
Natural Business Services

Natural Construct Administration and Modeling

Version 5.3.1

February 2010

This document applies to Natural Business Services Version 5.3.1.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2006-2010 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Table of Contents

1 Natural Construct Administration and Modeling .. 1
User Documentation .. 4
Installation Documentation ... 4
Other Documentation .. 4
Related Courses .. 5
Conventions ... 5

2 Introduction to Natural Construct .. 7
What is Natural Construct? ... 8
Access Natural Construct .. 9
Use Standard PF-Keys .. 14
Access Online Help .. 15
Convert Text to Upper Case ... 17
Maintain Messages for Generated Programs ... 18
Store Saved Modules .. 18
Use Direct Commands ... 19

3 Using the Administration Subsystem ... 21
Access the Administration Main Menu ... 22
Create and Maintain Natural Construct Models ... 24
Multilingual Support for Natural Construct ... 55
Access the Administration Main Menu in Translation Mode 57
Access and Use the Sample Exit Subprograms .. 63

4 Using the Code Frame Editor .. 73
Access the Code Frame Editor ... 74
Features of the Code Frame Editor .. 77

5 Creating New Models ... 87
Components of a Natural Construct Model .. 88
How the Natural Construct Nucleus Executes a Model .. 89
Build a New Model .. 90
Test the Model Subprograms ... 135
Implement Your Model .. 142
Create Statement Models ... 142
Use the Supplied Utility Subprograms and Helproutines 143

6 New Model Example ... 145
Step 1: Define the Scope of the Model .. 146
Step 2: Create the Prototype ... 146
Step 3: Scrutinize the Prototype ... 147
Step 4: Isolate the Parameters in the Prototype .. 147
Step 5: Create a Code Frame and Define the Model .. 147
Step 6: Create the Model PDA .. 150
Step 7: Create Translation LDAs and Maintenance Maps 152
Step 8: Create the Model Subprograms .. 154
Step 9: Implement the Model ... 166

7 CST-Clear Model ... 167

iii

Introduction .. 168
Parameters for the CST-Clear Model ... 169
User Exits for the CST-Clear Model ... 170

8 CST-Document Model ... 171
Introduction .. 172
Parameters for the CST-Document Model ... 172
User Exits for the CST-Document Model ... 175

9 CST-Frame Model .. 177
Sample Subprograms ... 178
Generation Subprograms ... 178
Parameters for the CST-Frame Model .. 179
User Exits for the CST-Frame Model ... 181

10 CST-Modify and CST-Modify-332 Models .. 183
Introduction .. 184
CST-Modify Model ... 185
CST-Modify-332 Model .. 191

11 CST-Panel Model ... 195
Introduction .. 196
Parameters for the CST-Panel Model ... 196
User Exits for the CST-Panel Model ... 201

12 CST-PDA Model .. 203
Introduction .. 204
Parameters for the CST-PDA Model .. 205

13 CST-Postgen Model ... 207
Introduction .. 208
Parameters for the CST-Postgen Model ... 208
User Exits for the CST-Postgen Model ... 209

14 CST-Pregen Model ... 211
Introduction .. 212
Parameters for the CST-Pregen Model ... 212
User Exits for the CST-Pregen Model .. 214

15 CST-Proxy Model ... 215
Introduction .. 216
Parameters for the CST-Proxy Model .. 217
User Exits for the CST-Proxy Model .. 219

16 CST-Read Model .. 221
Introduction .. 222
Parameters for the CST-Read Model .. 222
User Exits for the CST-Read Model .. 224

17 CST-Save Model ... 225
Introduction .. 226
Parameters for the CST-Save Model ... 226
User Exits for the CST-Save Model .. 227

18 CST-Shell Model .. 229
Introduction .. 230

Natural Construct Administration and Modelingiv

Natural Construct Administration and Modeling

Parameters for the CST-Shell Model .. 230
User Exits for the CST-Shell Model .. 232

19 CST-Stream Model ... 233
Introduction .. 234
Parameters for the CST-Stream Model ... 234
User Exits for the CST-Stream Model .. 235

20 CST-Validate Model ... 237
Introduction .. 238
Parameters for the CST-Validate Model ... 238
User Exits for the CST-Validate Model .. 240

21 User Exits for the Administration Models ... 243
What are User Exits? .. 244
Supplied User Exits .. 247

22 Modifying the Supplied Models .. 269
Introduction .. 270
Change the Supplied Models ... 270
Example of Modifying a Model ... 273
Use Steplibs to Modify Models .. 276

23 External Objects ... 279
Introduction .. 280
Natural-Related Subprograms (CNU*) .. 285
Natural-Related Helproutines (CNH*) .. 300
Natural Construct Generation Utility Subprograms (CSU*) 302
Predict-Related Subprograms (CPU*) .. 360
Predict-Related Helproutines (CPH*) .. 386
General Purpose Generation Subprograms (CU--*) ... 390

24 Supplied Administration Utilities ... 393
Introduction .. 394
Import and Export Utilities .. 394
Frame Hardcopy Utility ... 397
Comparison Utilities .. 397
Upper Case Translation Utility .. 400
Additional Utilities ... 401

25 Using SYSERR for Multilingual Support ... 403
Introduction .. 404
Define SYSERR References ... 404
Use SYSERR References ... 405
Format SYSERR Message Text ... 411
Supported Areas in Natural Construct .. 412
CSUTRANS Utility ... 413
CNUMSG Utility .. 416
Static (One-Language) Mode .. 417

A Appendix A: Glossary of Terms ... 425

vNatural Construct Administration and Modeling

Natural Construct Administration and Modeling

vi

1 Natural Construct Administration and Modeling

■ User Documentation .. 4
■ Installation Documentation .. 4
■ Other Documentation ... 4
■ Related Courses ... 5
■ Conventions ... 5

1

Natural Construct Administration and Modeling explains how to access and use the Administration
subsystem of Natural Construct. This section explains how information is presented for different
platforms, as well as the purpose and structure of Natural Construct Administration and Modeling.
It includes an overview of conventions used in this documentation and information about other
resources you can use to learn more about Natural Construct.

Note: Although the screen examples used in this documentation are from a mainframe en-
vironment, the information applies to all server environments.

This documentation is intended for Natural Construct administrators who want to:

■ Maintain the existing models, code frames, and control record for their companies
■ Create new models
■ Use the utilities provided with Natural Construct

This documentation assumes that, as a Natural Construct administrator, you have extensive
knowledge of Natural and the Natural Construct Generation subsystem.

Natural Construct Administration and Modeling covers the following topics:

Contains a general description of Natural Construct and the basic
information you need to use the Administration subsystem.

Introduction to Natural Construct

Describes how to use the Administration subsystem to define
custom models and maintain the models Natural Construct uses
to generate programs.

Using the Administration
Subsystem

Describes the Code Frame editor, as well as the line and edit
commands you can use in the editor.

Using the Code Frame Editor

Describes the procedure for creating a new Natural Construct
model.

Creating NewModels

Contains a step-by-step example of how to create a new model
using the procedure described in Creating New Models.

NewModel Example

Describes the model that generates clear subprograms for your
models.

CST-Clear Model

Describes the model that generates documentation subprograms
for your models.

CST-Document Model

Describes the model that generates frame subprograms for your
models.

CST-Frame Model

Describes the model that generates maintenance subprograms for
your models.

CST-Modify andCST-Modify-332
Models

Describes themodel that generates panels for aWindows interface.CST-Panel Model

Describes the model that generates parameter data areas (PDAs)
for your models.

CST-PDAModel

Natural Construct Administration and Modeling2

Natural Construct Administration and Modeling

Describes the model that generates post-generation subprograms
for your models.

CST-Postgen Model

Describes the model that generates pre-generation subprograms
for your models.

CST-Pregen Model

Describes themodel that generates a subprogramproxy to convert
data between the network transfer format and the native Natural

CST-Proxy Model

data format used in the subprogram’s PDA. This model can
generate both a server proxy and a client proxy.

Describes the model that generates read subprograms for your
models.

CST-Read Model

Describes the model that generates save subprograms for your
models.

CST-Save Model

Describes the model that generates a template for a model
subprogram.

CST-Shell Model

Describes the model that generates stream subprograms for your
models.

CST-StreamModel

Describes the model that generates validation subprograms for
your models.

CST-Validate Model

Describes the user exits supplied for the Natural Construct
administration models.

User Exits for the Administration
Models

Describes how tomodifymodels suppliedwithNatural Construct.Modifying the Supplied Models

Describes the supplied subprograms and helproutines.External Objects

Describes the supplied utilities for all supported platforms.SuppliedAdministrationUtilities

Describes how to use the SYSERR utility to provide multilingual
support.

Using SYSERR for Multilingual
Support

Contains a glossary of terms used throughout this documentation.Appendix A: Glossary of Terms

Related Documentation and Courses

This section provides information about other resources you can use to learn more about Natural
Construct. For information about this documentation and courses, contact the nearest Software
AG office or visit the Software AG website at www.softwareag.com to order documentation or
view course schedules and locations. You can also use the website to email questions to Customer
Support.

This section covers the following topics:

■ User Documentation
■ Installation Documentation
■ Other Documentation

3Natural Construct Administration and Modeling

Natural Construct Administration and Modeling

■ Related Courses
■ Conventions

User Documentation

For information about using Natural Construct, see the following guides:

■ Natural Construct Generation

This documentation is intended for programmers who create applications using the supplied
models.

■ Natural Construct Help Text

This documentation is intended for programmerswho create andmaintain help text forNatural
Construct-generated applications, as well as for those who create and maintain help text for
user-written models.

■ Natural Construct Getting Started

This guide provides a quick overview of Natural Construct and its many features and capabil-
ities. It is intended for programmers who are new to Natural Construct.

Installation Documentation

For information about installing Natural Construct, see the following guides:

■ Natural Business Services Installation on Mainframes
■ Natural Business Services Installation on Unix
■ Natural Business Services Installation on Windows

Other Documentation

This section lists documentation published by WH&O International:

■ Natural Construct Tips & Techniques

This guide provides a reference of tips and techniques for developing and supporting Natural
Construct applications.

■ Natural Construct Application Development User’s Guide

Natural Construct Administration and Modeling4

Natural Construct Administration and Modeling

This guide describes the basics of generating Natural Construct modules using the supplied
models.

■ Natural Construct Study Guide

This guide is intended for programmers who have never used Natural Construct.

Related Courses

In addition to documentation, the following courses are available from Software AG:

■ A self-study course on Natural Construct fundamentals
■ An instructor-led course on building applications with Natural Construct
■ An instructor-led course on modifying the existing Natural Construct models or creating your
own models

Conventions

Throughout this documentation, the following conventions apply:

DescriptionTerm

Type a value in a field and press the Enter key.Enter

In general, any area on a screen where users can type information, select a value from a pop-up
window, or indicate a preference by marking a box or circle.

Field

Activate or execute a program or menu.Access

Type a non-blank character in an input field (for example, an X) to select the corresponding
option.

Mark

A full screen of information displayed by a program, etc.Panel

One of the following actions:Select

■ Move the cursor to a value and press the Enter key
■ Scroll through a selection box and highlight a value
■ Double-click on a value
■ Type the name of a value in a key field and press the Enter key

One of the following actions:Specify

■ Type a value in a field
■ Select a value from a selection window

5Natural Construct Administration and Modeling

Natural Construct Administration and Modeling

DescriptionTerm

A partial screen of information that overlays the current screen. A window is usually displayed
with a border.

Window

Natural Construct Administration and Modeling6

Natural Construct Administration and Modeling

2 Introduction to Natural Construct

■ What is Natural Construct? ... 8
■ Access Natural Construct ... 9
■ Use Standard PF-Keys ... 14
■ Access Online Help ... 15
■ Convert Text to Upper Case .. 17
■ Maintain Messages for Generated Programs .. 18
■ Store Saved Modules ... 18
■ Use Direct Commands ... 19

7

This section introduces you to Natural Construct. It describes how to access the subsystems, use
PF-keys, and access the online help. It includes sections on translating to upper case, handling
messages, storing saved modules, and using direct commands.

This section covers the following topics:

What is Natural Construct?

Natural Construct is a set of tools for application developers. Created for Software AG’s Natur-
al/Predict environment, it helps application developers achieve higher productivity goals than
are obtainable using Natural and Predict alone. At the same time, Natural Construct helps stand-
ardize and control the application development process.

Natural Construct provides a series of models you can use to create different Natural modules
(objects). The following table lists the advantages of using Natural Construct-generated modules
over modules created in Natural alone:

BenefitsAdvantage

Create a consistent user interface and code structure.Standardization and quality

Once your model is tested and debugged, it can be used by multiple users,
problem free. Models help share your Natural expertise, making optimal use
of available talent.

Reusage

These benefits include:Increase productivity

■ Reduce design considerations
■ Speed up implementation
■ Reduce testing requirements

Avoid errors that are introduced by program cloning.Minimize errors

Natural Construct Subsystems

Natural Construct is comprised of the following subsystems:

DescriptionSubsystem

Used by the Natural Construct administrator to define custom models and maintain the
models Natural Construct uses to generate programs. The Administration subsystem is
described in detail in this documentation.

Administration

Used by the developer to define specifications for the Natural Construct models and
generate the following modules:

Generation

■ programs

Natural Construct Administration and Modeling8

Introduction to Natural Construct

DescriptionSubsystem

■ subprograms
■ helproutines
■ subroutines
■ copycode
■ maps
■ parameter data areas
■ local data areas
■ global data areas
■ Predict program descriptions
■ code blocks
■ JCL text (mainframe)
■ User exit code

For information about this subsystem, refer to Natural Construct Generation.

Used by documenters or developers to create and maintain help text at the map and/or
input field level. For information about this subsystem, refer toNatural Construct Help Text.

Help Text

Access Natural Construct

You can access the Administration subsystem in standard or translation mode. Translation mode
allows you to create multilingual specification panels for developers, as well as dynamically
maintain the panel components.

This section describes how to access eachNatural Construct subsystem, how to access the Admin-
istration subsystem in standard and translation mode, and how to access the generation facilities
from a steplib with Natural Security installed.

Note: Always terminate Natural Construct by pressing the quit PF-key or entering a period
(.) in the input field on themainmenu. This method ensures proper cleanup of the environ-
ment.

9Natural Construct Administration and Modeling

Introduction to Natural Construct

Natural Construct Libraries

While other Software AG products can be accessed from other libraries, they run exclusively in
their own product library (SYSSEC, SYSPAC, SYSDIC, for example). Natural Construct does not
run exclusively out of its product library, SYSCST. It also must also run out of the application
libraries in the FUSER file.

Typically, Natural Construct developers access Natural Construct using the NCSTG or NCSTH
command from any library. These commands invokemodules in the SYSLIB and SYSLIBS libraries.
The CD-HELP*modules in the SYSLIBS library provide online help forNatural Construct screens.

Natural Construct also allows administrators and modelers to customize the standard Natural
Construct models. These users access Natural Construct using the CSTG or CSTH command from
the SYSCST library. All changes are confined to this library, which allows administrators to test
customizations without affecting developers and their applications.

Since administrators can customize help modules like CD-HELP*, copies of these modules are
also stored in the SYSCST library. Any changes to these modules do not affect developers because
they use the CD-HELP* routines in the SYSLIBS library. Typically, modelers access Natural Con-
struct using the CSTG or CSTH command.

Once a Natural Construct modeler creates or maintains a model, all customized modules must be
copied to the appropriate library.

■ If the changes apply to the development environment, copy the modules to the SYSLIB or
SYSLIBS library.

■ If the changes apply to the runtime environment for aNatural Construct-generated application,
copy the modules to a library within the application steplib chain (for example, SYSTEM on the
FNAT). It is also common to see CD-HELP* routines in the SYSTEM FNAT library.

Copies of Natural Construct are stored in the following libraries:

Natural Construct Administration and Modeling10

Introduction to Natural Construct

Each library is available to different users and contains different subsystems. The libraries are:

■ SYSLIBS Library
■ SYSTEM (FNAT) Library
■ SYSCST Library
■ SYSCSTX Library
■ SYSCSTDE, SYSCSTD2, SYSCSTDV, and SYSCSTDS Libraries
■ USERLIB Library

11Natural Construct Administration and Modeling

Introduction to Natural Construct

■ Execute Generation Facilities from a Steplib with Natural Security Installed

SYSLIBS Library

The SYSLIBS library contains modules used by Natural Construct. The following table indicates
who can use the library, the subsystems it contains, and the command entered at the Next prompt
to invoke each subsystem:

Command to Invoke Each SubsystemSubsystemsAuthorized Users

"ncstg "GenerationAll users

"ncsth"Help Text

SYSTEM (FNAT) Library

The SYSTEM library contains modules used by Natural Construct-generated applications. The
following table indicates who can use the library, the subsystems it contains, and the command
entered at the Next prompt to invoke each subsystem:

Command to Invoke Each SubsystemSubsystemsAuthorized Users

"ncstg "GenerationAll users

"ncsth"Help Text

SYSCST Library

The SYSCST library is used tomodify the suppliedmodels or create new ones. The following table
indicates who can use the library, the subsystems it contains, and the command entered at the
Next prompt to invoke each subsystem:

Command to Invoke Each SubsystemSubsystemsAuthorized Users

"menu" (standard mode)

"menut" (translation mode)

AdministrationAdministrators

"ncstg"Generation

"ncsth"Help Text

Natural Construct Administration and Modeling12

Introduction to Natural Construct

SYSCSTX Library

The SYSCSTX library contains sample routines provided with Natural Construct. The routines
can be used as is or modified as desired.

■ To customize a routine, create a copy of the routine in the SYSCST library.
■ To make the routine active, move the object code to the SYSLIBS library.

SYSCSTDE, SYSCSTD2, SYSCSTDV, and SYSCSTDS Libraries

These libraries contain the Natural Construct demo system for different systems. To invoke the
demo system, enter "menu" at the Next prompt in the applicable library.

USERLIB Library

This library is created by Natural Construct users.

Execute Generation Facilities from a Steplib with Natural Security Installed

With Natural Security installed, you can access the Natural Construct generation facilities from a
steplib. This allows you to override the supplied model subprograms at a higher level steplib
without disturbing the modules supplied by Natural Construct.

For example, you can define the following steplibs in your development library:

■ CSTMODS (your modification library)
■ SYSCST
■ SYSLIBS
■ SYSTEM

Using this configuration, you can easily change your standards without disturbing the supplied
modules. To modify any modules in the SYSCST or SYSTEM library that are affected by changes,
copy them into the CSTMODS library.

Note: You can also define multiple modification libraries in the steplib chain (to reflect
corporate versus application standards).

When accessingNatural Construct from a steplib, the highest level steplib should contain a replace-
ment for the NCSTG program. For example:

FETCH 'CSTG'
END

Otherwise, the NCSTG program invokes the version of Natural Construct stored in the SYSLIBS
library.

13Natural Construct Administration and Modeling

Introduction to Natural Construct

Note: If Natural Security is not installed, refer to USR1025P in the SYSEXT library for an
example of how to set up your steplibs.

Use Standard PF-Keys

Throughout the Natural Construct system, certain PF-keys have standard functions (pressing the
PF1 key invokes online help, for example). The PF-key lines, which are typically located at the
bottom of panels, display the PF-key functions for that panel.

Notes:

1. PF-keys 13 to 24 are equivalent to PF-keys 1 to 12, respectively. However, only PF1 to PF12 are
displayed.

2. You can change the function and/or description associatedwith each key (formore information,
see Access the Administration Main Menu). Within this documentation, the default values
are used.

The standard PF-keys and functions are:

FunctionNamePF-Key

Displays help for a particular panel or field.helpPF1

■ When the cursor is in a field followed by an asterisk (*), displays a window from which
you can select a valid value for the field. For information, see Field-Level Help.

■ When the cursor is in a field not followed by an asterisk (*), displays help information
for that field. For information, see Panel-Level Help.

■ When the cursor is anywhere on the panel except a field, displays help for the entire
panel

Note: An asterisk is the default help indicator for Natural Construct. The help indicator
for your organization may be different.

Displays the previous panel. Pressing PF2 is equivalent to entering a period (.) in the Function
field on a menu.

retrnPF2

Terminates theNatural Construct session. Inmost cases, a confirmationwindow is displayed
when you press PF3. Press PF3 again to complete the termination process.

quitPF3

Scrolls backward (up) through data.bkwrdPF7

Scrolls forward (down) through data.frwrdPF8

Displays the panel to the left of the current panel. If you are currently on the first panel in
a series of panels, pressing PF10 displays the last panel in the series.

leftPF10

Displays the panel to the right of the current panel. If you are currently on the last panel
in a series of panels, pressing PF11 displays the first panel in the series.

rightPF11

Natural Construct Administration and Modeling14

Introduction to Natural Construct

FunctionNamePF-Key

Displays the Natural Construct Administration main menu.mainPF12

Help and Return Codes on Menus

On each Natural Construct menu, you are given the options “?” and “.” as valid menu codes.
Typing a question mark (?) in the Function field and pressing Enter displays help for that panel.
It is equivalent to pressing PF1 (help). Typing a period (.) and pressing Enter terminates the current
program and returns you to the previous menu. It is equivalent to pressing PF2 (retrn).

Access Online Help

Natural Construct provides extensive online help. You can display both general help information
for each panel (panel-level help) or help for a specific field (field-level help). This section covers
the following topics:

■ Panel-Level Help
■ Field-Level Help

Panel-Level Help

While you are using Natural Construct, you can display help information about the current panel
by moving the cursor anywhere on the panel (except an input field) and pressing PF1 (help).

Note: If the cursor is positioned in an input field when you request help, Natural Construct
displays help information for that field. For more information, see Field-Level Help.

The following example shows the panel-level help for the Administration main menu:

 Panel Help
 Administration Main Menu

 This menu lists the functions available within the Administration
 subsystem; you use these functions to perform various administrative
 duties within Construct.

 For translation mode details, see:
 <<Administration Main Menu>>

 For example, you use these functions to:
 - maintain the Construct control record defaults, such as the
 default PF-key settings and dynamic attribute characters
 - maintain the Construct components, such as the code frames and
 subprograms used by each model
 - invoke the supplied utilities to compare models or code frames

15Natural Construct Administration and Modeling

Introduction to Natural Construct

 - use the supplied driver programs to invoke many of the internal
 Construct subprograms
 Page ... : 1 / 2
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF1
 frwrd help retrn quit bkwrd frwrd
 Help for: P/CS/CSDMNM0/1

■ To scroll forward through the pages of help text, either enter a number in the Page field, press
PF8 (frwrd), or press Enter.

■ To scroll backward, either enter a number in the Page field or press PF7 (bkwrd).
■ To return to the main screen, press PF2 (retrn).
■ To display help about how to use online help, press PF1 (help) in any help window.
■ To display information about a topic enclosed within angle brackets (<< >>), move the cursor
over the name and press Enter. A window is displayed, containing help information about the
selected topic.

Field-Level Help

Natural Construct has two types of field-level help: passive and active. Passive field-level help
displays a description of a field on a panel. Active field-level help displays a selection window
containing the valid values for a field. If active help is available, the field is followed by an asterisk
(*).

Passive

To display passive field-level help:

1 Move the cursor to any field that is not followed by an asterisk (*).

2 Press PF1 (help).

Note: You can also type a question mark (?) in the first-character position of any field that
is not followed by an asterisk (*) and press Enter (mainframe).

Active

To display active field-level help:

1 Move the cursor to a field that is followed by an *.

2 Press PF1 (help).

Note: You can also type a question mark (?) in the first-character position of any field that
is followed by an asterisk (*) and press Enter (mainframe).

Natural Construct Administration and Modeling16

Introduction to Natural Construct

The following example shows the active help window for the Relationship name field:

 CPHRL Natural Construct CPHRL0
 Aug 20 Select Predict Relationship 1 of 1

 Relationship Relationship type
 -------------------------------- ------------------------
 NCST-CUSTOMER-ORDER-HEADER Natural Construct
 NCST-LINE-HAS-DISTRIBUTION Natural Construct
 NCST-ORDER-HAS-LINES Natural Construct
 NCST-POLICY-COVERS-VEHICLES Natural Construct
 NCST-POLICY-HAS-INQUIRIES Natural Construct
 NCST-POLICY-IS-FOR-CUSTOMER Natural Construct
 NCST-PRODUCT-ORDER-LINES Natural Construct
 NCST-VEHICLES-HAVE-COVERAGES Natural Construct
 NCST-VEHICLES-MUST-EXIST Natural Construct
 NCST-WAREHOUSE-CUSTOMER Natural Construct
 Relationship ________________________________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9-
 help retrn bkwrd frwrd
 Position cursor or enter screen value to select

To select a value from the help window:

1 Move the cursor to the line containing the value.

2 Press Enter.

You are returned to the original panel and the selected value is displayed in the field forwhich
you requested help.

Convert Text to Upper Case

Natural Construct automatically performs the commands to convert text from lower or mixed
case to upper case where appropriate. Headings are displayed exactly as entered (lower or upper
case), but if certain specifications must be in upper case, Natural Construct converts them. When
Natural Construct ends, the case setting is restored to the default value.

Note: If you are a mainframe user, specify your teleprocessing (TP) monitor’s command for
lower case. In Com-Plete, for example, issue the LOW command.

17Natural Construct Administration and Modeling

Introduction to Natural Construct

Maintain Messages for Generated Programs

Natural Construct supportsmultilingualmessages for your generated programs. If youusemessage
numbers, the message text for the specified language is retrieved at execution time. If you use
message text, the text for the specified language is inserted into the program at generation time.

■ Messages 8000 to 8200 are stored in the SYSTEM and SYSCST libraries
■ Messages 8300 to 8500 are stored in the CSTAPPL library
■ Messages 1 to 9999 (error message text) are stored in the CSTMSG library
■ Messages 1 to 9999 (screen prompt text) are stored in the CSTLDA library
■ Messages 1 to 9999 (text for Actions) are stored in the CSTACT library
■ Messages 1 to 9999 (text for PF-keys) are stored in the CSTPFK library

You can change or add to these messages using the SYSERR utility. For all REINPUT and INPUT
message numbers, you can also use the SYSERR utility to add other languages. Generation and
CDUTRANSmessages are stored in theCSTAPPL library. For information about defining references,
seeDefine SYSERR References.

Note: Natural Construct sounds an alarm anddisplayswarningmessages for errors. Ensure
the alarm on your terminal is set to an audible volume.

Store Saved Modules

Any module generated by the default generators and saved by Natural Construct is stored as a
Natural structured mode object in the current library. You can edit this module as you would any
structured mode Natural object.

Natural Construct Administration and Modeling18

Introduction to Natural Construct

Use Direct Commands

To navigate within the Administration subsystem, you can enter codes on menus, press PF-keys,
or issue direct commands.Direct commands take you to any function ormenuwithin the subsystem
without using intervening menus. They are useful for experienced users who know the menu
structure, validmenu codes, and the requiredparameters at eachmenu level. The following example
shows the Command line:

Command __

You can string together as many commands as you like. If one of the codes is not valid on the
corresponding menu, Natural Construct displays that menu so you can enter a valid code.

The following diagram illustrates a sample direct command:

This direct command accesses the Code Frame Menu (menu code F on the Administration main
menu) and the Edit Code Frame function (menu code E on the Code Frame menu) and displays
the code frame called “FRAME”with the description, “DESCRIPTION”, in the Code Frame editor.

A direct command contains the codes you enter on successive menus. Each direct commandmust
begin with a valid menu code. When entering a direct command, leave a space between menu
codes to indicate a new menu or level. To indicate parameters that are at the same level, use a
slash (/) to separate them.

When you enter direct commands on the command line for a menu, Natural Construct first de-
termines whether the code is a valid option on that menu. If no code on the current menumatches
the first code in the direct command, Natural Construct checks the main menu for a match.

19Natural Construct Administration and Modeling

Introduction to Natural Construct

You can also issue direct commands at the Natural Next prompt (Direct command box for Unix).
While you are in the SYSCST library, for example, you can enter the following direct command
to access the Administration subsystem (MENU) and edit the code frame, FRAME, with the de-
scription, DESCRIPTION:

MENU F E/FRAME/DESCRIPTION

Natural Construct Administration and Modeling20

Introduction to Natural Construct

3 Using the Administration Subsystem

■ Access the Administration Main Menu ... 22
■ Create and Maintain Natural Construct Models .. 24
■ Multilingual Support for Natural Construct ... 55
■ Access the Administration Main Menu in Translation Mode .. 57
■ Access and Use the Sample Exit Subprograms ... 63

21

This section describes how to use theAdministration subsystem suppliedwithNatural Construct.
Use theAdministrationmainmenu to access the functions available in theAdministration subsys-
tem.

This section covers the following topics:

Access the Administration Main Menu

To access the Administration main menu:

1 Enter "menu" at the Natural prompt.

The Administration main menu is displayed. For example:

 CSDMAIN N a t u r a l C o n s t r u c t CSDMNM0
 Aug 17 Administration Main Menu 1 of 1

 Functions

 M Maintain Models

 F Code Frame Menu

 S Maintain Subprograms

 R Maintain Control Record

 C Compare Menu

 D Drivers Menu

 ? Help

 . Return

 Function _

Natural Construct Administration and Modeling22

Using the Administration Subsystem

 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

Note: For a description of the Help and Return functions, seeHelp and Return Codes
on Menus.

2 Enter the corresponding one-character function code in Function.

The functions available through the Administration main menu are:

DescriptionFunctionCode

Displays the Maintain Models panel, where you can maintain the
components that define a model for the Natural Construct generation
process.

For information, seeMaintain Models Function.

Maintain ModelsM

Displays the Code Frame menu. Using the functions available through
this menu, you can maintain the code frames used by the generation
models.

For information, see Code Frame Menu Function.

Code Frame MenuF

Displays the Maintain Subprograms panel, where you can maintain the
modify specification subprograms used by the generation models.

For information, seeMaintain Subprograms Function.

Maintain
Subprograms

S

Displays theMaintain Control Record panel, where you canmaintain the
default values for theNatural Construct control record (PF-keys, dynamic
attribute characters, help indicator, etc.).

For information, seeMaintain Control Record Function.

Maintain Control
Record

R

Displays the Compare menu. Using the functions available through this
menu, you can compare code frames used by the models.

For information, see Compare Menu Function.

Compare MenuC

Displays the Drivers menu. Using the driver programs available through
this menu, you can accessmany of the utility subprograms suppliedwith

Drivers MenuD

Natural Construct. (The source code for these subprograms is not
supplied.)

For information, seeDrivers Menu Function.

23Natural Construct Administration and Modeling

Using the Administration Subsystem

Create and Maintain Natural Construct Models

This section describes how to use the Administration main menu to define custom models and
maintain the models Natural Construct uses to generate programs. The following topics are
covered:

■ Maintain Models Function
■ Code Frame Menu Function
■ Maintain Subprograms Function
■ Maintain Control Record Function
■ Compare Menu Function
■ Drivers Menu Function

Maintain Models Function

To create or maintain a model:

1 Enter "M" in Function on the Administration main menu.

The Maintain Models panel is displayed. For example:

 CSDFM N a t u r a l C o n s t r u c t CSDFM0
 Aug 17 Maintain Models 1 of 1

 Action __ A,B,C,D,M,N,P,R

 Model BROWSE__________________________

 Description *0200.1___
 BROWSE Program

 PDA name CUSCPDA_ Status window Y

 Programming mode S_ Comment start indicator .. **_

 Type P Program Comment end indicator ___

 Code frame(s) CSCA?___ CSCB?___ CSCC?___ ________ ________
 Modify server specificatn CUSCMA__ CUSCMB__ CUSCMC__ CUSCMG__ ________
 ________ ________ ________ ________ ________
 Modify client specificatn CUSCMA__ CUSCMB__ CUSCMC__ ________ ________
 ________ ________ ________ ________ ________

Natural Construct Administration and Modeling24

Using the Administration Subsystem

 Clear specification CUSCC___ Post-generation CUSCPS__
 Read specification CUSCR___ Save specification CUSCS___
 Pre-generation CUSCPR__ Document specification ... CUS-D___
 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit frame main

2 Enter the action code in Action.

For example, if you are creating a newmodel, enter A (Add); if you are changing the settings
for an existing model, enter M (Modify).

Note: For a description of the actions available, press PF1 (help) when the cursor is in
the Action field.

3 Use the following fields to define or modify the model settings:

DescriptionField

Name of the model you are creating or maintaining.Model

Brief description of themodel or the SYSERR number that supplies the description.
When amodule is generated using the specifiedmodel, this description is displayed
as the first heading on the panel.

Because this description is part of the model user interface, you can use SYSERR
numbers from theCSTLDA library to support dynamic translation.Within SYSERR,
you can also specify substitution variables (instead of hardcoding the message).

Description

For example, SYSERR number *0200.1 corresponds to the English text, :1:Program.
If you specify *0200.1 in this field for the Browsemodel, Natural Construct replaces
:1: with the model name and the first panel heading becomes Browse Program.
(The actual heading is displayed below this field.)

For more information about dynamic translation, seeMaintenance.

Name of the parameter data area (PDA) for the model. This PDA is passed to the
model subprograms to capture model specifications.

For more information, see Step 1: Define the Scope of the Model.

PDA name

25Natural Construct Administration and Modeling

Using the Administration Subsystem

DescriptionField

Code that indicates whether the Status window is displayed when a module is
generated.

Status window

If the code is Y or T, you can press PF5 (optns) while generating the module to
display the Status window, which contains information about the generation
progress, save, and/or stow functions. You can also decide how the Status window
is displayed. The following example uses symbols:

<-- PREGEN CUMNGPR
--> FRAME CUMN9
 --> FRAME CU--B9

The following example uses text:

Ending Pre-generation Subprogram CUMNGPR
 Starting Code Frame CUMN9
 Starting Code Frame CU--B9

■ To display symbols, enter "Y".
■ To display text, enter "T".
■ If you do not want the window displayed, enter "N".

Note: If this field is blank, it defaults to N.

Mode for the resulting code. Valid codes are S (structured), SD (structured data),
or R (reporting) mode. All supplied models use structured mode.

Programming
mode

Set of characters that indicate the beginning of a comment line for the generated
module. As required for Natural modules, the default value is **. You can change
this value for other supported programming languages.

Comment start
indicator

Code for the type of module generated by this model. Valid module types are:Type

■ P (program)
■ E (external; non-Natural)
■ * (super model modules)
■ N (subprogram)
■ S (subroutine)
■ H (helproutine)
■ M (map)
■ L (local data area)
■ A (parameter data area)
■ G (global data area)
■ J (JCL statements; mainframe)
■ . (statement code block; .g)

Natural Construct Administration and Modeling26

Using the Administration Subsystem

DescriptionField

■ T (text)
■ C (copycode)
■ blank (determined when a module is generated using this model; model
subprograms must assign the CU—PDA.#PDA-OBJECT-TYPE parameter)

Set of special characters that indicate the end of a comment. For some programming
languages, this set of characters is required to generate modules. For PL1, for
example, the indicator is */.

Comment end
indicator

Names of the code frames used to create the specified model (for information, see
NamingConventions for Code Frames). The code frames are listed in the sequence

Code frame(s)

they are used during generation. You can specify a maximum of five code frame
names for each model; you can only use existing code frames.

In addition:

■ You can select a code frame and access the Code Frame editor from this panel.
For information, see Select a Code Frame for Editing.

■ You can use nested code frames. For information, seeNested Code Frames.

Note: Code frames that are used to generate maps and data areas can only have
subprogram and comment lines.

Names of the subprograms executed when the Modify function is invoked by the
Natural Construct nucleus for server platform generation. The subprograms are

Modify server
specificatn

listed in execution sequence. To change the order of execution, change the order of
these subprograms. You can specify a maximum of 10 subprograms.

Names of the subprograms executed when the Modify function is invoked by the
nucleus for client platform generation. The subprograms are listed in the sequence

Modify client
specificatn

they are executed. To change the order of execution, change the order of these
subprograms. You can specify a maximum of 10 subprograms.

Name of the subprogram executed when the Clear function is invoked by the
nucleus. The Clear function is automatically invoked prior to the Read function or

Clear
specification

when a newmodel name is specified and the parameter data area (PDA) is different.
It is typically used to set default values for the model.

Name of the subprogram executed when the Post-generation function is invoked
by the nucleus. This subprogram applies post-generation changes to the generated

Post-generation

program. It is typically used to perform model specification substitutions; it is not
supported for models that cannot be regenerated.

Name of the subprogram executed when the Read function is invoked by the
nucleus. It is typically used to retrieve the specifications fromapreviously-generated
module It is not supported for models that cannot be regenerated.

Read specification

Name of the subprogramexecutedwhen the Save function is invoked by the nucleus
(not supported formodels that cannot be regenerated). This subprogram is executed

Save specification

immediately after the pre-generation subprogram is executed. It writes the
generation specifications so the generated program can be read using the Read
function.

27Natural Construct Administration and Modeling

Using the Administration Subsystem

DescriptionField

If a usermarks the Save SpecificationOnly option, this subprogram can be invoked
even if generation cannot be completed due to specification errors.

Name of the subprogram executed when the Pre-generation function is invoked
by the nucleus. This subprogram sets up internal variables before the generation

Pre-generation

process begins. It is typically used to set PDAC- variables for code frame
manipulation or to generate a module for simple models.

Name of the subprogram executed when the Document function is invoked by the
nucleus. This subprogram documents generated modules in Predict as they are
saved or stowed.

Document
specification

Select a Code Frame for Editing

You can use the Maintain Models panel to select a code frame for editing.

To select a code frame for editing:

1 Move the cursor over the code frame you want to edit.

2 Press PF4 (frame).

The specified code frame is displayed in the Code Frame editor.

Note: For more information about modifying the supplied code frames, see Step 5: Create
Code Frame(s) and Define the Model.

Naming Conventions for Code Frames

The following example shows the Maintain Models panel for the Browse model:

 CSDFM N a t u r a l C o n s t r u c t CSDFM0
 Aug 17 Maintain Models 1 of 1

 Action __ A,B,C,D,M,N,P,R
 Model BROWSE__________________________
 Description *0200.1___
 BROWSE Program
 PDA name CUSCPDA_ Status window Y
 Programming mode S_ Comment start indicator .. **_
 Type P Program Comment end indicator ___

 Code frame(s) CSCA?___ CSCB?___ CSCC?___ ________ ________
 Modify server specificatn CUSCMA__ CUSCMB__ CUSCMC__ CUSCMG__ ________
 ________ ________ ________ ________ ________
 Modify client specificatn CUSCMA__ CUSCMB__ CUSCMC__ ________ ________
 ________ ________ ________ ________ ________

Natural Construct Administration and Modeling28

Using the Administration Subsystem

 Clear specification CUSCC___ Post-generation CUSCPS__
 Read specification CUSCR___ Save specification CUSCS___
 Pre-generation CUSCPR__ Document specification ... CUS-D___
 Command ___
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit frame main

Notice that the code frame names listed in the Code frame(s) field end with a question mark (?).
The question mark indicates a hierarchy in which the code frame with the lowest number at the
end of its name is used.

All code frames suppliedwithNatural Construct endwith an 8 (used for code frame fixes supplied
between releases) or 9 (used for original code frames supplied with Natural Construct). To define
a custom code frame for your model, copy the supplied code frame, change the 8 or 9 to a lower
number (from 1 to 7), andmodify the code frame as desired. The next timeNatural Construct calls
that code frame, the one with the lowest number is used.

For example, you can copy the CSCA9 code frame, change the name to CSCA7, and edit it as de-
sired. The next time Natural Construct calls CSCA?, CSCA7 is used.

The naming conventions for code frames are:

■ The first character in a code frame name is always C.
■ The second and third characters are reserved for the two-character model identifiers, such as
MN for Menu or dash (—) for generic code frames used by multiple models.

■ The fourth character is a single letter from A-Z indicating a position within a series of code
frames.

■ The fifth, sixth, and seventh characters are optional. They indicate specific functions that are
typically performed by nested code frames, such as wildcard support.

■ The last charactermust be a number from 1-9, with 9 reserved for theNatural Construct-supplied
code frames and 8 reserved for any future updates.

Note: The last character refers to the last position in the code frame name, which may or
may not be the eighth physical position.

29Natural Construct Administration and Modeling

Using the Administration Subsystem

Use Nested Code Frames

When code frames are referenced in code (nested code frames), their names also end with the
questionmark character. For example, theCSLBA9 code frame for the Browse-Selectmodel contains
the nested code frame CS-BA?:

 Code Frame CSLBA9 SIZE 17120
 Description Browse-Select* model main body FREE 82673
 > > + ABS X X-Y _ S 214 L 1
 Top...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
 PROG.
 REPEAT /* Repeat loop to allow escape of program from within subroutine.
 *
 ********************* Start of Main Program Logic **********************
 *
 RESET #FIRST-&UQ-FOUND #REDISPLAY-SCREEN #MATCH-FOUND
 CS-BA? F
 NOT PROCESS-SELECTION-COLUMN AND PROCESS-SELECTED-RECORD 1
 /* "
 /* reposition to selected field if cursor selection "
 IF #CURS-LINE > #FIRST-ACTION-LINE "
 IF #SEL-TBL.#&UQ(#CURS-LINE) NE #NULL-&UQ "
 ASSIGN #FORWARD = FALSE "
 ASSIGN #MATCH-FOUND = FALSE "
 ASSIGN #START.#KY = #SEL-TBL.#KY(#CURS-LINE) "
 ASSIGN #START.#&UQ = #SEL-TBL.#&UQ(#CURS-LINE) "
 END-IF "
 END-IF "
 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T

Code Frame Menu Function

Use this function to access the Code Frame menu.

To access the Code Frame menu:

1 Enter "F" in Function on the Administration main menu.

Natural Construct Administration and Modeling30

Using the Administration Subsystem

The Code Frame menu is displayed. For example:

 CSMMAIN N a t u r a l C o n s t r u c t CSMMNM0
 Aug 17 Code Frame Menu 1 of 1

 Functions

 E Edit Code Frame

 S Save Code Frame

 L List Code Frames

 P Purge Code Frame

 C Clear Edit Buffer

 H Print Saved Code Frame

 ? Help

 . Return

 Function _

 Code Frame ________

 Description ___

 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

2 Enter the one-character function code in Function.

The functions available through this menu are:

■ Edit Code Frame
■ Save a Code Frame

31Natural Construct Administration and Modeling

Using the Administration Subsystem

■ List Code Frames for Selection
■ Purge a Code Frame
■ Clear Edit Buffer
■ Print Saved Code Frame

Note: For a description of the Help and Return functions, seeHelp and Return Codes on
Menus.

Edit Code Frame

Use this function to:

■ Create a New Code Frame
■ Modify an Existing Code Frame

Create a New Code Frame

To create a new code frame:

1 Enter "E" in Function on the Code Frame menu.

The Code Frame editor is displayed. For example:

 Code Frame SIZE

 Description FREE 56825
 > > + ABS X X-Y _ S L

 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C

Natural Construct Administration and Modeling32

Using the Administration Subsystem

 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T

2 Type the code frame name in Code Frame.

3 Type a brief description of the code frame in Description.

4 Use the editor to create the code frame.

The Code Frame editor supports all edit commands except the RUN, CHECK, TEST, STOW,
and SAVE command. Formore information about the Code Frame editor, seeUsing the Code
Frame Editor.

5 Enter "." (period) at the > prompt to return to the Code Frame menu.

For information on saving the code frame, see Save Code Frame.

Modify an Existing Code Frame

To modify an existing code frame:

1 Type "E" in Function on the Code Frame menu.

2 Type the code frame name in Code Frame.

3 Optionally, type a brief description of the code frame in Description.

4 Press Enter.

The specified code frame in displayed in the Code Frame editor.

5 Modify the code frame.

33Natural Construct Administration and Modeling

Using the Administration Subsystem

The Code Frame editor supports all edit commands except the RUN, CHECK, TEST, STOW,
and SAVE command. Formore information about the Code Frame editor, seeUsing the Code
Frame Editor.

6 Enter "." (period) at the > prompt to return to the Code Frame menu.

For information on saving the code frame, see Save Code Frame.

Note: For more information about modifying the supplied code frames, see Step 5: Create
Code Frame(s) and Define the Model.

Save a Code Frame

Use this function to save the code frame that is currently in the edit buffer to the Code Frame file.

To save the code frame:

■ Enter "S" in Function on the Code Frame menu.

If the specified code frame name already exists, Code Frame exists. Press Enter to
confirm replace is displayed. You can either change the name or press Enter to update the
existing code frame.

List Code Frames for Selection

Use this function to display a list of available code frames for selection.

To list the available code frames for selection:

1 Enter "L" in Function on the Code Frame menu.

The Select Frames window is displayed. For example:

 CSMLIST Natural Construct CSMLIST0
 Oct 07 Select Frames 1 of 1

 Frame Description User Date Time
 -------- -- -------- --------- ------
 C--BAN9 Standard banner SAG Sep 30,01 09:55
 CBAA9 Batch define data area SAG Sep 30,01 09:55
 CBAB9 Batch initial setup SAG Sep 30,01 09:55
 CBAC9 Batch main body SAG Sep 30,01 09:55
 CBOA9 Object Browse Subp define data area SAG Sep 30,01 09:55
 CBOB9 Object Browse Subp main body SAG Sep 30,01 09:55
 CBRA9 Object Browse Static main body SAG Sep 30,01 09:55
 CCNA9 Callnat main body SAG Sep 30,01 09:55
 CDRA9 Driver main body SAG Sep 30,01 09:55

Natural Construct Administration and Modeling34

Using the Administration Subsystem

 CETA9 Extendable Input main body SAG Sep 30,01 09:55
 CFMA9 Maint define data area SAG Sep 30,01 09:55
 Frame ________ Detail _ Scan for ... __________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn bkwrd frwrd
 Position cursor or enter screen value to select

This window displays the following information:

■ Each code frame name in alphabetical order
■ Brief description of the corresponding code frame
■ User ID for the user who last saved the corresponding code frame
■ Date the corresponding code frame was last saved
■ Time the corresponding code frame was last saved

2 Type the name of the code frame in Frame.

Note: If you enter the name of a code frame that is not currently displayed, the list is
repositioned.

Optionally, you can mark Detail and type a value to scan for in Scan for. Detail lines are
displayed for code frames containing the scanned value only.

3 Press Enter.

Purge a Code Frame

Use this function to permanently remove a code frame from the Code Frame file.

Note: You cannot purge a code frame if it is currently used in a model.

To purge a code frame:

1 Type "P" in Function on the Code Frame menu.

2 Type the name of the code frame in Code Frame.

3 Optionally, type a brief description of the code frame in Description.

4 Press Enter.

A confirmation window is displayed to confirm the purge.

35Natural Construct Administration and Modeling

Using the Administration Subsystem

Clear Edit Buffer

Use this function to clear the current values from the Code Frame editor.

To clear the edit buffer:

■ Enter "P" in Function on the Code Frame menu.

Print Saved Code Frame

Use this function to print a hardcopy of the specifications for a code frame that has been saved.

Note: To use this function, you must have access to Com-Plete, CMS, TSO, or CICS with
Natural/AF or Com-Pose. For more information, see Frame Hardcopy Utility.

To print a hardcopy of a saved code frame:

1 Type "H" in Function on the Code Frame menu.

2 Type the name of the code frame in Code Frame.

3 Optionally, type a brief description of the code frame in Description.

4 Press Enter.

Maintain Subprograms Function

Use this function tomaintain themodify specification subprograms used by the generationmodels.

To maintain the modify specification subprograms for a model:

1 Enter "S" in Function on the Administration main menu.

The Maintain Subprograms panel is displayed. For example:

 CSDFSP N a t u r a l C o n s t r u c t CSDFSP0
 Aug 17 Maintain Subprograms 1 of 1

 Action __ A,B,C,D,M,N,P,R

 Subprogram ________

 Description __

Natural Construct Administration and Modeling36

Using the Administration Subsystem

 PF-keys Used

 Backward - Forward _

 Test _

 Assign to #PDA-PF-AVAILABLE1 . __________

 Assign to #PDA-PF-AVAILABLE2 . __________

 Assign to #PDA-PF-AVAILABLE3 . __________

 Optional Window Settings

 Window height ___

 Window width ___

 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

Use this panel to maintain the PF-key and window settings for the model subprograms. The
Natural Construct nucleus uses these settings to determine the window size and PF-key
functions for the model maintenance panels and sample subprograms.

Caution: You cannot change these settings for model subprograms shipped with Nat-
ural Construct; you can only change the settings for model subprograms you create.

2 Type an action code in Action.

For a description of the available actions, press PF1 (help) when the cursor is in the field.

3 Type the name of the subprogram in Subprogram.

4 Press Enter.

The PF-key and window settings for the model are displayed.

37Natural Construct Administration and Modeling

Using the Administration Subsystem

Maintain Control Record Function

Use this function to maintain the default PF-key numbers and names, special characters, and dy-
namic attribute settings for Natural Construct.

Note: These settings are for Natural Construct only, not for Natural Construct-generated
programs.

To maintain the control record:

1 Enter "R" in Function on the Administration main menu.

The Maintain Control Record panel is displayed. For example:

 CSCTRL N a t u r a l C o n s t r u c t CSCTRL0
 Aug 17 Maintain Control Record 1 of 1

 PF-key Assignments Dynamic Attributes

 Main PF 12 NAMED *0031.5___ main Intensify <

 Return PF 2_ NAMED *0031.2___ retrn Blue _

 Quit PF 3_ NAMED *0031.3___ quit Green _

 Test PF 4_ NAMED *0031.4___ test White _

 Backward PF 7_ NAMED *0032.2___ bkwrd Pink _

 Forward PF 8_ NAMED *0032.1___ frwrd Red _

 Move left PF 10 NAMED *0032.3___ left Turquoise _

 Move right PF 11 NAMED *0032.4___ right Yellow _

 Help PF 1_ NAMED *0031.1___ help Special Hardware

 User exit PF 11 NAMED *0032.5___ userX Blinking _

 Help indicator *0033.1___ * Italic _

 Underscore character *0033.2___ ---- Underline _

 Of indicator (eg., 1 of 2) ... *0033.3___ of Reverse video _

 Disable indicator *0033.4___ -

 Scroll indicator *0033.5___ >> Default return >

Natural Construct Administration and Modeling38

Using the Administration Subsystem

 Position indicator(s) *0034/4___ 1 2 3 4 5 6 7 8 9

 ____ ____ ____ ____ ____ ____ ____ ____ ____ ____
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

2 Use the fields on this panel to specify settings for the control record.

The fields on this panel are:

DescriptionFieldColumn
Heading

PF-key numbers for the corresponding functions. For each function
(Main, Return, Quit, etc.), specify the number of the PF-key that
performs the function. These functions are:

PFnPF-key
Assignments

■ Main (invokes main menu)
■ Return (displays previous panel)
■ Quit (terminates current session)
■ Test (invokes the Test function)
■ Backward (scrolls backward/up through data)
■ Forward (scrolls forward/down through data)
■ Move left (scrolls to panel on the left of current panel)
■ Move right (scrolls to panel on the right of current panel)
■ Help (invokes help for current panel)
■ User exit (invokes the User Exit editor)

Note: Only PF-keys 1 through 12 are defined. PF-keys 13 to 24 are
equivalent to PF-keys 1 to 12, respectively.

PF-key names for the corresponding functions or the SYSERRnumbers
that supply the names. The current names are displayed on the right
(main, retrn, quit, etc.).

