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Chapter 1. Introduction

As advanced analytics becomes pervasive across the enterprise to derive better business decisions, the need for

efficient execution of predictive models is paramount. An ever growing array of data mining tools and, all too often,

custom specialized software is used to mine and derive statistical models from a wealth of historical data. The ulti-

mate goal is to turn these models into business value by incorporating them into day-to-day business operations.

This necessitates the ability to integrate them into the IT infrastructure where outcomes can easily flow into the fin-

ger-tips of the decision makers. At the same time, the accelerating growth rate of data collected implies that only the

most scalable database architectures will be able to meet storage, and more importantly, processing requirements.

In the era of big data, more and more organizations are turning into the scalable architecture of Hadoop and Hive

to meet this growing challenge. To bring the power of predictive models into this architecture, Software AG has

developed the ZEMENTIS Predictive Analytics (ZEMENTIS) for Hive. ZEMENTIS offers Hive users the best combi-

nation of open standards and scalability for the application of predictive analytics. With the Predictive Model Markup

Language (PMML) as the bridge between the model development environment and the IT data warehousing infras-

tructure, ZEMENTIS for Hive offers standards-based deployment of predictive models and execution on a highly

scalable platform. This solution brings the power of ZEMENTIS Predictive Analytics server, the flagship product of

Software AG, to the Hadoop and Hive infrastructure to deliver superior performance for mission-critical business

intelligence, analytics and data warehousing solutions. As a result, a wide range of predictive models, possibly

developed with different tools in different environments, can be effortlessly and seamlessly embedded directly in

the warehouse. Practically, PMML becomes a HiveQL function offering execution performance that can meet the

volume and performance requirements of the most demanding environments.

This document serves as a guide for installing and using ZEMENTIS for Hive. It first gives a brief overview of the plug-

in, describes each of its components, and explains how these are combined. It then presents the simple installation

process. Finally, it illustrates the use of ZEMENTIS with two PMML examples, a neural network and a decision tree.

These examples show how to deploy and execute predictive models in Hive.

Note

With respect to the EU General Data Protection Regulation (GDPR), our product does not collect or store any

personally identifiable information. However, as the input data might contain sensitive personal information,

please anonymize any such data to ensure that the processing of personal data is in accordance with the

GDPR.

http://hadoop.apache.org/
http://hive.apache.org/
http://www.softwareag.com/zementis
http://dmg.org/pmml/pmml-v4-4.html
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Chapter 2. Overview

2.1. Predictive Model Markup Language (PMML)

As the de-facto standard for data mining models, PMML provides tremendous benefits for business, IT, and the data

mining industry in general. Developed by the Data Mining Group (DMG), an independent, vendor-led consortium,

PMML increases business agility by eliminating the need for proprietary solutions or custom code development.

With PMML, a model can transit as is from the data scientist's desktop to the deployment platform where it will

be executed.

Today, PMML is supported by all the leading data mining tools, commercial and open source. As an open standard,

it enables project stakeholders to standardize on one common representation for data mining models. It practically

eliminates the barriers and gaps between development and production deployment of predictive analytics. In effect,

it minimizes the complexity, cost, and time to turn predictive models into operational IT and business assets.

As the lingua franca for predictive analytics, data mining models can be easily exchanged between PMML-compliant

applications. In this way, a model may be built in one statistical tool and easily moved to another for production

deployment or visualization. PMML also serves as a bridge between all the teams involved in the data mining

process inside a company as it can be used to disseminate knowledge and best practices, thereby stimulating cross-

team and inter-organization collaboration. In a world in which data-driven decisions are becoming more and more

pervasive, predictive analytics and standards such as PMML make it possible for organizations to benefit from smart

solutions that will truly revolutionize their business.

Besides offering a rich set of structures for describing all the intricate details of a predictive algorithm, PMML also

provides information about the input and output of a model. This includes names and types of all input and output

data fields, often along with the set of permissible values. In addition, a model expressed in PMML typically includes

information about how to handle invalid, or missing or outlier input values. These elements are essential for the

automatic migration of a model into the database and the necessary mappings into the HiveQL world.

Note

A variety of sample PMML models are included with the ZEMENTIS distribution package. In addition, a

wealth of resources on PMML can be found from the PMML in Action.

http://dmg.org/pmml/pmml-v4-4.html
http://dmg.org
https://www.amazon.com/PMML-Action-2nd-Unleashing-Predictive/dp/1470003244/
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2.2. ZEMENTIS Predictive Analytics (ZEMENTIS)

ZEMENTIS plugin enables execution of standards-based predictive analytics directly within a database or data

warehouse application. It shares the PMML execution core with the ZEMENTIS server offered by Software AG. It

is, however, optimized to be embedded within the database environment or data warehouse application in order

to minimize data movement.

In addition, the plug-in takes on the responsibility of bridging the PMML and HiveQL world (see Figure 2.1). This

means that it presents each loaded PMML model as a HiveQL function. The name, input parameters and outputs of

each function matches the name, input fields, and output fields of the corresponding model as defined in the PMML

file. This way, scoring a data set against one or more models requires nothing more than writing a HiveQL statement

that invokes the HiveQL functions for the corresponding models. Predictions (scores, probabilities, categories, clus-

ters, etc.) can be just as easily written back to the database, become part of a report, or passed on to an application.

Figure 2.1. Overview of ZEMENTIS for Hive

At a high level, the process of using PMML models in Hive starts after the predictive models have been created

and exported in PMML format from a data mining tool. With the PMML files in hand, it only takes two simple steps

to import a predictive model in Hive:
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1. Preparation Step: Validates the PMML files and prepares HiveQL scripts with definitions for the new HiveQL

functions.

2. Registration Step: Registers generated HiveQL functions with Hive

These steps are described in more detail in Chapter 4 and illustrated with actual examples in Chapter 5.

After preparation and registration steps are completed, data on a Hadoop cluster can be processed to generate

predictions by invoking HiveQL functions from Hive queries.

Like the ZEMENTIS server, ZEMENTIS plugin accepts PMML models of all versions (2.0, 2.1, 3.0, 3.1, 3.2, 4.0, 4.1,

4.2 and 4.3) generated by any of the major commercial and open source data mining tools.

ZEMENTIS supports a wide range of predictive analytics techniques, including:

• Decision Trees for classification and regression

• Neural Network Models: Back-Propagation, Radial-Basis Function, and Neural-Gas

• Support Vector Machines for regression, binary and multi-class classification

• Linear and Logistic Regression (binary and multinomial)

• Naïve Bayes Classifiers

• General and Generalized Linear Models

• Cox Regression Models

• Rule Set Models (flat decision trees)

• Clustering Models: Distribution-Based, Center-Based, and 2-Step Clustering

• Scorecards (including reason codes and point allocation for complex attributes)

• Segmented Models

• Model Ensembles (including Random Forest Models)

• Model Composition and Chaining

In addition, ZEMENTIS also implements a wide range of functions for data pre- and post-processing, including:

• Value Mapping

• Discretization
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• Normalization

• Scaling

• Conditional Logic

• Logical and Arithmetic Operators

• Built-in Functions

• Business Decisions and Thresholds

Note

• ZEMENTIS for Hive does not support Association Rules models.

