5 software

ZEMENTIS for Spark
User Guide

10.2.0.1



5 software~

ZEMENTIS for Spark
User Guide

Software AG
Copyright © 2004 - 2016 Zementis Inc.
Copyright © 2016 - 2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/

or its subsidiaries and/or its affiliates and/or their licensors.

This document applies to ZEMENTIS 10.2.0.1 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software
AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be

trademarks of their respective owners.
Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at http://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product documentation,

located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or restrictions, please
refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party license restrictions, please
refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright and Trademark
Notices of Software AG Products". These documents are part of the product documentation, located at http:/softwareag.com/licenses/ and/or

in the root installation directory of the licensed product(s).


http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

5 software~

Table of Contents

IO o1 (oo [8 o1 o T o KPS TTTRTPSPPPP 1
2. OVEIVIBW .ttt ettt oottt 4 e e etttk et oo et et e e e bbb o e e et et e e e E bk oo oot et e e e R R R e e e et et e e e R R e e et et e e e b e as 2
2.1. Predictive Model Markup Language (PMIML) .....couuiiiiiiiii e e e e e e e e et e eeaa e e 2

2.2. ZEMENTIS Predictive ANalytics (ZEMENTIS) ...uuuiiiiiiiiiiiiie et e e e e 3

G T £ To T o AV Y T TS o - U 5
3.1. PMML Model as a Spark FUNCHON .........iiiiiiii e e e e e e et e e e e aaeees 5

3.2. PMML and Java Data TYPES ...cuuuiiiiiiiiiieiiiee e e e et e e e e e e e e et e e et e e s e et e e et e e st e e st e eat e eetneastnaes 5

3.3. Handling of INVAlId VAIUES .......ccouiiiiiiii e e e e e e e e e e e et e et eeaaeeeanaees 6

4, ZEMENTIS INSTAIALION ....ciiiiiiiiii ettt e ettt e e e e e e et e et e e e e e e e e e stbb e e e e e e e 8
O = L= [ U114 =T o 4 1= ) N 8

A == (o1 ¢ Vo |1 o PP 8

e B 1 Y= 1 = T o I PSP PP RRPR 9

I S o Vo T =1Vt ST 10
5.1. ZEMENTIS Stand-alone Java LIDrary ..o e e e e eaa s 10

5.2. Integrate ZEMENTIS With SPArk .......oiiiiiiiiiii e e e e e e e aaaas 12
5.2.1. Sample PMML and Data FileS .........ocouiiiiiiiiii et e e e e 12

L = 2 ] ] (=1 Lo o =Y PN 12

6. CUSIOM PMML FUNCHONS ...ttt ettt ettt e e e e e et e e e e e e e e et e e n bbb e e e e e e e eenbnnan s 16
6.1. Create CuStOmM PMML FUNCHONS ....coouitiiiiiiieeii ettt e ettt e e e ettt e e e e e e e e e bbb r e e e e e e eeennnaes 16

6.2. Use CUStOM PMML FUNCHONS .....cooiiiiiiiiiii ettt ettt e e e et e e e e e e e e eennnees 17

6.3. NON-DeterminiStic FUNCHIONS ........cooiiiiiiii e e e e e e e 18

L Y1 F= L VS o 10 ] (o= PN 19

Page iii



s

softwares

List of Figures

2.1
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Overview Of ZEMENTIS fOr SPArK ...oouuiiiiiiiii i e e e e e e et e e et e et eeeaeeaanaes 3
Custom PMML FUNCHON EXAMPIE ...t e e e e e e e e et e et e e st e e e e eaaeeeen 17
Example Using a Custom FUNCtioN iN PIMIVIL .......iiiniiiiciii e e e e e e e e et e et e eaa s 18
Custom PMML FUNCHON EXAMPIE ...t e e e e e e e e et e et e e et r e e e eaneeeen 19
Binary (Buffered) DataType EXAMPIE ......coouiiiiiiiiii e e e e e e e et e e e et e e e e e eanaeee 19
Custom Function of Buffered Binary Data EXamMPIE ......cc.iiiiiiiiiiiiiii e e e e 20
Example Using Custom Function of Buffered Binary Data in PMML ..........c..ccoiiiiiiiiiiiniie e, 20

Page iv



5 software~

List of Tables

3.1. PMML @Nd JAVa DAA TYPES ..uuieetitinieeietiieeteii e e ettt e e e eett s e et et s e e eettaaeaett e aeaettaeeeett e aeeettaaeeettnsaeeerenaens 5
4.1. The ZEMENTIS Installation REQUIFEMENTS ......uuiiiiiiiiieiiiiie et e e e e et e e e e re s 8
4.2. Directory Structure of the ZEMENTIS for Spark package ..........cooooiiviiiiiiiii e 8
6.1. PMML and Java types in ZEMENTIS .....ouiiiiiiiii et e e et s e et e e e et e e e e aaa s 16

Page v



5 software~

Chapter 1. Introduction

As advanced analytics becomes pervasive across the enterprise to drive better business decisions, the need for
efficient execution of predictive models is paramount. An ever growing array of data mining tools and, all too often,
custom specialized software is used to mine and derive statistical models from a wealth of historical data. The
ultimate goal is to turn these models into business value by incorporating them into day to day business operations.
This necessitates the ability to integrate them into the IT infrastructure where outcomes can easily flow into the
finger-tips of decision makers. At the same time, the accelerating growth rate of data collected implies that only the
most scalable deployment architectures which can offer robust continuous computation needs will be able to meet

realtime analytics requirements.

