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Chapter 1. Introduction

As advanced analytics becomes pervasive across the enterprise to derive better business decisions, the need for
efficient execution of predictive models is paramount. An ever growing array of data mining tools and, all too often,
custom specialized software is used to mine and derive statistical models from a wealth of historical data. The ulti-
mate goal is to turn these models into business value by incorporating them into day-to-day business operations.
This necessitates the ability to integrate them into the IT infrastructure where outcomes can easily flow into the fin-
ger-tips of the decision makers. At the same time, the accelerating growth rate of data collected implies that only the

most scalable database architectures will be able to meet storage, and more importantly, processing requirements.

In the era of big data, more and more organizations are turning into the scalable architecture of Hadoop and Hive
to meet this growing challenge. To bring the power of predictive models into this architecture, Software AG has
developed the ZEMENTIS Predictive Analytics (ZEMENTIS) for Hive. ZEMENTIS offers Hive users the best combi-
nation of open standards and scalability for the application of predictive analytics. With the Predictive Model Markup
Language (PMML) as the bridge between the model development environment and the IT data warehousing infras-
tructure, ZEMENTIS for Hive offers standards-based deployment of predictive models and execution on a highly
scalable platform. This solution brings the power of ZEMENTIS Predictive Analytics server, the flagship product of
Software AG, to the Hadoop and Hive infrastructure to deliver superior performance for mission-critical business
intelligence, analytics and data warehousing solutions. As a result, a wide range of predictive models, possibly
developed with different tools in different environments, can be effortlessly and seamlessly embedded directly in
the warehouse. Practically, PMML becomes a HiveQL function offering execution performance that can meet the

volume and performance requirements of the most demanding environments.

This document serves as a guide for installing and using ZEMENTIS for Hive. It first gives a brief overview of the plug-
in, describes each of its components, and explains how these are combined. It then presents the simple installation
process. Finally, it illustrates the use of ZEMENTIS with two PMML examples, a neural network and a decision tree.

These examples show how to deploy and execute predictive models in Hive.

Note

With respect to the EU General Data Protection Regulation (GDPR), our product does not collect or store any
personally identifiable information. However, as the input data might contain sensitive personal information,
please anonymize any such data to ensure that the processing of personal data is in accordance with the
GDPR.
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Chapter 2. Overview

2.1. Predictive Model Markup Language (PMML)

As the de-facto standard for data mining models, PMML provides tremendous benefits for business, IT, and the data
mining industry in general. Developed by the Data Mining Group (DMG), an independent, vendor-led consortium,
PMML increases business agility by eliminating the need for proprietary solutions or custom code development.
With PMML, a model can transit as is from the data scientist's desktop to the deployment platform where it will

be executed.

Today, PMML is supported by all the leading data mining tools, commercial and open source. As an open standard,
it enables project stakeholders to standardize on one common representation for data mining models. It practically
eliminates the barriers and gaps between development and production deployment of predictive analytics. In effect,

it minimizes the complexity, cost, and time to turn predictive models into operational IT and business assets.

As the lingua franca for predictive analytics, data mining models can be easily exchanged between PMML-compliant
applications. In this way, a model may be built in one statistical tool and easily moved to another for production
deployment or visualization. PMML also serves as a bridge between all the teams involved in the data mining
process inside a company as it can be used to disseminate knowledge and best practices, thereby stimulating cross-
team and inter-organization collaboration. In a world in which data-driven decisions are becoming more and more
pervasive, predictive analytics and standards such as PMML make it possible for organizations to benefit from smart

solutions that will truly revolutionize their business.

Besides offering a rich set of structures for describing all the intricate details of a predictive algorithm, PMML also
provides information about the input and output of a model. This includes names and types of all input and output
data fields, often along with the set of permissible values. In addition, a model expressed in PMML typically includes
information about how to handle invalid, or missing or outlier input values. These elements are essential for the

automatic migration of a model into the database and the necessary mappings into the HiveQL world.

Note

A variety of sample PMML models are included with the ZEMENTIS distribution package. In addition, a

wealth of resources on PMML can be found from the PMML in Action.
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2.2. ZEMENTIS Predictive Analytics (ZEMENTIS)

ZEMENTIS plugin enables execution of standards-based predictive analytics directly within a database or data

warehouse application. It shares the PMML execution core with the ZEMENTIS server offered by Software AG. It

is, however, optimized to be embedded within the database environment or data warehouse application in order

to minimize data movement.

In addition, the plug-in takes on the responsibility of bridging the PMML and HiveQL world (see Figure 2.1). This

means that it presents each loaded PMML model as a HiveQL function. The name, input parameters and outputs of

each function matches the name, input fields, and output fields of the corresponding model as defined in the PMML

file. This way, scoring a data set against one or more models requires nothing more than writing a HiveQL statement

that invokes the HiveQL functions for the corresponding models. Predictions (scores, probabilities, categories, clus-

ters, etc.) can be just as easily written back to the database, become part of a report, or passed on to an application.

Figure 2.1. Overview of ZEMENTIS for Hive
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At a high level, the process of using PMML models in Hive starts after the predictive models have been created

and exported in PMML format from a data mining tool. With the PMML files in hand, it only takes two simple steps

to import a predictive model in Hive:
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1. Preparation Step: Validates the PMML files and prepares HiveQL scripts with definitions for the new HiveQL

functions.
2. Registration Step: Registers generated HiveQL functions with Hive
These steps are described in more detail in Chapter 4 and illustrated with actual examples in Chapter 5.

After preparation and registration steps are completed, data on a Hadoop cluster can be processed to generate

predictions by invoking HiveQL functions from Hive queries.

Like the ZEMENTIS server, ZEMENTIS plugin accepts PMML models of all versions (2.0, 2.1, 3.0, 3.1, 3.2, 4.0, 4.1,

4.2 and 4.3) generated by any of the major commercial and open source data mining tools.
ZEMENTIS supports a wide range of predictive analytics techniques, including:
« Decision Trees for classification and regression
» Neural Network Models: Back-Propagation, Radial-Basis Function, and Neural-Gas
» Support Vector Machines for regression, binary and multi-class classification
e Linear and Logistic Regression (binary and multinomial)
» Naive Bayes Classifiers
* General and Generalized Linear Models
« Cox Regression Models
* Rule Set Models (flat decision trees)
« Clustering Models: Distribution-Based, Center-Based, and 2-Step Clustering
» Scorecards (including reason codes and point allocation for complex attributes)
» Segmented Models
* Model Ensembles (including Random Forest Models)
* Model Composition and Chaining
In addition, ZEMENTIS also implements a wide range of functions for data pre- and post-processing, including:
* Value Mapping

« Discretization

Page 4
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* Normalization

» Scaling

« Conditional Logic

* Logical and Arithmetic Operators
* Built-in Functions

* Business Decisions and Thresholds

Note

« ZEMENTIS for Hive does not support Association Rules models.

« ZEMENTIS for Hive does not support Blockindicator elements, which might be used as part of Lag

expressions.
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Chapter 3. Installation

This chapter describes how to install ZEMENTIS for Hive.