Because PF-key settings are part of the user interface, you can specify
a SYSERR number from the CSTLDA library as the PF-key name. For

NAMED

example, SYSERR number *0031.5 corresponds to the English text,
“main”. If you specify *0031.5 in one of the NAMED fields, the
corresponding PF-key name is “main”.

Character used to indicate that help is available for a panel field (the
default is *) or the SYSERR number that supplies the character. The
indicator is placed in a separate prompt to the right of the input field.

Help indicator

39Natural Construct Administration and Modeling

Using the Administration Subsystem

DescriptionFieldColumn
Heading

One- to 4-character set used to create the underscore line for panel text
(the default is ----) or the SYSERR number that supplies the character

Underscore
character

set. The specified set is repeated until all spaces are filled (80, by
default).

For example, if “----” is specified, the underscore line is displayed as:

Or if “++” is specified, the underscore line is:
++ ++ ++ ++ ++ ++ ++ ++ ++ ++

indicatorCharacter(s) used to indicate the current panel and the number
of additional panels (the default is “of” as in “1 of 2”) or the SYSERR
number that supplies the character(s).

Of

Character used to indicate that an option is unavailable on a panel (the
default is -) or the SYSERR number that supplies the character.

Disable
indicator

Character(s) used to indicate that scrolling is available for a field on a
panel (the default is >>) or the SYSERR number that supplies the
character(s).

Scroll indicator

Characters used to indicate a position in a series of positions (the
defaults are 1 to 10) or the SYSERRnumber that supplies the characters.

Position
indicator(s)

If you are not using SYSERR, change the default characters by typing
the new characters on the lines below this field.

Default dynamic attributes. You can specify up to four attributes, one
of which must be the return to normal display attribute (see the
description for the Default return field). The attributes are:

Dynamic
Attributes

Character used to intensify text.Intensify

Blue display for color terminals.Blue

Green display for color terminals.Green

White display for color terminals.White

Pink display for color terminals.Pink

Red display for color terminals.Red

Turquoise display for color terminals.Turquoise

Yellow display for color terminals.Yellow

Options available for terminals with special hardware.

Note: Due to hardware restrictions, you may not be able to use all the
options listed. For more information, refer to DY Session Parameter in
the Natural Parameter Reference documentation.

Special
Hardware

The special hardware options are:

Support for blinking.Blinking

Support for italic.Italic

Natural Construct Administration and Modeling40

Using the Administration Subsystem

DescriptionFieldColumn
Heading

Support for underline.Underline

Support for reverse video.Reverse video

Character used to return to normal (default) display; the default is >.
A character must be specified in this field.

Default
return

Note: For more information on using SYSERR, see Using SYSERR for Multilingual
Support.

Compare Menu Function

Use this function to access the Compare menu.

To access the Compare menu:

1 Enter "C" in Function on the Administration main menu.

The Compare menu is displayed. For example:

 CSDCMMF N a t u r a l C o n s t r u c t CSDCMMF0
 Aug 08 Compare Menu 1 of 1

 Functions

 M Compare Models

 F Compare Frames

 ? Help

 . Return

41Natural Construct Administration and Modeling

Using the Administration Subsystem

 Function _

 Command ___
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

2 Enter the one-character function code in Function.

The functions available through this menu are:

■ Compare Models
■ Compare Frames

Note: For a description of the Help and Return functions, seeHelp and Return Codes on
Menus.

Compare Models

Use this function to:

■ Compare a Model in Different Files
■ Compare Two Models in the Same File
■ Compare a Range of Models in Different Files

To access the Compare Models function:

■ Enter "M" in Function on the Compare menu.

Natural Construct Administration and Modeling42

Using the Administration Subsystem

The Compare Models panel is displayed. For example:

CSDCMP N a t u r a l C o n s t r u c t CSDCMP10
Apr 02 Compare Models 1 of 1
 Old New
Model ________________________________ ________________________________
Database ... _____ _____
File _____ _____
Version _____ _____
Command __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

Note: The Old and New designation does not limit the comparison to old and new
versions of the same model.

Compare a Model in Different Files

Use this function to compare the components of a model in different files. You can compare the
same model or different models. In the following example, the same model is compared.

To compare the same model in different files:

1 Type the name of the model in Old Model and New Model on the Compare Models panel.

2 Type the database identification (DBID) number for the Natural Construct system file for the
first model in Old Database.

3 Type the DBID for the second model in New Database.

4 Type the Natural Construct file number for the first model in Old File.

5 Type the Natural Construct file number for the second model in New File.

6 Type the Natural Construct version number for the first model in Old Version.

7 Type the Natural Construct version number for the second model in New Version.

For example:

CSDCMP N a t u r a l C o n s t r u c t CSDCMP10
Apr 02 Compare Models 1 of 1
 Old New
Model BROWSE__________________________ BROWSE__________________________
Database ... 18___ 18___
File 116__ 120__
Version 4.5.2 5.2.1
Command __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

43Natural Construct Administration and Modeling

Using the Administration Subsystem

8 Press Enter.

The ShowModel Differences window is displayed, showing the differences between the two
models. For example:

 CSDCMPD Natural Construct
 Aug 08 Show Model Differences

 Old 4.5.2 New 5.2.1
 BROWSE BROWSE
 ------------------- ---------------------------- ------------------------
 Description *0200.1 *0200.1
 Save subpr CUSCGST CUSCS
 Pre-generate CUSCGPR CUSCPR
 Post-generate CUSCGPS CUSCPS
 Document CUSCDOC1 CUS-D
 Modify 1 CUSCMA
 Modify 2 CUSCMB
 Modify 3 CUSCMC
 Frame 1 CUBANNER CSCA?
 Frame 2 CUSCDA CSCB?
 Frame 3 CUSCC1 CSCC?
 Frame 4 CUSCC2
 Frame 5 CUSCC3

Compare Two Models in the Same File

Use this function to compare the components of two models in the same file.

To compare two models in the same file:

1 Type the name of the first model in Old Model on the Compare Models panel.

2 Type the name of the second model in New Model.

3 Type the database identification (DBID) number for the Natural Construct system file for the
models in Old Database.

4 Type the Natural Construct file number for the models in Old File.

5 Type the Natural Construct version number for the models in Old Version.

Natural Construct Administration and Modeling44

Using the Administration Subsystem

For example:

CSDCMP N a t u r a l C o n s t r u c t CSDCMP10
Apr 02 Compare Models 1 of 1
 Old New
Model BROWSE__________________________ BROWSE-SELECT___________________
Database ... 18___ _____
File 121__ _____
Version 5.2.1
Command __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

6 Press Enter.

The ShowModel Differences window is displayed, showing the differences between the two
models. For example:

 CSDCMPD Natural Construct
 Aug 08 Show Model Differences

 Old 5.2.1 New 5.2.1
 BROWSE BROWSE-SELECT
 ---------------------------- ------------------------
 Clear subpr CUSCC CUSLC
 Pre-generate CUSCPR CUSLPR
 Post-generate CUSCPS CUSLPS
 Modify Host 2 CUSCMB CUSLMB
 Modify Host 4 CUSCMG CUSLMD
 Modify Host 5 CUSCMG
 Modify 4 CUSLMF
 Frame 1 CSCA? CSLA?
 Frame 2 CSCB? CSLB?
 Frame 3 CSCC? CSLC?
 Date Jul 31,2007 Jul 31,2007
 Time 10:09.510 10:09.510
 User SAG SAG

45Natural Construct Administration and Modeling

Using the Administration Subsystem

Compare a Range of Models in Different Files

Use this function to compare the components for a range of models in different files. You can
compare the same range of models or a different range. In the following example, the same range
is compared.

To compare a range of models in different files:

1 Type the starting value for the range in Old Model on the Compare Models panel.

The starting value can be either the name of a model or the first few characters in the name.
You can also limit the range by entering the wildcard character (*) with the model name. For
example, if you enter Browse*, all the Browse models are compared. For information about
using wildcard characters, seeWildcard Selection, Natural Construct Generation.

2 Type the database identification (DBID) number for the first range ofmodels in Old Database.

3 Type the DBID for the second range in New Database.

4 Type the Natural Construct file number for the first range of models in Old File.

5 Type the Natural Construct file number for the second range in New File.

6 Type the Natural Construct version number for the first range of models in Old Version.

7 Type the Natural Construct version number for the second range in New Version field.

8 Press Enter.

The ShowModel Differences window is displayed, showing the differences between the two
ranges of models. For a description of this window, seeCompare aModel in Different Files.

Compare Frames

Use this function to:

■ Compare Two Code Frames in Different Files
■ Compare All Frames For Two Models
■ Compare a Range of Frames in Different Files

The models containing the code frames can reside in different system files. You can also compare
all code frames and nested code frames for a model. The code frames can be different code frames
in the same file, the same code frames in different files, or different code frames in different files.
Results are presented code frame by code frame.

For information on comparing code frames in batch mode, see Comparison Utilities.

To access the Compare Frames panel:

■ Enter "F" in Function on the Compare menu.

Natural Construct Administration and Modeling46

Using the Administration Subsystem

The Compare Frames panel is displayed. For example:

 CSDCMP N a t u r a l C o n s t r u c t CSDCMP20
 Aug 08 Compare Frames 1 of 1

 Old New

 Model ________________________________ ________________________________
 Frame ________ ________

 Database ... ___ ___

 File ___ ___

 Version

 Command __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

Note: The Old and New designation does not limit the comparison to old and new
versions of the same model or code frame.

47Natural Construct Administration and Modeling

Using the Administration Subsystem

Compare Two Code Frames in Different Files

Use this function to compare two code frames in different files. You can compare the same code
frame or different code frames. In the following example, the same code frame is compared.

To compare the same code frame in different files:

1 Type the name of the code frame in Old Frame and New Frame on the Compare Frames panel.

2 Type the database identification (DBID) number for the Natural Construct system file for the
first frame in Old Database.

3 Type the DBID for the second frame in New Database.

4 Type the Natural Construct file number for the first frame in Old File.

5 Type the Natural Construct file number for the second frame in New File.

6 Type the Natural Construct version number for the first frame in Old Version.

7 Type the Natural Construct version number for the second frame in New Version.

For example:

 CSDCMP N a t u r a l C o n s t r u c t CSDCMP20
 Aug 08 Compare Frames 1 of 1

 Old New

 Model ________________________________ ________________________________
 Frame CUBADA9_ CBAA9___

 Database ... 18_ 18_

 File 116 121

 Version 4.5.2 5.2.1

Natural Construct Administration and Modeling48

Using the Administration Subsystem

 Command __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

8 Press Enter.

The Summary Report window is displayed, showing the differences between the two frames.
For example:

 CSDCMPFD Natural Construct CSDCMP
 Summary Report

 Old version 4.5.2 New version 5.2.1
 Frame CUBADA9 Frame CBAA9

 Old New Matched Deleted Inserted Comments
 ------ ------ ---------- ---------- ---------- ----------------------------
 284 292 284 0 8 Frames do not match
 Press ENTR to continue or any PF-key to retrn

The Summary Report window displays the following information:

■ Version numbers
■ Name of each code frame
■ Number of lines of code for each code frame
■ Number of lines that match
■ Number of lines removed from the first code frame
■ Number of lines added to the second code frame
■ Whether the code frames match (in this example, they do not match)

9 Press Enter.

49Natural Construct Administration and Modeling

Using the Administration Subsystem

The Compare Frameswindow is displayed, showing a line-by-line comparison. For example:

 Oct 07 Natural Construct 04:15 PM
 Compare Frames PAGE: 1
 Old version 4.5.2 New version 5.2.1

 CUBADA9/CBAA9 T C
 --- - -
 + C--BAN? F
 = DEFINE DATA

 = GDA-SPECIFIED
 1
 = _______________ 33 more equal lines _______________

 = ET-SPECIFIED
 2
 = 01 #HOLD-COUNT(P3)
 "
 + 01 #WRITE-LINE(A30)

 = *
 = Secondary file 1 key for ADABAS, VSAM, DB2 *
 = _______________ 161 more equal lines _______________

 = 01 #INPUT1
 "
 = KEY-IS-REDEFINED OR KEY-IS-COMPOUND
 3
 + 02 #INPUT1-FIELDS(&KEY-NAT-FORMAT)
 "
 + 02 REDEFINE #INPUT1-FIELDS
 "
 = CUBAGRED REDEFINE-INPUT-KEY N "
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 frwrd retrn top hcopy frwrd

The lines in the code frames that match are marked with an equal sign (=). Lines that are in
the first code frame, but not in the second, are marked with a minus sign (-). Lines that are in
the second code frame, but not in the first, are marked with a plus sign (+).

■ To scroll forward (down) through the information, press Enter or PF8 (frwrd).
■ To return to the first line, press PF5 (top).
■ To return to the Compare Frames panel, press PF2 (retrn).
■ To print a hardcopy of the Code Frame Compare Utility panel, press PF6 (hcopy).

Natural Construct Administration and Modeling50

Using the Administration Subsystem

Formore information on printing a hardcopy of a code frame, see Print SavedCode Frame.

Compare All Frames For Two Models

Use this function to compare all the code frames used by two models.

To compare all the code frames used by two models:

1 Type the name of the first model in Old Model on the Compare Frames panel.

2 Type the name of the second model in New Model.

3 Type the database identification (DBID) number for the Natural Construct system file for the
first model in Old Database.

4 Type the DBID for the second model in New Database.

5 Type the Natural Construct file number for the first model in Old File.

6 Type the Natural Construct file number for the second model in New File.

7 Type the Natural Construct version number for the first model in Old Version.

8 Type the Natural Construct version number for the second model in New Version.

For example:

 CSDCMP N a t u r a l C o n s t r u c t CSDCMP20
 Aug 08 Compare Frames 1 of 1

 Old New

 Model BROWSE__________________________ BROWSE-SELECT___________________
 Frame ________ ________

 Database ... 18_ 18_

 File 116 121

 Version 4.5.2 5.2.1

51Natural Construct Administration and Modeling

Using the Administration Subsystem

 Command __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

9 Press Enter.

The SummaryReportwindow is displayed, showing the differences between the twomodels.

10 Press Enter.

TheCompare Frameswindow is displayed, showing a line-by-line comparison. For a descrip-
tion of the Summary Report and Compare Frames window, see Compare Two Code Frames
in Different Files.

Compare a Range of Frames in Different Files

Use this function to compare the components for a range of frames in different files. You can
compare the same range of frames or a different range. In the following example, the same range
is compared.

To compare a range of frames in different files:

1 Type the starting value for the range in Old Frame on the Compare Frames panel.

The starting value can be either the name of a code frame or the first few characters in the
name. You can also limit the range by entering the wildcard character (*) with the code frame
name. For example, if you enter CFM*, all code frames that begin with CFM are compared.
For more information on usingwildcards, seeWildcard Selection,Natural Construct Generation.

2 Type theDatabase identification (DBID) number for the first range of frames in New Database.

3 Type the DBID for the second range in Old Database.

4 Type the Natural Construct file number for the first range of frames in New File.

5 Type the Natural Construct file number for the second range in Old File.

Natural Construct Administration and Modeling52

Using the Administration Subsystem

For example:

 CSDCMP N a t u r a l C o n s t r u c t CSDCMP20
 Aug 08 Compare Frames 1 of 1

 Old New

 Model ________________________________ ________________________________
 Frame CG______ ________

 Database ... 18_ 18_

 File 116 121

 Version

 Command __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

6 Press Enter.

53Natural Construct Administration and Modeling

Using the Administration Subsystem

The Select Frames window is displayed. For example:

 CSDCMPF Natural Construct CSDCMF0
 Oct 07 Select Frames 1 of 1

 Frame Old New
 ----------------- -------------------- --------------------
 _ CGMA9 DATE: 01-10-03 09:46 DATE: 01-09-27 15:03
 _ CGOA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ CGPA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ CGRA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ CGSA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ CHDA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 CMDA9 Does not Exist DATE: 01-09-27 15:03
 _ CMNA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ CN-BAN9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ CNDA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ CNOA9 DATE: 01-09-30 09:55 DATE: 01-09-27 15:03
 _ COBA9 DATE: 01-10-07 11:12 DATE: 01-09-27 15:03
 Code frame name CFM_____
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF
 help retrn bkwrd frwrd
 Position cursor or enter screen value to select

Use this window to select frames and display the comparison information.

7 Type "C" in the input field for any code frame.

8 Press Enter.

The Summary Report window is displayed, showing the differences between the two ranges
of frames.

9 Press Enter.

TheCompare Frameswindow is displayed, showing a line-by-line comparison. For a descrip-
tion of the Summary Report and Compare Frames window, see Compare Two Code Frames
in Different Files.

Drivers Menu Function

Use this function to access theDriversmenu,which provides access to various utility subprograms
supplied with Natural Construct.

To access the Drivers menu:

1 Enter "D" in Function on the Administration main menu.

Natural Construct Administration and Modeling54

Using the Administration Subsystem

The Drivers Menu panel is displayed. For example:

CTEMENU N a t u r a l C o n s t r u c t CTEMNM0
Oct 31 Drivers Menu 1 of 1

 Functions

 P Predict-Related Drivers Menu
 N Natural-Related Drivers Menu
 M Miscellaneous Drivers Menu

 ? Help
 . Return

Function __
Command __
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit lang

The drivers used to access the utilities are grouped according to what kind of subprogram
they invoke. For a description of each menu function and the subprogram it invokes, refer to
the applicable Drivers Menu Option section in External Objects.

2 Enter the one-character function code in Function.

Note: For a description of the Help and Return functions, seeHelp and Return Codes on
Menus.

Multilingual Support for Natural Construct

You can install Natural Construct in static (single) or dynamic (multiple) language mode. If dy-
namic language mode is installed, you can change your *Language value at runtime and display
text in another supported language. You can also use theNatural SYSERRutility to add translations
for the supplied text or change the supplied text to suit your organization’s standards.

■ For information on installing Natural Construct in dynamic languagemode, see the installation
documentation.

■ For information on installing Natural Construct in static language mode, see Static (One-Lan-
guage) Mode.

55Natural Construct Administration and Modeling

Using the Administration Subsystem

■ For more information on using SYSERR, see Using SYSERR for Multilingual Support.

Libraries Supplying Multilingual Text

In dynamic language mode, all text displayed by Natural Construct is supplied by the Natural
SYSERR utility from the following libraries:

■ CSTLDA (all panel and window text)
■ CSTMSG (all message text)

Natural Construct checks the value of the *Language variable to determine which language to
display and retrieves the text for that language from the appropriate library.

Note: For information on the SYSERR utility, refer to the Natural utilities documentation.

Display Text in Another Language

To change the text displayed on panels to another supported language:

1 Press PF12 (lang) on the Administration main menu.

The Language Preference window is displayed. For example:

 CSULPS Natural Construct CSULPS0
 Aug 08 Language Preference 1 of 1

 Number Languages
 ---------- ------------------------------
 1 English
 2 Deutsch (German)
 3 Francais (French)
 4 Espagnol (Spanish)
 5 Italiano (Italian)
 6 Dutch
 7 Turkish
 8 Danish
 9 Norwegian
 10 Albanian
 Number ... __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---
 help retrn bkwrd frwrd
 Position cursor or enter screen value to select

2 Select the desired language.

The main menu is displayed in the selected language.

Natural Construct Administration and Modeling56

Using the Administration Subsystem

English (*Language 1) is the default language forNatural Construct. Although other languages
are listed in the Language Preference window, you must add the translations for those lan-
guages in SYSERR.

If you do not provide translated text for a selected language, Natural Construct determines
which language to display based on a user-defined hierarchy of language numbers (defined
in the DEFAULT-LANGUAGE field in the CNAMSG local data area for the CNUMSG sub-
program). For more information, see CNUMSG Subprogram.

Maintain Panel and Message Text

To define the text for another language, youmust first change the *Language value in the Language
Preference window. For information, seeDisplay Text in Another Language.

To add text for another language or modify the supplied text:

■ Use the SYSERR utility to add translations or modify the supplied text for all Natural Construct
screens. Using the SYSERR utility is the quickest way to translate text on all panels.

Or:
■ Use the Administration subsystem in translation mode to dynamically add translations or
modify the supplied text. Typically, you would use translation mode to fine tune translations
that were added using the SYSERR utility. This allows you to view the translation in the context
of the entire panel. For information about translation mode, see Access the Administration
Main Menu in Translation Mode.

Access the Administration Main Menu in Translation Mode

To helpmaintain the text forNatural Construct panels, windows, andmessages, theAdministration
subsystem is also available in translation mode. Translation mode allows you to change the text
supplied in the Natural SYSERR utility without leaving Natural Construct. You can change the
text displayed on the Administration main menu, as well as on panels and help or selection win-
dows for each function available through the Administration main menu.

You can also change the text displayed on the Generation and Help Text subsystem screens. For
information, see Translate Text for the Generation Subsystem and Translate Text for the Help
Text Subsystem.

The current value of the *Language variable determines whether you can maintain text for the
current language or for another language.

To Invoke in translation mode:

■ Enter "menut" at the Natural prompt.

57Natural Construct Administration and Modeling

Using the Administration Subsystem

The Administration main menu is displayed. For example:

 CSDMAIN N a t u r a l C o n s t r u c t CSDMNM0
 Aug 08 Administration Main Menu 1 of 1

 Functions

 M Maintain Models

 F Code Frame Menu

 S Maintain Subprograms

 R Maintain Control Record

 C Compare Menu

 D Drivers Menu

 H Help Text Main Menu

 G Generation Main Menu

 ? Help

 . Return

 Function _

 Command ___
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit lang

Use this panel to access the Natural Construct Administration functions in translation mode.
Notice that functions are also available to access the Help Text and Generation main menus
in translation mode.

Note: Although the panels look the same in translation mode, they do not perform the
same functions. For example, edit checks are not performed on input data. We recom-

Natural Construct Administration and Modeling58

Using the Administration Subsystem

mend that you do not use translationmode formaintenance functions, such as defining
a newmodel; use translation mode for translation functions, such as editing text in the
current language or creating multilingual specification panels and messages.

This section covers the following topics:

■ Use Translation Mode

Use Translation Mode

Translationmode uses the same series of panels andwindows used throughoutNatural Construct.
All translatable text is cursor sensitive. When you select the text and press Enter, the Translate
Short Message window is displayed. You can identify translatable text by the difference in color
or intensification.

Note: If you use Entire Connection to accessNatural Construct, you can display the Translate
Short Message window by double-clicking on translatable text.

You can translate two types of text:

■ Screen text (text displayed on panels and in windows), which is stored in the CSTLDA library
in SYSERR

■ Message text, which is stored in the CSTMSG library in SYSERR

EachNatural Construct panel or window is associatedwith a local data area (LDA) that initializes
the screen prompt variables. In translation mode, these variables are initialized to a SYSERR
number and the actual text values are retrieved at runtime (based on the current value of the
Natural *Language system variable).

You can use SYSERRnumbers for some or all screen prompts. If you specify text as an initial value,
Natural Construct displays the text as entered and the prompt cannot be dynamically translated.

When you use a SYSERR number instead of text, Natural Construct retrieves the corresponding
text from the CSTLDA library (for prompts) or the CSTMSG library (for messages) in SYSERR.
All changes to the values stored in SYSERR are automatically applied to the panels and messages
the next time they are invoked.

Note: For more information on substitution variables, refer to REINPUT Statement, Natural
Statements documentation.

This section describes how to perform the following tasks:

■ Translate Text for the Generation Subsystem
■ Translate Text for the Help Text Subsystem
■ Edit Text in the Current Language
■ Translate Text to Another Language

59Natural Construct Administration and Modeling

Using the Administration Subsystem

■ Use Substitution Variables

Translate Text for the Generation Subsystem

To translate text for the Generation subsystem:

1 Type "G" in Function on the Administration main menu in translation mode.

2 Press Enter.

The Generation main menu is displayed in translation mode.

3 Translate the text as desired.

Translate Text for the Help Text Subsystem

To translate text for the Help Text subsystem:

1 Type "H" in Function on the Administration main menu in translation mode.

2 Press Enter.

The Help Text main menu is displayed in translation mode.

3 Translate the text as desired.

Edit Text in the Current Language

Using translation mode, you can dynamically edit the text displayed on Natural Construct panels
in the current language — without invoking the Natural map or code editor. For example, you
can change the field prompt values to match your organization’s conventions.

To edit text in the current language:

1 Invoke in translation mode.

2 Access the panel you want to translate.

3 Move the cursor to the prompt text you want to change (not a blank input line).

4 Press Enter.

Natural Construct Administration and Modeling60

Using the Administration Subsystem

The Translate Short Message window is displayed. For example:

 CSUTLATE Natural Construct
 Aug 08 Translate Short Message 1 of 1

 Language Short Message (CSTLDA1116)
 --------+....1....+....2....+....3....+....4....+....5....+....6....+

 English Action/Subprogram /+26

This window provides quick access to the SYSERR numbers and text. Any changes made to
the text in thiswindoware automatically applied in SYSERR. The “/+26” value in thiswindow
indicates there are up to 26 characters available for each text segment that is to be translated.
Formore information on using the Translate ShortMessagewindow, seeContext Translation.

Note: Take care when changing the text for SYSERR numbers that are used on other
panels.

5 Edit the SYSERR text as desired.

6 Press Enter.

The panel for which you are translating text is displayed, showing the edited text.

Translate Text to Another Language

Use translation mode to add translations for prompt text on panels and windows. For example,
you can create specification panels in French (*Language 3).

To translate text to another language:

1 Invoke in translation mode.

2 Press PF12 (lang).

The Language Preferencewindow is displayed. For a description of this window, seeDisplay
Text in Another Language.

3 Move the cursor to the line containing the language for which you want to translate text.

4 Press Enter.

The Administration main menu is displayed.

5 Display the panel you want to translate.

For this example, the Maintain Models panel is translated to French.

61Natural Construct Administration and Modeling

Using the Administration Subsystem

6 Move the cursor over the prompt text you want to change (not a blank input line).

7 Press Enter.

The Translate Short Message window is displayed. For example:

 CSUTLATE Natural Construct
 Oct 07 Translate Short Message 1 of 1

 Language Short Message (CSTLDA1116)
 --------+....1....+....2....+....3....+....4....+....5....+....6....+

 English Action/Subprogram /+30
 Francais

8 Type the French equivalent under the English text.

The “/+30” value in this window indicates that you can use up to 30 characters for each text
segment that is to be translated.

9 Press Enter.

The panel for which you are translating text is displayed, showing the translated text.

10 Repeat steps 6 through 9 until all text is translated.

You can translate text on any Natural Construct panel or window by invoking that panel or
window and performing the translation procedure.

Note: To display the Generation and Help Text subsystem screens, see Translate Text
for the Generation Subsystem and Translate Text for the Help Text Subsystem.

Use Substitution Variables

Within SYSERR, you can provide text in different languages for each SYSERR number. For even
greater reusability, you can use a substitution variable (such as :1:) with the text. Typically, the :n:
variables are used in messages and the prompt is substituted for the :n: value. The actual text
displayed depends on the value of the *Language variable for the user who accessed the panel.

Note: For more information on substitution variables, refer to REINPUT Statement, Natural
Statements documentation.

Natural Construct Administration and Modeling62

Using the Administration Subsystem

Access and Use the Sample Exit Subprograms

Natural Construct supplies several sample exit subprograms you can use to:

■ Implement security
■ Restrict access to variousNatural Constructmodules (models, code frames,model subprograms,
help text members)

■ Define model aliases for use in the Generation subsystem
■ Provide user-defined defaults

Tip: Always keep a backup copy of your modified sample exit subprograms.

The Natural Construct installation tape contains the sample exit subprograms. The subprograms
are initially loaded into the SYSCSTX library, which is created during installation.

To modify a sample exit subprogram:

1 Use the SYSMAIN utility to copy the subprogram to the SYSCST library.

2 Modify the subprogram as desired.

3 Use SYSMAIN to copy the object code to the library indicated in Supplied Sample Exit
Subprograms.

This section covers the following topics:

■ Supplied Sample Exit Subprograms
■ Define Default Specifications

Supplied Sample Exit Subprograms

The following table lists each sample exit subprogram, the library inwhichNatural Construct will
search for the subprogram, and the function supported by the subprogram. When a user selects
amodule and action,Natural Construct checks the library indicated below and invokes the applic-
able subprogram. The supplied subprograms are:

FunctionLibrarySubprogram

Support for model alias names.SYSLIBSCSXAUEXT

Security for the Generation main menu (before the post-generation subprogram
is invoked).

SYSLIBSCSXCNAME

User-defined default values for generation models.SYSLIBSCSXDEFLT

Security for the Administration main menu.SYSCSTCSXDUEXT

63Natural Construct Administration and Modeling

Using the Administration Subsystem

FunctionLibrarySubprogram

Security for the Code Frame menu.SYSCSTCSXFUEXT

Security for the Help Text main menu.SYSLIBSCSXHUEXT

Security for the Maintain Model function.SYSCSTCSXMUEXT

Security for the Generationmainmenu (after all substitution values are generated
into the program).

SYSLIBSCSXPSCHG

Support for customized security routines.SYSLIBSCSXSECX

Support for special processing before an END or BACKOUT TRANSACTION
statement is issued. Uses the same parameters as CSXSECX, with the addition of
a timestamp parameter.

SYSLIBSCSXTRANS

Security for the Maintain Subprograms function.SYSCSTCSXSUEXT

Define Default Specifications

Natural Construct reads the default specifications for a model into the editor whenever the clear
subprogram is invoked for a model. This occurs when the:

■ Clear Specifications and Editor function is invoked and a model name is specified
■ Modify Specifications function is invoked for a new model

To set default values for the model parameters, edit the clear subprogram for the model.

This section covers the following topics:

■ Determine the Name of the Clear Subprogram
■ Set the Default Specification Values
■ Use CSXDEFLT Overrides
■ Assign Your Own Defaults
■ Use Predict Keywords

Determine the Name of the Clear Subprogram

To determine the name of the clear subprogram for the model:

1 Logon to the SYSCST library.

2 Enter the following on the command line:

Menu,M

Natural Construct Administration and Modeling64

Using the Administration Subsystem

The Maintain Models panel is displayed. For example:

 CSDFM ***** Natural Construct ***** CSDFM0
 Aug 18 Maintain Models 1 of 1

 Action ___ A,B,C,D,M,N,P,R

 Model ________________________________

 Based on model ________________________________

 Description __

 PDA name ________ Status window _

 Programming mode __ Comment indicators ___ \ ___
 Type _ Programming Language ________ *
 Code frame(s) ________ ________ ________ ________ ________

 Modify server ________ ________ ________ ________ ________

 ________ ________ ________ ________ ________

 Modify client ________ ________ ________ ________ ________

 ________ ________ ________ ________ ________

 Clear ________ Post-generation ________

 Read ________ Save ________

 Pre-generation ________ Document ________

 Validate ________ Stream ________

 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit frame main

3 Enter "B" in Action.

The Select Models window is displayed.

4 Select the model name.

65Natural Construct Administration and Modeling

Using the Administration Subsystem

The information for that model is displayed. For example:

 CSDFM ***** Natural Construct ***** CSDFM0
 Aug 18 Maintain Models 1 of 1

 Action ___ A,B,C,D,M,N,P,R

 Model OBJECT-BROWSE-DIALOG____________

 Based on model ________________________________

 Description *0201.1___
 OBJECT-BROWSE-DIALOG Subprogram

 PDA name CUBDPDA_ Status window N

 Programming mode S_ Comment indicators **_ \ ___
 Type N Subprog. Programming Language NATURAL_ *
 Code frame(s) CBDA?___ CBDB?___ ________ ________ ________

 Modify server CUBDMA__ CUBDMB__ ________ ________ ________

 ________ ________ ________ ________ ________

 Modify client WCNBDMA_ WCNBDMB_ ________ ________ ________

 ________ ________ ________ ________ ________

 Clear CUBDC___ Post-generation CUBDPS__

 Read CUBDR___ Save CUBDS___

 Pre-generation CUBDPR__ Document CUBDD___

 Validate CUBDVAL_ Stream CUBDT___

 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit frame main

 Model OBJECT-BROWSE-DIALOG displayed successfully

In this example, the clear subprogram is called CUBDC and the PDA name is CUBDPDA.

Natural Construct Administration and Modeling66

Using the Administration Subsystem

Set the Default Specification Values

To set the default specification values for a model:

1 Log onto the SYSCST library.

2 Edit the clear subprogram for the model.

For example, the default values in the CUBDC subprogram for the Object-Browse-Dialog
model are:

IF #PDAX-DESCRIPTION(1) = ' ' THEN
 #PDAX-DESCRIPTION(1) :=
 'This dialog is used for the object browse ...'
 END-IF

3 Compile CUBDC.

4 Use the SYSMAIN utility to copy the object code for the clear subprogram to the SYSLIBS
library.

The new defaults will now be used.

Use CSXDEFLT Overrides

If there is a default specification value that affects several models, you can set this value in the
suppliedCSXDEFLT subprogram. This subprogramprovides default values formodel parameters
that can be overridden on the specification panels, as well as internal model parameters that are
not displayed on the panels.

Tip: Natural Construct has identified the most common parameters that fit this category.
To see what they are, invoke CSUGETDF from the SYSCST library.

To change the default values of these parameters, edit CSXDEFLT in the SYSCSTX library. For
example, to changeDATE-EDIT-MASK (by default, LLL' 'ZD','YY) to 08Aug11, changeCSXDEFLT
as follows:

VALUE 'DATE-EDIT-MASK'
 CSADEFLT.PARM-VALUE := 'YY'',''LLL'' ''ZD'
CSADEFLT.PARM-VALUE := 'LLL'' ''ZD'',''YY'

To use the new default values, CSXDEFLTmust exist in the SYSLIBS library and the clear subpro-
gram must call this subprogram. For an example of calling CSXDEFLT, refer to the CUFMC clear
subprogram in the SYSCST library. For example:

INCLUDE CCDEFLTA '''DATE-EDIT-MASK''' '#PDA-DATE-EDIT-MASK'

Notice that there are three modules in CUFMC that are being used to query the defaults: CCDE-
FLTN, CCDEFLTA, and CCDEFLTL.

67Natural Construct Administration and Modeling

Using the Administration Subsystem

The supplied INCLUDE code members retrieve the default parameter values by issuing a
CALLNAT to the CSUDEFLT sample exit subprogram. Prior to returning the defaults, CSUDEFLT
checks to seewhether the values have been overridden by the user-definedCSXDEFLT subprogram.
If so, the overridden values are returned to the model.

Normally, the model’s clear subprogram requests the default values and the returned values are
copied to the model parameter data area (PDA). This way, the overhead of retrieving the defaults
is only incurred when the user switches to another model or issues a Clear request.

To simplify the interface to CSUDEFLT,Natural Construct supplies three parameterized copycode
members. Which copycode member you choose depends on the format of the field you are
providing defaults for. The copycode members are:

DescriptionCopycode Member

Provides default values for alphanumeric fields.CCDEFLTA

Provides default values for logical fields.CCDEFLTL

Provides default values for numeric fields.CCDEFLTN

Each copycode member accepts two parameters. The format of the second parameter determines
which of the copycode members to use:

■ The first parameter identifies the default value; this value is passed to CSXDEFLT as the
CSADEFLT.PARM-NAME variable. The exact name must appear in the DECIDE statement for
CSXDEFLT.

■ The second parameter defines the variable towhich the default value is assigned (this is typically
a variable in themodel PDA). The variable is assigned the value returned in CSADEFLT.PARM-
VALUE.

Example of retrieving an alphanumeric default value:

/*
/* Assign default date edit mask to (alphanumeric) model PDA variable
INCLUDE CCDEFLTA '''DATE-EDIT-MASK''' 'CUMNPDA.#PDA-DATE-EDIT-MASK'

For a list of parameters that can be modified by CSXDEFLT, refer to the CSUGETDF program.
CSUGETDF also indicates which parameters are currently being overridden by CSXDEFLT. The
CSXDEFLT source code contains a description of the parameters.

Example of increasing the size of the left or right prompt on panels:

You can use the CSXDEFLT sample exit subprogram to increase the size of the #RIGHT-PROMPT
or #LEFT-PROMPT variable in generated browse, maintenance, or batch programs. For example:

VALUE 'RIGHT-PROMPT-LENGTH'
 CSADEFLT.PARM-VALUE := '9'

Natural Construct Administration and Modeling68

Using the Administration Subsystem

If you increase the prompt length to more than 9 characters, you must also change the size of two
variables in the CSUMORE generation utility subprogram in the SYSCST library. Typically, the
#PROMPT value should be two characters bigger than the biggest prompt size and the #LITERAL
value should be the same size as #PROMPT. For more information, see CSUMORE Subprogram.

Note: If you change the prompt length in CSXDEFLT, you must also change the #RIGHT-
PROMPT and/or #LEFT-PROMPT variable on existing maps and then regenerate the
modules.

Modify the CSXDEFLT Subprogram

To modify CSXDEFLT:

1 Logon to the SYSCSTX library.

During installation, the CSXDEFLT subprogram is installed in the SYSCSTX library.

2 Edit and save the CSXDEFLT subprogram.

3 Use the Natural SYSMAIN utility to copy CSXDEFLT to the SYSCST library.

4 Catalog CSXDEFLT in the SYSCST library.

5 Use SYSMAIN to copy the CSXDEFLT object code to the SYSLIBS library.

Tip: For testing purposes, modify CSXDEFLT in the SYSCST library and invoke CSTG, in-
stead of NCSTG, to see the affects of your change.

Modify the DEFAULT Keyword

You canmodify theDEFAULTkeyword by changing the value of theDEFAULT-SPECIFICATION-
KEYWORD parameter in the CSXDEFLT subprogram.

Use *ISN as a Unique Primary Key for Maintenance

For information, see Use *ISN as the Unique Primary Key for Maintenance.

Assign Your Own Defaults

You can define default values at the corporate level. For example, you can use the export data
function to default information such as the export work file number and the delimiter character.
To implement the defaulting mechanism, refer to the following code example. The example illus-
trates how a work file number and column delimiter values are defaulted.

Example of assigning corporate defaults in the clear subprogram:

** We want to default two internal variables: #WORKFILE-NR and
** #COLUMN-DELIMITER

69Natural Construct Administration and Modeling

Using the Administration Subsystem

 DEFINE DATA
 LOCAL USING CSADEFLT /* Must include user default
 /* interface LDA
 LOCAL
 01 #WORKFILE-NR(N2) INIT<5> /* Assign fallback default "5"
 01 #COLUMN-DELIMITER(A1) INIT<','>/* Assign fallback default ","
 01 #PERFORMANCE(L) INIT<FALSE> /* Assign fallback default
 /* "FALSE"
 END-DEFINE
** Assign corporate default overrides if available
 INCLUDE CCDEFLTN '''WORKFILE-NUMBER-PC-DOWN''' #WORKFILE-NR
 INCLUDE CCDEFLTA '''WORKFILE-DELIMITER-CHAR''' #COLUMN-DELIMITER
 INCLUDE CCDEFLTL '''PERFORMANCE''' #PERFORMANCE
** Note that there are 3 separate INCLUDE members: one for numeric
** defaults (CCDEFLTN), one for alphanumeric defaults (CCDEFLTA), and
** one for logical defaults (CCDEFLTL)
** Continue normal processing and the initial values may have been
** overridden by a corporate-supplied defaulting routine.

Notes:

1. To apply the changes corporation-wide, you must add the initial variable name and its initial
value in the CSXDEFLT sample exit subprogram.

2. The internal defaulting mechanism may be affected when you use this defaulting mechanism
to initialize the specification panel default keyword.Use the same keyword for bothmechanisms.
The specification panel default keyword overrides the internal default keyword.

After adding your own parameters, modify CSUDEFLT (so the CSUGETDF subprogram can add
the new parameters to the #PARM-LIST) and then set the #MAX-DEFAULTS setting (for example,
if you add one parameter, add one to the #MAX-DEFAULTS value).

You can also override changes the programmer hasmade and insist on certain values by including
statements that assign values to themodel PDA in the post-generation subprogram for themodel,
instead of the clear subprogram. Alternatively, you can hard code a search and replace option.
For example, you can create your own copy of CCSETKEY and call it MYSETKEY. To do this, add
the line STACK TOP DATA FORMATTED ‘CCSETKEY’ ‘MYSETKEY’ in the post-generation
subprogram. All instances of CCSETKEY in the code will be replaced by MYSETKEY.

Natural Construct Administration and Modeling70

Using the Administration Subsystem

Use Predict Keywords

You can use Predict keywords to define default values for some model input parameters (for ex-
ample, primary key fields, logical hold fields, and object descriptions). If default values have been
specified in Predict, Natural Construct fills in the default values when the model is accessed. This
reduces the number of specifications developers must provide when using the model.

This section covers the following topics:

■ Define a Default Primary Key
■ Define a Default Logical Hold Field
■ Define a Default Object Description

Define a Default Primary Key

You can define a default value for a primary key by specifying a descriptor name in the Sequence
field for the file in Predict. Natural Construct observes the following priorities when defaulting a
primary key name for a file:

1. If the value of the default Sequence field for the file is unique and a valid descriptor, Natural
Construct uses this value as the primary key.

2. If the value of the default Sequence field is not unique, Natural Construct reads through the
file and uses a unique descriptor field value as the primary key.

3. If the file does not have a unique descriptor field, but has only one descriptor field, Natural
Construct assumes the field value is unique and uses it as the primary key.

Define a Default Logical Hold Field

You can define a default value for the logical hold field by attaching a keyword called “HOLD-
FIELD” to the field in Predict.

Note: You may have to first define the HOLD-FIELD keyword in Predict using Keyword
Maintenance.

Natural Construct observes the following priorities when defaulting a hold field name for a file:

1. If the HOLD-FIELD keyword is attached to a field that meets the format criteria for a hold field,
Natural Construct uses this field as the logical hold field.

2. If a field name contains any of the following strings, it is used as the logical hold field:
■ HOLDFIELD
■ HOLD-FIELD
■ HOLD_FIELD
■ TIMESTAMP

71Natural Construct Administration and Modeling

Using the Administration Subsystem

■ TIME-STAMP
■ TIME_STAMP
■ LOGCOUNTER
■ LOG-COUNTER
■ LOG_COUNTER

3. If a fieldmeets the format criteria for a hold field, Natural Construct uses this field as the logical
hold field.

Define a Default Object Description

You can define a default value for the object description by specifying the default value in the
Literal Name field for the file in Predict. Natural Construct uses this value as the object description
when the file is referenced in messages. If the value is “Customer”, for example, messages are
displayed as “Customer not found” or “Customer displayed”.

Natural Construct Administration and Modeling72

Using the Administration Subsystem

4 Using the Code Frame Editor

■ Access the Code Frame Editor ... 74
■ Features of the Code Frame Editor ... 77

73

A code frame is the basic building block of a model. It provides a rudimentary outline of the code
generated by the model. Code frames may contain condition codes to generate blocks of code
conditionally. Theymay also contain subprograms used to generate more complex blocks of code.

This section describes how to access and use the Code Frame editor. The following topics are
covered:

Access the Code Frame Editor

There are three methods you can use to access the Code Frame editor. These methods are:

■ From the Administration Main Menu
■ From the Command Line
■ From the Maintain Models Panel

From the Administration Main Menu

To access the Code Frame editor from the Administration main menu:

1 Type "F" in Function.

2 Press Enter.

The Code Frame menu is displayed. For example:

 CSMMAIN N a t u r a l C o n s t r u c t CSMMNM0
 Jul 05 Code Frame Menu 1 of 1

 Functions

 E Edit Code Frame

 S Save Code Frame

 L List Code Frames

 P Purge Code Frame

 C Clear Edit Buffer

 H Print Saved Code Frame

Natural Construct Administration and Modeling74

Using the Code Frame Editor

 ? Help

 . Return

 Function _

 Code Frame ________

 Description ___

 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

For information about the functions available through this menu, see Code Frame Menu
Function.

3 Type "E" in Function.

Tip: To edit an existing code frame, type the name of the code frame in Code Frame

before accessing the Code Frame editor.

4 Press Enter.

The Code Frame editor is displayed. For example:

 Code Frame SIZE

 Description FREE 61361
 > > + ABS X X-Y _ S L

 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C

75Natural Construct Administration and Modeling

Using the Code Frame Editor

 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T

For information about modifying the supplied code frames, see Edit Code Frame.

From the Command Line

You can also access the Code Frame editor from the Natural Next prompt (Direct command box
for Unix).

To access the Code Frame editor from the command line:

1 Logon to the SYSCST library.

Natural Construct Administration and Modeling76

Using the Code Frame Editor

2 Enter the following command:

MENU F E/framename/framedescription

From the Maintain Models Panel

You can also access the Code Frame editor from the Maintain Models panel.

To access the Code Frame editor from the Maintain Models panel:

1 Access the Administration main menu.

For information, see Access the Administration Main Menu.

2 Enter "M" in Function.

The Maintain Models panel is displayed.

Note: For a description of this panel, seeMaintain Models Function.

3 Move the cursor over the code frame you want to edit.

4 Press PF4 (frame).

The specified code frame is displayed in the Code Frame editor.

Note: For information about editing code frames, see Edit Code Frame.

Features of the Code Frame Editor

The following example shows the CSLC9 code frame in the Code Frame editor:

 Code Frame CSLC9 SIZE 29281
 Description Browse-Select* model subroutines FREE 29520
 > > + ABS X X-Y _ S 408 L 1
 Top...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
 *
 * Subroutines (in alphabetical order).
 *
 CHECK-WILD-CHARACTER 1
 *** "
 DEFINE SUBROUTINE CHECK-WILD-CHARACTER "
 *** "
 * "

77Natural Construct Administration and Modeling

Using the Code Frame Editor

 * Check for wild characters in the input key and "
 * reset minimum and maximum values for the key accordingly "
 RESET #WILD-CHAR #LAST-POS "
 FOR #WINDX = 1 TO 3 "
 EXAMINE #INPUT.#CHAR-ARRAY(*) FOR "
 CDWILDA.#WILD-CARD-CHARS(#WINDX) GIVING INDEX #FIRS-POS(#WINDX) "
 END-FOR "
 /* Find the first wild character "
 FOR #WINDX = 1 TO 2 "
 IF #FIRS-POS(#WINDX) = 1 THRU #FIRS-POS(#WINDX + 1) OR "
 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T

The Code Frame editor supports all generic Natural edit commands except the RUN, CHECK,
TEST, STOW, and SAVE commands. This editor has no line numbers, but it does have two extra
fields to the right of the edit area: T (Type) and C (Condition). Natural Construct uses these fields
to control the generation process for each code frame.

The fields in the Code Frame editor are

DescriptionField

Name of the code frame currently in the editor (the name specified in Code Frame on the
Code Frame menu).

CodeFrame

Brief description of the code frame.Description

Size of the code frame (in bytes).SIZE

Number of bytes currently available in the editor.FREE

Command line prompt, at which you can:>

■ Enter "Q", "QUIT", or "." to close the editor.
■ Issue an edit command (for a list of the edit commands, see Edit Commands.

Direction indicator. The plus sign (+) indicates that the ADD, MOVE, COPY, INSERT, and
SCAN commands operate in a forward (from top to bottom) direction. To have the commands
operate in a backward direction (from bottom to top), type a minus sign (-) over the plus sign.

Edit commands use the direction indicator to determine whether to place lines before the first
line in the editor or after the last line. For example, using the ADD edit command and a +

+

indicator adds lines after the last line in the editor; using the ADD edit command and a -
direction indicator adds lines before the first line in the editor.

Absolute field, which is used in conjunction with the SCAN and CHANGE edit commands.
When this field is marked, the system scans for or changes the specified characters, including

ABS

those within words. If you specify a blank in this field, the system scans for or changes the
specified characters only if they are a separate entity (delimited by blanks or special characters).

X and Y delimiters for a block of code. To confine SCAN and CHANGE commands to code
within an X-Y delimited range, mark this field. Code outside the X-Y range is not affected.

X-Y

Total number of lines of code currently in the editor.S

Number of the first line currently displayed in the editor.L

Natural Construct Administration and Modeling78

Using the Code Frame Editor

DescriptionField

Editor line type. Valid line types are:T

■ N

Indicates that this is a subprogram line and the specified Natural subprogram is invoked
during generation. If you specify "N", the line is automatically formatted as follows:

Subprogram: _______ Parameter: ______ N

Type the name of the subprogram in Subprogram. If the subprogram is invoked more than
once or in multiple code frames, you can specify a constant in Parameter (the constant is
placed in the #PDA-FRAME-PARM field in the CU—PDA parameter data area). The
subprogram can test this field to determine where the subprogram is invoked.

■ F

Indicates that this is a secondary (nested) code frame line and the specified code frame is
invoked during generation. The names of nested code frames should all endwith a question
mark (?). This naming convention greatly reduces the time and effort required to modify
code frames.

■ U

Indicates insertion points where developers can insert user exit code. (You can specify
additional attributes using the .E command after the line is specified.)

■ *

Indicates code frame comments, which are not used by the generated module.
■ B

Indicates that blank lines are valid and will be generated into the source area. This line type
is used to explicitly hold blank line positions. Natural Construct will not change the contents
of any B type line. If text is entered on a B type line, the text is generated; if a B type line is
blank, a blank line is generated.

Note: Natural code does not require blank lines, whereas many scripting languages use the
blank line concept extensively.

■ X

Indicates that the text portion of the line must contain the name of a user exit, and the code
in the C field must be a number from 1 to 9. If the user exit exists in the User Exit editor
when the program is generated, this line indicates that the condition is True.

■ blank

Indicates that this line is constant text and is inserted directly in the generated program,
based on the value in C. Whenever a code frame is updated, Natural Construct compresses
blank lines and lines marked with B.

79Natural Construct Administration and Modeling

Using the Code Frame Editor

DescriptionField

Condition level of the corresponding lines. Valid levels are:C

■ n (1–9)

Indicates a new condition for this level. The conditions are Boolean combinations of the
condition constants specified for the generator. If the condition specified on the line is True,
all subsequent codewith quotationmarks (") is included in the generated program. You can
nest conditions by specifying a number greater than 1. (For information about setting up
conditions for your generators, see Use Code Frame Conditions.)

■ "

Indicates that text on this line is a continuation of the previous block of code and subject to
the last condition specified.

■ blank

Indicates that the corresponding line is constant text and is included unconditionally.

This section covers the following topics:

■ Use Commands in the Code Frame Editor
■ Change the PF-Key Profile for the Current Session
■ Save the Contents of the Edit Buffer
■ Create GUI Sample Subprograms

Use Commands in the Code Frame Editor

This section describes how to use commands in the Code Frame editor. The following topics are
covered:

■ Order of Command Execution
■ Line Commands
■ Edit Commands
■ Positional Edit Commands

Order of Command Execution

The Code Frame editor executes commands in the following order:

1. Processes text modifications.

2. Executes line commands.

These commands are specified in the text area of the editor and are preceded with a period (.E,
for example).

3. Executes edit commands.

Natural Construct Administration and Modeling80

Using the Code Frame Editor

These commands are specified at the > prompt (ADD, for example).

Line Commands

Within the Code Frame editor, you can issue line commands to copy, move, and delete lines of
code. Line commands must be entered in the first column position of a line in the edit area (not
at the > prompt) and must begin with a period (.).

Note: Except for the .L command, you should only issue line commands on modified code
after you press Enter.

If the direction indicator is + (indicating from top to bottom), the copied, moved, or inserted lines
are placed below the line onwhich the command is entered. If the direction indicator is - (indicating
from bottom to top), the lines are placed above the line on which the command is entered.