In the era of big data, more and more organizations are turning to the scalable architecture of Hadoop and Spark to
meet this growing challenge. To bring the power of predictive models into this fast and large-scale data processing
engine, Software AG has developed the ZEMENTIS Predictive Analytics (ZEMENTIS) for Spark. ZEMENTIS offers
Spark users the best combination of open standards and scalability for the application of predictive analytics. With
the Predictive Model Markup Language (PMML) as the bridge between the model development environment and a
real-time cluster computing system, ZEMENTIS for Spark offers standards-based deployment of predictive models
and execution on a highly scalable platform. This solution brings the power of ZEMENTIS Predictive Analytics
server, the flagship product of Software AG, to Spark to deliver superior performance for mission-critical business
intelligence, analytics and data warehousing solutions. As a result, a wide range of predictive models, possibly
developed with different tools in different environments, can be effortlessly and seamlessly embedded directly in a
Spark application. Practically, PMML becomes a Spark function offering high performance execution that can meet

the volume and performance requirements of the most demanding environments.

This document serves as a guide for installing and using ZEMENTIS for Spark. It gives a brief overview of the plug-
in, describes each of its components, and explains how these are combined. It then outlines the simple installation
process. Finally, it illustrates the use of ZEMENTIS for Spark with a PMML example, a decision tree. The example

shows how to deploy and execute predictive models in Spark.

Page 1


http://hadoop.apache.org/
http://spark.apache.org/
http://www.softwareag.com/zementis/
http://dmg.org/pmml/pmml-v4-3.html

5 software~

Chapter 2. Overview

2.1. Predictive Model Markup Language (PMML)

As the de-facto standard for data mining models, PMML provides tremendous benefits for business, IT, and the data
mining industry in general. Developed by the Data Mining Group (DMG), an independent, vendor-led consortium,
PMML increases business agility by eliminating the need for proprietary solutions or custom code development.
With PMML , a model can transit as is from the data scientist's desktop to the deployment platform where it will

be executed.

Today, PMML is supported by all the leading data mining tools, commercial and open source. As an open standard,
it enables project stakeholders to standardize on one common representation for data mining models. It practically
eliminates the barriers and gaps between development and production deployment of predictive analytics. In effect,

it minimizes the complexity, cost, and time to turn predictive models into operational IT and business assets.

As the lingua franca for predictive analytics, data mining models can be easily exchanged between PMML -compliant
applications. In this way, a model may be built in one statistical tool and easily moved to another for production
deployment or visualization. PMML also serves as a bridge between all the teams involved in the data mining
process inside a company as it can be used to disseminate knowledge and best practices, thereby stimulating cross-
team and inter-organization collaboration. In a world in which data-driven decisions are becoming more and more
pervasive, predictive analytics and standards such as PMML make it possible for organizations to benefit from smart

solutions that will truly revolutionize their business.

Besides offering a rich set of structures for describing all the intricate details of a predictive algorithm, PMML also
provides information about the input and output of a model. This includes names and types of all input and output
data fields, often along with the set of permissible values. In addition, a model expressed in PMML typically includes
information about how to handle invalid, missing, or outlier input values. These elements make PMML a great
candidate for automatic migration of a model into a complex data processing system like Spark which operates on

a core abstraction of applying functions to distributed datasets.

Note

A variety of sample PMML models are included with the ZEMENTIS distribution package. In addition, a

wealth of resources on PMML can be found from the PMML in Action.

Page 2


http://dmg.org/pmml/pmml-v4-3.html
http://dmg.org
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/

5 software~

2.2. ZEMENTIS Predictive Analytics (ZEMENTIS)

ZEMENTIS for Spark enables execution of standards-based predictive analytics directly within a Spark cluster.
It shares the PMML execution core with the ZEMENTIS server offered by Software AG. ZEMENTIS for Spark,
however, is optimized to seamlessly integrate PMML models into Spark functions, thus enabling standards-based

analytics in batch, streaming, and interactive mode on a Spark cluster.

With ZEMENTIS for Spark, a PMML model is programmatically embedded into a Spark function by using the Java
API provided with the distribution. Once this is done, "predictions” such as scores, probabilities, categories, and
clusters identifiers can then be computed from parallel operations performed on a Resilient Distributed Dataset

(RDD). Each of these operations executes a PMML model.

Figure 2.1. Overview of ZEMENTIS for Spark

Data Mining Tools Model Deployment

# Commercial Vendors (e.g. IBM SPSS) Integration/Execution
# Open Source Tools (R, KNIME, ...)

X "' ZEMENTIS
Predictive Algorithms for Spark

# Decision Trees

# Meural Networks PM M L

# SupportVector Machines
# Linear and Logistic Regression Deploy in minutes ... a
# Maive Bayes Classifiers

# General and Generalized Linear Models Sp QrK

# Cox Regression
# Rule Set Models
# Clustering

Simple Deployment & Execution
# Scorecards

# Association Rules
# Restricted Boltzamn Machine
# Multiple Models {Ensemble,

Segmentation, Chaining, Compuosition

The process of using PMML models on a Spark cluster starts after the predictive models have been created and
exported in PMML format from the data mining tool. Once the PMML files are ready, they can be used directly within
a Spark application via the ZEMENTIS Java API. Alternatively, the PMML files can be validated and converted into
a binary format by using the pr epar e- prmi . sh script available with the distribution. This way, comprehensive
syntactic and semantic checks and corrections can be applied on the PMML files before they are introduced into

a production system.