3.1. Requirements

The requirements to install ZEMENTIS for Hive on your system are:

Table 3.1. The ZEMENTIS Installation Requirements

Requirement Version [Notes

Hive 1.2.1 or|Therest of this documentation assumes that Hive is already installed. Please
above |see Hive documentation for details.

Java Development Kit 8 or|Please make sure you use the Java Development Kit (JDK) and not the Java
above |Runtime Environment (JRE).

ZEMENTIS for

cense Key

Hive Li-|10.11.0.]

Installing new PMML models with ZEMENTIS for Hive requires a valid
Product License Key which can be obtained by contacting Software AG.
Place the Product License Key file (named zementis.license) in the directo-
ry from which prepare-pmml.sh/prepare-pmml.bat script is executed. More
information about prepare-pmml.sh/prepare-pmml.bat can be found in Sec-
tion 4.3.1. Please note that execution of existing models will not be interrupt-

ed when the license expires.

3.2. Packaging

ZEMENTIS for Hive is distributed as a compressed archive file : uppi - hi ve- 10. 11. 0. 1. zi p. The distribution

package consists of several files, including this documentation and several sample files. When uncompressed, the

package reveals a number of sub-directories as described in Table 3.2.

Table 3.2. Directory Structure of the ZEMENTIS for Hive package

Directory Contents

bin Contains the pr epar e- prm . sh and pr epar e- pnm . bat scripts needed for generating the
HiveQL functions from PMML files (see Section 4.3.1).

docs Documentation in HTML and PDF format.
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Directory Contents
lib The required library (JAR) file for installing ZEMENTIS for Hive (see Section 3.3).
prmi Sample PMML files along with corresponding data files in CSV format and text files with step-

by-step PMML model deployment instructions. These samples include the examples described

in Chapter 5.

3.3. Installation

Once Hive is installed and configured, installing ZEMENTIS for Hive is straightforward.

First, library JAR files (in the | i b sub-directory of the ZEMENTIS package) should be copied to the same file system

where Hive is installed.

Then, Hive should be made aware of the location of these files. More specifically:

1. Assuming HI VE_DI R represents the directory where Hive is installed and UPPI _DI R represents the direc-

tory where the ZEMENTIS library files are installed, update the configuration file H VE_DI R/ conf / hi ve-

env. sh

to set the variable H VE_AUX_JARS_PATH as follows:

export H VE_AUX JARS PATH=/ UPPI _DI R/ | i b/ uppi - hi ve-10.11.0. 1. j ar

2. Note that if other JAR files are also required for the Hive installation, the H VE_AUX_JARS_PATHenvironment

variable can be updated as shown in the example below:

export H VE_AUX JARS PATH=/ ot her pat h/ ot her.jar,/UPPlI _DI R/|i b/ uppi-hive-10.11.0.1.jar

3. Optionally, in the same configuration file (H VE_DI R/ conf / hi ve- env. sh) you may want to set the variable

HADOOP_HEAPSI ZE to modify the maximum memory allocated for Hive tasks. For example, to allow allocating

up to 1GB of memory, use the following setting:

export HADOOP_HEAPSI ZE=1024

Note that most PMML models work fine with the default maximum memory setting. However, additional

memory may be required to accommodate some very large PMML files (e.g. large random forest models).

Once ZEMENTIS for Hive is installed, you can start creating HiveQL functions from PMML models. This process

is described in the next chapter.
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Chapter 4. From PMML to HiveQL

This chapter describes in detail how PMML models are made available to be used directly in Hive. As explained
earlier, ZEMENTIS for Hive converts predictive models into HiveQL functions by mapping the model to a user-de-

fined function (UDF). In the following sections we present the actual steps to embed the PMML models into Hive.

4.1. Model as a HiveQL Function

With ZEMENTIS for Hive, a predictive model is converted into an user-defined function (UDF) that can be used
like any other built-in function. This way a model can be easily applied to rows of a Hive table or to the result of

another query.

Every PMML model has a name, a number of input fields, and one or more output fields. Each input or output
field has a name and a data type (st ri ng,i nt eger ,f| oat, etc.). When translated into a HiveQL function, this
information is used to derive the name, input, and return parameters of the function. More specifically, the name of
the function comes from the name of the model, possibly altered to comply with the naming conventions or limitations
of Hive. The input fields of the model, i.e., the active and supplementary mining fields, become the input parameters
of the function. The input parameters are ordered based on the order of the fields in the mining schema of the PMML
model. The name and type of each input parameter is derived from the name and type of the corresponding mining

field. Table 4.1 presents which Hive data type corresponds to each of the PMML data types.

Similarly, the output fields of the model become the return values of the UDF. While many PMML models have only
one output field (typically the predicted value), it is also very common that a model has more than one output field.
For example, this is often the case with classification models where the probabilities of different classes are output
along with the predicted class. To accommodate for the more generic cases, the UDF's generated by ZEMENTIS
return STRUCT complex types. A STRUCT type is composed of one or more elements, each with a name and a type.

For details on these complex types, please visit the Complex Types section of the Hive tutorial.

Consider, for example, a classification model trained with the Iris data set. The Iris dataset Lis perhaps the best
known data set to be found in the pattern recognition literature. It contains three classes representing different
types of the Iris plant. Each class is represented by 50 records containing the sepal and petal lengths and widths
of different plants. Such a model may produce four output values, the class or type of Iris plant (setosa, virginica,
or versicolor) along with the computed probabilities for the three different flower types. With ZEMENTIS, the return

type for the UDF created for this model would look like the following:

For more information on the Iris data set, please refer to: Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository. Irvine, CA:

University of California, School of Information and Computer Science.
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STRUCT {cl ass STRING prob_setosa DOUBLE;, prob_virgini ca DOUBLE; prob_versicol or DOUBLE}

The use of HiveQL functions as well as the complex types returned by ZEMENTIS will become evident with the

examples that follow in Chapter 5.

4.2. Data Types

The table below presents how PMML data types are mapped to Hive data types. For more information on the PMML

data types, please visit the PMML Data Dictionary page.

Table 4.1. PMML and HiveQL Data Types

PMML Types Hive Types
string STRI NG
i nt eger I NT
fl oat FLOAT
doubl e DOUBLE
doubl e DECI MAL 2
bool ean BOCLEAN
dat e TI MESTAMP
tinme TI MESTAMP
dat eTi ne TI MESTAMP
bi nary ° Bl NARY

3DECI MAL type data will be processed as DOUBLE type data base on dat aType definition of PMML.

Pt is required to set Bl NARY_BUFFERED as t r ue in <Ext ensi on> element. Please see Section 7.4 for details.

4.3. How To: Two Easy Steps

In this section, we describe the two steps that need to be taken to use PMML models in Hive. The first step is to
prepare the HiveQL functions from PMML files. The second step is to install the HiveQL functions in Hive. Both

steps are described in the following sub-sections where we assume that:

« Hive and ZEMENTIS for Hive are installed and configured, as described in Section 3.3.
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« One or more PMML files have been created and are available under a directory on your system. If preferred,
different PMML files can be nested within sub-directories as long as they all are under a common parent

directory.

4.3.1. Prepare HiveQL Functions (Preparation Step)

The first part of the process is a preparation step for creating the HiveQL functions out of the available predictive
models. The ZEMENTIS package contains the script pr epar e- pnmi . sh (pr epar e- prmi . bat is also available
for Windows environment) which performs all the necessary actions for this step. In short, this script will first validate

the PMML models and then generate the files required for installing and using the models in Hive.

