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Chapter 1. Introduction

As advanced analytics becomes pervasive across the enterprise to drive better business decisions, the need for

efficient execution of predictive models is paramount. An ever growing array of data mining tools and, all too often,

custom specialized software is used to mine and derive statistical models from a wealth of historical data. The

ultimate goal is to turn these models into business value by incorporating them into day to day business operations.

This necessitates the ability to integrate them into the IT infrastructure where outcomes can easily flow into the

finger-tips of decision makers. At the same time, the accelerating growth rate of data collected implies that only the

most scalable deployment architectures which can offer robust continuous computation needs will be able to meet

realtime analytics requirements.

In the era of big data, more and more organizations are turning to the scalable architecture of Hadoop and Spark to

meet this growing challenge. To bring the power of predictive models into this fast and large-scale data processing

engine, Software AG has developed the ZEMENTIS Predictive Analytics (ZEMENTIS) for Spark. ZEMENTIS offers

Spark users the best combination of open standards and scalability for the application of predictive analytics. With

the Predictive Model Markup Language (PMML) as the bridge between the model development environment and a

real-time cluster computing system, ZEMENTIS for Spark offers standards-based deployment of predictive models

and execution on a highly scalable platform. This solution brings the power of ZEMENTIS Predictive Analytics

server, the flagship product of Software AG, to Spark to deliver superior performance for mission-critical business

intelligence, analytics and data warehousing solutions. As a result, a wide range of predictive models, possibly

developed with different tools in different environments, can be effortlessly and seamlessly embedded directly in a

Spark application. Practically, PMML becomes a Spark function offering high performance execution that can meet

the volume and performance requirements of the most demanding environments.

This document serves as a guide for installing and using ZEMENTIS for Spark. It gives a brief overview of the plug-

in, describes each of its components, and explains how these are combined. It then outlines the simple installation

process. Finally, it illustrates the use of ZEMENTIS for Spark with a PMML example, a decision tree. The example

shows how to deploy and execute predictive models in Spark.

http://hadoop.apache.org/
http://spark.apache.org/
http://www.softwareag.com/zementis/
http://dmg.org/pmml/pmml-v4-3.html
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Chapter 2. Overview

2.1. Predictive Model Markup Language (PMML)

As the de-facto standard for data mining models, PMML provides tremendous benefits for business, IT, and the data

mining industry in general. Developed by the Data Mining Group (DMG), an independent, vendor-led consortium,

PMML increases business agility by eliminating the need for proprietary solutions or custom code development.

With PMML , a model can transit as is from the data scientist's desktop to the deployment platform where it will

be executed.

Today, PMML is supported by all the leading data mining tools, commercial and open source. As an open standard,

it enables project stakeholders to standardize on one common representation for data mining models. It practically

eliminates the barriers and gaps between development and production deployment of predictive analytics. In effect,

it minimizes the complexity, cost, and time to turn predictive models into operational IT and business assets.

As the lingua franca for predictive analytics, data mining models can be easily exchanged between PMML -compliant

applications. In this way, a model may be built in one statistical tool and easily moved to another for production

deployment or visualization. PMML also serves as a bridge between all the teams involved in the data mining

process inside a company as it can be used to disseminate knowledge and best practices, thereby stimulating cross-

team and inter-organization collaboration. In a world in which data-driven decisions are becoming more and more

pervasive, predictive analytics and standards such as PMML make it possible for organizations to benefit from smart

solutions that will truly revolutionize their business.

Besides offering a rich set of structures for describing all the intricate details of a predictive algorithm, PMML also

provides information about the input and output of a model. This includes names and types of all input and output

data fields, often along with the set of permissible values. In addition, a model expressed in PMML typically includes

information about how to handle invalid, missing, or outlier input values. These elements make PMML a great

candidate for automatic migration of a model into a complex data processing system like Spark which operates on

a core abstraction of applying functions to distributed datasets.

Note

A variety of sample PMML models are included with the ZEMENTIS distribution package. In addition, a

wealth of resources on PMML can be found from the PMML in Action.

http://dmg.org/pmml/pmml-v4-3.html
http://dmg.org
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/


Page 3

2.2. ZEMENTIS Predictive Analytics (ZEMENTIS)

ZEMENTIS for Spark enables execution of standards-based predictive analytics directly within a Spark cluster.