Page 3


http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

These steps are described in more detail in Chapter 5 and illustrated with actual examples in Section 5.2.

Like the ZEMENTIS server, ZEMENTIS plugin accepts PMML models of all versions (2.0, 2.1, 3.0, 3.1, 3.2, 4.0, 4.1,

4.2 and 4.3) generated by any of the major commercial and open source data mining tools.
The plug-in supports a wide range of predictive analytics techniques, including:

« Decision Trees for classification and regression

» K-Nearest Neighbors for regression, classification and clustering

< Neural Network Models: Back-Propagation, Radial-Basis Function, and Neural-Gas

« Support Vector Machines for regression, binary and multi-class classification

e Linear and Logistic Regression (binary and multinomial)

« Naive Bayes Classifiers

* General and Generalized Linear Models

» Cox Regression Models

* Rule Set Models (flat decision trees)

« Clustering Models: Distribution-Based, Center-Based, and 2-Step Clustering

 Scorecards (including reason codes and point allocation for complex attributes)

« Segmented Models

* Model Ensembles (including Random Forest Models)

* Model Composition and Chaining

Note

ZEMENTIS for Spark does not support Association Rules models.

Page 4



5 software~

Chapter 3. Using PMML in Spark

This chapter describes how PMML models are made available as Spark functions to be passed in the driver program

to run on a Spark cluster.

3.1. PMML Model as a Spark Function

Resilient Distributed Dataset (RDD) is the fundamental abstraction in Spark which represents a fault-tolerant col-
lection of elements that can be operated on in parallel. RDDs support two types of operations: t r ansf or mat i ons,
which create a new dataset from an existing one, and act i ons, which return a value to the driver program after

running a computation on the dataset.

With ZEMENTIS for Spark, a predictive model is converted into a Java implementation of a Spark function which can
be used within RDD t r ansf or mat i ons, specifically map and mapParti ti ons. The nap transformation passes
each dataset element through a Spark function and returns a new RDD representing the results. With ZEMENTIS
for Spark, the results are the output generated by the PMML model. The mapPar ti ti ons transformation is similar
to the nmap transformation, but runs separately on each partition (block) of RDD. Once a PMML model is represented
as a Spark function, it can operate on key-value based RDD, where the key refers to the active and supplementary
mining field names of the model as defined in the PMML. The output RDDs generated by these transformations

contain values keyed by the output field names as defined in the PMML.

Note

Please refer to Spark Programming Guide for more information on programming with RDDs and Spark

functions. Working examples are described in detail in Section 5.2.

3.2. PMML and Java Data Types

The table below shows how PMML data types are mapped to Java types. For more information on the PMML data

types, you can visit the Data Dictionary page.

Table 3.1. PMML and Java Data Types

PMML Types Java Types
string java.lang. String
i nteger [ ong, java.lang.Long
fl oat float, java.lang. Fl oat

Page 5


http://www.oracle.com/technetwork/java/index.html
http://spark.apache.org/docs/latest/programming-guide.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://dmg.org/pmml/v4-3/DataDictionary.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

PMML Types Java Types
doubl e doubl e, java.l ang. Doubl e
bool ean bool ean, java.l ang. Bool ean
date org.joda.time. Local Date
time org.joda.tine.Local Tine
dat eTi ne org.joda.time. DateTi ne
bi nary byte[]
(buffered)

3.3. Handling of Invalid Values

PMML offers a rich set of options for defining the data types of the different input fields as well as the set or range
of valid values for each field in the Data Dictionary. Along with those, it allows data scientists to specify what the
model should do in the presence of invalid values as specified in the Mining Schema section of the PMML file.
The three options for the treatment of invalid values are r et ur nl nval i d, asl s, and asM ssi ng. Among these,
returnl nval i dis the most frequently used, since it is the default option in PMML. The option r et ur nl nval i d
instructs the model execution engine not to attempt to apply the model in the presence of an invalid value and,
instead, abort with an error. The other two options allow the model to execute by either allowing the invalid value

to be processed as is or by treating it as a missing value.

The following listing contains a fragment of the | ri s_CT. pnml model. The original code was edited to show case

the PMML M ni ngSchena element with and without the explicit use of the attribute i nval i dVal ueTr eat nent .

<M ni ngSchema>
<M ni ngFi el d nane="petal _| ength" usageType="active" invalidVal ueTreatment="returnlnvalid"/>
<M ni ngFi el d nane="petal _w dth" usageType="active" invalidVal ueTreatment="returnlnvalid"/>
<M ni ngFi el d nanme="sepal _| ength" usageType="active"/>
<M ni ngFi el d nanme="sepal _w dth" usageType="active"/>
<M ni ngFi el d nanme="target cl ass" usageType="predicted"/>

</ M ni ngSchema>

Note that although the option for the treatment of invalid values is not set for mining fields sepal _| engt h and
sepal _wi dt h, the default value for treating invalid values in PMML is r et ur nl nval i d. In this way, the invalid
value treatment for these two fields is the same as the one used for fields pet al _| engt h and pet al _wi dt h which

have PMML attribute i nval i dVal ueTr eat nent explicitly setto r et ur nl nval i d.

When used within a Spark application, the option r et ur nl nval i d may have a significant (unintended) impact.