Note

The preparation step does not need to be performed in a system where Hive is installed and configured.

However, it does require one of the library files contained in the Hive distribution as described below.
To configure a system to run the script pr epar e- pnmi . sh, you need to:
» Copy and unpack the ZEMENTIS package, uppi - hi ve- 10. 11. 0. 1. zi p, to your working directory.

« Set the environment variable JAVA HOVE to point to the installation directory of the Java Development Kit

(JDK).

« From a Hive distribution package or installation, obtain a copy of the file hi ve- exec- X. Y. Z. j ar, where
X. Y. Z reflects the version of Hive you are using. For example, if you are using Hive version 1.2;, you need
to obtain the a copy of the file hi ve- exec- 1. 2. j ar. This file is usually located in the | i b directory of the

Hive distribution.
« Set the environment variable H VE_EXEC JARto point to the library file hi ve-exec-X. Y. Z.jar.
Once your system is configured, you may run the preparation script by using the following command:

UPPI _DI R/ bi n/ prepare-pm . sh PMML_DI R

where UPPI _DI Rrefers to the directory where ZEMENTIS has been installed and PMVL_DI Rrefers to the (top) di-
rectory where the PMML files are located. Additional Command Line Interface (CLI) options for pr epar e- pnmi . sh

script are listed in Table 4.2. Similar options are also available for the pr epar e- prmi . bat script.
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Table 4.2. pr epar e- pmm . sh script options

CLI Option Flag

Value Type

Default Value

Required

Description

-pmml

pat h

Yes

Specify path to PMML file(s) top directory. The
-pmml flag can be omitted only if the pat h is

placed as first argument.

-extLib

pat h

No

Specify path to custom functions JAR file(s) di-
rectory. See Chapter 7 regarding custom PMML

functions.

-out

path

uppi - out put

No

Specify path to generated output files directory.

-abortOnError

trueorfal se

true

No

We recommended that the treatment of invalid
values should be handled in the PMML as de-
scribed in Chapter 6. If the invalid value treate-
ment for a M ni ngFi el d is setto r et urnl n-
val i d, the Hive query will abort when an in-
valid value is encountered. Setting the -abor-
tOnError flag to t r ue will have the same effect.
Setting it to f al se will enable the query pro-
cessing to continue by returning null values for
the invalid ones. A value of f al se for this option
should only be used for debugging/testing pur-
poses. It is important to note that the -abortOn-

Error flag applies to all M ni ngFi el ds.

-awsPipeline

trueorfal se

fal se

No

Generate AWS Data Pipeline scriptift r ue. Find
out how to use ZEMENTIS for Hive on AWS
EMR Cluster in Chapter 8.

-runWithPmml

trueorfal se

fal se

No

If t rue, include PMML file in generated UDF
JAR instead of binary representation of the
PMML model. This option should be used only

for debugging or diagnostic purpose.

-applyCleanser

trueorfal se

true

No

If t r ue, comprehensive syntactic and semantic
checks and corrections are applied on the pro-
vided PMML files. If f al se the PMML files are

processed as is.
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While running, the script will generate a series of messages marked as | NFO, WARNI NG, or SEVERE. Messages
marked as | NFOprovide information on the files processed and the progress of the script. Messages of type WARN-
I NGindicate potential issues with a PMML file that may need to be reviewed. The detailed warning messages are
provided in a copy of the original PMML file, annotated with comments at the appropriate locations. Note that the
annotated version of the file may look different than the original, as the file may have been upgraded to the latest
version of PMML. The corresponding model is fully functional and, more often than not, these warnings are not
relevant to the scoring process. However, a review of these messages is highly recommended since, in some cases,
they may have an impact on scoring. Finally, messages marked as SEVERE indicate that a valid model cannot be
created from the provided file. As in the case of warnings, the detailed messages are provided in an appropriately
annotated copy of the original file. In the case of SEVERE messages, the problems identified need to be corrected

before the model can be used.

Once the preparation script has completed successfully, you will find a directory named uppi - out put created

under your current working directory. The contents of that directory are described in Table 4.3.

Table 4.3. Output generated from the pr epar e- pm . sh script

File or Directory |Description

MODEL_NANME. j arlA JAR file for each valid model contained in the PMML file(s) as well as generated Java code
that serves as wrapper to these PMML file(s). The MODEL__NAME is derived from the name of
the PMML model.

MODEL_NAME. sql|A HiveQL script for each valid model contained in the PMML file(s). Typically, this file will contain
a CREATE statement for registering each model as an UDF and a corresponding SELECT state-
ment which acts as a template for scoring data against that model via UDF. The MODEL _NAME

is derived from the name of the PMML model.

pmm A directory containing copies of the processed PMML files for which severe or warning mes-
sages were generated. The files get annotated with comments that contain the relevant mes-
sages. Please note that the annotated PMML files may be different than the original ones since

they are upgraded to the latest PMML version (version 4.4) and known issues are corrected.

j ava A directory containing the generated Java code. This is the code that gets compiled into the
MODEL_NAME. | ar file.

cl asses A directory containing the compiled Java code, along with the original PMML files. This reflects
the contents of the MODEL_NAME. j ar file.

Out of all these files, only the MODEL_NAME. sql and MODEL _NAME. j ar files are used in the next (and last) step.

The rest of the files generated during the execution of the script remain in place for diagnostic purposes only.
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4.3.2. Register HiveQL Functions (Registration Step)

To register HiveQL functions for the PMML files, all you need to do is execute MODEL_NAME. sql script using

following Hive HiveQL command:

sour ce uppi - out put / MODEL_NAME. sql ;

where uppi - out put is path to the output directory generated by the execution of the pr epar e- pmm . sh script,

and MODEL_NAME. sql is one of generated files for a PMML model.

Important

ZEMENTIS can work on both local file system and HDFS.
To work on HDFS:
» Make sure that all the files are in the HDFS.

» Make sure that the location of the MODEL_NAME. j ar file mentioned in the MODEL_NAME. sql file is

pointing to the appropriate location in HDFS.

« Example: hdfs://namenode/path/to/the/jar;
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Chapter 5. Examples

This chapter contains examples of using ZEMENTIS for Hive.

5.1. Sample Files

The ZEMENTIS for Hive package contains a number of sample PMML files, each with a CSV (Comma Separate
Values) file containing test data, and a "README" text file showing all steps necessary to successfully execute
the PMML model in Hive. The test data contains both input and output values. The output values are provided to
allow for the validation of the results generated by ZEMENTIS for Hive. To run each example, the test data needs to
be loaded into Hive tables. For the examples presented below, we describe the process of creating the necessary
test tables and loading the data into them. For the sample PMML files, these instructions are also available in the

"README" files corresponding to each sample model.

5.2. Model with Single Output

This section provides an example of a model with a single output field. The example uses a Neural Network model
created for the El Nino data set*. This model is provided in the file EIl Ni no_NN. pnmi among the sample files in the

pmm directory of the ZEMENTIS package. Along with it, there is a test data file El Ni no_NN. csv.