It shares the PMML execution core with the ZEMENTIS server offered by Software AG. ZEMENTIS for Spark,

however, is optimized to seamlessly integrate PMML models into Spark functions, thus enabling standards-based

analytics in batch, streaming, and interactive mode on a Spark cluster.

With ZEMENTIS for Spark, a PMML model is programmatically embedded into a Spark function by using the Java

API provided with the distribution. Once this is done, "predictions" such as scores, probabilities, categories, and

clusters identifiers can then be computed from parallel operations performed on a Resilient Distributed Dataset

(RDD). Each of these operations executes a PMML model.

Figure 2.1. Overview of ZEMENTIS for Spark

The process of using PMML models on a Spark cluster starts after the predictive models have been created and

exported in PMML format from the data mining tool. Once the PMML files are ready, they can be used directly within

a Spark application via the ZEMENTIS Java API. Alternatively, the PMML files can be validated and converted into

a binary format by using the prepare-pmml.sh script available with the distribution. This way, comprehensive

syntactic and semantic checks and corrections can be applied on the PMML files before they are introduced into

a production system.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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These steps are described in more detail in Chapter 5 and illustrated with actual examples in Section 5.2.

Like the ZEMENTIS server, ZEMENTIS plugin accepts PMML models of all versions (2.0, 2.1, 3.0, 3.1, 3.2, 4.0, 4.1,

4.2 and 4.3) generated by any of the major commercial and open source data mining tools.

The plug-in supports a wide range of predictive analytics techniques, including:

• Decision Trees for classification and regression

• K-Nearest Neighbors for regression, classification and clustering

• Neural Network Models: Back-Propagation, Radial-Basis Function, and Neural-Gas

• Support Vector Machines for regression, binary and multi-class classification

• Linear and Logistic Regression (binary and multinomial)

• Naïve Bayes Classifiers

• General and Generalized Linear Models

• Cox Regression Models

• Rule Set Models (flat decision trees)

• Clustering Models: Distribution-Based, Center-Based, and 2-Step Clustering

• Scorecards (including reason codes and point allocation for complex attributes)

• Segmented Models

• Model Ensembles (including Random Forest Models)

• Model Composition and Chaining

Note

ZEMENTIS for Spark does not support Association Rules models.
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Chapter 3. Using PMML in Spark
This chapter describes how PMML models are made available as Spark functions to be passed in the driver program

to run on a Spark cluster.

3.1. PMML Model as a Spark Function

Resilient Distributed Dataset (RDD) is the fundamental abstraction in Spark which represents a fault-tolerant col-

lection of elements that can be operated on in parallel. RDDs support two types of operations: transformations,

which create a new dataset from an existing one, and actions, which return a value to the driver program after

running a computation on the dataset.

With ZEMENTIS for Spark, a predictive model is converted into a Java implementation of a Spark function which can

be used within RDD transformations, specifically map and mapPartitions. The map transformation passes

each dataset element through a Spark function and returns a new RDD representing the results. With ZEMENTIS

for Spark, the results are the output generated by the PMML model. The mapPartitions transformation is similar

to the map transformation, but runs separately on each partition (block) of RDD. Once a PMML model is represented

as a Spark function, it can operate on key-value based RDD, where the key refers to the active and supplementary

mining field names of the model as defined in the PMML. The output RDDs generated by these transformations

contain values keyed by the output field names as defined in the PMML.

Note

Please refer to Spark Programming Guide for more information on programming with RDDs and Spark

functions. Working examples are described in detail in Section 5.2.

3.2. PMML and Java Data Types

The table below shows how PMML data types are mapped to Java types. For more information on the PMML data

types, you can visit the Data Dictionary page.

Table 3.1. PMML and Java Data Types

PMML Types Java Types

string java.lang.String

integer long, java.lang.Long

float float, java.lang.Float

http://www.oracle.com/technetwork/java/index.html
http://spark.apache.org/docs/latest/programming-guide.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://dmg.org/pmml/v4-3/DataDictionary.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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PMML Types Java Types

double double, java.lang.Double

boolean boolean, java.lang.Boolean

date org.joda.time.LocalDate

time org.joda.time.LocalTime

dateTime org.joda.time.DateTime

binary

(buffered)

byte[]

3.3. Handling of Invalid Values

PMML offers a rich set of options for defining the data types of the different input fields as well as the set or range

of valid values for each field in the Data Dictionary. Along with those, it allows data scientists to specify what the

model should do in the presence of invalid values as specified in the Mining Schema section of the PMML file.

