
Natural Business Services

Understanding Natural Business Services

Version 5.3.1

February 2010

This document applies to Natural Business Services Version 5.3.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2006-2010 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Table of Contents

1 Understanding Natural Business Services .. 1
2 Introduction ... 3
3 Business Services and the Natural Construct Models .. 5

Parameters Exposed for Each Natural Construct Model ... 7
Parameters Available to All Services ... 8

4 Tips and Techniques .. 23
Wrap Multiple Subprograms into a Business Service .. 24
Use *ISN as the Unique Primary Key for Maintenance ... 26
Access the Value of +METHOD ... 28
Determine Where a Transaction is Completed .. 28

iii

iv

1 Understanding Natural Business Services

Understanding Natural Business Services provides details on howNatural Business Services creates
business services. This information includes an overview of the different types of business services
and an explanation of which Natural Construct models were used to generate each service.

Understanding Natural Business Services covers the following topics:

Provides an introduction to Natural Business Services.Introduction

Describes the different types of business services and how they
map to the Natural Construct models.

Business Services and the Natural
Construct Models

Contains coding tips you can refer to while creating business
services.

Tips and Techniques

1

2

2 Introduction

Basically, business services are comprised of the following components:

■ Natural subprograms that contain no screen Input/Output
■ Subprogram proxies, which are specialized Natural subprograms that retrieve data off the wire
and prepare it for the subprogram parameter data area (PDA)

■ A repository that stores the business service metadata, such as the service name, a description
of the service, and which methods the service will use.

The repository metadata can be used during development to determine which coding options
are available and at runtime to lock users out of certain business services ormethods. To provide
a logical grouping for security purposes, business services are stored in domains within each
repository. The repository also isolates client developers (Java or .NET) from the Natural code.
They simply select a business service in the repository and use the Business Services wizard to
generate the corresponding Java or .NET class.

After generating a business service, you can use the repository to test the service and then search
the repository to see the modules that were added for the service. The search option also provides
an ideal method of determining which business services currently exist.

Naming Conventions for Modules

For information on the naming conventions used by the wizards for the Natural modules and
how to change these conventions for your requirements, seeModify/Test theNamingConventions
for Natural Objects.

Subprograms Listed in the Repository

The repository lists all subprograms specified in the Natural Construct specifications. Although
we’ve implied a one-to-one relationship between a subprogram proxy and a subprogram, more
than one subprogram can be listed for each business service. This happens when the Business
Servicewizarduses theNatural ConstructObjectmodels to generate the subprograms. For example,

3

the wizard can generate a subprogram that “wraps” multiple subprograms into one wrapper
subprogram, which calls the other subprograms as required. Because the wrapper subprogram is
generated byNatural Construct, NBS can determinewhich subprograms it is calling and list them
in the repository.

Note: If a subprogram that is called by the wrapper subprogram calls another subprogram,
the other subprogram will not be listed in the repository.

Another example of more than one subprogram listed in the repository is the single view data
access service, which contains:

■ A subprogram that represents the single view
■ An object browse subprogram that retrieves the rows of data
■ Optionally, an object maintenance subprogram that maintains the data

Again, NBS will list these subprograms in the repository.

There can also be more than one subprogram proxy associated with each business service. An
example of this is the compound data access service. The generated object browse subprogram
and object maintenance subprogram for this type of service each require a subprogram proxy.

Understanding Natural Business Services4

Introduction

3 Business Services and the Natural Construct Models

■ Parameters Exposed for Each Natural Construct Model .. 7
■ Parameters Available to All Services ... 8

5

This section describes the different types of business services and how they map to the Natural
Construct models. All examples used in this section are from the demo application.

Note: For more information on the demo application, see Supplied Demo Applications.

The following table lists the service types and how they relate to the Business Service wizard and
Natural Construct models:

Natural Construct Model UsedBusiness Service Wizard OptionService Type

Arbsub (arbitrary
subprogram)

■■ Subprogram-ProxyBased on existing
subprograms/Directly enable
subprogram

■■ Subprogram-Proxy (and thewizard creates
the skeleton subprogram)

Create an empty service skeleton

Traditional ■■ Subprogram-Proxy for Object-Browse or
Object-Maint (or both if they access the
same file)

Based on existing subprograms/Use
traditional defaults

■■ Object-Browse and/or Object-Maint, as
well as Subprogram-Proxy for
Object-Browse and/or Object-Maint

Generate new subprograms for data
access/Generate compound data
access service

Object-Browse-Select ■■ Object-Browse-Select and
Subprogram-Proxy

Based on existing
subprograms/FindBy methods

■■ Object-Maint (optional and not exposed
to the client), Object-Browse (not exposed

Generate new subprograms for data
access/Generate single view data
access service to the client), Object-Browse-Select, and

Subprogram-Proxy

Object-Generic ■■ Subprogram-Proxy and
Object-Generic-Subp

Based on existing subprograms

Notes:

