defined password/passwords in mainframe syntax.MAINFRAME

Export the defined password/passwords in open systems syntax.OPEN_SYSTEMS

The default TARGET_ARCHITECTURE is OPEN_SYSTEMS.

The PASSWORD parameter specifies the password for the security settings have to be exported.
It is also possible to export all defined passwords in the database - this can be done by specifying
an asterisk for this parameter.

Example (export for open systems):

adascr: export = passwords, target_architecture = open_systems
adascr: password = mysecret

This results in the following output for SCROUT:

INSERT=MYSECRET,FILE=(9,12,13),ACCESS=(7,2,4),UPDATE=(11,2,4)

Adabas Utilities366

ADASCR (Security Functions)



Example (export for mainframe):

adascr: export = passwords, target_architecture = mainframe, password = mysecret

This results in the following output for SCROUT:

ADASCR INSERT PW=MYSECRET,FILE=9,12,13,ACC=7,2,4,UPD=11,2,4

PROTECTIONS

PROTECTIONS,
TARGET_ARCHITECTURE = keyword,
FILE = {*|(number[-number][,number[-number]]…)}

The PROTECTIONS parameter exports the protection levels of the given file, file range or ranges.

The TARGET_ARCHITECTUREparameter defines the syntax of the target platform. The following
keywords can be used:

MeaningKeyword

Export the defined password/passwords in mainframe syntax.MAINFRAME

Export the defined password/passwords in open systems syntax.OPEN_SYSTEMS

The default TARGET_ARCHITECTURE is OPEN_SYSTEMS.

The FILE parameter specifies the files for which protection levels are to be exported.

Example (export for open systems):

adascr: export = protections, target_architecture = open_systems, file = (9,12,13)

This results in the following output for SCROUT:

PROTECT=(9,12,13),ACCESS=(7,2,4),UPDATE=(11,2,4)

Example (export for mainframe):

adascr: export = protections, target_architecture = mainframe, file = (9,12,13)

This results in the following output for SCROUT:

367Adabas Utilities

ADASCR (Security Functions)



ADASCR PROTECT FILE=9,12,13,ACC=7,2,4,UPD=11,2,4

VALUE_CRITERIA

VALUE_CRITERIA,
TARGET_ARCHITECTURE = (keyword [,keyword]),
FILE = {*|(number[-number][,number[-number]]…)},
PASSWORD = {*|string}

The VALUE_CRITERIA parameter exports defined security-by-value settings for a specific file,
for the password specified by ‘string’.

The TARGET_ARCHITECTUREparameter defines the syntax and also the byte order of the target
platform. The following keywords can be used:

Valid KeywordsKeyword Group

MAINFRAME
OPEN_SYSTEMS

Syntax

HIGH_ORDER_BYTE_FIRST
LOW_ORDER_BYTE_FIRST

Byte Order

The default TARGET_ARCHITECTURE is OPEN_SYSTEMS.

The default byte order corresponds to the architecture of themachine onwhichADASCR is running.

Note: If you export security-by-value definitions fromopen systems tomainframe platforms,
a warning will be issued if the search buffer contains W-formatted fields. This is because
W-formatted fields are not supported on mainframe platforms in security-by-value defini-
tions. Any search buffer that contains W-formatted fields will not be exported.

The FILE parameter specifies the file list or range(s) of files forwhich security-by-value definitions
are to be exported. Multiple specifications of the same file number are not permitted.

The PASSWORD parameter specifies the password for which security-by-value definitions are to
be exported. If you specify an asterisk, the export will be for all defined passwords.

Example (export for open systems):

adascr: export = value_criteria
adascr: target_architecture = (open_systems, low_order_byte_first)
adascr: file = 9
adascr: password = mysecret

This results in the following output for SCROUT:

Adabas Utilities368

ADASCR (Security Functions)



SECURITY_BY_VALUE=MYSECRET,FILE=9,ACCESS_CRITERION,SEARCH_BUFFER=AH,8,GE.
VALUE_BUFFER=19520130
UPDATE_CRITERION,SEARCH_BUFFER=AH,8,GE,D,AH,8,LE,D,AA,8,LE.
VALUE_BUFFER=195201011952020160000000

Example (export for mainframe):

adascr: export = value_criteria
adascr: target_architecture = mainframe
adascr: file = 9
adascr: password = mysecret

This results in the following output for SCROUT:

ADASCR SBYVALUE PW=MYSECRET,FILE=9,
CRITACC=’A=AH,GE.’,
VALACC=’19520130’,
CRITUPD=’A=AH,GE,D,AH,LE,D,AA,LE.’,
VALUPD=’19520101,19520201,A(60000000)’

Example

This example shows how to export of existing security settings of a Windows Adabas database
33 in order to subsequently import them into a Unix Adabas database 34.

The export function of ADASCR is used as follows:

set SCROUT=scrout.txt
adascr
adascr: db=33
adascr: export=passwords,password=MYSECRET
adascr: export=protections, file=(9,12,13)
adascr: export=VALUE_CRITERIA,target_architecture=(open_systems,
high_order_byte_first),file=(9,12,13),password=MYSECRET

The file “scrout.txt” can now be edited as required, for example, to secure more files other than
the ones exported with the given password.

Now copy the exported text file “scrout.txt” to the desired target platform, in this case to a Unix
platform. Import the exported security settings using ADASCR with the following statement:

adascr db=34 + < scrout.txt

%ADASCR-I-DBON, database 34 accessed online
%ADASCR-I-PWINS, password "MYSECRET" inserted
%ADASCR-I-FILPRO, protections (access 7, update 11) set for file 9
%ADASCR-I-FILPRO, protections (access 2, update 2) set for file 12
%ADASCR-I-FILPRO, protections (access 4, update 4) set for file 13
%ADASCR-I-SEVINS, Value criteria for file 13 added to password "MYSECRET"

369Adabas Utilities

ADASCR (Security Functions)



%ADASCR-I-SEVINS, Value criteria for file 12 added to password "MYSECRET"
%ADASCR-I-SEVINS, Value criteria for file 9 added to password "MYSECRET"

You can check the imported security settings with the DISPLAY control parameter of ADASCR:

adascr
adascr: dbid=34 display=passwords

List of defined passwords for Database 34 ("GENERAL_DATABASE")

MYSECRET

Total of 1 defined password

adascr: dbid=34 display=permissions,password=MYSECRET

password : "MYSECRET"

FILE | ACCESS | UPDATE
-----------------------

1 | Y | Y
2 | Y | Y
3 | Y | Y
9 | (Y) | (Y)

11 | N | N
12 | (Y) | (Y)
13 | (Y) | (Y)
14 | N | N

-----------------------

( ) Further value restrictions apply where brackets shown.

Adascr: db=34 display=protections,file=(9,12,13)

FILE | ACCESS | UPDATE
-----------------------

9 | 7 | 11
12 | 2 | 2
13 | 4 | 4

-----------------------

adascr: db=34 display=value_criteria,password=MYSECRET

password : "MYSECRET"

| File | Security by Value criterion
|------+----------------------------------------------------------------------
| 9 | ACCESS_CRITERION

Adabas Utilities370

ADASCR (Security Functions)



| | SEARCH_BUFFER: "AZ,2,GE."
| | VALUE_BUFFER: "FR"
| | UPDATE_CRITERION
| | SEARCH_BUFFER: "AH,8,GE,D,AH,8,LE,D,AA,8,LE. "
| | VALUE_BUFFER: "195201011952020160000000"
| 12 | ACCESS_CRITERION
| | SEARCH_BUFFER: "AM,3,GE."
| | VALUE_BUFFER: 0x33000C
| | UPDATE_CRITERION
| | SEARCH_BUFFER: "AM,3,GE."
| | VALUE_BUFFER: 0x50000C
| 13 | ACCESS_CRITERION
| | SEARCH_BUFFER: "B0,GE."
| | VALUE_BUFFER: 0x01000000
| | UPDATE_CRITERION
| | SEARCH_BUFFER: "B0,3,GE."
| | VALUE_BUFFER: 0xFF0201
|-----------------------------------------------------------------------------

INSERT

INSERT {=|:} string, FILE = (number[-number][,number[-number]]...)
,ACCESS = (number[,number]...)
,UPDATE = (number[,number]...)

This function inserts a password specified by 'string' into the password table.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

The password may be between 1 and 8 characters long. If less than 8 characters are specified,
trailing blanks are added. The password may not contain any special characters or embedded
blanks.

ACCESS = (number[,number]...)

The ACCESS parameter specifies the access protection levels to be associated with the files or file
ranges specified in the FILE parameter. Each protection level corresponds to one file or one file
range. A value may be specified in the range 0 - 14. The protection levels must be specified in the
same order as the corresponding files or file ranges in the FILE parameter.

371Adabas Utilities

ADASCR (Security Functions)



FILE = (number[-number[,number[-number]]...)