Note: To avoid shifting the T (Type) andC (Condition) fields, the SHIFT, .J, and .S commands
are not available in the Code Frame editor.

The line commands applicable in the Code Frame editor are:

FunctionCommand

Copies the current line nn times, where nn is the number of times. The
default is one time.

.C(nn)

Copies the line marked X nn times, where nn is the number of times. The
default is one time.

.CX(nn)

Copies the line marked Y nn times, where nn is the number of times. The
default is one time.

.CY(nn)

Copies the block delimited by X and Y nn times, where nn is the number
of times. The default is one time.

.CX-Y(nn)

Deletes nn lines, where nn is the number of lines. The default is one line..D(nn)

Specifies additional attributes for user exits. If the corresponding line is
type U (user exit point), you can specify additional attributes for the user
exit by issuing the .E command.

.E

Invokes the Natural Construct Generation subsystem..G(model, parameters)

Inserts nn lines, where nn is the number of lines. The default is 9 lines; the
maximum is 9 lines. TheCode Frame editor suppresses unused lines unless
they are marked with a B line type.

.I(nn)

Inserts the specified code frame on the line below the line on which the
command is specified.

Note: The direction indicator has no effect on this command.

.IF (code frame name)

Places a member from the current library onto a specified line in the editor.
You can also specify a starting line and the total number of lines to include.

.I(member,startline,number
of lines)

81Natural Construct Administration and Modeling

Using the Code Frame Editor

FunctionCommand

Restores the line on which the command is specified to its previous state.
(This command is similar to the LET edit command, except it applies to one
line only.)

.L

If the direction indicator is +, this command moves the line marked X to
the line below the one on which .MX is specified. If the indicator is -, this
command moves the line marked X to the line above.

.MX

If the direction indicator is +, this command moves the line marked with Y
to the line below the one onwhich .MY is specified. If the direction indicator
is -, this command moves the line marked Y to the line above.

.MY

Moves the block of lines delimited by the X and Y markers. If the direction
indicator is +, this command moves the block to the line below the one on

.MX-Y

which .MX-Y is specified. If the direction indicator is -, this commandmoves
the block to the line above.

Marks the line for the POINT edit command (for information on the POINT
command, see Positional Edit Commands).

.N

Moves the line on which the command is specified to the top of the panel..P

Inserts nn blank lines in the editor, where nn is the number of lines. The
default is 9 lines. Whenever the code frame is updated, Natural Construct
suppresses any unused lines unless they are marked as B line types.

.W(nn)

Marks a line, or marks the beginning of a block of lines, that ends with a
line marked Y.

.X

Marks a line, or marks the end of a block of lines, that begins with a line
marked X.

.Y

Edit Commands

Edit commands are specified at the command prompt (>). These commands are:

FunctionCommand

Adds 9 blank lines to the editor.ADD

Scans for text and replaces it with the specified value. The syntax is:

CHANGE 'scanvalue'replacevalue'

CHANGE

You can use any special character as a delimiter, as long as you do not use the same
character within the command.

Note: Unless X andY line commands limit the range, this edit commandperforms changes
to the entire edit buffer.

Clears the current contents of the edit buffer.CLEAR

Deletes the line marked X.DX

Deletes the line marked Y.DY

Natural Construct Administration and Modeling82

Using the Code Frame Editor

FunctionCommand

Deletes the lines between the X and Y markers, inclusively.DX-Y

Ends the edit session and invokes the previous menu.END

Deletes all lines before the X marker.EX

Deletes all lines after the Y marker.EY

Deletes all the lines before the X marker and after the Y marker.EX-Y

Displays help text for the Code Frame editor.HELP

Restores lines to their previous state, should you inadvertently change them. Specify the
command before pressing Enter. (This command is similar to the .L line command, but
applies to the entire buffer.)

LET

Lists the current contents of the Main buffer.LIST

Invokes a window in which you can modify PF-key settings and edit specifications for
the current edit session (see Change the PF-Key Profile for the Current Session).

PROFILE

Ends the edit session and invokes the previous menu.QUIT or .

Reads the Natural source for program into the edit buffer.READ program

Clears the X and Y markers.RESET

Scans for data in the edit area in the following ways:

SCAN 'scanvalue

SCAN

Scans for text within the delimiters.

SCAN scan value

Scans for the entire text after the SCAN keyword, including spaces.

Note: You must use delimiters for scan values that begin with a non-alphanumeric
character.

If the direction indicator is "+", the scan begins at the first line displayed on the panel and
continues to the end of the text. If the indicator is "-", the scan begins at the last line and
continues to the beginning. When the scan value is found, "S" is displayed in the left
column next to the target line(s).

Note: You can also limit the scan range by marking the X-Y field at the top of the Code
Frame editor. For a description of this field, see Features of the Code Frame Editor.

Invokes a window in which you can specify one or more of the following translation
options:

UPPER

■ Comments

Translates all lower case text in comments (text preceded by *, **, or /*).
■ Statements

Translates all lower case text in statements, including variables.
■ Quoted strings

83Natural Construct Administration and Modeling

Using the Code Frame Editor

FunctionCommand

Translates all lower case text in quoted strings.
■ Programming

Translates text for the programming language specified.

Redisplays the last command issued.*

Positional Edit Commands

If the code frame in the edit buffer is too large to be displayed in its entirety on the panel, you can
issue edit commands at the command prompt (>) to scroll through the code:

FunctionCommand

Scrolls forward (+) or backward (-) nnnn lines.+nnnn or -nnnn

Scrolls forward (+) or backward (-) half a panel.+H or -H

Scrolls forward (+) or backward (-) one panel.

Note: If the code was not changed, you can press Enter to scroll forward one panel.

+P or -P

Scrolls forward to end of code frame.BOTTOM or ++

Scrolls line on which the .N line command is specified to top of panel.POINT

Scrolls backward to top of panel.TOP or –

Scrolls to the line marked X or Y.X or Y

Scrolls to the nnnn line.nnnn

Change the PF-Key Profile for the Current Session

You can change the PF- and PA-key settings, the number of updates before an automatic save,
and the name of the recovery member. Any changes to the current profile take effect immediately
and remain in effect for the duration of the current edit session. These changes do not affect the
Natural edit profile.

To change the PF-key profile for the current session:

1 Enter "PROFILE" at the > prompt in the Code Frame editor.

Natural Construct Administration and Modeling84

Using the Code Frame Editor

The Maintain Current PF-Key Profile window is displayed. For example:

 CS-PROF Natural Construct CS-PRFM0
 Jun 20 Maintain Current PF-Key Profile 1 of 1

 PF1 = -______________ PF2 = T______________ PF3 = B______________
 PF4 = -H_____________ PF5 = +H_____________ PF6 = +P_____________
 PF7 = N______________ PF8 = _______________ PF9 = Q______________
 PF10= _______________ PF11= _______________ PF12= _______________
 PF13= _______________ PF14= _______________ PF15= _______________
 PF16= _______________ PF17= _______________ PF18= _______________
 PF19= _______________ PF20= _______________ PF21= _______________
 PF22= _______________ PF23= _______________ PF24= _______________
 PA1 = _______________ PA2 = SCAN___________ PA3 = _______________

 Auto save numbers In member EDITWORK
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11-
 help retrn
 Changes DO NOT affect your edit profile outside Construct

This window displays the various settings in effect for the current edit session. The PF-key
settings for the Natural Construct editors are determined in the samemanner as those for the
Natural editor. If you have a profile that corresponds to your user ID, Natural Construct will
use those defaults.

2 Change the settings as desired.

The fields in this window are:

DescriptionField

Functions assigned to the PF- and PA- keys. You can add new functions by typing
a command next to the desired key, or modify existing functions by typing a new
command over the one displayed.

PF-nn or PA-n

Number of updates allowed before the source is automatically saved. If this field
is blank or 0 (zero), Natural Construct does not automatically save work.

Auto save numbers

Name of the program that is overwritten each time the specified number of
updates is exceeded (bydefault, EDITWORK). To change the nameof the program,

In member

type a new name over the one displayed. If this field is blank, Natural Construct
does not automatically save work.

85Natural Construct Administration and Modeling

Using the Code Frame Editor

Save the Contents of the Edit Buffer

TheNatural Construct editors can automatically savework in the edit buffer after a certain number
of updates. The number specified in Auto save numbers in the Maintain Current PF-Key Profile
window determines how often the work is saved. If this field is blank, Natural Construct does not
automatically save work. You can also use In member in the Maintain Current PF-Key Profile
window to specify the name of the recovery member where you want your work saved.

To recover edits, the value in Auto save numbersmust not be blank or 0 (zero) and the value in
In membermust be specified. For information, see Change the PF-Key Profile for the Current
Session.

Tip: Save your work using a unique recovery member name, such as your user ID. This
way, your work will not be overwritten by another user using the same recovery member
name in the same library.

To retrieve lost code:

1 Access the Code Frame editor.

For information, see Access the Code Frame Editor.

2 Read EDITWORK into the edit buffer (or whatever name you specified as your recovery
member name in the Maintain Current PF-Key Profile window).

3 Re-specify the description, as it is not saved in the recovery member.

Create GUI Sample Subprograms

Sample subprograms are invoked from a user exit. These subprograms help the developer create
user exit code by providing a starting sample. The GUI sample subprogram is a client version of
the mainframe sample subprogram—minus the input statements. When Natural Construct gen-
erates a model on the client, it bypasses the mainframe sample subprogram and reads the GUI
sample subprogram instead.

Natural Construct Administration and Modeling86

Using the Code Frame Editor

5 Creating New Models

■ Components of a Natural Construct Model ... 88
■ How the Natural Construct Nucleus Executes a Model .. 89
■ Build a New Model ... 90
■ Test the Model Subprograms ... 135
■ Implement Your Model .. 142
■ Create Statement Models .. 142
■ Use the Supplied Utility Subprograms and Helproutines .. 143

87

This section describes the procedure to create a newNatural Constructmodel and contains inform-
ation about testing the components of a model and debugging a model. In addition, it describes
special considerations for building statement models and presents a summary of tips and precau-
tions. This section also provides information about the utility subprograms and helproutines
supplied with Natural Construct. These utilities can help you create your new model.

This section covers the following topics:

Components of a Natural Construct Model

ANatural Construct model is the combination of several components which, when used together,
generate aNaturalmodule. Natural Construct providesmodels you can use to help generatemany
of these components. The following table lists the components of a Natural Construct model, as
well as the name of the model you can use to generate each component (if applicable):

Model Used to GenerateComponent

None (either create manually or copy and modify existing).Code frames

CST-PDA model (described in CST-PDAModel).Model PDA

None (either create manually or copy and modify existing).TranslationLDAs for dynamic translation

Map model (described in Natural Construct Generation).Maintenance maps

CST-Modify orCST-Modify-332model (described inCST-Modify
and CST-Modify-332 Models).

Maintenance subprogram(s)

CST-Pregen model (described in CST-Pregen Model).Pre-generation subprogram

CST-Frame model (described in CST-Frame Model).Generation subprograms

CST-Postgen model (described in CST-Postgen Model).Post-generation subprogram

CST-Clear model (described in CST-Clear Model).Clear subprogram

CST-Save model (described in CST-Save Model).Save subprogram

CST-Read model (described in CST-Read Model).Read subprogram

CST-Frame model (described in CST-Frame Model).Sample subprogram(s)

CST-Document model (described in CST-Document Model).Documentation subprogram

CST-Stream model (described in CST-StreamModel).Stream subprogram

CST-Validate model (described in CST-Validate Model).Validation subprogram

Natural Construct Administration and Modeling88

Creating New Models

How the Natural Construct Nucleus Executes a Model

The Natural Construct nucleus is a sophisticated driver program that assembles the model com-
ponents and sets them in motion. Although it invokes the subprograms at the appropriate time
in the generation process and performs the functions common to all models, it is not aware of the
code generated by the models.

The nucleus communicates with the model subprograms through standard parameter data areas
(PDAs). These PDAs contain fields assigned byNatural Construct, aswell as fields that are redefined
as required by a model.

The generation process uses each model component at a different time. The following diagram
illustrates the components of a model and how they interact with each other and the nucleus. The
large letters in red correspond to the function codes a user enters on the Generation main menu
to invoke the corresponding subprogram(s):

89Natural Construct Administration and Modeling

Creating New Models

Build a New Model

This section describes how to build a new Natural Construct model. These steps are:

■ Step 1: Define the Scope of the Model
■ Step 2: Create the Prototype
■ Step 3: Scrutinize the Prototype
■ Step 4: Isolate the Parameters in the Prototype
■ Step 5: Create Code Frame(s) and Define the Model
■ Step 6: Create the Model PDA
■ Step 7: Create the Translation LDAs and Maintenance Maps
■ Step 8: Create the Model Subprograms

Step 1: Define the Scope of the Model

Before you can build the newmodel, youmust decidewhat type ofmodule themodelwill generate.
The following diagram illustrates the varying scope and overlapping functionality of different
module types:

Natural Construct Administration and Modeling90

Creating New Models

Is the Scope Too Broad?

If your model contains many parameters (one that generates complex modules with broad func-
tionality), it may:

■ Confuse and frustrate developers
■ Lengthen the time it takes developers to specify parameters
■ Require complex code frames with many conditions
■ Make the model so flexible that generated code may deviate from standards

For example, the model should not allow developers to define PF-keys used for standard features
(these should be standardized across all applications). On the other hand, these models can be
very powerful and flexible — once the developer is familiar with them.

Is the Scope Too Narrow?

If your model contains few parameters (one that generates simple modules with narrow function-
ality), it may:

■ Make the model inflexible
■ Limit the model’s usefulness

On the other hand, these models are simple to use and easy to maintain.

What to Generate and Why

Typically, models generate Natural source code — but the possibilities are endless. Natural Con-
struct was designed to generate text in any form: Unix scripts, JCL, COBOL, Visual Basic, C++,
HTML scripts, etc.

As a general rule, you will want your models to generate common modules that cannot be para-
meterized at execution time. This type of module often involves file accesses or compile-time
statements, such as:

■ map names
■ parameter lists
■ FORMAT statements
■ I/O statements
■ file definitions

Alternately, you may want the model to generate modules that can be parameterized at execution
time but are hardcoded for performance reasons (menus, for example).

91Natural Construct Administration and Modeling

Creating New Models

Step 2: Create the Prototype

Once you determine the purpose and scope of the model, you can create a Natural module (pro-
gram, subprogram,map, etc.) to base yourmodel on. Thismodule should perform all the functions
you defined for the scope of the model.

If the scope contains mutually-exclusive options, you should prepare several prototypes. For ex-
ample, if the Natural code to maintain a file with a superdescriptor is significantly different from
the code that maintains a file with a descriptor, create two prototypes. If possible, generate the
more complex prototype first and add the simpler prototype later.

Step 3: Scrutinize the Prototype

After creating your prototype Natural program, perform the following checks:

■ Ensure that the program is fully commented
■ Check the code indentation
■ Check the clarity of the program
■ Ensure that the program conforms to standards
■ Evaluate the efficiency of the program
■ Ensure that variable names are sorted

After you have scrutinized the prototype as thoroughly as possible, have someone else perform
the same checks and tests.

Step 4: Isolate the Parameters in the Prototype

The basic premise behind program generation is to take a working module that performs a fixed
function and generalize the module so it performs varying functions based on parameter values.
To isolate the parameters:

■ Determine Which Elements Need to be Parameterized
■ Remove Redundant Parameters

Natural Construct Administration and Modeling92

Creating New Models

■ Choose Between Compile Time and Runtime

Determine Which Elements Need to be Parameterized

The first step is to determine which program lines remain constant in the generalizedmodule and
which lines vary. If the prototype reads a file and displays information, for example, the file and
information varies with each generation. Therefore, this information must be parameterized. To
make the prototype easier to generate, try to reduce the number of parameters in your prototype
without affecting the functionality.

Remove Redundant Parameters

Programs often contain several instances of the same parameter. These can be reduced to a single
instance of the parameter by using a constant variable. Consider the following examples:

Single ParameterRedundant Parameters

DEFINE DATA LOCAL
01 #ASIZE(P3) CONST<50>

DEFINE DATA LOCAL
01 #A(A1/1:50

01 #A(A1/1:#ASIZE).
..
END-DEFINEEND-DEFINE
..
..
IF #A(#CUR:#ASIZE) NE ' ' THENIF #A(#CUR:50) NE ' ' THEN
FOR #I = #CUR TO #ASIZE
etc.

FOR #I = #CUR TO 50
etc.

This technique makes the prototype easier to generate, since there are fewer parameter instances.
In addition, the generated programs are easier to read, since it is more obvious that the constant
value always refers to the same thing.

Choose Between Compile Time and Runtime

Ensure that your prototype does not contain hardcoded parameters that could easily be calculated
at runtime. Consider the following examples:

Determine at RuntimeUnnecessary Constant

DEFINE DATA LOCAL
 01 #MAX-LINES(P3) CONST <15>

DEFINE DATA LOCAL
 01 #MAX-LINES(P3) CONST <15>

 01 #LINE-NR(P3/1:#MAX-LINES) 01 #LINE-NR(P3/1:#MAX-LINES)
 01 #I (P3)INIT<1,2,3,4,5,6,7,8,9,10,11,12,13,
END-DEFINE 15>

END-DEFINE FOR #I = 1 TO #MAX-LINES
 ASSIGN #LINE-NR (#I) = #I
END-FOR

93Natural Construct Administration and Modeling

Creating New Models

Both the INIT statement on the left and the FOR loop on the right initialize an array with consec-
utive numbers. However, the code on the right does not vary based on the value of #MAX-LINES.
No special processing is required to generate the code on the right, as it is constant for each gener-
ation. To make the prototype more flexible and easier to generate, use Natural system variables
to determine the values at runtime.

Note: Ensure you do not sacrifice program efficiency to achieve this goal.

Once you have written and tested your prototype, save it in the SYSCST library.

Step 5: Create Code Frame(s) and Define the Model

This section covers the following topics:

■ Create the Code Frames
■ Define the Model

Create the Code Frames

If the prototype program is large, you can createmultiple code frameswith a portion of the program
in each code frame. You can also use nested code frames.

To create the code frames:

1 Invoke the Code Frame editor.

2 Read your prototype into the editor.

3 Determine the parameters required for the code frame.

These include substitution parameters, code frame conditions, generation subprograms, nested
code frames, and user exits. The following example shows a code frame in the Code Frame
editor:

 Frame PRSLCC9 SIZE 1125
 Description Browse Select Code©) Inline Subroutines FREE 59940
 > > + ABS X X-Y X S 18 L 1

 All...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
 *

 * Subroutines (in alphabetical order).

 * Check wildcard processing *
 CHECK-WILD-CHARACTER
 1
 CUSLCWC? F "
 * Initializations *

Natural Construct Administration and Modeling94

Creating New Models

 CUSLCI? F
 Subprogram: CUSCGBND Parameter: INITIALIZE N
 * Initialize the input key to the minimum key value specified

 ASSIGN #INPUT.&PRIME-KEY = #MIN-KEY-VALUE

 Process Selected Column or Record *
 PROCESS-SELECTION-COLUMN OR PROCESS-SELECTED-RECORD
 1
 CUSLCPS? F "
 * Final Processing *
 CUSLCFP? F
 MISCELLANEOUS-SUBROUTINES U
 PERFORM FINAL-PROCESSING

 END

 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T

For a description of the Code Frame editor, see Using the Code Frame Editor. For information
about edit commands, see Edit Commands.

The code frame example above demonstrates different methods of supplying parameters for a
code frame. These methods are:

■ Use Substitution Parameters
■ Use Parameters Supplied by Generation Subprograms
■ Use Parameters Supplied by Nested Code Frames
■ Use Parameters Supplied by User Exits
■ Use Code Frame Conditions

Use Substitution Parameters

One type of code frame parameter is substitution parameters. These parameters are always present
in the same format, but their values change. You can usually assign substitution parameters by
replacing the values with unique substitution strings. To identify a parameter as a substitution,
use an ampersand (&) at the beginning of the substitution string in the editor.

The code frame example above contains the following substitution parameter:

* Initialize the input key to the minimum key value specified
 ASSIGN #INPUT.&PRIME-KEY = #MIN-KEY-VALUE

Values are substituted after the module is fully generated. The unique identifier (&PRIME-KEY
in the example above) is substituted for the derived value by placing the unique identifier and the
value in the Natural stack.

95Natural Construct Administration and Modeling

Creating New Models

Note: For more information about substitution during the post-generation phase, see Post-
Generation Subprogram.

The following stipulations apply:

■ Substitution parameters cannot span multiple lines.
■ Substitution parameters always begin with an ampersand (&).
■ The substitution string can be up to 32 characters in length.
■ The substitution value can be up to 72 characters in length.

The name of the parameter should correspond to the name of themodel PDAvariable that supplies
the value. For example, &VAR is assigned the value of #PDA-VAR or #PDAX-VAR. Following
this naming convention makes it easier to generate the model subprograms using the supplied
models. For more information about the model PDA, seeModel PDA.

Use Parameters Supplied by Generation Subprograms

A generation subprogram can supply the code frame parameters. When a substitution parameter
spans more than one line, varies in length, or performs complex calculations (centering, for ex-
ample), you can supply the parameters in a generation subprogram.

An example of this type of parameter is a file view where the developer specifies the name of the
file to use. Instead of supplying a list of the fields in the view, you can specify the name of a sub-
program to supply this list.

To indicate that a subprogram is called on this line, enter "N" (Natural subprogram) in the corres-
ponding T (Type) field. To pass a parameter to the subprogram, specify the parameter value after
the subprogram name. The parameter can be a literal string, 1–32 characters in length.

Natural Construct passes the following structures to each generation subprogram:

■ Model PDA (CUxxPDA), containing model-specific parameters
■ CSASTD, containing the standard messaging parameters
■ CU—PDA, containing the standard generation parameters (the #PDA-FRAME-PARM field in
this PDA passes the parameter literal string)

The following code frame line indicates that the CUSCGBND subprogram is invoked from this
point in the code frame and passed the INITIALIZE value:

Subprogram: CUSCGBND Parameter: INITIALIZE N

Because code frame parameters are supplied in a generation subprogram, the same subprogram
can be invoked several times within the code frame. The subprogram uses the value of the passed
parameter to determine what to generate each time.

Natural Construct Administration and Modeling96

Creating New Models

Use Parameters Supplied by Nested Code Frames

Another method of supplying parameters to a code frame is to use nested code frames. As with
generation subprograms, nested code frames can perform substitutions on lines of varying length.
In fact, nested code frames have all substitution options available to the calling code frame. For
example, a nested code frame can have substitution parameters, generation subprograms, and its
own nested code frames.

All code frames supplied with Natural Construct end with 9 (see the description of the Code
frame(s) field inMaintain Models Function) and 8 is reserved for any future updates. When you
reference a code frame from within another code frame, use a question mark (?) instead of 9. The
? indicates a hierarchy structure in which Natural Construct uses the code frame with the lowest
number during generation.

For specific hardcoded references, you can specify a nested code framewithout using the question
mark (?) — but if you want to change what the nested code frame generates, you must modify
every calling code frame and its reference. When you use the question mark (?) character, Natural
Construct automatically calls your new version of the nested code frame.

Note: To make nested code frames more reusable across multiple models, it is important to
use the same naming conventions. In thisway, the nested code frame logical and substitution
parameters are always available within the model PDAs.

To indicate that another code frame is called on a Code Frame editor line, enter "F" in the corres-
ponding T (Type) field. The following code frame line indicates that the CUSLCIn code frame
supplies parameters for the code frame, where n is a number from 1 to 9:

CUSLCI? F

To modify a supplied code frame, copy the code frame, change the 9 to a lesser number from 1 to
7 (8 is used for code frame fixes supplied between releases), andmodify the code frame as desired.
The next timeNatural Construct calls that code frame, the one you createdwith the lesser number
is used. For example, you can copy the CUSLCI9 code frame, change the name to CUSLCI7, and
edit it as desired. The next time Natural Construct calls CUSLCI?, CUSLCI7 is used.

In the following example, the CUSAA9 code frame has two nested code frames (CUSAB? and
CUSAC?). The arrows indicate which code frame is used:

97Natural Construct Administration and Modeling

Creating New Models

Tip: Ensure that you do not create endless loops within nested code frames; endless loops
result when a code frame calls itself, either directly or indirectly as a nested code frame.

Use Parameters Supplied by User Exits

Parameters for a code frame can also be supplied by user exits. User exits provide maximum
flexibility for defining parameters because parameters are specified in the form of embedded
Natural code. User exits allow programmers/analysts to provide specialized portions of code at
various points within the generated module.

To supply parameters for a code frame through a user exit:

1 Enter the name of the user exit in the text portion of a line.

2 Enter "U" in the corresponding T (Type) field.

3 Optionally, you can specify additional attributes by entering ".E" at the beginning of the user
exit line.

Natural Construct Administration and Modeling98

Creating New Models

For example:

 Frame CUSLD9 SIZE 5973
 Description Browse Select Subp. Define Data Area FREE 54796
 > > + ABS X X-Y _ S 102 L 1

 Top...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
 CU--B? F
 DEFINE DATA

 GDA-SPECIFIED
 1
 GLOBAL USING &GDA &WITH-BLOCK
 "
 PARAMETER

 01 #PDA-KEY(&PARM-NAT-FORMAT) /* Start/Returned key.

 VARIABLE-MIN-MAX AND PREFIX-IS-PDA-KEY
 1
 01 REDEFINE #PDA-KEY
 "
 02 #PDA-KEY-PREFIX(&PREFIX-NAT-FORMAT)
 "
 PARAMETER USING CDSELPDA /* Selection info

 PARAMETER USING CU—PDA /* Global parameters

 PARAMETER USING CSASTD /* Message information

 .eRAMETER-DATA U
 LOCAL USING CDDIALDA /* Used by dialog objects.

 LOCAL USING CDENVIRA /* Used to capture/restore previous environment.

 DIRECT-COMMAND-PROCESSING
 1
 LOCAL USING CDGETDCA /* Used to get direct command info.
 "
 MULTIPLE-WINDOWS
 1
 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T
 CUSLD9 read

4 Press Enter.

99Natural Construct Administration and Modeling

Creating New Models

The Maintain User Exit window is displayed. For example:

CSMUSEX Natural Construct
Jul 05 Maintain User Exit 1 of 1
 User exit name START-OF-PROGRAM
 Code frame name COBB9 Conditional N
 User exit required _
 Generate as subroutine . _
 Sample subprogram ________ GUI sample subprogram .. ________
 Default user exit code .
 *___
 * Specify code to be executed at the beginning of the object subprogram.
 * This might include security checking logic.___________________________
 __
 __
 __
 __
 __
 __
 __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn

Use this window to specify information about the user exit. The fields in this window are:

DescriptionField

Name of the user exit.User exit name

Name of the code frame for the user exit.Code frame name

Condition code for the user exit. If the user exit is conditional (required only
under certain conditions), "Y" is displayed. If it is not conditional, "N" is displayed.

Conditional

If this field is marked, the user exit is required; if this field is blank, the user exit
is optional.

User exit required

If the user exit is used in more than one place in the module, enter "Y". The code
is generated as an inline subroutine. During generation,Natural Construct places

Generate as
subroutine

the code in a subroutine with the same name as the user exit. This allows you to
execute the code several times using a PERFORM user-exit-name statement.

If the user exit is optional, the PERFORM statement can be conditional on the
presence of the user exit itself (for information, seeUseCode FrameConditions).

Regardless ofwhether user exits are generated as subroutines or embedded code,
use the DEFINE EXIT keyword to specify all user exits.

Natural Construct Administration and Modeling100

Creating New Models

DescriptionField

If a subprogram contains the sample code for the user exit, enter the name of the
subprogram. The sample code is generated after the developer enters the SAMPLE
command in the User Exit editor and selects an exit.

Natural Construct passes three parameter data areas (PDAs) to each sample
subprogram: the model PDA, CU—PDA, and CSASTD. For more information,
see Step 6: Create the Model PDA.

Sample subprogram

Note: The SAMPLE command is executed automatically when you enter "U" on
the Generation main menu or press PF11 (userX) on the last specification panel
for a model that supports user exits, but none have been specified.

GUI sample subprogram invoked when the code is being generated from the
client. This subprogram should not display input panels. If the sample

GUI sample
subprogram

subprogram does not use input panels, it can be used in the GUI sample
subprogram. If the sample subprogram includes input panels, create a copy and
modify it to use the defaults.

If complex processing or calculations are not required, you can enter up to 10
lines of sample code. This code becomes the default sample code for this user
exit.

Note: If you specify a sample subprogram name and provide default user exit
code, Natural Construct generates the user exit code before it generates the
sample subprogram code.

Default user exit
code

Use Code Frame Conditions

Frequently, a block of statements is inserted in a program based on a condition or combination of
conditions specified in the code frame. In the following example, the INPUT WITH TEXT+MSG USING
MAP '&MAP-NAME' INPUT statement is generated if a map is used. Otherwise, the INPUT(AD=OI)
statement is generated:

Top...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
MAP-USED 1
INPUT WITH TEXT + MSG USING MAP '&MAP-NAME' "
ELSE 1
INPUT(AD=OI) *PROGRAM #HEADER1 "
/ *DATX #HEADER2 *TIMX "

Note: To identify a condition line, enter a number in the C (Condition) column in the Code
Frame editor. Number "1" initiates a new condition; higher numbers represent nested con-
ditions that are only evaluated if all active lower conditions are True.

To identify a statement as conditional, enter """ in the C column. The corresponding statement is
included in the generated module only if the current condition is True.

101Natural Construct Administration and Modeling

Creating New Models

When you use code frame conditions, consider the following points:

■ The names of conditions must correspond to the names of logical variables defined in the
model PDA, with the #PDAC- prefix removed. (For more information about the model PDA,
see Step 6: Create the Model PDA.) The MAP-USED condition, for example, corresponds to
the #PDAC-MAP-USED logical variable.

Note: These condition variables must be part of the redefinition of the
#PDA-CONDITION-CODES field in the model PDA.

■ When Natural Construct generates a module, it checks the condition code values to determine
whether the condition is True. It then resets the conditions before invoking the maintenance
subprograms. Condition codes should be selectively set to True by either the pre-generation
subprogram or one of the maintenance subprograms.

■ Conditions can be negated, ANDed and ORed (in order of precedence).
■ Conditions can be nested and ELSEed (ELSE refers back to the previous condition at the same
level number).

■ The RETURN-TO-CONDITION keyword can close levels of conditioning.
■ A special condition line can check for the existence of a specific user exit. To specify this type
of condition, enter the name of the user exit as the condition value and specify a line type of
"X". These conditions cannot be negated,ANDed, orORed, but can be nested. They do not require
a corresponding #PDAC variable.

The following example shows code frame conditions:

FrameABC SIZE 68
DescriptionExample of conditions FREE 36676
 > > + ABS X X-Y _ S 21 L 1
Top.+...1...+...2...+...3...+...4...+...5...+...6...+...7.. T C Notes
MAP-USED 1
INPUT WITH TEXT + MSG USING MAP '&MAP-NAME'1 “ 1
ELSE 1
INPUT(AD=OI) *PROGRAM #HEADER1 " 2
/ *DATX #HEADER2 *TIMX " 2
ROOM-FOR-SKIP 2
/ " 3
RETURN-TO-CONDITION 1
/ 20T #FUNCTION-HEADING " 2
 NOT MAP-CONTAINS-PARAMETERS 2
 CODE1-SPECIFIED 3
/ 16T #CODE(1) 20T #FUNCTION(1) " 4
 CODE2-SPECIFIED 3
/ 16T #CODE(2) 20T #FUNCTION(2) " 5
 .
 .
 .

Natural Construct Administration and Modeling102

Creating New Models

 CODE12-SPECIFIED 3
/ 16T #CODE(12) 20T #FUNCTION(12) " 6
 RETURN-TO-CONDITION 2
/ 11T 'Code:' #CODE(AD=M) " 7
 ELSE 2
Subprogram: CUMNGIN Parameter N " 8
RETURN-TO-CONDITION 1
21/1 'Direct Command:' #COMMAND(AD=M) " 2
RESET +MSG 9
AFTER-INPUT
AFTER-INPUT X 1
PERFORM AFTER-INPUT " 10

Higher-level numbers (nested conditions) are always joined with an AND statement to previous
lower condition numbers.

Notes

The lines of code corresponding to each note number in the above example are inserted into the
generated module when the following Boolean conditions are met:

Boolean ConditionNote Number

#PDAC-MAP-USED = TRUE1

#PDAC-MAP-USED = FALSE2

#PDAC-MAP-USED = FALSE and

#PDAC-ROOM-FOR-SKIP = TRUE

3

#PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and

4

#PDAC-CODE1-SPECIFIED = TRUE

#PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and

5

#PDAC-CODE2-SPECIFIED = TRUE

#PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and

6

#PDAC-CODE12-SPECIFIED = TRUE

#PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE

7

#PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = TRUE

8

103Natural Construct Administration and Modeling

Creating New Models

Boolean ConditionNote Number

Line is inserted unconditionally.9

Line is inserted only when the AFTER-INPUT user exit is specified in the User Exit editor
before the module is generated.

10

Define the Model

Use the Maintain Models panel to define your model.

To display the Maintain Models panel:

1 Log onto the SYSCST library.

2 Enter "MENU" at the Next prompt (Direct Command box for Unix).

The Administration main menu is displayed.

3 Enter "M" in Function.

The Maintain Models panel is displayed. For example:

 CSDFM N a t u r a l C o n s t r u c t CSDFM0
 Aug 17 Maintain Models 1 of 1

 Action __ A,B,C,D,M,N,P,R

 Model ________________________________

 Description __

 PDA name ________ Status window _

 Programming mode __ Comment start indicator .. ___

 Type _ Comment end indicator ___

 Code frame(s) ________ ________ ________ ________ ________
 Modify server specificatn ________ ________ ________ ________ ________
 ________ ________ ________ ________ ________
 Modify client specificatn ________ ________ ________ ________ ________
 ________ ________ ________ ________ ________

 Clear specification ________ Post-generation ________
 Read specification ________ Save specification ________

Natural Construct Administration and Modeling104

Creating New Models

 Pre-generation ________ Document specification ... ________
 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit frame main

Use this panel to specify the names of themodel components (the generation subprograms require
this model definition); the specified components do not have to currently exist. When naming the
model components, use the naming conventions described in the following section.

For a description of the Maintain Models panel, seeMaintain Models Function.

Naming Conventions for Model Components

Standardizing the names of the various components of amodel makes it easier to write and debug
models. Supplied model subprograms, maps, and data areas are typically named CUxx, where
xx uniquely identifies each model and y identifies each panel. When naming model components,
we recommend the following naming conventions:

Model ComponentName

Parameter data area.CUxxPDA

Read subprogram.CUxxR

Clear subprogram.CUxxC

First maintenance subprogram.CUxxMA

Map associated with the first maintenance subprogram.CUxxMAn

■ To display a map based on the current value of the *Language system variable, use a
*Language value in the last position of the map name.

■ To support dynamic translation, use a zero (0) in the last position of the map name.

Translation local data area (LDA) associated with the first maintenance subprogram. A
translation LDA contains the names of all variables that are initialized to the maintenance

CUxxMAL

map text and can be translated. You cannot dynamically translate amap to another language
unless the module that invokes the map has a corresponding translation LDA.

Second maintenance subprogram.CUxxMB

Map associated with the second maintenance subprogram.CUxxMBn

Translation LDA associated with the second maintenance subprogram.CUxxMBL

Sample user exit code subprograms,whereyyy is a 1–3 character suffix that uniquely identifies
each sample subprogram. For example, the CUFMSRIN sample subprogram supplies
REINPUT statements for the Maint model (if required).

CUxxSyyy

Generation subprograms, where yyy is a 1–3 character suffix that uniquely identifies each
generation subprogram. For example, the CUMNGGL subprogram generates parameter
variables for the Menu model (when a length and format are specified).

CUxxGyyy

105Natural Construct Administration and Modeling

Creating New Models

Model ComponentName

Pre-generation subprogram.CUxxPR

Post-generation subprogram.CUxxPS

Save subprogram.CUxxS

Documentation subprogram.CUxxD

Construct Program Generation plug-in maintenance subprogram.WCNxxMy

Construct Program Generation plug-in dialog.WCDxx

To modify the supplied Natural Construct models, copy the subprograms and change the prefix
from CU (or WC) to CX. This way, you can identify the modified subprograms and include any
changes in future versions of Natural Construct.

After defining a model, it can be used in the Generation subsystem.

Step 6: Create the Model PDA

All models require three parameter data areas (PDAs). Two of the data areas are supplied with
Natural Construct and the model PDA is user-created for each individual model.

PDAs pass information between the nucleus and the model and code frame subprograms. Every
model subprogram uses the following external PDAs:

DescriptionPDA

User-created and named CUxxPDA, where xx uniquely identifies the model. This PDA
contains variables and conditions specific to the model. It is the only PDA you must create.
Use the CST-PDAmodel to create themodel PDA (see Parameters for the CST-PDAModel).

Model PDA

Supplied with Natural Construct.CU—PDA

Supplied with Natural Construct.CSASTD

These PDAs must contain the following fields:

Required Fields and FormatPDA

#PDA-CONDITION-CODES (L/1:75)

#PDA-USER-AREA (A100/1:40)

Model PDA
(varies for each
model)

#PDA-MODE (A2)

#PDA-OBJECT-TYPE (A1)

CU--PDA (same
for every model)

#PDA-MODIFY-HEADER1 (A60)

#PDA-MODIFY-HEADER2 (A54)

#PDA-LEFT-PROMPT (A11)

Natural Construct Administration and Modeling106

Creating New Models

Required Fields and FormatPDA

#PDA-LEFT-MORE-PROMPT (A9)

#PDA-RIGHT-PROMPT (A11)

#PDA-RIGHT-MORE-PROMPT (A9)

#PDA-PHASE (A1)

#PDA-DIALOG-METHOD (I1)

#PDA-TRANSLATION-MODE (L)

#PDA-USERX-NAME (A10)

#PDA-PF-NAME (A10/1:12)

#PDA-MAIN-NAME (A10)

#PDA-RETURN-NAME (A10)

#PDA-QUIT-NAME (A10)

#PDA-TEST-NAME (A10)

#PDA-BACKWARD-NAME (A10)

#PDA-FORWARD-NAME (A10)

#PDA-LEFT-NAME (A10)

#PDA-RIGHT-NAME (A10)

#PDA-HELP-NAME (A10)

#PDA-AVAILABLE1-NAME (A10)

#PDA-AVAILABLE2-NAME (A10)

#PDA-AVAILABLE3-NAME (A10)

#PDA-PF-NUMBER (N2/1:12)

#PDA-MAIN (N2)

#PDA-RETURN (N2)

#PDA-QUIT (N2)

#PDA-TEST (N2)

#PDA-BACKWARD (N2)

#PDA-FORWARD (N2)

107Natural Construct Administration and Modeling

Creating New Models

Required Fields and FormatPDA

#PDA-LEFT (N2)

#PDA-RIGHT (N2)

#PDA-HELP (N2)

#PDA-AVAILABLE1 (N2)

#PDA-AVAILABLE2 (N2)

#PDA-AVAILABLE3 (N2)

#PDA-PF-KEY (A4)

#PDA-PF-MAIN (A4)

#PDA-PF-RETURN (A4)

#PDA-PF-QUIT (A4)

#PDA-PF-TEST (A4)

#PDA-PF-BACKWARD (A4)

#PDA-PF-FORWARD (A4)

#PDA-PF-LEFT (A4)

#PDA-PF-RIGHT (A4)

#PDA-PF-HELP (A4)

#PDA-PF-AVAILABLE1 (A4)

#PDA-PF-AVAILABLE2 (A4)

#PDA-PF-AVAILABLE3 (A4)

#PDA-TITLE (A25)

#PDA-GEN-PROGRAM (A8)

#PDA-MODEL-VERSION (N2.2)

#PDA-HELP-INDICATOR (A4)

#PDA-USER-DEFINED-AREA (A1/1:100)

#PDA-UNDERSCORE-LINE (A80)

#PDA-RIGHT-PROMPT-OF (A4)

#PDA-DISPLAY-INDICATOR (A4/1:10)

Natural Construct Administration and Modeling108

Creating New Models

Required Fields and FormatPDA

#PDA-CURS-FIELD (I4)

#PDA-CV1 (C)

#PDA-CV2 (C)

#PDA-CV3 (C)

#PDA-CV4 (C)

#PDA-CV5 (C)

#PDA-CV6 (C)

#PDA-CV7 (C)

#PDA-CV8 (C)

#PDA-SCROLL-INDICATOR (A4)

#PDA-DYNAMIC-ATTR-CHARS (A1/1:13)

#PDA-FRAME-PARM (A32)

#PDA-SYSTEM (A32)

MSG (A79)

MSG-NR (N4)

CSASTD (same
for every model)

MSG-DATA (A32/1:3)

RETURN-CODE (A1)

ERROR-FIELD (A32)

ERROR-FIELD-INDEX1 (P3)

ERROR-FIELD-INDEX2 (P3)

ERROR-FIELD-INDEX3 (P3)

Note: The CSASTD PDA is used by every model. It passes messages between
subprograms and is typically used for error handling.

The following sections describe the layout of these PDAs.

109Natural Construct Administration and Modeling

Creating New Models

Model PDA

The following example shows a model PDA:

Parameter CUETPDA Library SYSCST DBID 19 FNR 28
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
Top - -------------------------------- - ---- ---------------------------------
 1 CUETPDA /* Construct Model PDA
 2 #PDA-CONDITION-CODES L (1:75) /* Conditions in frames
 R 2 #PDA-CONDITION-CODES /* REDEF. BEGIN : #PDA-CONDITION
 3 #PDAC-USE-MSG-NR L /* TRUE IF MESSAGE NUMBERS ARE U
 3 #PDAC-FILE-NAME-SPECIFIED L
 3 #PDAC-FIELD-NAME-SPECIFIED L
 3 #PDAC-PDA-SPECIFIED L
 3 #PDAC-COMPLEX-FIELD L /* Field is a PE, MU a STRUCT or
 * /* REDEFINE
 3 #PDAC-SCROLLING L /* Scrolling
 3 #PDAC-NATURAL-WINDOWS L /* Set window sizes
 3 #PDAC-WINDOW-LENGTH L /* Set window line length
 3 #PDAC-WINDOW-COLUMN L /* Set window column height
 3 #PDAC-WINDOW-BASE L /* Set window base
 3 #PDAC-DEFINE-WINDOW L /* Generate DEFINE WINDOW
 2 #PDA-USER-AREA A 100 (1:40) /* Area for INPUT and der
 R 2 #PDA-USER-AREA /* REDEF. BEGIN : #PDA-USER-AREA
 3 RESET-STRUCTURE /* Use for resetting non-alpha
 * /* fields in Clear Subprogram.
 4 #PDAX-DESCS A 55 (1:4) /* description
 4 #PDAX-USE-MSG-NR L
 *
 * Modify screen 2
 4 #PDAX-PDA A 8 /* PDA with display info.
 4 #PDAX-FILE-NAME A 32 /* File name
 4 #PDAX-FIELD-NAME A 32 /* Field name
 4 #PDAX-MAP-NAME A 8 /* Input using map
 4 #PDAX-LINES-PER-SCREEN N 3 /* Number of lines per screen
 *
 * used to generate a
 * DEFINE WINDOW statement.
 4 DEFINE-WINDOW-INFO
 5 #PDAX-WINDOW-SIZE A 6 /* Window size
 R 5 #PDAX-WINDOW-SIZE /* REDEF. BEGIN : #PDAX-WINDOW-S
 6 #PDAX-WINDOW-SIZE-WIDTH N 3 /* Window size width
 6 #PDAX-WINDOW-SIZE-HEIGHT N 3 /* Window size height
 5 #PDAX-WINDOW-BASE A 6 /* Window base
 R 5 #PDAX-WINDOW-BASE /* REDEF. BEGIN : #PDAX-WINDOW-B
 6 #PDAX-WINDOW-BASE-LINE N 3 /* Window base line
 6 #PDAX-WINDOW-BASE-COLUMN N 3 /* Window base column
 5 #PDAX-WINDOW-FRAME-OFF L /* Window frame off
 5 #PDAX-WINDOW-TITLE A 65 /* Window title
 5 #PDAX-WINDOW-CONTROL-SCREEN L /* Window control screen on

Natural Construct Administration and Modeling110

Creating New Models

 5 #PDAX-DEFINE-WINDOW L /* Use DEFINE WINDOW statement
 4 #PDA-FIELD-TYPE A 2 /* Field type: GR,PE,PC,MU,MC
 * /* S(Structure), F(Single Field)
 * /* R(REDEFINE)
 4 #PDA-FIELD-REDEFINED L
 4 #PDA-LEVEL-NUMBER N 1
 4 #PDA-FIELD-FORMAT A 1
 4 #PDA-FIELD-LENGTH N 3.1
 R 4 #PDA-FIELD-LENGTH
 5 #PDA-UNITS N 3
 5 #PDA-DECIMALS N 1
 4 #PDA-FROM-INDEX N 5 (1:3)
 4 #PDA-THRU-INDEX N 5 (1:3)
 4 #PDA-FIELD-RANK N 1
 4 #PDA-FILE-CODE P 8 /* file code for security check
 4 #PDA-MAX-LINES N 5 /* Num. of occurrences for PE/MU
 4 #PDA-WFRAME A 1 /* Parameters for window setting
 4 #PDA-WLENGTH A 3
 4 #PDA-WCOLUMN A 3
 4 #PDA-WBASE A 7

The fields in the model PDA are described in the following sections.

#PDA-CONDITION-CODES

This field (L/1:75) is an array of condition codes that allow you to define up to 75 logical conditions
for eachmodel. The field is usually redefined into separate logical variables, one for each condition
variable used by the model code frames. The name of the logical condition variable in the PDA
must be the same as the condition, with a #PDAC- prefix added.

When amodule is generated, the condition values are checked to determinewhether the condition
is True. The conditions are reset before the maintenance subprograms are invoked. Along with
the pre-generation subprogram, the maintenance subprograms assign all True condition values.

Note: To make nested code frames more reusable across multiple models, it is important to
use exactly the same naming conventions. In this way, the nested code frame logical and
substitution parameters are always available to the model PDAs.

#PDA-USER-AREA

This field (A100/1:40) defines a large block of data that is passed between the Natural Construct
nucleus and the model subprograms. Always redefine this field into separate fields that refer to
the module being generated. The following information can be passed:

■ Data entered by the developer on a maintenance panel. The names of the fields that receive the
parameters should be prefixed by #PDAX- and appear first in the redefinition of #PDA-USER-
AREA. Usually, the values for these fields are written as comments at the beginning of the

111Natural Construct Administration and Modeling

Creating New Models

generated program. This allowsNatural Construct to read the parameters for subsequent regen-
eration.

■ You can also group a series of related parameters into a single external parameter by redefining
the #PDAX- variable into sub-fields. This technique reduces the number of comment lines at
the beginning of a generated program.

Note: This technique should only be used when the length of the sub-fields does not
change.

■ Data calculated during the generation process and shared with the model subprograms. The
variable names should be prefixed by #PDA- and appear second in the redefinition of #PDA-
USER-AREA (after the #PDAX- variables).

■ The pre-generation subprogramassigns these internal generation variables; all subsequent code
frame and model subprograms can use the values.

■ When you use substitution parameters in code frames, a variable with the same name and a
#PDAX- or #PDA- prefix should be in the redefinition of the #PDA-USER-AREA variable. For
example, the &MAX-SELECTIONS substitution parameter value should be supplied by the
#PDA-MAX-SELECTIONS variable or the #PDAX-MAX-SELECTIONS variable.

Note: To make nested code frames more reusable across multiple models, it is important
to use exactly the same naming conventions. In this way, the nested code frame logical
and substitution parameters are always available to the model PDAs.

CU—PDA

The following example shows the CU—PDA data area:

Parameter CU—PDA Library SYSCST DBID 19 FNR 28
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
Top - -------------------------------- - ---- ---------------------------------
 * Parameters used by all user
 * subprograms
 *
 1 CU—PDA
 *
 * Parameters used by generating
 * subprograms
 2 #PDA-MODE A 2 /* R=Report, S=Struct, SD=Str data
 2 #PDA-OBJECT-TYPE A 1 /* P=Program, N=Subprogram,etc.
 *
 *
 * Parms used by modify screens
 2 #PDA-MODIFY-HEADER1 A 60 /* First heading on modify scr
 2 #PDA-MODIFY-HEADER2 A 54 /* Second heading on modify scr

Natural Construct Administration and Modeling112

Creating New Models

 2 #PDA-LEFT-PROMPT A 11 /* Date
 R 2 #PDA-LEFT-PROMPT
 3 #PDA-LEFT-MORE-PROMPT A 9
 2 #PDA-RIGHT-PROMPT A 11 /* n of n
 R 2 #PDA-RIGHT-PROMPT
 3 #PDA-RIGHT-MORE-PROMPT A 9
 2 #PDA-PHASE A 1 /* Modify, Generate, Clear etc.
 2 #PDA-DIALOG-METHOD I 1 /* See CSLMMETH
 * /* 1 = Input + Validate
 * /* 2 = Input no validate
 * /* 3 = Validate no input
 * /* 4 = Validate input on error
 2 #PDA-TRANSLATION-MODE L /* Translation mode
 *
 * The following PF key variables are only required if the modify
 * or sample program requires the use of additional PF keys other
 * than the standard MAIN, RETURN, QUIT, HELP keys.
 *
 * Place the following key names at the bottom of map instead of
 * using the KD option. The modify program should reset the keys
 * that are not being used or assign the available key names
 * to set additional keys.
 *
 2 #PDA-USERX-NAME A 10 /* User Exit name.
 2 #PDA-PF-NAME A 10 (1:12)
 R 2 #PDA-PF-NAME /* REDEF. BEGIN : #PDA-PF-NAME
 3 #PDA-MAIN-NAME A 10 /* Main menu key name.
 3 #PDA-RETURN-NAME A 10 /* Return key name.
 3 #PDA-QUIT-NAME A 10 /* Quit key name.
 3 #PDA-TEST-NAME A 10 /* Test key name.
 3 #PDA-BACKWARD-NAME A 10 /* Bkwrd key name.
 3 #PDA-FORWARD-NAME A 10 /* Frwrd key name.
 3 #PDA-LEFT-NAME A 10 /* Left key name.
 3 #PDA-RIGHT-NAME A 10 /* Right key name.
 3 #PDA-HELP-NAME A 10 /* Help key name.
 3 #PDA-AVAILABLE1-NAME A 10 /* Not used by default.
 3 #PDA-AVAILABLE2-NAME A 10 /* Not used by default.
 3 #PDA-AVAILABLE3-NAME A 10 /* Not used by default.
 *
 * This array contains the PF-KEY number associated with each
 * standard key setting as well as the numbers of the available
 * numbers for non-standard key use.
 2 #PDA-PF-NUMBER N 2 (1:12)
 R 2 #PDA-PF-NUMBER /* REDEF. BEGIN : #PDA-PF-NUMBER
 3 #PDA-MAIN N 2 /* Main menu key number.
 3 #PDA-RETURN N 2 /* Return key number.
 3 #PDA-QUIT N 2 /* Quit key number.
 3 #PDA-TEST N 2 /* Test key number.
 3 #PDA-BACKWARD N 2 /* Bkwrd key number.
 3 #PDA-FORWARD N 2 /* Frwrd key number.
 3 #PDA-LEFT N 2 /* Left key number.
 3 #PDA-RIGHT N 2 /* Right key number.