The following listing contains a fragment of the PMML model that contains the model name (attribute nodel Nane

in the Neur al Net wor k element) as well as the input and output fields (M ni ngFi el d elements).

<Dat aDi cti onary nunber O Fi el ds="7">
<Dat aFi el d dat aType="doubl e" nane="airtenp" optype="continuous"/>
<Dat aFi el d dat aType="doubl e" nane="|atitude" optype="continuous"/>
<Dat aFi el d dat aType="doubl e" nanme="| ongi t ude" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="zon_w nds" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="nmer_w nds" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nane="hum di ty" optype="continuous"/>
<Dat aFi el d dat aType="doubl e" nane="s_s_t enp" optype="continuous"/>

</ Dat aDi cti onary>

<Neur al Net wor k acti vati onFunction="tanh" functi onName="regressi on" nodel Name="El Ni no_NN">
<M ni ngSchena>
<M ni ngFi el d name="1atitude"/>
<M ni ngFi el d name="1 ongi t ude"/>
<M ni ngFi el d name="zon_wi nds"/>
<M ni ngFi el d name="ner _wi nds"/>
<M ni ngFi el d name="hum di ty"/>
<M ni ngFi el d name="s_s_tenmp"/>
<M ni ngFi el d name="ai rt enp" usageType="predicted"/>
</ M ni ngSchema>

For more information on the EI Nino data set, please refer to: Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository. Irvine,

CA: University of California, School of Information and Computer Science.
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The input of the model consists of location and weather data presented as numeric values (fields | ati t ude, | on-
gi tude, zone_wi nds, mer _wi nds, hunmi ti dy, and s_s_t enp). It returns a single numeric value, the predicted

air temperature (predicted field ai r t enp).

To test this sample file, execute the preparation and registration steps described in Section 4.3.1 and Section 4.3.2.
As multiple sample PMML files are provided under the same directory, you may limit the number of files processed

in the preparation step by specifying the subdirectory containing only the neural network models:

UPPI _DI R/ bi n/ prepar e- prm . sh UPPI _DI R/ pmm / Neur al Net wor k

Note that the above command will prepare all models in the Neural Net wor k subdirectory, including
El Ni no_NN. pnml . The generated El Nl no_NN. sql file will contain a statements for creating HiveQL function for

the El Ni no_NN model. Execute this script with following HiveQL command:

sour ce uppi - out put/El Ni no_NN. sql ;

After HiveQL function is registered in Hive (see Section 4.3.2), you may review its description. For example, you

can run the following command to review the description of function el ni no_nn:

descri be function el ni no_nn;

This command will output the name of the function along with the names and types of the input and output param-

eters:

el nino_nn(l ati tude DOUBLE, | ongitude DOUBLE, zon_wi nds DOUBLE, mer_wi nds DOUBLE, hum dity DOUBLE,
s_s_tenp DOUBLE) -> STRUCT {airtenp DOUBLE}

Note that the generated function reflects closely the information found in the PMML file. The name of the function
is derived from the name of the model (El Ni no_NN). The function has six parameters of type DOUBLE, matching
the name, order and types of the model input fields. The return type of the function is a STRUCT type, with only one

element, ai rt enp of type DOUBLE, which matches the name and type of the predicted field of the model.

With the function installed in Hive, using the model requires nothing more than invoking it in a query. However,

before we show an example of a query, we need to create a table and load the sample data into it.
The following command creates a table for the data in file EIl Ni no_NN. csv:

CREATE TABLE el ni no_nn_dat a(
row_id | NT,
|l atitude DOUBLE,
| ongi t ude DOUBLE,
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zon_wi nds DOUBLE,
mer _wi nds DOUBLE,
hum di ty DOUBLE,
s_s_tenp DOUBLE,
ai rtenp DOUBLE
) ROV FORVAT DELIM TED FI ELDS TERM NATED BY ', ' ;

Table column "airtemp" contains expected output for this model, and can be used to verify the result from function.
The following command loads the data into the Hive table:

LOAD DATA LOCAL | NPATH ' El Ni no_NN. csv' | NTO TABLE el ni no_nn_dat a;

Note that the first line of this CSV file is the header line, containing the names of the data columns and no actual
values. If the file is loaded as is, the header line will create a row containing NULL values since names cannot be
stored in the table columns, which are of type DOUBLE. For this reason, we recommend that you delete the header

line of the CSV file before loading it into Hive.

After the data is loaded, we can then execute queries that score the data in the table el ni no_nn_dat a using the
function el ni no_nn. The first example below, is the simplest query that invokes the function el ni no_nn. Note

that the output for each row is a single element STRUCT per the function's description:

SELECT el ni no_nn(l atitude, | ongi t ude, zon_w nds, mer _wi nds, hum dity, s_s_tenp)
FROM el ni no_nn_data LIMT 10;

"airtenp":27.127614295247312}
"airtenp":27.023705228506447}
"airtenp":27.183023776611908}
"airtenp":27.1786879512385}
"airtenp":27.31386469460455}
"airtenp":27.4043135759579}
"airtenp":27.400061796152368}
"airtenp":27.39820876609351}
"airtenp":27.517896498091755}
"airtenp":27.358719891352678}

e L e R e e e L)

To return the actual predicted value, i.e. the value of the ai rt enp element as opposed to the whole complex type,

we can modify the query as follows:

SELECT row_id, elnino_nn(latitude,l|ongitude, zon_w nds, mer_wi nds, hunidity,s_s_tenp).airtenp
FROM el ni no_nn_dat a
ORDER BY row._i d;

row.id airtenp
27.127614295247312
27.023705228506447
27.183023776611908
. 1786879512385
27.313864694604554
27.4043135759579
27.400061796152368
27.39820876609351

O~NOUIAWN R
N
~
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As a last example, we can create a query that outputs the values computed by the function in ZEMENTIS along
with the expected predictions obtained from the tool initially used to build the model. This is done to make sure that
the model has been deployed correctly and that the scores computed by ZEMENTIS match the expected scores
generated by the model development environment. Note that the provided CSV file and, consequently, the created
sample table contain a column named ai r t enp. The contents of that column contain the expected values for each
row as produced by the tool used to build the model. The example below is a simple score-matching query that

allows for comparing the ZEMENTIS computed values to the expected ones.

SELECT row_id, elnino_nn(latitude,!| ongitude,zon_w nds, mer_w nds, hum dity,s_s_tenp).airtenp AS predicted
airtenp AS expected

FROM el ni no_nn_dat a

ORDER BY row._i d;

row_id predict ed expect ed

1 27.127614295247312 27.1276143

2 27.023705228506447 27. 02370523
3 27.183023776611908 27.18302378
4 27.1786879512385 27.17868795
5 27.31386469460455 27. 31386469
6 27. 4043135759579 27. 40431358
7 27.400061796152368 27.4000618
8 27.39820876609351 27.39820877

In the above query, using r ow_i d allows us to correlate input with the output.

Running the pr epar e- pnmi . sh script will generate a SELECT script for the UDF corresponding to the provided

model(s). These SELECT statements are commented and they should be modified to suit your HiveQL needs.