The three options for the treatment of invalid values are returnInvalid, asIs, and asMissing. Among these,

returnInvalid is the most frequently used, since it is the default option in PMML. The option returnInvalid

instructs the model execution engine not to attempt to apply the model in the presence of an invalid value and,

instead, abort with an error. The other two options allow the model to execute by either allowing the invalid value

to be processed as is or by treating it as a missing value.

The following listing contains a fragment of the Iris_CT.pmml model. The original code was edited to show case

the PMML MiningSchema element with and without the explicit use of the attribute invalidValueTreatment.

...
<MiningSchema>
  <MiningField name="petal_length" usageType="active" invalidValueTreatment="returnInvalid"/>
  <MiningField name="petal_width" usageType="active" invalidValueTreatment="returnInvalid"/>
  <MiningField name="sepal_length" usageType="active"/>
  <MiningField name="sepal_width" usageType="active"/>
  <MiningField name="target_class" usageType="predicted"/>
</MiningSchema>
...

Note that although the option for the treatment of invalid values is not set for mining fields sepal_length and

sepal_width, the default value for treating invalid values in PMML is returnInvalid. In this way, the invalid

value treatment for these two fields is the same as the one used for fields petal_length and petal_width which

have PMML attribute invalidValueTreatment explicitly set to returnInvalid.

When used within a Spark application, the option returnInvalid may have a significant (unintended) impact.

Consider the case where an RDD with an invalid value for an input field marked with or defaulted to returnInvalid

http://www.oracle.com/technetwork/java/index.html
http://dmg.org/pmml/v4-3/DataDictionary.html
http://dmg.org/pmml/v4-3/MiningSchema.html
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treatment is applied to a model. In this case, the PMML execution engine will generate an error (exception) which

in turn can cause the Spark job to abort due to a task failure if the exception is not handled properly.

In some cases, this may be the desired behavior in order to be able to detect invalid values. However, often it is

more desirable to consider an approach in which invalid values do not cause the Spark function to fail. This requires

the PMML model to be modified in order to change the invalid value treatment of one or more mining fields from

returnInvalid (or nothing which is equivalent) to, typically, asMissing. With these changes, all invalid input

values will be treated as missing values (NULL) and the model will not generate errors on encountering invalid

values. Please note that, while not always the case, NULL input values result in NULL output values, indicating that

the particular records cannot be scored.

The following listing contains the same PMML fragment as shown above, but modified so that the invalid value

treatment for all mining fields is asMissing.

...
<MiningSchema>
  <MiningField name="petal_length" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="petal_width" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="sepal_length" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="sepal_width" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="target_class" usageType="predicted"/>
</MiningSchema>
...

Note

It is highly recommended that any such changes to a model are reviewed and approved by the person or

team that created the model to ensure that the model is still valid for the assumptions under which it was built.
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Chapter 4. ZEMENTIS Installation

This chapter describes how to install ZEMENTIS for Spark.

4.1. Requirements

The requirements to install ZEMENTIS for Spark in your system are:

Table 4.1. The ZEMENTIS Installation Requirements

Requirement Version Notes

Spark 1.4.0 or

above

The rest of this documentation assumes that Spark is already installed.

Please see the Spark Documentation for details.

Java Platform, Standard

Edition (Java SE)

8 or

above

Please make sure you use the Java Development Kit (JDK) and not the Java

Runtime Environment (JRE).

ZEMENTIS for Spark Li-

cense Key

10.2.0.1 Installation of new PMML models with ZEMENTIS for Spark requires a valid

Product License Key which can be obtained by contacting Software AG.

Please note that execution of existing models will not be interrupted when

the license expires.

4.2. Packaging

ZEMENTIS for Spark is distributed as a compressed archive file: uppi-spark-10.2.0.1.zip. The distributed

package consists of several files, including this documentation and several sample files. When uncompressed, the

package reveals a number of directories as described in Table 4.2.