1. For more information on business service types, see Business Service Types.

2. For information on subprogram proxies, see Natural Business Services Subprogram-Proxy-
Client Model.

3. For information on the Object models, see Natural Construct Object Models.

This section covers the following topics:

Understanding Natural Business Services6

Business Services and the Natural Construct Models

Parameters Exposed for Each Natural Construct Model

The following table lists each Natural Construct model used to create business services and the
parameters exposed for each one:

Parameters ExposedModel

Subprogram-Proxy ■ +METHOD
■ Parameters for the subprogram that is called by the proxy (these parameters are
described with each model)

Object-Maint ■ Object PDA (M5charA)
■ Key PDA (M5charA)
■ Restricted PDA (M5charR)
■ CDAOBJ2 PDA
■ Message parameters (CDPDA-M)
■ Additional parameters as specified by the developer

Object-Browse ■ Key PDA (A5charK)
■ Row PDA (A5charD)
■ Restricted PDA (A5charP)
■ Standard browse parameters (CDBRPDA)
■ Message parameters (CDPDA-M)
■ Additional parameters as specified by the developer

Object-Browse-Select ■ Row PDA (B5charNE1)
■ Additional row parameters as specified by the developer
■ Service state parameters (CDBUPDA)
■ Business service transaction parameters (CDBUINFO)
■ Business service message parameters (CDBUINFO)
■ Restricted PDA (A5charP)
■ Key PDA (A5charK)
■ Additional service parameters as specified by the developer

Object-Generic-Subp ■ #BIZ-INPUTS
■ #BIZ-OUTPUTS
■ #BIZ-STATE
■ #BIZ-INPUT-OUTPUTS

7Understanding Natural Business Services

Business Services and the Natural Construct Models

Parameters Available to All Services

This section describes the parameters available to all supplied business services. The following
topics are covered:

■ +METHOD
■ User-Defined Parameters
■ Parameters Common to Object-Browse and Object-Maint Models
■ Parameters Specific to the Object-Maint Model
■ Parameters Specific to the Object-Browse Model
■ Parameters Specific to the Object-Browse-Select Model
■ Parameters Specific to the Object-Generic-Subp Model

+METHOD

Every business service requires a subprogram proxy. This subprogram:

■ Converts data from the communication layer (for example, EntireX send/receive buffers, SPoD
message buffer) into Natural formats

■ Creates an independent variable called +METHOD containing the method that was used

If the client requests the Add method, for example, the +METHOD variable contains the value
“Add” by the time the processing gets to the subprogram containing the business logic. This can
be particularly useful when a subprogram handles more than one method.

To access the value in +METHOD within a subprogram, add +METHOD to the DEFINE DATA
statement as an independent variable. For example:

* Methods for current user
 INDEPENDENT
 01 +METHOD (A32) /* Business Method

Note: For an example of how this strategy is used, refer to the BNUM subprogram in the
SYSBIZDE library. Although this subprogram was created using the Object-Generic-Subp
model, the same strategy can be used with other models.

Understanding Natural Business Services8

Business Services and the Natural Construct Models

User-Defined Parameters

All services allow you to include additional parameters that are unique to your business require-
ments. You must add these parameters within user exits for the appropriate subprograms on the
server.

Note: If you change the parameter data area in the program editor, you must regenerate
the subprogram proxy to reflect the change. To do this, open the context menu for the
business service in the repository tree and select Regenerate the proxy.

Parameters Common to Object-Browse and Object-Maint Models

The following PDA is common to both the object browse and object maintenance subprograms:

DescriptionMCUSTN ExampleDefault Level 1 NameDefault Natural PDA
Name

Name

Messages from the server indicating
which action took place (for example,
Order added successfully).

CDPDA-MMSG-INFOCDPDA-MMessage

The MSG-INFO level 1 structure in the CDPDA-M PDA contains the following variables:

PurposeFormatValueVariable

Contains message data.A79Text##MSG

Contains message number in SYSERR.N4A number##MSG-NR

Containsmessage data substituted for themessage
number :n: notation. Up to three values can be used
(:1: :2: and :3:).

A32/1:3Data##MSG-DATA

A1##RETURN-CODE ■ Information■ Blank
■ W ■ Warning

■■ Fatal errorE

Contains the name of the field in error; this variable
can be used to highlight the appropriate field in
the user interface.

A32A field name##ERROR-FIELD

Indicates which occurrence in an array is causing
a problem. Since the error field can be an array,

P3Occurrence
numbers

##ERROR-FIELD-INDEX1,
##ERROR-FIELD-INDEX2,

this variable provides the opportunity to indicate
which occurrence is causing the problem.

and
##ERROR-FIELD-INDEX3

9Understanding Natural Business Services

Business Services and the Natural Construct Models

Parameters Specific to the Object-Maint Model

Every object maintenance subprogram contains a minimum of four PDAs, which correspond to
five level 1 structures.

Note: For an example of an object maintenance subprogram, refer to the MCUSTN subpro-
gram in the SYSBIZDE library. This Customer service is located in the DEMO domain,
version 010101.