• ZEMENTIS for Hive does not support BlockIndicator elements, which might be used as part of Lag

expressions.
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Chapter 3. Installation

This chapter describes how to install ZEMENTIS for Hive.

3.1. Requirements

The requirements to install ZEMENTIS for Hive on your system are:

Table 3.1. The ZEMENTIS Installation Requirements

Requirement Version Notes

Hive 1.2.1 or

above

The rest of this documentation assumes that Hive is already installed. Please

see Hive documentation for details.

Java Development Kit 8 or

above

Please make sure you use the Java Development Kit (JDK) and not the Java

Runtime Environment (JRE).

ZEMENTIS for Hive Li-

cense Key

10.11.0.1Installing new PMML models with ZEMENTIS for Hive requires a valid

Product License Key which can be obtained by contacting Software AG.

Place the Product License Key file (named zementis.license) in the directo-

ry from which prepare-pmml.sh/prepare-pmml.bat script is executed. More

information about prepare-pmml.sh/prepare-pmml.bat can be found in Sec-

tion 4.3.1. Please note that execution of existing models will not be interrupt-

ed when the license expires.

3.2. Packaging

ZEMENTIS for Hive is distributed as a compressed archive file : uppi-hive-10.11.0.1.zip. The distribution

package consists of several files, including this documentation and several sample files. When uncompressed, the

package reveals a number of sub-directories as described in Table 3.2.

Table 3.2. Directory Structure of the ZEMENTIS for Hive package

Directory Contents

bin Contains the prepare-pmml.sh and prepare-pmml.bat scripts needed for generating the

HiveQL functions from PMML files (see Section 4.3.1).

docs Documentation in HTML and PDF format.

http://hive.apache.org/
http://www.oracle.com/technetwork/java/index.html
http://www.softwareag.com/zementis
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Directory Contents

lib The required library (JAR) file for installing ZEMENTIS for Hive (see Section 3.3).

pmml Sample PMML files along with corresponding data files in CSV format and text files with step-

by-step PMML model deployment instructions. These samples include the examples described

in Chapter 5.

3.3. Installation

Once Hive is installed and configured, installing ZEMENTIS for Hive is straightforward.

First, library JAR files (in the lib sub-directory of the ZEMENTIS package) should be copied to the same file system

where Hive is installed.

Then, Hive should be made aware of the location of these files. More specifically:

1. Assuming HIVE_DIR represents the directory where Hive is installed and UPPI_DIR represents the direc-

tory where the ZEMENTIS library files are installed, update the configuration file HIVE_DIR/conf/hive-

env.sh  to set the variable HIVE_AUX_JARS_PATH as follows:

export HIVE_AUX_JARS_PATH=/UPPI_DIR/lib/uppi-hive-10.11.0.1.jar

2. Note that if other JAR files are also required for the Hive installation, the HIVE_AUX_JARS_PATH environment

variable can be updated as shown in the example below:

export HIVE_AUX_JARS_PATH=/otherpath/other.jar,/UPPI_DIR/lib/uppi-hive-10.11.0.1.jar
                

3. Optionally, in the same configuration file (HIVE_DIR/conf/hive-env.sh) you may want to set the variable

HADOOP_HEAPSIZE to modify the maximum memory allocated for Hive tasks. For example, to allow allocating

up to 1GB of memory, use the following setting:

export HADOOP_HEAPSIZE=1024

Note that most PMML models work fine with the default maximum memory setting. However, additional

memory may be required to accommodate some very large PMML files (e.g. large random forest models).

Once ZEMENTIS for Hive is installed, you can start creating HiveQL functions from PMML models. This process

is described in the next chapter.
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Chapter 4. From PMML to HiveQL

This chapter describes in detail how PMML models are made available to be used directly in Hive. As explained

earlier, ZEMENTIS for Hive converts predictive models into HiveQL functions by mapping the model to a user-de-

fined function (UDF). In the following sections we present the actual steps to embed the PMML models into Hive.

4.1. Model as a HiveQL Function

With ZEMENTIS for Hive, a predictive model is converted into an user-defined function (UDF) that can be used

like any other built-in function. This way a model can be easily applied to rows of a Hive table or to the result of

another query.

Every PMML model has a name, a number of input fields, and one or more output fields. Each input or output

field has a name and a data type (string,integer,float, etc.). When translated into a HiveQL function, this

information is used to derive the name, input, and return parameters of the function. More specifically, the name of

the function comes from the name of the model, possibly altered to comply with the naming conventions or limitations

of Hive. The input fields of the model, i.e., the active and supplementary mining fields, become the input parameters

of the function. The input parameters are ordered based on the order of the fields in the mining schema of the PMML

model. The name and type of each input parameter is derived from the name and type of the corresponding mining

field. Table 4.1 presents which Hive data type corresponds to each of the PMML data types.

Similarly, the output fields of the model become the return values of the UDF. While many PMML models have only

one output field (typically the predicted value), it is also very common that a model has more than one output field.

For example, this is often the case with classification models where the probabilities of different classes are output

along with the predicted class. To accommodate for the more generic cases, the UDF's generated by ZEMENTIS

return STRUCT complex types. A STRUCT type is composed of one or more elements, each with a name and a type.

For details on these complex types, please visit the Complex Types section of the Hive tutorial.

Consider, for example, a classification model trained with the Iris data set. The Iris dataset 1 is perhaps the best

known data set to be found in the pattern recognition literature. It contains three classes representing different

types of the Iris plant. Each class is represented by 50 records containing the sepal and petal lengths and widths

of different plants. Such a model may produce four output values, the class or type of Iris plant (setosa, virginica,

or versicolor) along with the computed probabilities for the three different flower types. With ZEMENTIS, the return

type for the UDF created for this model would look like the following:

1For more information on the Iris data set, please refer to: Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository. Irvine, CA:

University of California, School of Information and Computer Science.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-ComplexTypes
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STRUCT {class STRING; prob_setosa DOUBLE; prob_virginica DOUBLE; prob_versicolor DOUBLE}
        

The use of HiveQL functions as well as the complex types returned by ZEMENTIS will become evident with the

examples that follow in Chapter 5.

4.2. Data Types

The table below presents how PMML data types are mapped to Hive data types. For more information on the PMML

data types, please visit the PMML Data Dictionary page.

Table 4.1. PMML and HiveQL Data Types

PMML Types Hive Types

string STRING

integer INT

float FLOAT

double DOUBLE

double DECIMAL a

boolean BOOLEAN

date TIMESTAMP

time TIMESTAMP

dateTime TIMESTAMP

binary b BINARY

aDECIMAL type data will be processed as DOUBLE type data base on dataType definition of PMML.

bIt is required to set BINARY_BUFFERED as true in <Extension> element. Please see Section 7.4 for details.