Consider the case where an RDD with an invalid value for an input field marked with or defaultedtor et ur nl nval i d

Page 6


http://www.oracle.com/technetwork/java/index.html
http://dmg.org/pmml/v4-3/DataDictionary.html
http://dmg.org/pmml/v4-3/MiningSchema.html

5 software~

treatment is applied to a model. In this case, the PMML execution engine will generate an error (exception) which

in turn can cause the Spark job to abort due to a task failure if the exception is not handled properly.

In some cases, this may be the desired behavior in order to be able to detect invalid values. However, often it is
more desirable to consider an approach in which invalid values do not cause the Spark function to fail. This requires
the PMML model to be modified in order to change the invalid value treatment of one or more mining fields from
returnl nval i d (or nothing which is equivalent) to, typically, asM ssi ng. With these changes, all invalid input
values will be treated as missing values (NULL) and the model will not generate errors on encountering invalid
values. Please note that, while not always the case, NULL input values result in NULL output values, indicating that

the particular records cannot be scored.

The following listing contains the same PMML fragment as shown above, but modified so that the invalid value

treatment for all mining fields is asM ssi ng.

<M ni ngSchenma>
<M ni ngFi el d name="petal _| engt h" usageType="active" invalidVal ueTreat nent="asM ssi ng"/>
<M ni ngFi el d name="petal _w dth" usageType="active" invalidVal ueTreat ment="asM ssi ng"/>
<M ni ngFi el d name="sepal _| engt h" usageType="active" invalidVal ueTreat nent="asM ssi ng"/>
<M ni ngFi el d name="sepal _wi dt h" usageType="active" invalidVal ueTreat ment="asM ssi ng"/>
<M ni ngFi el d name="t arget _cl ass" usageType="predicted"/>

</ M ni ngSchema>

Note

It is highly recommended that any such changes to a model are reviewed and approved by the person or

team that created the model to ensure that the model is still valid for the assumptions under which it was built.

Page 7



5 software~

Chapter 4. ZEMENTIS Installation

This chapter describes how to install ZEMENTIS for Spark.

4.1. Requirements

The requirements to install ZEMENTIS for Spark in your system are:

Table 4.1. The ZEMENTIS Installation Requirements

Requirement

Version |Notes

Edition (Java SE)

Spark 1.4.0 or|The rest of this documentation assumes that Spark is already installed.
above |Please see the Spark Documentation for details.
Java Platform, Standard|8 or|Please make sure you use the Java Development Kit (JDK) and not the Java

above |Runtime Environment (JRE).

cense Key

ZEMENTIS for Spark Li-{10.2.0.1 |Installation of new PMML models with ZEMENTIS for Spark requires a valid

Product License Key which can be obtained by contacting Software AG.
Please note that execution of existing models will not be interrupted when

the license expires.

4.2. Packaging

ZEMENTIS for Spark is distributed as a compressed archive file: uppi - spar k- 10. 2. 0. 1. zi p. The distributed

package consists of several files, including this documentation and several sample files. When uncompressed, the

package reveals a number of directories as described in Table 4.2.

Table 4.2. Directory Structure of the ZEMENTIS for Spark package

Directory Contents

api docs Contains the Java APl documentation for using ZEMENTIS as a stand-alone library.

bin Contains the pr epar e- pmml . sh script which takes as one or more PMML files as an input and
generates a corresponding binary representation for each model. For detailed usage instruc-
tions about the pr epar e- prmi . sh script, please refer to the Java APl documentation located
in the api docs folder of the distribution.

docs Documentation in HTML and PDF format.

Page 8


https://spark.apache.org/documentation.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.softwareag.com/zementis/
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

Directory Contents

lib The library (JAR) files required for the execution of ZEMENTIS for Spark.

prmi A number of sample PMML files along with data files in CSV format. These include the examples
described in Section 5.2.

pmm . sh A script file which runs the sample code (contained in the sr c folder) illustrating how ZEMENTIS
API can be integrated into Spark function.

src The sample code which embeds each PMML file contained in the prm folder into a Spark func-
tion and processes the data from the corresponding CSV file against it. The code is described
in detailed in Section 5.2.

4.3. Installation

To install ZEMENTIS for Spark, simply uncompress the provided file (uppi - spar k- 10. 2. 0. 1. zi p) to a directory

on your system. This will create a ZEMENTIS sub-directory with contents as described in Table 4.2. Once this is

done, add uppi - li brary-10. 2. 0. 1. j ar to the classpath of your Spark application. The dri ver pr ogr amof

the Spark application can now use the ZEMENTIS API classes available in the uppi -1 i brary-10.2.0. 1.j ar.

When the Spark application is ready, create an application "uber JAR" file which contains the application code

along with all the dependencies (including the contents of uppi -1i brary-10. 2. 0. 1. j ar file). The application

JAR should not include Hadoop or Spark libraries, as those are added at runtime. The application JAR file can

then be submitted to a Spark cluster using the spar k- submi t script. For more information about submitting Spark

applications, please refer to the Application Submission Guide.

Page 9


https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://spark.apache.org/docs/latest/submitting-applications.html

5 software~

Chapter 5. Using ZEMENTIS

To use ZEMENTIS in a Spark application, familiarity with the ZEMENTIS Java APl is necessary. Section 5.1 provides
an overview of the ZEMENTIS Java API. Section 5.2 then describes how this APl can be used within a Spark

application with some examples.