Table 4.2. Directory Structure of the ZEMENTIS for Spark package

Directory Contents

apidocs Contains the Java API documentation for using ZEMENTIS as a stand-alone library.

bin Contains the prepare-pmml.sh script which takes as one or more PMML files as an input and

generates a corresponding binary representation for each model. For detailed usage instruc-

tions about the prepare-pmml.sh script, please refer to the Java API documentation located

in the apidocs folder of the distribution.

docs Documentation in HTML and PDF format.

https://spark.apache.org/documentation.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.softwareag.com/zementis/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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Directory Contents

lib The library (JAR) files required for the execution of ZEMENTIS for Spark.

pmml A number of sample PMML files along with data files in CSV format. These include the examples

described in Section 5.2.

pmml.sh A script file which runs the sample code (contained in the src folder) illustrating how ZEMENTIS

API can be integrated into Spark function.

src The sample code which embeds each PMML file contained in the pmml folder into a Spark func-

tion and processes the data from the corresponding CSV file against it. The code is described

in detailed in Section 5.2.

4.3. Installation

To install ZEMENTIS for Spark, simply uncompress the provided file (uppi-spark-10.2.0.1.zip) to a directory

on your system. This will create a ZEMENTIS sub-directory with contents as described in Table 4.2. Once this is

done, add uppi-library-10.2.0.1.jar to the classpath of your Spark application. The driver program of

the Spark application can now use the ZEMENTIS API classes available in the uppi-library-10.2.0.1.jar.

When the Spark application is ready, create an application "uber JAR" file which contains the application code

along with all the dependencies (including the contents of uppi-library-10.2.0.1.jar file). The application

JAR should not include Hadoop or Spark libraries, as those are added at runtime. The application JAR file can

then be submitted to a Spark cluster using the spark-submit script. For more information about submitting Spark

applications, please refer to the Application Submission Guide.

https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://spark.apache.org/docs/latest/submitting-applications.html
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Chapter 5. Using ZEMENTIS
To use ZEMENTIS in a Spark application, familiarity with the ZEMENTIS Java API is necessary. Section 5.1 provides

an overview of the ZEMENTIS Java API. Section 5.2 then describes how this API can be used within a Spark

application with some examples.

5.1. ZEMENTIS Stand-alone Java Library

The uppi-library-10.2.0.1.jar can be used as a stand-alone Java library within a Spark application. The

Java API documentation is available under the apidocs sub-folder of the uppi-spark-10.2.0.1.zip distribu-

tion. The API consists of two interfaces:

• ModelWrapperFactory

• ModelWrapper

and their default implementations:

• DefaultModelWrapperFactory

• DefaultModelWrapper, SerializableModelWrapper

These classes encapsulate all the functionality that is necessary for processing a PMML file and execute predictive

models from it. A ModelWrapperFactory object is constructed using the PMML file as an input. From this factory,

one or more ModelWrappers can be created, one for each model found in the PMML file (a PMML file may contain

more than one model). A ModelWrapper provides information about the wrapped model, including its name as

well as the names and data types of the input and output fields. The ModelWrapper is also used to execute/apply

the model, i.e. process data using the model.

Important

A distributed system like Spark needs to be able to serialize and deserialize objects when they are passed

between tasks. To facilitate serialization and deserialization of the ModelWrapper instances created from

the PMML files, SerializableModelWrapper should be used.

The code below illustrates how to use the DefaultModelWrapperFactory and SerializableModelWrapper

for a desired model in a PMML file:

/*
 * Copyright (c) 2004-2016 Zementis, Inc.
 * Copyright (c) 2016-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
 and/or its 

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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 * subsidiaries and/or its affiliates and/or their licensors.
 * Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
 for in your 
 * License Agreement with Software AG.
 */
ModelWrapperFactory modelWrapperFactory = null;
 try {
     modelWrapperFactory = new DefaultModelWrapperFactory(inputStream, pmmlFile.getName());
 } catch (RuntimeException rte) {
     // If the provided file is not a valid XML file.
     LOGGER.severe(rte.getMessage());
 }
 
 // Most of the PMML files contain only one model. Let's pick the first (and probably only one) to score.
 String modelName = modelNames.iterator().next();
  
 // Create a serializable model wrapper for the selected model
 SerializableModelWrapper modelWrapper = new
 SerializableModelWrapper(modelWrapperFactory.create(modelName));
 