113Natural Construct Administration and Modeling

Creating New Models

 3 #PDA-HELP N 2 /* Help key number.
 3 #PDA-AVAILABLE1 N 2 /* Not used by default.
 3 #PDA-AVAILABLE2 N 2 /* Not used by default.
 3 #PDA-AVAILABLE3 N 2 /* Not used by default.
 *
 * This array corresponds to the above array except the 'PF'
 * 'PF' string prefixes the key for easy comparison to *PF-KEY.
 2 #PDA-PF-KEY A 4 (1:12)
 R 2 #PDA-PF-KEY /* REDEF. BEGIN : #PDA-PF-KEY
 3 #PDA-PF-MAIN A 4 /* PFnn where nn = main key.
 3 #PDA-PF-RETURN A 4
 3 #PDA-PF-QUIT A 4
 3 #PDA-PF-TEST A 4
 3 #PDA-PF-BACKWARD A 4
 3 #PDA-PF-FORWARD A 4
 3 #PDA-PF-LEFT A 4
 3 #PDA-PF-RIGHT A 4
 3 #PDA-PF-HELP A 4
 3 #PDA-PF-AVAILABLE1 A 4 /* Not used by default.
 2 #PDA-CV3 C /* Special characters in T mode
 2 #PDA-CV4 C /* Column headings in T mode
 2 #PDA-CV5 C /* CV 5
 2 #PDA-CV6 C /* CV 6
 2 #PDA-CV7 C /* CV 7
 2 #PDA-CV8 C /* CV 8
 2 #PDA-SCROLL-INDICATOR A 4 /* Scroll region indicator
 *
 * Dynamic attribute characters
 * from the control record. The
 * following index values represent
 * 1=Default, 2=Intensify, 3=Blink, 4=Italics, 5=Underline,
 * 6=Reversed, 7=Blue, 8=Green, 9=White, 10=Pink, 11=Red,
 * 12=Turquoise, 13=Yellow.
 2 #PDA-DYNAMIC-ATTR-CHARS A 1 (1:13)
 *
 * Passed parameter from code frame
 2 #PDA-CV6 C /* CV 6
 2 #PDA-CV7 C /* CV 7
 2 #PDA-CV8 C /* CV 8
 2 #PDA-SCROLL-INDICATOR A 4 /* Scroll region indicator
 *
 * Dynamic attribute characters
 * from the control record. The
 * following index values represent
 * 1=Default, 2=Intensify, 3=Blink, 4=Italics, 5=Underline,
 * 6=Reversed, 7=Blue, 8=Green, 9=White, 10=Pink, 11=Red,
 * 12=Turquoise, 13=Yellow.
 2 #PDA-DYNAMIC-ATTR-CHARS A 1 (1:13)
 *
 * Passed parameter from code frame
 2 #PDA-FRAME-PARM A 32

Natural Construct Administration and Modeling114

Creating New Models

 2 #PDA-SYSTEM A 32 /* System must exist in dict.
 *

The fields in CU—PDA are described in the following sections:

■ #PDA-MODE
■ #PDA-OBJECT-TYPE
■ #PDA-MODIFY-HEADER1
■ #PDA-MODIFY-HEADER2
■ #PDA-LEFT-PROMPT
■ #PDA-RIGHT-PROMPT
■ #PDA-PHASE
■ #PDA-DIALOG-METHOD
■ #PDA-TRANSLATION-MODE
■ #PDA-USERX-NAME
■ #PDA-PF-NAME
■ #PDA-PF-NUMBER
■ #PDA-PF-KEY
■ #PDA-TITLE
■ #PDA-GEN-PROGRAM
■ #PDA-MODEL-VERSION
■ #PDA-HELP-INDICATOR
■ #PDA-USER-DEFINED-AREA
■ #PDA-UNDERSCORE-LINE
■ #PDA-RIGHT-PROMPT-OF
■ #PDA-DISPLAY-INDICATOR
■ #PDA-CURS-FIELD
■ #PDA-CVn
■ #PDA-SCROLL-INDICATOR
■ #PDA-DYNAMIC-ATTR-CHARS
■ #PDA-FRAME-PARM
■ #PDA-SYSTEM

#PDA-MODE

This field (A2) identifies the programming mode. The value for this field is the programming
mode specified on the Maintain Models panel. Valid values for this field are S (structured), SD
(structured data), and R (reporting) mode.

115Natural Construct Administration and Modeling

Creating New Models

#PDA-OBJECT-TYPE

This field (A1) identifies the type of module generated. The value for this field is the module type
specified on theMaintainModels panel. This field is usefulwhen amodel subprogram is associated
withmultiplemodels that use differentmodule types. In this case, the presence or format of certain
generated code may be dependent on the type of module generated.

#PDA-MODIFY-HEADER1

This field (A60) contains the description specified on the Maintain Models panel. Maintenance
panels use the #HEADER1 variable for the first heading, instead of #PDA-MODIFY-HEADER1.
If #HEADER1 has not been assigned a value, it is assigned the contents of #PDA-MODIFY-
HEADER1.

#PDA-MODIFY-HEADER2

This field (A54) contains the description specified on the Maintain Models panel. Maintenance
panels use the #HEADER2variable for the secondheading, instead of #PDA-MODIFY-HEADER2.
If #HEADER2 has not been assigned a value, it is assigned the contents of #PDA-MODIFY-
HEADER2.

#PDA-LEFT-PROMPT

This field (A11) is redefined into the #PDA-LEFT-MORE-PROMPT field (A9). The #PDA-LEFT-
MORE-PROMPT field indicates the current date. Place this field as an output field in the top left
corner of all maintenance panels. (If you require more than nine bytes, you can use the full length
of A11.)

#PDA-RIGHT-PROMPT

This field (A11) is redefined into the #PDA-RIGHT-MORE-PROMPTfield (A9). The #PDA-RIGHT-
MORE-PROMPT field indicates the current panel and the total number of panels (1 of 4, for ex-
ample). Place this field as an output field in the top right corner of all maintenance panels. (If you
require more than nine bytes, you can use the full length of A11.)

#PDA-PHASE

This field (A1) identifies the current phase of the Natural Construct nucleus (see the CSLPHASE
data area for an example). Valid values for this field are A (post-generation), B (batch), C (clear),
D (default), G (generation), L (translate), M (modify), P (pre-generation), R (read), U (sample user
exit), and V (save). The value for this field is typically controlled by the Natural Construct nucleus
and should not be manipulated locally.

Natural Construct Administration and Modeling116

Creating New Models

Note: Maintenance subprograms are also invoked prior to SAMPLE processing in the User
Exit editor (in which case, the phase is U) and prior to the generation phase (in which case,
the phase is G).

Since some subprograms are invoked during more than one phase, this field activates the subpro-
gram logic for the current phase. For example, the maintenance subprograms performed during
the maintenance phase (M) are invoked (with data stacked) during the generation (G) and sample
user exit (U) phases. It may be inappropriate for the maintenance subprogram to perform certain
processing during any of these phases.

#PDA-DIALOG-METHOD

This field (I1) is reserved for future use.

#PDA-TRANSLATION-MODE

This field (L) is reserved for future use.

#PDA-USERX-NAME

This field (A10) is for internal use only.

#PDA-PF-NAME

This field (A10/1:12) is an array containing the names of the standard PF-keys and is redefined
into the following fields (A10):

DescriptionField

Main menu key name.#PDA-MAIN-NAME

Return key name.#PDA-RETURN-NAME

Quit key name.#PDA-QUIT-NAME

Test key name.#PDA-TEST-NAME

Backward key name.#PDA-BACKWARD-NAME

Forward key name.#PDA-FORWARD-NAME

Left key name.#PDA-LEFT-NAME

Right key name.#PDA-RIGHT-NAME

Help key name.#PDA-HELP-NAME

Not used (by default).#PDA-AVAILABLE1-NAME

Not used (by default).#PDA-AVAILABLE2-NAME

Not used (by default).#PDA-AVAILABLE3-NAME

117Natural Construct Administration and Modeling

Creating New Models

The names are in the same order as the key settings specified on the Natural Construct control
record. The name for PF1 is stored in the first position, PF2 is stored in the second position, etc.

You can define special PF-keys formaintenance subprograms (or sample generation subprograms)
by specifying the desired PF-key values and names on theMaintain Subprograms panel (S function
on the Administration main menu).

Occasionally, a subprogrammay need tomodify its PF-key assignments based on internal program
functions and parameter values. If this is the case, place this array of PF-key names on the model
panels and set the appropriate PF-key names (assuming your model supports variable PF-keys).

If a subprogram requires PF-keys for non-standard functions that are not known at compile time,
display this array on the map (instead of using the SET KEY statement and the KD option of the
FORMAT statement).

#PDA-PF-NUMBER

This field (N2/1:12) is an array containing the PF-keys that support the standard PF-key functions
and is redefined into the following fields (N2):

DescriptionField

Main menu key number.#PDA-MAIN

Return key number.#PDA-RETURN

Quit key number.#PDA-QUIT

Test key number.#PDA-TEST

Backward key number.#PDA-BACKWARD

Forward key number.#PDA-FORWARD

Left key number.#PDA-LEFT

Right key number.#PDA-RIGHT

Help key number.#PDA-HELP

Not used (by default).#PDA-AVAILABLE1

Not used (by default).#PDA-AVAILABLE2

Not used (by default).#PDA-AVAILABLE3

The values in this array assign a PF-key function to a PF-key number (for indexing on the #PDA-
PF-NAME table). The first occurrence contains the PF-key number associated with the “main”
function, the second occurrence contains the PF-key number associatedwith the “return” function,
etc.

To include additional PF-keys, use the PF-key corresponding to the numbers assigned to #PDA-
AVAILABLE1 through #PDA-AVAILABLE3.

Natural Construct Administration and Modeling118

Creating New Models

#PDA-PF-KEY

This field (A4) is an array corresponding to the #PDA-PF-NUMBERarray (see #PDA-PF-NUMBER)
except the values have a PF- prefix. This makes it easy to compare the value of a *PF-KEY system
variable to one of the following fields (A4):

DescriptionField

PFnn, where nn is the main menu key number.#PDA-PF-MAIN

PFnn, where nn is the return key number.#PDA-PF-RETURN

PFnn, where nn is the quit key number.#PDA-PF-QUIT

PFnn, where nn is the test key number.#PDA-PF-TEST

PFnn, where nn is the backward key number.#PDA-PF-BACKWARD

PFnn, where nn is the forward key number.#PDA-PF-FORWARD

PFnn, where nn is the left key number.#PDA-PF-LEFT

PFnn, where nn is the right key number.#PDA-PF-RIGHT

PFnn, where nn is the help key number.#PDA-PF-HELP

Not used (by default).#PDA-PF-AVAILABLE1

Not used (by default).#PDA-PF-AVAILABLE2

Not used (by default).#PDA-PF-AVAILABLE3

Note: The PF-key variables defined in this PDA allow your models to automatically use the
PF-key values and names specified on the Natural Construct control record. If you do not
require this flexibility, use hardcoded PF-key values and names.

#PDA-TITLE

This field (A25) contains the title of the module that is generated, which is required for the gener-
ation process. The title identifies the module for the List Generated Modules function on the
Generation main menu. Place this field on the model maintenance panels.

#PDA-GEN-PROGRAM

This field (A8) contains the name of the module that is generated, read, or saved. The value for
this field is the module name specified on the Generation main menu. Place this field on the first
maintenance panel for the model.

119Natural Construct Administration and Modeling

Creating New Models

#PDA-MODEL-VERSION

This field (N2.2) contains the number of theNatural Construct version used to generate themodel.

#PDA-HELP-INDICATOR

This field (A4) contains the help indicator for maps. The value for this field is the help indicator
specified on the control record, such as an asterisk (*).

#PDA-USER-DEFINED-AREA

This field (A1/1:100) is available to the user.

#PDA-UNDERSCORE-LINE

This field (A80) contains the 1- to 4-character set used to create the underscore line for text on
maps. The specified set is repeated until all spaces are filled (80, by default). The value for this
field is the underscore character set specified on the Natural Construct control record.

For example, if "----" is specified, the underscore line is:

Or if "++" is specified, the underscore line is:

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

#PDA-RIGHT-PROMPT-OF

This field (A4) contains the text used in the right prompt for maps. The value for this field is the
of indicator specified on the Natural Construct control record (1 of 4, for example).

#PDA-DISPLAY-INDICATOR

This field (A4/1:10) is an array corresponding to the position indicators used on maps. The values
for this field are the position indicators specified on the Natural Construct control record (1, 2, 3...,
for example).

Natural Construct Administration and Modeling120

Creating New Models

#PDA-CURS-FIELD

This field (I4) contains the cursor position for dynamic translation on maps.

#PDA-CVn

These fields©) are control variables (#PDA-CV1 through #PDA-CV8) used onmaps to dynamically
control the text displayed on a panel. These control variables are:

DescriptionControl Variable

Controls field prompts.#PDA-CV1

Controls prompt headings.#PDA-CV2

Controls special characters.#PDA-CV3

Controls column headings.#PDA-CV4

Not currently used.#PDA-CV5

Not currently used.#PDA-CV6

Not currently used.#PDA-CV7

Not currently used.#PDA-CV8

#PDA-SCROLL-INDICATOR

This field (A4) contains the scroll region indicator(s) used on maps. The value for this field is the
character(s) specified on the Natural Construct control record (>>, for example).

#PDA-DYNAMIC-ATTR-CHARS

This field (A1/1:13) is an array containing the default dynamic attribute characters. The values for
this array are the dynamic attributes specified on the Natural Construct control record. Dynamic
attribute characters allow the developer to embed special characters within text that change how
the text is displayed.

These dynamic attribute characters correspond to the following index occurrences:

Index OccurrenceAttribute

01Default return

02Intensify

03Blinking

04Italics

05Underline

06Reverse video

07Blue

121Natural Construct Administration and Modeling

Creating New Models

Index OccurrenceAttribute

08Green

09White

10Pink

11Red

12Turquoise

13Yellow

The CSUDYNAT subprogram uses these settings for the Natural dynamic attribute parameter
(DY=). For more information, see CSUDYNAT Subprogram.

#PDA-FRAME-PARM

This field (A32) contains different values depending on the type of subprogram. The Natural
Construct nucleus can set this field before the code frame subprograms are invoked; this field is
always set before the sample user exit subprograms are invoked.

For code frame generation subprograms, this field contains the value of the constant literal entered
in the subprogram line in the code frame (next to the Parameter prompt). For sample user exit
subprograms, this field contains the name of the user exit for which the sample was invoked.

#PDA-SYSTEM

This field (A32) contains the default system name when Predict program entries are generated
fromwithinNatural Construct. (Programmers/analysts candocument generatedmodules in Predict
by pressing the optns PF-key on the Generationmainmenu before saving or stowing themodule.)
Place this field on the first maintenance panel for the model.

Any supplied model that generates a dialog also uses this field as part of the key to access help
information. The system value corresponds to the Major component of the help key.

CSASTD PDA

TheCSASTDPDA is used by everymodel. It passesmessages between subprograms and is typically
used for error handling. CSASTD PDA contains the fields described in the following sections:

■ MSG
■ MSG-NR
■ MSG-DATA
■ RETURN-CODE
■ ERROR-FIELD

Natural Construct Administration and Modeling122

Creating New Models

■ ERROR-FIELD-INDEXn

MSG

This field (A79) is used with the RETURN-CODE field (see RETURN-CODE) to pass messages
between the Natural Construct nucleus and the model subprograms. It should be displayed on
the message line of all maintenance panels and reset after all inputs.

MSG-NR

This field (N4) is not currently used.

MSG-DATA

This field (A32/1:3) contains the values for embedded substitution strings. If a message contains
the :1:, :2:, or :3: substitution strings, you can supply values to these strings in MSG-DATA(1),
MSG-DATA(2), and MSG-DATA(3), respectively.

RETURN-CODE

This field (A1) is used with the MSG field (seeMSG). When a module is generated, the model
subprograms or related code frame subprograms may encounter problems. When this happens,
the subprogram should assign theRETURN-CODEfield before returning to theNatural Construct
nucleus. It should also assign an error message to the MSG field.

If the value assigned to the RETURN-CODE field is blank (informational message) orW (warning
message), a warning is issued by Natural Construct and a message is displayed in the Status
window. The developer can either ignore the warning and continue the generation process or
terminate generation.

If the value assigned to the RETURN-CODEfield is C (communication error) or E (error), the error
message is displayed but the developer cannot continue the generation process.

The CSLRCODE local data area contains valid return codes for the RETURN-CODE field.

ERROR-FIELD

This field (A32) identifies a field in error. The field name is displayed with the error message.

123Natural Construct Administration and Modeling

Creating New Models

ERROR-FIELD-INDEXn

These fields (P3) identify occurrences of fields in error. If the error field is an element of an array,
they identify the specific occurrence of the field in error.

Step 7: Create the Translation LDAs and Maintenance Maps

After defining the parameters and creating the parameter data area (PDA) for themodel, youmay
want to create translation LDAs to support multilingual specification panels and themaintenance
maps (panels) to accept parameters from the developer. These procedures are described in the
following sections:

■ Format of the Translation LDAs
■ Maintenance Maps

Format of the Translation LDAs

To support multilingual text and messages, each maintenance panel can use up to five translation
local data areas (LDAs). These LDAs contain the names of the fields that can be translated. You
cannot display a panel in another language unless the module that invokes the panel has a corres-
ponding translation LDA.

All translation LDAs must have following format:

Local CUBAMAL Library SYSCST DBID 18 FNR 4
Command > +
 I T L Name F Leng Index/Init/EM/Name/Comment
 All - -------------------------------- - ---- ---------------------------------
 * * **SAG TRANSLATION LDA
 * * * used by map CUBAMA0.
 1 CUBAMAL
 2 TEXT /* Corresponds to syserr message
 3 #GEN-PROGRAM A 20 INIT<'*2000.1,.'>
 3 #SYSTEM A 20 INIT<'*2000.2,.'>
 3 #GDA A 20 INIT<'*2000.3,.'>
 3 #TITLE A 20 INIT<'*2001.1,.'>
 3 #DESCRIPTION A 20 INIT<'*2001.2,.'>
 3 #GDA-BLOCK A 20 INIT<'*2001.3,.'>
 R 2 TEXT
 3 TRANSLATION-TEXT
 4 TEXT-ARRAY A 1 (1:120)
 2 ADDITIONAL-PARMS
 3 #MESSAGE-LIBRARY A 8 INIT<'CSTLDA'>
 3 #LDA-NAME A 8 INIT<'CUBAMAL'>
 3 #TEXT-REQUIRED L INIT<TRUE>
 3 #LENGTH-OVERRIDE I 4 /* Explicit length to translate

Natural Construct Administration and Modeling124

Creating New Models

In this example, the fields in CUBAMAL correspond to the following fields on the Standard
Parameters panel for the Batch model:

Field Name on PanelField Name in LDA

Module#GEN-PROGRAM

System#SYSTEM

Global data area#GDA

Title#TITLE

Description#DESCRIPTION

With block#GDA-BLOCK

When naming your translation LDAs, we recommend using the name of the module that uses the
LDA and adding an "L" in the last position. For example, the CUBAMAmaintenance subprogram
uses the CUBAMAL translation LDA.

The sum of the lengths of all fields in the translation LDAmust match the length of the text array.
In the CUBAMAL example, each of the six fields has a length of 20 and the text array is 1:120 (6 x
20).

To support multilingual specification panels, use SYSERR numbers to assign the INIT values for
the translation LDAfields. The translation LDAs are passed through the CSUTRANSutility, which
expects the structure in the previous example. CSUTRANS also expects the SYSERR INIT values
in the following format:

FormatPosition

Must be an asterisk (*).Byte 1

Must be numeric and represent a valid SYSERR number.

The first five bytes are mandatory (bytes 1–5); these values are used to retrieve the text
associated with the corresponding SYSERR number and the current value of the *Language
Natural system variable.

Bytes 2–5

If the text for the current language is not available, CSUTRANS follows amodifiable hierarchy
of *Language values until text is retrieved (you can define this hierarchy in the
DEFAULT-LANGUAGE field within the CNAMSG local data area). As the original
development language, English (*Language 1) should always be available.

Note: CSUTRANSdoes not perform any substitutions using :1::2::3:. To perform substitutions,
you must call the CNUMSG subprogram.

Can be a period (.), which indicates that the next byte is a valid position value.Byte 6

Can be a position value. Valid values are 1 to 9, A (byte 10), B (byte 11), C (byte 12), D (byte
13), E (byte 14), F (byte 15), andG (byte 16). For example, *2000.2 identifies the text for SYSERR

Byte 7

number 2000, position 2 (as delimited by "/" in SYSERR). If the message for SYSERR number
2000 is Module/System/Global data area, only System is retrieved.

125Natural Construct Administration and Modeling

Creating New Models

FormatPosition

If you reference the same SYSERR number more than once in a translation LDA, define the
INIT values on consecutive lines to reduce the number of calls to SYSERR; the position values
for a SYSERR number can be referenced in any order.

To minimize confusion, we recommend that you use the .n notation even when there is only
one message for the SYSERR number.

Can be a comma (,), which indicates that the next byte or bytes contain special format
characters. Values specified before the comma (,) indicatewhat text to retrieve; values specified
after the comma indicate how the text is displayed.

Note: Although you can use a comma in byte 6 (instead of a period), we recommend that you
always use the .n position indicator in bytes 6 and 7.

Byte 8

After the comma, can be one of the following:Byte 9

■ .

Indicates that the first position after the field name is blank and the remainder of the field
prompt is filled with periods. For example, Module name:

■ +

Indicates that the text is centered using the specified field length override (see description
of Byte 10). If you do not specify the override length, Natural Construct uses the actual field
length.

■ <

Indicates that the text is left justified (this is the default).
■ >

Indicates that the text is right justified.
■ /

Indicates that a length override value follows.

After the / override length indicator (see above), indicates the actual override length in bytes.Bytes 10–16

If you want to use the override length notation (*0200.4,+/6, for example) and the LDA field is too
small (A6, for example), you can define a larger field (A12, for example), redefine it using a
shorter display value, and then use the override length notation:

01 FIELD-NAME A1 INIT<'*0200.4+/6'>
01 Redefine #FIELD-NAME
 02 #SHORT-FIELD-NAME A6

Note: For more information, see Use SYSERR References.

Natural Construct Administration and Modeling126

Creating New Models

Maintenance Maps

Normally, each maintenance subprogram is associated with a different maintenance map. You
can use a layout map as a starting layout for your maintenance maps and then list the model PDA
fields in the Map editor and select the desired fields. For a standard maintenance map, use the
CDLAY layout map. For a multilingual maintenance map, you can also use the CDLAY layout
map and remove all text except the lines containing the first and second headings. (For an example
of a multilingual maintenance map, refer to CU--MA0 in the SYSCST library.)

You can also use theMapmodel to createmaintenancemaps. For a description, refer to the applic-
able section in Natural Construct Generation.

Step 8: Create the Model Subprograms

You can use the suppliedmodels to generate the subprograms described in this step. For a detailed
description of amodel, refer to the applicable section in this documentation. Themodel generation
models are described in the order they are implemented during the generation process.

Maintenance Subprograms

Generated using the CST-Modify model, these subprograms receive the specification parameters
(#PDAX variables in the model PDA) from the developer and should ensure that the parameters
are valid.Maintenance subprograms can also set condition codes and assign derived PDAvariables.

Maintenance subprograms are executed in the same order as they appear on theMaintainModels
panel. Usually, there is onemaintenance subprogram for every left/right (horizontal) maintenance
panel. Data edits should only be applied if the developer presses Enter or PF11 (right). Either the
maintenance subprogram or the maintenance map can validate the parameters.

You should only trap PF-keys that perform specialized functions related to the panel. If you want
the PF-key settings to be dependent on the default settings specified on the control record, the
subprogram should not contain hardcoded PF-keys (check the PF-key values using the variables
specified in CU—PDA).

You can define special PF-keys and window settings for each maintenance subprogram (see
Maintain Subprograms Function).

Note: Amaintenance subprogram can test the value of CU—PDA.#PDA-PHASE to identify
the phase during which it was invoked.

References

■ For an example of a generated maintenance subprogram, refer to CUMNMA and CUMNMB
in the SYSCST library.

■ For information about the CST-Modify model, see CST-Modify Model.

127Natural Construct Administration and Modeling

Creating New Models

When are Maintenance Subprograms Invoked?

The Natural Construct nucleus invokes the maintenance panels in the following situations:

Generation Main Menu

When the developer supplies the following input on the Generation main menu:

InputField

MFunction

TESTModule

model nameModel

The nucleus invokes the first maintenance panel for the specified model.

■ If the developer presses Enter or PF11 (right) on the first panel, the nucleus invokes the second
panel; if there are no other panels, the nucleus invokes the Generation main menu.

When the developer supplies the following input on the Generation main menu:

InputField

MFunction

TESTModule

2Panel

model nameModel

The nucleus invokes the second maintenance panel for the specified model.

■ If the developer presses Enter or PF11 (right) on the second panel, the nucleus invokes the second
panel; if there are no other panels, the nucleus invokes the Generation main menu.

■ If the developer presses PF10 (left), invokes the secondpanel anddisplays themessage: Beginning
of specification panels.

When the developer supplies the following input on the Generation main menu:

InputField

GFunction

TESTModule

model nameModel

Natural Construct Administration and Modeling128

Creating New Models

The nucleus invokes all maintenance panels for the specified model to ensure that all parameters
have been edited before generation. The input panels are not displayed unless an error is en-
countered.

User Exit Editor

When the developer supplies the following input on the command line in the User Exit editor:

> SAMPLE

The nucleus invokes all maintenance panels for the specified model to ensure that all parameters
have been edited before generation. The input panels are not displayed unless an error is en-
countered.

Pre-Generation Subprogram

Generated using the CST-Pregen model, this subprogram is invoked either after all maintenance
subprograms have been executed during the generation phase or after the SAMPLE command
has been issued from the User Exit editor. It is the first user subprogram invoked. It assigns all
True condition values, based on user-supplied input parameters or other calculated values.

Note: All #PDAC- condition values are reset before the generation process is started.

This subprogram should also calculate the values of any #PDA variables required by subsequent
generation subprograms. For simple models that do not have code frames, this subprogram can
also perform the functions of a generation subprogram. (Condition code values and derived fields
can also be assigned within the maintenance subprograms.)

References

■ For an example of a generated pre-generation subprogram, refer to CUMNPR in the SYSCST
library.

■ Formore information about the CST-Pregenmodel, see Parameters for the CST-PregenModel.

Generation Subprograms

Because the lengths and contents of certain code frame parameters change based on user-supplied
input values or information in Predict, these parameters must be supplied by the generation sub-
programs. These subprogramswrite statements to theNatural edit buffer, based on user-supplied
input parameters or other calculated values.

To write to the edit buffer, include a DEFINE PRINTER(SRC=1) OUTPUT 'SOURCE' statement in the
subprogram that routes the output to the source work area. To allow models to be ported to
multiple platforms, use the CU--DFPR copycode member to define the SRC printer.

129Natural Construct Administration and Modeling

Creating New Models

All WRITE (SRC), DISPLAY (SRC), and PRINT (SRC) statement output for your print file is written
to the edit buffer. Use the NOTITLE option on each of these statements. If a DISPLAY statement
is used in the subprogram, also use the NOHDR option.

Tip: When trailing blanks should be suppressed in variable names, the PRINT statement
can be a useful alternative to the WRITE statement. However, you may want to increase
the line length of the edit buffer when using the PRINT statement, so variable names are
not split at the "-" character.

Because generation logic can be highly complex, these subprograms allow ultimate flexibility.
However, they are less maintainable than code frame statements since you must change Natural
programs to modify the generated code.

Generation subprograms can also accept the #PDA-FRAME-PARMconstant code frame parameter
in CU—PDA. This parameter allows a subprogram to be invoked several times within the gener-
ation process. Each time the generation subprogram is invoked, it can use the value of this para-
meter to determine what to generate.

To invoke the generation subprograms, specify line type N in the T (type) column in the Code
Frame editor. You can also specify the constant parameter value on this line.

The following example of the Code Frame editor shows the code frame inwhich the CUMYGVAR
subprogram is invoked. The DEFINE and INIT parameters are passed to this subprogram:

FrameGENSUBP SIZE 172
DescriptionExample of generation subprogram FREE 36572
> > + ABS X X-Y _ S 21 L 1
 +....1....+....2....+....3....+....4....+....5....+....6....+....7..T C
Subprogram: CUMYGVAR Parameter: DEFINE N
 .
 .
 .
Subprogram: CUMYGVAR Parameter: INIT N

Note: For an example of a generated generation subprogram, refer to CUMNGGL in the
SYSCST library.

Natural Construct Administration and Modeling130

Creating New Models

Post-Generation Subprogram

Generated using the CST-Postgenmodel, this subprogramprovides the values for the substitution
parameters in the code frames identified by an ampersand (&). When the developer enters "G" in
Function on the Generation main menu, this subprogram is invoked as the final stage of the gen-
eration process.

During generation, code lines specified in the code frame are written to the edit buffer, as well as
the output of the generation subprogram in the code frame. Substitution parameters are included
in the edit buffer exactly as they appear in the code frame.

After the Generation phase, the content of the edit buffer can be the following:

 > > + Program : ABCSUBS Lib: CSTDEV
 All +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0010 DEFINE DATA LOCAL
 0020 01 #MAX-LINES(P3) CONST<&MAX-SELECTIONS>
 0030 01 #LINE-NR(P3/1:#MAX-LINES)
 0040 01 #I(P3)
 0050 END-DEFINE
 0060 FOR #I = 1 TO #MAX-LINES
 0070 ASSIGN #LINE-NR(#I) = #I
 0080 END-FOR
 0090 .
 0100 .
 0110
 0120
 0130
 0140
 0150
 0160
 0170
 0180
 0190
 0200
 +....1....+....2....+....3....+....4....+....5....+... S 10 L 1

The post-generation subprogram substitutes the code frame parameters with the corresponding
substitution values by stacking the substitution parameters and their corresponding values. Use
the STACK TOP DATA FORMATTED statement to stack these values. For example:

DEFINE DATA
 PARAMETER USING CUMYPDA
 PARAMETER USING CU—PDA
 PARAMETER USING CSASTD
END-DEFINE
**
** Stack change commands
STACK TOP DATA FORMATTED '&KEY' #PDAX-KEY

131Natural Construct Administration and Modeling

Creating New Models

STACK TOP DATA FORMATTED '&KEY-FORMAT' #PDA-KEY-FORMAT
END

■ #PDAX-KEY must contain the &KEY substitution parameter value.
■ #PDA-KEY-FORMAT must contain the &KEY-FORMAT substitution parameter value.

Stack Order of Substitution Parameters

Stacked parameters build a series of CHANGE commands that are applied by the nucleus after
the post-generation subprogram is finished executing. To change the substitution variables embed-
ded within a longer string, these CHANGE commands use the ABS (Absolute) option. If one
substitution variable is a substring of another substitution variable, stack the longer substitution
variable last. Since the STACK TOP option supplies the substitution values, the changes to the
longer substitution value are applied first. For example:

STACK TOP DATA FORMATTED '&KEY' #PDAX-KEY
STACK TOP DATA FORMATTED '&KEY-FORMAT' #PDA-KEY-FORMAT

Blanks versus Nulls

By default, the substitution parameter is replaced by one blank character if the second parameter
(the substituted value) is blank. If youwant to replace a blank substitution valuewith a null string,
use the following notation:

STACK TOP DATA FORMATTED '&FILE-PREFIX' #PDA-FILE-PREFIX 'NULL'

Clear Subprogram

Generated using the CST-Clear model, this subprogram resets the #PDA-USER-AREA variables
in themodel PDA.Only non-alphanumeric variables are reset. The clear subprogram can also assign
initial default values for user parameters.

Notes:

1. If you do not specify a clear subprogram, the Clear function on the Generation main menu sets
#PDA-USER-AREA to blanks.

2. The edit buffer is always cleared, regardless of whether the model uses a clear subprogram.

Natural Construct Administration and Modeling132

Creating New Models

When are Clear Subprograms Invoked?

The Natural Construct nucleus invokes the clear subprogram in the following situations:

■ When the developer invokes the Clear Edit Buffer function on the Generation main menu.
■ When the developer changes the model name and the new model uses a different PDA.
■ Immediately before the Read Specifications function is executed on the Generation main menu.

The following example shows a the code generated for a clear subprogram:

DEFINE DATA
 PARAMETER USING CUMYPDA
 PARAMETER USING CU—PDA
 PARAMETER USING CSASTD
END-DEFINE
**
**Initialize non-alpha fields and set default values.
RESET #PDAX-MAX-PANELS #PDA-KEY-LENGTH
ASSIGN #PDAX-GDA = 'CDGDA'
ASSIGN #PDA-SYSTEM = *LIBRARY-ID
END

Save Subprogram

Generated using the CST-Save model, this subprogram writes the specification parameters to the
edit buffer. To read a previously-generated program, the model must have both a save and a read
subprogram. The save subprogrammust contain a separateWRITE statement for each specification
parameter (#PDAX variable). Use the equal (=) notation to include the variable name with the
contents of the variables. For example:

WRITE(SRC) NOTITLE '=' #PDAX-variable-name

Note: Use a separate WRITE statement for each element of an array.

The following example shows a the code generated for a save subprogram:

DEFINE DATA
 PARAMETER USING CUMYPDA
 PARAMETER USING CU—PDA
 PARAMETER USING CSASTD
 LOCAL
 01 #I(P3)
 01 #TEMP(A25)
END-DEFINE
**
DEFINE PRINTER (SRC=1) OUTPUT 'SOURCE'
FORMAT(SRC) LS=150
**
** Write out parameters to be saved.

133Natural Construct Administration and Modeling

Creating New Models

WRITE(SRC) NOTITLE '=' #PDAX-GDA
WRITE(SRC) NOTITLE '=' #PDAX-MAIN-MENU-PROGRAM
WRITE(SRC) NOTITLE '=' #PDAX-QUIT-PROGRAM
FOR #I = 1 TO 4
 IF #PDAX-DESC(#I) NE ' ' THEN
 COMPRESS '#PDAX-DESC(' #I '):' TO #TEXT LEAVING NO
 PRINT(SRC) NOTITLE #TEXT #PDAX-DESC(#I)
 END-IF
END-FOR
END

Note: When compressing an index value that can be more than one digit in length, redefine
a numeric index with an alpha string and compress the alpha string to preserve leading
zeros.

Natural Construct changes the output of the subprogram to:

**SAG variable-name: variable contents

For example, #PDAX-MAP-NAME: MYMAP becomes **SAG MAP-NAME: MYMAP. The lines containing the
**SAG parameter values are placed at the beginning of the generated module.

Read Subprogram

Generated using the CST-Read model, this subprogram reads the specification parameters for a
generatedmodule. It contains a series of INPUT statements that accept the data previously placed
in the Natural stack. The read subprogram is invoked when the developer invokes the Read Spe-
cifications function on the Generation main menu.

Before the read subprogram is invoked, all **SAG parameter values are placed on the Natural
stack. The read subprogram repeats a series of INPUT statements to accept the stacked parameters
and assign them to the correct PDA variables. This subprogram must correspond to the save
subprogram that writes the **SAG parameter lines. The read subprogram can also read common
parameters from a different model.

Notes:

1. Natural Construct invokes the clear subprogram before invoking the read subprogram. It is
not necessary to save null parameter values.

2. For an example of a generated read subprogram, refer to CUMNR in the SYSCST library.

Natural Construct Administration and Modeling134

Creating New Models

Sample User Exit Subprograms

Generated using the CST-Frame model, these subprograms help the developer create user exit
code by providing a starting sample. The subprograms can be simple or complicated, depending
on the model.

When creating a sample subprogram, you can include additional parameters to give the developer
more control overwhat is generated into the user exit. To pass additional information to the sample
subprogram, use the CU—PDA.#PDA-FRAME-PARM variable.

Allmaintenance subprograms and the pre-generation subprogramare automatically invokedbefore
the sample subprograms are invoked. This ensures that the current specification parameters are
valid and the conditions are set.

To define a sample subprogram, enter ".E" at the beginning of a user exit line in the Code Frame
editor. For information, see Use Parameters Supplied by User Exits.

For an example of a sample subprogram, refer to CUFMSRIN in the SYSCST library.

Documentation Subprogram

Generated using the CST-Documentmodel, this subprogram creates an extended Predict descrip-
tion. To support the generation of a Predict extended description for the generated modules, you
must create a documentation subprogram for your model. This subprogram creates a free-form
description of the generated module using the information entered on the model specification
panels. You canwrite information in any language forwhich youhave translated help textmembers.
For more information, see Using SYSERR for Multilingual Support.

The documentation subprogramwrites themodel description to Predictwhen the developer turns
this option on (using the optns PF-key on the Generation main menu) and invokes the Save or
Stow function. The functions available on the Generation main menu are described in Natural
Construct Generation.

Note: For an example of a generated documentation subprogram, refer to CUMND in the
SYSCST library.

Test the Model Subprograms

Because amodel contains several components, it is often better to test each component individually,
or test related subprograms,without the overhead of theNatural Construct nucleus. After defining
themodel PDA,maintenancemaps, andmodel subprograms, you can test the individual compon-
ents of the model.

135Natural Construct Administration and Modeling

Creating New Models

To test the model subprograms:

1 Issue the CSUTEST command from the SYSCST library.

The Single Module Test Program panel is displayed. For example:

 CSUTEST ***** Natural Construct ***** CSUTESM1
 Oct 09 - SINGLE MODULE TEST PROGRAM -

 Code Function *Model: ________________________________

 ---- ------------------- Number all subprograms to be executed

 R Release Variables | |

 * Execute All Subp. V |

 1-9 Execute One Subp. Clear : V

 E Edit source Mod 1: Mod 6:

 C Clear Edit Buffer Mod 2: Mod 7:

 ? Help Mod 3: Mod 8:

 . Terminate Mod 4: Mod 9:

 ---- ------------------- Mod 5: Mod 10:

 _ Pregen: Save :

 Source Documt: Postgn:

 Lines

 Total: 0 Frame Parameter or Exit Name

 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help quit

A typical test will invoke the clear subprogram, one or more maintenance subprograms (in-
dicated byMod n), the pre-generate subprogram, and a generation subprogram (in that order).

Natural Construct Administration and Modeling136

Creating New Models

Note: This panel is a utility; it is not available in dynamic translation mode.

2 Enter the name of the model in Model.

Note: If the test conditions and variables for the generation subprogram are set in the
pre-generation or maintenance subprograms, invoke these subprograms first.

The names of the model subprograms are displayed. For example:

 CSUTEST ***** Natural Construct ***** CSUTESM1
 Oct 09 - SINGLE MODULE TEST PROGRAM -

 Code Function *Model: BROWSE-SELECT___________________

 ---- ------------------- Number all subprograms to be executed

 R Release Variables | |

 * Execute All Subp. V |

 1-9 Execute One Subp. _ Clear : CUSLC V

 E Edit source _ Mod 1: CUSCMA _ Mod 6: CUSCMG

 C Clear Edit Buffer _ Mod 2: CUSLMB Mod 7:

 ? Help _ Mod 3: CUSCMC Mod 8:

 . Terminate _ Mod 4: CUSLME Mod 9:

 ---- ------------------- _ Mod 5: CUSLMF Mod 10:

 _ _ Pregen: CUSLPR _ Save : CUSCST

 Source _ Documt: CUSLD _ Postgn: CUSLPS

 Lines

 Total: 0 Frame Parameter or Exit Name

 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help quit

137Natural Construct Administration and Modeling

Creating New Models

 New model definition read.

This window also displays the total number of lines in the source buffer.

3 Type a number beside each subprogram you want to test.

4 Type the same number in the input field below the Code column.

Valid codes are:

DescriptionCode

Resets the parameter data area (PDA) passed to all model subprograms.R

Executes all model subprograms. Subprograms marked with a number are executed in order
from 1 to 9. Code generated into the edit buffer by a subprogram is delimited by comments
containing the name of the subprogram.

*

Executes the specified model subprogram. To execute a specific subprogram, enter a number
from 1 to 9. If you enter 1, for example, all subprogramsmarked 1 are executed in the same order
they are displayed on the panel.

1–9

Invokes the appropriate Natural editor to edit source.E

Clears the edit buffer. You should clear the edit buffer before testing the next subprogram.C

Displays help for the panel.?

Terminates the Test utility and displays the Natural Next prompt (Direct Command box for
Unix).

.

Note: Optionally, you can enter the names of up to four generation subprograms and
code frame parameters or user exits to pass to each subprogram when it is invoked.

5 Press Enter to test the model.

Debug a Model

After creating all the components of amodel, you can use several Natural Construct trace facilities
to display information about the generation process.

To invoke the trace facilities:

1 Enter the specifications for the model you want to test on the Generation main menu.

2 Press PF5 (optns).

Natural Construct Administration and Modeling138

Creating New Models

The Optional Parameters window is displayed. For example:

 CSGOPTS Natural Construct CSGOPTS0
 Oct 09 Optional Parameters 1 of 1
 Status window _
 Step _
 Text _
 Embedded statements _
 Condition codes _
 Post-generation modifications _
 Specifications only _
 Document in Predict _
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9-
 help retrn quit

3 Mark which trace facilities to invoke while debugging the model.

The trace facility options are:

DescriptionOption

Displays the Statuswindowduring generation.Messages in thiswindow indicate
which module is executing at each stage of the generation process.

Note: The default for this field is determined by the value specified for the Status
field on the Maintain Models panel (seeMaintain Models Function).

The Status window options are:

Status window

■ Step

Allows you to "step" through the stages of the generation process by pressing
Enter; the next message is not displayed until you press Enter. To have the
generation process continue unaided, press PF2 (run).

■ Text

Displays messages as text (for example, “starting ...” and “ending ...”). If this
field is not marked, messages are displayed with graphics “---> ...” (starting)
and “<--- ...” (ending).

Writes embedded statements to the source buffer as part of the generated
module. These statements indicate where the code originated and the name of

Embedded
statements

the code frame, generation subprogram, or sample subprogram that produced
it.

Displays the values of the condition codes in the Condition Codeswindow after
the pre-generation subprogram is invoked.

Condition codes

Displays the values of the code frame substitution parameters, which are
identified by an ampersand (&), in the Post-Generation Modifications window

Post-generation
modifications

139Natural Construct Administration and Modeling

Creating New Models

DescriptionOption

during generation. The window is displayed after the post-generation
subprogram stacks the substitution values in the code frame.

Saves only the current specifications and user exit code. This function is helpful
if parameter edits do not allow you to complete the generation process and you
want to save the current specifications and user exit code.

Specifications only

Documents the saved generatedmodule (program, data area, etc.) in the Predict
data dictionary.

Document in Predict

4 Type "G" in Function on the Generation main menu.

The following example shows the Status window with graphics instead of text:

 CSGMAIN N a t u r a l C o n s t r u c t CSGMNM0
 +--+ 1 of 1
 | CSGOPTS Natural Construct CSGOPTS0 |

 | Oct 09 Optional Parameters 1 of 1 |

 +---+

 | CSGENPGF Natural Construct |

 | Oct 09 Status Window 1 of 1 |

 | |

 | <-- SAVE CUGRS |

 | --> FRAME CUGRF9 |

 | --> FRAME CU--B7 |

 | |

 +---+

 | Document in Predict _ |

 | Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9- |

 | help retrn |

 | |

 +--+
 Function g___ Module CUMNR___ Panel __

 Model CST-READ_________________________ Type........ Subprogram

Natural Construct Administration and Modeling140

Creating New Models

 Command _________________________________ Library SYSCST

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help quit optns lang

Miscellaneous Tips and Precautions

The following tips and precautions apply when using the model subprograms:

■ If you modify the redefinitions in a parameter data area (PDA), recatalog all subprograms that
use the PDA. (You can extend redefinitions without recataloging.)

■ In the post-generation subprogram, use the STACK TOP DATA FORMATTED statement so Natural
does not process input delimiter and assign characters.

■ In the generation subprograms, use the NOTITLE or WRITE TITLE ' ' statements.
■ To remove trailing blanks, use the PRINT (SRC) NOTITLE statement.
■ If you include PRINT statements, be sure to use a long line length (LS=150) so Natural does not
break the line on a "-" or other special character.

■ To write data without embedded spaces, use an edit mask. For example:

PRINT(SRC) NOTITLE #FIELD(EM='UPDATE-VIEW.'X(32)) ...

■ In user-supplied text strings that are used to build quoted literals, always change single quotation
marks to double quotation marks. For example:

INCLUDE CU--QUOT /* Assign #DOUBLE-QUOTE based on ASCII/
 /* EBCDIC
EXAMINE #PDAX-HEADING FOR ''''
AND REPLACE WITH #DOUBLE-QUOTE

CU--QUOT is supplied with Natural Construct.

Note: For double-byte languages, such asKanji, use theCSUEXAMsubprogram toperform
the Examine and Replace operations.

■ Although it is always better to use the .n extension when using SYSERR numbers to define field
prompts, you can divide the contents of a delimited SYSERR message (indicated by the "/"
character) with a single definition— if the field prompts are all the same length and are defined
in the LDA one after the other as follows:

#FIELD-ONE A 10 INIT<'*1234'>
#FIELD-TWO A 10
#FIELD-THREE A 10

141Natural Construct Administration and Modeling

Creating New Models

If the SYSERR message is prompt1/prompt2/prompt3, the result is #FIELD-ONE = prompt1,
#FIELD-TWO = prompt2, and #FIELD-THREE = prompt3.

Implement Your Model

After testing the code frames andmodel components (data areas,model subprograms,maps, etc.),
you are ready to make your model available to developers in the Generation subsystem. To do
this, use the SYSMAIN utility to copy all the model components to the SYSLIBS library.

Create Statement Models

Statement models generate portions of code, such as Natural statements, Predict views, and field
processing code, which can be used in programs generated by your programmers/analysts.

To create a statement model, specify a period (.) in the Type field on the Maintain Models panel
when you define the model. Typically, a statement model uses a parameter data area (PDA), a
maintenance subprogram, and a pre-generation subprogram (most do not use code frames).
Statement models do not support user exit code. After defining the model and its components,
use the SYSMAIN utility to move the model components into the SYSLIBS library.

Statementmodels are designed to look like the statement syntax they are generating. For example,
the If model looks like the IF statement:

IF __
THEN __
 __
ELSE __
 __
END-IF

The screen text looks exactly like the Natural syntax. This also eliminates the need for translation,
thus improving performance and screen presentation.

To invoke a statement model, the developer issues the .G line command in the User Exit, code
frame, or Natural program editor. Using statement models can give your programmers/analysts
a variety of benefits, including:

■ Reduce the need to refer to the Natural Statements documentation for the statement syntax.
■ Reduce the keystrokes required to code Natural statements, since keywords are automatically
generated.

■ Generate statements into their programs that have a consistent indentation.

Natural Construct Administration and Modeling142

Creating New Models

■ Allow their programs to perform tedious calculations (centering headings within a window,
for example).

■ Allow their programs to access system files and automatically retrieve Predict views, SYSERR
message numbers, etc.

For information about invoking andusing statementmodels, see StatementModels,Natural Construct
Generation.

Code Alignment of Generated Statement Models

By default, Natural Construct aligns the generated block of code so the first generated statement
is indented by the same amount as the line on which the .G command was entered. If you do not
want your model to use this alignment, generate a line beginning with "**" as the first line of your
generated code.

Use the Supplied Utility Subprograms and Helproutines

Natural Construct provides many subprograms and helproutines to simplify and standardize the
model creation process. These utilities, which are used by the supplied models, can also be used
by your models. The source for these utilities is not supplied.

All subprograms use an external parameter data area (PDA). The source for this PDA is located
in the SYSCST library. Use this PDA as the local data area (LDA) in the invoking subprograms to
determine required parameters. Parameters are documented within the PDA.

The supplied utilities are divided into categories, based on the type of information they access.
The names of these subprograms and helproutines begin with one of the following prefixes:

DescriptionPrefix

Predict data retrieval subprograms.CPU

Predict data helproutines.CPH

Natural data retrieval subprograms.CNU

Natural data helproutines.CNH

Natural Construct utility subprograms.CSU

Note: For more information about the supplied utilities, see External Objects.

143Natural Construct Administration and Modeling

Creating New Models

144

6 New Model Example

■ Step 1: Define the Scope of the Model ... 146
■ Step 2: Create the Prototype .. 146
■ Step 3: Scrutinize the Prototype .. 147
■ Step 4: Isolate the Parameters in the Prototype ... 147
■ Step 5: Create a Code Frame and Define the Model ... 147
■ Step 6: Create the Model PDA ... 150
■ Step 7: Create Translation LDAs and Maintenance Maps ... 152
■ Step 8: Create the Model Subprograms .. 154
■ Step 9: Implement the Model ... 166

145

This section provides a step-by-step example of creating a newmodel using the procedure described
in Build a NewModel. The model, Menu, generates a program that displays several choices to a
user and allows the user to select one.

Note: For an example of a generated menu program, refer to NCMAIN in the demo library.

The procedure to build a new model is:

Step 1: Define the Scope of the Model

A program generated by the Menu model will provide a list of options and descriptions to the
user for selection. The INPUT statement can be generated by Natural Construct or supplied by
the developer.

Step 2: Create the Prototype

After defining the scope of themodel, create a prototype to handle themost complex function and
then refine the prototype to handle the simpler functions.

The following example shows the output from the NCMAIN prototype:

 NCMAIN ***** ACME DEPARTMENT STORES ***** NCLAYMN1
 Oct 09 - MAIN MENU - 04:11 PM

 Code | Subsystem
 +------+--+
 | C | Customer |
 | T | Table Maintenance |
 | O | Order |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | | |
 | ? | Help |
 | . | Terminate |
 +---+
 Code: __
 Direct Command: __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit flip main

Natural Construct Administration and Modeling146

New Model Example

Step 3: Scrutinize the Prototype

After creating the prototype, follow the steps outlined inStep 3: Scrutinize the Prototype, to ensure
that all of the assumptions are correct and the scope of the model has been addressed.

Step 4: Isolate the Parameters in the Prototype

Next, identify data that must be supplied by parameters.

Parameters for the Program Header

The parameters supplied for the program header are:

■ Name of the program being generated.
■ Application to which the generated program belongs.
■ Date and time the program was generated.
■ Title and description of the program.

Parameters for the Program Body

The parameters supplied for the program body are:

■ Name of the global data area (GDA).
■ Map used by the generated program.
■ List of functions and their descriptions.

Step 5: Create a Code Frame and Define the Model

This section describes how to create a code frame and define the model.

147Natural Construct Administration and Modeling

New Model Example

Create the Code Frame

Once you have identified all data that must be supplied by parameters, you can create the code
frame (CMNA?) for the model. For more information, see Create the Code Frames.

Note: For an example of the code frame for theMenumodel, display the CMNA? code frame
(stored in the SYSCST library) in the Code Frame editor.

To create the code frame:

1 Read the prototype into the Code Frame editor and define the substitution parameters.

2 Create the user exits.

To allowdevelopers to specify additional parameters, local data, orNatural statements, include
the following user exits:

DescriptionUser Exit

Generates comment lines indicating the date and ID of the
personwho created ormodified the program. The developer
provides a description of changes.