The FILE parameter specifies the file list or range(s) of files for which permission levels are being
provided. Multiple specifications of the same file number are not permitted.

UPDATE = (number[,number]...)

The UPDATE parameter specifies the update protection levels to be associated with the files or
file ranges specified in the FILE parameter. Each protection level corresponds to one file or one
file range. A value may be specified in the range 0 - 14. The protection levels must be specified in
the same order as the corresponding files or file ranges in the FILE parameter.

Example

adascr: insert = userpwx, file = (1,2,3),
access = (7,7,7), update = (0,8,8)

adascr: insert = userpwy, file = (1,2,3),
access = (7,2,2), update = (8,0,0)

adascr: insert = userpwz, file = (1-3,5),
access = (2,3), update = (4,6)

PROTECT

PROTECT = (number[-number][,number[-number]]...)
,ACCESS = (number[,number]...)
,UPDATE = (number[,number]...)

This function inserts (or updates) the access and/or update protection levels for the file, list or
range(s) specified. Multiple specifications of the same file number are not permitted.

ACCESS = (number[,number]...)

The ACCESS parameter specifies the access protection levels to be associated with the files or file
ranges specified in the PROTECT parameter. Each protection level corresponds to one file or one
file range. A value may be specified in the range 0 - 15. The protection levels must be specified in
the same order as the corresponding files or file ranges in the PROTECT parameter.

Note that the maximum protection level for access for the PROTECT function is 15, whereas the
INSERT function allows amaximumof only 14. Therefore, withACCESS=15, a file can be protected
to prevent any user from accessing it.

Adabas Utilities372

ADASCR (Security Functions)



UPDATE = (number[,number]...)

The UPDATE parameter specifies the update protection levels to be associated with the files or
file ranges specified in the PROTECT parameter. Each protection level corresponds to one file or
one file range. A valuemay be specified in the range 0 - 15. The protection levels must be specified
in the same order as the corresponding files or file ranges in the PROTECT parameter.

Note that the maximum protection level for update for the INSERT function is 14, whereas the
PROTECT function allows a maximum of 15. Therefore, with UPDATE=15, a file can be protected
to prevent any user from updating it.

Example

adascr: protect = 25, access = 7, update = 11
adascr: protect = (1,2,3), access = (7,7,7), update = (8,8,8)
adascr: protect = (4-6), access = 10, update = 12

If the file number of a security-protected file is subsequently changed as a result of running the
RENUMBER function of theADADBMutility, the PROTECT function has to be reexecuted in order
to reestablish the security protection levels for the file. The passwords also have to be reestablished,
since they reflect the old file number.

SECURITY_BY_VALUE

SECURITY_BY_VALUE {=|:} string, FILE = number
,ACCESS_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *
,UPDATE_CRITERION
,SEARCH_BUFFER = string *
,VALUE_BUFFER = string *

* The search/access buffer string parameters must be followed by <Newline> with no preceding
comma.

This function inserts (or updates) the Security by Value criteria for a specific file, for the given
password specified by `string'. The password must already have been inserted into the security
file, using the INSERT function. Each password can have Security by Value criteria defined for a
maximum of 99 files.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

373Adabas Utilities

ADASCR (Security Functions)



ACCESS_CRITERION

The ACCESS_CRITERION keyword must precede the search buffer and value buffer which will
define the criterion for restricting access to data using the provided password.

In order for the access value criterion to be specified, the ACCESS password permission level for
the file must also have previously been set (i.e. non-zero); in the case where the level is not set,
the ACCESS_CRITERION keyword cannot be specified.

FILE = number

The FILE parameter specifies the file for which the value criteria are to be defined. Exactly one file
must be specified and the file must be currently loaded in the database.

UPDATE_CRITERION

The UPDATE_CRITERION keyword must precede the search buffer and value buffer which will
define the criterion for restricting the update of data using the provided password.

In order for the update value criterion to be specified, the UPDATE password permission level
for the file must also have previously been set (i.e. non-zero); in the case where the level is not set,
the UPDATE_CRITERION keyword cannot be specified.

SEARCH_BUFFER = string

The SEARCH_BUFFER parameter is used to provide the search expressions for the access/update
criterion. Syntax and examples of search buffer construction are provided in Command Reference,
Calling Adabas, Search and Value Buffers.

Certain restrictions apply to the search buffer when used for defining Security by Value criteria;
soft coupling and sub-, super-, hyper- and phonetic descriptors are not supported.

If the required criterion is that no restrictions should apply, then the associated search buffer
should be specified containing only the terminator, i.e.:

SEARCH_BUFFER = .

In this case, the VALUE_BUFFER parameter is not required and does not need to be supplied.

Adabas Utilities374

ADASCR (Security Functions)



VALUE_BUFFER = string

The VALUE_BUFFER parameter is used to provide the corresponding values for the search ex-
pressions for the access/update value criterion, specified in the preceding search buffer. The string
may be specified either directly, as an alphanumeric string or as a string using hexadecimal notation.

Example

adascr: security_by_value = fortytwo, file = 10,
access_criterion, search_buffer = CA,4,U,LT.

adascr: value_buffer = 1707
adascr: update_criterion, search_buffer = A,4,S,CA,4,D,AA,O,AA.
adascr: value_buffer = 01001599MS

adascr: security_by_value = g6mon, file = 3
adascr: access_criterion, search_buffer = .
adascr: update_criterion, search_buffer = AC,3.
adascr: value_buffer = HAM

If the either the access or update protection level for the specified file is zero, the associated value
criterion will not be tested when the password is used for accessing/updating records for that file.

375Adabas Utilities

ADASCR (Security Functions)



376



26 ADATST (Issuing Adabas Commands)

■ Functional Overview ....................................................................................................................... 378
■ Procedure Flow ............................................................................................................................. 379
■ Checkpoints ................................................................................................................................. 379
■ Control Parameters ........................................................................................................................ 380

377



This chapter describes the utility "ADATST".

Functional Overview

The ADATST utility is used to fill the control block and the necessary buffers in order to issue
Adabas commands.

Both the oldACBAdabas command interface and the newACBXcommand interface are supported.
Formore information on the command interfaces please refer to theCommandReferencedocument-
ation. Note that the ACB interface can be considered as a subset of the ACBX interface: Fields in
the old ACBAdabas control block are also contained in the newACBX control block (or the ABDs
– the Adabas buffer descriptions) with the difference that some ACB fields are smaller then the
corresponding fields in the new interface. In particular the buffer lengths have been increased that
nowAdabas buffers greater than 64 KB are possible. Switching between the interfaces is possible,
but when you switch back to the old ACB interface you must be aware of the restrictions of the
old ACB interface.

This utility is a multi-function utility.

Adabas Utilities378

ADATST (Issuing Adabas Commands)



Procedure Flow

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADATST messages

Checkpoints

The utility writes no checkpoints.

379Adabas Utilities

ADATST (Issuing Adabas Commands)



Control Parameters

Note: In the following, "string" is an ASCII string or 0x followed by hexadecimal data.

The following control parameters are available:

A1 {=|:} string

A2 {=|:} string

A3 {=|:} string

A4 {=|:} string

A5 {=|:} string

A6 {=|:} string

ABD

ALOOP [= number]

CB

CBDUMP

CC = string

CID = string

CO1 = string

CO2 = string

CO3 = string

CO4 = string

CO5 = string

CO6 = string

CO7 = string

CO8 = string

M DBID = number

Adabas Utilities380

ADATST (Issuing Adabas Commands)



DLOOP

ELOOP

ERRORS = number

EXECUTE = { number | ISNQ }

FB [{=|:} string]

FB2 [{=|:} string]

FB3 [{=|:} string]

FBL = number

FB2L [= number]

FB3L [= number]

FILE = number

GO [= { number | ISNQ } ]

IB [= (number [,number]...)]

IBL = number

D INTERFACE = keyword

ISN = number

ISND = number

ISNI = number

ISNL = { number | ISN }

ISNQ = number

LOOP

MB = (number_buffers, number_isns)

D [NO]OUTPUT

OVERWRITE_RB = string

OVERWRITE_RB2 = string

OVERWRITE_RB3 = string

381Adabas Utilities

ADATST (Issuing Adabas Commands)



RB [{=|:} string]

RB2 [{=|:} string]

RB3 [{=|:} string]

RBL = number

RB2L [= number]

RB3L [= number]

READ_RB = string

READ_RB2 = string

READ_RB3 = string

RESPONSE = number

SB [{=|:} string]

SBL = number

TIME

D [NO]TRACE

VB [{=|:} string]

VBL = number

D WAIT [= [time]]

WRITE_RB = string

WRITE_RB2 = string

WRITE_RB3 = string

A1

A1 {=|:} string

This parameter sets the Additions 1 field.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

Adabas Utilities382

ADATST (Issuing Adabas Commands)



A2

A2 {=|:} string

This parameter sets the Additions 2 field.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A3

A3 {=|:} string

This parameter sets the Additions 3 field.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A4

A4 {=|:} string

This parameter sets the Additions 4 field.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A5

A5 {=|:} string

This parameter sets the Additions 5 field.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

A6

A6 {=|:} string

This parameter sets the Additions 6 field.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

383Adabas Utilities

ADATST (Issuing Adabas Commands)



ABD

ABD

This parameter is available only after specifying INTERFACE=ACBX. It displays theAdabas buffer
definitions for the Adabas buffers that are currently defined.

