5 software

ZEMENTIS for Storm
User Guide

10.2.0.1

5 software~

ZEMENTIS for Storm
User Guide

Software AG
Copyright © 2004 - 2016 Zementis Inc.
Copyright © 2016 - 2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/

or its subsidiaries and/or its affiliates and/or their licensors.

This document applies to ZEMENTIS 10.2.0.1 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software
AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be

trademarks of their respective owners.
Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product documentation,

located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or restrictions, please
refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party license restrictions, please
refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright and Trademark
Notices of Software AG Products". These documents are part of the product documentation, located at http:/softwareag.com/licenses/ and/or

in the root installation directory of the licensed product(s).

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

5 software~

Table of Contents

IO o1 (oo [8 o1 o T o KPS TTTRTPSPPPP 1
2. OVEIVIBW .ttt ettt oottt 4 e e etttk et oo et et e e e bbb o e e et et e e e E bk oo oot et e e e R R R e e e et et e e e R R e e et et e e e b e as 2
2.1. Predictive Model Markup Language (PMIML)couuiiiiiiiii e e e e e e e e et e eeaa e e 2

2.2. ZEMENTIS Predictive ANalytics (ZEMENTIS) ...uuuiiiiiiiiiiiiie et e e e e 3

G T £ To [o AV Y T TS (] o P 5
3.1. PMML Model @s @ StOrM BoOItcooiiiiiiiiiii et 5

3.2. PMML Model as a Trdent FUNCHONcoiiiiiiiiiiiii e e e e e s 5

3.3. PMML and Java Data TYPES ...cuuuiiiiiiiiieiiiie e e et e et e e e e et e et e et e e e e e et e e et e e st e e st s eeat e eetnaastnaes 6

3.4. Handling of INVaAlId VAIUESccouiiiiiiiii e e e e e e e e e et e e e et eeaa e eeanaees 6

4, ZEMENTIS INSTAIALIONciiiiiiiiii ettt e ettt e e e e e e et e et e e e e e e e e e stbb e e e e e e e 8
O = L= [U114 =T o 4 1=) N 8

A == (o1 ¢ Vo |1 o PP 8

e B 1 Y= 1 = T o I PSP PP RRPR 9

I S o Vo T =1Vt ST 10
5.1. Generating Storm Bolt and Trident Function from PMMLcooiiiiiiiiiiicec e 10
5.1.1. Step 1: Prepare Storm Bolt and Trident FUNCLONcooooiiiiiiiiiii e 10

5.1.2. Step 2: Deploy 0N @ StOrm CIUSLETcouuiiiiieii e e e e e e aeas 13

5.2. ZEMENTIS Stand-alone Java LIDrarycccoiioiiiiiiii e e ean s 14

T Tz .41 0] (T 16
6.1. Sample PMML and Data FilEScouuuiiiiiiiii i e e e e e e e e et e et e ea e eees 16

L = 1]] (=0 1Y o Yo = PP 16
L S (o] 1 ¢ I o Yo] Yo | 18

LS o (=T o A 1o oo [To | PN 18

7. CUSIOM PMML FUNCHONS ...ttt ettt s e e ettt e e e e e et et e e s bbb e e e e e e e e ennnnnnn s 20
7.1. Create Custom PMML FUNCHONScoouitiiiiiiieeii ittt e e et e e e e e e e e e bbb e e e e e e eeennnnes 20

7.2. Use CUSLOM PMML FUNCHONScoiiiiiiiiiii ettt ettt e e e et e e a e e e e e eennnees 21

7.3. NoNn-DeterminiStic FUNCHIONScooiiiiiiiiii et e e e e e e 22

A = T F= L VS o 10] (o= PN 23

Page iii

s

softwares

List of Figures

2.1
7.1
7.2.
7.3.
7.4.
7.5.
7.6.

Overview Of ZEMENTIS fOr STOMMvuuiiiiieiii e e ettt e e e e e e en e a e e e e e e ennnes 3
Custom PMML FUNCHON EXAMPIE ...t e e e e e e e e et e et e e st e e e e eaaeeeen 21
Example Using a Custom FUNCtioN iN PIMIVILiiiniiiiciii e e e e e e e e et e et e eaa s 22
Custom PMML FUNCHON EXAMPIE ...t e e e e e e e e et e et e e et r e e e eaneeeen 23
Binary (Buffered) DataType EXAMPIEcoouiiiiiiiiii e e e e e e e et e e e et e e e e e eanaeee 23
Custom Function of Buffered Binary Data EXamMPIEcc.iiiiiiiiiiiiiii e e e e 24
Example Using Custom Function of Buffered Binary Data in PMMLc..ccoiiiiiiiiiiiniie e, 24

Page iv

5 software~

List of Tables

G0 I /1Y = T To IO = AV T B = = W I o= 6
4.1. The ZEMENTIS Installation REQUIFEMENTSciiiiiiiii e e e e e e e e e e e e et e e e eanas 8
4.2. Directory Structure of the ZEMENTIS for Storm packagecccouiiiiiiiiiii e 8
5.1. prepare- pmm . Sh SCHPL OPtIONS ...cuuiiiiiii e e e e e e e e e et e e et e e e eaaaas 12
5.2. Output generated from the prepar e- pmm . Sh SCrPL. ..o 13
7.1. PMML and Java types in ZEMENTIS ... et e e e e e e e et e e et e e e e eaes 20

Page v

5 software~

Chapter 1. Introduction

As advanced analytics becomes pervasive across the enterprise to drive better business decisions, the need for
efficient execution of predictive models is paramount. An ever growing array of data mining tools and, all too often,
custom specialized software is used to mine and derive statistical models from a wealth of historical data. The
ultimate goal is to turn these models into business value by incorporating them into day to day business operations.
This necessitates the ability to integrate them into the IT infrastructure where outcomes can easily flow into the
finger-tips of decision makers. At the same time, the accelerating growth rate of data collected implies that only the
most scalable deployment architectures which can offer robust continuous computation needs will be able to meet

realtime analytics requirements.