5.1. ZEMENTIS Stand-alone Java Library

The uppi -1i brary-10. 2. 0. 1. ar can be used as a stand-alone Java library within a Spark application. The
Java API documentation is available under the api docs sub-folder of the uppi - spar k- 10. 2. 0. 1. zi p distribu-

tion. The API consists of two interfaces:
*Model W apper Fact ory
«Model W apper
and their default implementations:
e Def aul t Model W apper Fact ory
» Def aul t Model W apper, Seri al i zabl eMbdel W apper

These classes encapsulate all the functionality that is necessary for processing a PMML file and execute predictive
models from it. A Model W apper Fact or y object is constructed using the PMML file as an input. From this factory,
one or more Mbdel W apper s can be created, one for each model found in the PMML file (a PMML file may contain
more than one model). A Model W apper provides information about the wrapped model, including its name as
well as the names and data types of the input and output fields. The Model W apper is also used to execute/apply

the model, i.e. process data using the model.

Important

A distributed system like Spark needs to be able to serialize and deserialize objects when they are passed
between tasks. To facilitate serialization and deserialization of the Mbodel W apper instances created from
the PMML files, Seri al i zabl eModel W apper should be used.

The code below illustrates how to use the Def aul t Model W apper Fact ory and Seri al i zabl eModel W apper
for a desired model in a PMML file:
/*

* Copyright (c) 2004-2016 Zenentis, Inc.

* Copyright (c) 2016-2017 Software AG Darnstadt, Germany and/or Software AG USA Inc., Reston, VA, USA
and/or its

Page 10


http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

* subsidiaries and/or its affiliates and/or their |icensors.
* Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
for in your
* License Agreenent with Software AG
*/
Mbodel W apper Fact ory nodel W apper Factory = nul | ;

try {
nmodel W apper Fact ory = new Def aul t Model W apper Fact ory(i nput Stream pmm Fil e. get Name());

} catch (RuntineException rte) {
/1 1f the provided file is not a valid XM file.
LOGGER. severe(rte. get Message());

}

/'l Most of the PMWL files contain only one nodel. Let's pick the first (and probably only one) to score.
String nodel Name = nodel Nanes.iterator().next();

/]l Create a serializable nodel wapper for the sel ected nodel

Seri al i zabl eMbdel W apper nodel W apper = new

Seri al i zabl eMbdel W apper (nodel W apper Fact ory. cr eat e( nodel Nane) ) ;

/] Score the data. The predicted values are returned as an array. The size and order of the values in
/1 the array nust match the fields as returned by the getCutputFi el dNanes() et hod.

Obj ect[] inputVal ues = new oj ect [ | NPUT_SI ZE] ;

/'l Popul ate the input val ues.

Obj ect[] predictions = nodel Wapper. appl y(i nput Val ues) ;

/1l Alternatively, the follow ng nethod can be used to apply the nodel to a key/val ue map.
Map<String, Object> input = new HashMap<String, Object>();

i nput. put("input_1", value_1);

i nput . put ("input_2", val ue_2);

i nput . put ("input_n", value_n);

Map<String, Object> output = nodel Wapper. appl y(i nput);

If the provided input is indeed of PMML format but it has syntactic or semantic errors, then the construction will
succeed but the constructed factory will not contain any models. The generated errors can be retrieved as an

annotated PMML document as follows:

| nput St r eam annot at edPnml = nodel W apper Fact ory. get Annot at edPnmi () ;

To use a new PMML file or replace an existing one, just create a new Def aul t Model W apper Fact o-
ry and create the appropriate Seri al i zabl eModel W apper with it. For more information about using up-
pi-1ibrary-10.2.0.1.jar, please refer to the Javadoc contained in the api docs sub-folder of ZEMENTIS
for Spark distribution.

Note

One of the appl y methods of Model W apper expects Obj ect [] as an input argument and returns Cb-
j ect[] as an output. The order and type of inputs provided to this method must match the order and type
of input fields defined in the PMML mining schema for the corresponding model. Similarly, the order and
type of outputs returned by the appl y method matches the order and type of output fields defined in the
corresponding PMML file. If the model returns only one output, scal ar Appl y method of Mbdel W apper

object can be used.

Page 11



5 software~

Though, for most Spark applications, the appl y( Map) method will be convenient and sufficient.

5.2. Integrate ZEMENTIS with Spark

With ZEMENTIS for Spark, the Ser i al i zabl eModel W apper instances can be used within RDD transformations,

specifically map and mapParti ti ons. The following sections describes this integration with examples.

5.2.1. Sample PMML and Data Files

The ZEMENTIS for Spark package contains a number of sample PMML files, each with a CSV (Comma Separate
Values) file containing test data. The test data provides both input and output values. The output values are provided
to validate the results generated on a Spark cluster. To run these samples, the test data needs to be converted into
an RDD. In the examples presented below, we describe the process of creating Seri al i zabl eModel W apper
instances from the sample PMML files and use them within Spark function to apply a transformation on an RDD

which represents the data in the sample CSV files.

5.2.2. Example Model

This section provides an example of scoring data against a model on Spark in local mode. The example uses a
Decision Tree model built for the Iris data set included in the provided samples (look for the file I ri s_CT. pnm
among the sample files in the pnm  directory of the ZEMENTIS package). It is a classification model that, given the
sepal and petal lengths and widths of an Iris plant, predicts the most likely species the plant belongs to (one of I ri s-

setosa,lris-versicolor,orlris-virginica)along with the predicted probability of each of the species.