ALOOP

ALOOP [= number]

This parameter opens a loop to add more lines. `number' is a line number. If a line number is
specified, new lines are added from that point, overwriting existing lines; if no number is specified,
new lines are added at the end. Close the loop with ELOOP.

CB

CB

This function displays the contents of the control block.

If the parameter INTERFACE=ACB is specified, only the fields contained in the old ACB Adabas
control block are displayed.

If the parameter INTERFACE=ACBX is specified, the fields contained in the new ACBX Adabas
control block but not in the old ACB Adabas control block are also displayed.

CBDUMP

CBDUMP

This function dumps the control block in hex.

CC

CC = string

This parameter specifies the command code.

Adabas Utilities384

ADATST (Issuing Adabas Commands)



CID

CID= string

This parameter specifies the command ID.

CO1

CO1 = string

This parameter sets the command option 1.

CO2

CO2 = string

This parameter sets the command option 2.

CO3

CO3 = string

This parameter sets the command option 3.

CO4

CO4 = string

This parameter sets the command option 4.

CO5

CO5 = string

This parameter sets the command option 5.

CO6

CO6 = string

This parameter sets the command option 6.

385Adabas Utilities

ADATST (Issuing Adabas Commands)



CO7

CO7 = string

This parameter sets the command option 7.

CO8

CO8 = string

This parameter sets the command option 8.

DBID

DBID = number

This parameter specifies the database to be used.

DLOOP

DLOOP

This function displays a saved command loop.

ELOOP

ELOOP

This function terminates a loop.

ERRORS

ERRORS = number

This parameter specifies the number of errors permitted before termination occurs.

EXECUTE

EXECUTE = { number | ISNQ }

This parameter executes a loop `n' times, where `n' is specified by `number' or by ISNQ. Enter
CTRL/C to terminate a loop.

Adabas Utilities386

ADATST (Issuing Adabas Commands)



FB

FB [{=|:} string]

This parameter is used to display the first format buffer or enter data into the format buffer. The
length is set implicitly.

FB2

FB2 [{=|:} string]

This parameter is used to display the second format buffer or enter data into the format buffer.
The length is set implicitly.

FB3

FB3 [{=|:} string]

This parameter is used to display the third format buffer or enter data into the format buffer. The
length is set implicitly.

FBL

FBL = number

This parameter defines the first format buffer length in the control block.

FB2L

FB2L = number

This parameter defines the second format buffer length in the control block.

FB3L

FBL3 = number

This parameter defines the third format buffer length in the control block.

387Adabas Utilities

ADATST (Issuing Adabas Commands)



FILE

FILE = number

This parameter specifies the file number.

GO

GO [= { number | ISNQ } ]

This function calls Adabas once or `n' times, where `n' is specified by `number' or ISNQ. Enter
CTRL/C to terminate a loop.

IB

IB [= (number [,number]...)]

This parameter is used to display the ISN buffer or enter ISNs. The length is set implicitly.

IBL

IBL = number

This parameter specifies the ISN buffer length in the control block.

INTERFACE

INTERFACE = keyword

This parameter is used to switch between the old and new Adabas command interface. Valid
keywords are ACB and ACBX. The default is ACB. After INTERFACE = ACB has been specified,
Adabas calls are performedwith the old ACBAdabas interface - any fields that are only contained
in the newACBXAdabas control block and additional format buffers and record buffers are ignored.
You can switch between the old and the new Adabas interface in one Adabas session.

ISN

ISN = number

This parameter sets ISN with the number supplied.

Adabas Utilities388

ADATST (Issuing Adabas Commands)



ISND

ISND = number

This parameter subtracts `number' from ISN.

ISNI

ISNI = number

This parameter adds `number' to ISN.

ISNL

ISNL = { number | ISN }

This parameter is used to set the ISN lower limit with the number supplied, or to move the ISN
from the control block into the ISN lower limit.

ISNQ

ISNQ = number

This parameter specifies the ISN quantity with the number supplied.

LOOP

LOOP

This function defines the start of a loop. All commands that follow will be saved until an ELOOP
is entered.

MB

MB = (number_buffers, number_isns)

This parameter defines the number of multifetch buffers and the number of IS entries that can be
stored in a multifetch buffer. number_buffers may be a number between 0 and 3. number_isns
must be a number >0.

The MB parameter can only be specified after INTERFACE = ACBX has been specified.. Since
multifetch buffers are pure output buffers, it is not possible to enter content into the multifetch
buffers.

Once multifetch buffers have been specified, you can display their contents with the RB, RB 2 and
RB3 parameters.

389Adabas Utilities

ADATST (Issuing Adabas Commands)



[NO]OUTPUT

[NO]OUTPUT

If this option is set to NOOUTPUT, no messages are output when calling Adabas `n' times. Only
error messages will be printed.

The default is OUTPUT.

OVERWRITE_RB

OVERWRITE_RB = string

This parameter specifies the name of an existing file to which the contents of the first record buffer
are written. The current contents of the file will be overwritten.

OVERWRITE_RB2

OVERWRITE_RB2 = string

This parameter specifies the name of an existing file to which the contents of the second record
buffer are written. The current contents of the file will be overwritten.

OVERWRITE_RB3

OVERWRITE_RB3 = string

This parameter specifies the name of an existing file to which the contents of the third record
buffer are written. The current contents of the file will be overwritten.

RB

RB [{=|:} string]

This parameter is used to display the first record buffer or enter data into the first record buffer.
For input to a file, the length is set implicitly.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

If you display the first record buffer, and at least one multifetch buffer has been defined with the
MB parameter, the first multifetch buffer is also displayed.

Adabas Utilities390

ADATST (Issuing Adabas Commands)



RB2

RB2 [{=|:} string]

This parameter is used to display the second record buffer or enter data into the second record
buffer. For input to a file, the length is set implicitly.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

If you display the second record buffer, and at least twomultifetch buffers have been definedwith
the MB parameter, the second multifetch buffer is also displayed.

RB3

RB3 [{=|:} string]

This parameter is used to display the third record buffer or enter data into the third record buffer.
For input to a file, the length is set implicitly.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

If you display the third record buffer, and at three multifetch buffer have been defined with the
MB parameter, the third multifetch buffer is also displayed.

RBL

RBL = number

This parameter specifies the first record buffer length in the control block.

RB2L

RB2L = number

This parameter specifies the second record buffer length in the control block.

RB3L

RB3L = number

This parameter specifies the third record buffer length in the control block.

391Adabas Utilities

ADATST (Issuing Adabas Commands)



READ_RB

READ_RB = string

This parameter specifies the name of a file that is read into the first record buffer.

READ_RB2

READ_RB2 = string

This parameter specifies the name of a file that is read into the second record buffer.

READ_RB3

READ_RB3 = string

This parameter specifies the name of a file that is read into the third record buffer.

RESPONSE

RESPONSE = number

This parameter displays the error text for the given nucleus response code.

SB

SB [{=|:} string]

This parameter is used to display the search buffer or enter data into the search buffer. The length
is set implicitly.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

SBL

SBL = number

This parameter specifies the search buffer length in the control block.

Adabas Utilities392

ADATST (Issuing Adabas Commands)



TIME

TIME

This function marks the current time, and displays the difference between this and the last time
mark.

[NO]TRACE

[NO]TRACE

This option traces execute loops.

The default is NOTRACE.

VB

VB [{=|:} string]

This parameter is used to display the value buffer or enter data into the value buffer. The length
is set implicitly. If `string' equals RB, the record buffer is moved into the value buffer.

If you specify an equals sign, the value given for 'string' will be converted to upper case; if you
specify a colon, no upper-case conversion is performed.

VBL

VBL = number

This parameter specifies the value buffer length in the control block.

WAIT

WAIT [= seconds]

This parameter causes ADATST to wait for a given period. The waiting time is entered in seconds.
Once the time is set, you can wait for the same period by entering 'WAIT' without any additions.

The default time is 10 seconds.

393Adabas Utilities

ADATST (Issuing Adabas Commands)



Example

adatst: wait = 15

ADATST waits for fifteen seconds.

WRITE_RB

WRITE_RB = string

This parameter specifies the name of a file to which the contents of the first record buffer are
written. The record buffer is only written if a file with the specified name does not already exist.