In the era of big data, more and more organizations are turning to the scalable architecture of Hadoop and Storm
to meet this growing challenge. To bring the power of predictive models into this architecture, Software AG has
developed the ZEMENTIS Predictive Analytics (ZEMENTIS) for Storm. ZEMENTIS offers Storm users the best
combination of open standards and scalability for the application of predictive analytics. With the Predictive Model
Markup Language (PMML) as the bridge between the model development environment and a distributed realtime
computation infrastructure, ZEMENTIS for Storm offers standards-based deployment of predictive models and ex-
ecution on a highly scalable platform. This solution brings the power of ZEMENTIS Predictive Analytics server,
the flagship product of Software AG, to the Storm infrastructure to deliver superior performance for mission-critical
business intelligence and analytics solutions. As a result, a wide range of predictive models, possibly developed
with different tools in different environments, can be effortlessly and seamlessly embedded directly in the Storm
infrastructure. Practically, PMML becomes a Storm Bolt/Trident Function, offering execution performance that can

meet the volume and performance requirements of the most demanding environments.

This document serves as a guide for installing and using ZEMENTIS for Storm. It gives a brief overview of the plug-
in, describes each of its components, and explains how these are combined. It then outlines the simple installation
process. Finally, it illustrates the use of ZEMENTIS for Storm with a PMML example, a decision tree. The example

shows how to deploy and execute predictive models in Storm.

Page 1

http://hadoop.apache.org/
http://storm.apache.org/
http://www.softwareag.com/zementis/
http://dmg.org/pmml/pmml-v4-3.html

5 software~

Chapter 2. Overview

2.1. Predictive Model Markup Language (PMML)

As the de-facto standard for data mining models, PMML provides tremendous benefits for business, IT, and the data
mining industry in general. Developed by the Data Mining Group (DMG), an independent, vendor-led consortium,
PMML increases business agility by eliminating the need for proprietary solutions or custom code development.
With PMML, a model can transit as is from the data scientist's desktop to the deployment platform where it will

be executed.

Today, PMML is supported by all the leading data mining tools, commercial and open source. As an open standard,
it enables project stakeholders to standardize on one common representation for data mining models. It practically
eliminates the barriers and gaps between development and production deployment of predictive analytics. In effect,

it minimizes the complexity, cost, and time to turn predictive models into operational IT and business assets.

As the lingua franca for predictive analytics, data mining models can be easily exchanged between PMML-compliant
applications. In this way, a model may be built in one statistical tool and easily moved to another for production
deployment or visualization. PMML also serves as a bridge between all the teams involved in the data mining
process inside a company as it can be used to disseminate knowledge and best practices, thereby stimulating cross-
team and inter-organization collaboration. In a world in which data-driven decisions are becoming more and more
pervasive, predictive analytics and standards such as PMML make it possible for organizations to benefit from smart

solutions that will truly revolutionize their business.

Besides offering a rich set of structures for describing all the intricate details of a predictive algorithm, PMML also
provides information about the input and output of a model. This includes names and types of all input and output
data fields, often along with the set of permissible values. In addition, a model expressed in PMML typically includes
information about how to handle invalid, missing, or outlier input values. These elements make PMML a great
candidate for automatic migration of a model into a realtime streaming data processing system like Storm which

operates on a core abstraction of unbounded sequence of tuples.

Note

A variety of sample PMML models are included with the ZEMENTIS distribution package. In addition, a

wealth of resources on PMML can be found from the PMML in Action.

Page 2

http://dmg.org/pmml/pmml-v4-3.html
http://dmg.org
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/

5 software~

2.2. ZEMENTIS Predictive Analytics (ZEMENTIS)

ZEMENTIS for Storm enables execution of standards-based predictive analytics directly within a Storm cluster. It
shares the PMML execution core with the ZEMENTIS server offered by Software AG. ZEMENTIS for Storm, how-

ever, is optimized to seamlessly integrate PMML models into Storm Bolts and Trident Functions to enable predictive

analytics on a Storm cluster while ensuring high data throughput with low latency semantics (see Figure 2.1).

ZEMENTIS for Storm converts each loaded PMML model into a Storm Bolt and Trident Function. The name, input

tuples, and output tuples of each Storm Bolt/Trident Function match the name, input fields, and output fields of the

corresponding model defined in the PMML file. This way, scoring a data set against one or more models in a Storm

cluster requires nothing more than creating a corresponding Storm Bolt/Trident Function and integrating them in an

existing Storm topology. The output of those models or "predictions" such as scores, probabilities, categories, and

cluster identifiers can then be passed to other Storm Bolts/Trident Functions down-stream for further processing.

Figure 2.1. Overview of ZEMENTIS for Storm

Data Mining Tools

Commercial Vendors (e.g. IBM 5PSS)
Open Source Tools (R, KNIME, ...)

Predictive Algorithms

Decision Trees
Meural Networks

SupportVector Machines

PMML

Linear and Logistic Regression

Maive Bayes Classifiers

Deploy in minutes ...

General and Generalized Linear Models

Cox Regression

Rule Set Models

Clustering

Scorecards

Association Rules

Restricted Boltzamn Machine

Multiple Models {Ensemble,
Segmentation, Chaining, Composition

Model Deployment
Integration/Execution

- ZEMENTIS

NQ—@

Simple Deployment & Execution

.

At a high level, the process of using PMML models in a Storm cluster starts after the predictive models have been

created and exported in PMML format from the data mining tool. With the PMML files in hand, it only takes two

simple steps to import a model in Storm:

Page 3

5 software~

1. Preparation Step: Validates the PMML files and prepares a pnmi . j ar file which is an implementation of a

Storm Bolt and Trident Function corresponding to each input PMML file.

2. Deployment Step: Creates a new Storm/Trident topology using the Storm Bolt/Trident Function in the

pmi . j ar and deploys them into the Storm cluster.
These steps are described in more detail in Chapter 5 and illustrated with actual examples in Chapter 6.

After preparation and deployment steps are completed, it is then time to run the appropriate data process on the

Storm cluster.

Like the ZEMENTIS server, ZEMENTIS plugin accepts PMML models of all versions (2.0, 2.1, 3.0, 3.1, 3.2, 4.0, 4.1,

4.2 and 4.3) generated by any of the major commercial and open source data mining tools.
The plug-in supports a wide range of predictive analytics techniques, including:

« Decision Trees for classification and regression

« K-Nearest Neighbors for regression, classification and clustering

* Neural Network Models: Back-Propagation, Radial-Basis Function, and Neural-Gas

» Support Vector Machines for regression, binary and multi-class classification

e Linear and Logistic Regression (binary and multinomial)

« Naive Bayes Classifiers

* General and Generalized Linear Models

« Cox Regression Models

* Rule Set Models (flat decision trees)

« Clustering Models: Distribution-Based, Center-Based, and 2-Step Clustering

» Scorecards (including reason codes and point allocation for complex attributes)

» Segmented Models

* Model Ensembles (including Random Forest Models)

* Model Composition and Chaining

Note

ZEMENTIS for Storm does not support Association Rules models.