-- Select script for Scoring El Ni no_NN. pmm

-- Please change tabl e nanes and colum nanes in the followi ng query based on your requirenents
-- CREATE TABLE El Ni no_NN_Scal ar _Qut

-- AS SELECT row_identifier, elnino_nn(latitude, |ongitude, zon_w nds, nmer_wi nds, humdity,
s_s_tenp).predictedval ue_airtenp

-- FROM ElI Nl no_NN ORDER BY row_i dentifier

5.3. Model with Multiple Outputs

Many predictive models are built to produce more than one output. This is often the case for classification models
which output the winning class along with the predicted probabilities for one or more of the classes, or clustering

models which output the winning cluster along with the affinity for that cluster.

An example of such a model is the Decision Tree model built for the Iris data set. This model is included in the
provided samples (look for the file I ri s_CT. pnmm among the sample files in the pmm directory of the ZEMENTIS
package). It is a classification model that, given the sepal and petal lengths and widths of an Iris plant, predicts the
most likely species the plant belongs to (one of I ri s-setosa, I ris-versicolor,orlris-virginica)along

with the predicted probability for each of the species.

Page 17


http://dmg.org/pmml/v4-4/TreeModel.html

5 software~

The following listing presents the input and output fields of the model, as listed in the PMML file. The input
fields are the M ni ngFi el d elements from the M ni ngSchema section with the attribute usageType="act i ve".
These are petal _| ength, petal _width, sepal | ength, and sepal _w dth. The output fields are list-
ed as Qut put Fi el d elements. They are cl ass, Probability_set osa, Probability_versicol or, and
Probabi | i ty_vi rgi ni ca. The first field outputs the predicted (winning) species and the other three the predicted

probabilities for each of the species.

<Dat aDi cti onary nunber O Fi el ds="5">
<Dat aFi el d dat aType="doubl e" nane="sepal _| engt h" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="sepal _wi dt h" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nane="petal _| ength" optype="conti nuous"/>
<Dat aFi el d dat aType="doubl e" nanme="petal _wi dth" optype="conti nuous"/>
<Dat aFi el d dataType="string" nanme="target_cl ass" optype="categorical ">
<Val ue property="valid" value="Iris-setosa"/>
<Val ue property="valid" value="Iris-versicolor"/>
<Val ue property="valid" value="Iris-virginica"/>
</ Dat aFi el d>
</ Dat aDi cti onary>
<TreeMddel al gorithmName="CART" functionNane="cl assification" nodel Nane="Iris_CT">
<M ni ngSchenma>
<M ni ngFi el d name="petal _| engt h" usageType="active"/>
<M ni ngFi el d name="petal _w dth" usageType="active"/>
<M ni ngFi el d name="sepal _| engt h" usageType="active"/>
<M ni ngFi el d name="sepal _w dt h" usageType="active"/>
<M ni ngFi el d name="t arget _cl ass" usageType="predicted"/>
</ M ni ngSchema>
<Cut put >
<Qut put Fi el d dat aType="string" feature="predictedVal ue" name="cl ass" optype="categorical" />
<Qut put Fi el d dat aType="doubl e" feature="probability" nane="Probability_setosa" optype="continuous"
val ue="Iris-setosa"/>
<Qut put Fi el d dat aType="doubl e" feature="probability" name="Probability_versicolor"
opt ype="conti nuous" val ue="Iris-versicolor"/>
<Qut put Fi el d dat aType="doubl e" feature="probability" nane="Probability_virginica"
opt ype="conti nuous" value="Iris-virginica"/>
</ CQut put >

As in the previous example, to test this sample file, first execute the preparation step described in Section 4.3.1.
This time, in order to reduce the number of files processed limit the preparation step to the sub-directory containing

only decision tree models:

UPPI _DlI R/ bi n/ prepare-pnm . sh UPPI _Dl R/ pnmi / Tr eeMbdel

After the preparation step, it is time to perform the registration step as described in Section 4.3.1. Note that the
above command will prepare all models in the Tr eeModel sub-directory, including | ri s_CT. pnm . The generated

Iris_CT.sql file will contain HiveQL statement for registering the function for the I ri s_CT model:

sour ce uppi -out put/El Ni no_NN. sql ;

Once HiveQL function is registered, you can use the following command to review its description:

describe function iris_ct;
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This command will output the name of the function along with the names and types of the input and output param-

eters:

iris_ct(petal | ength DOUBLE, petal_w dth DOUBLE, sepal _| ength DOUBLE, sepal _wi dth DOUBLE) -> STRUCT
{class STRING probability_setosa DOUBLE, probability_versicol or DOUBLE, probability_virginica DOUBLE}

Note that this output shows the function with the four input parameters of type DOUBLE which correspond to the
four input fields of the model and the complex STRUCT return type containing four elements corresponds to the four

output fields of the model.

Before describing example queries for this function, we need to load the sample data into Hive from the file

I ri s_CT. csv. First, we create a table using the command:

CREATE TABLE iris_ct_data(
row_id | NT
petal _| engt h DOUBLE,
petal _wi dt h DOUBLE,
sepal _| engt h DOUBLE,
sepal _w dt h DOUBLE,
cl ass STRI NG
probability_set osa DOUBLE
probabi lity_versicol or DOUBLE
probabi lity_virginica DOUBLE
) ROW FORVAT DELI M TED FI ELDS TERM NATED BY ', ';

Table columns "class","Probability_setosa","Probability_versicolor","Probability_virginica" contain expected output

for this model, and can be used to verify the result from function.

We can load the data from the file Iri s_CT. csv using the command below. As in the previous example, we

recommend that you remove the header line from the file before loading it into Hive.

LOAD DATA LOCAL | NPATH 'Iris_CT.csv' |NTO TABLE iris_ct_data;

With the sample data loaded, we can then run queries that apply the model. The simplest query to score the data

iniris_ct_datais:

SELECT iris_ct(petal |l ength, petal_wi dth, sepal_length, sepal_width) FROMiris_ct_data LIMT 10;

{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}
{"class":"Iris-setosa","probability setosa":1.0,"probability_versicolor":0.0,"probability_virginica": 0.0}

The result of this query is a single column with complex values, as dictated by the return type of the function. Each

value contains all four output fields of the model. Any one of these fields can be singled out. In this way, we can
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execute a query to return an specific output value as the result. For example, to return only the predicted class

(output field cl ass) without the probabilities of the different Iris species, we can execute the following query:

SELECT row_id, iris_ct(petal _|ength, petal_wi dth, sepal _|ength, sepal_wi dth).class
FROM iris_ct_data
ORDER BY row._i d;

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
i s-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
0 Iris-setosa

PO ~NO O~ WNPR
-

For the result to contain the values of more than one field as separate columns, the query becomes a little more
involved. More specifically, the function must be called in a nested query which will return the complex structure
from the function. From that result, the enclosing query selects a few or all of the elements from the structure and

output them into separate columns. The following is an example of such a nested query:

SELECT s.row_id,r.class,r.probability_setosa,r.probability versicolor,r.probability_virginica
FROM SELECT row_id,iris_ct(petal _|ength, petal _wi dth, sepal | ength,sepal_width) ASr FROMiris_ct_data) s
ORDER BY s. row._id;

s.row_id r.class r.probability setosa r.probability_versicolor r.probability virginica
1 Iris-setosa 1.0 0.0 0.0
2 Iris-setosa 1.0 0.0 0.0
3 Iris-setosa 1.0 0.0 0.0
4 Iris-setosa 1.0 0.0 0.0
5 Iris-setosa 1.0 0.0 0.0
6 Iris-setosa 1.0 0.0 0.0
7 Iris-setosa 1.0 0.0 0.0
8 Iris-setosa 1.0 0.0 0.0

In the above query, using r ow_i d allows us to correlate input with the output.