WRITE_RB2

WRITE_RB2 = string

This parameter specifies the name of a file to which the contents of the second record buffer are
written. The record buffer is only written if a file with the specified name does not already exist.

WRITE_RB3

WRITE_RB3 = string

This parameter specifies the name of a file to which the contents of the third record buffer are
written. The record buffer is only written if a file with the specified name does not already exist.

Adabas Utilities394

ADATST (Issuing Adabas Commands)



27 ADAULD (File Unloading)

■ Functional Overview ....................................................................................................................... 396
■ Procedure Flow ............................................................................................................................. 398
■ Checkpoints ................................................................................................................................. 400
■ Control Parameters ........................................................................................................................ 401
■ Examples ..................................................................................................................................... 407
■ TEMP Data Set Space Estimation ..................................................................................................... 408
■ Restart Considerations ................................................................................................................... 408

395



This chapter describes the utility "ADAULD".

Functional Overview

The utility ADAULD unloads an Adabas file, i.e. records are retrieved from a database or an
Adabas backup copy, and written to a sequential file.

The main reasons for unloading a file are:

■ To change the space allocation, to reduce the number of logical extents assigned to the index,
Address Converter or Data Storage, and/or to change the padding factor. In this case, the file
has to be unloaded, deleted and reloaded. These features are also available with ADAORD;

■ To create one or more test files, all containing the same data. This procedure requires a file to
be unloaded and then reloaded using a different file number. This feature is also available with
ADAORD;

■ To extract data from a file for subsequent input to ADAMUP. This is useful for moving records
from a production database to an archive database;

■ To re-establish a file that has been archived on an Adabas backup copy.

When unloading a file from a database, the records may be unloaded in:

Logical sequence
The records are unloaded in an ascending sequence based on the values of a user-specified
descriptor;

ISN sequence
The records are unloaded in ascending ISN sequence;

Physical sequence
The records are unloaded in the order in which they are physically located in Data Storage.

Unloading in logical or ISN sequence requires the nucleus to be active. The nucleus is not required
when unloading in physical sequence, provided ADAULD has access to the database container
files.

When unloading from anAdabas backup copy, the records are unloaded in the sequence in which
theywere stored byADABCK. This is generally in ascending data RABN sequence. However, this
sequence cannot be guaranteed when the DRIVES option was used or when the dump was made
online (please refer to the DRIVES option of the utility ADABCK for more detailed information).

The unloaded records are output in compressed format and are identical to the records produced
by the compression utility ADACMP. Since each data record is preceded by its ISN, these ISNs
can be used as user ISNs when reloading the file (please refer to the USERISN option of the utility
ADAMUP for more detailed information).

Adabas Utilities396

ADAULD (File Unloading)



The user can specify that the descriptor values required to recreate the index for the file are omitted
during the UNLOAD process (SHORT option). This reduces the unload processing time. This
option must not be used if the output is intended as direct input for ADAMUP.

After completion, ADAULD returns one of the following exit status values:

0
Records have been successfully unloaded, and no database corruption was detected.

12
The unloadwas successful, but corrupteddata recordswere detected,whichwere not unloaded.
It is recommended that you run ADAVFY in order to obtain more information about the
database corruptions.

15
The unload was successful, but no records were unloaded. In scripts, you can check for this
status value if further activities are required only after unloading at least one record.

255
Unload was not successful.

This utility is a single-function utility.

397Adabas Utilities

ADAULD (File Unloading)



Procedure Flow

BACKUP_COPY Function

The sequential files ULD00n, ULDDTA, ULDDVT can have multiple extents. For detailed inform-
ation about files with multiple extents, see Administration, Using Utilities.

Adabas Utilities398

ADAULD (File Unloading)



DBID Function

The sequential filesULDDTA,ULDDVT can havemultiple extents. For detailed information about
files with multiple extents, see Administration, Using Utilities.

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

see note 2Disk, TapeASSOxAssociator

see note 2Disk, TapeDATAxData storage

Output ofADABCK'sDUMP function,
input for ADAULD

Disk, TapeULD00nBackup copy

Disk, Tape (see note 1)ULDDTAUnloaded data

Disk, Tape (see note 1)ULDDVTUnloaded descriptor values

Utilities Manualstdin/
SYS$INPUT

Control statements

399Adabas Utilities

ADAULD (File Unloading)



Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

Messages and Codesstdout/
SYS$OUTPUT

ADAULD messages

see note 3 and 4Disk, TapeTEMPxTemporary storage

see note 2Disk, TapeWORK1Work storage

Notes:

1. A named pipe can be used for this sequential file (not on OpenVMS) see Administration, Using
Utilities for details).

2. Required by offline unload.Will also increase the speed of online unloadusing physical sequence.

3. Only required if unloading from a backup copy with the online option being used. If the utility
is executed offline, WORKmay be used as TEMP if there is no Autorestart pending, by setting
the environment variable TEMP1 to the same value as WORK1.

4. The ADAULD BACKUP_COPY function does not read the DBxxx.INI file to find TEMP,
therefore you must specify TEMP via environment variables.

Checkpoints

The following table shows the nucleus requirements for each function and the checkpoint written:

Checkpoint writtenNucleus is NOT requiredNucleus must NOT be activeNucleus must be activeFunction

-XBACKUP_COPY

SYNXX(see note2)X(see note 3)X(see note 1)DBID

Notes:

1. When unloading in logical sequence or ISN sequence orwhen the database container file cannot
be accessed byADAULD (e.g.whenunloading froma remote node). Also applies if a file contains
LOB data, because LOB data must be unloaded in logical sequence. Also applies if the search
buffer and value buffer are provided.

2. When unloading in physical sequence and ADAULD has access to the database container files.

3. When unloading an Adabas system file.

Adabas Utilities400

ADAULD (File Unloading)



Control Parameters

The following control parameters are available:

BACKUP_COPY = number, FILE = number
[,FDT]
[,NUMREC = number]

D [,[NO]ONLINE]
D [, [NO]SHORT | [NO]SINGLE_FILE ]

[,SKIPREC = number]
D [,[NO]USEREXIT]

DBID = number , FILE = number
[,FDT]

D [,[NO]LITERAL]
[,NUMREC = number]
[,SEARCH_BUFFER = string, VALUE_BUFFER = string]

D [, [NO]SHORT | [NO]SINGLE_FILE ]
[,SKIPREC = number]
[,SORTSEQ = { string | ISN } ]
[,STARTISN = number]

D [,[NO]USEREXIT]

BACKUP_COPY

BACKUP_COPY = number
,FILE = number
[,FDT]
[,NUMREC = number]
[,[NO]ONLINE]
[,[NO]SHORT | [NO]SINGLE_FILE ]
[,SKIPREC = number]
[,[NO]USEREXIT]

This function unloads records from an Adabas backup copy. You are not allowed to specify a LOB
file. "BACKUP_COPY=number" specifies the ID of the database fromwhich the backup copy was
derived, and "FILE=number" specifies the file number. Both offline and online backup copies can
be used. If a LOBfile is assigned to the file specified, a partial reload using theADAMUPparameters
NUMREC, SKIPREC is not possible.

401Adabas Utilities

ADAULD (File Unloading)



FDT

This parameter displays the FDT of the file to be unloaded.

FILE = number

This parameter specifies the file to be unloaded.

NUMREC = number

This parameter limits the number of data records retrieved from the filewhenunloading.All records
are unloaded if NUMREC is omitted and SKIPREC is not specified. You cannot use NUMREC if
a LOB file is assigned to the file to be reloaded.

[NO]ONLINE

This option indicates whether the backup copy might contain online data storage blocks for the
file to be unloaded.

If the backup copy is expected to contain online data storage blocks, two passes are made when
processing the backup copy. This is because the most recent version of each data storage block
has to be found. Setting this option to NOONLINE unloads in one pass and saves a considerable
amount of processing time, at the risk of ADAULD terminating with an error message if an online
data storage block is detected.

The default used depends onwhether or not the Adabas nucleus was active when the backupwas
made.

[NO]SHORT

This option indicates whether the descriptor values used to build up the index should be included
in the output or omitted.

If SHORT is specified, no descriptor values are unloaded.

If the output is intended as direct input for the mass update utility, the file must be unloaded in
NOSHORT mode.

SHORT and SINGLE_FILE are mutually exclusive.

NOSHORT is the default.

Adabas Utilities402

ADAULD (File Unloading)



[NO]SINGLE_FILE

If this option is set to SINGLE_FILE, ADAULDwrites the DVT and DATA information to a single
data set (ULDDTA).

SINGLE_FILE and SHORT are mutually exclusive.

The default is NOSINGLE_FILE.

SKIPREC = number

This parameter specifies the number of records to be skipped before unloading is started. You
cannot use SKIPREC if a LOB file is assigned to the file to be reloaded.