Page 4

5 software~

Chapter 3. Using PMML in Storm

This chapter describes in more detail how PMML models are used directly in Storm and Trident topologies by

translating them into Storm Bolts and Trident Functions.

3.1. PMML Model as a Storm Bolt

A Storm Bolt ! consumes one or more input streams, does some data processing, and possibly emits new streams.
A stream is an unbounded sequence of tuples. In Storm topologies, all processing is done in Storm Bolts. Bolts can

do anything from filtering, functions, aggregations, joins, connecting to databases, and more.

With ZEMENTIS for Storm, a predictive model is converted into a Java implementation of a Storm Bolt that can be
packaged into Storm topologies. The name of the Storm Bolt is derived from the name of the model specified in the
PMML file. Each value in the active and supplementary mining fields of the model becomes part of the input tuple for
the generated Storm Bolt. Each value in the output fields of the model becomes part of the output tuple that is emitted
by the Storm Bolt. This way a model can be easily deployed on a Storm cluster to perform scoring/classification

process on incoming stream of data.

3.2. PMML Model as a Trident Function

A Trident Function? takes in a set of input tuples and emits zero or more tuples as output. The fields of the output
tuple are appended to the original input tuple in the stream. In a Trident topology, streams are processed as a series

of batches of tuples.

With ZEMENTIS for Storm, a predictive model is turned into a Java implementation of a Trident Function that can
be used inside Trident topologies. The name of the Trident Function is derived from the name of the model specified
in the PMML file. Each value in the active and supplementary mining fields of the model becomes part of the input
tuple for the generated Trident Function. Each value in the output fields of the model becomes the output tuple that

is emitted by the Trident Function.

In Trident topology, a stream is partitioned among the nodes in a cluster and operations are applied to a stream
in parallel across each partition. By representing the PMML model as a Trident Function, we ensure that each
batch partition is processed independently and involves no network transfer. Trident has consistent, exactly-once

processing semantics, ensuring that a PMML model is applied exactly-once to the input tuple.

For more information on bolt, please refer to: Storm documentation tutorial.

2
For more information on function, please refer to: Trident documentation API overview.

Page 5

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://storm.apache.org/documentation/Home.html
http://storm.apache.org/documentation/Trident-tutorial.html

5 software~

3.3. PMML and Java Data Types

The table below shows how PMML data types are mapped to Java types. For more information on the PMML data

types, you can visit the Data Dictionary page.

Table 3.1. PMML and Java Data Types

PMML Types Java Types
string java.lang. String
i nt eger | ong, java.lang. Long
fl oat float, java.lang. Fl oat
doubl e doubl e, java.lang. Doubl e
bool ean bool ean, java.l ang. Bool ean
dat e org.joda.tine.Local Date
time org.joda.tine.Local Tinme
dat eTi ne org.joda.tine. DateTi me
bi nary byte[]
(buffered)

3.4. Handling of Invalid Values

PMML offers a rich set of options for defining the data types of the different input fields as well as the set or range
of valid values for each field in the Data Dictionary. Along with those, it allows data scientists to specify what the
model should do in the presence of invalid values as specified in the Mining Schema section of the PMML file.
The three options for the treatment of invalid values are r et ur nl nval i d, asl s, and asM ssi ng. Among these,
returnl nvalid is the most frequently used, since it the default option in PMML. The option r et ur nl nval i d
instructs the model execution engine not to attempt to apply the model in the presence of an invalid value and,
instead, abort with an error. The other two options allow the model to execute by either allowing the invalid value

to be processed as is or by treating it as a missing value.
The following listing contains a fragment of the I ri s_CT. prml model. The original code was edited to show case

the PMML M ni ngSchena element with and without the explicit use of the attribute i nval i dVal ueTr eat ment .

<M ni ngSchenma>
<M ni ngFi el d name="petal _| engt h" usageType="active" invalidVal ueTreatnent="returnlnvalid"/>
<M ni ngFi el d name="petal _w dth" usageType="active" invalidVal ueTreatment="returnlnvalid"/>

Page 6

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://dmg.org/pmml/v4-3/DataDictionary.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://dmg.org/pmml/v4-3/DataDictionary.html
http://dmg.org/pmml/v4-3/MiningSchema.html

5 software~

<M ni ngFi el d name="sepal _| engt h" usageType="active"/>

<M ni ngFi el d name="sepal _w dt h" usageType="active"/>

<M ni ngFi el d name="t arget _cl ass" usageType="predicted"/>
</ M ni ngSchema>

Note that although the option for the treatment of invalid values is not set for mining fields sepal _I| engt h and
sepal _wi dt h, the default value for treating invalid values in PMML is r et ur nl nval i d. In this way, the invalid
value treatment for these two fields is the same as the one used for fields pet al _| engt h and pet al _wi dt h which

have PMML attribute i nval i dVal ueTr eat ment explicitly setto r et ur nl nval i d.

When used within Storm and Trident topologies, the option r et ur nl nval i d may have a significant (unintended)
impact. Consider the case where a tuple with an invalid value for an input field marked with or defaulted to r e-
turnl nval i d treatment is applied to a model. In this case, the PMML execution engine will generate an error
(exception) which in turn will fail the input tuple causing the spout to handle the replay strategy for the failed tuple.
If the tuple replay is not handled properly at the spout, the tuple may get unnecessarily replayed multiple times or

not get replayed at all.

In some cases, this may be the desired behavior so that invalid values can be detected. However, it is often the
case that an alternative approach where invalid values do not cause tuples to fail is more desirable. This requires
the PMML model to be modified in order to change the invalid value treatment of one or more mining fields from
returnl nval i d (or nothing which is equivalent) to, typically, asM ssi ng. With these changes, all invalid input
values will be treated as missing values (NULL) and the model will not generate errors on encountering invalid
values. Please note that, while not always the case, NULL input values result in NULL output values, indicating that

the particular record cannot be processed.

The following listing contains the same PMML fragment as shown above, but modified so that the invalid value

treatment for all mining fields is set to asM ssi ng.