The following listing presents the input and output fields of the model, as listed in the PMML file. The input
fields are the M ni ngFi el d elements from the M ni ngSchemna section with the attribute usageType="act i ve".
These are petal | ength, petal _width, sepal | ength, and sepal _w dth. The output fields are list-
ed as Qut put Fi el d elements. They are cl ass, Probability setosa, Probability versicol or, and
Probabi | i ty_vi rgi ni ca. The first field outputs the predicted (winning) species and the other three fields output

the predicted probabilities for each of the species.

<Dat aDi cti onary nunber O Fi el ds="5">
<Dat aFi el d dat aType="doubl e" nane="sepal _| engt h" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="sepal _wi dt h" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nane="petal _| ength" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="petal _wi dth" optype="conti nuous"/>
<Dat aFi el d dat aType="string" nane="target_cl ass" optype="categorical ">
<Val ue property="valid" value="Iris-setosa"/>
<Val ue property="valid" value="Iris-versicolor"/>
<Val ue property="valid" value="Iris-virginica"/>
</ Dat aFi el d>
</ Dat aDi cti onary>
<TreeMddel al gorithmName="CART" functionNane="cl assification" nodel Nane="Iris_CT">
<M ni ngSchenma>

Page 12


http://dmg.org/pmml/v4-3/TreeModel.html

5 software~

<M ni ngFi el d name="petal _| engt h" usageType="active"/>
<M ni ngFi el d name="petal _w dth" usageType="active"/>
<M ni ngFi el d name="sepal _| engt h" usageType="active"/>
<M ni ngFi el d name="sepal _w dt h" usageType="active"/>
<M ni ngFi el d name="t arget _cl ass" usageType="predicted"/>
</ M ni ngSchema>
<Cut put >
<Qut put Fi el d dat aType="string" feature="predictedVal ue" name="cl ass" optype="categorical" />
<Qut put Fi el d dat aType="doubl e" feature="probability" nanme="Probability_setosa" optype="continuous"
val ue="Iris-setosa"/>
<Qut put Fi el d dat aType="doubl e" feature="probability" name="Probability_versicolor"
opt ype="conti nuous" val ue="Iris-versicolor"/>
<Qut put Fi el d dat aType="doubl e" feature="probability" nane="Probability_virginica"
opt ype="conti nuous" value="Iris-virginica"/>
</ CQut put >

The following code snippet shows how to create a Seri al i zabl eMbdel W apper from this PMML file:

/*
* Copyright (c) 2004-2016 Zenentis, I|nc
* Copyright (c) 2016-2017 Software AG Darnstadt, Germany and/or Software AG USA Inc., Reston, VA, USA
and/or its
* subsidiaries and/or its affiliates and/or their |icensors
* Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
for in your
* License Agreenent with Software AG
*/
I nput Streamis = UPPI Functi on. cl ass. get ResourceAsStrean("Iris_CT. pnm ") ;
Def aul t Model W apper Fact ory nodel W apper Factory = new Def aul t Model W apper Factory(is, "lris_CT")

/1 1f the PMML has any errors, they are reported as an annotated PMW file
nmodel W apper Fact ory. get Annot at edPmm ()

/1 If no errors, get the nane of the nodel (typically, the PMML will contain one nodel)
String nodel Name = nodel W apper Fact ory. get Mbdel Nanes() .iterator (). next()
Seri al i zabl eMbdel W apper nodel W apper =

new Seri al i zabl eMbdel W apper (model W apper Fact ory. cr eat e( nodel Nane) )

The following code snippet shows how the data from I ri s_CT. csv is converted into RDD and transformed by

applying the I ri s_CT model to it as a Spark function:

/*
* Copyright (c) 2004-2016 Zenentis, I|nc
* Copyright (c) 2016-2017 Software AG Darnstadt, Germany and/or Software AG USA Inc., Reston, VA, USA
and/or its
* subsidiaries and/or its affiliates and/or their |icensors
* Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
for in your
* License Agreenent with Software AG
*/
/1 Initializing Spark Context
JavaSpar kCont ext spar kCont ext = new JavaSpar kCont ext ( Spar kConf)

/! Retrieving input data fromlris dataset and converting it into RDDs
JavaRDD<Stri ng> csvData = sparkContext.textFile("lris_CT.csv")

String header = csvData.first()

String[] keys = header.split(",");

JavaRDD<Stri ng> csvDat aNoHeader = csvData.filter(new Function<String, Bool ean>() {

@verride

public Boolean call (String line) {
return !line.contains(header)

}

1)

Page 13



5 software~

JavaRDD<Map<String, OCbject>> input = csvDat aNoHeader . map(
new Function<String, Map<String, Object>>() {
@verride
public Map<String, Object> call(String line) {
Map<String, Object> inputMap = new HashMap<String, Object>();

String[] values = line.split(",");
for (int i =0; i < Math.m n(keys.|length, values.length); i++) {
i nput Map. put (keys[i], values[i]);
}
return input Map;
}
b
/'l Scoring using Spark Function object with nodels w apped inside
JavaRDD<Map<String, Object>> scoredCQutput = input. map(
new Function<Map<String, Object> Mp<String, Object>>() {
@verride
public Map<String, Object> call(Map<String, Object> tuple) throws Exception {
return nodel W apper . appl y(tupl e);
}
b

spar kCont ext . cl ose() ;