[NO]USEREXIT

Auser-written routine is dynamically loaded. A pointer to an input parameter block and a pointer
to an output parameter are passed with each call (please see the include file adauex.h for more
information). For each record retrieved from the database, the decision can be made whether to
unload the record (write it to the unload file), skip it or terminate execution immediately.

The environment variable/logical name ADAUEX_7 must point to a user-written routine.

See Administration, User Exits and Hyperexits for more details.

NOUSEREXIT is the default.

DBID

DBID = number
,FILE = number
[,FDT]
[,[NO]LITERAL
[,NUMREC = number]
[,SEARCH_BUFFER = string]
[,[NO]SHORT | [NO]SINGLE_FILE ]
[,SKIPREC = number]
[,SORTSEQ = { string | ISN }]
[,STARTISN = number]
[,[NO]USEREXIT]
[,VALUE_BUFFER = string]

This function unloads records from the specified database.

403Adabas Utilities

ADAULD (File Unloading)



FDT

This parameter displays the FDT of the file to be unloaded.

FILE = number

This parameter specifies the file to be unloaded. You are not allowed to specify a LOB file.

[NO]LITERAL

If this option is set to LITERAL, leading blanks and lower case characters can be specified in the
value buffer and remain relevant in the string, i.e. they are not removed or converted to upper
case. If NOLITERAL is set, lower case characters will be transformed to upper case, and leading
blanks will be suppressed except when the value is specified as a hexadecimal value.

NOLITERAL is the default.

NUMREC = number

This parameter limits the number of data records retrieved from the filewhenunloading.All records
of the file are unloaded if NUMREC is omitted and SKIPREC or STARTISN are not specified.

SEARCH_BUFFER = string

This parameter is used to restrict the unloaded records to those which meet the selection criterion
provided. The selection criterionmust be provided according to the syntax for search buffer entries
as described in the Command Reference Manual.

The maximum length of this parameter is 200 bytes. For complex entries, use the following
method:

adauld: search_buffer=aa,20,a,d,\
> ab,10,a.

ADAULD will concatenate this to:

aa,20,a,d,ab,10,a.

The values which correspond to the selection criterion are provided by the VALUE_BUFFER
parameter.

Adabas Utilities404

ADAULD (File Unloading)



[NO]SHORT

This option indicates whether the descriptor values used to build up the index should be included
in the output or omitted.

If SHORT is specified, no descriptor values are unloaded.

If the output is intended as direct input for the mass update utility, the file must be unloaded in
NOSHORT mode.

SHORT and SINGLE_FILE are mutually exclusive.

NOSHORT is the default.

[NO]SINGLE_FILE

If this option is set to SINGLE_FILE, ADAULD writes the DVT and DTA information to a single
data set (ULDDTA).

SINGLE_FILE and SHORT are mutually exclusive.

The default is NOSINGLE_FILE.

SKIPREC = number

This parameter specifies the number of data records to be skipped before unloading is started.

When used together with the STARTISN parameter, positioning is carried out before skipping.

SORTSEQ = string

This parameter controls the sequence in which the file is unloaded. If specified, it may either
contain the field name of a descriptor, sub- or superdescriptor (1) or the keyword `ISN' (2). The
default is physical sequence (3).

1. Logical sequence

If a string specifies a field name of a descriptor or sub/superdescriptor, the records are unloaded
in ascending logical sequence of the descriptor values to which the field name refers. The field
name must not refer to a descriptor contained within a periodic group.

If the field name refers to a descriptor which is a multiple-value field, the same record may be
unloaded more than once (once for each different descriptor value in the record). Therefore, it
is not recommended to use this type of descriptor to control the unload sequence.

If the field name refers to a descriptor defined with the NU or NC option, the records with a
null value for the descriptor are not unloaded.

405Adabas Utilities

ADAULD (File Unloading)



2. ISN sequence

If `ISN' is specified, the records are unloaded in ascending ISN sequence.

3. Physical sequence

If the SORTSEQ parameter is omitted, the records are unloaded in the physical sequence in
which they are stored in the Data Storage.

If a search buffer has been specified and the SORTSEQ parameter has been omitted, the records
are unloaded in ascending ISN sequence.

STARTISN = number

If the SORTSEQ = ISN option is used or a search buffer is provided, the STARTISN parametermay
be specified to start unloading at a given ISN rather than from the lowest ISN in the file. If the
specified ISN does not exist, unloading starts at the next highest ISN found.

[NO]USEREXIT

Auser-written routine is dynamically loaded. A pointer to an input parameter block and a pointer
to an output parameter are passed with each call (please see the include file adauex.h for more
information). For each record retrieved from the database, the decision can be made whether to
unload the record (write it to the unload file), skip it or terminate execution immediately.

The environment variable/logical name ADAUEX_7 must point to a user-written routine.

See Administration, User Exits and Hyperexits for more details.

NOUSEREXIT is the default.

VALUE_BUFFER = string

If a selection criterion is specified with the SEARCH_BUFFER parameter, this parameter is used
to supply the values which correspond to the selection criterion. The maximum length of this
parameter is 2000 bytes.

Note: See also [NO]LITERAL, which controls the conversion of the value buffer to upper
case.

Adabas Utilities406

ADAULD (File Unloading)



Examples

Example 1

adauld: backup_copy = 3, file = 6

File 6 on the backup copy of database 3 is unloaded. A TEMP data set and two passes through the
backup copy may be required, depending on the default setting of the [NO]ONLINE option.

Example 2

adauld: backup_copy = 3, file = 6
adauld: single, noonline

The same file is unloaded. Both data records and descriptor value table entries are written to the
same output file. The backup copy is processed in one pass as no online blocks are expected. No
TEMP data set is required.

Example 3

adauld: dbid = 3, file = 6, skiprec = 100

File 6 in database 3 is unloaded. The records are unloaded in the physical sequence in which they
are stored in the Data Storage. The first 100 records found are not written to the output files.

Example 4

adauld: dbid = 3, file = 6
adauld: numrec = 10
adauld: sortseq = ab
adauld: short

Ten records from file 6 in database 3 are unloaded. The values of the descriptor AB are used to
control the sequence inwhich the records are retrieved. The values required to re-create the inverted
list when reloading are omitted.

407Adabas Utilities

ADAULD (File Unloading)



Example 5

adauld: dbid = 3, file = 6, sortseq = isn, startisn = 123

File 6 in database 3 is unloaded. The records are unloaded in ascending ISN sequence starting at
ISN 123.

TEMP Data Set Space Estimation

When unloading from an Adabas backup copy without the NOONLINE option set, the TEMP
data set is required to accumulate information about online block occurrences.

The formula TRH=DRH/1000 can be used as a rough estimate with the default TEMP block size
(4 kilobytes).

The following formula may be used to calculate the exact requirements:

X = ENTIRE ((DRH / BSTD) * 4)

TRH = X + ENTIRE (X / BSTD / 8) + 1

where:

ENTIRE
the next highest integer

BSTD
TEMP block size in bytes.

DRH
highest Data Storage RABN in the database on the backup copy. The SUMMARY function of
the ADABCK utility can be used to obtain this number.

TRH
highest RABN required on TEMP.

Restart Considerations

ADAULD has no restart capability. An interrupted ADAULD run must be re-executed from the
beginning.

Adabas Utilities408

ADAULD (File Unloading)



28 ADAVFY (Database Consistency Check)

■ Functional Overview ....................................................................................................................... 410
■ Procedure Flow ............................................................................................................................. 411
■ Checkpoints ................................................................................................................................. 412
■ Control Parameters ........................................................................................................................ 412
■ Examples ..................................................................................................................................... 417

409



The following topics are covered:

Functional Overview

The ADAVFY utility checks the consistency of the database. The General Control Block (GCB) is
validated together with each File Control Block (FCB) and each Field Definition Table (FDT) of
the loaded files. The index structure and Data Storage are validated. ADAVFY can also search for
lost RABNs.

Running ADAVFY against an active nucleus, or running in parallel with utilities that perform
database updates, may result in errors being reported. This is because further updates can bemade
before the utility terminates and some of these updates are only reflected in the nucleus buffer
pool. ADAVFY does not require the Adabas nucleus to be active; it processes the database offline.

In general, ADAVFY only displays consistency errors that it detects and it does not modify the
database. However, the following error will be corrected if it is detected: the FCB contains a record
counter for the number of records in the file, and if this counter has an incorrect value, it will be
corrected.

This utility is a multi-function utility.

Adabas Utilities410

ADAVFY (Database Consistency Check)



Procedure Flow

Additional InformationStorage
Medium

Environment
Variable/
Logical Name

Data Set

Disk, TapeASSOxAssociator

Disk, TapeDATAxData storage

Utilities Manualstdin/
SYS$INPUT

Control statements

Messages and Codesstdout/
SYS$OUTPUT

ADAVFY messages

Disk, TapeWORK1Work

411Adabas Utilities

ADAVFY (Database Consistency Check)



Checkpoints

The utility writes no checkpoints.