Running the pr epar e- pnmi . sh script will generate a SELECT script for the UDF corresponding to the provided

model(s). These SELECT statements are commented and they should be modified to suit your HiveQL needs.

-- Select script for Scoring Iris_CT. pnm

-- Pl ease change tabl e names and colum nanes in the follow ng query based on your requirenments

-- CREATE TABLE Iris_CT Table _CQut AS

- SELECT s.row_identifier, r.class, r.probability_setosa, r.probability_versicol or
r.probability_virginica

- FROM ( SELECT row_identifier, iris_ct(petal _|ength, petal _wi dth, sepal | ength, sepal _wi dth)
-- ASr FROMIris_CT) s ORDER BY s.row_identifier;
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Chapter 6. Handling of Invalid Values

PMML offers a rich set of options for defining the data types of the different input fields as well as the set or range
of valid values for each field in the Data Dictionary. Along with those, it allows data scientist to specify what the
model should do in the presence of invalid values as specified in the Mining Schema section of the PMML file.
The three options for the treatment of invalid values are r et ur nl nval i d, asl s, and asM ssi ng. Among these,
returnl nval i dis the most frequently used, since it is the default option in PMML. The option r et ur nl nval i d
instructs the model execution engine not to attempt to apply the model in the presence of an invalid value and,
instead, abort with an error. The other two options allow the model to execute by either allowing the invalid value

to be processed as is or by treating it as a missing value.

The following listing contains a fragment of the I ri s_CT. pnml model. The original code was edited to showcase

the PMML M ni ngSchena element with and without the explicit use of the attribute i nval i dVal ueTr eat nent .

<M ni ngSchema>
<M ni ngFi el d nane="petal _| ength" usageType="active" invalidVal ueTreatment="returnlnvalid"/>
<M ni ngFi el d nane="petal _w dth" usageType="active" invalidVal ueTreatment="returnlnvalid"/>
<M ni ngFi el d name="sepal _| engt h" usageType="active"/>
<M ni ngFi el d nanme="sepal _w dt h" usageType="active"/>
<M ni ngFi el d nanme="t arget _cl ass" usageType="predicted"/>

</ M ni ngSchema>

Note that although the option for treatment of invalid values is not set for mining fields sepal _| engt h and
sepal _wi dt h, the default value for treating invalid values in PMML is r et ur nl nval i d. In this way, the invalid
value treatment for these two fields is the same as the one used for fields pet al _| engt h and pet al _wi dt h which

have PMML attribute i nval i dVal ueTr eat ment explictly setto r et ur nl nval i d.

When used in a database and through queries, the option r et ur nl nval i d may have a more significant (not-
intended) impact. Consider the case where a query is used to apply a model on millions of data records. Also assume
that within all these records, there happens to be just a single record with an invalid value for an input field marked
with or defaulted to r et ur nl nval i d invalid value treatment. In this case, the PMML execution engine will generate
an error which in turn will cause the whole query to abort with an error. In other words, just a single invalid value

among all the input rows may prevent the query from completing.

In some cases, this may be the desired behavior in order to be able to detect invalid values. However, it is often
the case that an alternative approach where invalid values do not cause the queries to abort is more desirable. This
requires the PMML model to be modified in order to change the invalid value treatment of one or more mining fields
from r et ur nl nval i d (or nothing which is equivalent) to, typically, asM ssi ng. With these changes, all invalid

input values will be treated as missing values (NULL) and the model will be applied to all the input rows, allowing
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the query to complete. Please note that, while not always the case, NULL input values result in NULL output values,

indicating that the particular record cannot be processed, without causing the whole query to fail.

The following listing contains the same PMML fragment as shown above, but modified so that the invalid value

treatment for all mining fields is asM ssi ng.

<M ni ngSchema>
<M ni ngFi el d name="petal _| ength" usageType="active" invalidVal ueTreatnent="asM ssi ng"/>
<M ni ngFi el d nanme="petal _w dth" usageType="active" invalidVal ueTreat ment="asM ssi ng"/>
<M ni ngFi el d name="sepal _| engt h" usageType="active" invalidVal ueTreatnent="asM ssi ng"/>
<M ni ngFi el d name="sepal _wi dt h" usageType="active" invalidVal ueTreat ment="asM ssi ng"/>
<M ni ngFi el d nanme="t arget _cl ass" usageType="predicted"/>

</ M ni ngSchema>

Note

It is highly recommended that any such changes to a model are reviewed and approved by the person or

team that created the model to ensure that the model is still valid for the assumptions under which it was built.
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Chapter 7. Custom PMML Functions

Predictive models may require external resources such as custom functions. ZEMENTIS provides a facility to create
and use custom PMML functions. This capability enables, for example, the implementation of intricate calculations
that cannot be easily described in PMML, functions that access external systems to retrieve necessary data, or even
specialized algorithms not supported by PMML. One class of functions that can be easily implemented using custom
functions are aggregations over a period of time or window of transactions. Aggregations are used to obtain, for
example, the count, average, maximum and minimum for a set of records. One example is to use custom functions

to obtain the average transaction amount for a certain account for the last 30 days.

ZEMENTIS currently supports custom functions written in Java. Once created and made available to ZEMENTIS,
custom functions are used the same way as the built-in ones. The steps to achieve this are explained in the following

sections.

7.1. Create Custom PMML Functions

Custom functions are implemented as public static methods of Java classes. For a method to be recognized as a
custom PMML function, the containing class needs to be annotated with the ZEMENTIS specific @MVLFunct i ons
annotation containing parameter nanespace. This parameter must specify fully qualified Java class name. Within
each annotated class, only methods that are declared as public static can be used as PMMLfunctions. In
addition, the types of the method parameters as well as its return type must be compatible with the PMML data
types. Table 7.1 provides the Java primitive types and classes that correspond to the different PMML data types.
The types of the parameters must be either among those listed in the table or among one of their super-classes or
super-interfaces (j ava. | ang. Obj ect, j ava. | ang. Conpar abl e, or j ava. | ang. Nunber ). Methods can also
declare variable number of parameters (var ar gs). Finally, methods declared as voi d cannot be used as PMML

functions.

Caution

Make sure these methods are thread-safe as ZEMENTIS may need to execute these methods concurrently

in different threads.

Table 7.1. PMML and Java types in ZEMENTIS

PMML Data Type Java Primitive Type Java Class
bool ean bool ean j ava. |l ang. Bool ean
date org.joda.timne. Local Date
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PMML Data Type Java Primitive Type Java Class

dat eTi ne org.joda.timne. DateTi ne
doubl e doubl e j ava. |l ang. Doubl e

fl oat fl oat j ava. | ang. Fl oat

i nteger | ong j ava. |l ang. Long

string java.lang. String

time org.joda.tine.Local Tinme
bi nary (buffered) byte[] byte[]

An example of properly declared custom function is shown in Figure 7.1.