These PDAs are:

DescriptionMCUSTN
Example

Default Level 1
Name

Default Natural
PDA Name

Name

An instance of data from the file that is being
maintained (for example, CustomerNumber,
Business Name).

MCUSTAM5charAM5charAObject PDA

The key value used to retrieve the instance
of data being maintained (for example,

MCUSTAM5charAM5charA-IDKey PDA

Customer Number). Since the object
maintenance subprogram moves data from
the object PDA to the key PDA, the key PDA
should be reserved for internal use only.

State information that allows the server to
“remember” the last object retrieved.

MCUSTRM5charRM5charRRestricted PDA

Messages from the server indicating what
action took place (for example, Order added
successfully).

CDPDA-MMSG-INFOCDPDA-MMessage
parameters

Parameters specific to the objectmaintenance
subprogram.

CDAOBJ2CDAOBJ2CDAOBJ2Maintenance
parameters

Note: The Business Servicewizard assigns up to five characters to identify the service (5char).

The advantage of using Natural Construct-generated code is that the generator can recognize and
write the appropriate code for a Natural Construct object. The CDAOBJ2 parameter data area
provides options to control the functionality of the object maintenance subprogram. The object
PDA contains the key PDA as a separate level 1 structure. The object PDA includes some of the
same fields as the key PDA. If the keywas CustomerNumber, for example, the CustomerNumber
variable is contained in the object PDA twice, once under each level 1 structure. As the key PDA
is used internally, it should not be modified.

Understanding Natural Business Services10

Business Services and the Natural Construct Models

The CDAOBJ2 PDA contains the following variables:

PurposeFormatValueVariable

Parameter group that quickly identifies
possible inputs for the object maintenance
subprogram.

2 INPUTS

Contains the function for an object
maintenance subprogram. Typically, there

A15GET,
FORMER,

3 #FUNCTION

is a direct relationship between the businessNEXT,
service method and #FUNCTION. (For anUPDATE,
example of this, refer to themethods for theDELETE,
Customer business service in the DEMO
domain, version 010101.)

The power of aNatural Construct-generated
object maintenance subprogram is greatest

STORE,
EXISTS,
INITIALIZE
and any
other values

when there are intra-object relationshipsthat have
been coded between files. In an intra-relationship, lower

level file records must be deleted when a
higher level file record is deleted (when an
order header is deleted, for example, all
order lines must also be deleted). You can
define intra-object relationships in Predict
and Natural Construct generates the
appropriate code to handle the complexity
of these relationships. When an order is
updated, for example, an order line is
added, deleted, or updated. A Natural
Construct-generated object recognizes these
relationships and handles this complexity
automatically.

Indicates the number of input flags. A
standard object maintenance subprogram

L/1:10True/False3 FLAGS-IN

uses five input flags, although 10 flags are
available.

Contains additional input flags. If you
include additional input flags in user exit

3 REDEFINE FLAGS-IN

code, you can add them in this FLAGS-IN
redefinition.

Indicates whether to reset the object PDA
after an Update action. If you want the

True/False4 #CLEAR-AFTER-UPDATE

object PDA to be reset after an Update
action, set this variable to True.

Indicates alternate processing. Although
this variable is not used in generated code,

True/False4 #RETURN-OBJECT

it can be used in user exit code. For example,
if this variable is True and the client executes

11Understanding Natural Business Services

Business Services and the Natural Construct Models

PurposeFormatValueVariable

the EXISTS method, you can write user exit
code to execute the GET method instead.

Indicates the successful processing of an
Update action. The object maintenance

True/False4 #ET-IF-SUCCESSFUL

subprogram will only issue an END
TRANSACTION statement if this variable
is True and an update was performed.

Indicates the use of Adabas ISN values to
retrieve data. If this variable is True, the ISN

True/False4 #USE-ISN

(rather than the key value) can be used to
retrieve data. Use the USE-ISN variable
when an object-browse-select subprogram
retrieves data via a non-unique key. When
the data is modified, the ISN can be used as
the unique key to retrieve the data. Formore
information, see Use *ISN as the Unique
Primary Key for Maintenance.

Indicates that aBACKOUTTRANSACTION
statement was issued. If a BACKOUT

True/False4 #BACKOUT-ISSUED

TRANSACTIONstatementwas issued, this
variable is set to True.

2 OUTPUTS

Indicates the number of output flags. A
standard object maintenance subprogram

L/1:10True/False3 FLAGS-OUT

uses five output flags, although 10 flags are
available.

Contains additional output flags. If you
include additional output flags in user exit

3 REDEFINE FLAGS-OUT

code, you can add them in this FLAGS-OUT
redefinition.

Indicates whether a field is derived (i.e., is
not directly from the database). If a field is

True/False4 #OBJECT-CONTAINS-DERIVED-DATA

derived, this variable can be set to True in
user exit code.

Indicates whether an object exists in the
database after a GET, NEXT, FORMER, or

True/False4 #EXISTS

EXISTSmethod is issued. If the object exists
in the database after one of these methods
is issued, this variable is set to True.