CHANGE-HISTORY

Defines additional local variables used in the generated
program.

LOCAL-DATA

Defines code that is executed once at the beginning of the
generated program— after all standard initial values are

START-OF-PROGRAM

assigned. For example, this user exit code can initialize input
values from globals.

Defines code that is executed immediately before the INPUT
statement is executed (before each input panel is displayed).

BEFORE-INPUT

For example, this user exit code can issue the SET CONTROL
statements.

Defines code that is executed immediately after the INPUT
statement is executed (after each input panel is displayed).

AFTER-INPUT

Defines code that is executed before the menu code is
processed.

BEFORE-PROCESSING-MENU-CODES

Defines code that is executed when a menu code does not
FETCH a program.

SPECIAL-CODE- PROCESSING

Contains code that is executed once before the program is
terminated. For example, this user exit code can assign a
termination message.

END-OF-PROGRAM

Defines code that is executed before the PF-keys are set and
allows non-standard PF-keys to be added to the program.

SET-PF-KEYS

(The additional PF-keys are defined in the CDKEYLDA local
data area.)

Natural Construct Administration and Modeling148

New Model Example

3 Create the code frame conditions.

To create conditional code, insert the condition name and condition level number in the code
frame. To view some examples of conditional code, display the CMNA? code frame in the
Code Frame editor and refer to the following condition names:

■ GDA-SPECIFIED
■ DIRECT-COMMAND-PROCESSING
■ MAP-USED

Define the Model

At this point, you can define the model to Natural Construct using the Maintain Models function
on the Administration main menu. For more information, seeDefine the Model.

Model subprograms are prefixed by CUMN, where CU identifies the subprogram as a Natural
Construct model subprogram and MN identifies the model (Menu).

Note: The CU prefix is used by the models supplied with Natural Construct. When you
create a new model or modify a supplied model, use a CX prefix. For this example, we use
a CU prefix.

To add the Menu model to Natural Construct:

1 Invoke the Maintain Models function from the Administration main menu.

2 Specify the following parameters on the Maintain Models panel.

For example:

 CSDFM N A T U R A L C O N S T R U C T CSDFM0
 Oct 09 Maintain Models 1 of 1

 Action __ A,B,C,D,M,N,P,R

 Model MENU____________________________

 Description *0200.1___
 MENU Program

 PDA name CUMNPDA_ Status window Y

 Programming mode S_ Comment start indicator .. **_

 Type P Program Comment end indicator ___

149Natural Construct Administration and Modeling

New Model Example

 Code frame(s) CMNA?___ ________ ________ ________ ________
 Modify server specificatn CUMNMA__ CUMNMB__ ________ ________ ________
 ________ ________ ________ ________ ________
 Modify client specificatn CUMNMA__ CUMNMB__ ________ ________ ________
 ________ ________ ________ ________ ________

 Clear specification CUMNC___ Post-generation CUMNPS__
 Read specification CUMNR___ Save specification CUMNS___
 Pre-generation CUMNPR__ Document specification ... CUMND___
 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit frame main

Most of the model components are listed on this panel. The components that are not listed are
assigned through subprograms or code frames. For example, the CUMNMA0 and CUMNMB0
maps are invoked through theCUMNMAandCUMNMBmaintenance subprograms, respectively,
and the generation subprogram is assigned through the CMNA? code frame.

Step 6: Create the Model PDA

Use the CST-PDAmodel in the Generation subsystem to create the parameter data area (PDA) for
the model (CUMNPDA).

For an example of the parameter data area for theMenumodel, refer to the CUMNPDAparameter
data area in the SYSCST library.

To create the model PDA:

1 Type the following parameter values on the Generation main menu:

ValueParameter

MFunction

CUMNPDAModule

CST-PDAModel

2 Press Enter.

The Standard Parameters panel for the CST-PDA model is displayed.

Natural Construct Administration and Modeling150

New Model Example

3 Enter "Menu" in Model.

For example:

 CUPDMA CST-PDA Parameter Data Area CUPDMA1
 Oct 09 Standard Parameters 1 of 1

 Module CUMNPDA_

 Model Menu____________________________ *

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit

The Generation main menu is displayed.

4 Enter "G" in Function.

Natural Construct generates the PDA.

5 Enter "E" in Function.

The Natural data area editor is displayed.

■ Each substitution parameter in the model code frame corresponds to a user area variable
in the model PDA that has the same name and a #PDAX- or #PDA- prefix.

■ Each condition variable in the model code frame corresponds to a condition variable in the
model PDA that has the same name and a #PDAC- prefix.

6 Specify the type and length of each #PDAX variable.

7 Add any #PDA variables required by the model.

151Natural Construct Administration and Modeling

New Model Example

Step 7: Create Translation LDAs and Maintenance Maps

This section describes how to create the translation LDA and maintenance map for your model.

Create the Translation LDAs

To support dynamic translation of text and messages, you can create up to five translation local
data areas (LDAs) for each maintenance map; the module that invokes the map must have a
translation LDA. Translation LDAs contain the names of the fields on themap that can be translated.
To assign the INIT values for these fields, use SYSERR references.

For an example of the translation LDAs for theMenumodel, refer to theCU--MALandCUMNMBL
LDAs in the SYSCST library.

The following example shows a translation LDA:

 Local CUXXMAL Library SYSCST DBID 19 FNR 26
 Command > +
 I T L Name F Leng Index/Init/EM/Name/Comment
 All - -------------------------------- - ---- ---------------------------------
 * * **SAG TRANSLATION LDA
 * * * used by map CUXXMX0.
 1 CUTRMAL
 2 TEXT /* Corresponds to syserr message
 3 #GEN-PROGRAM A 20 INIT<'*2000.1,.'>
 3 #TITLE A 20 INIT<'*2001.1,.'>
 3 #DESCS A 20 INIT<'*2001.2,.'>
 3 #DATA-AREA A 20 INIT<'*2097.3,.'>
 3 #LANGUAGE A 20 INIT<'*1309.2,.'>
 R 2 TEXT
 3 TRANSLATION-TEXT
 4 TEXT-ARRAY A 1 (1:100)
 2 ADDITIONAL-PARMS
 3 #MESSAGE-LIBRARY A 8 INIT<'CSTLDA'>
 3 #LDA-NAME A 8 INIT<'CUXXMAL'>
 3 #TEXT-REQUIRED L INIT<TRUE>
 3 #LENGTH-OVERRIDE I 4 /* Explicit len to translate
 --- S 17 L 1

To create your translation LDAs

1 Copy an existing translation LDA.

2 Define the fields for which you want dynamic translation.

All translation LDAsmust have the format shown in the example above. Formore information,
see Step 7: Create the Translation LDAs and Maintenance Maps.

Natural Construct Administration and Modeling152

New Model Example

Create the Maintenance Maps

The model uses one or more maintenance maps to accept parameters from a user. To create the
maintenance maps, use one of the following methods:

■ Copy an existing maintenance map and modify it to suit your requirements.
■ Create the map in the Natural Map editor.
■ Create the map using the Natural Construct Map model.

For an example of the maintenance maps for the Menu model, refer to the CU--MA0 and CUMN-
MB0 maps in the SYSCST library.

The CU--MA0 maintenance map contains the following input fields:

DescriptionField

Name of the menu to be generated.Module

Name of the system (usually the library name).System

Name of the global data area (GDA) used by thismenu program.Developers can display
a field-level help window to select a value for this field.

Global data area

Name of the GDA block used by this menu program (if desired).With block

Title for the menu program. The title identifies the program for the List Generated
Modules function on the Generation main menu and is used internally for program
documentation.

Title

Brief description of the menu program. The description is inserted in the banner at the
beginning of the program and is used internally for program documentation.

Description

First heading displayed on the generated menu.First header

Second heading displayed on the generated menu.Second header

Indicates whether the menu supports a Direct Command line.Command

Indicates whether the menu uses message numbers or message text.Message numbers

Indicates whether the menu is password protected.Password

The CUMNMB0 maintenance map contains the following input fields:

DescriptionField

Name of themap layout (form) used to create themenu panel. Developers can display
a field-level help window to select a value for this field.

Map layout

1 or 2-character code used to invoke the functions listed on themenu. Each codemust
have a corresponding function.

Code

Functions listed on the menu. Each function must have a corresponding code. If
desired, developers can change the word, Functions, to another value.

Functions

153Natural Construct Administration and Modeling

New Model Example

DescriptionField

Name of the program that is invoked when the corresponding function is selected.
Developers can display a field-level help window to select a value for this field.

Program Name

Indicates whether additional input parameters are required (user must enter a value)
or optional. Developers can specify a maximum of four additional parameters (using

Optional Parameters

PF5). On the menu, the parameters are displayed as column headings to the right of
the Function heading and as input fields below theCode field. If additional parameters
are specified, Natural Construct generates a legend ® for Required, O for Optional).
The legend is aligned under the first occurrence of a Required or Optional indicator.

Step 8: Create the Model Subprograms

After creating the code frame, PDA, maintenance maps, and translation LDAs for the Menu
model, you are ready to create the model subprograms. The following sections describe how to
create each of the model subprograms:

■ Create the Maintenance Subprograms
■ Create the Pre-Generation Subprogram
■ Create the Post-Generation Subprogram
■ Create the Clear Subprogram
■ Create the Save Subprogram
■ Create the Read Subprogram
■ Create the Generation Subprogram
■ Create the Documentation Subprogram
■ Test the Model Subprograms

Create the Maintenance Subprograms

Use the CST-Modify model in the Generation subsystem to create the maintenance subprograms
(CUMNMA and CUMNMB). These subprograms invoke the CUMNMA0 and CUMNMB0maps,
respectively.

For an example of the maintenance subprograms for theMenumodel, refer to the CUMNMA and
CUMNMB subprograms in the SYSCST library.

To create the CUMNMA maintenance subprogram:

1 Display the Standard Parameters panel for the CST-Modify model.

Natural Construct Administration and Modeling154

New Model Example

2 Specify the following parameters:

 CUGIMA CST-Modify Subprogram CUGIMA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNMA__

 Parameter data area CUMNPDA_ *

 Title Menu Model Modify Subp___

 Description This subprogram is used as modify panel 1_____________
 1 of 2__
 __
 __

 Map name CU--MA0_ *

 Translation LDAs ... CU--MAL_ ________ ________ ________ ________ *

 Cursor translation . X

 First header __
 Second header *0311.1,+/54__

 Subpanel _

 Window support _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit windw pfkey left userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

To create the CUMNMB maintenance subprogram:

1 Display the Standard Parameters panel for the CST-Modify model.

155Natural Construct Administration and Modeling

New Model Example

2 Specify the following parameters:

 CUGIMA CST-Modify Subprogram CUGIMA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNMB__

 Parameter data area CUMNPDA_ *

 Title Menu Model Modify Subp___

 Description This subprogram is used as modify panel 2_____________
 2 of 2__
 __
 __

 Map name CUMNMB0_ *

 Translation LDAs ... CUMNMBL_ ________ ________ ________ ________ *

 Cursor translation . X

 First header __
 Second header *0310.1,+/54__

 Subpanel _

 Window support _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit windw pfkey left userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

Natural Construct Administration and Modeling156

New Model Example

Create the Pre-Generation Subprogram

Use the CST-Pregenmodel in the Generation subsystem to create the pre-generation subprogram.

For an example of the pre-generation subprogram for the Menu model, refer to the CUMNPR
subprogram in the SYSCST library.

To create the CUMNPR pre-generation subprogram:

1 Display the Standard Parameters panel for the CST-Pregen model.

2 Specify the following parameters:

 CUGPMA CST-Pregen Subprogram CUG-MA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNPR__

 Parameter data area CUMNPDA_ *

 Title Menu Model Pregen Subp

 Description Pre-generate subprogram. ...__________________________
 Set conditions and assign shared PDA variables.

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

157Natural Construct Administration and Modeling

New Model Example

 main help retrn quit userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

Create the Post-Generation Subprogram

Use theCST-Postgenmodel in theGeneration subsystem to create the post-generation subprogram.

For an example of the post-generation subprogram for the Menu model, refer to the CUMNPS
subprogram in the SYSCST library.

To create the CUMNPS post-generation subprogram:

1 Display the Standard Parameters panel for the CST-Postgen model.

2 Specify the following parameters:

 CUGOMA CST-Postgen Subprogram CUGOMA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNPS__

 Model MENU____________________________ *

 Title Menu Model Post-Gen Subp_

 Description Post-generation parameters for the Menu model.________

Natural Construct Administration and Modeling158

New Model Example

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

Create the Clear Subprogram

Use the CST-Clear model in the Generation subsystem to create the clear subprogram. The Menu
model requires a clear subprogram because the #PDA-USER-AREA field is redefined into non-
alphanumeric variables (for example, #PDA-USER-PARM-LENGTHand#PDA-CODE-LENGTH)
and the Description field on the first maintenance panel requires default text.

For an example of the clear subprogram for the Menu model, refer to the CUMNC subprogram
in the SYSCST library.

To create the CUMNC clear subprogram:

1 Display the Standard Parameters panel for the CST-Clear model.

2 Specify the following parameters:

 CUGCMA CST-Clear Subprogram CUG-MA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNC___

 Parameter data area CUMNPDA_ *

 Title Menu Model Clear Subp____

 Description Clear specification parameters and assign initial value
 __

159Natural Construct Administration and Modeling

New Model Example

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

Create the Save Subprogram

Use the CST-Save model in the Generation subsystem to create the save subprogram. The save
subprogram allows the model to read a previously-generated program.

For an example of the save subprogram for the Menu model, refer to the CUMNS subprogram in
the SYSCST library.

To create the CUMNS save subprogram:

1 Display the Standard Parameters panel for the CST-Save model.

2 Specify the following parameters:

 CUGAMA CST-SAVE Subprogram CUG-MA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNS___

 Parameter data area CUMNPDA_ *

 Title Menu Model Save Subp_____

Natural Construct Administration and Modeling160

New Model Example

 Description Save specification parameters for the menu model_______

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

Create the Read Subprogram

Use the CST-Read model in the Generation subsystem to create the read subprogram.

For an example of the read subprogram for the Menu model, refer to the CUMNR subprogram in
the SYSCST library.

To create the CUMNR read subprogram:

1 Display the Standard Parameters panel for the CST-Read model.

161Natural Construct Administration and Modeling

New Model Example

2 Specify the following parameters:

 CUGRMA CST-Read Subprogram CUG-MA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNR___

 Parameter data area CUMNPDA_ *

 Title Menu Model Read Subp_____

 Description Read parameter specifications _____________________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

Natural Construct Administration and Modeling162

New Model Example

Create the Generation Subprogram

Use the CST-Frame model in the Generation subsystem to create the generation subprogram.

For an example of the generation subprogram for the Menu model, refer to the CUMNGGL sub-
program in the SYSCST library.

To create the CUMNGGL generation subprogram:

1 Display the Standard Parameters panel for the CST-Frame model.

2 Specify the following parameters:

 CUGFMA CST-Frame Subprogram CUG-MA0
 Oct 09 Standard Parameters 1 of 1

 Module CUMNGGL_

 Parameter data area CUMNPDA_ *

 Title Menu Model Frame Subp____

 Description Generation parameter variables (if length and format

 are specified)___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---

163Natural Construct Administration and Modeling

New Model Example

 main help retrn quit userX main

3 Generate the subprogram.

For information, see Natural Construct Generation.

Create the Documentation Subprogram

Use the CST-Document model in the Generation subsystem to create the documentation subpro-
gram.

Note: For an example of the documentation subprogram for the Menu model, refer to the
CUMND subprogram in the SYSCST library.

To create the CUMND documentation subprogram:

1 Display the Standard Parameters panel for the CST-Document model.

2 Specify the following parameters:

 CUGDMA CST-Document Subprogram CUGDMA0
 Oct 09 Standard Parameters 1 of 2

 Module CUMND___

 Model Menu____________________________ *

 Maps CU--MAO_ CUMNMBO_ ________ ________ ________ *

 ________ ________ ________ ________ ________ *

 Translation LDAs ... CU--MAL_ CUMNMBL_ ________ ________ ________ *

 ________ ________ ________ ________ ________ *

 Title Menu Model Document Subp_

 Description Writes Predict documentation for the Menu model____

Natural Construct Administration and Modeling164

New Model Example

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help retrn quit right main

3 Press PF11 (right).

The Additional Parameters panel is displayed.

4 Specify the following parameters:

 CUGDMB CST-Document Subprogram CUGDMB0
 Oct 09 Additional Parameters 2 of 2

 Help Text Type O

 Major Model___________________________

 Minor Menu____________________________

 Description

 1 __
 2 __
 3 __
 4 __
 5 __
 6 __
 7 __
 8 __
 9 __
 10 __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit left userX main

165Natural Construct Administration and Modeling

New Model Example

5 Generate the subprogram.

For information, see Natural Construct Generation.

Test the Model Subprograms

Natural Construct supplies a utility to help test the model subprograms.

To invoke the model subprogram test utility:

1 Log onto the SYSCST library.

2 Enter "CSUTEST" at the Next prompt (Direct Command box for Unix).

The Single Module Test Program panel is displayed. For information about this panel, see
Test the Model Subprograms.

Step 9: Implement the Model

After creating and testing the code frames andmodel components (data areas,model subprograms,
maps, etc.), copy all components to the SYSLIBS library to implement the model.

To implement the model:

1 Invoke the SYSMAIN utility from the Next prompt.

2 Copy all the model components to the SYSLIBS library.

Your new model is now ready for use in the Generation subsystem.

Natural Construct Administration and Modeling166

New Model Example

7 CST-Clear Model

■ Introduction .. 168
■ Parameters for the CST-Clear Model ... 169
■ User Exits for the CST-Clear Model ... 170

167

This section describes how to use the CST-Clear model to generate the clear subprogram for your
model. The clear subprogram resets variables in the model PDA.

This section covers the following topics:

Introduction

After defining the model PDA, use the CST-Clear model to generate the clear subprogram for
your model. The clear subprogram resets the #PDA-USER-AREA variables in the model PDA. If
the #PDA-USER-AREA alphanumeric field is redefined into a non-alphanumeric field that does
not contain data according to the specified format, an abnormal termination may occur when it
is used. To avoid this, the clear subprogram can reset redefined non-alphanumeric fields. Only
non-alphanumeric variables are reset. The clear subprogram can also assign initial default values
for user parameters.

The CST-Clear model assumes that your model PDA has the RESET-STRUCTURE group level
name. For example:

 *
 * User defined parameter area
 2 #PDA-USER-AREA A 100 (1:40)
 R 2 #PDA-USER-AREA /* REDEF. BEGIN : #PDA-USER-AREA
 3 RESET-STRUCTURE
 *

Note: A model PDA generated by the CST-PDA model contains the RESET-STRUCTURE
field.

If you do not specify a clear subprogram, the Clear Edit Buffer function on the Generation main
menu sets the #PDA-USER-AREA field to blanks. The edit buffer is always cleared, regardless of
whether the model uses a clear subprogram.

The nucleus invokes the clear subprogram in the following situations:

■ When a user invokes the Clear Edit Buffer function on the Generation main menu.
■ When a user changes the model name and the new model uses a different PDA.
■ Immediately before the Read Specifications function is invoked on the Generation main menu.

Note: For an example of a generated clear subprogram, refer to CUMNC in the SYSCST
library.

Natural Construct Administration and Modeling168

CST-Clear Model

Parameters for the CST-Clear Model

Use the CST-Clear model to generate the clear subprogram. This model has one specification
panel, Standard Parameters.

Standard Parameters Panel

 CUGCMA CST-Clear Subprogram CUG-MA0
 Aug 17 Standard Parameters 1 of 1

 Module name CXMNC___
 Parameter data area CXMNPDA_ *

 Title Clear ...________________
 Description Clear specification Parameters ..._____________________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on theGenerationmainmenu. The name of the clear subprogrammust
be alphanumeric and nomore than eight characters in length. Use the following naming
convention:

CXxxC

Module name

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for yourmodel. Natural Construct determines
the name of the PDA based on the Module name specified on the Generation main
menu.

For example, if you entered CXMNC as the name of the clear subprogram, Natural
Construct assumes the name of the PDA is CXMNPDA.

Parameter data
area

169Natural Construct Administration and Modeling

CST-Clear Model

DescriptionField

Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

User Exits for the CST-Clear Model

 CSGSAMPL CST-Clear Subprogram CSGSM0
 Aug 17 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ----------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA
 _ PROVIDE-DEFAULT-VALUES Subprogram
 _ BEFORE-CHECK-ERROR Example
 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Administration and Modeling170

CST-Clear Model

8 CST-Document Model

■ Introduction .. 172
■ Parameters for the CST-Document Model .. 172
■ User Exits for the CST-Document Model .. 175

171

This section describes the CST-Document model, which is used to create the documentation sub-
program for amodel. The documentation subprogramwrites information aboutNatural Construct-
generated modules to the Predict data dictionary.

This section covers the following topics:

Introduction

After defining the generation and sample subprograms, you must generate the documentation
subprogram to write information about Natural Construct-generated modules in the Predict data
dictionary. This information includes a description of the module, as well as a description of the
PF-keys and specification parameters for the module.

Note: Before you can document information about the generatedmodules, youmust define
the #PDAX-DESCS(*) field within the model PDA.

Generated using the CST-Document model, this subprogram creates a free-form description of
the generated module using the specifications from the model panels. You can write this inform-
ation in any language for which you have translated help text members.

Thedocumentation subprogramwrites themodel description to Predictwhen the developer invokes
the Save Specification and Source function or the Stow Specification and Source function on the
Generation main menu and presses PF5 (optns). For a description of the Generation main menu,
see Generation Main Menu, Natural Construct Generation.

Note: For an example of a generated documentation subprogram, refer to CUMND in the
SYSCST library.

Parameters for the CST-Document Model

Use the CST-Document model to generate the documentation subprogram. This model has two
specification panels:

■ Standard Parameters Panel

Natural Construct Administration and Modeling172

CST-Document Model

■ Additional Parameters Panel

Standard Parameters Panel

 CUGDMA CST-Document Subprogram CUGDMA0
 Apr 02 Standard Parameters 1 of 2

 Module name CXMND___
 Model name ________________________________ *
 Maps ________ ________ ________ ________ ________ *
 ________ ________ ________ ________ ________ *
 Translation LDAs ... ________ ________ ________ ________ ________ *
 ________ ________ ________ ________ ________ *

 Title Document ..._____________
 Description Writes Predict documentation for ...___________________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit right main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name of the documentation
subprogram must be alphanumeric and no more than eight characters in length. Use
the following naming convention:

CXxxD

Module name

where xx uniquely identifies your model.

Nameof themodel that uses the documentation subprogram. Themodelmust be defined.Model name

Names of all maps (specification panels) used by the model. The documentation
subprogram retrieves the specification parameters from the specified maps.

Maps

Names of the translation local data areas (LDAs) for the specifiedmaps. You can specify
the names of up to 10 translation LDAs. For information about translation LDAs, see
Step 7: Create the Translation LDAs and Maintenance Maps.

Translation LDAs

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

173Natural Construct Administration and Modeling

CST-Document Model

DescriptionField

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

Additional Parameters Panel

 CUGDMB CST-Document Subprogram CUGDMB0
 Apr 02 Additional Parameters 2 of 2

 Help Text Type _
 Major ________________________________
 Minor ________________________________

 Description
 1 __
 2 __
 3 __
 4 __
 5 __
 6 __
 7 __
 8 __
 9 __
 10 __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit left userX main

On this panel, you do one of the following:

■ Specify the Type, Major, and Minor help text components in the applicable fields.

Natural Construct retrieves the description of all modules generated by the model from the
Help Text subsystem.

■ Enter a brief description of all modules generated by the model on the lines displayed in the
Description field.

The description is written to the Predict data dictionary.

Natural Construct Administration and Modeling174

CST-Document Model

User Exits for the CST-Document Model

 CSGSAMPL Natural Construct CSGSM0
 Apr 02 CST-Document User Exits 1 of 1

 User Exit Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ LOCAL-DATA
 _ START-OF-PROGRAM
 _ ADDITIONAL-TRANSLATIONS
 _ ADDITIONAL-INITIALIZATIONS Example
 _ DESCRIBE-INPUTS Example
 _ PF-KEYS Subprogram
 _ MISCELLANEOUS-VARIABLES Subprogram
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

175Natural Construct Administration and Modeling

CST-Document Model

176

9 CST-Frame Model

■ Sample Subprograms ... 178
■ Generation Subprograms .. 178
■ Parameters for the CST-Frame Model ... 179
■ User Exits for the CST-Frame Model ... 181

177

This section describes the CST-Frame model, which is used to create the sample and generation
subprograms for amodel. Sample subprograms provide a sample of user exit code and generation
subprograms supply code frame parameters.

This section covers the following topics:

Sample Subprograms

Sample subprograms are invoked from a user exit and provide a starting sample to help the de-
veloper create user exit code. They can be simple or complicated, depending on the model.

Before invoking the sample subprograms,Natural Construct invokes allmaintenance subprograms
and the pre-generation subprogram. This ensures that the current specification parameters are
valid and the conditions are set.

When creating a sample subprogram, you can include additional parameters to give the developer
more control over what is generated into the user exit.

Note: Topass additional information to the subprogram, use theCU—PDA.#PDAX-FRAME-
PARM variable.

To define a sample subprogram:

1 Type ".E" at the beginning of a user exit line in the Code Frame editor.

2 Press Enter.

For more information about defining a sample subprogram, see Use Parameters Supplied
by User Exits.

Generation Subprograms

Generation subprograms are invoked froma code frame and supply code frameparameters. Because
the lengths and contents of some parameters change based on user-supplied input values or in-
formation in Predict, these parameters must be supplied by the generation subprograms. The
subprograms write statements to the Natural edit buffer, based on the user-supplied input para-
meters or other calculated values.

To write to the edit buffer, include a DEFINE PRINTER(SRC=1) OUTPUT 'SOURCE' statement in the
subprogram that routes the output to the source work area. To allow models to be ported to
multiple platforms, use the CU--DFPR copycode member to define the SRC printer.

Natural Construct Administration and Modeling178

CST-Frame Model

All WRITE, DISPLAY, and PRINT statement output for your print file is written to the edit buffer.
Use the NOTITLE option on each of these statements. If a DISPLAY statement is used in the sub-
program, also use the NOHDR option. When trailing blanks should be suppressed in variable
names, the PRINT statement can be a useful alternative to the WRITE statement. However, you
maywant to increase the line length of the edit bufferwhen using the PRINT statement, so variable
names are not split at the hyphen (-).

Because generation logic can be highly complex, these subprograms allow ultimate flexibility.
However, they are lessmaintainable than code frame statements because youmust changeNatural
programs to modify the generated code.

Generation subprograms can also accept the #PDA-FRAME-PARMconstant code frame parameter
from the CU—PDA common parameter data area. This parameter allows a subprogram to be in-
voked several timeswithin the generation process. Each time the generation subprogram is invoked,
it can use the value of this parameter to determine what to generate.

To invoke a generation subprogram:

1 Specify line type "N" at the > prompt in the Code Frame editor.

2 Optionally, specify the constant parameter value at this prompt.

References

■ For more information about generation subprograms, see Parameters Supplied by Generation
Subprograms.

■ For an example of a generated generation subprogram, refer toCUMNGGL in the SYSCST library.

Parameters for the CST-Frame Model

Use the CST-Frame model to create the generation or sample subprogram. This model has one
specification panel, Standard Parameters.

Standard Parameters Panel

 CUGFMA CST-Frame Subprogram CUG-MA0
 Mar 30 Standard Parameters 1 of 1

 Module name CXMNGGL_
 Parameter data area CXMNPDA_ *

 Title Frame ...________________
 Description This generation/sample subprogram ..___________________

179Natural Construct Administration and Modeling

CST-Frame Model

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name of the subprogram must be
alphanumeric and no more than eight characters in length. Use the following naming
conventions:

Module name

■ CXxxGyyy

where xx uniquely identifies your model and yyy identifies your generation
subprogram

■ CXxxSyyy

where xx uniquely identifies yourmodel and yyy identifies your sample subprogram

Name of the parameter data area (PDA) for your model. Natural Construct determines
the PDA name based on theModule name specified on the Generation main menu. For

Parameter data
area

example, if you enter "CXMNGAAA", Natural Construct assumes the PDA name is
CXMNPDA.

Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

Natural Construct Administration and Modeling180

CST-Frame Model

User Exits for the CST-Frame Model

 CSGSAMPL CST-Frame Subprogram CSGSM0
 Mar 30 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA
 _ START-OF-PROGRAM
 _ GENERATE-CODE
 _ BEFORE-CHECK-ERROR Example
 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

181Natural Construct Administration and Modeling

CST-Frame Model

182

10 CST-Modify and CST-Modify-332 Models

■ Introduction .. 184
■ CST-Modify Model ... 185
■ CST-Modify-332 Model ... 191

183

This section describes the CST-Modify and CST-Modify-332 models, which are used to create the
modify (maintenance) subprograms for a model.

■ CST-Modify generates specification panels that support dynamic translation.
■ CST-Modify-332 generates specification panels that do not support dynamic translation; it is
supplied for those who want to continue using maintenance subprograms that were generated
using previous versions of Natural Construct.

This section covers the following topics:

Introduction

After defining the model PDA and creating the clear, read, and save subprograms; maintenance
maps; and translation LDAs, you must create one or more maintenance subprograms to collect
user-supplied specification parameters (#PDAX variables), perform validation checks, and set the
condition codes and #PDA variables (optional).

Maintenance subprograms are executed in the same order as they appear on theMaintainModels
panel. Usually, there is onemaintenance subprogram for every left/right (horizontal) maintenance
panel. Data edits should only be applied if the developer presses Enter or PF11 (right). Either the
maintenance subprogram or the maintenance map can validate the parameters.

You should only trap PF-keys that perform specialized functions related to the panel. If you want
the PF-key settings to be dependent on the default settings specified on the control record, the
subprogram should not contain hardcoded PF-keys (check the PF-key values using the variables
specified in CU—PDA).

The CST-Modify and CST-Modify-332 models are described in the following sections. We recom-
mend using the CST-Modify model to create new maintenance subprograms.

Note: Amaintenance subprogram can test the value of CU—PDA.#PDA-PHASE to identify
the phase during which it was invoked (G for generation, M for modification, L for transla-
tion, U for sample user exits, etc.).

Example of a Maintenance Subprogram

The following example shows the first 40 lines of the CUMNMAmaintenance subprogram:

0010 **SAG GENERATOR: CST-MODIFY VERSION: 4.4.1
0020 **SAG TITLE: Menu Model Modify Subp
0030 **SAG SYSTEM: NATURAL-CONSTRUCT
0040 **SAG DATA-AREA: CUMNPDA
0050 **SAG MAP: CU--MA0
0060 **SAG DESCS(1): This subprogram is used as modify panel 1
0070 **SAG DESCS(2): 1 of 2
0080 **SAG HEADER2: *0311.1,+/54

Natural Construct Administration and Modeling184

CST-Modify and CST-Modify-332 Models

0090 **SAG TRANSLATION-LDA(1): CU--MAL
0100 **SAG DYNAMIC-TRANSLATION: X
0110 ***
0120 * Program : CUMNMA
0130 * System : NATURAL-CONSTRUCT
0140 * Title : Menu Model Modify Subp
0150 * Generated: May 03,02 at 05:33 PM by REGEN41
0160 * Function : This subprogram is used as modify panel 1
0170 * 1 of 2
0180 *
0190 *
0200 * History
0210 ***
0220 DEFINE DATA
0230 PARAMETER USING CUMNPDA /* Model specific data
0240 PARAMETER USING CU--PDA /* Standard model parameters
0250 PARAMETER USING CSASTD /* Standard message passing area
0260 LOCAL USING CNAMSG /* Message retrieval passing area
0270 LOCAL USING CSLRCODE /* Message return codes
0280 LOCAL USING CSAMARK /* Field mark information
0290 LOCAL USING CSLPHASE /* Valid generation phases
0300 LOCAL USING CSLSTD /* Local message passing area
0310 LOCAL USING CSACURS /* Used by CSUCURS to translate prompts
0320 LOCAL USING CU--MAL /* Translation LDA
0330 LOCAL
0340 01 #PROGRAM (A8)
0350 01 LOCAL-TRANSLATION
0360 02 TEXT
0370 03 #HEADER2 (A54)
0380 INIT<'*0311.1,+/54'>
0390 02 REDEFINE TEXT
0400 03 TRANSLATION-TEXT
....

For an example of amaintenance subprogram subpanel generated by the CST-Modifymodel, refer
to CUMNMBA in SYSCST.

CST-Modify Model

The CST-Modify model generates maintenance subprograms that support dynamic translation
and multiple languages. To implement dynamic translation, you must also create a maintenance
map and one or more translation local data areas (LDAs) for each maintenance subprogram.

The CST-Modify model generates either a main maintenance subprogram panel (defined on the
MaintainModels panel) or amaintenance subprogram subpanel (invoked from themainmainten-
ance subprogram panel using a PF-key). To reduce the amount of information on a panel, we re-
commend grouping similar parameters, such aswindowing information, andmoving that inform-
ation to a subpanel.

185Natural Construct Administration and Modeling

CST-Modify and CST-Modify-332 Models

If desired, you can use a subroutine to display a subpanel. Subroutines typically control processes
that do not require a panel or subpanel to be displayed. For example, a subroutine can enable
backward or forward scrolling or test a function that does not require mandatory edits for gener-
ation. Both subprograms and subroutines are invoked by PF-keys from the main maintenance
subprogram panel.

All maintenance subprograms require a VALIDATE-INPUT subroutine to process mandatory
edits. At generation time, the edits for the maintenance subprogram subpanel are processed first,
then the edits for themainmaintenance subprogrampanel are processed. Therefore, any subroutine
edits should also be included in the VALIDATE-INPUT subroutine.

Tip: To avoid confusion about the order of execution of the panel and subpanel subroutines,
place edit checks in programs rather than in subroutines.

The CST-Modify model also allows you to override the headers and PF-keys defined on the Sub-
program record.

This section covers the following topics:

■ Parameters for the CST-Modify Model
■ User Exits for the CST-Modify Model

Parameters for the CST-Modify Model

Use the CST-Modify model to generate a maintenance subprogram that supports dynamic trans-
lation. This model has one specification panel, Standard Parameters.

Standard Parameters Panel

 CUGIMA CST-Modify Subprogram CUGIMA0
 Oct 09 Standard Parameters 1 of 1

 Module name CXMNMA__
 Parameter data area CXMNPDA_ *

 Title Modify ..._______________
 Description Modify server specificatn Parameters ...______________
 __
 __
 __

 Map name ________ *
 Translation LDAs ... ________ ________ ________ ________ ________ *
 Cursor translation . _

 First header __
 Second header __

Natural Construct Administration and Modeling186

CST-Modify and CST-Modify-332 Models

 Subpanel _
 Window Support _
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit windw pfkey left userX main

Use this panel to define standard parameters, such as the map and translation LDAs used with
themaintenance subprogram andwhether cursor translation is supported on the generated panel
or subpanel. You can also use this panel to override the first and second headings or specify sub-
panel and window support.

Using PF-keys on this panel, you can change the default window settings (PF5windw) or override
the PF-key settings (PF6 pfkey).

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name of the maintenance subprogram
must be alphanumeric and nomore than eight characters in length. Use the following naming
conventions:

Module name

■ Panel: CXxxMy

where xx uniquely identifies your model and y is a letter from A–J that identifies the
maintenance panel (A for the first maintenance panel, B for the second, etc.)

■ Subpanel: CXxxMyz

where xx uniquely identifies your model, y is a letter from A–J that identifies the
maintenance panel (A for the first maintenance panel, B for the second, etc.), and z is a
letter from A–J that identifies the subpanel.

Name of the parameter data area (PDA) for your model. Natural Construct determines the
PDAname based on theModule name specified on theGenerationmainmenu. For example,
if you enter "CXMNMA", Natural Construct assumes the PDA name is CXMNPDA.

Use the following naming convention:

Parameter
data area

CXxxPDA

where xx uniquely identifies your model.

Title for the generated subprogram. The title identifies the subprogram for the List Generated
Modules function on the Generation main menu and is used internally for program
documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the beginning
of the subprogram and is used internally for program documentation.

Description

Name of the map used for the maintenance subprogram. Natural Construct determines the
name of the map based on the Module name specified on the Generation main menu. For

Map name

example, if you enter CXMNMA as the subprogram name, Natural Construct assumes the
map name is CXMNMA0.

187Natural Construct Administration and Modeling

CST-Modify and CST-Modify-332 Models

DescriptionField

The specified map must exist in the current library and the map name should correspond
to the maintenance subprogram name, with the addition of a zero. The zero indicates that
the map has no hard-coded text and is used for dynamic translation. For example:

Program Map
CXMNMA CXMNMA0
CXMNMB CXMNMB0

Names of the translation local data areas (LDAs) for the maintenance subprogram. You can
specify the names of up to five translation LDAs. The specified translation LDAsmust exist.
The LDAname should correspond to themaintenance subprogramname,with the addition
of an "L". For example:

Translation
LDAs

Program Translation LDA
CXMNMA CXMNMAL
CXMNMB CXMNMBL

Indicates whether users can modify the text on this panel while in translation mode. To
support cursor translation, mark this field.

Cursor
translation

First heading displayed on the generated subprogram panel or the SYSERR number(s) that
supplies the heading.

By default, this header is automatically populated with the description specified on the
model record. To override this default, specify the new header in this field.

First header

To specify the positioning of the heading, use special syntax after the text or SYSERR
numbers. By default, the header is displayed at the left margin. To center First Heading across
50 bytes for example, type:

First Heading,+/50

The text before ,+/ indicates the heading displayed. The number after,+/ indicates the
number of bytes within which the heading is centered.

For information about SYSERR message numbers, see Use SYSERR References or refer to
the SYSERR utility in the Natural Utilities documentation.

Note: Data substitution within SYSERR references is not supported in this context.

Second heading displayed on the generated panel or the SYSERR number(s) that supplies
the heading.

By default, this header is populatedwith the description specified on the subprogram record,
if it exists. Unlike the model record, which populates the first header field, the subprogram

Secondheader

record only exists if you create it. To supply a second header (if no subprogram record exists)
or to override the default, specify a new header in this field.

Note: We recommendusing this field to define the second heading, instead of the description
on the Maintain Subprograms panel. The Natural Construct nucleus does not reference the

Natural Construct Administration and Modeling188

CST-Modify and CST-Modify-332 Models

DescriptionField

Subprogram record for supplied models, so the description used to populate the second
header will not exist unless you create it.

To specify the heading position, use special syntax after the text or SYSERR number. By
default, the header is displayed at the left margin. To center Second Heading across 50 bytes
for example, type:

Second Heading,+/50

The text before ,+/ indicates the heading displayed. The number after,+/ indicates the
number of bytes within which the heading is centered.

For information about SYSERR message numbers, see Use SYSERR References or refer to
the SYSERR utility in the Natural Utilities documentation.

Indicates whether the generated subprogram is created as a subpanel that is invoked from
a main panel (such as a help selection window). To create the subprogram as a subpanel,
mark this field.

By default, the Natural Construct nucleus controls the help, retrn, quit, left, right, andmain
PF-keys (defined on the control record) for a main panel, and the help, retrn, quit, andmain

Subpanel

PF-keys for a subpanel. To define the processing for additional keys (the left and right keys,
for example) on a subpanel, press PF6 (pfkey) on the Standard Parameters panel. For more
information, seeDefine Non-Standard PF-Keys.

Indicates whether the generated subprogram is displayed in a window. To display the
generated subprogram in a window, mark this field.

By default, the PF-keys and messages are displayed within the generated window, and a
frame (border) is displayed around the generated window. To change the default window

Window
support

settings, press PF5 (windw) on the Standard Parameters panel. For more information, see
Change the Default Window Settings.

Define Non-Standard PF-Keys

To define the processing for non-standard PF-keys:

1 Press PF6 (pfkey) on the Standard Parameters panel.

189Natural Construct Administration and Modeling

CST-Modify and CST-Modify-332 Models

The PF-Key Parameters window is displayed. For example:

 CUGIMAA Natural Construct CUGIMAA0
 Oct 09 PF-key Parameters 1 of 1

 Subprogram Subroutine NAMED
 ---------- -------------------------------- ----------
 PF5 ________ ________________________________ __________
 PF6 ________ ________________________________ __________
 PF9 ________ ________________________________ __________

 PF4 ________ ________________________________ __________ test

 PF7 ________ ________________________________ __________ bkwrd
 PF8 ________ ________________________________ __________ frwrd

 PF10 ________ ________________________________ __________ left
 PF11 ________ ________________________________ __________ right
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

By default, the Natural Construct nucleus controls the help, retrn, quit, left, right, and main
PF-keys for a main panel (defined on the control record), and the help, retrn, quit, and main
PF-keys for a subpanel. Using this window, you can override the nucleus-controlled PF-keys
displayed on a subpanel.

Note: The left and right PF-keys are available only if the maintenance subprogram is
a subpanel.

2 Define the processing and name for the non-standard PF-key.

Note: You can also change the processing and/or name for a non-standard PF-key cur-
rently defined in the window.

Use the following input fields to define the non-standard PF-key:

DescriptionField

Name of the subprogram executed when the corresponding PF-key is pressed. This
subprogram is invoked during generation to process the VALIDATE-INPUT subroutine.

Subprogram

Name of the subroutine executed when the corresponding PF-key is pressed.Subroutine

Name of the PF-key (either text or a valid SYSERRmessage number). If this field is blank,
the default key names are used.

For information about SYSERRmessage numbers, seeUse SYSERRReferences or refer
to the SYSERR utility in the Natural Utilities documentation.

NAMED

3 Press Enter.

Natural Construct Administration and Modeling190

CST-Modify and CST-Modify-332 Models

User Exits for the CST-Modify Model

 CSGSAMPL CST-Modify Subprogram CSGSM0
 Oct 09 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA
 _ START-OF-PROGRAM
 _ BEFORE-CHECK-ERROR Example
 _ BEFORE-STANDARD-KEY-CHECK Example
 _ ADDITIONAL-TRANSLATIONS
 _ ADDITIONAL-INITIALIZATIONS Example
 _ BEFORE-INPUT
 _ INPUT-SCREEN Example X
 _ AFTER-INPUT
 _ BEFORE-INVOKE-SUBPANELS X
 _ AFTER-INVOKE-SUBPANELS X
 _ BEFORE-REINPUT-MESSAGE
 _ VALIDATE-DATA Subprogram
 _ MISCELLANEOUS-SUBROUTINES Example
 _ END-OF-PROGRAM Example
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 frwrd help retrn quit bkwrd frwrd

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

CST-Modify-332 Model

Use the CST-Modify-332 model to generate a maintenance subprogram that does not support
dynamic translation. This model is provided for those who want to continue using maintenance
subprograms that were generated under previous versions of Natural Construct.

This section covers the following topics:

■ Parameters for the CST-Modify-332 Model

191Natural Construct Administration and Modeling

CST-Modify and CST-Modify-332 Models

■ User Exits for the CST-Modify-332 Model

Parameters for the CST-Modify-332 Model

Use the CST-Modify-332 model to generate the maintenance subprogram. This model has one
specification panel, Standard Parameters.

Standard Parameters Panel

 CUGMMA CST-Modify-332 Subprogram CUGMMA0
 Oct 09 Standard Parameters 1 of 1

 Module name CXMNMA__
 Parameter data area CXMNPDA_ *
 Map name CXMNMA1_ *

 Title _________________________
 Description Maintenance for specification parameters.______________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on theGenerationmainmenu. The name of themaintenance subprogram
must be alphanumeric and no more than eight characters in length. Use the following
naming convention:

CXxxMy

Module name

where xx uniquely identifies your model and y is a letter from A–J that identifies the
maintenance panel (A for the first maintenance panel, B for the second, etc.).

Name of the parameter data area (PDA) for your model. Natural Construct determines
the PDA name based on the Module name specified on the Generation main menu. For

Parameter data
area

example, if you enter "CXMNMA", Natural Construct assumes the PDA name is
CXMNPDA.

Natural Construct Administration and Modeling192

CST-Modify and CST-Modify-332 Models

DescriptionField

Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Name of the map used for the maintenance subprogram. Natural Construct determines
the name of themap based on theModule name specified on the Generationmainmenu.

Map name

For example, if you enter CXMNMAas the subprogramname,Natural Construct assumes
the map name is CXMNMA1 (for English). The map must exist in the current library,
and the map name should correspond to the maintenance subprogram name, with the
addition of the language code. For example:

Program Map
CXMNMA CXMNMA1

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

User Exits for the CST-Modify-332 Model

 CSGSAMPL CST-Modify-332 Subprogram CSGSM0
 Oct 09 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ LOCAL-DATA
 _ START-OF-PROGRAM
 _ AFTER-INPUT Example
 _ PROCESS-SPECIAL-KEYS Subprogram X
 _ VALIDATE-DATA Subprogram

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

193Natural Construct Administration and Modeling

CST-Modify and CST-Modify-332 Models

194

11 CST-Panel Model

■ Introduction .. 196
■ Parameters for the CST-Panel Model .. 196
■ User Exits for the CST-Panel Model .. 201

195

This section describes the CST-Panelmodel, which is used to create the clientmodify (maintenance)
subprogram for a model. The model-generated specification panels run as part of a common
wizard in the Construct Program Generation plug-in for Natural for Windows.

This section covers the following topics:

Introduction

To enable a Natural Construct model for the Construct Program Generation plug-in, you must
first determine how many panels will be used for the wizard and what information will be
presented on each panel. In most cases, the panels will follow a one-to-one relationship with the
corresponding modify server panels generated by the CST-Modify model.

The CST-Panel model generates one column of GUI controls per panel. Each column contains a
label and control for editing a model specification panel. For greater flexibility, you can include
additional controls within user exits. Alternately, you can create your ownwizard instead of using
the supplied common wizard. (In this case, you will not use the CST-Panel model.)

Note: The CST-Panel model is only available in the Construct Program Generation plug-in
for Natural for Windows. This model is not available in the Natural Construct character
interface (NCSTG).

Parameters for the CST-Panel Model

Use the CST-Panel model to generate the client modify (maintenance) subprogram for your
model.

After specifying the required parameters on one panel, select Next to proceed to the next panel.
To generate the module, select Finish on the last specification panel.

The CST-Panel model has two specification panels:

■ Standard Parameters Panel

Natural Construct Administration and Modeling196

CST-Panel Model

■ Additional Parameters Panel

Standard Parameters Panel

The following example shows the Standard Parameters panel for CST-Panel:

Use this panel to define standard parameters for your wizard, such as the name of the generated
subprogram and the heading displayed at the top of the wizard panel.

The input fields on this panel are:

DescriptionField

Name of the Natural subprogram (module) to generate.

Module names use the following naming convention:

Module

WCNxxMy

where xx is the unique identifier for your model and y is letter from A–J that identifies the
maintenance panel (A for the first panel, B for the second, etc.). For more information, see
Naming Conventions for Model Components.

Name of the system (by default, the name of the current library).

The system name must be alphanumeric, not exceed 32 characters in length, and does not
have to be associated with a Natural library ID. (The combination of the module name and
system name is used as a key to access help information for the generated subprogram.)

System

197Natural Construct Administration and Modeling

CST-Panel Model

DescriptionField

Name of the parameter data area (PDA) for your model.Model PDA

Title for the generated subprogram. The title identifies the subprogram for the List Generated
Modules function on the Generation main menu and is used internally for program
documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the beginning
of the subprogram and is used internally for program documentation.

Description

Heading displayed at the top of the generated wizard panel. For example, Standard
Parameters.

Heading

Additional Parameters Panel

The following example shows Additional Parameters for CST-Panel:

Use this panel to position the GUI controls for your wizard panel in a single column. Each row in
the grid above represents one field in the column and one label for each field.

Natural Construct Administration and Modeling198

CST-Panel Model

The input fields on this panel are:

DescriptionField

Name of a #PDA or #PDAX variable field in your model PDA or the name of a field in
CU--PDA. To select the field from a list of fields in the model PDA, select….

Note: To use an array field, specify the index value, for example #PDAX-VIEW(5), or select
an EDITAREA control.

Field Name

Text used as a label for the field. A TEXTCONSTANT Natural GUI control is generated for
each control. The string is based on the value entered in this field. Only the TOGGLEBUTTON

Prompt

(or checkbox) control does not have an extra control generated, as this control includes its
own label.

Type of Natural GUI control to use. Select one of the following: INPUTFIELD
TOGGLEBUTTON EDITAREA SELECTIONBOX

Control Type

Tomodify the size and location attributes for GUI controls, click the… button. The Optional
Parameters window is displayed. For a description of this window, see Reset Default Size
and Location Variables.

Opt

Reset Default Rectangle Y Values

You can reset and reassign the default Y-coordinate values for GUI controls. Use this option when
you have customized the default Y value and want to restore the default.

To reset and reassign the default Y-Coordinate values:

■ Select Reset Y.

Reset Default Size and Location Variables

You can customize the size and location-related attributes for GUI controls.

To customize the size and location-related attributes:

1 Select Reset Defaults.

199Natural Construct Administration and Modeling

CST-Panel Model

TheOptional Parameterswindow is displayed. For example:

2 Change the current size and location-related attributes.

The input fields in this window are:

DescriptionField

Identifier for the current GUI object.#GUIObj

Maximum number of characters that can be entered as input for the specified GUI
control. This field applies to EDITAREA and INPUTFIELD controls only.

Length

X coordinate value for the GUI control.X-Coordinate

Y coordinate value for the GUI control.

Note: The generated TEXTCONTSTANT control is derived from the X-Coordinate and
Y-Coordinate values. These values identify the location of the GUI control in pixels
from the top, left corner of the configurable area of the panel.

Y-Coordinate

Height of the GUI control in pixels.Height

Width of the GUI control in pixels.Width

3 SelectOK.

Natural Construct Administration and Modeling200

CST-Panel Model

User Exits for the CST-Panel Model

The following example shows the User Exit Browser panel for the CST-Panel model:

This section describes themodel-specific user exits on this panel. For information about the common
user exits on this panel, see SuppliedUser Exits. For information about using the User Exit editor,
see User Exit Editor, Natural Construct Generation.

Note: For more information about the model-specific user exits, see the examples and notes
in the sample code generated for each exit.

The model-specific user exits for CST-Panel are:

■ CHECK-LOCAL-ERRORS
■ COPY-PDA-TO-GUI
■ CUSTOM-ASSIGN-ERROR-GUI
■ CUSTOM-CONTROLS
■ CUSTOM-EVENTS
■ CUSTOM-RETURN-DATA

201Natural Construct Administration and Modeling

CST-Panel Model

■ SET-ERROR-FOCUS

CHECK-LOCAL-ERRORS

Use this exit to check for local validation errors on wizard panels. Local errors are detected when
the user selects Finish, but before themodel’s validation subprogram is called. If a local validation
error occurs, the error is displayed to the user andNext or Finish becomes inactive.

Note: Local validations do not occur when the user selects Previous.

COPY-PDA-TO-GUI

Use this exit to copy additional fields from the model PDA to GUI controls.

CUSTOM-ASSIGN-ERROR-GUI

Use this exit in combinationwith the SET-ERROR-FOCUS exit to set focus to customGUI controls
when a validation error is detected.

CUSTOM-CONTROLS

Use this exit to add additional GUI controls to your wizard panel. For each new control, note the
number of the last GUIOBJ (GUI object) used by the last generated control and increment by 1.