<M ni ngSchema>
<M ni ngFi el d nane="petal _| engt h" usageType="active" invalidVal ueTreat nent="asM ssing"/>
<M ni ngFi el d nane="petal _w dth" usageType="active" invalidVal ueTreat ment="asM ssing"/>
<M ni ngFi el d nane="sepal _| engt h" usageType="active" invalidVal ueTreat nent="asM ssing"/>
<M ni ngFi el d nane="sepal _wi dth" usageType="active" invalidVal ueTreat ment="asM ssing"/>
<M ni ngFi el d nane="t arget _cl ass" usageType="predi cted"/>

</ M ni ngSchema>

Note

It is highly recommended that any such changes to a model are reviewed and approved by the person or

team that created the model to ensure that the model is still valid for the assumptions under which it was built.

Page 7

5 software~

Chapter 4. ZEMENTIS Installation

This chapter describes how to install ZEMENTIS for Storm.

4.1. Requirements

Following are the requirements for installing ZEMENTIS for Storm on your system:

Table 4.1. The ZEMENTIS Installation Requirements

Requirement Version |Notes

Storm 1.0.2 The rest of this documentation assumes that Storm is already installed.
Please see the Storm documentation for details.

Java Platform, Standard|8 or|Please make sure you use the Java Development Kit (JDK) and not the Java

Edition (Java SE) above |Runtime Environment (JRE).

cense Key

ZEMENTIS for Storm Li-|10.2.0.1

Installation of new PMML models with ZEMENTIS for Storm requires a valid
Product License Key which can be obtained by contacting Software AG.
Place the Product License Key file (named zementis.license) in the directory
from which pr epar e- prmi . sh script is executed. More information about
pr epar e- pmmi . sh can be found in Table 5.2. Please note that execution

of existing models will not be interrupted when the license expires.

4.2. Packaging

ZEMENTIS for Storm is distributed as a compressed archive file: uppi - st orm 10. 2. 0. 1. zi p. The distributed

package consists of several files, including this documentation and several sample files. When uncompressed, the

package reveals a number of directories as described in Table 4.2.

Table 4.2. Directory Structure of the ZEMENTIS for Storm package

Directory Contents

bin Contains the pr epar e- pmm . sh scripts needed for generating the Storm Bolt and Trident
Function from PMML files (see Section 5.1.1).

docs Documentation in HTML and PDF format.

lib The library (JAR) files required for installing ZEMENTIS for Storm (see Section 4.3).

Page 8

http://storm.apache.org/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.softwareag.com/zementis/

5 software~

Directory Contents

pnmm A number of sample PMML files along with data files in CSV format. These include the examples

described in Chapter 6.

st andal one Contains the artifacts for using ZEMENTIS as a stand-alone Java library within Storm and Tri-
dent topologies (described in Section 5.2). For details on contents of the sub-folders, please
refer to the README. t xt file located in this folder. The st andal one/ api docs sub-folder con-

tains detailed Javadoc on how to use ZEMENTIS as a stand-alone Java library.

4.3. Installation

To install ZEMENTIS for Storm, simply uncompress the provided file (uppi - st or m 10. 2. 0. 1. zi p) to a directory
on your system. This will create a ZEMENTIS sub-directory with contents as described in Table 4.2. The Java library
file uppi - storm 10. 2. 0. 1. j ar contained in the | i b folder needs to be available in the Storm cluster at runtime.

Typically, the uppi - storm 10. 2. 0. 1. j ar will be installed along with the topology jars.

Note

The provided package (uppi - st orm 10. 2. 0. 1. zi p) does not have to be extracted on the same host
as Storm cluster nimbus node. It can be extracted on a separate host which can act as a client to the Storm

cluster nimbus node. The host must have the following software installed:
1. Java Platform, Standard Edition 8 or above (JDK) available in the classpath

2. Storm jar which can be used as client to submit topologies to a Storm cluster

Page 9

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

Chapter 5. Using ZEMENTIS

There are two ways in which ZEMENTIS can be used within a Storm cluster. With the first approach, described in
Section 5.1, a Storm Bolt and Trident Function is generated for each of the provided PMML files. These Storm Bolts
and Trident Functions can be programatically incorporated into topologies which can then be deployed on a Storm
cluster. With the second approach, described in Section 5.2, uppi -1 i brary-10. 2. 0. 1. j ar can be used within a
Storm/Trident topology as a stand-alone Java library. Using this approach, PMML files can be dynamically uploaded

and made available for processing with-in existing Storm Bolts or Trident Functions using a convenient Java API.

5.1. Generating Storm Bolt and Trident Function

from PMML

This approach involves two steps which assume that:
« A Storm cluster is running.

* One or more PMML files have been created and are available under a directory on your system. If preferred,
different PMML files can be nested within sub-directories as long as they all are under a common parent

directory.

Note

As shown in Table 5.2, ZEMENTIS is distributed with several sample PMML files. These can be used to
validate that ZEMENTIS for Storm has been installed correctly and that you have mastered the preparation

and installation steps described below.

5.1.1. Step 1: Prepare Storm Bolt and Trident Function

The preparation step involves creation of a Storm Bolt and Trident Function from the available PMML models.
The ZEMENTIS for Storm distribution package contains a pr epar e- pnmi . sh script (for Unix/Linux environment)
that is used for this purpose. This script will first validate the PMML models and then generate the necessary

implementations for Storm Bolt and Trident Function for the corresponding models.

Important

The pr epar e- pmmi . sh script requires that the environment variable JAVA HOME is set to the installation

directory of the Java Development Kit 8 or above (JDK).

Page 10

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

From a Storm distribution package or installation (version 1.0.2), obtain a copy of the file storm
core-1.0. 2. jar andplaceitinthel i b directory of the ZEMENTIS distribution. This file is usually located

in the | i b directory of the Storm distribution.

Run the preparation script by using the following command on a Linux/Windows environment:
UPPI _DI R/ bi n/ prepar e-pm .sh PMML_DI R

where UPPI _Dl Rrefers to the directory where the ZEMENTIS distribution package has been uncompressed and

PMVL_DI Rrefers to the (top) directory where the PMML files are located.

Note

To use your own PMML files, you can either copy them into the existing PMML directory, or set PMM__DI R

to point to the directory where your PMML files are located.

Page 11

5 software~

Table 5.1. pr epar e- pmm . sh script options

CLI Option Flag |Value Type Default Value |Required |Description

-pmml pat h Yes Specify path to PMML file(s) top directory. The
-pmml flag can be omitted only if the pat h is

placed as first argument.

-out pat h uppi - out put |No Specify path to generated output files directory.