Understanding Natural Business Services12

Business Services and the Natural Construct Models

Parameters Specific to the Object-Browse Model

Every object browse subprogram contains a minimum of five PDAs.

Note: For an example of an object browse subprogram, refer to the ACUST2N subprogram
in the SYSBIZDE library. This Customer business service is located in the DEMO domain,
version 010101.

These PDAs are:

DescriptionACUST2N ExampleDefault Level 1
Name

Name

N rows of data from the file being browsed (for
example, 20 rows containing Customer Number,
Business Name, Phone Number, etc.).

ACUST2DA5charDRow PDA

All elementary components that make up the
specified keys (for example, Customer Number,
Business Name).

ACUST2KA5charKKey PDA

State information for a stateless environment. This
allows the server to “remember” the position of the
last call and retrieve the next n rows of data.

ACUST2PA5charPRestricted PDA

Messages from the server indicating what action
took place (for example, Orders browsed
successfully).

CDPDA-MCDPDA-MMessage
parameters

Parameters specific to the object browse
subprogram.

CDBRPDACDBRPDABrowse
parameters

Note: The Business Servicewizard assigns up to five characters to identify the service (5char).

The advantage of using Natural Construct-generated code is that the generator can recognize and
write the appropriate code for a Natural Construct object. The CDBRPDA parameter data area
provides options to control the functionality of the object browse subprogram.

The CDBRPDA PDA contains the following variables:

PurposeFormatValueVariable

Parameter group that quickly identifies possible
inputs for the object browse subprogram.

2 INPUTS

Retrieves rows. The value for this variable is
generally 0, although you can use the variable to
process data in a different manner if required.

N103 METHOD

Indicates which key should be used for this query.
Since the object browse subprogram can have up

A32The name
of one of
the keys

3 SORT-KEY

to five logical keys, the data in this variable

13Understanding Natural Business Services

Business Services and the Natural Construct Models

PurposeFormatValueVariable

indicates which key to use. Data is returned in key
order.

Indicates what is returned by the object browse
subprogram. If this variable is set to True, the object

LTrue/False3 HISTOGRAM

browse subprogramonly returns the unique values
of the key and a count of how many rows contain
each unique value.

Indicates the allocated number of rows assigned to
an object browse subprogram. If fewer than the

N4A number3 ROWS-REQUESTED

allocated number are required, you can enter a
number in this field to specify how many rows to
return.

Note: If the number entered in this field is higher
than the allocated rows, a runtime error occurs.

Identifies the range option. The options are:N20, 1, 2, 3, 4,
5, 6, 7

3 RANGE-OPTION

■ 0 (default)

Displays the data based on the sort order. You
can use wildcard symbols in the key value
location (*, >, <, etc.). For example, you can use
the following symbols in the Name field:
■ A* (all names starting with A)
■ C> (all names greater than C)
■ M< (all names less than M)

■ 1 (less than)
■ 2 (less than or equal to)
■ 3 (equal to)
■ 4 (greater than or equal to)
■ 5 (greater than)
■ 6 (begins with)
■ 7 (no wildcard)

Indicates the number of leading fixed key values
for the logical key. This variable increases the

N2A number3LEADING-FIXED-COMPONENTS

default number of leading fixed key values for the
logical key. All values supplied up to this number
of components match the corresponding values in
the returned rows.

Indicates how to browse by a non-unique key. This
variable is set when browsing by a non-unique key;

LTrue/False3 USE-UNIQUE-ID

it is used to simulate backwards scrolling. For

Understanding Natural Business Services14

Business Services and the Natural Construct Models

PurposeFormatValueVariable

example, if you are browsing by Name and want
to begin at Smith, ISNnumber 1234, any Smithwith
an ISN of less than 1234 will be ignored.

The value for the required unique IDmust be placed
in the browse key PDA.

Note: For non-Adabas files, the primary key
determines uniqueness.

2 INPUT-OUTPUTS

Restarts the browse from the beginning of the file.
If this variable is True, the browse will start from

LTrue/False3 RESTART

the beginning of the file instead of from the next
group of rows.

2 OUTPUTS

Contains the actual number of rows returned. The
number will be less than or equal to the number of
rows requested.

N4A number3 ACTUAL-ROWS-RETURNED

Indicates the end of the file. This variable is set to
True when all the rows in the database have been
read.

LTrue/False3 END-OF-DATA

Indicates that the browse has been restarted. A
browse can be restarted if the client explicitly asks

I10, 1, 2, 3, 43 RESTARTED

for it orwhen critical values change. The reason the
subprogramwas restarted is explained in this field
based on the following values:

■ 1 (explicit restart; i.e., RESTART was True)
■ 2 (key information changed)
■ 3 (start value changed)
■ 4 (unique ID changed)

Parameters Specific to the Object-Browse-Select Model

Every object browse-select subprogram contains a minimum of five PDAs, which correspond to
six level 1 structures.