Figure 7.1. Custom PMML Function Example

package com conpany. udf;
i mport com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFunct i ons(nanespace = "com conpany. udf. Cust onfuncti ons")
cl ass Custonfunctions {
public static Long factorial (Long n) {
if (n==null) {
return null;
} elseif (n<0) {
throw new ||| egal Argunent Exception();
} elseif (n==0) {
return 1;
} else {
return n * factorial (n-1);
}

In this example, Java class Recur si veFunct i ons has been annotated with @MVLFunct i ons. This annotation
informs ZEMENTIS that the class contains methods which may be used as PMML functions. The value of parameter
nanespace "com conpany. udf . Cust onfunct i ons" is the fully qualified class name for Cust onfFunct i ons
class with com conpany. udf package declaration. The class contains public static method f act ori al with one
input parameter of type Long and return value of the same type. Both types correspond to PMML i nt eger type

and declared method is thread safe.

7.2. Use Custom PMML Functions

To make custom functions available to ZEMENTIS, compile the corresponding classes into a JAR file and place
it in Hive accessible directory. To compile a class using the @MVLFuncti ons annotation, include the up-

pi - hi ve-10. 11. 0. 1. j ar file in Java classpath. This file is included with the ZEMENTIS distribution package.
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Custom functions can be used exactly like built-in PMML functions within Appl y transformations. Within PMML, the
namespace is used as a prefix for the name of the custom function and Java method name as postfix. The PMML

fragment in Figure 7.2 contains a simple example that uses the function defined in Figure 7.1.
Figure 7.2. Example Using a Custom Function in PMML

<DerivedFi el d nanme="fi el d1" optype="conti nuous" dataType="integer"/>
<DerivedFi el d nane="fi el d2" optype="conti nuous" dataType="integer">
<Apply function="com conpany. udf. Cust onfunctions: factorial ">
<Fi el dRef field="fieldl"/>

</ Appl y>
</ Deri vedFi el d>

In this example, field2 of type integer is derived by applying custom function
com conpany. udf . Cust onfFuncti ons: factori al to derived field fi el d1 also of type i nt eger . The func-
tion name is divided by single colon character : where name prefix corresponds to the nanespace parameter of

annotation @MVLFunct i ons, and name postfix corresponds to Java method name f act ori al .

To deploy a PMML model with custom functions, follows steps described in Section 4.3 with following additional
steps. To prepare HiveQL functions, run pr epar e- prm . sh script with additional command line flag - ext Li b and

path to custom functions JAR file(s):

UPPI _DI R/ bi n/ pr epar e- prmi . sh PMVL_DI R - ext Li b CUSTOM FUNCTI ONS_DI R

where UPPI _DI Rrefers to the directory where ZEMENTIS has been installed, PMM__DI R refers to the (top) direc-
tory where the PMML files are located, and CUSTOM_FUNCTI ONS_DI R refers to the (top) directory where custom

functions JAR files are located. Other pr epar e- prmi . sh script options are listed in Table 4.2,
Then, register the HiveQL function with Hive by executing MODEL_NAME. sql script as described in Section 4.3.2.

sour ce uppi - out put / MODEL_NAME. sql ;

Finally, add the path for each custom function JAR file to the H VE_AUX_JARS_PATH environment variable:

export H VE_AUX_JARS PATH=$H VE_AUX_JARS PATH, CUSTOM FUNCTI ONS_DI R/ cust om f unct i ons. j ar

7.3. Non-Deterministic Functions

When processing PMML models, ZEMENTIS performs certain performance optimizations which assume that func-
tions are deterministic, i.e. when presented with the same input values they always return the same result. However,
this may not be the case for all functions. For example, the result of a function may depend on the current time
and date. Another example might be a call to an external source that retrieves information that is being modified

by other systems.
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With ZEMENTIS, a custom function may be declared as non-deterministic by annotating the corresponding imple-
mentation Java method with the @NonDet er i ni sti cFuncti on annotation. Note that this annotation marks a
method, and not the containing class. This means a class implementing multiple functions may contain a combina-

tion of deterministic and non-deterministic functions.

The following is an example of a non-deterministic function which provides the current time value for a specific a

time zone.

Figure 7.3. Custom PMML Function Example

package com conpany. udf;

import com zenentis. st ereotype. PMMLFuncti ons;

i mport com zenenti s. st ereotype. NonDet ermi ni sti cFuncti on;
import org.joda.tine.DateTi ne;

i mport org.joda.tine. DateTi mneZone;

@MWLFuncti ons(namespace = "com conpany. udf. Cust onfFuncti ons")
cl ass Custonfunctions {

@lonDet er m ni sti cFuncti on
public static DateTine dateTi neAt Zone(String timeZone) {
if (timeZone == null) {
return null;

}

return new Dat eTi ne(Dat eTi mneZone. forl D(ti meZone));

}

7.4. Binary Sources

Some predictive models use binary data as input for scoring or classifying results. ZEMENTIS supports applying
models to binary data by ultilizing an external custom function. Given a proper binary input definition and a custom
function deployed in ZEMENTIS, the input binary data can be seamlessly integrated into the scoring/classifying
process. Binary data can be retrieved as abyt e[ ] . The types of data are listed in Table 7.1. Set Bl NARY_BUFFERED
as true in <Ext ensi on> element like the PMML fragment in Figure 7.4 to guarantee the binary data will not be

nul | after being consumed.

Figure 7.4. Binary (Buffered) DataType Example

<Dat aDi cti onary nunber Of Fi el ds="1">
<Dat aFi el d dat aType="bi nary" nanme="fiel d1" optype="categorical ">
<Ext ensi on ext ender =" ADAPA" nane="BI NARY_FORMAT" val ue="i nage/j peg" />
<Ext ensi on ext ender =" ADAPA" nane="BI NARY_BUFFERED' val ue="true" />
</ Dat aFi el d>
</ Dat aDi cti onary>

Here are the steps to create a corresponding custom function:
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* Implement a custom function as a static method of a Java class.
* Annotate it with a ZEMENTIS specific @ MVLFunct i ons annotation.
« Specify the type of the method parameter as byte[] .

The custom function can be compatible with the PMML data type of f i el d1 defined in PMML fragment Figure 7.4.

An example of a custom function is shown in Figure 7.5.

Figure 7.5. Custom Function of Buffered Binary Data Example

package com conpany. udf;
i mport com zenenti s. st ereotype. PMMLFuncti ons;

@MWLFunct i ons(nanespace = "com conpany. udf. Cust onfuncti ons")
cl ass Custonfunctions {

public static String convert(byte[] byteArray) {

String convertedString = ... ;
return convertedString;

Once the custom function in Figure 7.5 is compiled and deployed .
com conpany. udf . Cust onfFuncti ons: convert can be used exactly like a built-in function within Appl y trans-
formation expression. The PMML fragment in Figure 7.6 contains a simple example that uses the function defined

in Figure 7.5.