The following code snippet shows the same example, but in a streaming context:

/*
* Copyright (c) 2004-2016 Zenentis, Inc.
* Copyright (c) 2016-2017 Software AG Darnstadt, Germany and/or Software AG USA Inc., Reston, VA, USA
and/or its
* subsidiaries and/or its affiliates and/or their |icensors.
* Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided
for in your
* License Agreenent with Software AG
*/
/1 Initializing Stream ng Context
JavaSt r eam ngCont ext stream ngCont ext = new JavaStream ngCont ext (spar kConfi g, batchDuration);

/'l Retrieving data from stream ng
Map<String, |nteger> topicMap = new HashMap<String, Integer>();
topi cMap. put ("test_in", 1);
JavaPai r Recei ver | nput DSt reanxSt ri ng, String> messages =
Kaf kaUti | s. creat eStrean(stream ngContext, "local host", UU D.randonJUl D().toString(), topicMap);
JavaDSt reanxStri ng> csvLi nes = nmessages. map(new Functi on<Tupl e2<String, String> String>() {
public String call (Tupl e2<String, String> tuple) throws Exception {
String line = tuple._2;
return |ine;

}
IDK
String[] keys = csvHeaders.split(",");
JavaDSt r eankMap<St ri ng, Obj ect>> i nput Records = csvLi nes. map(
new Function<String, Map<String, Object>>() {
public Map<String, Object> call(String csvLine) throws Exception {
Map<String, Object> inputMap = new HashMap<String, Object>();
String[] values = csvLine.split(",");
for (int i =0; i < Math.m n(keys.length, values.length); i++) {
i nput Map. put (keys[i], values[i]);

}
return input Map;
}
B
/1 Scoring using Spark Function object with nodels w apped inside
JavaRDD<Map<String, Object>> scoredCQut put = input Records. map(
new Function<Map<String, Object> Mp<String, Object>>() {
@verride

public Map<String, Object> call (Map<String, Object> tuple) throws Exception {

Page 14



5 software~

return nodel W apper . appl y(tupl e);

}
1)

/] Start Stream ng Context
stream ngContext.start();

Page 15



5 software~

Chapter 6. Custom PMML Functions

Predictive models may require external resources such as custom functions. ZEMENTIS provides a facility to create
and use custom PMML functions. This capability enables, for example, the implementation of intricate calculations
that cannot be easily described in PMML, functions that access external systems to retrieve necessary data, or even
specialized algorithms not supported by PMML. One class of functions that can be easily implemented using custom
functions are aggregations over a period of time or window of transactions. Aggregations are used to obtain, for
example, the count, average, maximum and minimum for a set of records. One example is to use custom functions

to obtain the average transaction amount for a certain account for the last 30 days.

ZEMENTIS currently supports custom functions written in Java. Once created and made available to ZEMENTIS,
custom functions are used the same way as the built-in ones. The steps to achieve this are explained in the following

sections.

6.1. Create Custom PMML Functions

Custom functions are implemented as public static methods of Java classes. For a method to be recognized as a
custom PMML function, the containing class needs to be annotated with the ZEMENTIS specific @MVLFunct i ons
annotation which has a parameter nanespace. This parameter must specify a fully qualified Java class name.
Within each annotated class, only methods that are declared as publ i ¢ st ati ¢ can be used as PMMLfunctions.
In addition, the types of the method parameters as well as its return type must be compatible with the PMML data
types. Table 6.1 provides the Java primitive types and classes that correspond to the different PMML data types.
The types of the parameters must be either among those listed in the table or among one of their super-classes or
super-interfaces (j ava. | ang. Obj ect, j ava. | ang. Conpar abl e, or j ava. | ang. Nunber ). Methods can also
declare variable number of parameters (var ar gs). Finally, methods declared as voi d cannot be used as PMML

functions.

Caution

Make sure these methods are thread-safe as ZEMENTIS may need to execute these methods concurrently

in different threads.

Table 6.1. PMML and Java types in ZEMENTIS

PMML Data Type Java Primitive Type Java Class
bool ean bool ean j ava. |l ang. Bool ean
date org.joda.timne. Local Date

Page 16


http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

PMML Data Type Java Primitive Type Java Class

dat eTi ne org.joda.timne. DateTi ne
doubl e doubl e j ava. |l ang. Doubl e

fl oat fl oat j ava. | ang. Fl oat

i nteger | ong j ava. |l ang. Long

string java.lang. String

time org.joda.tine.Local Tinme
bi nary (buffered) byte[] byte[]

An example of properly declared custom function is shown in Figure 6.1.
Figure 6.1. Custom PMML Function Example

package com conpany. udf;
i mport com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFunct i ons(nanespace = "com conpany. udf. Cust onfuncti ons")
cl ass Custonfunctions {
public static Long factorial (Long n) {
if (n==null) {
return null;
} elseif (n<0) {
throw new ||| egal Argunent Exception();
} elseif (n==0) {
return 1;

} else {
return n * factorial (n-1);
}

In this example, Java class Recur si veFunct i ons has been annotated with @MVLFunct i ons. This annotation
informs ZEMENTIS that the class contains methods which may be used as PMML functions. The value of parameter
nanespace "com conpany. udf . Cust onfunct i ons" is the fully qualified class name for Cust onfFunct i ons
class with com conpany. udf package declaration. The class contains public static method f act ori al with one
input parameter of type Long and return value of the same type. Both types correspond to PMML i nt eger type

and declared method is thread safe.