Control Parameters

The following control parameters are available:

AC

CONSTRAINTS

DATA

M DBID = number

D ERRORS = number

FCB

FIELD

D FILES = { * | (number [-number][,number[-number]]...) }

FROM = number - number

INDEX

D LEVEL = number

LOST

RECORD

AC

AC

This function validates from the Address Converter to the Data Storage and checks that records
can be found in the specified Data Storage for the files specified with the FILES parameter (see
also DATA).

Adabas Utilities412

ADAVFY (Database Consistency Check)



CONSTRAINTS

CONSTRAINTS

This function verifies the referential integrity constraints for the files specified with the FILES
parameter.

DATA

DATA

This function verifies Data Storage for the specified file number(s). This function validates from
the Address Converter to the Data Storage and from the Data Storage to the Address Converter
for the files specified with the FILES parameter.

DBID

DBID = number

This parameter selects the database to be verified.

ERRORS

ERRORS = number

This parameter specifies the number of errors to be reported before the verification of a single file
terminates. The minimum number allowed is 1. The default value is 20.

FCB

FCB

This function validates the file control block together with the Field Definition Table for the files
specified with the FILES parameter (see also INDEX).

FIELD

FIELD

This function validates the Data Storage. It checks the record structure and validates the contents
of unpacked, packed and floating point values for the specified files.

413Adabas Utilities

ADAVFY (Database Consistency Check)



FILES

FILES = { * | (number[-number][,number[-number]]...) }

This parameter specifies the files to be verified. If an asterisk `*' is entered, all files will be verified.
The FILES parameter is required for all functions except the LOST function.

The default is no files.

Adabas Utilities414

ADAVFY (Database Consistency Check)



FROM

FROM = number - number

The values specified are used in conjunction with the LEVEL option to print various structures.
Please refer to the LEVEL parameter in this section for more detailed information.

INDEX

INDEX

This function verifies the complete index to level 1 (Normal Index). This includes verification of
the FCB and FDT.

ADAVFY also counts the number of used, free, reusable and lost NI (Normal Index, index level
1), MI (Main Index, index level 2) and UI (Upper Index, index level 3 or greater) blocks.

Example:

  %ADAVFY-I-INDSTR, Index verification                              
  %ADAVFY-I-INDCNT, NI: used: 210, free: 1773, reusage: 17, lost: 0 
  %ADAVFY-I-INDCNT, UI: used: 1, free: 87, reusage: 2, lost: 1      
  %ADAVFY-I-INDCNT, MI: used: 9, free: 87, reusage: 2, lost: 1      
  %ADAVFY-I-INDEND, Index verification completed                    ↩

Notes:

1. Used index blocks are index blocks that are currently in use.

2. Free index blocks are index blocks that have not yet been used.

3. Reusable index blocks are index blocks that already have been used, but that have become
empty again and were included in the reusage queue. These blocks can be used again.

4. Lost index blocks are index blocks that are not currently used and that aremissing in the reusage
queue, and therefore cannot be used again. A value of 1 lost block is normal - this can happen
after running ADAINV REINVERT.

5. The number of free, reusable and lost MI and UI blocks is the same, because these blocks are
taken from the same logical extent. Please note that the numbers displayed are the numbers for
MI and UI together - if you use additional space for MI blocks, this also reduces the number of
space available for UI blocks.

415Adabas Utilities

ADAVFY (Database Consistency Check)



LEVEL

LEVEL = number

This parameter specifies how much information ADAVFY should output concerning the internal
structures. Specifying this parameter does not affect the degree of verification performed. If this
parameter is used, it must be specified before the function in question.

The default value is the highest possible index level plus 1.

with INDEX function

prints information about index level n and higherLevel n

prints more detailed structure of the index blocksLevel 0

The FROM option is used to specify an index RABN range. Only the RABNs specified will be
dumped.

with AC/DATA/RECORD/FIELD functions

prints which RABNs processedLevel 2

prints record structure (when RECORD or FIELD is used) or where each ISN points (when DATA
or AC is used)

Level 1

dumps fields within recordsLevel 0

with LOST function

dumps the physical structure of the databaseLevel 0

LOST

LOST

If this option is specified, ADAVFY searches for lost RABNs in the database. If any lost RABNs
are found, the space can be recovered by using the RECOVER function of ADADBM.

Adabas Utilities416

ADAVFY (Database Consistency Check)



RECORD

RECORD

This function validates the Data Storage and checks the structure of each record for the specified
files (see also FIELD).

Examples

Example 1

adavfy: dbid=3,file=*,data,field,index

All files of database 3 are validated using the functionsDATA, FIELDand INDEX. This combination
of functions gives the maximum degree of validation.

Example 2

adavfy: dbid=3, file=7, level=1, field

File 7 of database 3 is validated. The record structure in Data Storage is validated, as well as the
contents of unpacked, packed and floating point fields. ADAVFY prints a list of the RABNswhich
have been processed and, for each record processed, its offset in the corresponding RABN, its
length and its ISN.

417Adabas Utilities

ADAVFY (Database Consistency Check)



418



A Appendix A - Example Utility Input Files

The Adabas kit contains example utility input data - this allows you to try out some of the Adabas
utilities, and to load example data into the database so that you can gain experience of using
Adabas.

The following Adabas demo files are provided with the Adabas kit:

DescriptionAdabas File NameFile Number

File used for the C example program (see Command Reference)EMPLOYEES9

File used as example file by Natural containing employees dataEMPLOYEES-NAT11

File used as example file by Natural containing vehicles dataVEHICLES12

Example for a file containing a large number of fieldsMISCELLANEOUS13

Lob file of the Adabas file EMPLOYEESLOBFILE of 914

Notes:

1. On OpenVMS, file 9 is still the old Employees file without the LOB file 14. Please note that the
C example delivered on OpenVMS is still the old version of the example program that corres-
ponds to this old example file, which is different to the new version delivered for Windows
and Unix and which is listed in the Command Reference document.

2. For creating theAdabas demodatabase (anAdabas database containing theAdabas demofiles)
on UNIX the command crdemodb <dbid> is available, on Windows there is an icon "Create
Demo Database". Also the DBA workbench allows you to specify that the demo files are to be
loaded, when you create a database.

TheAdabas kit contains the following utility input files in the directory $ADADIR/$ADAVERS/de-
modb (UNIX) or %ADADIR%\%ADAVERS%\demodb (Windows):

419



DescriptionFile Name

Script to load all demo files provided via ADAFDU, ADACMP and ADAMUPLoadDemo.bsh (UNIX)
loadall.bat (Windows)

Script to load one of the demo files via ADACMP and ADAMUP – called by
loadall.bat

loadfile.bat
(Only Windows)

ADACMP parameters for the EMPLOYEES fileemp.cmp

Decompressed demo data to be loaded via ADACMP and ADAMUP in the
EMPLOYEES file

emp.cmpin

FDUFDT file containing the FDT of the EMPLOYEES fileemp.fdt

ADAFDU parameters for the EMPLOYEES fileemp.fdu

ADACMP parameters for the EMPLOYEES_NAT fileemp_nat.cmp

Decompressed demo data to be loaded via ADACMP and ADAMUP in the
EMPLOYEES_NAT file

emp_nat.cmpin

FDUFDT file containing the FDT of the EMPLOYEES_NAT fileemp_nat.fdt

ADAFDU parameters for the EMPLOYEES_NAT fileemp_nat.fdu

ADACMP parameters for the MISCELLANEOUS filemis.cmp

Decompressed demo data to be loaded via ADACMP and ADAMUP in the
MISCELLANEOUS file

mis.cmpin

FDUFDT file containing the FDT of the MISCELLANEOUS filemis.fdt

ADAFDU parameters for the MISCELLANEOUS filemis.fdu

Example script for External Backup on Network Appliance filersnapp_backup.csh
(Only UNIX)

Example configuration file for External Backup on Network Appliance filersnapp_conf
(Only UNIX)

Example script for External Restore on Network Appliance filersnapp_restore.csh
(Only UNIX)

ORDEXP file containing all Adabas demo files. This file is used if you click on
Load Demo Files when creating a database with ADADBA

ordexp.demo

ADACMP parameters for the VEHICLES fileveh.cmp

Decompressed demo data to be loaded via ADACMP and ADAMUP in the
VEHICLES file

veh.cmpin

FDUFDT file containing the FDT of the VEHICLES fileveh.fdt

ADAFDU parameters for the VEHICLES fileveh.fdu

For OpenVMS, the directory ADABAS$EXAMPLES contains the following:

Adabas Utilities420

Appendix A - Example Utility Input Files



DescriptionFile Name

Demo data to be loaded into the files EMPLOYEES-NAT, VEHICLES and MISCELLANEOUS
via @ADABAS$VERSION:DBGEN.COM

demo.exp

421Adabas Utilities

Appendix A - Example Utility Input Files



422



B Appendix B - prilogc

prilogc is an example program for printing a command log that is created with the nucleus para-
meter CLOGLAYOUT set to 6.