-extLib pat h " No Specify path to custom functions JAR file(s) di-
rectory. See Chapter 7 regarding custom PMML

functions.

-excpOnlnvalid |trueorfal se [true No If true, Storm processing throws exception
when encountering an invalid value. The excep-
tion will result in immediate fail of the input tuple.
This will cause the input tuple to be replayed by
the depending on Storm topology and settings.
If f al se tuple processing continues by return-
ing null values. We recommended that the treat-
ment of invalid values should be handled in the
PMML as described in Section 3.4,

-runWithPmml |true orfal se |fal se No If t rue, include PMML file in generated Storm
or Trident JAR instead of binary representation
of the PMML model. This option should be used

only for debugging or diagnostic purpose.

The script will generate a series of messages marked as | NFO, WARNI NG, or SEVERE during its execution. Mes-
sages marked as | NFOprovide information on the files processed and the progress of the script. Messages of type
WARNI NGindicate potential issues with a PMML file that may need to be reviewed. The detailed warning messages
are provided in a copy of the original PMML file, annotated with comments at appropriate locations. Note that the
annotated version of the file may look different than the original as the file may have been upgraded to the latest
version of PMML. The corresponding model is fully functional and, more often than not, these warnings are not
relevant to the scoring process. However, a review of these messages is highly recommended since, in some cases,
they may have an impact on scoring. Finally, messages marked as SEVERE indicate that a valid model cannot be
created from the provided file. As in the case of warnings, the detailed messages are provided in an appropriately
annotated copy of the original file. In the case of SEVERE messages, the problems identified need to be corrected

before the model can be used.

Page 12

https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html

5 software~

Once the preparation script has completed successfully, you will find a directory named uppi - out put created
under your current directory. You can also change the default output directory by specifying an output directory of
choice as a parameter when running the preparation script. The contents of the output directory are described in
Table 5.2.

Table 5.2. Output generated from the pr epar e- pnmi . sh script.

File or Directory |Description

pmi . j ar A JAR file containing the validated PMML model as well as generated Java code that serves as
wrapper for the model. As we will describe in the next sections, this wrapper contains the Storm
Bolt and Trident Function implementations that can be incorporated into a Storm topology and

Trident topology respectively.

prmi A directory containing copies of the processed PMML files for which severe or warning mes-
sages were generated. The files get annotated with comments that contain the relevant mes-
sages. Please note that the annotated PMML files may be different than the original ones since

they are upgraded to the latest PMML version (version 4.3) and known issues are corrected.

j ava A directory containing the generated Java code. This is the code that gets compiled into the
prmi . j ar file.
cl asses A directory containing the compiled Java code, along with the original PMML files. This reflects

the contents of the pmmi . j ar file.

For diagnostic purposes the j ava directory contains the generated Java code. Please open the j ava folder and
make sure that Java files reside inside the folder. Likewise, class files are generated in the cl asses folder which

also should not be empty.
Out of all these files, only the pmi . j ar file is used in the deployment step. The rest are generated during the

execution of the script and remain in place for diagnostic purposes only.

5.1.2. Step 2: Deploy on a Storm cluster

To deploy the generated Storm Bolt and Trident Function, simply define a corresponding Storm topology or Trident
topology built around them. Once the desired topology is created, it can be deployed on a Storm cluster by using a
storm client. The storm client typically requires the topology code and all the dependencies of your code packaged
in a single JAR file. This means, the resulting JAR file will also need to package the contents of pnmi . j ar and

uppi -storm 10. 2. 0. 1. j ar files.

One possible way to deploy a Storm topology on a Storm cluster is via Storm command line client, as shown below:

stormjar PATH TO TOPOLOGY_JAR CLASS NAME

Page 13

http://dmg.org/pmml/pmml-v4-3.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html

5 software~

where PATH_TO_TOPOLOGY_JARrefers to the Uber/Fat JAR file that contains the topology code and all the depen-
dencies, including contents of pnm . j ar and uppi - st orm 10. 2. 0. 1. j ar files. The CLASS_NAME refers to the

class which typically contains code that starts the topology.

5.2. ZEMENTIS Stand-alone Java Library

Theuppi -1ibrary-10.2.0. 1. jar canbe used as a stand-alone Java library within a Storm topology. The Java
API documentation is available under st andal one/ api docs sub-folder of the uppi -storm 10.2.0.1.zip

distribution. The API consists of two interfaces:
«Model W apper Fact ory
* Model W apper
and their default implementations:
e Def aul t Model W apper Fact ory
« Def aul t Model W apper, Seri al i zabl eMbdel W apper

These classes encapsulate all the functionality that is necessary for processing a PMML file and execute predictive
models from it. A Model W apper Fact or y object is constructed using the PMML file as an input. From this factory,
one or more Model W apper s can be created, one for each model found in the PMML file (a PMML file may contain
more than one model). A Model W apper provides information about the wrapped model, including its name as
well as the names and data types of the input and output fields. The Model W apper is also used to execute/apply

the model, i.e. process data using the model.

Important

A distributed system like Storm needs to be able to serialize and deserialize objects when they are passed
between tasks. To facilitate serialization and deserialization of the Mbdel W apper instances created from
the PMML files, Seri al i zabl eMbdel W apper should be used.

The code below illustrates how to use the Def aul t Model W apper Fact ory and Seri al i zabl eModel W apper

for a desired model in PMML file:

/*

* Copyright (c) 2004-2016 Zenentis, Inc.

* Copyright (c) 2016-2017 Software AG Darnstadt, Germany and/or Software AG USA Inc., Reston, VA, USA
and/or its

* subsidiaries and/or its affiliates and/or their |icensors.

* Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
for in your

* License Agreenent with Software AG

Page 14

https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

*/
Model W apper Fact ory nodel W apper Factory = nul | ;

try {
nmodel W apper Fact ory = new Def aul t Model W apper Fact ory(i nput Stream pmm Fil e. get Narme());

} catch (RuntineException rte) {
/1 1f the provided file is not a valid XM file.
LOGGER. severe(rte. get Message());

}

/'l Most of the PMWL files contain only one nodel. Let's pick the first (and probably only one) to score.
String nodel Name = nodel Nanes.iterator().next();

/]l Create a serializable nodel wapper for the sel ected nodel

Seri al i zabl eMbdel W apper nodel W apper = new

Seri al i zabl eMbdel W apper (nodel W apper Fact ory. cr eat e(nodel Nane)) ;

/] Score the data. The predicted values are returned as an array. The size and order of the values in
/1 the array nust match the fields as returned by the getCutputFi el dNanmes() met hod.