6.2. Use Custom PMML Functions

Custom functions can be used exactly like built-in PMML functions within Appl y transformations. Within PMML, the
namespace is used as a prefix for the name of the custom function and Java method name as postfix. The PMML

fragment in Figure 6.2 contains a simple example that uses the function defined in Figure 6.1.

Page 17


http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

Figure 6.2. Example Using a Custom Function in PMML

<DerivedFi el d nane="fi el d1" optype="conti nuous" dataType="i nteger"/>
<Deri vedFi el d nane="fi el d2" optype="conti nuous" dataType="integer">
<Apply function="com conpany. udf. Cust onfFuncti ons: factorial ">
<Fi el dRef field="fieldl"/>

</ Appl y>
</ Deri vedFi el d>

In this example, field2 of type integer is derived by applying custom function
com conpany. udf . Cust onfFuncti ons: factori al to derived field fi el d1 also of type i nt eger . The func-
tion name is divided by single colon character : where name prefix corresponds to the nanespace parameter of

annotation @MVLFunct i ons, and name postfix corresponds to Java method name f act ori al .

To make custom functions available to ZEMENTIS, compile the corresponding classes into a JAR file and include
the contents of this file in the final application JAR file. To compile a class using the @ MVLFunct i ons annotation,
include the uppi - 1i brary-10. 2. 0. 1. j ar file in Java classpath. This file is included with the ZEMENTIS distri-

bution package.

6.3. Non-Deterministic Functions

When processing PMML models, ZEMENTIS performs certain performance optimizations which assume that func-
tions are deterministic, i.e. when presented with the same input values they always return the same result. However,
this may not be the case for all functions. For example, the result of a function may depend on the current time
and date. Another example might be a call to an external source that retrieves information that is being modified

by other systems.

With ZEMENTIS, a custom function may be declared as non-deterministic by annotating the corresponding imple-
mentation Java method with the @JonDet er mi ni st i cFuncti on annotation. Note that this annotation marks a
method, and not the containing class. This means a class implementing multiple functions may contain a combina-

tion of deterministic and non-deterministic functions.

The following is an example of a non-deterministic function which provides the current time value for a specific

time zone.

Page 18


http://www.oracle.com/technetwork/java/index.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

5 software~

Figure 6.3. Custom PMML Function Example

package com conpany. udf;

i nport com zenenti s. st er eot ype. PMMLFunct i ons;

i nport com zenenti s. st ereotype. NonDet er mi ni sti cFuncti on;
import org.joda.tine. DateTi ne;

import org.joda.tine. Dat eTi neZone;

@MWLFunct i ons(nanespace = "com conpany. udf. Cust onfuncti ons")
cl ass Custonfunctions {

@\onDet er mi ni sti cFuncti on
public static DateTi ne dateTi neAt Zone(String tineZone) {
if (tinmeZone == null) {
return null;
}

return new Dat eTi ne(Dat eTi meZone. for| D(ti meZone));

}

6.4. Binary Sources

Some predictive models use binary data as input for scoring or classifying results. ZEMENTIS supports applying

models to binary data by utilizing an external custom function. Given a proper binary input definition and a custom

function deployed in ZEMENTIS, the input binary data can be seamlessly integrated into the scoring/classifying

process.

Binary data can be retrieved as a byt e[ ] . The types of data are listed in Table 6.1. Set Bl NARY_BUFFERED as

t r ue in <Ext ensi on> element like the PMML fragment in Figure 6.4 to guarantee the binary data will not be nul |

after being consumed.

Figure 6.4. Binary (Buffered) DataType Example

<Dat aDi cti onary nunber O Fi el ds="1">

<Dat aFi el d dat aType="bi nary" nanme="fi el d1" optype="categorical ">
<Ext ensi on ext ender =" ADAPA" nane="Bl| NARY_FORMAT" val ue="i mage/j peg" />
<Ext ensi on ext ender =" ADAPA" nane="Bl NARY_BUFFERED"' val ue="true" />

</ Dat aFi el d>
</ Dat aDi cti onary>

Here are the steps to create a corresponding custom function:

* Implement a custom function as a static method of a Java class.

* Annotate it with a ZEMENTIS specific @MVLFunct i ons annotation.

« Specify the type of the method parameter as byte[] .

The custom function can be compatible with the PMML data type of f i el d1 defined in PMML fragment Figure 6.4.

An example of a custom function is shown in Figure 6.5.

Page 19


http://www.oracle.com/technetwork/java/index.html

5 software~

Figure 6.5. Custom Function of Buffered Binary Data Example

package com conpany. udf;
i mport com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFunct i ons(nanespace = "com conpany. udf. Cust onfuncti ons")
cl ass Custonfunctions {

public static String convert(byte[] byteArray) {

String convertedString = ... ;
return convertedString;

Once the custom function in Figure 6.5 is compiled and deployed , convert can be used exactly like a built-in
function within Appl y transformations. The PMML fragment in Figure 6.6 contains a simple example that uses the

function defined in Figure 6.5.

Figure 6.6. Example Using Custom Function of Buffered Binary Data in PMML

<Deri vedFi el d nane="fi el d2" optype="categorical" dataType="string">
<Apply function="com conpany. udf. Cust onfFuncti ons: convert" >
<Fi el dRef field="fieldl"/>
</ Appl y>
</ Deri vedFi el d>

Page 20