The Adabas kit does not contain an official utility for creating printable output from a command
log created with the ADANUC parameter CLOGLAYOUT=6, but there is an example C program
prilogc, which can be modified by the user to adapt the output. This program is not officially
supported by Software AG - and it is not guaranteed that it will also be provided with future
versions of Adabas.

The source file prilogc.c is stored in $ADADIR/$ADAVERS/examples/server on UNIX, and in
%ADADIR%\%ADAVERS%\..\examples\server on Windows. This directory also contains a
make file makefile to build the executable; the usage is described in the make file. The required
header files can be found in $ADADIR/$ADAVERS/inc on UNIX, and in %ADADIR%\%ADA-
VERS\..\inc on Windows.

The executable of prilogc is provided in $ADATOOLS on UNIX, and in %ADATOOLS% onWin-
dows, which is included in the PATH setting provided by the Adabas installation.

prilogc expects that the environment variable PRICLG is set to the command log to be evaluated;
parameters that can be specified for prilogc can be displayed by entering the following:

prilogc -h

423



424


	Adabas Utilities
	Table of Contents
	Adabas Utilities
	1 Conventions
	Use of character fonts
	Syntax conventions
	Upper-Case Conversions
	Symbols used in control parameter summaries
	Order of parameters
	Numeric Values
	Maximum Values
	Syntax diagrams in the HTML documentation
	Obsolete Parameters

	2 Overview
	3 ADABAS (Starting The Database Nucleus)
	Functional Overview
	Procedure Flow
	Control Parameter
	DBID


	4 ADABCK (Dump And Restore Database Or Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CONTENTS
	COPY
	DBID
	DUMP
	BLOCKSIZE = number[K|M]
	DRIVES = number
	[NO]DUAL
	ET_SYNC_WAIT = number
	[NO]NEW_PLOG

	EXU_DUMP
	BLOCKSIZE = number[K|M]
	DRIVES = number
	[NO]DUAL
	[NO]NEW_PLOG
	Examples 1-3

	FILES
	IOSTAT
	OVERLAY
	FMOVE [=(number [,number [-number]]...)]
	FORMAT = (keyword [,keyword])
	KEEP_FILE_ALLOC
	NEW_DBID = number
	RENUMBER = (number[-number] [,number [-number]]...)

	PARALLEL
	READ_CHECK
	RESTORE
	FMOVE [=(number [,number [-number]]...)]
	FORMAT = (keyword [,keyword])
	NEW_DBID = number
	RENUMBER = (number[-number] [,number [-number]]...)

	SUMMARY

	Restart Considerations

	5 ADACLP (Command Log Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]ADDITIONS_2
	CLASS
	CLOG
	COMMAND
	DATE
	DBID
	DISPLAY
	ES_ID
	FILE
	[NO]HEXADECIMAL
	LOGIN_ID
	NODE_ID
	PAGE
	RECORDS
	RESPONSE
	USER_ID
	Example

	WIDTH

	Specifying Multiple Selection Criteria

	6 ADACMP (Compression Of Data)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DBID
	[NO]DST
	FDT
	FIELDS
	FILE
	[NO]LOWER_CASE_FIELD_NAMES
	[NO]LOBS
	MAX_DECOMPRESSED_SIZE
	MUPE_C_L
	[NO]NULL_VALUE
	NUMREC
	RECORD_STRUCTURE
	SEPARATOR
	[NO]SHORT_RECORDS
	[NO]SINGLE_FILE
	SKIPREC
	SOURCE_ARCHITECTURE
	Example

	SYFINPUT
	TZ
	[NO]USEREXIT
	[NO]USERISN
	WCHARSET

	Output
	Compressed Data Records
	Descriptor-Value Table File
	Rejected Data Records

	Report
	Restart Considerations

	7 ADADBA (DBA Workbench)
	Functional Overview
	Procedure Flow

	8 ADADBM (Database Modification)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADD_CONTAINER
	BLOCKSIZE = number[K]
	SIZE = number [B|M]
	Example

	ADD_FIELDS
	field_specification
	FDT
	Example

	ALLOCATE
	FILE = number
	RABN = number
	SIZE = number [B|M]
	Example

	CHANGE
	FIELD = string
	LENGTH = number
	Example

	CHANGE_FIELDS
	field_specification
	FDT

	DBID
	Examples

	DEALLOCATE
	DEALLOCATE = AC, DS, NI or UI
	FILE = number
	RABN = number
	SIZE = numberB
	Example

	DEFINE_REFINT
	DELCP
	Examples

	DELETE
	DISPLAY
	DROP_FIELDS
	FDT

	DROP_LOBFILE
	DROP_REFINT
	EXTEND_CONTAINER
	SIZE = number [B|M]

	[NO]LOWER_CASE_FIELD_NAMES
	NEW_DBID
	NEWWORK
	BLOCKSIZE = number[K]
	SIZE = number [B|M]

	PGM_REFRESH
	FILE = number

	RECOVER
	Example

	REDUCE_CONTAINER
	SIZE = number B

	REFRESH
	REMOVE_CONTAINER
	REMOVE_DROP
	REMOVE_REPLICATION
	RENAME
	NAME {=|:} string
	Example

	RENUMBER
	REPLICATION_FILES
	RESET
	UCB
	IDENT = { (number [,number]...) | * }

	RESET_REPLICATION_TARGET
	REUSE
	FILE = number

	SYFMAX
	FILE = number


	Restart Considerations

	9 ADADCU (Decompression Of Data)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	[NO]DCUFDT
	[NO]DST
	FDT
	FIELDS
	Example

	[NO]LOWER_CASE_FIELD_NAMES
	MAX_DECOMPRESSED_SIZE
	MUPE_C_L
	MUPE_OCCURRENCES
	Example

	[NO]NULL_VALUE
	Example

	NUMREC
	Example

	RECORD_STRUCTURE
	SKIPREC
	TARGET_ARCHITECTURE
	Example

	[NO]TRUNCATION
	TZ
	[NO]USERISN
	Example

	WCHARSET

	Input and Output Data
	ADADCU Output
	Rejected Data Records

	Restart Considerations

	10 ADADEV (Disk Space Management)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ALLOCATE
	START_SECTOR = number
	BLOCKSIZE = numberKB
	SIZE = number [B|M]

	CHANGE
	COMBINE
	COPY
	DBID
	DEALLOCATE
	FREE_SPACE
	INITIALIZE
	LAYOUT
	[NO]MOUNTCHECK
	MOVE
	NEW_DBID
	REALLOCATE
	RESET
	RESIZE
	SECTION
	UNLOCK


	11 ADAERR (Error File Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameter
	[NO]DUMP

	Example
	Rejected Data Records

	12 ADAFDU (File Definition)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ACBLOCKSIZE
	ACRABN
	ADAM_KEY
	ADAM_OVERFLOW
	ADAM_PARAMETER
	ADD_LOBFILE
	ASSOPFAC
	[NO]BT
	[NO]CIPHER
	CONTIGUOUS
	DATAPFAC
	DBID
	DSBLOCKSIZE
	DSRABN
	DSSIZE
	FDT
	FILE
	[NO]FORMAT
	LOBFILE
	[NO]LOWER_CASE_FIELD_NAMES
	MAXISN
	NAME
	NIBLOCKSIZE
	NIRABN
	NISIZE
	[NO]PGM_REFRESH
	REUSE
	REUSE = [NO]DS
	REUSE = [NO]ISN
	Examples

	SYFMAX
	UIBLOCKSIZE
	UIRABN
	UISIZE

	Examples

	13 ADAFIN (File Information Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADAM_DS
	DBID
	DESCRIPTOR
	Examples

	FDT
	Example

	FILE
	[NO]HISTOGRAM
	Example (with HISTOGRAM)
	Example (with NOHISTOGRAM)

	USAGE
	Example
	Example (for ADAM file)



	14 ADAFRM (Format And Create A New Database)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ASSOBLOCKSIZE
	ASSOSIZE
	DATABLOCKSIZE
	DATASIZE
	DBID
	NAME
	SORTSIZE
	SYSFILES
	TEMPSIZE
	WORKBLOCKSIZE
	WORKSIZE

	Restart Considerations
	Control Statement Examples

	15 ADAINV (Creating, Removing And Verifying Inverted Lists)
	Functional Overview
	Procedure Flow
	Checkpoints
	Checkpoints

	Control Parameters
	DBID
	INVERT
	FDT
	FIELDS {field_name [,UQ] [,TR] | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]
	LWP = number[K]
	UQ_CONFLICT = keyword