Obj ect[] inputVal ues = new bj ect [| NPUT_SI ZE] ;

/'l Popul ate the input val ues.

Obj ect[] predictions = nodel Wapper. appl y(i nput Val ues) ;

/1l Alternatively, the follow ng nethod can be used to apply the nodel to a key/val ue map.
Map<String, Object> input = new HashMap<String, Object>();

i nput. put("input_1", value_1);

i nput . put ("input_2", val ue_2);

i nput . put ("input_n", value_n);

Map<String, Object> output = nodel Wapper. appl y(i nput);

If the provided input is indeed of PMML format but it has syntactic or semantic errors, then the construction will
succeed but the constructed factory will not contain any models. The generated errors can be retrieved as an

annotated PMML document as follows:

| nput St r eam annot at edPnml = nodel W apper Fact ory. get Annot at edPnmi () ;

To use a new PMML file or replace an existing one, just create a new Def aul t Model W apper Fact o-
ry and create the appropriate Seri al i zabl eMbdel W apper from it. For more information about using up-
pi-1ibrary-10.2.0.1.jar, please refer to the Javadoc contained in the st andal one/ api docs sub-folder of
ZEMENTIS for Storm distribution.

Note

The code snippets listed above can be part of an existing Storm Bolt and Trident Function implementation.
One of the appl y methods of Model W apper expects Obj ect [] as an input argument and returns Cb-
j ect[] as an output. The order and type of inputs provided to this method must match the order and type
of input fields defined in the PMML mining schema for the corresponding model. Similarly, the order and
type of outputs returned by the appl y method matches the order and type of output fields defined in the
corresponding PMML file. If the model returns only one output, scal ar Appl y method of Mbdel W apper

object can be used.

Page 15

5 software~

Chapter 6. Examples

6.1. Sample PMML and Data Files

The ZEMENTIS for Storm package contains a number of sample PMML files, each with a CSV (Comma Separate
Values) file containing test data. The test data contains both input and output values. The output values are provided
to allow validation of the results generated on a Storm cluster. To run each example, the test data needs to be
generated from a Storm spout. In the examples presented below, we describe the process of creating the topologies

and adding necessary spouts, bolts, and functions into them.

6.2. Example Model

This section provides an example of scoring data against a model on Storm topology. The example uses a Decision
Tree model built for the Iris data set included in the provided samples (look for the file | ri s_CT. pnm among the
sample files in the pnmi directory of the ZEMENTIS package). It is a classification model that, given the sepal and
petal lengths and widths of an Iris plant, predicts the most likely species the plant belongs to (one of | ri s- set osa,

Iris-versicolor,orlris-virginica)along with the predicted probability of each of the species.

The following listing presents the input and output fields of the model, as listed in the PMML file. The input
fields are the M ni ngFi el d elements from the M ni ngSchema section with the attribute usageType="act i ve".
These are petal _| ength, petal _width, sepal | ength, and sepal _w dth. The output fields are list-
ed as Qut put Fi el d elements. They are cl ass, Probability_set osa, Probability_versicol or, and
Probabi i ty_vi rgi ni ca. The first field outputs the predicted (winning) species and the other three fields output

the predicted probabilities for each of the species.

<Dat aDi cti onary nunber O Fi el ds="5">
<Dat aFi el d dat aType="doubl e" nane="sepal _| engt h" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="sepal _wi dt h" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nane="petal _| ength" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="petal _wi dth" optype="conti nuous"/>
<Dat aFi el d dat aType="string" nane="target_cl ass" optype="categorical ">
<Val ue property="valid" value="Iris-setosa"/>
<Val ue property="valid" value="Iris-versicolor"/>
<Val ue property="valid" value="Iris-virginica"/>
</ Dat aFi el d>
</ Dat aDi cti onary>
<TreeMddel al gorithmNanme="CART" functionNane="cl assification" nodel Nane="Iris_CT">
<M ni ngSchenma>
<M ni ngFi el d name="petal _| engt h" usageType="active"/>
<M ni ngFi el d name="petal _wi dth" usageType="active"/>
<M ni ngFi el d name="sepal _| engt h" usageType="active"/>
<M ni ngFi el d name="sepal _w dt h" usageType="active"/>
<M ni ngFi el d name="t arget _cl ass" usageType="predicted"/>
</ M ni ngSchema>
<Cut put >

Page 16

http://dmg.org/pmml/v4-3/TreeModel.html
http://dmg.org/pmml/v4-3/TreeModel.html

5 software~

<Qut put Fi el d dat aType="string" feature="predictedVal ue" nanme="cl ass" optype="categorical" />

<CQut put Fi el d dat aType="doubl e" feature="probability" nanme="Probability_setosa" optype="continuous"
val ue="Iris-setosa"/>

<Qut put Fi el d dat aType="doubl e" feature="probability" name="Probability_versicolor"
opt ype="conti nuous" val ue="Iris-versicolor"/>

<Qut put Fi el d dat aType="doubl e" feature="probability" nane="Probability_virginica"
opt ype="conti nuous" value="Iris-virginica"/>

</ Cut put >

To test this sample file, execute the preparation and deployment steps described in Section 5.1.1 and Section 5.1.2.
Since multiple sample PMML files are provided under the same directory, you may limit the number of files processed

in the preparation step by specifying the sub-directory containing only the tree models:

UPPI _Dl R/ bi n/ prepare-pnm . sh UPPI _Dl R pnmi / Tr eeMbdel

Note

The above command will prepare all models in the Tr eeModel sub-directory, including I ri s_CT. pmmi .
Consequently, in the deployment step (described in Section 5.1.2), more than one Storm Bolts and Trident
Functions are generated, including the one from model file | ri s_CT. prmi , which could be used to build

a Storm topology.

Running the prepare-pmm . sh script for 1 ri s_CT. prml will generate the I ris_CT. | ava file in the up-
pi - out put directory. As seen in the listing below, the name of the Java class is derived from the model
name. The I ri s_CT. j ava contains two sub-classes, | ri s_CT$Bol t which is a Storm Bolt implementation for

Iris_CT.pm and|ris_CT$Functi on which is a Trident Function implementation for | ri s_CT. pmmi .