 // Score the data. The predicted values are returned as an array.The size and order of the values in
 // the array must match the fields as returned by the getOutputFieldNames() method.
 Object[] inputValues = new Object[INPUT_SIZE];
 // Populate the input values.
 Object[] predictions = modelWrapper.apply(inputValues);
 
 // Alternatively, the following method can be used to apply the model to a key/value map.
 Map<String, Object> input = new HashMap<String, Object>();
 input.put("input_1", value_1);
 input.put("input_2", value_2);
 ...
 input.put("input_n", value_n);

 Map<String, Object> output = modelWrapper.apply(input);

If the provided input is indeed of PMML format but it has syntactic or semantic errors, then the construction will

succeed but the constructed factory will not contain any models. The generated errors can be retrieved as an

annotated PMML document as follows:

InputStream annotatedPmml = modelWrapperFactory.getAnnotatedPmml();

To use a new PMML file or replace an existing one, just create a new DefaultModelWrapperFacto-

ry and create the appropriate SerializableModelWrapper with it. For more information about using up-

pi-library-10.2.0.1.jar, please refer to the Javadoc contained in the apidocs sub-folder of ZEMENTIS

for Spark distribution.

Note

One of the apply methods of ModelWrapper expects Object[] as an input argument and returns Ob-

ject[] as an output. The order and type of inputs provided to this method must match the order and type

of input fields defined in the PMML mining schema for the corresponding model. Similarly, the order and

type of outputs returned by the apply method matches the order and type of output fields defined in the

corresponding PMML file. If the model returns only one output, scalarApply method of ModelWrapper

object can be used.
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Though, for most Spark applications, the apply(Map) method will be convenient and sufficient.

5.2. Integrate ZEMENTIS with Spark

With ZEMENTIS for Spark, the SerializableModelWrapper instances can be used within RDD transformations,

specifically map and mapPartitions. The following sections describes this integration with examples.

5.2.1. Sample PMML and Data Files

The ZEMENTIS for Spark package contains a number of sample PMML files, each with a CSV (Comma Separate

Values) file containing test data. The test data provides both input and output values. The output values are provided

to validate the results generated on a Spark cluster. To run these samples, the test data needs to be converted into

an RDD. In the examples presented below, we describe the process of creating SerializableModelWrapper

instances from the sample PMML files and use them within Spark function to apply a transformation on an RDD

which represents the data in the sample CSV files.

5.2.2. Example Model

This section provides an example of scoring data against a model on Spark in local mode. The example uses a

Decision Tree model built for the Iris data set included in the provided samples (look for the file Iris_CT.pmml

among the sample files in the pmml directory of the ZEMENTIS package). It is a classification model that, given the

sepal and petal lengths and widths of an Iris plant, predicts the most likely species the plant belongs to (one of Iris-

setosa, Iris-versicolor, or Iris-virginica) along with the predicted probability of each of the species.

The following listing presents the input and output fields of the model, as listed in the PMML file. The input

fields are the MiningField elements from the MiningSchema section with the attribute usageType="active".

These are petal_length, petal_width, sepal_length, and sepal_width. The output fields are list-

ed as OutputField elements. They are class, Probability_setosa, Probability_versicolor, and

Probability_virginica. The first field outputs the predicted (winning) species and the other three fields output

the predicted probabilities for each of the species.

<DataDictionary numberOfFields="5">
    <DataField dataType="double" name="sepal_length" optype="continuous"/>
    <DataField dataType="double" name="sepal_width" optype="continuous"/>
    <DataField dataType="double" name="petal_length" optype="continuous"/>
    <DataField dataType="double" name="petal_width" optype="continuous"/>
    <DataField dataType="string" name="target_class" optype="categorical">
      <Value property="valid" value="Iris-setosa"/>
      <Value property="valid" value="Iris-versicolor"/>
      <Value property="valid" value="Iris-virginica"/>
    </DataField>
  </DataDictionary>
  <TreeModel algorithmName="CART" functionName="classification" modelName="Iris_CT">
    <MiningSchema>

http://dmg.org/pmml/v4-3/TreeModel.html
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      <MiningField name="petal_length" usageType="active"/>
      <MiningField name="petal_width" usageType="active"/>
      <MiningField name="sepal_length" usageType="active"/>
      <MiningField name="sepal_width" usageType="active"/>
      <MiningField name="target_class" usageType="predicted"/>
    </MiningSchema>
    <Output>
      <OutputField dataType="string" feature="predictedValue" name="class" optype="categorical" />
      <OutputField dataType="double" feature="probability" name="Probability_setosa" optype="continuous"
 value="Iris-setosa"/>
      <OutputField dataType="double" feature="probability" name="Probability_versicolor"
 optype="continuous" value="Iris-versicolor"/>
      <OutputField dataType="double" feature="probability" name="Probability_virginica"
 optype="continuous" value="Iris-virginica"/>
    </Output>
    ...