4.3. How To: Two Easy Steps

In this section, we describe the two steps that need to be taken to use PMML models in Hive. The first step is to

prepare the HiveQL functions from PMML files. The second step is to install the HiveQL functions in Hive. Both

steps are described in the following sub-sections where we assume that:

• Hive and ZEMENTIS for Hive are installed and configured, as described in Section 3.3.

http://dmg.org/pmml/v4-4/DataDictionary.html
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• One or more PMML files have been created and are available under a directory on your system. If preferred,

different PMML files can be nested within sub-directories as long as they all are under a common parent

directory.

4.3.1. Prepare HiveQL Functions (Preparation Step)

The first part of the process is a preparation step for creating the HiveQL functions out of the available predictive

models. The ZEMENTIS package contains the script prepare-pmml.sh (prepare-pmml.bat is also available

for Windows environment) which performs all the necessary actions for this step. In short, this script will first validate

the PMML models and then generate the files required for installing and using the models in Hive.

Note

The preparation step does not need to be performed in a system where Hive is installed and configured.

However, it does require one of the library files contained in the Hive distribution as described below.

To configure a system to run the script prepare-pmml.sh, you need to:

• Copy and unpack the ZEMENTIS package, uppi-hive-10.11.0.1.zip, to your working directory.

• Set the environment variable JAVA_HOME to point to the installation directory of the Java Development Kit

(JDK).

• From a Hive distribution package or installation, obtain a copy of the file hive-exec-X.Y.Z.jar, where

X.Y.Z reflects the version of Hive you are using. For example, if you are using Hive version 1.2;, you need

to obtain the a copy of the file hive-exec-1.2.jar. This file is usually located in the lib directory of the

Hive distribution.

• Set the environment variable HIVE_EXEC_JAR to point to the library file hive-exec-X.Y.Z.jar.

Once your system is configured, you may run the preparation script by using the following command:

UPPI_DIR/bin/prepare-pmml.sh PMML_DIR

where UPPI_DIR refers to the directory where ZEMENTIS has been installed and PMML_DIR refers to the (top) di-

rectory where the PMML files are located. Additional Command Line Interface (CLI) options for prepare-pmml.sh

script are listed in Table 4.2. Similar options are also available for the prepare-pmml.bat script.
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Table 4.2. prepare-pmml.sh script options

CLI Option Flag Value Type Default Value Required Description

-pmml path "" Yes Specify path to PMML file(s) top directory. The

-pmml flag can be omitted only if the path is

placed as first argument.

-extLib path "" No Specify path to custom functions JAR file(s) di-

rectory. See Chapter 7 regarding custom PMML

functions.

-out path uppi-output No Specify path to generated output files directory.

-abortOnError true or false true No We recommended that the treatment of invalid

values should be handled in the PMML as de-

scribed in Chapter 6. If the invalid value treate-

ment for a MiningField is set to returnIn-

valid, the Hive query will abort when an in-

valid value is encountered. Setting the -abor-

tOnError flag to true will have the same effect.

Setting it to false will enable the query pro-

cessing to continue by returning null values for

the invalid ones. A value of false for this option

should only be used for debugging/testing pur-

poses. It is important to note that the -abortOn-

Error flag applies to all MiningFields.

-awsPipeline true or false false No Generate AWS Data Pipeline script if true. Find

out how to use ZEMENTIS for Hive on AWS

EMR Cluster in Chapter 8.

-runWithPmml true or false false No If true, include PMML file in generated UDF

JAR instead of binary representation of the

PMML model. This option should be used only

for debugging or diagnostic purpose.

-applyCleanser true or false true No If true, comprehensive syntactic and semantic

checks and corrections are applied on the pro-

vided PMML files. If false the PMML files are

processed as is.
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While running, the script will generate a series of messages marked as INFO, WARNING, or SEVERE. Messages

marked as INFO provide information on the files processed and the progress of the script. Messages of type WARN-

ING indicate potential issues with a PMML file that may need to be reviewed. The detailed warning messages are

provided in a copy of the original PMML file, annotated with comments at the appropriate locations. Note that the

annotated version of the file may look different than the original, as the file may have been upgraded to the latest

version of PMML. The corresponding model is fully functional and, more often than not, these warnings are not

relevant to the scoring process. However, a review of these messages is highly recommended since, in some cases,

they may have an impact on scoring. Finally, messages marked as SEVERE indicate that a valid model cannot be

created from the provided file. As in the case of warnings, the detailed messages are provided in an appropriately

annotated copy of the original file. In the case of SEVERE messages, the problems identified need to be corrected

before the model can be used.

Once the preparation script has completed successfully, you will find a directory named uppi-output created

under your current working directory. The contents of that directory are described in Table 4.3.

Table 4.3. Output generated from the prepare-pmml.sh script

File or Directory Description

MODEL_NAME.jarA JAR file for each valid model contained in the PMML file(s) as well as generated Java code

that serves as wrapper to these PMML file(s). The MODEL_NAME is derived from the name of

the PMML model.

MODEL_NAME.sqlA HiveQL script for each valid model contained in the PMML file(s). Typically, this file will contain

a CREATE statement for registering each model as an UDF and a corresponding SELECT state-

ment which acts as a template for scoring data against that model via UDF. The MODEL_NAME

is derived from the name of the PMML model.

pmml A directory containing copies of the processed PMML files for which severe or warning mes-

sages were generated. The files get annotated with comments that contain the relevant mes-

sages. Please note that the annotated PMML files may be different than the original ones since

they are upgraded to the latest PMML version (version 4.4) and known issues are corrected.

java A directory containing the generated Java code. This is the code that gets compiled into the

MODEL_NAME.jar file.

classes A directory containing the compiled Java code, along with the original PMML files. This reflects

the contents of the MODEL_NAME.jar file.

Out of all these files, only the MODEL_NAME.sql and MODEL_NAME.jar files are used in the next (and last) step.

The rest of the files generated during the execution of the script remain in place for diagnostic purposes only.

http://dmg.org/pmml/pmml-v4-4.html
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4.3.2. Register HiveQL Functions (Registration Step)

To register HiveQL functions for the PMML files, all you need to do is execute MODEL_NAME.sql script using

following Hive HiveQL command:

source uppi-output/MODEL_NAME.sql;

where uppi-output is path to the output directory generated by the execution of the prepare-pmml.sh script,

and MODEL_NAME.sql is one of generated files for a PMML model.

Important

ZEMENTIS can work on both local file system and HDFS.

To work on HDFS:

• Make sure that all the files are in the HDFS.

• Make sure that the location of the MODEL_NAME.jar file mentioned in the MODEL_NAME.sql file is

pointing to the appropriate location in HDFS.

• Example: hdfs://namenode/path/to/the/jar;
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Chapter 5. Examples

This chapter contains examples of using ZEMENTIS for Hive.