The Storm Bolt operates on an input Tupl e by getting values corresponding to input field names (defined in the
M ni ngSchena element) from the Tupl e. The Storm Bolt then emits named value(s) corresponding to output field
names (defined in the M ni ngSchenma or Qut put elements) as an output. Similarly, the Trident Function operates
on an input Tr i dent Tupl e by getting values corresponding to input field names from the Tri dent Tupl e and
emits named value(s) corresponding to output field names as an output.
/ *

* Copyright (c) 2004-2016 Zenentis, |nc

* Copyright (c) 2016-2017 Software AG Darnstadt, Germany and/or Software AG USA Inc., Reston, VA, USA
and/or its

* subsidiaries and/or its affiliates and/or their |icensors

* Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
for in your

* License Agreenent with Software AG

¥

package com zementi s. uppi . st orm

inmport java.util.UU D;

i mport com zenenti s. uppi . storm St or mvbdel W apper . Fact ory;

public final class Iris_CT {

Page 17

http://www.oracle.com/technetwork/java/index.html

5 software~

private static final Stormnvbdel Wapper. Factory FACTORY = new Factory(lris_CT.class, "/Ilris_CT.pnm ",
fal se);

private static final Stornvbdel Wapper MODEL_WRAPPER = FACTORY.create("lris_CT");

public static class Bolt extends Abstract PMMLBolt {
private static final |ong serial VersionU D = UU D. randonmJUl D() . get Least Si gni fi cantBits();

@verride

publ i c Stormvbdel W apper get St or nivbdel W apper () {
return MODEL_WRAPPER;

}

}

public static class Function extends Abstract PMMLFunction {
private static final |ong serial VersionU D = UU D. randonmJUl D() . get Least Si gni fi cantBits();

@verride

publ i c Stormvbdel W apper get St or nivbdel W apper () {
return MODEL_WRAPPER;

}

6.2.1. Storm Topology

Once the relevant Storm Bolts are generated, they can then be incorporated into a Storm topology. The resulting

Storm topology can be submitted on a Storm cluster using the following code snippet:

/1 define the topol ogy

Topol ogyBui | der topol ogyBui | der = new Topol ogyBui | der () ;

t opol ogyBui | der. set Spout (" Spout _I D', new Spout());

t opol ogyBui | der. setBol t ("Bolt_I D', new Iris_CT$Bol t()). shuffl eG oupi ng(" Spout _I D");

/1 submit the topol ogy
St or nSubmi tt er. submi t Topol ogy(" nyt opol ogy", new HashMap(), topol ogyBuil der.createTopol ogy());

The Spout _I Dabove is referenced by other components that want to consume this spout's outputs. For the above
example the spout generates tuples based on the example CSV file for the Iris dataset. The Bol t _I D above is

referenced by other components that want to consume this bolt's outputs.

6.2.2. Trident Topology

Like in the previous example, once relevant Trident Functions are generated, they can then be incorporated into
a Trident topology. The resulting Trident topology can be submitted on a Storm cluster using the following code

shippet:

/1 define the topol ogy
Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();

t opol ogy
. newSt r ean(" Spout _I D', new Spout ())

.each(inputField, new Iris_CT$Function, outputField);

/1 submit the topol ogy

Page 18

5 software~

St or nSubmi tt er. subm t Topol ogy(" nyt opol ogy", new HashMap(), topol ogy.createTopol ogy());

The Spout _| D must be unique across all Trident topologies running on the cluster. Trident keeps track of a small
amount of state for each input source (metadata about what it has consumed) in Zookeeper, and the Spout _| D

above specifies the node in Zookeeper where Trident should keep that metadata.

Page 19

5 software~

Chapter 7. Custom PMML Functions

Predictive models may require external resources such as custom functions. ZEMENTIS provides a facility to create
and use custom PMML functions. This capability enables, for example, the implementation of intricate calculations
that cannot be easily described in PMML, functions that access external systems to retrieve necessary data, or even
specialized algorithms not supported by PMML. One class of functions that can be easily implemented using custom
functions are aggregations over a period of time or window of transactions. Aggregations are used to obtain, for
example, the count, average, maximum and minimum for a set of records. One example is to use custom functions

to obtain the average transaction amount for a certain account for the last 30 days.

ZEMENTIS currently supports custom functions written in Java. Once created and made available to ZEMENTIS,
custom functions are used the same way as the built-in ones. The steps to achieve this are explained in the following

sections.

7.1. Create Custom PMML Functions

Custom functions are implemented as publ i ¢ st ati ¢ methods of Java classes. For a method to be recognized
as a custom PMML function, the containing class needs to be annotated with the ZEMENTIS specific @MVLFunc-
t i ons annotation which has a parameter namespace. This parameter must specify a fully qualified Java class
name. Within each annotated class, only methods that are declared as publ i ¢ st ati ¢ can be used as PMMLfunc-
tions. In addition, the types of the method parameters as well as its return type must be compatible with the PMML
data types. Table 7.1 provides the Java primitive types and classes that correspond to the different PMML data
types. The types of the parameters must be either among those listed in the table or among one of their super-class-
es or super-interfaces (j ava. | ang. Obj ect, j ava. | ang. Conpar abl e, or j ava. | ang. Nunber). Methods can
also declare variable number of parameters (var ar gs). Finally, methods declared as voi d cannot be used as
PMML functions.

Caution

Make sure these methods are thread-safe as ZEMENTIS may need to execute these methods concurrently

in different threads.

Table 7.1. PMML and Java types in ZEMENTIS

PMML Data Type Java Primitive Type Java Class
bool ean bool ean j ava. |l ang. Bool ean
date org.joda.timne. Local Date

Page 20

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

PMML Data Type Java Primitive Type Java Class

dat eTi ne org.joda.timne. DateTi ne
doubl e doubl e j ava. |l ang. Doubl e

fl oat fl oat j ava. | ang. Fl oat

i nteger | ong j ava. |l ang. Long

string java.lang. String

time org.joda.tine.Local Tinme
bi nary (buffered) byte[] byte[]

An example of properly declared custom function is shown in Figure 7.1.
Figure 7.1. Custom PMML Function Example

package com conpany. udf;
i mport com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFunct i ons(nanespace = "com conpany. udf. Cust onfuncti ons")
cl ass Custonfunctions {
public static Long factorial (Long n) {
if (n==null) {
return null;
} elseif (n<0) {
throw new ||| egal Argunent Exception();
} elseif (n==0) {
return 1;

} else {
return n * factorial (n-1);
}

In this example, Java class Recur si veFunct i ons has been annotated with @MVLFunct i ons. This annotation
informs ZEMENTIS that the class contains methods which may be used as PMML functions. The value of parameter
nanespace "com conpany. udf . Cust onfunct i ons" is the fully qualified class name for Cust onfFunct i ons
class with com conpany. udf package declaration. The class contains public static method f act ori al with one
input parameter of type Long and return value of the same type. Both types correspond to PMML i nt eger type

and declared method is thread safe.