Note: For an example of an object browse-select subprogram, refer to the BCUST2N subpro-
gram in the SYSBIZDE library. This CustomerWithContacts business service is located in
the DEMO domain, version 020101.

15Understanding Natural Business Services

Business Services and the Natural Construct Models

These PDAs are:

DescriptionBCUST2N
Example

Default Level 1
Name

Default Natural
PDA Name

Name

N rows of data from the file being
browsed (for example, 20 rows

BCUST2NE1
(in
BCUST2N)

B5charNE1Internal PDA
in object
browse-select
subprogram

Row PDA

containing Customer Number, Business
Name, Phone Number, etc.).

Note: A user exit is available to add
additional and derived data to the row
PDA.

All elementary components that make
up the specified keys for the object

ACUST2KA5charKA5charKKey PDA

browse subprogram (for example,
Customer Number, Business Name).

State information for a stateless
environment. This allows the server to

ACUST2PA5charPA5charPRestricted PDA

“remember” the position of the last call
and retrieve the next n rows of data in
the object browse subprogram.

Messages from the server that pertain to
all rows (for example, 20 rows retrieved
successfully).

CDBUINFOBUSINESS-INFOCDBUINFOBusiness service
message
parameters

Transaction logic flags indicating when
a transaction has been processed or

CDBUINFOCDBUINFOCDBUINFOCommon service
transaction
parameters whether a back out transaction statement

has been issued.

Parameters specific to the object browse
subprogram.

CDBUPDACDBUPDACDBUPDABrowse-specific
service state
parameters

Note: The Business Servicewizard assigns up to five characters to identify the service (5char).

Note: Anobject browse-select subprogram requires an object browse subprogram. To access
the object browse subprogram, the key PDAand restricted PDA for the object browse-select
subprogram are identical to those used by the object browse subprogram.

The advantage of using Natural Construct-generated code is that the generator can recognize and
write the appropriate code for a Natural Construct object. The CDBUPDA and CDBUINFO para-
meter data areas provide options to control the functionality of the object browse-select subprogram.

An object browse-select subprogram can optionally use an object maintenance subprogram (for
example, BCUST2N uses the MCUST2N object maintenance subprogram). The parameters to call
the objectmaintenance subprogramdonot need to be exposed because all required data is contained
in the row PDA. With this philosophy, you should be aware of the following considerations:

Understanding Natural Business Services16

Business Services and the Natural Construct Models

■ If the object maintenance subprogram uses the hash method of record locking (as opposed to
the timestampmethod), the hashed value is required. To facilitate this, the object browse-select
subprogram adds a field called ROW-HASH to the EXTRA-ROW-DATA parameter in the in-
ternal row PDA.

■ If the object maintenance subprogram contains intra-object relationships, which translate into
two or three-dimensional arrays, the row PDA becomes large and potentially insufficient since
Natural can only handle three dimensions and the row PDA already has a dimension (which
would then require a 4th dimension). Because of this, the object browse-select subprogramwill
not automatically process objectmaintenance subprograms containing intra-object relationships.

Note: If this functionality is required, it can be handled within user exits.

Extensions of the Object Browse Row PDA

The internal row PDA (B5charNE1) contains the variables in the object browse subprogram’s row
PDA, as well as the following variables:

PurposeFormatVariable

03
EXTRA-ROW-DATA

Contains variable indicating the row state. This variable passes internal actions
and messages between the client and the server. Existing states can be found
in CDSTATE. For a list of valid values, see ROW-STATE Values.

A204 ROW-STATE

Contains the hashed value of the row when it was populated by the object
browse subprogram. This variable is for internal use only; do not change the
value.

The hashedvalue is comparedwith the hashedvalue of the objectmaintenance
subprogram data when the object is retrieved and locked. If the values are

B2004 ROW-HASH

the same, no data maintenance has taken place between the time the object
was displayed in the row and the time it was locked for data maintenance.

If this variable is not in the extra row data, it is not required either because
the object browse-select subprogram is not using an object maintenance
subprogram to do data maintenance or because the object maintenance
subprogram is using the timestamp or log counter method of optimistic
record locking.With this method, the required data is contained in the object
browse PDA and no extra variables are required.

Maintains state with the .NET client dataset. This variable is for internal use
only; do not change the value.

N504 ROW-ID

Contains error information at the row level. If an object maintenance
subprogram is usedwith an object browse-select subprogram, this information

04
ROW-ERROR-DATA

would typically be contained in the CDPDA-M variables after a call to the
object maintenance subprogram.

17Understanding Natural Business Services

Business Services and the Natural Construct Models

PurposeFormatVariable

Contains the name of the field that is causing the error.A3205 ##ERROR-FIELD

Contains the message number used to retrieve the error from SYSERR.N405 ##MSG-NR

Contains the rowmessage (typically fromCDPDA-M) aftermaintenance has
been performed on the row.