5.1. Sample Files

The ZEMENTIS for Hive package contains a number of sample PMML files, each with a CSV (Comma Separate

Values) file containing test data, and a "README" text file showing all steps necessary to successfully execute

the PMML model in Hive. The test data contains both input and output values. The output values are provided to

allow for the validation of the results generated by ZEMENTIS for Hive. To run each example, the test data needs to

be loaded into Hive tables. For the examples presented below, we describe the process of creating the necessary

test tables and loading the data into them. For the sample PMML files, these instructions are also available in the

"README" files corresponding to each sample model.

5.2. Model with Single Output

This section provides an example of a model with a single output field. The example uses a Neural Network model

created for the El Nino data set1. This model is provided in the file ElNino_NN.pmml among the sample files in the

pmml directory of the ZEMENTIS package. Along with it, there is a test data file ElNino_NN.csv.

The following listing contains a fragment of the PMML model that contains the model name (attribute modelName

in the NeuralNetwork element) as well as the input and output fields (MiningField elements).

<DataDictionary numberOfFields="7">
    <DataField dataType="double" name="airtemp" optype="continuous"/>
    <DataField dataType="double" name="latitude" optype="continuous"/>
    <DataField dataType="double" name="longitude" optype="continuous"/>
    <DataField dataType="double" name="zon_winds" optype="continuous"/>
    <DataField dataType="double" name="mer_winds" optype="continuous"/>
    <DataField dataType="double" name="humidity" optype="continuous"/>
    <DataField dataType="double" name="s_s_temp" optype="continuous"/>
</DataDictionary>
...
<NeuralNetwork activationFunction="tanh" functionName="regression" modelName="ElNino_NN">
    <MiningSchema>
        <MiningField name="latitude"/>
        <MiningField name="longitude"/>
        <MiningField name="zon_winds"/>
        <MiningField name="mer_winds"/>
        <MiningField name="humidity"/>
        <MiningField name="s_s_temp"/>
        <MiningField name="airtemp" usageType="predicted"/>
    </MiningSchema>

1For more information on the El Nino data set, please refer to: Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository. Irvine,

CA: University of California, School of Information and Computer Science.

http://dmg.org/pmml/v4-4/NeuralNetwork.html
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    ...

The input of the model consists of location and weather data presented as numeric values (fields latitude, lon-

gitude, zone_winds, mer_winds, humitidy, and s_s_temp). It returns a single numeric value, the predicted

air temperature (predicted field airtemp).

To test this sample file, execute the preparation and registration steps described in Section 4.3.1 and Section 4.3.2.

As multiple sample PMML files are provided under the same directory, you may limit the number of files processed

in the preparation step by specifying the subdirectory containing only the neural network models:

UPPI_DIR/bin/prepare-pmml.sh UPPI_DIR/pmml/NeuralNetwork

Note that the above command will prepare all models in the NeuralNetwork subdirectory, including

ElNino_NN.pmml. The generated ElNino_NN.sql file will contain a statements for creating HiveQL function for

the ElNino_NN model. Execute this script with following HiveQL command:

source uppi-output/ElNino_NN.sql;

After HiveQL function is registered in Hive (see Section 4.3.2), you may review its description. For example, you

can run the following command to review the description of function elnino_nn:

describe function elnino_nn;

This command will output the name of the function along with the names and types of the input and output param-

eters:

elnino_nn(latitude DOUBLE, longitude DOUBLE, zon_winds DOUBLE, mer_winds DOUBLE, humidity DOUBLE,
 s_s_temp DOUBLE) -> STRUCT {airtemp DOUBLE}

Note that the generated function reflects closely the information found in the PMML file. The name of the function

is derived from the name of the model (ElNino_NN). The function has six parameters of type DOUBLE, matching

the name, order and types of the model input fields. The return type of the function is a STRUCT type, with only one

element, airtemp of type DOUBLE, which matches the name and type of the predicted field of the model.

With the function installed in Hive, using the model requires nothing more than invoking it in a query. However,

before we show an example of a query, we need to create a table and load the sample data into it.

The following command creates a table for the data in file ElNino_NN.csv:

CREATE TABLE elnino_nn_data(
    row_id INT,
    latitude DOUBLE,
    longitude DOUBLE,
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    zon_winds DOUBLE,
    mer_winds DOUBLE,
    humidity DOUBLE,
    s_s_temp DOUBLE,
    airtemp DOUBLE
)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

Table column "airtemp" contains expected output for this model, and can be used to verify the result from function.

The following command loads the data into the Hive table:

LOAD DATA LOCAL INPATH 'ElNino_NN.csv' INTO TABLE elnino_nn_data;

Note that the first line of this CSV file is the header line, containing the names of the data columns and no actual

values. If the file is loaded as is, the header line will create a row containing NULL values since names cannot be

stored in the table columns, which are of type DOUBLE. For this reason, we recommend that you delete the header

line of the CSV file before loading it into Hive.

After the data is loaded, we can then execute queries that score the data in the table elnino_nn_data using the

function elnino_nn. The first example below, is the simplest query that invokes the function elnino_nn. Note

that the output for each row is a single element STRUCT per the function's description:

SELECT elnino_nn(latitude,longitude,zon_winds,mer_winds,humidity,s_s_temp)
FROM elnino_nn_data LIMIT 10;

{"airtemp":27.127614295247312}
{"airtemp":27.023705228506447}
{"airtemp":27.183023776611908}
{"airtemp":27.1786879512385}
{"airtemp":27.31386469460455}
{"airtemp":27.4043135759579}
{"airtemp":27.400061796152368}
{"airtemp":27.39820876609351}
{"airtemp":27.517896498091755}
{"airtemp":27.358719891352678}

To return the actual predicted value, i.e. the value of the airtemp element as opposed to the whole complex type,

we can modify the query as follows:

SELECT row_id, elnino_nn(latitude,longitude,zon_winds,mer_winds,humidity,s_s_temp).airtemp
FROM elnino_nn_data
ORDER BY row_id;

     row_id       airtemp
------------- -------------------
        1      27.127614295247312
        2      27.023705228506447
        3      27.183023776611908
        4      27.1786879512385
        5      27.313864694604554
        6      27.4043135759579
        7      27.400061796152368
        8      27.39820876609351
        ...
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As a last example, we can create a query that outputs the values computed by the function in ZEMENTIS along

with the expected predictions obtained from the tool initially used to build the model. This is done to make sure that

the model has been deployed correctly and that the scores computed by ZEMENTIS match the expected scores

generated by the model development environment. Note that the provided CSV file and, consequently, the created

sample table contain a column named airtemp. The contents of that column contain the expected values for each

row as produced by the tool used to build the model. The example below is a simple score-matching query that

allows for comparing the ZEMENTIS computed values to the expected ones.