	[NO]LOWER_CASE_FIELD_NAMES
	REINVERT
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	[NO]FORMAT
	LWP = number[K]
	UQ_CONFLICT = keyword

	RELEASE
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	[NO]FORMAT

	RESET_UQ
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]

	SET_UQ
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	UQ_CONFLICT = keyword

	SUMMARY
	ALL_FIELDS
	FDT
	FIELDS {descriptor_name | derived_descriptor_definition | FDT}, ... [END_OF_FIELDS]
	FULL

	VERIFY
	ALL_FIELDS
	ERRORS = number
	FDT
	FIELDS {descriptor_name | FDT}, ... [END_OF_FIELDS]
	LWP = number[K]


	Restart Considerations
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9


	16 ADAMON (Monitoring The Database Nucleus)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATETIME
	DBID
	DISPLAY
	GRAPHICAL
	INTERVAL
	LOOPS
	Examples


	17 ADAMUP (Mass Add And Delete)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DBID
	FDT
	SUMMARY
	UPDATE
	ADD
	DELETE
	[NO]FORMAT
	LWP = number[K]


	Restart Considerations
	SORT Data Set Placement
	TEMP Data Set Placement
	Examples

	18 ADANUC (Starting The Database, Defining Nucleus Parameters)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ADABAS_ACCESS
	AR_CONFLICT
	BFIO_PARALLEL_LIMIT
	[NO]BI
	CLOGBMAX
	CLOGLAYOUT
	DBID
	LAB
	LABX
	LBP
	LOGGING
	LPXA
	LWP
	MGC
	NCL
	NISNHQ
	Example

	NT
	NU
	OPTIONS
	[NO]PLOG
	READ_PARALLEL_LIMITS
	TNAA
	TNAE
	TNAX
	TT
	TZ
	UNBUFFERED
	USEREXITS
	WRITE_LIMIT

	Summary of ADANUC Parameters

	19 ADAOPR (Operator Utility)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	ABORT
	BFIO_PARALLEL_LIMIT
	CANCEL
	CLEAR_FILE_STATS
	CSA
	DBID
	DISPLAY
	Example: DISPLAY=ACTIVITY
	EXAMPLE: DISPLAY=BP_STATISTICS
	Example: DISPLAY=COMMANDS
	Example: DISPLAY=CQ
	Example: DISPLAY=DYNAMIC_PARAMETERS
	Example: DISPLAY=FILE_IO
	Example: DISPLAY=FP_STATISTICS
	Example: DISPLAY=HIGH_WATER
	Example: DISPLAY=HQ
	Example: DISPLAY=ICQ
	Example: DISPLAY=IO_TIMES
	Example: DISPLAY=PLOG_STATISTICS
	Example: DISPLAY=REPLICATIONS
	Example: DISPLAY=STATIC_PARAMETERS
	Example: DISPLAY=TT
	Example: DISPLAY=UCB
	Example: DISPLAY=UQ
	Example: DISPLAY=UQ_FILES
	Example: DISPLAY=UQ_FULL
	Example: DISPLAY=UQ_TIME_LIMITS

	ES_ID
	[NO]ET_SYNC
	EXT_BACKUP
	FEOF
	FILE
	FREE_CLQ
	ID
	[NO]IO_TIME
	ISN
	[UN]LOCK
	LOGGING
	LOGIN_ID
	MGC
	NISNHQ
	NODE_ID
	OPTIONS
	READ_PARALLEL_LIMITS
	RESET
	[NO]RESPONSE_ABORT
	RESPONSE_CHECK
	SET_FILE_STATS
	SHUTDOWN
	STATUS
	STOP
	TNAA
	TNAE
	TNAX
	TT
	USER_ID
	WRITE_LIMIT
	XA_RESPONSE_CHECK


	20 ADAORD (Reorder Database Or Files, Export/Import Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CONTENTS
	DBID
	EXPORT
	FDT
	SORTSEQ = ({descriptor_name|ISN|PHYSICAL} ,... )

	FILES
	IMPORT
	IMPORT_RENUMBER
	ACRABN = number
	ASSOPFAC = number
	DATAPFAC = number
	DSRABN = number
	DSSIZE = number[B|M]
	LOBACRABN=number
	LOBDSRABN=number
	LOBNIRABN=number
	LOBSIZE=numberM
	LOBUIRABN=number
	MAXISN = number
	NIRABN = number|(number,number)
	NISIZE = number[B|M]|(number[B|M],number[B|M])
	UIRABN = number|(number,number)
	UISIZE = number[B|M]|(number[B|M],number[B|M])

	REORDER

	Restart Considerations
	Examples

	21 ADAPLP (Protection Log Printout)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATASET
	DBID
	[NO]DECOMPRESSED
	DELTA
	[NO]DUMP
	FILES
	[NO]HEADER
	INTERNAL_ID
	ISN
	MODIFIED_RABN
	NOFILETYPE
	NONULL
	PLOG
	RABN
	RECORD
	SEQUENCE
	[NO]SHORT
	THREAD
	TSN
	TYPE
	USER_ID
	[NO]WXA

	ADAPLP Output

	22 ADAPRI (Print Adabas Blocks)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	DATASET
	Example

	DBID
	RABN
	Examples



	23 ADAREC (Recovery Of Database Or Files)
	Functional Overview
	Procedure Flow
	Checkpoints
	ADAREC Input Data
	Control Parameters
	CLOSE
	DBID
	LIST
	Examples

	REGENERATE
	Database Regeneration
	File Regeneration


	Examples
	ADAREC Restart Considerations

	24 ADAREP (Database Report)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CHECKPOINTS
	Example

	CONSTRAINTS
	CONTENTS
	DBID
	Example

	[NO]FDT
	FILES
	Example

	FREE_SPACE
	[NO]FULL
	LAYOUT
	SUMMARY


	25 ADASCR (Security Functions)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	CHANGE
	DBID
	DELETE
	DISPLAY
	FILE = {* | number[-number][,number[-number]]...}
	PASSWORDS
	PERMISSIONS
	PROTECTIONS
	VALUE_CRITERIA

	EXPORT
	PASSWORDS
	PROTECTIONS
	VALUE_CRITERIA
	Example

	INSERT
	ACCESS = (number[,number]...)
	FILE = (number[-number[,number[-number]]...)
	UPDATE = (number[,number]...)

	PROTECT
	ACCESS = (number[,number]...)
	UPDATE = (number[,number]...)

	SECURITY_BY_VALUE
	ACCESS_CRITERION
	FILE = number
	UPDATE_CRITERION
	SEARCH_BUFFER = string
	VALUE_BUFFER = string



	26 ADATST (Issuing Adabas Commands)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	A1
	A2
	A3
	A4
	A5
	A6
	ABD
	ALOOP
	CB
	CBDUMP
	CC
	CID
	CO1
	CO2
	CO3
	CO4
	CO5
	CO6
	CO7
	CO8
	DBID
	DLOOP
	ELOOP
	ERRORS
	EXECUTE
	FB
	FB2
	FB3
	FBL
	FB2L
	FB3L
	FILE
	GO
	IB
	IBL
	INTERFACE
	ISN
	ISND
	ISNI
	ISNL
	ISNQ
	LOOP
	MB
	[NO]OUTPUT
	OVERWRITE_RB
	OVERWRITE_RB2
	OVERWRITE_RB3
	RB
	RB2
	RB3
	RBL
	RB2L
	RB3L
	READ_RB
	READ_RB2
	READ_RB3
	RESPONSE
	SB
	SBL
	TIME
	[NO]TRACE
	VB
	VBL
	WAIT
	Example

	WRITE_RB
	WRITE_RB2
	WRITE_RB3


	27 ADAULD (File Unloading)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	BACKUP_COPY
	FDT
	FILE = number
	NUMREC = number
	[NO]ONLINE
	[NO]SHORT
	[NO]SINGLE_FILE
	SKIPREC = number
	[NO]USEREXIT

	DBID
	FDT
	FILE = number
	[NO]LITERAL
	NUMREC = number
	SEARCH_BUFFER = string
	[NO]SHORT
	[NO]SINGLE_FILE
	SKIPREC = number
	SORTSEQ = string
	STARTISN = number
	[NO]USEREXIT
	VALUE_BUFFER = string


	Examples
	TEMP Data Set Space Estimation
	Restart Considerations

	28 ADAVFY (Database Consistency Check)
	Functional Overview
	Procedure Flow
	Checkpoints
	Control Parameters
	AC
	CONSTRAINTS
	DATA
	DBID
	ERRORS
	FCB
	FIELD
	FILES
	FROM
	INDEX
	LEVEL
	LOST
	RECORD

	Examples

	A Appendix A - Example Utility Input Files
	B Appendix B - prilogc