A7905 ##MSG

ROW-STATE Values

The available values for the ROW-STATE variable are:

Row StateValue

#BLANK-STATEblank

#ADD-ROWA

#DELETE-ROWD

#ROW-ERRORE

#GET-ROWG

#UPDATE-ROWU

#ADD-BACKED-OUTAB

#ROW-ADDED-PENDINGAP

#ROW-ADDED-SUCCESSFULLYAS

#DELETE-BACKED-OUTDB

#ROW-DELETED-PENDINGDP

#ROW-DELETED-SUCCESSFULLYDS

#RETRIEVED-SUCCESSFULLYGS

#INVALID-STATEIS

#INTERVENING-UPDATEIU

#RESTRICTED-METHODRM

#UPDATE-BACKED-OUTUB

#ROW-UPDATED-PENDINGUP

#ROW-UPDATED-SUCCESSFULLYUS

Understanding Natural Business Services18

Business Services and the Natural Construct Models

Subsets of the Object Browse Standard PDAs

An object browse-select subprogram includes several subsets of the standard PDAs for an object
browse subprogram.

The CDBUINFO PDA (in the BUSINESS-INFO level 1 structure) contains the following subset of
variables in the CDPDA-M PDA:

■ ##MSG
■ ##MSG-NR
■ ##RETURN-CODE

For more information, see Parameters Common to Object-Browse and Object-Maint Models.

The CDBUPDA PDA contains the following subset of variables in the CDBRPDA PDA:

■ 2 INPUTS
■ 3 RANGE-OPTION
■ 2 INPUT-OUTPUTS
■ 3 RESTART
■ 3 ACTUAL-ROWS-RETURNED
■ 2 OUTPUTS
■ 3 END-OF-DATA
■ 3 RESTARTED

For more information, see Parameters Specific to the Object-Browse Model.

Additional Standard PDA Variables

The CDBRPDA PDA contains the following additional variables for an object browse-select sub-
program:

PurposeFormatValueVariable

Determines where a transaction is completed. The following values
are available:

A1Blank, 1, 2,
3, 4, or 5

2
##TRANSACTION

■ Blank (default)

Typically, the default is the aggressive row object, but this can be
overridden in the object browse-select subprogram (determined
by the service coder).

■ 1 (aggressive row object)

19Understanding Natural Business Services

Business Services and the Natural Construct Models

PurposeFormatValueVariable

Indicates that an END TRANSACTION statement is issued after
each row has been updated; if an error occurs while maintaining
a row, processing will continue.

■ 2 (passive row object)

Indicates that an END TRANSACTION statement is issued after
each row has been updated; if an error occurs, it is noted and all
processing will end immediately.

■ 3 (business service object)

Indicates that an ENDTRANSACTION statement is issued at the
end of the business service processing; if an error occurs, it is
noted and any changes to previous rows are backed out.

■ 4 (client controlled object)

Indicates that the server does not issue an END TRANSACTION
statement. This is helpful if the transaction spans more than one
database and/or environment. The END TRANSACTION
statement can be issued as an independent client call.

■ 5 (unique object)

Indicates that there is unique transaction logic which requires
custom coding.

Indicateswhether a back out transaction statement has been issued.
If a back out has been issued, this variable is set to True.

LTrue/False2 #BACKOUT

Parameters Specific to the Object-Generic-Subp Model

Every object generic subprogram contains aminimumof one PDA, including four level 1 structures
that are available when the Categorize parameters option is selected (which is recommended for
advanced business service developers):

■ #BIZ-INPUTS
■ #BIZ-OUTPUTS
■ #BIZ-STATE
■ #BIZ-INPUT-OUTPUTS

When the Categorize parameters option is not selected, the PDA is similar to those used for the
subprograms that are being wrapped. The only difference is that all level 1 structures in the
wrapper subprogram include an "E1-" prefix. For example, the parameters for the CALC subpro-
gram are:

DEFINE DATA PARAMETER
1 INPUT-DATA

Understanding Natural Business Services20

Business Services and the Natural Construct Models

 2 #FUNCTION (A30)
 2 #FIRST-NUM (N5.2)
 2 #SECOND-NUM (N5.2)
 2 #SUCCESS-CRITERIA (N5)
1 OUTPUT-DATA
 2 #RESULT (N11.2)
 2 #TIME (T)
 2 #SUCCESS (L)
END-DEFINE

If this subprogram is wrapped, the wrapper subprogram will contain the following parameters:

DEFINE DATA
 PARAMETER
 01 E1-INPUT-DATA
 02 #FUNCTION (A30)
 02 #FIRST-NUM (N5.2)
 02 #SECOND-NUM (N5.2)
 02 #SUCCESS-CRITERIA (N5)
 01 E1-OUTPUT-DATA
 02 #RESULT (N11.2)
 02 #TIME (T)
 02 #SUCCESS (L)

The "E1-" prefix helps distinguish between the external parameters in the wrapper subprogram
and the internal local data area variables used to call the wrapped subprogram.

Notes:

1. For an example of an object generic subprogram, refer to the BSTRINGN subprogram in the
SYSBIZDE library. This StringManipulation business service is located in the DEMO domain,
version 010101.