SELECT row_id, elnino_nn(latitude,longitude,zon_winds,mer_winds,humidity,s_s_temp).airtemp AS predicted,
 airtemp AS expected
FROM elnino_nn_data
ORDER BY row_id;

 row_id        predicted            expected
 -------    ------------------    ---------------
   1        27.127614295247312     27.1276143
   2        27.023705228506447     27.02370523
   3        27.183023776611908     27.18302378
   4        27.1786879512385        27.17868795
   5        27.31386469460455       27.31386469
   6        27.4043135759579        27.40431358
   7        27.400061796152368      27.4000618
   8        27.39820876609351       27.39820877

In the above query, using row_id allows us to correlate input with the output.

Running the prepare-pmml.sh script will generate a SELECT script for the UDF corresponding to the provided

model(s). These SELECT statements are commented and they should be modified to suit your HiveQL needs.

-- Select script for Scoring ElNino_NN.pmml
-- Please change table names and column names in the following query based on your requirements.
-- CREATE TABLE ElNino_NN_Scalar_Out
--     AS SELECT row_identifier, elnino_nn(latitude, longitude, zon_winds, mer_winds, humidity,
 s_s_temp).predictedvalue_airtemp
--         FROM ElNino_NN ORDER BY row_identifier

5.3. Model with Multiple Outputs

Many predictive models are built to produce more than one output. This is often the case for classification models

which output the winning class along with the predicted probabilities for one or more of the classes, or clustering

models which output the winning cluster along with the affinity for that cluster.

An example of such a model is the Decision Tree model built for the Iris data set. This model is included in the

provided samples (look for the file Iris_CT.pmml among the sample files in the pmml directory of the ZEMENTIS

package). It is a classification model that, given the sepal and petal lengths and widths of an Iris plant, predicts the

most likely species the plant belongs to (one of Iris-setosa, Iris-versicolor, or Iris-virginica) along

with the predicted probability for each of the species.

http://dmg.org/pmml/v4-4/TreeModel.html
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The following listing presents the input and output fields of the model, as listed in the PMML file. The input

fields are the MiningField elements from the MiningSchema section with the attribute usageType="active".

These are petal_length, petal_width, sepal_length, and sepal_width. The output fields are list-

ed as OutputField elements. They are class, Probability_setosa, Probability_versicolor, and

Probability_virginica. The first field outputs the predicted (winning) species and the other three the predicted

probabilities for each of the species.

<DataDictionary numberOfFields="5">
    <DataField dataType="double" name="sepal_length" optype="continuous"/>
    <DataField dataType="double" name="sepal_width" optype="continuous"/>
    <DataField dataType="double" name="petal_length" optype="continuous"/>
    <DataField dataType="double" name="petal_width" optype="continuous"/>
    <DataField dataType="string" name="target_class" optype="categorical">
      <Value property="valid" value="Iris-setosa"/>
      <Value property="valid" value="Iris-versicolor"/>
      <Value property="valid" value="Iris-virginica"/>
    </DataField>
  </DataDictionary>
  <TreeModel algorithmName="CART" functionName="classification" modelName="Iris_CT">
    <MiningSchema>
      <MiningField name="petal_length" usageType="active"/>
      <MiningField name="petal_width" usageType="active"/>
      <MiningField name="sepal_length" usageType="active"/>
      <MiningField name="sepal_width" usageType="active"/>
      <MiningField name="target_class" usageType="predicted"/>
    </MiningSchema>
    <Output>
      <OutputField dataType="string" feature="predictedValue" name="class" optype="categorical" />
      <OutputField dataType="double" feature="probability" name="Probability_setosa" optype="continuous"
 value="Iris-setosa"/>
      <OutputField dataType="double" feature="probability" name="Probability_versicolor"
 optype="continuous" value="Iris-versicolor"/>
      <OutputField dataType="double" feature="probability" name="Probability_virginica"
 optype="continuous" value="Iris-virginica"/>
    </Output>
    ...

As in the previous example, to test this sample file, first execute the preparation step described in Section 4.3.1.

This time, in order to reduce the number of files processed limit the preparation step to the sub-directory containing

only decision tree models:

UPPI_DIR/bin/prepare-pmml.sh UPPI_DIR/pmml/TreeModel

After the preparation step, it is time to perform the registration step as described in Section 4.3.1. Note that the

above command will prepare all models in the TreeModel sub-directory, including Iris_CT.pmml. The generated

Iris_CT.sql file will contain HiveQL statement for registering the function for the Iris_CT model:

source uppi-output/ElNino_NN.sql;

Once HiveQL function is registered, you can use the following command to review its description:

describe function iris_ct;
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This command will output the name of the function along with the names and types of the input and output param-

eters:

iris_ct(petal_length DOUBLE, petal_width DOUBLE, sepal_length DOUBLE, sepal_width DOUBLE) -> STRUCT
 {class STRING, probability_setosa DOUBLE, probability_versicolor DOUBLE, probability_virginica DOUBLE}

Note that this output shows the function with the four input parameters of type DOUBLE which correspond to the

four input fields of the model and the complex STRUCT return type containing four elements corresponds to the four

output fields of the model.

Before describing example queries for this function, we need to load the sample data into Hive from the file

Iris_CT.csv. First, we create a table using the command:

CREATE TABLE iris_ct_data(
    row_id INT,
    petal_length DOUBLE,
    petal_width DOUBLE,
    sepal_length DOUBLE,
    sepal_width DOUBLE,
    class STRING,
    probability_setosa DOUBLE,
    probability_versicolor DOUBLE,
    probability_virginica DOUBLE
)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

Table columns "class","Probability_setosa","Probability_versicolor","Probability_virginica" contain expected output

for this model, and can be used to verify the result from function.

We can load the data from the file Iris_CT.csv using the command below. As in the previous example, we

recommend that you remove the header line from the file before loading it into Hive.

LOAD DATA LOCAL INPATH 'Iris_CT.csv' INTO TABLE iris_ct_data;

With the sample data loaded, we can then run queries that apply the model. The simplest query to score the data

in iris_ct_data is:

SELECT iris_ct(petal_length, petal_width, sepal_length, sepal_width) FROM iris_ct_data LIMIT 10;

{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}
{"class":"Iris-setosa","probability_setosa":1.0,"probability_versicolor":0.0,"probability_virginica":0.0}

The result of this query is a single column with complex values, as dictated by the return type of the function. Each

value contains all four output fields of the model. Any one of these fields can be singled out. In this way, we can
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execute a query to return an specific output value as the result. For example, to return only the predicted class

(output field class) without the probabilities of the different Iris species, we can execute the following query:

SELECT row_id, iris_ct(petal_length, petal_width, sepal_length, sepal_width).class
FROM iris_ct_data
ORDER BY row_id;

   row_id        class
----------- ---------------
     1       Iris-setosa
     2       Iris-setosa
     3       Iris-setosa
     4       Iris-setosa
     5       Iris-setosa
     6       Iris-setosa
     7       Iris-setosa
     8       Iris-setosa
     9       Iris-setosa
     10       Iris-setosa

For the result to contain the values of more than one field as separate columns, the query becomes a little more

involved. More specifically, the function must be called in a nested query which will return the complex structure

from the function. From that result, the enclosing query selects a few or all of the elements from the structure and

output them into separate columns. The following is an example of such a nested query:

SELECT s.row_id,r.class,r.probability_setosa,r.probability_versicolor,r.probability_virginica
FROM( SELECT row_id,iris_ct(petal_length,petal_width,sepal_length,sepal_width) AS r FROM iris_ct_data) s
ORDER BY s.row_id;

  s.row_id      r.class     r.probability_setosa r.probability_versicolor r.probability_virginica
----------- --------------- -------------------- ------------------------ -----------------------
     1       Iris-setosa          1.0                     0.0                    0.0
     2       Iris-setosa          1.0                     0.0                    0.0
     3       Iris-setosa          1.0                     0.0                    0.0
     4       Iris-setosa          1.0                     0.0                    0.0
     5       Iris-setosa          1.0                     0.0                    0.0
     6       Iris-setosa          1.0                     0.0                    0.0
     7       Iris-setosa          1.0                     0.0                    0.0
     8       Iris-setosa          1.0                     0.0                    0.0
     ...