The following code snippet shows how to create a SerializableModelWrapper from this PMML file:

/*
 * Copyright (c) 2004-2016 Zementis, Inc.
 * Copyright (c) 2016-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
 and/or its 
 * subsidiaries and/or its affiliates and/or their licensors.
 * Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
 for in your 
 * License Agreement with Software AG.
 */
    InputStream is = UPPIFunction.class.getResourceAsStream("Iris_CT.pmml");
    DefaultModelWrapperFactory modelWrapperFactory = new DefaultModelWrapperFactory(is, "Iris_CT");

    // If the PMML has any errors, they are reported as an annotated PMML file
    modelWrapperFactory.getAnnotatedPmml();

    // If no errors, get the name of the model (typically, the PMML will contain one model)
    String modelName = modelWrapperFactory.getModelNames().iterator().next();
    SerializableModelWrapper modelWrapper = 
        new SerializableModelWrapper(modelWrapperFactory.create(modelName));

The following code snippet shows how the data from Iris_CT.csv is converted into RDD and transformed by

applying the Iris_CT model to it as a Spark function:

/*
 * Copyright (c) 2004-2016 Zementis, Inc.
 * Copyright (c) 2016-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
 and/or its 
 * subsidiaries and/or its affiliates and/or their licensors.
 * Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
 for in your 
 * License Agreement with Software AG.
 */
    // Initializing Spark Context
    JavaSparkContext sparkContext = new JavaSparkContext(SparkConf);

    // Retrieving input data from Iris dataset and converting it into RDDs
    JavaRDD<String> csvData = sparkContext.textFile("Iris_CT.csv");
    String header = csvData.first();
    String[] keys = header.split(",");
    JavaRDD<String> csvDataNoHeader = csvData.filter(new Function<String, Boolean>() {
        @Override
        public Boolean call(String line) {
            return !line.contains(header);
        }
    });
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    JavaRDD<Map<String, Object>> input = csvDataNoHeader.map(
        new Function<String, Map<String, Object>>() {
        @Override
        public Map<String, Object> call(String line) {
            Map<String, Object> inputMap = new HashMap<String, Object>();
            String[] values = line.split(",");
            for (int i = 0; i < Math.min(keys.length, values.length); i++) {
                inputMap.put(keys[i], values[i]);
            }
            return inputMap;
        }
    });

    // Scoring using Spark Function object with models wrapped inside
    JavaRDD<Map<String, Object>> scoredOutput = input.map(
        new Function<Map<String, Object>, Map<String, Object>>() {
        @Override
        public Map<String, Object> call(Map<String, Object> tuple) throws Exception {
            return modelWrapper.apply(tuple);
        }
    });

    sparkContext.close();

The following code snippet shows the same example, but in a streaming context:

/*
 * Copyright (c) 2004-2016 Zementis, Inc.
 * Copyright (c) 2016-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
 and/or its 
 * subsidiaries and/or its affiliates and/or their licensors.
 * Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
 for in your 
 * License Agreement with Software AG.
 */
    // Initializing Streaming Context
    JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConfig, batchDuration);

    // Retrieving data from streaming
    Map<String, Integer> topicMap = new HashMap<String, Integer>();
    topicMap.put("test_in", 1);
    JavaPairReceiverInputDStream<String, String> messages =
        KafkaUtils.createStream(streamingContext, "localhost", UUID.randomUUID().toString(), topicMap);
    JavaDStream<String> csvLines = messages.map(new Function<Tuple2<String, String>, String>() {
        public String call(Tuple2<String, String> tuple) throws Exception {
            String line = tuple._2;
            return line;
        }
    });
    String[] keys = csvHeaders.split(",");
    JavaDStream<Map<String, Object>> inputRecords = csvLines.map(
        new Function<String, Map<String, Object>>() {
        public Map<String, Object> call(String csvLine) throws Exception {
            Map<String, Object> inputMap = new HashMap<String, Object>();
            String[] values = csvLine.split(",");
            for (int i = 0; i < Math.min(keys.length, values.length); i++) {
                inputMap.put(keys[i], values[i]);
            }
            return inputMap;
        }
    });