CUSTOM-EVENTS

Use this exit to handle events for custom GUI controls on the wizard panel. For example, you can
use this exit to add a button to the wizard panel and write code to respond to a click event. When
a user selects the button, a window is invoked to display additional lookup data.

CUSTOM-RETURN-DATA

Use this exit to copy any additional GUI control values to the model PDA or CU--PDA data areas.

SET-ERROR-FOCUS

Use this exit in combinationwith theCUSTOM-ASSIGN-ERROR-GUI exit to set focus to custom
GUI controls when a validation error is detected.

Natural Construct Administration and Modeling202

CST-Panel Model

12 CST-PDA Model

■ Introduction .. 204
■ Parameters for the CST-PDA Model .. 205

203

All models require three external parameter data areas (PDAs): the model PDA, CU—PDA, and
CSASTD. CU—PDA and CSASTD are supplied with Natural Construct. The model PDA is user-
created and contains variables and conditions specific to the model. This section describes how
to use the CST-PDA model to generate the model PDA.

This section covers the following topics:

Introduction

All models require the following external parameter data areas (PDAs):

DescriptionPDA

User-defined; contains variables and conditions specific to a model.

Note: If you are creating amodel that generates modules to run on aNatural Construct client,
you must also generate a stream subprogram to convert the contents of the model PDA into

Model PDA

a format that can be transmitted between the client and the server. For information, see
CST-StreamModel.

Supplied with Natural Construct.CU—PDA

Supplied with Natural Construct.CSASTD

The model PDA passes information between the Natural Construct nucleus and the model and
generation subprograms. Before generating your model PDA, create the code frames and define
your model. Natural Construct uses information in the model code frames to generate the model
PDA, such as:

■ substitution parameters
■ condition codes

The CST-PDA model builds the model PDA by scanning the model code frames for substitution
parameters and condition codes. Substitution parameters are character strings that begin with an
ampersand (&) and end with a special character such as a period (.), parentheses, or an asterisk
(*), but not a hyphen (-).

For each substitution parameter, the model generates a field (prefixed by #PDAX) within the re-
definition of the #PDA-USER-AREAfield in themodel PDA. Themodel assigns the default format
and length for alphanumeric fields (A10), which you can change as required.

For each condition code, the model generates a logical field (prefixed by #PDAC) within the re-
definition of the #PDA-CONDITION-CODES field in the model PDA.

Natural Construct Administration and Modeling204

CST-PDA Model

References

■ For information about isolating the parameters for your model PDA, see Step 4: Isolate the
Parameters in the Prototype.

■ For information about creating code frames and defining models, see Step 5: Create Code
Frame(s) and Define the Model.

■ For more information about creating the model PDA, see Step 6: Create the Model PDA.
■ For an example of a generated model PDA, refer to CUMNPDA in the SYSCST library.
■ For more information about substitution parameters, see the Natural documentation.

Parameters for the CST-PDA Model

Use the CST-PDA model to create the model PDA. This model has one specification panel,
Standard Parameters.

Standard Parameters Panel

 CUPDMA CST-PDA Parameter Data Area CUPDMA1
 Feb 04 Standard Parameters 1 of 1

 Module name CXMNPDA_
 Model name ________________________________ *

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit main

205Natural Construct Administration and Modeling

CST-PDA Model

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name of the model PDA must be
alphanumeric and no more than eight characters in length. Use the following naming
convention:

CXxxPDA

Module name

where xx uniquely identifies your model.

Name of the model that uses the model PDA.

Note: Ensure that the specifiedmodel and its corresponding code frames have been defined
on the Maintain Models panel.

Model name

After specifying the required parameters and generating the model PDA, edit the generated code
and assign the correct format and length for each field. All substitution parameters are generated
with a default format and length of A10. You can also add any new parameters your model PDA
may require.

Natural Construct Administration and Modeling206

CST-PDA Model

13 CST-Postgen Model

■ Introduction .. 208
■ Parameters for the CST-Postgen Model ... 208
■ User Exits for the CST-Postgen Model ... 209

207

This section describes the CST-Postgen model, which is used to create the pre-generation subpro-
gram for amodel. The post-generation subprogram supplies values for the substitution parameters
in the code frames, which is the final stage of the generation process.

This section covers the following topics:

Introduction

After defining the pre-generation subprogram, use the CST-Postgen model to generate the post-
generation subprogram. This subprogram supplies values for substitution parameters in the code
frames (identified by &). It is invoked as the final stage of the generation process when the applic-
ation developer enters "G" in the Function field on the Generation main menu.

The post-generation subprogram substitutes the code frame parameters with the corresponding
substitution values by stacking the substitution parameters and their corresponding values. Use
the STACK TOP DATA FORMATTED statement to stack these values. Natural Construct performs the
corresponding substitutions in the edit buffer and produces the final version of the generated
program.

During the generation process, code lines specified in the code frame are written to the edit buffer,
as well as the output of the generation subprogram contained in the code frame. Any substitution
parameters are included in the edit buffer exactly as they appear in the code frame.

Note: For an example of a generated post-generation subprogram, refer to CUMNPS in the
SYSCST library.

Parameters for the CST-Postgen Model

Use the CST-Postgen model to create the post-generation subprogram. This model has one spe-
cification panel, Standard Parameters.

Standard Parameters Panel

 CUGOMA CST-Postgen Subprogram CUGOMA0
 May 26 Standard Parameters 1 of 1

 Module name CXMNPS__
 Model name ________________________________ *

 Title Post-gen subprogram
 Description Post-generation subprogram. Stack post generation______
 changes.___

Natural Construct Administration and Modeling208

CST-Postgen Model

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name must be alphanumeric and no
more than eight characters in length. Use the following naming convention:

CXxxPS

Module name

where xx uniquely identifies your model.

Name of the model that uses the post-generation subprogram.

Note: Ensure that the specifiedmodel and its corresponding code frames have been defined
on the Maintain Models panel.

Model name

Title for the generated subprogram. The title identifies the subprogram for the List Generated
Modules function on the Generation main menu and is used internally for program
documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the beginning
of the subprogram and is used internally for program documentation.

Description

User Exits for the CST-Postgen Model

 CSGSAMPL CST-Postgen Subprogram CSGSM0
 May 26 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA Subprogram
 _ START-OF-PROGRAM Example
 _ ADDITIONAL-SUBSTITUTION-VALUES Subprogram
 _ BEFORE-CHECK-ERROR Example

209Natural Construct Administration and Modeling

CST-Postgen Model

 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Administration and Modeling210

CST-Postgen Model

14 CST-Pregen Model

■ Introduction .. 212
■ Parameters for the CST-Pregen Model .. 212
■ User Exits for the CST-Pregen Model .. 214

211

This sectiondescribes theCST-Pregenmodel,which is used to create the pre-generation subprogram
for a model. The pre-generation subprogram is invoked:

■ During the generation phase after all maintenance subprograms have been executed
■ Whenever the SAMPLE command is issued from the User Exit editor

This section covers the following topics:

Introduction

After generating themaintenance subprograms, generate the pre-generation subprogram to assign
#PDAC condition values based on user-supplied parameters or other calculated values. The pre-
generation subprogram also assigns the values of #PDA variables in the model PDA that are re-
quired by any subsequent generation subprograms.

Generated using theCST-Pregenmodel, this subprogram is invoked after allmaintenance subpro-
grams are executed during the generation phase or when the SAMPLE command is issued from
the User Exit editor. It is the first user subprogram invoked.

Note: All #PDAC-prefixed condition values are reset before generation begins.

The pre-generation subprogram should also calculate the values of any #PDA variables required
by subsequent generation subprograms.

For simple models that do not have code frames, this subprogram can also perform the functions
of a generation subprogram. (Condition code values and derived fields can also be assigned
within the maintenance subprograms.)

Note: For an example of a generated pre-generation subprogram, refer to CUMNPR in the
SYSCST library.

Parameters for the CST-Pregen Model

Use the CST-Pregen model to create the pre-generation subprogram. This model has one specific-
ation panel, Standard Parameters.

Natural Construct Administration and Modeling212

CST-Pregen Model

Standard Parameters Panel

 CUGPMA CST-Pregen Subprogram CUG-MA0
 May 26 Standard Parameters 1 of 1

 Module name CXMNPR_
 Parameter data area CXMNPDA_ *

 Title Pre-generation subprogram
 Description Pre-generate subprogram._______________________________
 Set conditions and assign shared PDA variables.________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name must be alphanumeric and
no more than eight characters in length. Use the following naming convention:

CXxxPR

Module name

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for yourmodel.Natural Construct determines
the PDA name based on the Module name specified on the Generation main menu.

Parameter data area

For example, if you enter "CXMNPR", Natural Construct assumes the PDA name is
CXMNPDA. Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

213Natural Construct Administration and Modeling

CST-Pregen Model

User Exits for the CST-Pregen Model

 CSGSAMPL CST-Pregen Subprogram CSGSM0
 May 26 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA Example
 _ ASSIGN-DERIVED-VALUES Subprogram
 _ SET-CONDITION-CODES Subprogram X X
 _ GENERATE-CODE
 _ BEFORE-CHECK-ERROR Example
 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Administration and Modeling214

CST-Pregen Model

15 CST-Proxy Model

■ Introduction .. 216
■ Parameters for the CST-Proxy Model .. 217
■ User Exits for the CST-Proxy Model .. 219

215

This section describes the CST-Proxy model, which is used to generate a client or server proxy to
remotely access a subprogram on the server.

This section covers the following topics:

Introduction

The CST-Proxy model generates either a client or server proxy to access a subprogram on the
server. The proxy acts as a bridge between a subprogram on the client and a subprogram on the
server. When a request to the server is initiated from the client (for example, when a user requests
active help for a field on a panel), the following process occurs:

1. The client subprogram issues a request, which invokes the client proxy subprogram.

2. The client proxy subprogram converts the data into the network transfer format and identifies
the name of the server proxy to be invoked.

3. The data is sent to the server via NDV (Natural Development Server).

4. The server proxy subprogram converts the data to Natural data format and invokes the server
subprogram.

5. The server subprogram completes the request.

6. The server proxy subprogram converts the data into network transfer format.

7. The data is sent to the client via NDV.

8. The client proxy subprogram converts the data to Natural data format and returns the inform-
ation to the client subprogram.

The following diagram illustrates this process. Blue arrows indicate data sent to the server subpro-
gram; green arrows indicate data returned to the client subprogram:

Natural Construct Administration and Modeling216

CST-Proxy Model

Parameters for the CST-Proxy Model

Use the CST-Proxy model to generate either a client or server proxy to access a subprogram on
the server. This model has one specification panel, Standard Parameters.

Standard Parameters Panel

 CUGXMA CST-PROXY Subprogram CUGXMA0
 Apr 02 Standard Parameters 1 of 1

 Module MYPROXY_
 System CNDPRO__________________________

 Title Proxy for..._____________
 Description Description of proxy that...___________________________

 Subprogram ________ *
 Gen client proxy ... _
 Server proxy subp .. ________ *

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit 1:V userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name of the proxy subprogram you are creating (by default, the name specified in the
Module name field on the Generation main menu). The name must follow standard

Module

Natural naming conventions, must be alphanumeric, and cannot be more than eight
characters in length.

Name of the system (by default, the name of the current library). The systemnamemust
be alphanumeric, no more than 32 characters in length, and does not have to be

System

associated with a Natural library ID. (The combination of module and system names
is used as a key to access help information.)

Title for the proxy subprogram. The title identifies the subprogram for the List Generated
Modules function on the Generation main menu and is used internally for program
documentation.

Title

217Natural Construct Administration and Modeling

CST-Proxy Model

DescriptionField

Brief description of the proxy subprogram. The description is inserted in the banner at
the beginning of the subprogram and is used internally for program documentation.

Description

Name of the subprogram for which you are generating the proxy.Subprogram

Indicates whether the generated proxy is a client proxy or a server proxy. By default,
a server proxy is generated. To generate a client proxy, mark this field and specify the
name of the corresponding server proxy in Server proxy subp.

Note: The specified server proxy subprogram must exist before you can generate the
client proxy subprogram; generate the server proxy first.

Gen client proxy

Name of the server proxy subprogram.Server proxy subp

Specify the Number of Occurrences Returned

If the proxy handles 1:V arrays, specify the maximum number of 1:V arrays that can be returned
to the client for each request. A 1:V array can consist of either one-dimensional data, such as a list
of repeating values, or two-dimensional data, such as a row of record data.

To specify the maximum number of occurrences to return for each request:

1 Press PF5 (1:V) on the Standard Parameters panel.

The 1:V Overrides window is displayed. For example:

 1:V Overrides
 01 >>

 1 Structure
 Field
 Occurrences _____ / _____ / _____

 2 Structure
 Field
 Occurrences _____ / _____ / _____

 3 Structure
 Field
 Occurrences _____ / _____ / _____

 4 Structure
 Field
 Occurrences _____ / _____ / _____
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---P
 help retrn retrv bkwrd frwrd

Note: If no fields in the target subprogram use the 1:V notation, amessage is displayed.
Otherwise, the model determines these values and displays their names.

Natural Construct Administration and Modeling218

CST-Proxy Model

2 Specify the maximum number of occurrences that can be returned to the client with each call
to the server.

Press PF5 (retrv) to update the information from the server.

3 Press PF2 (retrn) to return to the Standard Parameters panel.

User Exits for the CST-Proxy Model

CSGSAMPL NATURAL CONSTRUCT CSGSM0
 Apr 02 User Exits 1 of 1

 User Exit Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ LOCAL-DATA Example
 _ ON-ERROR-MSG-NR Example X
 _ START-OF-PROGRAM Example
 _ BEFORE-CALL-SERVER Example X
 _ AFTER-CALL-SERVER Example X
 _ BEFORE-CALL-OBJECT Example X
 _ AFTER-CALL-OBJECT Example X
 _ SET-DATA-LENGTH Example
 _ SET-RETURN-BLOCKS Example
 _ BEFORE-COMPRESS-OUTPUT Example
 _ AFTER-COMPRESS-OUTPUT Example
 _ BEFORE-EXPAND-INPUT Example
 _ AFTER-EXPAND-INPUT Example
 _ MISCELLANEOUS-SUBROUTINES Example
 _ END-OF-PROGRAM Example
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit bkwrd frwrd

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

219Natural Construct Administration and Modeling

CST-Proxy Model

220

16 CST-Read Model

■ Introduction .. 222
■ Parameters for the CST-Read Model ... 222
■ User Exits for the CST-Read Model ... 224

221

This section describes the CST-Read model, which is used to create the read subprogram for a
model. The read subprogram reads the specifications for the model.

This section covers the following topics:

Introduction

After defining the model PDA and clear subprogram, you must create a subprogram to read the
specifications from a previously-generated module. The generated subprogram has one INPUT
statement for each #PDAX variable in the model PDA.

A read subprogram generated by the CST-Readmodel contains a series of INPUT statements that
accept the data previously placed in the Natural stack. The read subprogram is invoked when the
developer invokes the Read Specifications function on the Generation main menu.

Before the read subprogram is invoked, all **SAG parameter values are placed on the Natural
stack. The read subprogram repeats a series of INPUT statements to accept the stacked parameters
and assign them to the correct PDA variables. This subprogram must correspond to the save
subprogram that writes the **SAG parameter lines. The read subprogram can also read common
parameters from a different model.

Notes:

1. Natural Construct invokes the clear subprogram before invoking the read subprogram. It is
not necessary to save null parameter values.

2. For an example of a generated read subprogram, refer to CUMNR in the SYSCST library.

Parameters for the CST-Read Model

Use the CST-Read model to create the read subprogram. This model has one specification panel,
Standard Parameters.

Natural Construct Administration and Modeling222

CST-Read Model

Standard Parameters Panel

 CUGRMA CST-Read Subprogram CUG-MA1
 Nov 28 Standard Parameters 1 of 1

 Module name CXMNR___
 Parameter data area CXMNPDA_ *

 Title _________________________
 Description Read parameter specification.__________________________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on theGenerationmainmenu. The name of the read subprogrammust
be alphanumeric and nomore than eight characters in length. Use the following naming
convention:

CXxxR

Module name

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for yourmodel. Natural Construct determines
the name of the PDA based on the Module name specified on the Generation main

Parameter data area

menu. For example, if you enter "CXMNR",Natural Construct assumes the PDAname
is CXMNPDA.

Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

223Natural Construct Administration and Modeling

CST-Read Model

DescriptionField

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

User Exits for the CST-Read Model

 CSGSAMPL CST-Read Subprogram CSGSM0
 Nov 28 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA Example
 _ INPUT-ADDITIONAL-PARAMETERS Subprogram
 _ BEFORE-CHECK-ERROR Example
 _ ADDITIONAL-INITIALIZATIONS
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Administration and Modeling224

CST-Read Model

17 CST-Save Model

■ Introduction .. 226
■ Parameters for the CST-Save Model ... 226
■ User Exits for the CST-Save Model ... 227

225

This section describes the CST-Save model, which is used to generate the save subprogram for a
model. The save subprogram writes the specification parameters to the source buffer.

This section covers the following topics:

Introduction

To read an existing program, your model must have both a save and a read subprogram. The save
subprogram must contain a separate WRITE statement for each specification parameter (#PDAX
variable). Use the equal sign (=) notation to include the variable contents with the name of the
variables. For example:

WRITE(SRC) NOTITLE '=' #PDAX-variable-name

Note: Use a separate WRITE statement for each component of an array.

For an example of a save subprogram, refer to CUMNS in the SYSCST library.

Parameters for the CST-Save Model

Use the CST-Save model to create the save subprogram. This model has one specification panel,
Standard Parameters.

Standard Parameters Panel

 CUGAMA CST-Save Subprogram CUG-MA1
 Feb 27 Standard Parameters 1 of 1

 Module name CXMNS___
 Parameter data area CXMNPDA_ *

 Title Save ..._________________
 Description Save parameter specification ..._______________________

Natural Construct Administration and Modeling226

CST-Save Model

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on theGenerationmainmenu. The name of the save subprogrammust
be alphanumeric and nomore than eight characters in length. Use the following naming
convention:

CXxxS

Module name

where xx uniquely identifies your model.

Name of the parameter data area (PDA) for yourmodel. Natural Construct determines
the name of the PDA based on the Module name specified on the Generation main

Parameter data area

menu. For example, if you enter "CXMNS", Natural Construct assumes the PDAname
is CXMNPDA.

Use the following naming convention:

CXxxPDA

where xx uniquely identifies your model.

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

User Exits for the CST-Save Model

 CSGSAMPL CST-Save Subprogram CSGSM0
 Feb 27 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA Example
 _ START-OF-PROGRAM
 X SAVE-PARAMETERS Subprogram X
 _ BEFORE-CHECK-ERROR Example
 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

227Natural Construct Administration and Modeling

CST-Save Model

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Administration and Modeling228

CST-Save Model

18 CST-Shell Model

■ Introduction .. 230
■ Parameters for the CST-Shell Model ... 230
■ User Exits for the CST-Shell Model ... 232

229

This section describes the CST-Shell model, which is used to create a template for amodel subpro-
gram. The following topics are covered:

Introduction

The CST-Shell model generates a template for a model subprogram; it is similar to the supplied
Shell model. The main differences between the models are that the CST-Shell model:

■ Supports regeneration
■ Supports messaging

The CST-Shell model creates the DEFINE DATA ... END-DEFINE framework containing definitions
for the global data area (GDA), parameter data areas (PDAs), local data areas (LDAs), or views
specified on the Standard Parameters panel, as well as the required REPEAT loops andmessaging
subroutines. You can use this time-saving model to generate startup modules for your model
subprograms.

References

■ For an example of a generated shell program, refer to CUMPSLFV in the SYSCST library.
■ For information about the Shell model, see Shell Model, Natural Construct Generation.

Parameters for the CST-Shell Model

Use the CST-Shell model to create the shell subprogram. This model has one specification panel,
Standard Parameters.

Standard Parameters Panel

 CUGSMA CST-Shell Program CUGSMA0
 Jul 05 Standard Parameters 1 of 1

 Module name CXMPSLFV
 Module type _
 System name NCSTDEMO________________________ *

 Title CST module ...___________
 Description This CST module is used for ...________________________

 Messaging support .. _
 Global data area ... ________ *
 Parameter data area ________ ________ ________ ________ ________ *
 Local data area ________ ________ ________ ________ ________ *

Natural Construct Administration and Modeling230

CST-Shell Model

 ________ ________ ________ ________ ________ *

 Views 1 ________________________________ *
 2 ________________________________ *
 3 ________________________________ *
 4 ________________________________ *
 5 ________________________________ *
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 main help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name of the shell program must
be alphanumeric and no more than eight characters in length.

Module name

Code for the type of module for which you are creating the shell program. Valid
codes are:

Module type

■ P (program)
■ N (subprogram)
■ H (helproutine)
■ S (subroutine)

Name of the system (by default, the name of the current library). The system name
must be alphanumeric, no more than 32 characters in length, and does not have to

System name

be associated with a Natural library ID. (The combination of the module name and
system name is used as a key to access help information for the generated module.)

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally
for program documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

Indicates whether the shell program supports the dynamic translation of messages.
To support dynamic translation, mark this field.

Messaging support

Name of the global data area used by the generated module.Global data area

Names of up to five inline parameter data areas used by the generated module.

Note: If the Module type is P or S, you cannot specify parameter data.

Parameter data area

Names of up to 10 inline or external local data areas used by the generated module.Local data area

Names of up to five Predict views used by the generated module.Views

231Natural Construct Administration and Modeling

CST-Shell Model

User Exits for the CST-Shell Model

 CSGSAMPL CST-Shell Program CSGSM0
 Jul 05 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA Example
 _ START-OF-PROGRAM
 _ GENERATE-CODE
 _ BEFORE-CHECK-ERROR Example
 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

Natural Construct Administration and Modeling232

CST-Shell Model

19 CST-Stream Model

■ Introduction .. 234
■ Parameters for the CST-Stream Model .. 234
■ User Exits for the CST-Stream Model .. 235

233

This section describes the CST-Stream model, which is used to create the stream subprogram for
a model. The stream subprogram converts the contents of a model PDA between internal and
streamed format.

This section covers the following topics:

Introduction

When deploying a GUI front-end for a module on a Natural Construct client, Natural Construct
must be able to translate the specification data passed to the server from the client. To do this, the
model requires a stream subprogram to convert the contents of the model PDA into a format that
can be transmitted between the client and the server.

If yourmodel generatesmodules for aNatural Construct client, generate themodel PDA and then
use the CST-Stream model to generate the stream subprogram. For more information about gen-
erating the model PDA, see CST-PDAModel.

Parameters for the CST-Stream Model

Use the CST-Stream model to create the stream subprogram. This model has one specification
panel, Standard Parameters.

Standard Parameters Panel

 CUGTMA CST-Stream Subprogram CUGTMA0
 Jul 05 Standard Parameters 1 of 1
 Module ________
 System C421____________________________

 Title Stream Subprogram .._____
 Description This Stream Subprogram will convert Models:___________
 (...model name...)_____________________________________
 PDA between internal and streamed formats._____________

 Model PDA ________ *
 Generate trace code _

Natural Construct Administration and Modeling234

CST-Stream Model

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
main help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name of the stream subprogram
must be alphanumeric and no more than eight characters in length. Use the following
naming convention:

CXxxT

Module

where xx uniquely identifies your model.

Name of the system (by default, the name of the current library).

The system name must be alphanumeric, not exceed 32 characters in length, and does
not have to be associated with a Natural library ID. (The combination of the module

System

name and system name is used as a key to access help information for the generated
subprogram.)

Title for the generated subprogram. The title identifies the subprogram for the List
Generated Modules function on the Generation main menu and is used internally for
program documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the
beginning of the subprogram and is used internally for program documentation.

Description

Name of the PDA used by the model for which you are generating the stream
subprogram.

Model PDA

Indicates whether extra code is generated into the stream subprogram to help trace
inconsistencies between data sent by the client and data expected by the server. To
generate trace code, mark this field.

Generate trace code

User Exits for the CST-Stream Model

CSGSAMPL Natural Construct CSGSM0
Jul 05 User Exits 1 of 1
 User Exit Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ LOCAL-DATA
 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

235Natural Construct Administration and Modeling

CST-Stream Model

236

20 CST-Validate Model

■ Introduction .. 238
■ Parameters for the CST-Validate Model .. 238
■ User Exits for the CST-Validate Model ... 240

237

This section describes the CST-Validate model, which is used to create the validation subprogram
for amodel. The validation subprogramverifies inputs for themodel during the generation process.

This section covers the following topics:

Introduction

If you code validationswithin themaintenance panelmodules, it is difficult to invoke the validations
from batch programs or GUI clients. Instead, you can consolidate all model validation within a
validation subprogram. To confirm input values for your model, use the CST-Validate model to
generate a validation subprogram and then add the subprogram to the model record on the
Maintain Models panel.

The following example shows how to use a validation subprogram to validate inputs for a main-
tenance panel:

**SAG DEFINE EXIT VALIDATE-DATA
 ASSIGN CSAVAL.VALIDATE-SPECIFIC-FIELD(1) = 'field1'
 ASSIGN CSAVAL.VALIDATE-SPECIFIC-FIELD(2) = 'field2'
 ASSIGN CSAVAL.VALIDATE-SPECIFIC-FIELD(3) = 'field3'
 CALLNAT 'CUBOVAL' CSAVAL
 CUBOPDA /*your model PDA name
 CU—PDA
 CSAMARK
 CSAERR
 CSASTD
 PERFORM REINPUT-MESSAGE
*
**SAG END-EXIT

Parameters for the CST-Validate Model

Use the CST-Validatemodel to create the validation subprogram. Thismodel has one specification
panel, Standard Parameters.

Natural Construct Administration and Modeling238

CST-Validate Model

Standard Parameters Panel

CUVAMA CST-Validate Subprogram CUVAMA0
Sep 07 Standard Parameters 1 of 1

 Module ________
 System NCSTDEMO________________________

 Title Validate Subprogram ..___
 Description This Validation Subprogram will validate Inputs________
 for the model:____________________________________

 Model PDA ________ *

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
main help retrn quit userX main

The input fields on the Standard Parameters panel are:

DescriptionField

Name specified on the Generation main menu. The name of the validation subprogrammust
be alphanumeric and no more than eight characters in length. Use the following naming
convention:

CXxxVAL

Module

where xx uniquely identifies your model.

Name of the system (by default, the name of the current library).

The system name must be alphanumeric, not exceed 32 characters in length, and does not
have to be associated with a Natural library ID. (The combination of the module name and
system name is used as a key to access help information for the generated subprogram.)

System

Title for the generated subprogram. The title identifies the subprogram for the List Generated
Modules function on the Generation main menu and is used internally for program
documentation.

Title

Brief description of the subprogram. The description is inserted in the banner at the beginning
of the subprogram and is used internally for program documentation.

Description

Name of the PDAused by themodel forwhich you are generating the validation subprogram.Model PDA

239Natural Construct Administration and Modeling

CST-Validate Model

User Exits for the CST-Validate Model

CSGSAMPL Natural Construct CSGSM0
Sep 07 User Exits 1 of 1
 User Exit Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ LOCAL-DATA
 _ GENERATE-VALIDATIONS
 _ GENERATE-SUBROUTINES Subprogram

For information about these user exits, see Supplied User Exits. For information about using the
User Exit editor, see User Exit Editor, Natural Construct Generation.

Code Validations

TheCST-Validatemodel codes validations as subroutines in theGENERATE-SUBROUTINESuser
exit. For each #PDAX-FIELD-NAMEfield youwant to validate, create a subroutine calledV-field-
name to perform the validations.Whenever a validation error is found, theV-field-name subroutine
must:

■ Assign CSASTD.RETURN-CODE = ‘E’

■ Assign the error message in CSASTD.MSG
■ Perform an ESCAPE-ROUTINE to bypass subsequent checks

Notes:

1. To retrieve SYSERR messages, use the CU--VERR copycode.

2. For more information about coding validations, seeGENERATE-SUBROUTINES.

Validate Array Fields

For array fields, the V-field-name subroutine validates all occurrences for which validation is
requested. These occurrences are supplied in the #INDEX.#FROM (1:3) fields (redefined into #I1,
#I2 and #I3). To returnmultiple errors (for separate field occurrences), perform theCHECK-AFTER-
EDIT subroutine when an error occurs within an array field. This will add the error to the error
list but allow editing of subsequent indexes to occur.

Natural Construct Administration and Modeling240

CST-Validate Model

The following example shows the validation routine for a two-dimensional array called #PDAX-
PHYSICAL-KEY:

**
DEFINE SUBROUTINE V_PHYSICAL-KEY
**
*
 FOR #INDEX.#OCC(1) = #INDEX.#FROM(1) TO #INDEX.#THRU(1)
 FOR #INDEX.#OCC(2) = #INDEX.#FROM(2) TO #INDEX.#THRU(2)
 /*
 /* Validate #PDAX-PHYSICAL-KEY(#I1,#I2)
 ASSIGN CPAEL.FILE-NAME = CUBOPDA.#PDAX-PRIME-FILE
 ASSIGN CPAEL.FILE-CODE = CUBOPDA.#PDAX-PHYSICAL-KEY(#I1,#I2)
 ASSIGN CPAEL.DDM-PREFIX = CPAFI.DDM-PREFIX
 CALLNAT 'CPUEL' CPAEL CSASTD
 IF NOT CPAEL.#FIELD-FOUND
 ASSIGN CNAMSG.MSG-DATA(1) = CPAEL.FIELD-NAME
 ASSIGN CNAMSG.MSG-DATA(3) = CPAEL.FILE-NAME
 INCLUDE CU--VER2 '0096'
 ''':1::2:not in:3:'''
 'CUBOPDA.#PDAX-PHYSICAL-KEY(#I1,#I2)'
 END-IF
 END-FOR
 END-FOR
END-SUBROUTINE /* V_PHYSICAL-KEY

Tips

■ If you do not want to exit the current subroutine, as with array processing, use the CU--VERZ
copycode instead of CU--VERR.

■ To return a warning message, rather than an error, use the CU--VWAR copycode.

241Natural Construct Administration and Modeling

CST-Validate Model

242

21 User Exits for the Administration Models

■ What are User Exits? .. 244
■ Supplied User Exits .. 247

243

This section describes the user exits supplied for the Natural Construct administration models.
The administration models generate the model subprograms used by all models.

This section covers the following topics:

What are User Exits?

User exits insert customized or specialized processing into amodel subprogram,which is preserved
when the module is regenerated. Natural Construct provides a wide variety of user exits for the
administration models. The exits vary depending on the type of subprogram generated. Some
exits contain sample code or subroutines, while others generate the DEFINE EXIT…END-EXIT
lines only — and you provide the code.

You canmodify any user exit code generated into the edit buffer. Ifmultiple user exits are generated
with the same name, Natural Construct merges them into a single exit.

User exits are provided for the following administration models:

■ CST-Clear
■ CST-Read
■ CST-Save
■ CST-Modify and CST-Modify-332
■ CST-Pregen
■ CST-Postgen
■ CST-Frame
■ CST-Document
■ CST-Validate
■ CST-Stream
■ CST-Shell

Reuse User Exit Code

If you specify a newmodel name on theGenerationmainmenu (M function) and the source buffer
contains code, you can retain the code and use it with themodel you are creating. This functionality
saves time and effort when creating models that use the same code.

Natural Construct Administration and Modeling244

User Exits for the Administration Models

If the source buffer contains code when you specify a new model name, the following window is
displayed:

 Natural Construct CSGNEW0
 CLEAR Source Area

 Mark if you wish to clear the source area _

To retain the code in the source buffer for use with the new module:

■ Press Enter.

The first specification panel for the new model is displayed and Natural Construct retains
the user exit code for use with the new module.

To clear the code in the source buffer (and not save it for the new module):

1 Select Mark if you wish to clear the source area.

2 Press Enter.

The source buffer is cleared and the first specification panel for the specifiedmodel is displayed.

Invoke the User Exit Editor

You can invoke the User Exit editor from the Generation main menu or from the last specification
panel for a model that supports user exits.

■ To invoke the User Exit editor from the Generation main menu, see User Exit Editor, Natural
Construct Generation.

■ To invoke the User Exit editor from the model specification panels, press PF11 (userX) on the
last specification panel for a model that supports user exits.

If user exits are defined for the specified module, the existing user exit code is displayed in the
User Exit editor. If no exits are defined, a list of the exits available for that model is displayed.

Tip: To select additional exits, enter "SAMPLE" at the > prompt.

Note: The SAMPLE command is performed automatically when you invoke the User Exit
editor and no user exits are defined for the specified module.

245Natural Construct Administration and Modeling

User Exits for the Administration Models

The User Exits panel is similar for all models. The following example shows the User Exits panel
for the CST-Clear model:

 CSGSAMPL CST-Clear Subprogram CSGSM0
 Aug 17 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ----------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA
 _ LOCAL-DATA
 _ PROVIDE-DEFAULT-VALUES Subprogram
 _ BEFORE-CHECK-ERROR Example
 _ ADDITIONAL-INITIALIZATIONS Example
 _ END-OF-PROGRAM

The fields on this panel are:

DescriptionField

Names of the user exits available for this model. If a user exit is required and not conditional
(its existence is not based on condition codes in the code frames), it is marked by default.

User Exits

Indicates whether the corresponding user exit is defined.Exists

■ If the exit exists, this field is marked.
■ If the exit does not exist, this field is blank.

Indicates the contents of the user exit.Sample

■ If the exit is empty (contains DEFINE EXIT … END-EXIT lines), this field is blank.
■ If the exit contains a subprogram, "Subprogram" is displayed.
■ If the exit contains sample code, "Example" is displayed.

Indicates whether the user exit is required.Required

■ If the exit must be specified, "X" is displayed.
■ If the exit is optional, this field is blank.

Indicates whether the user exit is conditional (its existence is based on condition codes in the
code frames).

Conditional

■ If the exit is conditional, "X" is displayed.
■ If the exit is optional, this field is blank.

Natural Construct Administration and Modeling246

User Exits for the Administration Models

To select a user exit displayed on the User Exits panel:

1 Type "X" in the input field to the left of each user exit you want to use.

2 Press Enter.

The selected user exits are displayed in the User Exit editor.

Note: Fully qualify all references to database fields with the file name.

Tip: You can also define user exits in the User Exit editor without using the SAMPLE com-
mand.

Define User Exits

The code specified within a user exit depends on the type of module generated and the user exit
used. However, all Natural Construct user exits have the following format:

0010 DEFINE EXIT user-exit-name
0020 user exit code
0030 END-EXIT user-exit-name

Note: Do not insert comments or Natural code on the DEFINE EXIT and END-EXIT lines.

Supplied User Exits

This section describes the user exits supplied for the Natural Construct administration models.
The user exits are listed in alphabetical order. For many exits, one or more examples are included.

The supplied user exits are:

■ ADDITIONAL-INITIALIZATIONS
■ ADDITIONAL-SUBSTITUTION-VALUES
■ ADDITIONAL-TRANSLATIONS
■ AFTER-INPUT
■ AFTER-INVOKE-SUBPANELS
■ ASSIGN-DERIVED-VALUES
■ BEFORE-CHECK-ERROR
■ BEFORE-INPUT
■ BEFORE-INVOKE-SUBPANELS
■ BEFORE-REINPUT-MESSAGE
■ BEFORE-STANDARD-KEY-CHECK
■ CHANGE-HISTORY
■ DESCRIBE-INPUTS

247Natural Construct Administration and Modeling

User Exits for the Administration Models

■ END-OF-PROGRAM
■ GENERATE-CODE
■ GENERATE-SUBROUTINES
■ GENERATE-VALIDATIONS
■ INPUT-ADDITIONAL-PARAMETERS
■ INPUT-SCREEN
■ LOCAL-DATA
■ MISCELLANEOUS-SUBROUTINES
■ MISCELLANEOUS-VARIABLES
■ PARAMETER-DATA
■ PF-KEYS
■ PROCESS-SPECIAL-KEYS
■ PROVIDE-DEFAULT-VALUES
■ SAVE-PARAMETERS
■ SET-CONDITION-CODES
■ START-OF-PROGRAM
■ SUBSTITUTION-VALUES
■ VALIDATE-DATA

ADDITIONAL-INITIALIZATIONS

This user exit generates the framework for any additional initializations performed in the INITIAL-
IZATIONS subroutine.

Example of Code

** SAG DEFINE EXIT ADDITIONAL-INITIALIZATIONS
*
* Assign parameters for help routine CD-HELPR
MOVE 'CU' TO #MAJOR-COMPONENT
MOVE *PROGRAM TO #MINOR-COMPONENT
*
**SAG END-EXIT
*
END-SUBROUTINE /* INITIALIZATIONS

ADDITIONAL-SUBSTITUTION-VALUES

This user exit is used in combination with the LOCAL-DATA user exit. It generates STACK
statements for code frame parameters that do not have a corresponding variable in the model
PDA.

Example of Code

DEFINE EXIT ADDITIONAL-SUBSTITUTION-VALUES
*
* Substitution for frame parameters not defined in model PDA
STACK TOP DATA FORMATTED '&CENTERED-HEADER1'

Natural Construct Administration and Modeling248

User Exits for the Administration Models

 #CENTERED-HEADER1
STACK TOP DATA FORMATTED '&CENTERED-HEADER2'
 #CENTERED-HEADER2
STACK TOP DATA FORMATTED '&DATE-EM'
 #DATE-EM
STACK TOP DATA FORMATTED '&EOD-TABT'
 #EOD-TABT
STACK TOP DATA FORMATTED '&EXPORT-DELIMITER'
 #EXPORT-DELIMITER
STACK TOP DATA FORMATTED '>-LT'
 #GT-LT
STACK TOP DATA FORMATTED '&HEAD1-LEN'
 #HEAD1-LEN
STACK TOP DATA FORMATTED '&HEAD2-LEN'
 #HEAD2-LEN
STACK TOP DATA FORMATTED '&INPUT-LINES'
 #INPUT-LINES
STACK TOP DATA FORMATTED '&KEY-PREFIX'
 #KEY-PREFIX
STACK TOP DATA FORMATTED '<-GT'
 #LT-GT
STACK TOP DATA FORMATTED '&PARM-NAT-FORMAT'
 #PARM-NAT-FORMAT
STACK TOP DATA FORMATTED '&PREFIX-NAT-FORMAT'
 #PREFIX-NAT-FORMAT
STACK TOP DATA FORMATTED '&SEL-TBL-SIZE'
 #SEL-TBL-SIZE
STACK TOP DATA FORMATTED '&TIME-EM'
 #TIME-EM
STACK TOP DATA FORMATTED '&UQ'
 #UQ
STACK TOP DATA FORMATTED '&UQ-FOUND'
 #UQ-FOUND
STACK TOP DATA FORMATTED '&VALUE-UQ'
 #VALUE-UQ
STACK TOP DATA FORMATTED '&VAR-UQ'
 #VAR-UQ
STACK TOP DATA FORMATTED '&VIEW-LDA'
 #VIEW-LDA
STACK TOP DATA FORMATTED '&WINDOW-WIDTH'
 #WINDOW-WIDTH
STACK TOP DATA FORMATTED '&WITH-BLOCK'
 #WITH-BLOCK
END-EXIT ADDITIONAL-SUBSTITUTION-VALUES

249Natural Construct Administration and Modeling

User Exits for the Administration Models

ADDITIONAL-TRANSLATIONS

This user exit generates the framework for additional translations performed in theGET-PROMPT-
TEXT subroutine.

Example of Code

3070 **SAG DEFINE EXIT ADDITIONAL-TRANSLATIONS
3080 *
3090 IF #FIRST-TRANSLATION OR CU--PDA.#PDA-PHASE = CSLPHASE.#TRANSLATE
3100 THEN
3110 PERFORM SET-MODIFY-HEADER3
3120 /*
3130 /* Set completed message
3140 RESET CNAMSG.INPUT-OUTPUTS
3150 ASSIGN CNAMSG.MSG-DATA(1) = #PDA-FRAME-PARM
3160 ASSIGN CNAMSG.MSG = CUBASRPL.#RETURN-MESSAGE
3170 PERFORM GET-MESSAGE-TEXT
3180 ASSIGN CUBASRPL.#RETURN-MESSAGE = CNAMSG.MSG
3190 RESET CNAMSG.INPUT-OUTPUTS
3200 /*
3210 /* Assign available keys
3220 ASSIGN CU--PDA.#PDA-AVAILABLE1-NAME = #AVAILABLE1-NAME
3230 ASSIGN CU--PDA.#PDA-AVAILABLE2-NAME = #AVAILABLE2-NAME
3240 ASSIGN CU--PDA.#PDA-AVAILABLE3-NAME = #AVAILABLE3-NAME
3250 RESET #FIRST-TRANSLATION
3260 /*
3270 /* Override pfkey settings
3280 RESET #LOCAL-PFKEYS-REQUIRED
3290 /*
3300 /* Set all PF-keys named off
3310 INCLUDE CU--SOFF
3320 /*
3330 /* Set Help and Return keys
3340 SET KEY DYNAMIC CU--PDA.#PDA-PF-HELP = HELP
3350 NAMED CU--PDA.#PDA-HELP-NAME
3360 SET KEY DYNAMIC CU--PDA.#PDA-PF-RETURN
3370 NAMED CU--PDA.#PDA-RETURN-NAME
3380 END-IF
3390 **SAG END-EXIT

Natural Construct Administration and Modeling250

User Exits for the Administration Models

AFTER-INPUT

The code in this exit is executed immediately after each input panel is displayed and the standard
keys and direct commands are processed (AT END OF PAGE section). You can use this exit to:

■ Define validity edits for user-defined fields
■ Add non-standard PF-key processing to a module

For example, when you add a non-standard PF-key, you can set the #SCROLLING variable to
True so the generated module does not trap the PF-key as invalid. After processing the non-
standard key, include the PERFORMNEW-SCREENcode to return to themain panel (main INPUT
statement) for themodule. If you do not include the PERFORMNEW-SCREEN code and continue
with execution after processing this exit, an Invalid PF-key message is displayed.

Example of Code

2730 **SAG DEFINE EXIT AFTER-INPUT
2740 IF #FORMAT-HELP
2750 RESET #FORMAT-HELP
2760 ASSIGN CU--FHL.#TEXT-REQUIRED = TRUE
2770 PERFORM GET-PROMPT-TEXT
2780 INPUT WINDOW = 'FRMT' USING MAP 'CU--FH0'
2790 ASSIGN CSAMARK.ERROR-POS = POS(#PDAX-VARIABLE-FORMAT)
2800 ESCAPE BOTTOM (NEW-SCREEN.)
2810 END-IF
2820 *
2830 **SAG END-EXIT

AFTER-INVOKE-SUBPANELS

This user exit generates the framework for any processing performed after subpanels are invoked.

Example of Code

0100 DEFINE EXIT AFTER-INVOKE-SUBPANELS
0110 PERFORM SET-MORE-INDICATORS
0120 END-EXIT

ASSIGN-DERIVED-VALUES

This user exit generates initialization statements for all #PDA variables in the model PDA. The
variables are assigned null default values. You can modify the generated code as desired.

Tip: If you add specification parameters to the model PDA, you can get sample statements
for the new parameters by regenerating this exit. Regeneration adds the new variables, but
does not modify code from the previous generation.

251Natural Construct Administration and Modeling

User Exits for the Administration Models

Example of Code

DEFINE EXIT ASSIGN-DERIVED-VALUES
*
* Initialize '#PDA-' parameters in PDA.
 ASSIGN #PDA-FIELD-TYPE = ' '
 ASSIGN #PDA-FIELD-REDEFINED = FALSE
 ASSIGN #PDA-LEVEL-NUMBER = 0
 ASSIGN #PDA-FIELD-FORMAT = ' '
 ASSIGN #PDA-FIELD-LENGTH = 0
 ASSIGN #PDA-UNITS = 0
 ASSIGN #PDA-DECIMALS = 0
 ASSIGN #PDA-FROM-INDEX(*) = 0
 ASSIGN #PDA-THRU-INDEX(*) = 0
 ASSIGN #PDA-FIELD-RANK = 0
 ASSIGN #PDA-FILE-CODE = 0
 ASSIGN #PDA-MAX-LINES = 0
 ASSIGN #PDA-WFRAME = ' '
 ASSIGN #PDA-WLENGTH = ' '
 ASSIGN #PDA-WCOLUMN = ' '
 ASSIGN #PDA-WBASE = ' '
END-EXIT ASSIGN-DERIVED-VALUES

BEFORE-CHECK-ERROR

This user exit generates the framework for any processing performed before a standard error
check. When an error condition occurs, the END-OF-PROGRAM user exit is bypassed. If a model
subprogram requires processing before leaving the program, use this user exit to specify the pro-
cessing.

Example of Code

1320 **SAG DEFINE EXIT BEFORE-CHECK-ERROR
1330 *
1340 * Use this user exit for specific error checking
1350 IF CSASTD.RETURN-CODE = CSLRCODE.#INTERRUPT(*)
1360 ASSIGN C--PDA.#PDA-PHASE = #SAVE-PHASE
1370 END-IF
1380 **SAG END-EXIT

Natural Construct Administration and Modeling252

User Exits for the Administration Models

BEFORE-INPUT

The code in this exit is executed immediately before the INPUT statement is processed in the AT
END OF PAGE section. You can use this exit to:

■ Look up a code table (to display a description, as well as a code value)
■ Issue SET CONTROL statements
■ Capture or default map variables prior to displaying each panel

Example of Code

0160 DEFINE EXIT BEFORE-INPUT
0170 *
0180 * Assign external value
0190 FOR #I = 1 TO 7
0200 IF #PDAX-BACKGROUND-COLOUR = #CD(#I) THEN
0210 ASSIGN #REVERSED-CD(#I) = TRUE
0220 ESCAPE BOTTOM
0230 END-IF
0240 END-FOR
0250 END-EXIT

BEFORE-INVOKE-SUBPANELS

This user exit generates the framework for any processing performed before subpanels are invoked.

Example of Code

0680 DEFINE EXIT BEFORE-INVOKE-SUBPANELS
0690 IF CU--PDA.#PDA-PHASE NE CSLPHASE.#TRANSLATE THEN
0700 PERFORM VALIDATE-FILE-INFO
0710 END-IF
0720 END-EXIT

BEFORE-REINPUT-MESSAGE

The code in this user exit allows you to interrogate the message codes and override the display
logic for the generated messages. For example, if the logic specifies that a message is ignored, you
can display the message. If the logic specifies that the program is interrupted, you can terminate
the program.

Example of Code

0010 END-SUBROUTINE /* INPUT-SCREEN
0020 *
0030 * DEFINE SUBROUTINE REINPUT-MESSAGE
0040 *

253Natural Construct Administration and Modeling

User Exits for the Administration Models

0050 **SAG DEFINE EXIT BEFORE-REINPUT-MESSAGE
0060 IF CSASTD.RETURN-CODE = CSLRCODE.#COMMUNICATION THEN
0070 ESCAPE BOTTOM(PROG.) IMMEDIATE
0080 END-IF
0090 **SAG END-EXIT
0100 DECIDE FOR FIRST CONDITION
0110 WHEN CSASTD.RETURN-CODE = CSLRCODE.#CONTINUE(*)
0120 IGNORE
0130 WHEN CSASTD.RETURN-CODE = CSLRCODE.#INTERRUPT(*)
0140 ESCAPE BOTTOM(NEW-SCREEN)
0150 WHEN NONE
0160 IGNORE
0170 END-DECIDE

BEFORE-STANDARD-KEY-CHECK

The code in this user exit checks any additional PF-keys defined for a maintenance subprogram
or prepares for standard PF-key validations.

Example of Code

DEFINE EXIT BEFORE-STANDARD-KEY-CHECK
*
* Use this user exit to check additional PF-keys or prepare for the
* standard PF-key check.
END-EXIT BEFORE-STANDARD-KEY-CHECK

CHANGE-HISTORY

This user exit keeps a record of changes to the generated module. It generates comment lines in-
dicating the date, the user ID of the user who created or modified the module, and a description
of any change.

Example of Code

DEFINE EXIT CHANGE-HISTORY
* Changed on Aug 17,07 by SAG for release ____
* >
* >
* >
END-EXIT CHANGE-HISTORY

Natural Construct Administration and Modeling254

User Exits for the Administration Models

DESCRIBE-INPUTS

This user exit contains statements that document specification parameter values (#PDAXvariables)
in the model PDA. For example, if you are documenting a menu program, this user exit contains
the menu function codes and descriptions.

Example of Code

DEFINE EXIT DESCRIBE-INPUTS
*
* Enter other model parameters to be documented.
* Use WRITE statements of the following format:
* WRITE(SRC) NOTITLE LDA.#Variable-name #PDAX-variable-name
END-EXIT DESCRIBE-INPUTS

END-OF-PROGRAM

The code in this exit is executed once before the module is terminated. You can use this exit for
any cleanup required (such as assigning a terminationmessage or resettingwindows) before exiting
the module. You can also use this exit to assign the current key value to a global variable so it is
carried into other modules that use the same key.

Note: If an error condition occurs, this user exit will not be executed. Use the BEFORE-
CHECK-ERROR user exit if processing is required before leaving the program.

Example of Code

3310 **SAG DEFINE EXIT END-OF-PROGRAM
3320 *
3330 * Actions to be performed before program exit.
3340 IF #PDAX-GDA NE ' ' AND #PDA-PHASE = 'M' THEN
3350 ASSIGN CNAEXIST.#OBJECT-SOURCE = 'O'
3360 ASSIGN CNAEXIST.#LIBRARY-NAME = *LIBRARY-ID
3370 ASSIGN CNAEXIST.#INCLUDE-STEPLIB-SEARCH = TRUE
3380 ASSIGN CNAEXIST.#OBJECT-NAME = #PDAX-GDA
3390 CALLNAT 'CNUEXIST' CNAEXIST
3400 CSASTD
3410 PERFORM CHECK-ERROR
3420 IF NOT CNAEXIST.#OBJECT-EXISTS THEN
3430 ASSIGN CNAMSG.RETURN-CODE = CSLRCODE.#WARNING
3440 ASSIGN CNAMSG.MSG-DATA(1) = CU--MAL.#GDA
3450 ASSIGN CNAMSG.MSG-DATA(2) = #PDAX-GDA
3460 INCLUDE CU--GMSG '2128'
3470 ''':1::2::3:not in current library or STEPLIBs'''
3480 END-IF
3490 END-IF
3500 **SAG END-EXIT

255Natural Construct Administration and Modeling

User Exits for the Administration Models

GENERATE-CODE

This user exit generates the framework for any code generated by a model subprogram.