In the above query, using row_id allows us to correlate input with the output.

Running the prepare-pmml.sh script will generate a SELECT script for the UDF corresponding to the provided

model(s). These SELECT statements are commented and they should be modified to suit your HiveQL needs.

-- Select script for Scoring Iris_CT.pmml
-- Please change table names and column names in the following query based on your requirements.
-- CREATE TABLE Iris_CT_Table_Out AS 
--     SELECT s.row_identifier, r.class, r.probability_setosa, r.probability_versicolor,
 r.probability_virginica
--         FROM (SELECT row_identifier, iris_ct(petal_length, petal_width, sepal_length, sepal_width)
--         AS r FROM Iris_CT) s ORDER BY s.row_identifier;
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Chapter 6. Handling of Invalid Values

PMML offers a rich set of options for defining the data types of the different input fields as well as the set or range

of valid values for each field in the Data Dictionary. Along with those, it allows data scientist to specify what the

model should do in the presence of invalid values as specified in the Mining Schema section of the PMML file.

The three options for the treatment of invalid values are returnInvalid, asIs, and asMissing. Among these,

returnInvalid is the most frequently used, since it is the default option in PMML. The option returnInvalid

instructs the model execution engine not to attempt to apply the model in the presence of an invalid value and,

instead, abort with an error. The other two options allow the model to execute by either allowing the invalid value

to be processed as is or by treating it as a missing value.

The following listing contains a fragment of the Iris_CT.pmml model. The original code was edited to showcase

the PMML MiningSchema element with and without the explicit use of the attribute invalidValueTreatment.

...
<MiningSchema>
  <MiningField name="petal_length" usageType="active" invalidValueTreatment="returnInvalid"/>
  <MiningField name="petal_width" usageType="active" invalidValueTreatment="returnInvalid"/>
  <MiningField name="sepal_length" usageType="active"/>
  <MiningField name="sepal_width" usageType="active"/>
  <MiningField name="target_class" usageType="predicted"/>
</MiningSchema>
...

Note that although the option for treatment of invalid values is not set for mining fields sepal_length and

sepal_width, the default value for treating invalid values in PMML is returnInvalid. In this way, the invalid

value treatment for these two fields is the same as the one used for fields petal_length and petal_width which

have PMML attribute invalidValueTreatment explictly set to returnInvalid.

When used in a database and through queries, the option returnInvalid may have a more significant (not-

intended) impact. Consider the case where a query is used to apply a model on millions of data records. Also assume

that within all these records, there happens to be just a single record with an invalid value for an input field marked

with or defaulted to returnInvalid invalid value treatment. In this case, the PMML execution engine will generate

an error which in turn will cause the whole query to abort with an error. In other words, just a single invalid value

among all the input rows may prevent the query from completing.

In some cases, this may be the desired behavior in order to be able to detect invalid values. However, it is often

the case that an alternative approach where invalid values do not cause the queries to abort is more desirable. This

requires the PMML model to be modified in order to change the invalid value treatment of one or more mining fields

from returnInvalid (or nothing which is equivalent) to, typically, asMissing. With these changes, all invalid

input values will be treated as missing values (NULL) and the model will be applied to all the input rows, allowing

http://dmg.org/pmml/v4-4/DataDictionary.html
http://dmg.org/pmml/v4-4/MiningSchema.html
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the query to complete. Please note that, while not always the case, NULL input values result in NULL output values,

indicating that the particular record cannot be processed, without causing the whole query to fail.

The following listing contains the same PMML fragment as shown above, but modified so that the invalid value

treatment for all mining fields is asMissing.

...
<MiningSchema>
  <MiningField name="petal_length" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="petal_width" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="sepal_length" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="sepal_width" usageType="active" invalidValueTreatment="asMissing"/>
  <MiningField name="target_class" usageType="predicted"/>
</MiningSchema>
...

Note

It is highly recommended that any such changes to a model are reviewed and approved by the person or

team that created the model to ensure that the model is still valid for the assumptions under which it was built.
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Chapter 7. Custom PMML Functions
Predictive models may require external resources such as custom functions. ZEMENTIS provides a facility to create

and use custom PMML functions. This capability enables, for example, the implementation of intricate calculations

that cannot be easily described in PMML, functions that access external systems to retrieve necessary data, or even

specialized algorithms not supported by PMML. One class of functions that can be easily implemented using custom

functions are aggregations over a period of time or window of transactions. Aggregations are used to obtain, for

example, the count, average, maximum and minimum for a set of records. One example is to use custom functions

to obtain the average transaction amount for a certain account for the last 30 days.

ZEMENTIS currently supports custom functions written in Java. Once created and made available to ZEMENTIS,

custom functions are used the same way as the built-in ones. The steps to achieve this are explained in the following

sections.

7.1. Create Custom PMML Functions

Custom functions are implemented as public static methods of Java classes. For a method to be recognized as a

custom PMML function, the containing class needs to be annotated with the ZEMENTIS specific @PMMLFunctions

annotation containing parameter namespace. This parameter must specify fully qualified Java class name. Within

each annotated class, only methods that are declared as public static can be used as PMMLfunctions. In

addition, the types of the method parameters as well as its return type must be compatible with the PMML data

types. Table 7.1 provides the Java primitive types and classes that correspond to the different PMML data types.

The types of the parameters must be either among those listed in the table or among one of their super-classes or

super-interfaces (java.lang.Object, java.lang.Comparable, or java.lang.Number). Methods can also

declare variable number of parameters (varargs). Finally, methods declared as void cannot be used as PMML

functions.

Caution

Make sure these methods are thread-safe as ZEMENTIS may need to execute these methods concurrently

in different threads.

Table 7.1. PMML and Java types in ZEMENTIS

PMML Data Type Java Primitive Type Java Class

boolean boolean java.lang.Boolean

date org.joda.time.LocalDate

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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PMML Data Type Java Primitive Type Java Class

dateTime org.joda.time.DateTime

double double java.lang.Double

float float java.lang.Float

integer long java.lang.Long

string java.lang.String

time org.joda.time.LocalTime

binary (buffered) byte[] byte[]

An example of properly declared custom function is shown in Figure 7.1.