    // Scoring using Spark Function object with models wrapped inside
    JavaRDD<Map<String, Object>> scoredOutput = inputRecords.map(
        new Function<Map<String, Object>, Map<String, Object>>() {
        @Override
        public Map<String, Object> call(Map<String, Object> tuple) throws Exception {
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            return modelWrapper.apply(tuple);
        }
    });

    // Start Streaming Context
    streamingContext.start();
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Chapter 6. Custom PMML Functions
Predictive models may require external resources such as custom functions. ZEMENTIS provides a facility to create

and use custom PMML functions. This capability enables, for example, the implementation of intricate calculations

that cannot be easily described in PMML, functions that access external systems to retrieve necessary data, or even

specialized algorithms not supported by PMML. One class of functions that can be easily implemented using custom

functions are aggregations over a period of time or window of transactions. Aggregations are used to obtain, for

example, the count, average, maximum and minimum for a set of records. One example is to use custom functions

to obtain the average transaction amount for a certain account for the last 30 days.

ZEMENTIS currently supports custom functions written in Java. Once created and made available to ZEMENTIS,

custom functions are used the same way as the built-in ones. The steps to achieve this are explained in the following

sections.

6.1. Create Custom PMML Functions

Custom functions are implemented as public static methods of Java classes. For a method to be recognized as a

custom PMML function, the containing class needs to be annotated with the ZEMENTIS specific @PMMLFunctions

annotation which has a parameter namespace. This parameter must specify a fully qualified Java class name.

Within each annotated class, only methods that are declared as public static can be used as PMMLfunctions.

In addition, the types of the method parameters as well as its return type must be compatible with the PMML data

types. Table 6.1 provides the Java primitive types and classes that correspond to the different PMML data types.

The types of the parameters must be either among those listed in the table or among one of their super-classes or

super-interfaces (java.lang.Object, java.lang.Comparable, or java.lang.Number). Methods can also

declare variable number of parameters (varargs). Finally, methods declared as void cannot be used as PMML

functions.

Caution

Make sure these methods are thread-safe as ZEMENTIS may need to execute these methods concurrently

in different threads.

Table 6.1. PMML and Java types in ZEMENTIS

PMML Data Type Java Primitive Type Java Class

boolean boolean java.lang.Boolean

date org.joda.time.LocalDate

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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PMML Data Type Java Primitive Type Java Class

dateTime org.joda.time.DateTime

double double java.lang.Double

float float java.lang.Float

integer long java.lang.Long

string java.lang.String

time org.joda.time.LocalTime

binary (buffered) byte[] byte[]

An example of properly declared custom function is shown in Figure 6.1.

Figure 6.1. Custom PMML Function Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;

@PMMLFunctions(namespace = "com.company.udf.CustomFunctions")
class CustomFunctions {

    public static Long factorial(Long n) {
        if (n == null) {
            return null;
        } else if (n < 0) {
            throw new IllegalArgumentException();
        } else if (n == 0) {
            return 1;
        } else {
            return n * factorial(n-1);
        }
    }
}

In this example, Java class RecursiveFunctions has been annotated with @PMMLFunctions. This annotation

informs ZEMENTIS that the class contains methods which may be used as PMML functions. The value of parameter

namespace "com.company.udf.CustomFunctions" is the fully qualified class name for CustomFunctions

class with com.company.udf package declaration. The class contains public static method factorial with one

input parameter of type Long and return value of the same type. Both types correspond to PMML integer type

and declared method is thread safe.