Example of Code

DEFINE EXIT GENERATE-CODE
*
 RESET CSASELFV CSASELFV.GENERAL-INFORMATION
 CSASELFV.FIELD-SPECIFICATION(*)
 MOVE CUMPPDA.#PDAX-VIEW-LPDA-STRUCT-NAME(*) TO
 CSASELFV.#VIEW-LPDA-STRUCT-NAME(*)
 MOVE CUMPPDA.#PDAX-FIELD-NAME(*) TO CSASELFV.FIELD-NAME(*)
 MOVE CUMPPDA.#PDAX-FIELD-FORMAT(*) TO CSASELFV.FIELD-FORMAT(*)
 MOVE CUMPPDA.#PDAX-FIELD-LENGTH(*) TO CSASELFV.FIELD-LENGTH(*)
 FOR #I = 1 TO #MAX-FLDS
 MOVE CUMPPDA.#PDAX-MAX-OCCURS(#I) TO
 CSASELFV.FIELD-OCCURRENCES(#I,1)
 END-FOR
 MOVE CUMPPDA.#PDAX-STRUCTURE-NUMBER(*) TO
 CSASELFV.#STRUCTURE-NUMBER(*)
 MOVE CUMPPDA.#PDAX-FIELD-PROMPT-OR-TEXT(*) TO
 CSASELFV.FIELD-HEADINGS(*)
 ASSIGN CSASELFV.#ARRAY-RANK-SELECTED = 1
 CALLNAT 'CSUSELFV' CSASELFV
 CU--PDA
 CSASTD
 ASSIGN CSASTD.ERROR-FIELD-INDEX1 = CSASELFV.#ERROR-FIELD-INDEX
 PERFORM CHECK-ERROR
 RESET CSASTD.ERROR-FIELD-INDEX1
 MOVE CSASELFV.FIELD-NAME(*) TO CUMPPDA.#PDAX-FIELD-NAME(*)
 MOVE CSASELFV.FIELD-FORMAT(*) TO CUMPPDA.#PDAX-FIELD-FORMAT(*)
 MOVE CSASELFV.FIELD-LENGTH(*) TO CUMPPDA.#PDAX-FIELD-LENGTH(*)
 MOVE CSASELFV.#STRUCTURE-NUMBER(*) TO
 CUMPPDA.#PDAX-STRUCTURE-NUMBER(*)
 MOVE CSASELFV.FIELD-HEADINGS(*) TO
 CUMPPDA.#PDAX-FIELD-PROMPT-OR-TEXT(*)
 MOVE CSASELFV.#VIEW-LPDA-STRUCT-NAME(*) TO
 CUMPPDA.#PDAX-VIEW-LPDA-STRUCT-NAME(*)
 FOR #I = 1 TO #MAX-FLDS
 MOVE CSASELFV.FIELD-OCCURRENCES(#I,1)
 TO CUMPPDA.#PDAX-MAX-OCCURS(#I)
 EXAMINE CUMPPDA.#PDAX-FIELD-PROMPT-OR-TEXT(#I) FOR '/'
 REPLACE WITH ' '
 END-FOR
END-EXIT GENERATE-CODE

Natural Construct Administration and Modeling256

User Exits for the Administration Models

GENERATE-SUBROUTINES

This user exit generates the framework for validations performed by themodel validation subpro-
gram. It is used in conjunction with the GENERATE-VALIDATIONS user exit and is available for
modules generated using the CST-Validate model.

Code validations as subroutines in this user exit. For each #PDAX-FIELD-NAME field you want
to validate, create a subroutine called V-field-name to perform the validations. Whenever a val-
idation error is found, the V-field-name subroutine must:

■ Assign CSASTD.RETURN-CODE = ‘E’

■ Assign the error message in CSASTD.MSG
■ Perform an ESCAPE-ROUTINE to bypass subsequent checks

Tip: To retrieve SYSERR messages, use the CU--VERR copycode.

Tip: To return a warning message, rather than an error, use the CU--VWAR copycode.

References

■ For more information about coding validations, see CST-Validate Model.
■ For information about validating array fields, see Validate Array Fields.

GENERATE-VALIDATIONS

This user exit generates the framework for validations performed by themodel validation subpro-
gram. It is used in conjunction with the GENERATE-SUBROUTINES user exit and is available for
modules generated using the CST-Validate model.

Note: For more information, see CST-Validate Model.

INPUT-ADDITIONAL-PARAMETERS

This user exit contains an INPUT statement to read parameters that are not automatically included
in a read subprogram.

Example of Code

DEFINE EXIT INPUT-ADDITIONAL-PARAMETERS
*
* Input all other parameters..
*
* /* Input parameter SAMPLE
* WHEN #LINE = 'SAMPLE:'
* INPUT CXMYPDA.#PDAX-SAMPLE
END-EXIT INPUT-ADDITIONAL-PARAMETERS

257Natural Construct Administration and Modeling

User Exits for the Administration Models

INPUT-SCREEN

This user exit generates code to input screens (maps) for a maintenance subprogram.

Example of Code

DEFINE EXIT INPUT-SCREEN
IF CSASTD.RETURN-CODE = CSLERROR.#OK OR = CSLERROR.#WARNING
 INPUT WITH TEXT CSASTD.MSG
 MARK POSITION CSAMARK.ERROR-COLUMN IN CSAMARK.ERROR-POS
 USING MAP 'map'
ELSE
 INPUT WITH TEXT CSASTD.MSG
 MARK POSITION CSAMARK.ERROR-COLUMN IN CSAMARK.ERROR-POS
 ALARM
 USING MAP 'map'
END-IF
END-EXIT INPUT-SCREEN

LOCAL-DATA

The code in this exit defines additional local variables used in conjunction with other user exits.

Example of Code

0480 **SAG DEFINE EXIT LOCAL-DATA
0490 01 #HELPR(A8) INIT<'CD-HELPR'>
0500 LOCAL USING CNAEXIST
0510 **SAG END-EXIT

MISCELLANEOUS-SUBROUTINES

This user exit generates the framework for any additional subroutines used by a maintenance
subprogram.

Example of Code

DEFINE EXIT MISCELLANEOUS-SUBROUTINES
**
**
DEFINE SUBROUTINE subroutine-name
**
**
 ESCAPE ROUTINE IMMEDIATE
END-SUBROUTINE /* subroutine-name
END-EXIT MISCELLANEOUS-SUBROUTINES

Natural Construct Administration and Modeling258

User Exits for the Administration Models

MISCELLANEOUS-VARIABLES

This user exit generates code towrite the field and prompt values to Predict. To generate the correct
code, translation LDAs must adhere to the following naming standards:

PromptField

CUMNMAL.#GEN-PROGRAM#PDA-GEN-PROGRAM

CUMNMAL.#TITLE#PDAX-TITLE

Example of Code

0010 DEFINE EXIT MISCELLANEOUS-VARIABLES
0020 ***
0030 DEFINE SUBROUTINE MISCELLANEOUS
0040 ***
0050 *
0060 WRITE(SRC) NOTITLE 20T CU--DOCL.#MISC-SPECIFICATIONS
0070 WRITE(SRC) NOTITLE CU--PDA.#PDA-UNDERSCORE-LINE (AL=70)
0080 WRITE(SRC) NOTITLE ' '
0090 END-SUBROUTINE /* MISCELLANEOUS
0100 END-EXIT

PARAMETER-DATA

This user exit generates the framework to process any additional parameters used in conjunction
with other programs.

Example of Code

DEFINE EXIT PARAMETER-DATA
** PARAMETER USING PDAname
** PARAMETER
** 01 #Additional-parameter1
** 01 #Additional-parameter2
END-EXIT PARAMETER-DATA

PF-KEYS

This user exit documents information about PF-keys supported by a generated subprogram to the
Predict data dictionary.

To document information about PF-keys:

1 Select the PF-KEYS user exit.

2 Press Enter.

259Natural Construct Administration and Modeling

User Exits for the Administration Models

Awindow is displayed, in which you can specify the supported PF-keys. Descriptions of the
keys are added to Predict.

Example of Code

0090 * Translate pfkey functions
0100 PERFORM GET-CDKEYFL-TEXT
0110 *
0120 * Write pfkey names and functions
0130 PRINT(SRC) NOTITLE / 20T CU--DOCL.#PFKEY-SUPPORT
0140 / ' '
0150 / 3T CU--DOCL.#PFKEY 14T CU--DOCL.#FUNCTION
0160 / 3T CU--PDA.#PDA-UNDERSCORE-LINE (AL=10)
0170 CU--PDA.#PDA-UNDERSCORE-LINE (AL=60)
0180 / 3T CDKEYLDA.#KEY-NAME(2)
0190 14T CDKEYFL.#KEY-FUNCTION(2)
0200 END-SUBROUTINE /* PF-KEYS
0210 END-EXIT
0220 DEFINE EXIT PF-KEYS
0230 ***
0240 DEFINE SUBROUTINE PF-KEYS
0250 ***
0260 *
0270 * Translate pfkey names
0280 INCLUDE CU--DOC
0290 *
0300 * Translate pfkey functions
0310 PERFORM GET-CDKEYFL-TEXT
0320 *
0330 * Write pfkey names and functions
0340 PRINT(SRC) NOTITLE / 20T CU--DOCL.#PFKEY-SUPPORT
0350 / ' '
0360 / 3T CU--DOCL.#PFKEY 14T CU--DOCL.#FUNCTION
0370 / 3T CU--PDA.#PDA-UNDERSCORE-LINE (AL=10)
0380 CU--PDA.#PDA-UNDERSCORE-LINE (AL=60)
0390 / 3T CDKEYLDA.#KEY-NAME(3)
0400 14T CDKEYFL.#KEY-FUNCTION(3)
0410 END-SUBROUTINE /* PF-KEYS
0420 END-EXIT

PROCESS-SPECIAL-KEYS

This user exit is required for the CST-Modify-332 model if the maintenance subprogram supports
special PF-keys (all keys other than Enter and help, return, quit, right, and left PF-keys).

Note: Define the special PF-keys on the Maintain Subprograms panel. For information, see
Maintain Subprograms Function.

After defining the keys and generating the model, this exit contains code you can use as a starting
point for processing the keys.

Natural Construct Administration and Modeling260

User Exits for the Administration Models

Example of Code

DEFINE EXIT PROCESS-SPECIAL-KEYS
 ASSIGN #PF-KEY = *PF-KEY
 DECIDE ON FIRST VALUE OF *PF-KEY
 VALUE #PF-*0039
 /*
 /* Perform *0039 processing
 ASSIGN CSASTD.MSG = '*0039 processing completed successfully'
 ESCAPE TOP
 NONE VALUE
 IF *PF-KEY NE 'ENTR'
 REINPUT 'Invalid key:1:entered',#PF-KEY
 END-IF
 END-DECIDE
END-EXIT PROCESS-SPECIAL-KEYS

PROVIDE-DEFAULT-VALUES

This user exit provides a list of default values for model parameters. If desired, it can also supply
values for other parameters you want to initialize. Natural Construct provides default values for
the #PDAX variables in the model PDA.

Tip: To specify default values for additional parameters in a model PDA, regenerate this
user exit. This adds the new variables but does not modify the code from the previous
generation.

Example of Code

DEFINE EXIT PROVIDE-DEFAULT-VALUES
 ASSIGN CXMNPDA.#PDAX-DESCS(*) = ' '
 ASSIGN CXMNPDA.#PDAX-USE-MSG-NR = FALSE
 ASSIGN CXMNPDA.#PDAX-PDA = ' '
 ASSIGN CXMNPDA.#PDAX-FILE-NAME = ' '
 ASSIGN CXMNPDA.#PDAX-FIELD-NAME = ' '
 ASSIGN CXMNPDA.#PDAX-MAP-NAME = ' '
 ASSIGN CXMNPDA.#PDAX-LINES-PER-SCREEN = 0
 ASSIGN CXMNPDA.#PDAX-WINDOW-BASE = ' '
 ASSIGN CXMNPDA.#PDAX-WINDOW-BASE-LINE = 0
 ASSIGN CXMNPDA.#PDAX-WINDOW-BASE-COLUMN = 0
 ASSIGN CXMNPDA.#PDAX-WINDOW-SIZE = ' '
 ASSIGN CXMNPDA.#PDAX-WINDOW-LINE-LENGTH = 0
 ASSIGN CXMNPDA.#PDAX-WINDOW-COLUMN-LENGTH = 0
 ASSIGN CXMNPDA.#PDAX-WINDOW-FRAME = FALSE
END-EXIT PROVIDE-DEFAULT-VALUES

261Natural Construct Administration and Modeling

User Exits for the Administration Models

SAVE-PARAMETERS

This user exit is required for the CST-Savemodel. It generates aWRITE statement for each specific-
ation parameter (#PDAX variable) in themodel PDA. Elements of array variables are written indi-
vidually, including the number of array occurrences. The WRITE statement has the following
format:

WRITE(SRC) NOTITLE '=' #PDAX-variable-name

Natural Construct transforms these lines as follows:

**SAG variable name: variable contents

and writes them at the beginning of Natural Construct-generated modules.

Tip: If you add specification parameters to amodel PDA, regenerate this user exit to generate
the WRITE statements for the new parameters. Regeneration adds the new variables, but
does not modify code from the previous generation.

Example of Code

DEFINE EXIT SAVE-PARAMETERS
FOR #I = 1 TO 4
 IF #PDAX-DESCS(#I) NE ' ' THEN
 COMPRESS '#PDAX-DESCS(' #I '):' INTO #TEXT
 LEAVING NO
 PRINT(SRC) NOTITLE #TEXT #PDAX-DESCS(#I)
 END-IF
END-FOR
WRITE(SRC) NOTITLE '=' #PDAX-USE-MSG-NR
 / '=' #PDAX-PDA
 / '=' #PDAX-FILE-NAME
 / '=' #PDAX-FIELD-NAME
 / '=' #PDAX-MAP-NAME
 / '=' #PDAX-LINES-PER-SCREEN
 / '=' #PDAX-WINDOW-BASE
 / '=' #PDAX-WINDOW-BASE-LINE
 / '=' #PDAX-WINDOW-BASE-COLUMN
 / '=' #PDAX-WINDOW-SIZE
 / '=' #PDAX-WINDOW-LINE-LENGTH
 / '=' #PDAX-WINDOW-COLUMN-LENGTH
 / '=' #PDAX-WINDOW-FRAME
END-EXIT SAVE-PARAMETERS

Natural Construct Administration and Modeling262

User Exits for the Administration Models

SET-CONDITION-CODES

This user exit is required for the CST-Pregen model. It generates initialization statements for all
conditions (#PDAC variables) in the model PDA. You can modify the generated code as desired.

A condition is set to True when a variable corresponding to the condition exists in the model PDA
and has a non-null value. The variables and conditions are linked through their names; the #PDAX-
name variable corresponds to the #PDAC-name or #PDAC-name-SPECIFIED condition.

For example, if the model PDA contains:

■ #PDAX-USE-MSG-NR(L) variable
■ #PDAC-USE-MSG-NR(L) condition

This user exit generates the following code:

WHEN #PDAX-USE-MSG-NR NE FALSE
 #PDAC-USE-MSG-NR = TRUE

If the model PDA contains:

■ #PDAX-GDA(A8) variable
■ #PDAC-GDA-SPECIFIED(L) condition

This user exit generates the following code:

WHEN #PDAX-GDA NE ' '
 #PDAC-GDA-SPECIFIED = TRUE

The WHEN clause is blank for all conditions that have no corresponding variable in the model
PDA.

Code for the conditions currently existing in this user exit is not generated. When you regenerate
this user exit, only the code for new conditions (that were added to the model PDA since the pre-
vious generation) is added.

Example of Code

DEFINE EXIT SET-CONDITION-CODES
*
* Set conditions in PDA.
 DECIDE FOR EVERY CONDITION
 WHEN #PDAX-USE-MSG-NR NE FALSE
 ASSIGN #PDAC-USE-MSG-NR = TRUE
 WHEN #PDAX-FILE-NAME NE ' '
 ASSIGN #PDAC-FILE-NAME-SPECIFIED = TRUE
 WHEN #PDAX-FIELD-NAME NE ' '
 ASSIGN #PDAC-FIELD-NAME-SPECIFIED = TRUE
 WHEN #PDAX-PDA NE ' '
 ASSIGN #PDAC-PDA-SPECIFIED = TRUE

263Natural Construct Administration and Modeling

User Exits for the Administration Models

 WHEN NONE
 IGNORE
 END-DECIDE
END-EXIT

START-OF-PROGRAM

The code in this user exit is executed once at the beginning of the generated subprogram after all
standard initial values are assigned. You can use this exit to do any initial setup required. For ex-
ample:

■ Initialize input values from globals
■ Set window or page sizes
■ Capture security information for a restricted data area

SUBSTITUTION-VALUES

This user exit is used by theCST-Postgenmodel, which generates the post-generation subprogram
for amodel. The post-generation subprogramgenerates STACKstatements for substitution variables
in the model PDA. To generate STACK statements for any substitution variables that are not in
themodelPDA, select the SUBSTITUTION-VALUESorADDITIONAL-SUBSTITUTION-VALUES
user exit (see below for a comparison).

If you select the SUBSTITUTION-VALUESuser exit, STACK statements for all substitution variables
are generated in the exit — those in the model PDA, as well as any additional variables. You can
modify these variables as desired.

Which user exit you select depends onwhether youwant themodel to stack substitution parameters
in the code frame or in a user exit, thereby overriding the default substitution parameter handling.

■ If you use the SUBSTITUTION-VALUES user exit, you must code all substitution values in the
exit since default code will not be generated.

■ If you use the ADDITIONAL-SUBSTITUTION-VALUES user exit (or no user exit), the model
automatically stacks any model PDA variables that match the &SUBSTITUTION values in the
code frame. For example:

STACK TOP DATA FORMATTED '&PRIME-FILE' #PDAX-PRIME-FILE

Note: Use either the SUBSTITUTION-VALUES user exit or the ADDITIONAL-SUBSTITU-
TION-VALUES user exit, but not both.

Natural Construct Administration and Modeling264

User Exits for the Administration Models

VALIDATE-DATA

The code in this user exit performs edit checks on each parameter on amaintenancemap (specified
in the Map name field on the Standard Parameters panel). This section contains examples of user
exit code for the CST-Modify and CST-Modify-332 model. The CST-Modify model supports dy-
namic multilingual specification panels and messages using SYSERR references and substitution
variables. The code generated in this exit contains SYSERR numbers and substitution values.

Example of Code for CST-Modify Model

0010 DEFINE EXIT VALIDATE-DATA
0020 DECIDE FOR EVERY CONDITION
0030 WHEN #HEADER1 = ' '
0040 ASSIGN CNAMSG.MSG-DATA(1) = #HEADER1
0050 INCLUDE CU--RMSG '2001'
0060 ''':1::2::3:is required'''
0070 '#HEADER1'
0080 WHEN #HEADER2 = ' '
0090 ASSIGN CNAMSG.MSG-DATA(1) = #HEADER2
0100 INCLUDE CU--RMSG '2001'
0110 ''':1::2::3:is required'''
0120 '#HEADER2'
0130 WHEN #PDA-GEN-PROGRAM = ' '
0140 ASSIGN CNAMSG.MSG-DATA(1) = #GEN-PROGRAM
0150 INCLUDE CU--RMSG '2001'
0160 ''':1::2::3:is required'''
0170 '#PDA-GEN-PROGRAM'
0180 WHEN #PDA-SYSTEM = ' '
0190 ASSIGN CNAMSG.MSG-DATA(1) = #SYSTEM
0200 INCLUDE CU--RMSG '2001'
0210 ''':1::2::3:is required'''
0220 '#PDA-SYSTEM'
0230 WHEN #PDA-TITLE = ' '
0240 ASSIGN CNAMSG.MSG-DATA(1) = #TITLE
0250 INCLUDE CU--RMSG '2001'
0260 ''':1::2::3:is required'''
0270 '#PDA-TITLE'
0280 WHEN CUBAPDA.#PDAX-DESCS = ' '
0290 ASSIGN CNAMSG.MSG-DATA(1) = #DESCS
0300 INCLUDE CU--RMSG '2001'
0310 ''':1::2::3:is required'''
0320 'CUBAPDA.#PDAX-DESCS'
0330 WHEN CUBAPDA.#PDAX-GDA = ' '
0340 ASSIGN CNAMSG.MSG-DATA(1) = #GDA
0350 INCLUDE CU--RMSG '2001'
0360 ''':1::2::3:is required'''
0370 'CUBAPDA.#PDAX-GDA'
0380 WHEN CUBAPDA.#PDAX-GDA-BLOCK = ' '
0390 ASSIGN CNAMSG.MSG-DATA(1) = #GDA-BLOCK
0400 INCLUDE CU--RMSG '2001'
0410 ''':1::2::3:is required'''

265Natural Construct Administration and Modeling

User Exits for the Administration Models

0420 'CUBAPDA.#PDAX-GDA-BLOCK'
0430 WHEN CUBAMAL.#DESCRIPTION = ' '
0440 ASSIGN CNAMSG.MSG-DATA(1) = #DESCRIPTION
0450 INCLUDE CU--RMSG '2001'
0460 ''':1::2::3:is required'''
0470 'CUBAMAL.#DESCRIPTION'
0480 WHEN CUBAMAL.#GDA = ' '
0490 ASSIGN CNAMSG.MSG-DATA(1) = #GDA
0500 INCLUDE CU--RMSG '2001'
0510 ''':1::2::3:is required'''
0520 'CUBAMAL.#GDA'
0530 WHEN CUBAMAL.#GDA-BLOCK = ' '
0540 ASSIGN CNAMSG.MSG-DATA(1) = #GDA-BLOCK
0550 INCLUDE CU--RMSG '2001'
0560 ''':1::2::3:is required'''
0570 'CUBAMAL.#GDA-BLOCK'
0580 WHEN CUBAMAL.#GEN-PROGRAM = ' '
0590 ASSIGN CNAMSG.MSG-DATA(1) = #GEN-PROGRAM
0600 INCLUDE CU--RMSG '2001'
0610 ''':1::2::3:is required'''
0620 'CUBAMAL.#GEN-PROGRAM'
0630 WHEN CUBAMAL.#SYSTEM = ' '
0640 ASSIGN CNAMSG.MSG-DATA(1) = #SYSTEM
0650 INCLUDE CU--RMSG '2001'
0660 ''':1::2::3:is required'''
0670 'CUBAMAL.#SYSTEM'
0680 WHEN CUBAMAL.#TITLE = ' '
0690 ASSIGN CNAMSG.MSG-DATA(1) = #TITLE
0700 INCLUDE CU--RMSG '2001'
0710 ''':1::2::3:is required'''
0720 'CUBAMAL.#TITLE'
0730 END-EXIT

Example of Code for CST-Modify-332 Model

DEFINE EXIT VALIDATE-DATA
*
* Edit checks on map parameters.
 DECIDE FOR EVERY CONDITION
 WHEN #HEADER1 = ' '
 REINPUT 'Header1 is required'
 MARK *#HEADER1 ALARM
 WHEN #HEADER2 = ' '
 REINPUT 'Header2 is required'
 MARK *#HEADER2 ALARM
 WHEN CDDIALDA.#PROGRAM = ' '
 REINPUT 'Program is required'
 MARK *CDDIALDA.#PROGRAM ALARM
 WHEN CDGETDCA.#DIRECT-COMMAND = ' '
 REINPUT 'Direct Command is required'
 MARK *CDGETDCA.#DIRECT-COMMAND ALARM
 WHEN NONE IGNORE

Natural Construct Administration and Modeling266

User Exits for the Administration Models

 END-DECIDE
END-EXIT VALIDATE-DATA

The basic structure of this user exit is supplied in the above format. You can edit the supplied code
as required.

Tip: If you add specification parameters to the model PDA, you can generate sample state-
ments for the new parameters by regenerating this user exit. Regeneration adds the new
variables, but does not modify code from the previous generation.

267Natural Construct Administration and Modeling

User Exits for the Administration Models

268

22 Modifying the Supplied Models

■ Introduction .. 270
■ Change the Supplied Models ... 270
■ Example of Modifying a Model .. 273
■ Use Steplibs to Modify Models ... 276

269

This section describes how to modify the models supplied by Natural Construct. In most cases,
the existing model can be customized by modifying the code frames associated with the model or
the copycode members used in the generated modules. In some cases, the generated code may
need to be modified by the subprograms in the model code frames (identified by the CU prefix).

This section covers the following topics:

Introduction

The source code for all CU-prefixed subprograms is supplied with Natural Construct. To reduce
dependencies between Predict and the Natural Construct models, all models use external subpro-
grams to access the Predict data dictionary (they do not access Predict directly).

Do not modify the supplied model subprograms, as changes to these subprograms may have to
be reapplied with each new release of Natural Construct. If you want to modify supplied subpro-
grams, copy the supplied subprogram and use a CX prefix (rather than the CU prefix) to name it.

Additionally, do not modify the supplied code frames. All supplied code frames end with a suffix
value of 9 (for example, CMNA9) and updated Natural Construct code frames end with a suffix
of 8. To create a custom code frame, copy and rename the supplied code frame with a lower suffix
value (for example, CMNA7) andmodify the new code frame. Natural Construct searches for and
uses the code frame with the lowest suffix value when the program is generated. Document all
changes so they can be reapplied to subsequent versions ofNatural Construct. Formore information,
seeMaintain Models Function.

Note: If changes are confined tomodel subprograms or copycodemembers used inmodules
generated by themodel, use themultiple steplib feature to customize themodel. For inform-
ation, see Use Steplibs to Modify Models.

Change the Supplied Models

Typically, the Natural Construct administrator makes changes to the generation models. Before
amodifiedmodel is available for general use, it should be thoroughly tested. The following sections
explain how to modify the supplied model code frames, subprograms, and copycode, as well as
how to modify the external data areas and subprograms used by the generation models:

■ Modify Code Frames
■ Modify the Model Subprograms

Natural Construct Administration and Modeling270

Modifying the Supplied Models

■ Modify Copycode (CC*) and External Data Areas and Subprograms (CD*)

Modify Code Frames

Do not modify the supplied code frames. Instead, make a copy the code frames you want to cus-
tomize and modify the copy. Keep the original code frames so they can be referred to if problems
arise. Changes to code frames take effect immediately after the code frame is saved.

Note: Document all modifications to the code frames so changes can be reapplied to new
versions of Natural Construct.

To modify a code frame:

1 Copy the code frame and use an X prefix to name the copy. For example, the CFEXAM9 code
frame becomes XFEXAM9.

Tip: Rather than copying and renaming individual model components, you can create
standard, development, and production versions of all systemfiles. Use the CSFUNLD
andCSFLOADutilities tomove code frames between files. For information, see Import
and Export Utilities.

2 Copy the model that uses the modified code frame and give the copy a different name.

For example, the Menu model becomes Menu2.

3 Invoke the model copy to test changes to your code frame.

For example, you can invokeMenu2model to test themodified code framewithout interrupt-
ing the use of the Menu model.

4 Change the X prefix back to a C and change the 9 in the last position of the code frame name
to a lesser number (from 1 to 7).

For example, the XFEXAM9 code frame becomes CFEXAM7. Natural Construct always uses
the code frame ending with the lesser number.

Note: Do not use the number 8 in the last position of the code frame name. Number 8
is reserved for future changes to the supplied code frames (should they be issued). For
more information aboutmodifying code frames, see Step 5: Create Code Frame(s) and
Define the Model.

271Natural Construct Administration and Modeling

Modifying the Supplied Models

Modify the Model Subprograms

Because the production copies of the model subprograms are invoked from the SYSLIBS library,
you can modify and test the model subprograms within the SYSCST library without affecting ex-
isting users of the model. To invoke Natural Construct from the SYSCST library (instead of the
SYSTEM library), use the CSTG command (not NCSTG).

To invoke Natural Construct from the SYSCST library (instead of the SYSTEM library):

■ Enter "CSTG" at the Natural prompt (instead of NCSTG).

To modify a supplied model subprogram (prefixed by CU):

1 Copy the subprogram and change the CU prefix to CX.

2 Copy the corresponding model and refer the copy to the new CX subprogram.

Note: Use the CSUTEST utility to test the model subprograms individually. For more
information, see Test the Model Subprograms.

3 After testing the model subprograms in the SYSCST library, copy the modified modules to
the SYSLIBS library in the FNAT system file.

Tip: If you change the condition codes in the model PDA, copy the object code for the
model PDA into the SYSLIBS library as well.

Note: If Natural Construct is invoked from a steplib, you do not have to rename the
supplied subprograms duringmodification and testing. Instead, copy the subprogram
to a test library or other higher level steplib. Once tested, you can copy the modules to
the steplib reserved by all development libraries for modifying the supplied modules.

Modify Copycode (CC*) and External Data Areas and Subprograms (CD*)

If you modify any of the CC or CD-prefixed supplied modules and want to apply the changes:

■ To programs generated in all libraries, copy the modified modules to the SYSTEM library.
■ To one application, copy the modified modules to the corresponding application library.

If you modify the CC or CD-prefixed modules and assign a new name to the modified modules,
reference the new name in the Natural Construct standard models. For example, if you modify
CCSTDKEY and name the newmoduleMYSTDKEY, refer theNatural Construct standardmodels
to MYSTDKEY instead of CCSTDKEY.

The suppliedCSXCNAMEuser exit subprogram (in the SYSCSTX library) allows users to substitute
their own symbols or names for the default values generated into a Natural Construct object (CC*

Natural Construct Administration and Modeling272

Modifying the Supplied Models

copycode and CD* routines, for example). If this subprogram exists in the SYSLIBS library, it is
invoked immediately before the post-generation subprogram for the current model.

The main function of the CSXCNAME subprogram is to place a list of substitution symbols and
values on the Natural stack. For example, if you enter the following code in CSXCNAME:

STACK TOP DATA FORMATTED 'CCSTDKEY' 'MYSTDKEY'

Natural Construct scans for CCSTDKEY and replaces it with MYSTDKEY.

Example of Modifying a Model

This section describes how to modify the maintenance model (Maint). The modifications include
the option to generate depth scrolling capabilities, in addition to the current up-down and left-
right scrolling. This capability allows a user to scroll a three-dimensional array using the PF4 and
PF5 keys. Additionally, the user can name these keys on the second specification panel.

To modify a model:

1 Determinewhatmodifications are required bymanually applying the changes to amaintenance
program generated by the model.

Themodifiedprogram is the prototype. To identifywhich code frames, PDA, and subprograms
to modify, invoke the Maintain Models panel and display information for the Maint model.
For information, seeMaintain Models Function.

2 Modify the parameter data area (PDA) as follows:

■ Copy the PDA and change the CU prefix to CX.
■ Add a #PDAC-DEPTH-KEYS logical variable to the end of the redefinition of #PDA-CON-
DITION-CODES.

■ Add a #PDAX-DEPTH-KEYS logical variable to the end of the redefinition of #PDA-USER-
AREA.

■ Add two A5 fields (#PDAX-DEPTH-IN and #PDAX-DEPTH-OUT, for example).
■ Stow the modified PDA in the SYSCST library.

Note: If you are executing the steplib version of Natural Construct, move the model
PDA to a lower level steplib and make the changes without renaming the object.

3 Modify the second maintenance map and subprogram as follows:

Tip: The subprogram name is displayed in the top left corner of the panel; the map
name is displayed in the top right corner of the panel.

273Natural Construct Administration and Modeling

Modifying the Supplied Models

■ Copy the current versions and change the CU prefix to CX.
■ Add the #PDAX-DEPTH-KEYS, #PDAX-DEPTH-IN, and #PDAX-DEPTH-OUT fields to
the new map. For example:

Include Depth Keys: _ (Named: _____ and _____)

■ Stow the new map and subprogram.

Note: Validation edits (ensuring the keys are named if they are included, for example)
can be initiated on the map or within the invoking subprogram.

4 Modify the code frames as follows:

■ Identify the code frames to modify.

The easiest way to do this is by selecting theOptions fieldwhen generating a programusing
the Maint model. When the Status window is displayed, select the Embedded statements
option. The generated programwill then contain comments showingwhere each code block
originated.

■ Copy the code frames and change the C prefixes to X.
■ Modify the X code frames in the DEPTH-KEYS condition. You can name the keys using
substitution parameters assigned in the post-generation subprogram. For example:

DEPTH-KEYS 1
SET KEY CDKEYLDA.#DEPTH-IN-KEY NAMED “&DEPTH-IN' "
SET KEY CDKEYLDA.#DEPTH-OUT-KEY NAMED “&DEPTH-OUT' "

■ Save the code frame.
■ Make a copy of the model and have the copied model refer to the X copies.

Note: Add the new PF-keys to CDKEYLDA. For information, seeAdding a New PF-Key,
Natural Construct Generation.

5 Modify the model subprograms as follows:

■ Make copies of the subprograms and name the copies using an X prefix (or use a steplib).
■ Modify the clear subprogram to initialize the new parameters. For example:

RESET #PDAX-DEPTH-KEYS
ASSIGN #PDAX-DEPTH-IN = 'front'
ASSIGN #PDAX-DEPTH-OUT = 'back'

■ Modify the pre-generation subprogram to assign the #PDAC-DEPTH-KEYS logical condition
variable to True if the user marks the #PDAX-DEPTH-KEYS field.

■ Modify the post-generation subprogram to assign the names of the depth keys. For example:

Natural Construct Administration and Modeling274

Modifying the Supplied Models

IF #PDAC-DEPTH-KEYS THEN
 STACK TOP DATA FORMATTED '&DEPTH-IN' #PDAX-DEPTH-IN
 STACK TOP DATA FORMATTED '&DEPTH-OUT' #PDAX-DEPTH-OUT
END-IF

■ Modify the save subprogram to write the new parameters. For example:

IF #PDAC-DEPTH-KEYS THEN
 WRITE(SRC) NOTITLE '=' #PDAX-DEPTH-KEYS
 WRITE(SRC) NOTITLE '=' #PDAX-DEPTH-IN
 WRITE(SRC) NOTITLE '=' #PDAX-DEPTH-OUT
END-IF

■ Modify the read subprogram to accept the new parameters. For example:

WHEN #LINE = 'DEPTH-KEYS:'
 INPUT #PDAX-DEPTH-KEYS
WHEN #LINE = 'DEPTH-IN:'
 INPUT #PDAX-DEPTH-IN
WHEN #LINE = 'DEPTH-OUT:'
 INPUT #PDAX-DEPTH-OUT

6 Test the modified model in the SYSCST library (using the CSTG command).

You can also test individual components of the model using the CSUTEST program or debug
the model using the trace options available through the Generation main menu. For more
information, see Test the Model Subprograms.

7 Migrate the modified model as follows:

■ Copy the modules for the modified subprograms and PDA from the SYSCST library to the
SYSLIBS library.

■ Modify the model definition record (Maintain Models panel) to refer to the modified code
frame. For information, seeMaintain Models Function.

8 Document all modifications to the model.

275Natural Construct Administration and Modeling

Modifying the Supplied Models

Use Steplibs to Modify Models

UsingNatural Security, you can define up to eight steplibs for eachNatural Construct library. The
searching order is the current library (*LIBRARY), the first steplib (if present), the second steplib
(if present), …, the eighth steplib (if present), and then the SYSTEM library.

If you store the executing Natural Construct modules in a steplib, you can store your modified
model subprograms or copycode in a higher level steplib, effectively overriding any supplied
Natural Constructmoduleswith the same names and types. In thisway, users access yourmodified
models and the supplied models remain untouched.

When you invoke Natural Construct from a steplib, use the CSTG command (as in the SYSCST
library) — not the NCSTG command. The NCSTG command always invokes the copy of Natural
Construct that is stored in the SYSLIBS library and bypasses the steplibs.

Tip: To use the NCSTG command, you can write an NCSTG program to fetch CSTG in the
application library.

Because SYSCST is available in a steplib, this method can regulate access to the Administration
subsystem. As theNatural Construct administrator, you can use the security routines in the SYSC-
STX library to control access to this subsystem.

The following example describes how to use the steplib method to eliminate direct command
processing in Natural Construct-generated programs. Direct command processing is triggered by
the #PDAX-DIRECT-COMMAND-PROCESS variable on the CU—MA0map. You can remove the
field that contains this variable from the CU—MA0map andmove themodifiedmap into a steplib
at a higher level than the SYSCST library.

To use steplibs to modify a model (assuming that APPL is the application library):

1 Define the steplibs to APPL in the following order: NODIRECT, SYSCST, and SYSTEM from
Natural Security.

NODIRECT is a new library and SYSCST and SYSTEM are steplibs of this new library.

2 Copy the CU—MA0 map from the SYSCST library to the NODIRECT library.

3 Edit the CU—MA0 map in the NODIRECT library.

Delete the text Mark to include Direct Command Processing and define the field containing
the #PDAX-DIRECT-COMMAND-PROCESS variable as non-display.

4 Stow the modified CU—MA0 map.

5 If you deleted the field that contains the #PDAX-DIRECT-COMMAND-PROCESS variable,
copy all the modules that use the CU—MA0 map in the SYSCST library to the NODIRECT
library and catalog them.

Natural Construct Administration and Modeling276

Modifying the Supplied Models

Because SYSCST and SYSTEM are steplibs of NODIRECT, these modules can be cataloged in
the NODIRECT library.

Note: If you use the steplib version of Natural Construct for batch regeneration, use the
CSTBGEN command instead of the NCSTBGEN command.

Invoke Natural Construct From a Steplib

To invoke Natural Construct from a steplib:

1 Define the SYSCST and SYSLIBS libraries as steplibs of all development libraries requiring
Natural Construct.

2 Define a higher level steplib where modules can be stored that override the supplied objects.

3 Add a module called NCSTG to the new steplib and code it as follows:

FETCH 'CSTG'
END

Tip: If extensive code frame changes are required, consider installing a second copy of the
Natural Construct system file. You can then make changes to code frames directly, without
having to make a copy of individual frames and/or modules. You can use the compare fa-
cilities suppliedwithNatural Construct to comparemodifiedmodels and code frameswith
the originals. For information about the compare facilities, see Compare Menu Function.

277Natural Construct Administration and Modeling

Modifying the Supplied Models

278

23 External Objects

■ Introduction .. 280
■ Natural-Related Subprograms (CNU*) ... 285
■ Natural-Related Helproutines (CNH*) ... 300
■ Natural Construct Generation Utility Subprograms (CSU*) ... 302
■ Predict-Related Subprograms (CPU*) .. 360
■ Predict-Related Helproutines (CPH*) ... 386
■ General Purpose Generation Subprograms (CU--*) .. 390

279

This section describes the supplied programs, subprograms, and helproutines that help simplify
and standardize themodel creation process. These utilities can be invoked by the suppliedmodels
or by user-written models.

Note: The source code for external objects is not supplied.

This section covers the following topics:

Introduction

All model subprograms use external parameter data areas (PDAs) stored in the SYSCST library.
The source for the PDAs is provided and contains details about each parameter. For example,
some of the listings for the CPAEL PDA are:

 Parameter CPAEL Library SAG DBID 18 FNR 4
 Command > +
 I T L Name F Leng Index/Init/EM/Name/Comment
 Top - -------------------------------- - ---- ---------------------------------
 1 CPAEL
 2 INPUTS
 3 FILE-NAME A 32 /* File Name.
 3 FIELD-NAME A 32 /* Field name to be found in the
 3 #SIMPLE-OUTPUTS-ONLY L /* True if interested in
 * /* #FIELD-FOUND only
 * /* given file
 2 INPUT-OUTPUTS
 3 FILE-CODE P 8 /* If this code is known,
 * /* NSC checks are avoided.
 3 DDM-PREFIX A 16 /* Field prefix on DDM,
 * /* this will be set if correct
 * /* FILE-CODE is not provided.
 2 SIMPLE-OUTPUTS
 3 #FIELD-FOUND L /* True if field found on file
 3 FIELD-IS-REDEFINED L /* The field is redefined.
 --- S 70 L 1

CPAEL contains a level 1 structure called CPAEL. Depending on the type of parameter, the remain-
ing parameters are grouped into the following structures: INPUTS, INPUT-OUTPUTS, and
OUTPUTS. This layout is the same for all PDAs used by the supplied subprograms.

Note: Be careful whenmodifying fields in the INPUT-OUTPUTS structure; these fieldsmay
retain information across multiple calls.

You can define the PDAs as local data areas (LDAs) within the model subprograms that invoke
the utilities. CPAEL is the PDA corresponding to the CPUEL subprogram utility, which returns
information about a field in Predict.

Natural Construct Administration and Modeling280

External Objects

The following example shows a model subprogram that requires field information from Predict:

DEFINE DATA PARAMETER
 PARAMETER
 .
 .
 .
LOCAL USING CPAEL
LOCAL USING CSASTD
 .
 .
 .
END-DEFINE
 .
 .
 .
ASSIGN CPAEL.FILE-NAME = #PDAX-FILE-NAME
ASSIGN CPAEL.FIELD-NAME = #PDAX-FIELD-NAME
CALLNAT 'CPUEL' CPAEL CSASTD
*
*Check outputs of CPUEL
 .
 .
 .
END

This section provides a brief description of the supplied program, subprogram, and helproutine
utilities. For examples of how to invoke the utilities, refer to the source code for the supplied
model subprograms in the SYSCST library (prefixed by CU).

Note: Driver programs for many of the supplied model programs and subprograms are in-
cluded on the Natural Construct tape (prefixed by CTE). These driver programs are also
available through the Drivers menu option on the Administration main menu. If a driver
program is available, its location is listed in theDriversMenuOption section for the program
or subprogram. For information about invoking the driver programs, seeDrivers Menu
Function.

This section covers the following topics:

■ Object Categories
■ Error Processing
■ Passing of Structure Names
■ Restricted Data Areas
■ Callback Functions

281Natural Construct Administration and Modeling

External Objects

■ Subprogram Chaining

Object Categories

The supplied objects are divided into three categories, based on the type of information they access.
Each category is identified by its prefix as follows:

Object CategoriesPrefix

Identifies objects that return or generate data based on information in the Natural system files.CN*

Identifies objects that return or generate data based on information in Predict.CP*

Identifies objects that are miscellaneous validation, calculation, or translation routines. Most of these
routines do not access system file information, but some access Natural Construct system files.

CS*

Whenever possible, use the supplied programs, subprograms, and helproutines instead of accessing
the system file information directly. This helps protect your programs from unwanted changes to
the internal structure. Natural Construct maintains the upward compatibility of the supplied
programs, subprograms, and helproutines.

Error Processing

Many of the supplied subprograms return information through the CSASTD parameter data area
(PDA). The value in the RETURN-CODE field should be checked after each call. If it is not blank,
it should be passed back to the generation nucleus so the user is aware of the problem.

The following example shows a model subprogram that invokes the CPUEL utility:

DEFINE DATA
 PARAMETER USING CUMYPDA
 PARAMETER USING CU--PDA
 PARAMETER USING CSASTD
 LOCAL USING CPAEL
 .
 .
 .
END-DEFINE
 .
 .
 .
CALLNAT 'CPUEL' CPAEL CSASTD
IF CSASTD.RETURN-CODE NE ' ' THEN
 ESCAPE ROUTINE IMMEDIATE
END-IF

Natural Construct Administration and Modeling282

External Objects

Passing of Structure Names

To invoke the supplied subprograms, pass only the level 1 structures in the PDA. This way, if new
parameters are added to the utilities in future versions ofNatural Construct, you need only recatalog
your model subprograms to incorporate the changes.

Restricted Data Areas

Some subprograms have restricted data areas to retain information across multiple calls. The re-
stricted data areas are identified by an R in the third position of the data area name (CPRELNX,
for example).

You do not need to be concerned with the contents of these data areas. Define them as local data
areas within the invoking subprograms and pass them to the subprogram that is invoked.

Tip: Aswith all PDAs, the name of the structure passed to the subprogram always matches
the name of the data area itself.

Callback Functions

Many of theNatural Construct utility subprograms iterate through systemdata and, for each record
found, call a user-supplied routine. For example, CPURLRD is used to retrieve all relationships
related to a particular file. Rather than returning these relationships to the caller of CPURLRD,
the caller must supply the name of a subprogram CPURLRD should call for each relationship
found.

These routines accept an A1 array to allow the caller of the utility to communicate information to
and from the subprogram called by the utility. This data area is represented by CSAPASS. It is
accepted by the utility as a 1:v array so that the actual size of the data area can be determined by
the requirements of the caller.

Subprogram Chaining

When a subprogramperforms read logical processing and returns a series of records, it is sometimes
difficult or inefficient for the subprogram to “remember” where it left off in a previous call. Also,
this type of processing can be awkward to code in the invoking object because it must define
looping logic and issue iterative CALLNATs until a certain end condition is reached.

To avoid these problems, some subprograms do not return the information to the calling object.
Instead, the calling object passes the name of a subprogram that is invoked for each record en-
countered. To generate an INPUT statement containing all fields in a file, for example, you can
use the CPUELNX and CPUELRD subprograms. This section describes these subprograms.

283Natural Construct Administration and Modeling

External Objects

Without Subprogram Chaining (CPUELNX)

The CPUELNX subprogram can be called iteratively to continually return the next field in the file
until an end-of-file condition is reached. Themodel subprogram that generates the INPUT statement
must define the looping logic and make iterative CALLNATs to include each field in the INPUT
statement.

With Subprogram Chaining (CPUELRD)

The CPUELRD subprogram can be invoked once by the model subprogram (CUXXGIN1, for ex-
ample). This subprogram receives the name of a file and a subprogram toCALLNAT (CUXXGIN2,
for example). It traverses the file and CALLNATs the subprogram for each field. That subprogram
adds the current field to the INPUT statement generated. For example:

To allow CPUELRD to remember information across iterative calls, a 1K area is passed to
CUXXGIN2. This area can be redefined into individual fields, such as current status information,
that are required by CUXXGIN2 across multiple calls. It can also pass additional information
between CUXXGIN1 and CUXXGIN2.

Note: For an example of how subprogram chaining is used, refer to the CUFMGIN1 and
CUFMGIN2 programs in the SYSCST library.

Natural Construct Administration and Modeling284

External Objects

Natural-Related Subprograms (CNU*)

The subprograms described in this section retrieve information from the Natural system files to
assist in the generation process. For subprograms that return information about Natural objects
(programs, data areas, etc.), the specified data area object must exist in the current library or one
of its steplibs.

Tip: Driver programs for many of the supplied model programs and subprograms are in-
cluded on the Natural Construct tape (prefixed by CTE). These driver programs are also
available through the Drivers menu option on the Administration main menu. If a driver
program is available, its location is listed in theDriversMenuOption section for the program
or subprogram. For information about invoking the driver programs, seeDrivers Menu
Function.

This section describes the following subprograms:

■ CNUEL Subprogram
■ CNUELNX Subprogram
■ CNUERMSG Subprogram
■ CNUEXIST Subprogram
■ CNUGDABL Subprogram
■ CNUGDAEL Subprogram
■ CNUGENDA Subprogram
■ CNUMPPRF Subprogram
■ CNUMSG Subprogram
■ CNUPEXST Subprogram
■ CNUSEL Subprogram
■ CNUSRCNX Subprogram
■ CNUSRCRD Subprogram

CNUEL Subprogram

DescriptionCNUEL

Retrieves information about a field in a local data area (LDA) or parameter data area (PDA).
This subprogram receives the name of a field and data area (CNAEL.INPUTS) and returns

What it does

information about the field (CNAEL.OUTPUTS), such as the structure to which the field
belongs, the field format and type, the level number, and the starting and ending index for
arrays.

PDAs used ■ CNAEL
■ CSASTD

Files accessed ■ SYSTEM-FUSER
■ SYSTEM-FNAT

285Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEELN ***** Natural Related Subprograms ***** CTEELN1
 May 07 - Driver for subprogram CNUEL - 08:09 PM

*Data Area Name : ________
 Field Name.....: ________________________________
 Structure Name : ________________________________

 View Of Name...:

 Field Found....: Field Format: Lvl Number....:
 Constant Field : Field Length:
 Field Redefined: Rank........:
 Lvl Type Trail :
 From Index Thru Index 1:V Field Occurrences
 ---------- ---------- --- -----------------

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUELNX Subprogram

DescriptionCNUELNX

Returns information about the next field in a data area. This subprogram receives the name
of an external data area and returns information about the next field in that data area. On

What it does

the first call to this subprogram, the specified field is returned. On subsequent calls, the next
fields are returned.

CNRELNX (PDA containing reserved variables) keeps track of the current position of the
data area and must not be modified by the calling program.

Note: For information about INPUT/OUTPUTparameters, refer to the CNAELNXdata area
in the SYSCST library.

PDAs used ■ CNAELNX
■ CNRELNX
■ CSASTD

Natural Construct Administration and Modeling286

External Objects

DescriptionCNUELNX

Files accessed ■ SYSTEM-FNAT

CNUELNX On Unix Platforms

On Unix platforms, it is necessary to explicitly close any open cursors. CNUELNX does this
automaticallywhenever a data area is read in its entirety. However, if youwant the calling program
to only read a portion of the data area, you must insert additional code to close the open cursor.
For example:

 /* close the object
 IF CNRELNX.NATA1500-END-OF-FILE
 IGNORE
 ELSE
 CNAELNX.#CLOSE-OBJECT := TRUE
 CALLNAT 'CNUELNX' CNAELNX CNRELNX CSASTD
 END-IF

287Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTENLNX ***** Natural Related subprograms ***** CTENLNX1
 Nov 30,06 - Driver for subprogram CNUELNX - 09:20 PM

*Data Area Name...: ST5A____ Field Count: 17 Constant Field :
 First Time.......: _ End Of File: Dynamic Field..:
 Structure Name...: MY-GROUP Field Redefined:
 Field Name.......: ALPHA2-R Field Format...: A
 Field Length.....: 5.0 Units: 5 Decimals.......:
 View Of Name.....:
 Level Number.....: 11 Basic Occurrences: _ Rank...........: 1
 Level Type Trail.: S S S S S S S S R F
 Occurrences Found: X
 Starting At: 2_

 From Index Thru index 1:V Field Occur
 Object location ---------- ---------- --- -----------
 Library: C52_____ 1
 DBID...: 13000
 FNR....: 1301_
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

Tip: As this subprogram can have up to 99 field levels, enter a level number in the Starting
At field to display the specified level plus the next nine levels.

CNUERMSG Subprogram

DescriptionCNUERMSG

Receives a Natural error message number and returns the error message text. This
subprogram receives a Natural error message number (CSASTD.MSG-NR) and returns the

What it does

corresponding errormessage text (CSASTD.MSG). For example, themessage text forNatural
message number 0888 is Storage Overflow During Compilation or Execution.

PDAs used ■ CSASTD

Files accessed ■ SYSTEM-FNAT

Note: This subprogram returns systemerrormessages, rather than application errormessages.
For information about application error messages, see CNUMSG Subprogram.

Natural Construct Administration and Modeling288

External Objects

Drivers Menu Option

 CTEERMSG N a t u r a l C o n s t r u c t CTERMSG1
 Aug 14 Driver for subprogram CNUERMSG 1 of 1

 Msg Nr...: ____ Error Fld:
 Ret Code :

 Msg:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUEXIST Subprogram

DescriptionCNUEXIST

Checks for the existence of a Natural module. This subprogram receives the name of a
Natural module and determines whether its source, compiled object, or both exist. If the

What it does

source and/or compiled object exist, the subprogram returns themodule type (P for program)
and library name(s) in which the source and/or compiled object(s) were found.

If the module is not found in the current library, you can request a search of all steplibs. In
this case, the name of the first library in which the module was found is returned.