Figure 7.1. Custom PMML Function Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;

@PMMLFunctions(namespace = "com.company.udf.CustomFunctions")
class CustomFunctions {

    public static Long factorial(Long n) {
        if (n == null) {
            return null;
        } else if (n < 0) {
            throw new IllegalArgumentException();
        } else if (n == 0) {
            return 1;
        } else {
            return n * factorial(n-1);
        }
    }
}

In this example, Java class RecursiveFunctions has been annotated with @PMMLFunctions. This annotation

informs ZEMENTIS that the class contains methods which may be used as PMML functions. The value of parameter

namespace "com.company.udf.CustomFunctions" is the fully qualified class name for CustomFunctions

class with com.company.udf package declaration. The class contains public static method factorial with one

input parameter of type Long and return value of the same type. Both types correspond to PMML integer type

and declared method is thread safe.

7.2. Use Custom PMML Functions

To make custom functions available to ZEMENTIS, compile the corresponding classes into a JAR file and place

it in Hive accessible directory. To compile a class using the @PMMLFunctions annotation, include the up-

pi-hive-10.11.0.1.jar file in Java classpath. This file is included with the ZEMENTIS distribution package.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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Custom functions can be used exactly like built-in PMML functions within Apply transformations. Within PMML, the

namespace is used as a prefix for the name of the custom function and Java method name as postfix. The PMML

fragment in Figure 7.2 contains a simple example that uses the function defined in Figure 7.1.

Figure 7.2. Example Using a Custom Function in PMML

<DerivedField name="field1" optype="continuous" dataType="integer"/>
<DerivedField name="field2" optype="continuous" dataType="integer">
    <Apply function="com.company.udf.CustomFunctions:factorial">
        <FieldRef field="field1"/>
    </Apply>
</DerivedField>

In this example, field2 of type integer is derived by applying custom function

com.company.udf.CustomFunctions:factorial to derived field field1 also of type integer. The func-

tion name is divided by single colon character : where name prefix corresponds to the namespace parameter of

annotation @PMMLFunctions, and name postfix corresponds to Java method name factorial.

To deploy a PMML model with custom functions, follows steps described in Section 4.3 with following additional

steps. To prepare HiveQL functions, run prepare-pmml.sh script with additional command line flag -extLib and

path to custom functions JAR file(s):

UPPI_DIR/bin/prepare-pmml.sh PMML_DIR -extLib CUSTOM_FUNCTIONS_DIR

where UPPI_DIR refers to the directory where ZEMENTIS has been installed, PMML_DIR refers to the (top) direc-

tory where the PMML files are located, and CUSTOM_FUNCTIONS_DIR refers to the (top) directory where custom

functions JAR files are located. Other prepare-pmml.sh script options are listed in Table 4.2.

Then, register the HiveQL function with Hive by executing MODEL_NAME.sql script as described in Section 4.3.2.

source uppi-output/MODEL_NAME.sql;

Finally, add the path for each custom function JAR file to the HIVE_AUX_JARS_PATH environment variable:

export HIVE_AUX_JARS_PATH=$HIVE_AUX_JARS_PATH,CUSTOM_FUNCTIONS_DIR/custom-functions.jar

7.3. Non-Deterministic Functions

When processing PMML models, ZEMENTIS performs certain performance optimizations which assume that func-

tions are deterministic, i.e. when presented with the same input values they always return the same result. However,

this may not be the case for all functions. For example, the result of a function may depend on the current time

and date. Another example might be a call to an external source that retrieves information that is being modified

by other systems.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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With ZEMENTIS, a custom function may be declared as non-deterministic by annotating the corresponding imple-

mentation Java method with the @NonDeterministicFunction annotation. Note that this annotation marks a

method, and not the containing class. This means a class implementing multiple functions may contain a combina-

tion of deterministic and non-deterministic functions.

The following is an example of a non-deterministic function which provides the current time value for a specific a

time zone.

Figure 7.3. Custom PMML Function Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;
import com.zementis.stereotype.NonDeterministicFunction;
import org.joda.time.DateTime;
import org.joda.time.DateTimeZone;

@PMMLFunctions(namespace = "com.company.udf.CustomFunctions")
class CustomFunctions {

    @NonDeterministicFunction
    public static DateTime dateTimeAtZome(String timeZone) {
        if (timeZone == null) {
            return null;
        }
        return new DateTime(DateTimeZone.forID(timeZone));
     }
}

7.4. Binary Sources

Some predictive models use binary data as input for scoring or classifying results. ZEMENTIS supports applying

models to binary data by ultilizing an external custom function. Given a proper binary input definition and a custom

function deployed in ZEMENTIS, the input binary data can be seamlessly integrated into the scoring/classifying

process. Binary data can be retrieved as a byte[]. The types of data are listed in Table 7.1. Set BINARY_BUFFERED

as true in <Extension> element like the PMML fragment in Figure 7.4 to guarantee the binary data will not be

null after being consumed.

Figure 7.4. Binary (Buffered) DataType Example

<DataDictionary numberOfFields="1">
  <DataField dataType="binary" name="field1" optype="categorical">
    <Extension extender="ADAPA" name="BINARY_FORMAT" value="image/jpeg" />
    <Extension extender="ADAPA" name="BINARY_BUFFERED" value="true" />
  </DataField>
</DataDictionary>

Here are the steps to create a corresponding custom function:

http://www.oracle.com/technetwork/java/index.html
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• Implement a custom function as a static method of a Java class.

• Annotate it with a ZEMENTIS specific @PMMLFunctions annotation.

• Specify the type of the method parameter as byte[].

The custom function can be compatible with the PMML data type of field1 defined in PMML fragment Figure 7.4.

An example of a custom function is shown in Figure 7.5.

Figure 7.5. Custom Function of Buffered Binary Data Example

package com.company.udf;

import com.zementis.stereotype.PMMLFunctions;

@PMMLFunctions(namespace = "com.company.udf.CustomFunctions")
class CustomFunctions {

    public static String convert(byte[] byteArray) {
        String convertedString = ... ;
        return convertedString;
    }
}

Once the custom function in Figure 7.5 is compiled and deployed ,

com.company.udf.CustomFunctions:convert can be used exactly like a built-in function within Apply trans-

formation expression. The PMML fragment in Figure 7.6 contains a simple example that uses the function defined

in Figure 7.5.

Figure 7.6. Example Using Custom Function of Buffered Binary Data in PMML

<DerivedField name="field2" optype="categorical" dataType="string">
  <Apply function="com.company.udf.CustomFunctions:convert">
    <FieldRef field="field1"/>
  </Apply>
</DerivedField>

http://www.oracle.com/technetwork/java/index.html
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Chapter 8. Using ZEMENTIS for Hive in

AWS EMR Cluster

This chapter describes how to use AWS Data Pipeline to create and orchestrate complex, fault tolerant, and highly

available data work-flows by using ZEMENTIS for Hive on AWS EMR Cluster. This enables the user to periodically

access data where it is stored, process it at scale by leveraging ZEMENTIS for Hive and efficiently transfer the

results to AWS supported data sources.