Figure 7.6. Example Using Custom Function of Buffered Binary Data in PMML

<Deri vedFi el d nane="fi el d2" optype="categorical" dataType="string">
<Apply function="com conpany. udf. Cust onfFuncti ons: convert" >
<Fi el dRef field="fieldl"/>
</ Appl y>
</ Deri vedFi el d>
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Chapter 8. Using ZEMENTIS for Hive In
AWS EMR Cluster

This chapter describes how to use AWS Data Pipeline to create and orchestrate complex, fault tolerant, and highly
available data work-flows by using ZEMENTIS for Hive on AWS EMR Cluster. This enables the user to periodically
access data where it is stored, process it at scale by leveraging ZEMENTIS for Hive and efficiently transfer the

results to AWS supported data sources.

Creating AWS Data Pipeline for a PMML model is a two-step process. First, a Data Pipeline definition file (repre-
sented in JSON format) is created for one or more PMML files using the pr epar e- pmm . sh script. This file needs
to be modified to meet your data and computation requirements. As a second step, this modified Data Pipeline
definition is then imported into AWS Data Pipeline service. An overview of these steps is illustrated in Figure 8.1

and described in detail in the following sections.

Figure 8.1. Overview of ZEMENTIS for Hive in AWS EMR Cluster
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8.1. Prepare AWS Data Pipeline Definition

Using the awsPi pel i ne parameter of the pr epar e- pnmi . sh script, the ZEMENTIS for Hive package can gener-
ate AWS Data Pipeline definition file in JSON format for the corresponding PMML files. The AWS Data Pipeline def-
inition enables the user to create an AWS Data Pipeline service that automates the movement of data and launches
AWS EMR Cluster for scoring data against a PMML model. In this section, we describe the process to generate and

customize the AWS Data Pipeline definition file with the following steps:
1. Execute the preparation script:

Running the pr epar e- pnmi . sh script with the additional awsPi pel i ne parameter generates a JSON file

containing the AWS Data Pipeline definition for each provided PMML model.

UPPI _DI R/ bi n/ prepare-pmm . sh PMML_DI R -awsPi pel i ne true

Once the preparation script is completed successfully, you will find a directory named uppi - out put created

under your current directory. The contents of that directory are described in Table 8.1.

Table 8.1. Output generated from the pr epar e- pmi . sh script

File or Directory Description

MODEL_NAME. j ar A JAR file for each valid model contained in the PMML file(s) as well as

generated Java code that serves as wrapper to these PMML file(s).

MODEL _NAME. sql A HiveQL script for each valid model contained in the PMML file(s).
Typically, this file will contain a CREATE statement for registering each
model as an UDF and a corresponding SELECT statement which acts

as a template for scoring data against that model via UDF.

MODEL_NAME. JSON A JSON file containing the AWS Data Pipeline definition for each valid
model contained in the PMML file(s).

prmm A directory containing copies of the processed PMML files for which
severe or warning messages were generated. The files get annotated
with comments that contain the relevant messages. Please note that
the annotated PMML files may be different than the original ones since
they are upgraded to the latest PMML version (version 4.4) and known

issues are corrected.

j ava A directory containing the generated Java code. This is the code that
gets compiled into the MODEL_NAME. | ar file.
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File or Directory

Description

cl asses

A directory containing the compiled Java code, along with the original
PMML files. This reflects the contents of the MODEL_NAME. j ar file.

2. Create the following folders in the S3 bucket.

* Logs Folder

 HiveQL Scripts Folder
» UPPI Libs Folder

« Input Data Folder

* Output Data Folder

« Shell Script folder

3. Customize the generated AWS Data Pipeline definition file, MODEL_NAME. J SON:

All the following entries in the generated MODEL__NAME. JSON need to be replaced with your corresponding

paths in the S3 bucket.

* s3://<<Logs Folder Location>> -

Logs folder name on S3

Example: s3://Bucket-Name/logs-folder-name

« s3://<<HiveQL Scripts Folder Location>> - HiveQL Scripts folder on S3

Example: s3://Bucket-Name/HiveQL-scripts-folder-name

* 53://<<UPPI Libs Folder Location>> - UPPI Libs folder on S3

Example: s3://Bucket-Name/UPPI-libs-folder-name

¢ s3://<<Input Data Folder Location>> - Input Data folder on S3

Example: s3://Bucket-Name/input-data-folder-name

* 53://<<Output Data Folder Location>> - Output Data folder on S3

Example: s3://Bucket-Name/output-data-folder-name

* s3://<<Shell Scripts Folder Location>> - Shell Scripts Folder on S3

Example: s3://Bucket-Name/shell-scripts-folder-name
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The following entry needs to be replaced with your key pair.

* "keyPair": "<<Your Key Pair Name>>"
Note

The Key pair name can be found in the Key Pairs which is located in the EC2 Management Console

under Network and Security.

The generated pipeline definition has a schedule defined with start and end times in UTC time format. The
schedule is used for populating data onto the staging area for your AWS EMR Cluster. By default, preparation
step populates start and end times with one hour gap. The user has an option to change those based on

their scheduling needs.
* "startDateTime": "<<Start Time>>"
«"endDateTime": "<<End Time>>"
4. Customize the generated HiveQL statement in MODEL_NAME. sql :

* Before creating a UDF function in Hive, users have to add the corresponding MODEL_NAME. j ar file in
Hive. Please refer to the sample script in the beginning of MODEL_NAME. sql and modify the path s3://
<<HiveQL Scripts Folder Location>> to the directory of your MODEL _NAME. j ar file.

* Users can create a new table using CREATE TABLE HiveQL statement to store the output of the data pro-
cessing. If you prefer to have a CSV output in s3://<<Output Data Folder Location>>, the HiveQL state-
ment starting with | NSERT OVERWRI TE TABLE ${ out put 1} needs to be uncommented in the generat-
ed MODEL_NAME. sqgl file. You will also have to review the data format specified in the MODEL_NAME. sql
and MODEL__NAME. JSON files. The field names of TABLE ${out put 1} should match the field names
of Output_data_format element in MODEL_NANME. JSON file. For more information, please refer to AWS

Data Pipeline Data Format.

5. Add ZEMENTIS for Hive libraries (located in the | i b directory of the uppi - hi ve- 10. 11. 0. 1. zi p distri-
bution) to s3: // <<UPPI Li bs Fol der Location>>

6. Add MODEL_NAME. sql and MODEL_NAME. j ar filestos3:// <<Hi veQ. Scri pts Fol der Locati on>>
7. Compose a shell script for adding the libraries path in Hive:

nkdi r /home/ hadoop/ uppi _lib
touch / home/ hadoop/ hi ve/ conf/ hi ve-env. sh
echo "export H VE_AUX JARS PATH=/ hone/ hadoop/ uppi _|i b" >> /hone/ hadoop/ hi ve/ conf/ hi ve- env. sh
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and put the shell file in s3: // <<Shel | Scripts Fol der Location>>

8.2. Create and activate AWS Data Pipeline service

After the steps listed above are done, create a AWS Data Pipeline by importing the modified definition file
MODEL _NAME. JSON in the source section. The detailed steps on creating a AWS Data Pipeline service with a
MODEL_NAME. JSONfile can be found in Creating a Pipeline by Using the AWS Data Pipeline CLI. Aftera AWS Data
Pipeline service is created, the user can activate the AWS Data Pipeline service to launch AWS EMR Cluster for

processing data against PMML models.
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