7.2. Use Custom PMML Functions

Custom functions can be used exactly like built-in PMML functions within Appl y transformations. Within PMML, the
namespace is used as a prefix for the name of the custom function and Java method name is used as a postfix.

The PMML fragment in Figure 7.2 contains a simple example that uses the function defined in Figure 7.1.

Page 21

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

Figure 7.2. Example Using a Custom Function in PMML

<DerivedFi el d nane="fi el d1" optype="conti nuous" dataType="integer"/>
<Deri vedFi el d nane="fi el d2" optype="conti nuous" dataType="integer">
<Apply function="com conpany. udf. Cust onfunctions: factorial ">
<Fi el dRef field="fieldl"/>

</ Appl y>
</ Deri vedFi el d>

In this example, field2 of type integer is derived by applying custom function
com conpany. udf . Cust onfFuncti ons: factori al to derived field fi el d1 also of type i nt eger. The func-
tion name is divided by single colon character : where the prefix corresponds to the namespace parameter of

annotation @PMVLFunct i ons, and the postfix corresponds to Java method name f act ori al .

To make custom functions available to ZEMENTIS, compile the corresponding classes into a JAR file and include
the contents of this file in the final topology JAR file. To compile a class containing the @MVLFunct i ons annotation,
include the uppi - storm 10. 2. 0. 1. j ar file in Java classpath. This file is included with the ZEMENTIS distribution

package.

To prepare Storm Bolt and Trident Function for PMML files which references custom functions, run pre-

par e- pnm . sh script with additional command line flag - ext Li b and path to custom functions JAR file(s):

UPPI _Dl R/ bi n/ prepare-pm . sh PMML_DI R -ext Li b CUSTOM FUNCTI ONS_DI R

where UPPI _DI Rrefers to the directory where ZEMENTIS has been installed, PMM__DI R refers to the (top) direc-
tory where the PMML files are located, and CUSTOM _FUNCTI ONS_DI R refers to the (top) directory where custom

functions JAR files are located. Other pr epar e- prmi . sh script options are listed in Table 5.1.

Then, simply include custom functions JAR in addition to pnmi . j ar in your Storm deployment artifact.

7.3. Non-Deterministic Functions

When processing PMML models, ZEMENTIS performs certain performance optimizations which assume that func-
tions are deterministic, i.e. when presented with the same input values they always return the same result. However,
this may not be the case for all functions. For example, the result of a function may depend on the current time
and date. Another example might be a call to an external source that retrieves information that is being modified

by other systems.

With ZEMENTIS, a custom function may be declared as non-deterministic by annotating the corresponding imple-
mentation Java method with the @JonDet er mi ni st i cFuncti on annotation. Note that this annotation marks a
method, and not the containing class. This means a class implementing multiple functions may contain a combina-

tion of deterministic and non-deterministic functions.

Page 22

http://www.oracle.com/technetwork/java/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://www.oracle.com/technetwork/java/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://www.oracle.com/technetwork/java/index.html

5 software~

The following is an example of a non-deterministic function which provides the current time value for a specific

time zone.

Figure 7.3. Custom PMML Function Example

package com conpany. udf;

import com zenentis. st ereotype. PMMLFuncti ons;

import com zenentis. st ereotype. NonDet ermi ni sti cFuncti on;
import org.joda.tine.DateTi ne;

import org.joda.tine. DateTi mneZone;

@MWLFuncti ons(namespace = "com conpany. udf. Cust onfFuncti ons")
cl ass Custonfunctions {

@lonDet er m ni sti cFuncti on
public static DateTine dateTi neAt Zone(String timeZone) {
if (timeZone == null) {
return null;

}

return new Dat eTi ne(Dat eTi mneZone. forl D(ti meZone));

7.4. Binary Sources

Some predictive models use binary data as input for scoring or classifying results. ZEMENTIS supports applying
models to binary data by utilizing an external custom function. Given a proper binary input definition and a custom
function deployed in ZEMENTIS, the input binary data can be seamlessly integrated into the scoring/classifying

process.

Binary data can be retrieved as a byt e[] . The types of data are listed in Table 7.1. Set Bl NARY_BUFFERED as
t rue in <Ext ensi on> element like the PMML fragment in Figure 7.4 to guarantee the binary data will not be nul |

after being consumed.

Figure 7.4. Binary (Buffered) DataType Example

<Dat aDi cti onary nunber O Fi el ds="1">
<Dat aFi el d dat aType="bi nary" nanme="fi el d1" optype="categorical ">
<Ext ensi on ext ender =" ADAPA" nane="Bl| NARY_FORMAT" val ue="i mage/j peg" />
<Ext ensi on ext ender =" ADAPA" nane="BI NARY_BUFFERED"' val ue="true" />
</ Dat aFi el d>
</ Dat aDi cti onary>

Here are the steps to create a corresponding custom function:
« Implement a custom function as a static method of a Java class.

* Annotate it with a ZEMENTIS specific @MVLFunct i ons annotation.

Page 23

http://www.oracle.com/technetwork/java/index.html

5 software~

« Specify the type of the method parameter as byt e[] .

The custom function can be compatible with the PMML data type of f i el d1 defined in PMML fragment Figure 7.4.

An example of a custom function is shown in Figure 7.5.

Figure 7.5. Custom Function of Buffered Binary Data Example

package com conpany. udf ;
import com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFuncti ons(nanmespace = "com conpany. udf. Cust onfFuncti ons")
cl ass Custonfunctions {

public static String convert(byte[] byteArray) {
String convertedString = ... ;
return convertedString;

Once the custom function in Figure 7.5 is compiled and deployed , convert can be used exactly like a built-in
function within Appl y transformations. The PMML fragment in Figure 7.6 contains a simple example that uses the

function defined in Figure 7.5.

Figure 7.6. Example Using Custom Function of Buffered Binary Data in PMML

<DerivedFi el d nane="fi el d2" optype="categorical" dataType="string">
<Apply function="com conpany. udf. Cust onfuncti ons: convert">
<Fi el dRef field="fieldl"/>
</ Appl y>
</ Deri vedFi el d>

Page 24