2. For more information on using object generic subprograms, seeWrap Multiple Subprograms
into a Business Service.

21Understanding Natural Business Services

Business Services and the Natural Construct Models

22

4 Tips and Techniques

■ Wrap Multiple Subprograms into a Business Service .. 24
■ Use *ISN as the Unique Primary Key for Maintenance .. 26
■ Access the Value of +METHOD .. 28
■ Determine Where a Transaction is Completed ... 28

23

This section contains information you can refer towhile developing business services. The following
topics are covered:

Wrap Multiple Subprograms into a Business Service

When creating business services based on existing subprograms, the real power of this type of
business service comes from a developer’s customizations. (For examples of these customizations,
refer to the BNUM and BSTRINGN subprograms in the SYSBIZDE library.)

One of your goals as a business service developer is to simplify the business service for a consumer
by exposing as little as possible and by categorizing the information that is expected of the business
service. To do this, determine which subprogram parameters must be exposed by the business
service and categorize them into four categories: Input, Input andOutput, State, and Output. This
is done for the following reasons:

1. It helps the business service consumer easily identifywhat the service is expecting (input), what
is passed back (output), what is necessary to maintain the state of the service on the server (but
not necessary to expose on a GUI) (state), and what attributes can be considered for both input
and output (input and output).

Note: Even if data is passed to the service in the output attributes, these attributes will
be reset before processing on the server takes place. It is also assumed that even though
values can change on the server for the input attributes, these values will not be reflected
back to the client (but you can override these principals).

2. Some level 1 groupings or individual parameter variables do not need to be exposed on the
client. Although they are required for the lower-level subprogram(s), the server understands
the requirements and, with your help, can derive the appropriate values. In the BNUM subpro-
gram, for example, the two internal programs require two operands, but the first subprogram
called them #FIRST-NUM and #SECOND-NUM and the second subprogram called them #OP-
ERAND-1 and #OPERAND-2. The business service developer decided to expose #FIRST-NUM
and #SECOND-NUMand handle the correct population of these variables in the **SAGDEFINE
EXIT MOVE-TO and **SAG DEFINE EXIT MOVE-BACK exits.

If two subprograms use the same PDA containing the same level 1 structure, the first level 1 en-
countered will be processed. An example of this situation is the CDPDA-Mmessaging PDA used
in many Natural Construct-generated subprograms. If two subprograms have the same level 1
name, but the content is different, youmust analyze this information and determine how it should
be processed. But what happens if duplicate variable names get placed under the same category?
For example, in the scenario below both EMPL and VEH can be selected for the INPUT and
OUTPUT category:

1 EMPL
 2 PERSONNEL-ID (A8)

Understanding Natural Business Services24

Tips and Techniques

 2 NAME (A30)
1 VEH
 2 PERSONNEL-ID (A8)
 2 MODEL (A30)

This creates a problem because attributes are uniquely identified within level 1 groupings. When
the wrapper subprogram places these two groups under the #BIZ-INPUT-OUTPUTS grouping,
it creates the following data structure:

01 #BIZ-INPUT-OUTPUTS
 02 EMPL
 03 PERSONNEL-ID (A8)
 03 NAME (A30)
 02 VEH
 03 PERSONNEL-ID (A8)
 03 MODEL

ANatural developerwill recognize that this codewill not compile and a business service developer
will recognize the potential of exposing redundant attributes. It is important that the business
service consumer not have more attributes than required as that causes larger messages to be
transported across the network than are necessary and adds to the complexity of the business
service by exposingmore attributes than are required. Unless the data should be different between
the data structures, the business service expects only one input/output attribute calledPERSONNEL-
ID in the example above. If the data should be different, the attributes must clearly define the
difference as you do not want the consumer providing PERSONNEL-ID in the EMPL structure
when it was needed in the VEH structure. What really matters is that this business service has an
attribute called PERSONNEL-ID and the business service developer decides how to handle the
internal structures.

One solution to this scenario is to take PERSONNEL-ID out of EMPL and VEH and place it at a
common level within the set category. For example:

01 #BIZ-INPUT-OUTPUTS
 02 EMPL
* 03 PERSONNEL-ID (A8)
 03 NAME (A30)
 02 VEH
 * 03 PERSONNEL-ID (A8)
 03 MODEL
 02 PERSONNEL-ID (A8)

With this solution, nothing has to change in the MOVE user exits. The only down side to this
solution is if there are different formats and lengths for variableswith the same name. For duplicate
level 1 structures and duplicate fields, only the first fieldwill be processedwith the Business Service
wizard. The duplicate fields will still exist in the structures in their original formats and lengths,
but they will be commented out (see above). This code, however, is generated into user exits so
you can modify the solution.

25Understanding Natural Business Services

Tips and Techniques

Note: If a parameter data area is changed in a business service subprogram, youmust regen-
erate the business service proxy.