Creating AWS Data Pipeline for a PMML model is a two-step process. First, a Data Pipeline definition file (repre-

sented in JSON format) is created for one or more PMML files using the prepare-pmml.sh script. This file needs

to be modified to meet your data and computation requirements. As a second step, this modified Data Pipeline

definition is then imported into AWS Data Pipeline service. An overview of these steps is illustrated in Figure 8.1

and described in detail in the following sections.

Figure 8.1. Overview of ZEMENTIS for Hive in AWS EMR Cluster
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8.1. Prepare AWS Data Pipeline Definition

Using the awsPipeline parameter of the prepare-pmml.sh script, the ZEMENTIS for Hive package can gener-

ate AWS Data Pipeline definition file in JSON format for the corresponding PMML files. The AWS Data Pipeline def-

inition enables the user to create an AWS Data Pipeline service that automates the movement of data and launches

AWS EMR Cluster for scoring data against a PMML model. In this section, we describe the process to generate and

customize the AWS Data Pipeline definition file with the following steps:

1. Execute the preparation script:

Running the prepare-pmml.sh script with the additional awsPipeline parameter generates a JSON file

containing the AWS Data Pipeline definition for each provided PMML model.

UPPI_DIR/bin/prepare-pmml.sh PMML_DIR -awsPipeline true

Once the preparation script is completed successfully, you will find a directory named uppi-output created

under your current directory. The contents of that directory are described in Table 8.1.

Table 8.1.  Output generated from the prepare-pmml.sh script

File or Directory Description

MODEL_NAME.jar A JAR file for each valid model contained in the PMML file(s) as well as

generated Java code that serves as wrapper to these PMML file(s).

MODEL_NAME.sql A HiveQL script for each valid model contained in the PMML file(s).

Typically, this file will contain a CREATE statement for registering each

model as an UDF and a corresponding SELECT statement which acts

as a template for scoring data against that model via UDF.

MODEL_NAME.JSON A JSON file containing the AWS Data Pipeline definition for each valid

model contained in the PMML file(s).

pmml A directory containing copies of the processed PMML files for which

severe or warning messages were generated. The files get annotated

with comments that contain the relevant messages. Please note that

the annotated PMML files may be different than the original ones since

they are upgraded to the latest PMML version (version 4.4) and known

issues are corrected.

java A directory containing the generated Java code. This is the code that

gets compiled into the MODEL_NAME.jar file.

http://dmg.org/pmml/pmml-v4-4.html
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File or Directory Description

classes A directory containing the compiled Java code, along with the original

PMML files. This reflects the contents of the MODEL_NAME.jar file.

2. Create the following folders in the S3 bucket.

• Logs Folder

• HiveQL Scripts Folder

• UPPI Libs Folder

• Input Data Folder

• Output Data Folder

• Shell Script folder

3. Customize the generated AWS Data Pipeline definition file, MODEL_NAME.JSON:

All the following entries in the generated MODEL_NAME.JSON need to be replaced with your corresponding

paths in the S3 bucket.

• s3://<<Logs Folder Location>> - Logs folder name on S3

Example: s3://Bucket-Name/logs-folder-name

• s3://<<HiveQL Scripts Folder Location>> - HiveQL Scripts folder on S3

Example: s3://Bucket-Name/HiveQL-scripts-folder-name

• s3://<<UPPI Libs Folder Location>> - UPPI Libs folder on S3

Example: s3://Bucket-Name/UPPI-libs-folder-name

• s3://<<Input Data Folder Location>> - Input Data folder on S3

Example: s3://Bucket-Name/input-data-folder-name

• s3://<<Output Data Folder Location>> - Output Data folder on S3

Example: s3://Bucket-Name/output-data-folder-name

• s3://<<Shell Scripts Folder Location>> - Shell Scripts Folder on S3

Example: s3://Bucket-Name/shell-scripts-folder-name
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The following entry needs to be replaced with your key pair.

• "keyPair": "<<Your Key Pair Name>>"

Note

The Key pair name can be found in the Key Pairs which is located in the EC2 Management Console

under Network and Security.

The generated pipeline definition has a schedule defined with start and end times in UTC time format. The

schedule is used for populating data onto the staging area for your AWS EMR Cluster. By default, preparation

step populates start and end times with one hour gap. The user has an option to change those based on

their scheduling needs.

• "startDateTime": "<<Start Time>>"

• "endDateTime": "<<End Time>>"

4. Customize the generated HiveQL statement in MODEL_NAME.sql:

• Before creating a UDF function in Hive, users have to add the corresponding MODEL_NAME.jar file in

Hive. Please refer to the sample script in the beginning of MODEL_NAME.sql and modify the path s3://

<<HiveQL Scripts Folder Location>> to the directory of your MODEL_NAME.jar file.

• Users can create a new table using CREATE TABLE HiveQL statement to store the output of the data pro-

cessing. If you prefer to have a CSV output in s3://<<Output Data Folder Location>>, the HiveQL state-

ment starting with INSERT OVERWRITE TABLE ${output1} needs to be uncommented in the generat-

ed MODEL_NAME.sql file. You will also have to review the data format specified in the MODEL_NAME.sql

and MODEL_NAME.JSON files. The field names of TABLE ${output1} should match the field names

of Output_data_format element in MODEL_NAME.JSON file. For more information, please refer to AWS

Data Pipeline Data Format.

5. Add ZEMENTIS for Hive libraries (located in the lib directory of the uppi-hive-10.11.0.1.zip distri-

bution) to s3://<<UPPI Libs Folder Location>>

6. Add MODEL_NAME.sql and MODEL_NAME.jar files to s3://<<HiveQL Scripts Folder Location>>

7. Compose a shell script for adding the libraries path in Hive:

mkdir /home/hadoop/uppi_lib
touch /home/hadoop/hive/conf/hive-env.sh
echo "export HIVE_AUX_JARS_PATH=/home/hadoop/uppi_lib" >> /home/hadoop/hive/conf/hive-env.sh

http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-dataformats.html
http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-dataformats.html
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and put the shell file in s3://<<Shell Scripts Folder Location>>

8.2. Create and activate AWS Data Pipeline service

After the steps listed above are done, create a AWS Data Pipeline by importing the modified definition file

MODEL_NAME.JSON in the source section. The detailed steps on creating a AWS Data Pipeline service with a

MODEL_NAME.JSON file can be found in Creating a Pipeline by Using the AWS Data Pipeline CLI. After a AWS Data

Pipeline service is created, the user can activate the AWS Data Pipeline service to launch AWS EMR Cluster for

processing data against PMML models.

http://docs.aws.amazon.com/codepipeline/latest/userguide/how-to-create-pipelines.html#how-to-create-pipeline-cli