6.2. Use Custom PMML Functions

Custom functions can be used exactly like built-in PMML functions within Apply transformations. Within PMML, the

namespace is used as a prefix for the name of the custom function and Java method name as postfix. The PMML

fragment in Figure 6.2 contains a simple example that uses the function defined in Figure 6.1.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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Figure 6.2. Example Using a Custom Function in PMML

<DerivedField name="field1" optype="continuous" dataType="integer"/>
<DerivedField name="field2" optype="continuous" dataType="integer">
    <Apply function="com.company.udf.CustomFunctions:factorial">
        <FieldRef field="field1"/>
    </Apply>
</DerivedField>

In this example, field2 of type integer is derived by applying custom function

com.company.udf.CustomFunctions:factorial to derived field field1 also of type integer. The func-

tion name is divided by single colon character : where name prefix corresponds to the namespace parameter of

annotation @PMMLFunctions, and name postfix corresponds to Java method name factorial.

To make custom functions available to ZEMENTIS, compile the corresponding classes into a JAR file and include

the contents of this file in the final application JAR file. To compile a class using the @PMMLFunctions annotation,

include the uppi-library-10.2.0.1.jar file in Java classpath. This file is included with the ZEMENTIS distri-

bution package.

6.3. Non-Deterministic Functions

When processing PMML models, ZEMENTIS performs certain performance optimizations which assume that func-

tions are deterministic, i.e. when presented with the same input values they always return the same result. However,

this may not be the case for all functions. For example, the result of a function may depend on the current time

and date. Another example might be a call to an external source that retrieves information that is being modified

by other systems.

With ZEMENTIS, a custom function may be declared as non-deterministic by annotating the corresponding imple-

mentation Java method with the @NonDeterministicFunction annotation. Note that this annotation marks a

method, and not the containing class. This means a class implementing multiple functions may contain a combina-

tion of deterministic and non-deterministic functions.

The following is an example of a non-deterministic function which provides the current time value for a specific

time zone.

http://www.oracle.com/technetwork/java/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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Figure 6.3. Custom PMML Function Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;
import com.zementis.stereotype.NonDeterministicFunction;
import org.joda.time.DateTime;
import org.joda.time.DateTimeZone;

@PMMLFunctions(namespace = "com.company.udf.CustomFunctions")
class CustomFunctions {

    @NonDeterministicFunction
    public static DateTime dateTimeAtZome(String timeZone) {
        if (timeZone == null) {
            return null;
        }
        return new DateTime(DateTimeZone.forID(timeZone));
     }
}

6.4. Binary Sources

Some predictive models use binary data as input for scoring or classifying results. ZEMENTIS supports applying

models to binary data by utilizing an external custom function. Given a proper binary input definition and a custom

function deployed in ZEMENTIS, the input binary data can be seamlessly integrated into the scoring/classifying

process.

Binary data can be retrieved as a byte[]. The types of data are listed in Table 6.1. Set BINARY_BUFFERED as

true in <Extension> element like the PMML fragment in Figure 6.4 to guarantee the binary data will not be null

after being consumed.

Figure 6.4. Binary (Buffered) DataType Example

<DataDictionary numberOfFields="1">
  <DataField dataType="binary" name="field1" optype="categorical">
    <Extension extender="ADAPA" name="BINARY_FORMAT" value="image/jpeg" />
    <Extension extender="ADAPA" name="BINARY_BUFFERED" value="true" />
  </DataField>
</DataDictionary>

Here are the steps to create a corresponding custom function:

• Implement a custom function as a static method of a Java class.

• Annotate it with a ZEMENTIS specific @PMMLFunctions annotation.

• Specify the type of the method parameter as byte[].

The custom function can be compatible with the PMML data type of field1 defined in PMML fragment Figure 6.4.

An example of a custom function is shown in Figure 6.5.

http://www.oracle.com/technetwork/java/index.html
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Figure 6.5. Custom Function of Buffered Binary Data Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;

@PMMLFunctions(namespace = "com.company.udf.CustomFunctions")
class CustomFunctions {

    public static String convert(byte[] byteArray) {
        String convertedString = ... ;
        return convertedString;
    }
}

Once the custom function in Figure 6.5 is compiled and deployed , convert can be used exactly like a built-in

function within Apply transformations. The PMML fragment in Figure 6.6 contains a simple example that uses the

function defined in Figure 6.5.

Figure 6.6. Example Using Custom Function of Buffered Binary Data in PMML

<DerivedField name="field2" optype="categorical" dataType="string">
  <Apply function="com.company.udf.CustomFunctions:convert">
    <FieldRef field="field1"/>
  </Apply>
</DerivedField>