In the MOVE exits above, there are typically MOVE BY NAME statements. Ensure that you do
not accidently overwrite these assignments. For example, the following code was added to the
MOVE-BACK exit in the BSTRINGN subprogram to prevent the MOVE BY CSACASE statement
from overwriting the data in #BIZ-INPUT-OUTPUTS. For the ReverseString method,
CSACASE.INPUT-STRING would be blank:

IF +METHOD = 'ReverseString' THEN
 MOVE BY NAME FLIPSTRA TO #BIZ-INPUT-OUTPUTS
 #BIZ-OUTPUTS.MSG := ##MSG
 #BIZ-OUTPUTS.MSG-NR := ##MSG-NR
 ELSE
 MOVE BY NAME CSACASE TO #BIZ-INPUT-OUTPUTS
 END-IF

Use *ISN as the Unique Primary Key for Maintenance

When using the Business Service wizard to generate new subprograms for data access, one of the
options is to generate a single view data access service. This option allows the service to browse
by a non-unique keywhile uniquelymaintaining the data object using Adabas’s internal sequence
number (*ISN).

To take advantage of this feature, the business service must be generated:

■ With both the browse and maintenance functions
■ For a single view
■ With the GET-BY-ISN option enabled

This section covers the following topics:

■ Enable the GET-BY-ISN Option
■ Test the *ISN Feature

Understanding Natural Business Services26

Tips and Techniques

■ Generate a Single View Service that Maintains Data by ISN

Enable the GET-BY-ISN Option

To enable the GET-BY-ISN option:

1 Logon to the SYSCSTX library.

2 Edit the CSXDEFLT subprogram and uncomment the following code:

VALUE 'GET-BY-ISN'
 CSADEFLT.PARM-VALUE := TRUE

3 Stow CSXDEFLT.

4 Use the SYSMAIN utility to copy CSXDEFLT to SYSLIBS.

Tip: To implement this functionality for an existing business service, regenerate the business
service after specifying the GET-BY-ISN option. (The entire service must be regenerated,
not just the proxy.)

Test the *ISN Feature

To test that this feature is working:

1 Open the context menu for the business service in theNBS Repositories view.

For information, see:

■ Eclipse plug-in: Test a Business Service
■ Natural plug-in: Test a Business Service

2 Test a FindBy method that returns non-unique keys.

3 Modify non-key data in the rows that have non-unique keys.

4 Enter "U" in the State field for each row that you modified.

This will update the rows.

5 Use the MultiMaint method to modify the data (after all data is entered).

The data was successfully committed to the database if the State field is now US.

Notes:

1. For an objectmaintenance subprogram, this featureworkswith theGET,UPDATE, andDELETE
methods. If the feature is enabled, the object PDA contains an extra field called OBJECT-ISN.

27Understanding Natural Business Services

Tips and Techniques

To allow the object maintenance subprogram to use this value, OBJECT-ISNmust be populated
and the #USE-ISN value in the CDAOBJ2 data area must be set to True.

2. This option is not currently available for the NEXT and FORMER actions.

Generate a Single View Service that Maintains Data by ISN

If the GET-BY-ISN option has been defined in the CSXDEFLT subprogram, the Business Service
wizard can use an existing object browse and object maintenance subprogram to generate a single
view data access business service that browses by a non-unique key and maintains data by *ISN.
To do this, the existing subprograms must:

■ Access the same file (for example, the ACUSTN and MCUSTN subprograms)
■ Not have intra-object relationships

The wizard uses the Object-Browse-Subp model to generate an object browse-select subprogram
that uses the FindBy methods. For more information, see:

■ Eclipse plug-in: By Generating New Subprograms for Data Access.
■ Natural plug-in: By Generating New Subprograms for Data Access.

Access the Value of +METHOD

The +METHOD variable contains the method that was used by a subprogram. For information
on accessing the value in +METHOD within a subprogram, see +METHOD.

Determine Where a Transaction is Completed

The ##TRANSACTION variable determines where a transaction is completed. For information on
this variable, see Additional Standard PDA Variables.

Understanding Natural Business Services28

Tips and Techniques

	Understanding Natural Business Services
	Table of Contents
	1 Understanding Natural Business Services
	2 Introduction
	3 Business Services and the Natural Construct Models
	Parameters Exposed for Each Natural Construct Model
	Parameters Available to All Services
	+METHOD
	User-Defined Parameters
	Parameters Common to Object-Browse and Object-Maint Models
	Parameters Specific to the Object-Maint Model
	Parameters Specific to the Object-Browse Model
	Parameters Specific to the Object-Browse-Select Model
	Extensions of the Object Browse Row PDA
	ROW-STATE Values

	Subsets of the Object Browse Standard PDAs
	Additional Standard PDA Variables

	Parameters Specific to the Object-Generic-Subp Model

	4 Tips and Techniques
	Wrap Multiple Subprograms into a Business Service
	Use *ISN as the Unique Primary Key for Maintenance
	Enable the GET-BY-ISN Option
	Test the *ISN Feature
	Generate a Single View Service that Maintains Data by ISN

	Access the Value of +METHOD
	Determine Where a Transaction is Completed