PDAs used ■ CNAEXIST
■ CSASTD

Files accessed ■ SYSTEM-FUSER
■ SYSTEM-FNAT

289Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEEXIST ***** Natural Related Subprograms ***** CTEXIST
 Feb 09 - Driver for subprogram CNUEXIST - 05:31 P

*Object/Source Name......: ________ Source Object
 Object/Source or Both...: _ -------- --------
 Search type... Exists.:
 Library + Steplib Search: _ Type...:
 or Library:
 Specific library search DBID...:
 Library Name........: ________ FNR....:
 DBID................: _____ User...:
 FNR.................: _____ Date...:
 (Blank implies current library) Time...:

CNUGDABL Subprogram

DescriptionCNUGDABL

Builds a full path name for a global data area (GDA) block. This subprogram receives aGDA
name and the name of a GDA block. It returns the full path name from the master block to

What it does

the specified block. For example, if BLOCK11 is a sub-block of BLOCK1,which is a sub-block
of MASTER-BLOCK, the following full path name is returned:

MASTER-BLOCK.BLOCK1.BLOCK11

PDAs used ■ CNAGDABL
■ CSASTD

Files accessed ■ SYSTEM-FUSER
■ SYSTEM-FNAT

Natural Construct Administration and Modeling290

External Objects

Drivers Menu Option

 CTEGDABL N a t u r a l C o n s t r u c t CTEGDAB1
 Aug 14 Driver for subprogram CNUGDABL 1 of 1

 *GDA Name......: ________
 Block Name....: ________________________________

 Full Path Name:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUGDAEL Subprogram

DescriptionCNUGDAEL

Verifies that a field is contained in a global data area (GDA). This subprogram receives the
name of a GDA and the name of a field. If the field exists in the GDA, this subprogram
returns a confirmation flag.

What it does

PDAs used ■ CNAGDAEL

Files accessed ■ SYSTEM-FNAT
■ SYSTEM-FUSER

291Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEGDAEL N a t u r a l C o n s t r u c t CTEGDAE1
 Aug 14 Driver for subprogram CNUGDAEL 1 of 1

 *GDA Name...: ________
 Field Name : ________________________________
 Field Found:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUGENDA Subprogram

DescriptionCNUGENDA

Adds a field to a data area. This subprogram receives the definition of a field (field type,
level number, field name, field format and length, and the number of occurrences, for

What it does

example) to be added to a data area and generates the field definition at the end of the current
edit buffer.

For information about INPUT/OUTPUT parameters, refer to the CNAGENDA data area in
the SYSCST library.

Note: Before this subprogram is invoked, the calling program must set the Natural editor
to a data area type of A, L, or G.

PDAs used ■ CNAGENDA
■ CNRGENDA
■ CSASTD

Files accessed ■ None

To use this utility internally, issue a CALLNAT to the following subprogram immediately after
calling CNUGENDA:

CALLNAT 'CNUGENDU'

There are no parameters for this subprogram.

Natural Construct Administration and Modeling292

External Objects

Drivers Menu Option

 CTEGENDA N a t u r a l C o n s t r u c t CTEGEND1
 Aug 14 Driver for subprogram CNUGENDA 1 of 1

 Field Name: ________________________________

 Field Type: _ Format: _ Occurrences: ____
 Level.....: _ Length: _____ Comment....: ________________________________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUMPPRF Subprogram

DescriptionCNUMPPRF

Reads a map profile from a Natural system file. This subprogram receives the name of the
map profile in the CSAMPSET.#PROFILE field. It reads the profile from the Natural system
file (FNAT) and returns the map settings.

For information about the OUTPUT parameters, refer to the CSAMPSET data area in the
SYSCST library.

What it does

PDAs used ■ CSAMPSET
■ CSASTD

Files accessed ■ SYSTEM-FNAT

Note: This routine is not available on all platforms.

293Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEMPPRF N a t u r a l C o n s t r u c t CTEMPRF1
 Aug 14 Driver for subprogram CNUMPPRF 1 of 1

 Map Profile....: ________ Layout......: Map Type.....:
 Map Version....: Map Name....: Std Keys....:

 +--+
 1__ | Delimiter Class AD CD Delimiter Char |
 DC: | --------------- -- -- -------------- | Col Shift....:
 PS: | | Case Deflt...:
 LS: | | Cursor Skip..:
 ZP: | | PM...........:
 +--+

 Write Statement: CV..........: Justification:
 Input Statement: Error Code..: Enforce Attr :
 Auto Rule Rank : Hlp Fld Dflt:
 Fill Character : Help........:
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit bkwrd frwrd mai

CNUMSG Subprogram

DescriptionCNUMSG

Returns application message text from the SYSERR message file. This subprogram receives the
following input:

What it
does

■ message number
■ message library (CSTMSG by default)
■ message text
■ substitution data members
■ message libraries for data members (CSTLDA by default)
■ retrieval method
■ default languages (used if message number is not located using *Language)

It processes message text based on one of the following retrieval methods:

■ R

Natural Construct Administration and Modeling294

External Objects

DescriptionCNUMSG

Performs text retrieval based onmessage numbers. Amessage number can be entered in either
the Message Number or Message Text (Input) field. If a message number is entered in the
MessageNumber field, the corresponding text is retrieved from themessage library (CSTMSG
by default) and displayed at runtime. If the Message Number field is blank, the subprogram
scans the Message Text (Input) field for a message number. If one is located, it is replaced
with its corresponding text from the message library.

For example, assume message number *2309 corresponds to the message text “:1::2::3:does
not exist”. If this message number is located in either the Message Number or Message Text
(Input) fields, the subsystem will retrieve the message text “:1::2::3:does not exist”.

■ S

Performs text substitutions in the Message Text (Input) field. A substitution will occur if
placeholders are found in the message text. Placeholders are replaced at runtimewith a value
entered in one of the Message Substitution Data fields (1, 2, and 3). Placeholders are entered
in the following format: ":N:", where N identifies one of the three Message Substitution Data
fields.

For example, if you enter the followingmessage text: “:1::2::3:does not exist”, and theMessage
Substitution Data field 1 is "File", and the Message Substitution Data field 2 is
"NCST-CUSTOMER", the message text “File NCST-CUSTOMER does not exist” is returned.

■ B

Performs text retrieval usingmethods R and S. This method also supports inline retrieval and
substitution; that is, typing themessage number and substitution values directly in theMessage
Text (Input) field.

For example, if you enter the following entry in the Message Text (Input) field:
"*2309,*2075.1,NCST-CUSTOMER", the subprogram assigns 2309 as themessage number and
retrieves the message “:1::2::3:does not exist”. The first substitution value is retrieved from
message 2075.1,which is “File”. The second substitution value is the text “NCST-CUSTOMER”.
At runtime, “File NCST-CUSTOMER does not exist” is displayed.

If you are usingmessage numbers, you can specify up to eight default languages. If themessage
text for the message number is not found using the currently selected language (*Language),
the subprogram will search for the message in each of the specified default languages.

The search beginswith the *Language code specified in the first Default Language field through
to the last Default Language field in which a code is specified. If the message is still not located,
the subprogramwill search themessage text for the default system *Language code of 1 (English).

Note: You can center text entered in the Message Text (Input) field using the ",+/NN" notation,
where NN is the number of characters to be centered. For more information about message
numbers and placeholders, see Use SYSERR References.

PDAs
used

■ CNAMSG
■ CSASTD

295Natural Construct Administration and Modeling

External Objects

DescriptionCNUMSG

Files
accessed

■ SYSTEM-FUSER

Drivers Menu Option

 CTEMSG ***** Natural Related subprograms ***** CTEMSG1
 Oct 16 - Driver for subprogram CNUMSG - 08:53 AM

 Message Number.: 0008 *Message Library: CSTMSG__
 Message Text (Input)
 __

 Retrieval Method: R ('R' for Retrieve, 'S' for Substitute, 'B' for Both)

 Message Substitution
 Data(1): ________________________________ *Message Library: CSTLDA__
 Data(2): ________________________________ *Message Library: CSTLDA__
 Data(3): ________________________________ *Message Library: CSTLDA__

 Default Languages
 *LANGUAGE: 1 1) 1_ 2) 1_ 3) 1_ 4) 1_ 5) 1_ 6) 1_ 7) 1_ 8) 1_

 Response Code: 0 (9 - unsuccessful)

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUPEXST Subprogram

DescriptionCNUPEXST

Checks for the existence of a map profile. This subprogram receives the name of a map
profile and verifies that it exists in the Natural FNAT system file.

What it does

PDAs used ■ CNAPEXST

Files accessed ■ SYSTEM-FNAT

Note: This subprogram is not available on all platforms.

Natural Construct Administration and Modeling296

External Objects

Drivers Menu Option

 CTEPEXST N a t u r a l C o n s t r u c t CTEPXST1
 Aug 14 Driver for subprogram CNUPEXST 1 of 1

 Map Profile Name..: ________
 Map Profile Exists:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUSEL Subprogram

DescriptionCNUSEL

Selects fields from data areas (local or parameter). This subprogram receives the name of a
local (LDA) or parameter data area (PDA) and browses fields in the data area. To select a

What it does

field, mark it. If more than one field is marked, only the first field is selected. You can enter
"X" to terminate the display or "T" to position the list to the top.

PDAs used ■ CNASEL
■ CSASTD

Files accessed ■ None

Drivers Menu Option

 CTESEL ***** Construct Related Subprograms ***** CTESEL1
 Oct 09,96 - Driver for subprogram CNUSEL - 01:52 PM

 *Data Area Name..: ________ Fld Name:

 Field Occurrences
 Structure Number: Field Format: -----------------
 Type Of Field...: Field Length:
 Level Number....: Units.......:
 Total Fields Cnt: 0 Decimals....:

297Natural Construct Administration and Modeling

External Objects

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUSRCNX Subprogram

DescriptionCNUSRCNX

Receives the name of the Natural object and returns the next source line. The first call to the
subprogram returns the first source line. Subsequent calls return the next lines.

What it does

PDAs used ■ CNASRCNX
■ CNRSRCNX
■ CSASTD

Note: The CNRSRCNX data area (containing reserved variables) keeps track of the current
position of the object source and must not be modified by the calling program.

Files accessed ■ SYSTEM-FUSER
■ SYSTEM-FNAT

Natural Construct Administration and Modeling298

External Objects

Drivers Menu Option

 CTESRCNX N a t u r a l C o n s t r u c t CTESRCN1
 Aug 14 Driver for subprogram CNUSRCNX 1 of 1

 *Object Name: CTELRDSM Version:
 First Time : X Include Comments: _

 Src Line...: Userid: Date...: - - Type:
 End Of Src : Level : Time...: . . . SM..:

 Src Code...:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CNUSRCRD Subprogram

DescriptionCNUSRCRD

Reads source text and performs specified processing. This subprogram receives the name
of a Natural object (in the CNASRCRD.#OBJECT-NAME field) and the name of the

What it does

subprogram invoked to process each source line (in the CNASRCRD.#CALLNAT field). It
passes the fields it receives to the subprogram it invokes.

CU--PDA, which contains the model parameters, is also passed to CNUSRCRD, as well as
CSAPASS (redefined as required). It “remembers” information between calls to the
subprogram that processes each source line.

PDAs used ■ CNASRCRD
■ CU--PDA (model PDA)
■ CSAPASS (redefined as required)
■ CSASTD

Files accessed ■ SYSTEM-FUSER
■ SYSTEM-FNAT

299Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTESRCRD N a t u r a l C o n s t r u c t CTESRCR1
 Aug 14 Driver for subprogram CNUSRCRD 1 of 1

 *Object Name: ________ Finished:
 CALLNAT.....: CTESRCSM Include Comments: _

 Object Information

 Type.......: Version: Userid: Time: . . .
 SM.........: Level..: Date: - -

 Src Line...:
 Source Code:
 :

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

Note: If you change the name of the subprogram in the CALLNAT field, the specified sub-
program must have the same parameters as those in the PDAs used by CNUSRCRD.

Natural-Related Helproutines (CNH*)

You can attach the helproutines in this section to fields that require the input ofNatural information
(such as object names, message numbers, etc.). They are active helproutines that populate the field
to which they are attached.

CNHMDL Helproutine

DescriptionCNHMDL

Browses all the Natural Construct models for selection. Valid restriction parameters are:What it does

■ S (display statement models only)
■ M (display program models only)
■ B (display all models)

Input of a Natural Construct model name.Attached to

Natural Construct Administration and Modeling300

External Objects

DescriptionCNHMDL

Parameters used ■ #PDA-RESTRICTION(A1)
■ #PDA-KEY(A32) (model name)

Files accessed ■ NCST-MODEL

CNHMSG Helproutine

DescriptionCNHMSG

Browses for and displays the application error message text. You can add newmessages
to the application bypressing theAddPF-key (the newmessage number is always adjusted
to the next available number).

What it does

Input of a message number field.Attached to

Parameters used ■ #PDA-MESSAGE(A65)
■ #PDA-MESSAGE-LIBRARY(A8)
■ #PDA-KEY(N4)

Files accessed ■ SYSTEM-FUSER

CNHOBJ Helproutine

DescriptionCNHOBJ

Browses all objects of a specified type in the current library. This helproutine receives an
object type and browses all the objects with that type that exist in the current library.
Valid object types are:

What it does

■ P (program)
■ N (subprogram)
■ S (subroutine)
■ M (map)
■ H (helproutine)
■ C (copycode)
■ A (parameter)
■ G (global)
■ L (local)
■ T (text)
■ * (all)
■ 2 (subprogram/helproutine)

301Natural Construct Administration and Modeling

External Objects

DescriptionCNHOBJ

■ 3 (subprogram/helproutine/subroutine)
■ 4 (program/subprogram/helproutine/subroutine)
■ 5 (command processor)
■ D (data area)

Input of a Natural object name field.Attached to

Parameters used ■ #PDA-TYPE(A1)
■ #PDA-KEY(A8) /* Start/Return key

Files accessed ■ SYSTEM-FUSER

Natural Construct Generation Utility Subprograms (CSU*)

The subprograms in this section perform specialized functions to assist in the generation process.

Note: Driver programs for many of the supplied programs/subprograms are available
through the Drivers menu option on the Administration main menu. If a driver program
is available, its location is listed in the Drivers Menu Option section in the program/subpro-
gram description. For more information about the supplied driver programs, seeDrivers
Menu Function.

These subprograms are:

■ CSU-VAR Subprogram
■ CSUBANN Subprogram
■ CSUBLDRP Subprogram
■ CSUBMIT Subprogram (Mainframe)
■ CSUBYTES Subprogram
■ CSUCASE Subprogram
■ CSUCCMD Subprogram
■ CSUCENTR Subprogram
■ CSUCOMPR Subprogram
■ CSUCTRL Subprogram
■ CSUCURS Subprogram
■ CSUCURS1 Subprogram
■ CSUDB2SP Subprogram
■ CSUDELFF Subprogram
■ CSUDEFLT Subprogram
■ CSUDYNAT Subprogram
■ CSUEMLEN Subprogram

Natural Construct Administration and Modeling302

External Objects

■ CSUENDX Subprogram
■ CSUFDEF Subprogram
■ CSUFRVAR Subprogram
■ CSUGEN Subprogram
■ CSUHEADS Subprogram
■ CSUINCL Subprogram
■ CSUIS Subprogram
■ CSULABEL Subprogram
■ CSULENGT Subprogram
■ CSULPS Subprogram
■ CSUMAX Subprogram
■ CSUMIMAX Subprogram
■ CSUMODEL Subprogram
■ CSUMORE Subprogram
■ CSUMPBOX Subprogram
■ CSUMPCPR Subprogram
■ CSUMPDUP Subprogram
■ CSUMPLAY Subprogram
■ CSUMPMMS Subprogram
■ CSUMPOVL Subprogram
■ CSUMPREG Subprogram
■ CSUMPTAB Subprogram
■ CSUMPTST Subprogram
■ CSUNATFM Subprogram
■ CSUNEWX Subprogram
■ CSUOG Subprogram
■ CSUPARMS Subprogram
■ CSUPARTY Subprogram
■ CSUPPER Program
■ CSUREADS Subprogram
■ CSUREF Subprogram
■ CSUSCAN Subprogram
■ CSUSELFV Subprogram
■ CSUSETKY Subprogram
■ CSUSETW Subprogram
■ CSUSORT Program
■ CSUSPLIT Program
■ CSUSUB Program (Mainframe)
■ CSUSUBP Subprogram
■ CSUTEST Program
■ CSUTLATE Subprogram
■ CSUTRANS Subprogram
■ CSUXCHK Subprogram

303Natural Construct Administration and Modeling

External Objects

■ CSU2LONG Subprogram

CSU-VAR Subprogram

DescriptionCSU-VAR

Validates a specified variable name. This subprogram receives a string and checks for a
valid Natural naming convention. Use it whenever a name used as a Natural variable is
entered. If the name is invalid, the subprogram returns a message containing the reason.

Note: The variable name can be fully qualified (contain a prefix).

What it does

Parameters used ■ #PDA-STRING(A65) /*INPUT
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling304

External Objects

Drivers Menu Option

 CTE-VAR ***** Construct Related Subprograms ***** CTE-VAR1
 Oct 09 - Driver for subprogram CSU-VAR - 02:58 PM

 String: ___

 Msg...:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUBANN Subprogram

DescriptionCSUBANN

Generates the standard banner into the source buffer. Use this subprogram to generate
Natural or Visual Basic comments.

What it does

PDAs used ■ CSABANN
■ CSASTD

Files accessed ■ None

CSUBLDRP Subprogram

DescriptionCSUBLDRP

Builds a report layout. This subprogram builds a report layout for the Batch, Browse, and
Browse-Select models. It can be invoked from a sample subprogram within a user exit. The

What it does

invoking subprogram must issue an initial RESET statement to clear the structures in
CSASELFV. For example:

RESET CSASELFV
CSASELFV.GENERAL-INFORMATION
CSASELFV.FIELD-SPECIFICATION(*)

The sample subprogram must also contain a SET KEY ALL statement.

305Natural Construct Administration and Modeling

External Objects

DescriptionCSUBLDRP

For an example of how to invoke the CSUBLDRP utility, refer to the CUSCSRP subprogram
in the SYSCST library.

PDAs used ■ CSABLDRP
■ CSASELFV
■ CSASTD

Files accessed ■ None

CSUBMIT Subprogram (Mainframe)

DescriptionCSUBMIT

Submits a job for execution. The JCL for the job must be in the source buffer.

Note: This subprogram is used in conjunction with the CSUSUB command. For more
information, see JCL Submit Utility (Mainframe), Natural Construct Generation.

What it does

PDAs used ■ CSASTD

Files accessed ■ None

CSUBYTES Subprogram

DescriptionCSUBYTES

Calculates the required bytes for a field, based on the field’s Natural format and length. This
subprogram receives the length and format of a field and returns the number of bytes
occupied by the field.

What it does

PDAs used ■ CSABYTES
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling306

External Objects

Drivers Menu Option

 CTEBYTES N a t u r a l C o n s t r u c t CTEBYTE1
 Aug 14 Driver for subprogram CSUBYTES 1 of 1

 Field Format: _ Bytes.......:
 Field Length: _____
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUCASE Subprogram

DescriptionCSUCASE

Converts a string to upper/lower/mixed case. This subprogram receives a string and a desired
function. It converts and returns the string as follows:

What it does

■ If the function is "U", this subprogram converts all alpha characters in the string to upper
case.

■ If the function is "L", it converts all alpha characters to lower case.
■ If the function is "M", it converts the alpha characters as follows:

■ Removes leading hash (#) or plus (+) characters
■ Replaces all dashes (-) and underscores (_) with blanks
■ Converts the first character, as well as all characters following a dash or underscore, to
upper case

PDAs used ■ CSACASE
■ CSASTD

Files accessed ■ None

307Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTECASE N a t u r a l C o n s t r u c t CTECASE1
 Aug 14 Driver for subprogram CSUCASE 1 of 1

 Function: _ U=Upper, L=Lower, M=Mixed Case
 String..: ___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUCCMD Subprogram

DescriptionCSUCCMD

Generates command block delimiters into the Natural source buffer for super models
(generatemultiplemodules). This subprogram receives a command type, an eight-character
module name, a module type, and, optionally, a model name.

Natural Construct evaluates the contents of these command blocks after it processes the
pre-generation subprogram for the super model. Before continuing the generation, Natural

What it does

Construct either creates the child model specification or saves, stows, and catalogs the
contents of the command block.

CSUCCMDmust always be called twice — first to initialize the command block and then
to close it after generating the contents of the command block.

Note:

1. See the CSLCCMD local data area for valid command values.

2. You cannot use nested command blocks.

PDAs used ■ CSACCMD
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling308

External Objects

CSUCENTR Subprogram

DescriptionCSUCENTR

Centers a text string. This subprogram centers text, such as headings, within a variable. The
length passed to this subprogram should be one of the following:

What it does

■ the length of the variable that stores the heading
■ the length of the AL parameter that displays the variable that stores the heading

PDAs used ■ CSACENTR
■ CSASTD

Files accessed ■ None

309Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTECENTR N a t u r a l C o n s t r u c t CTECNTR1
 Aug 14 Driver for subprogram CSUCENTR 1 of 1

 Length: ___

 String: ___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUCOMPR Subprogram

DescriptionCSUCOMPR

Generates an IF clause for two structures. The subprogram receives two structure names
and a list of underlying components to compare. It generates the IF clause according to the
criteria requested (LT, LE, GT, GE).

Note: DB2 users should use the CSUDB2SP subprogram to compare key values (see
CSUDB2SP Subprogram for a description).

What it does

PDAs used ■ CSACOMPR CSASTD
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling310

External Objects

Drivers Menu Option

 CTECOMPR N a t u r a l C o n s t r u c t CTECOMP1
 Aug 14 Driver for subprogram CSUCOMPR 1 of 1

 Comparison Operator.: __ Lhs Structure: ________________________________
 Tab.................: ___ Rhs Structure: ________________________________
 No. Of Components...: ___
 Component Fld Name
 +----------------------------------+
 1__ | ________________________________ |
 | ________________________________ |
 | ________________________________ |
 | ________________________________ |
 | ________________________________ |
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit bkwrd frwrd mai

CSUCTRL Subprogram

DescriptionCSUCTRL

Retrieves information from the Natural Construct control record and sets the PF-keys, help
indicator, underscore characters, position indicators, disable indicator, scroll indicator, “of”
right prompt, and dynamic attributes for Natural Construct.

What it does

PDAs used ■ CU--PDA
■ CSASTD

Files accessed ■ NCST-CONTROL

311Natural Construct Administration and Modeling

External Objects

CSUCURS Subprogram

DescriptionCSUCURS

Determines the position of the field inwhich the cursor is placed. This subprogram
is invoked when runtime translation is requested. It determines the message

What it does

numbers and positions associated with fields in a translation LDA and invokes
the CSUTLATE subprogram to perform runtime translation. Formore information,
see CSUTLATE Subprogram.

Parameters/PDAs used ■ #TRANSLATION-DATA(A1/1:V)
■ #SYSERR-APPL(A8)
■ #DATA-AREA-NAME(A8)
■ #TEXT-REQUIRED(L)
■ #LENGTH-OVERRIDE(I4)
■ CSACURS
■ CSASTD

Files accessed ■ None

CSUCURS1 Subprogram

DescriptionCSUCURS1

Determines the position of a single field in which the cursor is placed. This
subprogram is invokedwhenever runtime translation of a single field is requested.

What it does

It determines the message number and position associated with the field and
invokes the CSUTLATE subprogram to perform runtime translation. For more
information, see CSUTLATE Subprogram.

Parameters/PDAs used ■ #TRANSLATION-DATA(A1/1:V)
■ #SYSERR-APPL(A8)
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling312

External Objects

CSUDB2SP Subprogram

DescriptionCSUDB2SP

Generates a FIND statement for a superdescriptor. This statement retrieves DB2 records
based on a complex key definition. If a complex key is composed of 5 fields (Field1, Field2,
Field3, Field4, and Field5), for example, the generated FIND/WHERE clause is:

Field1 GE #INPUT.Field1
SORTED BY Field1

What it does

 Field2
 Field3
 Field4
 Field5
WHERE Field2 GE #INPUT.Field2
AND Field3 GE #INPUT.Field3
AND Field4 GE #INPUT.Field4
AND Field5 GE #INPUT.Field5
OR Field1 GE #INPUT.Field1
AND Field2 GE #INPUT.Field2
AND Field3 GE #INPUT.Field3
AND Field4 GT #INPUT.Field4
OR Field1 GE #INPUT.Field1
AND Field2 GE #INPUT.Field2
AND Field3 GT #INPUT.Field3
OR Field1 GE #INPUT.Field1
AND Field2 GT #INPUT.Field2
OR Field1 GT #INPUT.Field1

Note: #INPUT is the qualifier for the RHS fields of the in equations.

PDAs used ■ CSADB2SP
■ CU--PDA
■ CSASTD

Files accessed ■ None

313Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEDB2SP N a t u r a l C o n s t r u c t CTEDB2S1
 Aug 14 Driver for subprogram CSUDB2SP 1 of 1

 *File Name.........: ________________________________ Find Next Record: _
 *Field Name........: ________________________________
 Function..........: ________________________________

 LHS Structure.....: ________________________________
 LHS Index.........: _______________
 RHS Structure.....: ________________________________
 RHS Index.........: ________________________________

 Prefix Length.....: ___
 Low Key Structure : ________________________________
 High Key Structure: ________________________________

 Tab...............:
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUDELFF Subprogram

DescriptionCSUDELFF

Deletes the lines containing */ in the edit buffer. This subprogram searches for and deletes
the lines containing */ in the edit buffer. These lines arewritten byWRITE/PRINT statements
when the DEFINE PRINTER OUTPUT 'SOURCE' statement is used.

What it does

PDAs used ■ None

Files accessed ■ None

Natural Construct Administration and Modeling314

External Objects

Drivers Menu Option

 CTEDELFF N a t u r a l C o n s t r u c t CTEMAP1
 Aug 14 Driver for subprogram CSUDELFF 1 of 1

 +------------------------------------+
 | |
 | PRESS ENTER TO EXECUTE. |
 | |
 +------------------------------------+

 Read in New Source: _
 *New Source Name...: ________
 New Source Library: DEVPR___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUDEFLT Subprogram

DescriptionCSUDEFLT

Provides default specificationvalues forNatural Constructmodels. This subprogramprovides
an interface between generated applications and the user-maintained CSXDEFLT sample

What it does

exit subprogram. To override the default settings, modify CSXDEFLT. The CCDEFLTA,
CCDEFLTL, and CCDEFLTN copycode members return defaults for alphanumeric, logical,
and numeric values, respectively.

PDAs used ■ CSADEFLT
■ CSASTD

Files accessed ■ None

315Natural Construct Administration and Modeling

External Objects

CSUDYNAT Subprogram

DescriptionCSUDYNAT

Builds parameters containing dynamic attributes. This subprogram receives a set of dynamic
attribute characters in the CSADYNA.#ATTRIBUTE-CHARS(A11/1:13) field and builds the

What it does

definition for the DY= parameter. The positioning within this array indicates the type of
dynamic attribute assigned. The positions and attributes are:

■ 1 (normal intensity)
■ 2 (intensified)
■ 3 (blinking)
■ 4 (cursive/italic)
■ 5 (underlined)
■ 6 (reversed video)
■ 7 (blue)
■ 8 (green)
■ 9 (neutral/white)
■ 10 (pink)
■ 11 (red)
■ 12 (turquoise)
■ 13 (yellow)

For example, if you enter:

#ATTRIBUTE-CHARS(1) = '}'
#ATTRIBUTE-CHARS(2) = '{'

This subprogram returns:

#DY-PARAMETER = DY={I

If the caller’s attributes are printable special characters, they are represented literally.
Otherwise, they are represented using the HH syntax.

Note:

1. The dynamic attribute character specified in position 1, which corresponds to normal
intensity, is always coded at the end of the DY= parameter.

2. Programs containing those represented in hex may not be portable.

PDAs used ■ CSADYNAT
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling316

External Objects

Drivers Menu Option

 CTEDYNAT N a t u r a l C o n s t r u c t CTEDYNT1
 Aug 14 Driver for subprogram CSUDYNAT 1 of 1

 Attribute Characters

 (1) Normal Intensity..: _ (8) Green.............: _
 (2) Intensified.......: _ (9) Neutral (white)...: _
 (3) Blinking..........: _ (10) Pink..............: _
 (4) Cursive/Italic....: _ (11) Red...............: _
 (5) Underlined........: _ (12) Turquoise.........: _
 (6) Reversed Video....: _ (13) Yellow............: _
 (7) Blue..............: _

 Dynamic Attribute Parameter:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUEMLEN Subprogram

DescriptionCSUEMLEN

Determines the number of characters (bytes) required to display an edit mask. This
subprogram receives the name of an edit mask and the format of the field to which the edit

What it does

mask is applied. It returns the number of characters (bytes) required to display the edit
mask.

PDAs used ■ CSAEMLEN
■ CSASTD

Files accessed ■ None

317Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEEMLEN N a t u r a l C o n s t r u c t CTEMLEN1
 Aug 14 Driver for subprogram CSUEMLEN 1 of 1

 Edit Mask.....: __
 Field Format..: __

 Display Length:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUENDX Subprogram

DescriptionCSUENDX

Generates the end of a user exit prompt. This subprogram is used by sample subprograms
that generate multiple user exits. Call this subprogram after each user exit is generated.

Note: You do not need to call this subprogram after the last user exit.

What it does

PDAs used ■ None

Files accessed ■ None

Natural Construct Administration and Modeling318

External Objects

Drivers Menu Option

 CTEENDX N a t u r a l C o n s t r u c t CTEMAP1
 Aug 14 Driver for subprogram CSUENDX 1 of 1

 +------------------------------------+
 | |
 | PRESS ENTER TO EXECUTE. |
 | |
 +------------------------------------+

 Read in New Source: _
 *New Source Name...: ________
 New Source Library: DEVPR___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUFDEF Subprogram

DescriptionCSUFDEF

Validates a field definition. This subprogram receives the Natural format and length of a
field and a list of invalid field formats to disallow. To disallow control variables as input

What it does

variables, for example, list the invalid formats in the CSAFDEF.#INVALID FORMATS field.
If the field definition is valid, nothing is returned in CSUFDEF.

If the field definition is invalid, CSASTD.MSGandCSASTD.ERROR-FIELD contain an error
message and the invalid component of the field (FIELD-FORMAT, DECIMALS, or UNIT).

PDAs used ■ CSAFDEF
■ CSASTD

Files accessed ■ None

319Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEFDEF N a t u r a l C o n s t r u c t CTEFDEF1
 Aug 14 Driver for subprogram CSUFDEF 1 of 1

 Field Format...: _ Invalid Formats: __________
 Field Length...: _____

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUFRVAR Subprogram

DescriptionCSUFRVAR

Returns the parameters and conditions from the model code frames. This subprogram
receives a model name and traverses its code frames. It returns the code frame parameters
and conditions.

What it does

PDAs used ■ CSAFRVAR
■ CSASTD

Files accessed ■ NCST-FRAME-LINES
■ NCST-MODEL

Natural Construct Administration and Modeling320

External Objects

Drivers Menu Option

 CTEFRVAR N a t u r a l C o n s t r u c t CTEFRVR1
 Aug 14 Driver for subprogram CSUFRVAR 1 of 1

 *Model Name: ________________________________

 No. Of Conditions : 0
 No. Of Frame Parms: 0
 +---------------------------------------+--------------------------------+
1__ Conditions	1__ Frame Parameters
 +---------------------------------------+--------------------------------+

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit bkwrd frwrd mai

CSUGEN Subprogram

DescriptionCSUGEN

Issues a CALLNAT to the Natural Construct Generate function for a specifiedmodule. This
subprogram receives the names of amodel PDAand amodel informationPDA (CSAMODEL,

What it does

whichmust contain the name of themodel) and uses the inputs to generate themodule code
into the Natural source buffer. When the CALLNAT is made to the module, the code is
appended to the contents of the source buffer. The source buffer name or type does not
change.

Note:

1. The specified model PDA must contain the model parameters required for generation.

2. This subprogram requires a NATPARM SSIZE of 55 or greater.

PDAs used ■ CSAGEN
■ CSAMODEL

321Natural Construct Administration and Modeling

External Objects

DescriptionCSUGEN

■ CU--PDA
■ CSASTD

Files accessed ■ NCST-ADA

CSUHEADS Subprogram

DescriptionCSUHEADS

Separates a line of headings into separate headings. This subprogram receives a line of
headings and returns three separate headings (each with the length of longest heading).

What it does

PDAs used ■ CSAHEADS
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling322

External Objects

Drivers Menu Option

 CTEHEADS N a t u r a l C o n s t r u c t CTEHEAD1
 Aug 14 Driver for subprogram CSUHEADS 1 of 1

 Headings: ______________________________ Field Headings Stacked

 Field Heading Width: 0

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUINCL Subprogram

DescriptionCSUINCL

Inserts the source for all copycode (currently in the edit buffer) into the edit buffer.What it does

PDAs used ■ None

Files accessed ■ None

323Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEINCL N a t u r a l C o n s t r u c t CTEMAP1
 Aug 14 Driver for program CSUINCL 1 of 1

 +------------------------------------+
 | |
 | PRESS ENTER TO EXECUTE. |
 | |
 +------------------------------------+

 Read in New Source: _
 *New Source Name...: ________
 New Source Library: DEVPR___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUIS Subprogram

DescriptionCSUIS

Verifieswhether the contents of an alphanumeric field can be converted to a specified format
and length. If the format and length are invalid Natural formats, CSASTD.MSG contains an

What it does

error message when this subprogram is invoked. If the format and length are valid,
CSASTD.MSG is blank.

In some cases, a user must specify a value using a certain (variable) format and length. For
example, the minimum/maximum key values should be valid values corresponding to the
format and length of the key. You cannot use the Natural IS function because the format is
not known until runtime.

PDAs used ■ CSAIS
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling324

External Objects

Drivers Menu Option

 CTEIS N a t u r a l C o n s t r u c t CTEIS1
 Aug 14 Driver for subprogram CSUIS 1 of 1

 Field Value.: __
 Field Format: _
 Field Length: ___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSULABEL Subprogram

DescriptionCSULABEL

Verifies a Natural looping label. This subprogram receives a string of characters
and validates it against the Natural label naming convention. ; if the label is not
valid, CSASTD.MSG contains an error message.

What it does

■ If the label is valid, CSASTD.MSG is blank
■ If the label is not valid, CSASTD.MSG contains an error message

Parameters/PDAs used ■ #PDA-LABEL(A32)
■ CSASTD

Files accessed ■ None

325Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTELABEL N a t u r a l C o n s t r u c t CTELABL1
 Aug 14 Driver for subprogram CSULABEL 1 of 1

 Label: ________________________________

 Msg..: __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSULENGT Subprogram

DescriptionCSULENGT

Builds an input prompt and calculates the length of the heading. This subprogram receives
a field name, format, and length. It builds the input prompt from the field headings (if no

What it does

heading was given, the field name is converted to mixed case) and calculates the length
from the format, length, and edit mask. It also returns the heading length and sign option
(based on the field format and edit mask).

PDAs used ■ CSALENGT
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling326

External Objects

Drivers Menu Option

 CTELENGT N a t u r a l C o n s t r u c t CTELNGT1
 Aug 14 Driver for subprogram CSULENGT 1 of 1

 Field Name....: ________________________________ Field Length....: ______
 Field Headings: ______________________________ Field Format....: _
 : ______________________________ Sign............: _
 : ______________________________

 Edit Mask.....: __

 Input Prompt..: Heading Length..:
 Sg Option.....: Fld Displ Length:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSULPS Subprogram

DescriptionCSULPS

Changes the display language (*Language value) and sets the translation required
flag to True. This subprogram displays a list of all available languages supported

What it does

by Natural. When a new language is selected, it switches the user’s session to that
language and sets the translation required flag to True.

Parameter/PDAs used ■ #PDA-TRANSLATION-REQUIRED (L)
■ CSASTD

Files accessed ■ SYSDIC-FI

327Natural Construct Administration and Modeling

External Objects

CSUMAX Subprogram

DescriptionCSUMAX

Generates the assignment of a maximum value for a field. This subprogram receives the
name, format, and length of a variable and generates the assignment of the maximum value

What it does

for the field into the edit buffer. It is used when reading a file for all values with a specified
prefix, where the suffix extends from the lowest to the highest value.

PDAs used ■ CSAMAX
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling328

External Objects

Drivers Menu Option

 CTEMAX N a t u r a l C o n s t r u c t CTEMAX1
 Aug 14 Driver for subprogram CSUMAX 1 of 1

 Field : ___
 Format: _
 Length: _____
 Tab...: __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUMIMAX Subprogram

DescriptionCSUMAX

Generates the assignment of a minimum value for a field. This subprogram receives the
name of a variable and its format and length. It generates the assignment of the
minimum/maximum values for the field into the edit buffer.

What it does

PDAs used ■ CSAMIMAX
■ CSASTD

Files accessed ■ None

329Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEMIMAX N a t u r a l C o n s t r u c t CTEMIMX1
 Aug 14 Driver for subprogram CSUMIMAX 1 of 1

 Field : ___

 Format: __ Minimum Value: _ Non Negative Min/Max: _ Tab: __
 Length: _____ Descending...: _ DB2 Date/Time Stamp : _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUMODEL Subprogram

DescriptionCSUMORE

Returns information about a Natural Construct model. This subprogram receives the name
of a model and returns the model description, generator mode and type, and the names of
the model PDA, subprograms, and code frames.

What it does

PDAs used ■ CSAMODEL
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling330

External Objects

Drivers Menu Option

 CTEMODEL N a t u r a l C o n s t r u c t CTEMODL1
 Aug 14 Driver for subprogram CSUMODEL 1 of 1

 *Model Name.......: ________________________________
 Model Description:

 No. Modify Subps: Modify Subps Code Frames Clear Subp...:
 No. Code Frames : ------------ ----------- Read Subp....:
 Generator Mode..: Save Subp....:
 Generator Type..: Pre-Gen Subp.:
 Display Window..: Post-Gen Subp:
 Start Comment...: Doc Subp.....:
 End Comment.....: Pda Name.....:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUMORE Subprogram

DescriptionCSUMORE

Builds the initial assignment for the LEFT-MORE/RIGHT-MORE array. This subprogram
receives a function (L for the LEFT-MORE array, R for the RIGHT-MORE) and the number

What it does

of panels used by a program. These arrays contain the prompts displayed at the top left or
right corner of the panels. The prompts indicate the number of panels located to the left or
right of the current panel.

For example, to generate the initial value for the LEFT-MORE-PROMPT array for a program
with two panels, enter:

CSAMORE.#LEFT-RIGHT = 'L'
CSAMORE.#MAX-WINDOW = 2

The subprogram writes the following to the source buffer:

331Natural Construct Administration and Modeling

External Objects

DescriptionCSUMORE

INIT < ' ','<1 more' >

To generate the initial value for the RIGHT-MORE-PROMPT array for a program with two
panels, enter:

CSAMORE.#LEFT-RIGHT = 'R'

The subprogram writes the following to the source buffer:

INIT < '1 more >','' >

Note: If the value of *Language is not 1 during generation, the word “more” is not included
in the initial values.

Tip: Use a scalar field rather than an occurrence of this array. Before the map is displayed,
assign the array occurrence to the scalar field. Using arrays on maps makes them difficult
to maintain and less suitable to use as standard layouts.

PDAs used ■ CSAMORE
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling332

External Objects

Drivers Menu Option

 CTEMORE N a t u r a l C o n s t r u c t CTEMORE1
 Aug 14 Driver for subprogram CSUMORE 1 of 1

 Left/Right: _ (L or R)
 Max Windows: __

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

Note: For more information on changing the size of the left or right prompt, see Use
CSXDEFLT Overrides.

CSUMPBOX Subprogram

DescriptionCSUMPBOX

Handles the map edit buffer. This subprogram receives a function and parameters (in
CSAMPBOX). It initializes the map edit buffer or generates variable, array, and text control
blocks into the edit buffer.

What it does

PDAs used ■ CSAMPBOX
■ CSASTD

Files accessed ■ None

CSUMPCPR Subprogram

DescriptionCSUMPCPR

Replaces the map settings in the edit buffer with values from the CSAMPSET parameter
data area.

What it does

PDAs used ■ CSAMPSET
■ CSASTD

Files accessed ■ None

333Natural Construct Administration and Modeling

External Objects

CSUMPDUP Subprogram

DescriptionCSUMPDUP

Checks for the duplication of fields on a map. This subprogram determines whether there
are any fields duplicated in the CSAMPFLD.FIELD-INFO(*) structure. If there are duplicate
fields, CSASTD.MSG contains an error message when this subprogram is invoked.

What it does

PDAs used ■ CSAMPFLD
■ CSASTD

Files accessed ■ None

CSUMPLAY Subprogram

DescriptionCSUMPLAY

Loads the map layout into the edit buffer and returns the map settings. This subprogram
receives the name, layout, and type of map and loads the specified map into the edit buffer.
It returns the map settings.

What it does

PDAs used ■ CSAMPSET
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling334

External Objects

Drivers Menu Option

 CTEMPLAY N a t u r a l C o n s t r u c t CTEMPLY1
 Aug 14 Driver for subprogram CSUMPLAY 1 of 1

 *Layout..: ________ Error Code : Dc: Zp............:
 Map Version: Ps: Pm............:
 Profile....: Ls: Cursor Skip...:

 Delimiter Class..: Std Keys......:
 Ad...............: Justification :
 Delimiter Char...: Col Shift.....:
 Cd...............: Case Deflt....:

 Write Statement..: CV.........: Auto Rule Rank:
 Input Statement..: Filler Char: Enforce Attr..:

 Help.............:
 Help-As-Fld-Deflt:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUMPMMS Subprogram

DescriptionCSUMPMMS

Merges the settings for twomaps. This subprogrammerges themap settings fromCSAMPSET
and CSAMPOUT. The settings in CSAMPSET override the settings in CSAMPOUT and the
result is stored in CSAMPOUT.

What it does

PDAs used ■ CSAMPSET
■ CSAMPOUT

Files accessed ■ None

335Natural Construct Administration and Modeling

External Objects

CSUMPOVL Subprogram

DescriptionCSUMPOVL

Checks the boundary on a map and determines if there are overlapping fields. This
subprogram checks whether the fields specified in CSAMPFLD exceed the line size or page
size of the available map panel.

The availablemap panel is a block of consecutive lines on the panel. This block is determined
by the specified page and line size, excluding the map layout and any PF-keys. The fields
on the map cannot overlay the layout or PF-keys.

What it does

PDAs used ■ CSAMPFLD
■ CSASTD

Files accessed ■ None

CSUMPREG Subprogram

DescriptionCSUMPREG

Determines the available map area in a map layout. This subprogram determines the first
and last line on a map that is available for editing in a specified map layout.

What it does

PDAs used ■ CSAMPREG
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling336

External Objects

Drivers Menu Option

 CTEMPREG N a t u r a l C o n s t r u c t CTEMPRG1
 Aug 14 Driver for subprogram CSUMPREG 1 of 1

 *Layout: ________ First Available Line: Layout Page Size:
 Last Available Line: Layout Line Size:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUMPTAB Subprogram

DescriptionCSUMPTAB

Calculates the absolute field coordinates on a map and creates the field prompts. This
subprogram receives field information from CSAMPFLD and returns the absolute field

What it does

positions and prompts in CSAMPX-Y. Dots are added to each field prompt in a region to
extend its length to that of the longest prompt in that region (... for ISA format and . . . for
SAA format).

Note: For more information about the data returned, refer to the CSAMPX-Y data area in
the SYSCST library.

PDAs used ■ CSAMPFLD
■ CSAMPX-Y
■ CSASTD

Files accessed ■ None

337Natural Construct Administration and Modeling

External Objects

CSUMPTST Subprogram

DescriptionCSUMPTST

Tests the specifications for the map currently in the edit buffer.What it does

PDAs used ■ CSAMPTST
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling338

External Objects

Drivers Menu Option

 CTEMPTST N a t u r a l C o n s t r u c t CTEMTST1
 Aug 14 Driver for subprogram CSUMPTST 1 of 1

 Read in New Map: _ Page Size: 23_
 *Map Name.......: ________ Line Size: 80_
 Map Library....: DEVPR___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUNATFM Subprogram

DescriptionCSUNATFM

Builds a valid Natural format definition from the formats and lengths specified. This
subprogram receives the format and length values and combines these to build a valid
Natural format string. For example, if you enter:

CSANATFM.FIELD-LENGTH = 9.0
CSANATFM.FIELD-FORMAT = 'P'

What it does

CSUNATFM produces the following output:

CSANATFM.#Natural-FORMAT = P9

PDAs used ■ CSANATFM
■ CSASTD

Files accessed ■ None

339Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTENATFM N a t u r a l C o n s t r u c t CTENTFM1
 Aug 14 Driver for subprogram CSUNATFM 1 of 1

 Field Format: _ Natural Format:
 Field Length: _____

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUNEWX Subprogram

DescriptionCSUNEWX

Generates a new user exit prompt. This subprogram receives the name of a user exit and
generates a starting point (DEFINEEXIT exit-name, for example) for the user exit. It initiates
a new user exit for sample subprograms that are capable of generating more than one exit.

What it does

PDAs used ■ CSANEWX

Files accessed ■ None

Natural Construct Administration and Modeling340

External Objects

Drivers Menu Option

 CTENEWX N a t u r a l C o n s t r u c t CTENEWX1
 Aug 14 Driver for subprogram CSUNEWX 1 of 1

 User Exit Name: ________________________________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--
 help retrn quit

CSUOG Subprogram

DescriptionCSUOG

Comments out all code within a specified user exit. This subprogram receives the name of
a user exit and inserts comment indicators at the beginning of each line of code within the
specified exit.

Specify the name of the user exit in the #USER-EXIT (A65) variable. For example, to comment
out all code within the MOVE-TO user exit, specify the following:

What it does

0040 01 #USER-EXIT (A65)
.
.
.
3800 #USER-EXIT := 'MOVE-TO'
3810 CALLNAT 'CSUOG' #USER-EXIT

PDAs used ■ CSAOG

Files accessed ■ None

341Natural Construct Administration and Modeling

External Objects

CSUPARMS Subprogram

DescriptionCSUPARMS

Returns the value of a NATPARM parameter. This subprogram receives a NATPARM
parameter and returns its corresponding value. Valid NATPARM parameters are:

What it does

■ CF
■ DC
■ IA
■ ID
■ KD
■ ML
■ TB
■ UL

Note: For information about INPUT/OUTPUT parameters, refer to the CSAPARMS data
area in the SYSCST library.

PDAs used ■ CDUPARMA
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling342

External Objects

Drivers Menu Option

 CTEPARMS N a t u r a l C o n s t r u c t CTEPARM1
 Aug 14 Driver for subprogram CSUPARMS 1 of 1

 Parameter....: __ (ID,CF,UL,TB,IA,DC,KD,ML)
 Alpha Value..:
 Numeric Value:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUPARTY Subprogram

DescriptionCSUPARTY

Determines Natural data types and returns the byte length. This subprogram receives the
format and length for a data type and indicates whether it is a valid Natural data type. If it
is, this subprogram returns the byte length.

What it does

PDAs used ■ CSAPARTY
■ CSASTD

Files accessed ■ None

CSUPPER Program

DescriptionCSUPPER

Converts the contents of the source buffer into upper case. This program reads through the
source buffer and converts specified lower case characters into upper case.

What it does

PDAs used ■ None

Files accessed ■ None

343Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEPPER N a t u r a l C o n s t r u c t CTEMAP1
 Aug 14 Driver for program CSUPPER 1 of 1

 +------------------------------------+
 | |
 | PRESS ENTER TO EXECUTE. |
 | |
 +------------------------------------+

 Read in New Source: _
 *New Source Name...: ________
 New Source Library: DEVPR___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUREADS Subprogram

DescriptionCSUREADS

Reads the specification parameters for a module. This subprogram receives the
name of a source module. If the module was generated using Natural Construct,

What it does

the subprogram reads the source code and returns the model parameter data area
(PDA) containing the parameters used to generate the module.

You can use the passed model PDA to call the model subprograms for the model
used to generate the module.

This subprogramalso returns a data area describing themodel and listing the names
of the model subprograms.

Note: This subprogram requires a NATPARM SSIZE of 55 or greater.

Parameters/PDAsused ■ #READ-THIS-MODULE(A8)
■ CSAMODEL
■ CU--PDA
■ CSASTD

Files accessed ■ NCST-ADA
■ SYSTEM-FUSER

Natural Construct Administration and Modeling344

External Objects

Tip: If you know the name of the model used to generate the specified module, you can
pass its model PDA to CSUREADS rather than CU--PDA. After the call to CSUREADS, the
model PDA is populated with the parameters used to generate that module.

CSUREF Subprogram

DescriptionCSUREF

Generates referential integrity checks against foreign files. This subprogram is typically
called three times: once to generate the data structures (DATA) required by the generated

What it does

code, once to generate the update edits (UPDATE), and once to generate the delete edits
(DELETE). Set the value of CSAREF.FUNCTION-CODE to either DATA, UPDATE, or
DELETE.

After the first call, this subprogram returns the number of update and delete edits found.
This avoids unnecessary subsequent calls.

PDAs used ■ CSAREF
■ CU--PDA
■ CSASTD

Files accessed ■ SYSDIC-RL
■ SYSDIC-FI

CSUSCAN Subprogram

DescriptionCSUSCAN

Scans for the existence of a string in the edit buffer. This subprogram receives a string and
scans for (not absolute) the existence of the string in the edit buffer.

What it does

PDAs used ■ CSASCAN

Files accessed ■ None

345Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTESCAN N a t u r a l C o n s t r u c t CTESCAN1
 Aug 14 Driver for subprogram CSUSCAN 1 of 1

 String..: ___
 Absolute: _ (Mark if scan string need not be delimited by special chars)
 Found...: _

 Read in New Source: _
 *New Source Name...: ________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUSELFV Subprogram

DescriptionCSUSELFV

Selects fields/variables from views, LDAs, or PDAs. This subprogram selects up to 40
fields/variables from up to 6 different views, LDAs, or PDAs and appends the selected
fields/variables to CSASELFV. Existing fields/variables in CSASELFV cannot be re-selected.

When selecting from data areas, you cannot select the following:

What it does

■ constants
■ more than one structure

If you specify the select all option, then the first structure in the data area is selected.

The invoking subprogram should issue an initial RESET statement to clear the structures in
CSASELFV, such as:

RESET CSASELFV
CSASELFV.GENERAL-INFORMATION
CSASELFV.FIELD-SPECIFICATION(*)

PDAs used ■ CSASELFV
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling346

External Objects

CSUSETKY Subprogram

DescriptionCSUSETKY

Returns PF-key definitions from the control record to support variable PF-keys in Natural
Construct. The PF-key names are returned in the CSASETKY.#PF-NAME(*) array. The index

What it does

for each array element corresponds to the PF-key number. The following example indicates
that PF1 is named “help”:

#PF-NAME(1) = 'help'

PDAs used ■ CSASETKY
■ CSASTD

Files accessed ■ NCST-CONTROL

347Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTESETKY N a t u r a l C o n s t r u c t CTESETK1
 Sep 07 Driver for subprogram CSUSETKY 1 of 1

 Pf Name Pf Number Pf Key
 ------- --------- ------
 main Main......: 12 Pf Main......: PF12
 retrn Return....: 2 Pf Return....: PF2
 quit Quit......: 3 Pf Quit......: PF3
 test Test......: 4 Pf Test......: PF4
 bkwrd Backward..: 7 Pf Backward..: PF7
 frwrd Forward...: 8 Pf Forward...: PF8
 left Left......: 10 Pf Left......: PF10
 right Right.....: 11 Pf Right.....: PF11
 help Help......: 1 Pf Help......: PF1
 Available1: 5 Pf Available1: PF5
 Available2: 6 Pf Available2: PF6
 Available3: 9 Pf Available3: PF9

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUSETW Subprogram

DescriptionCSUSETW

Returns the SET CONTROL parameters to define a window. This subprogram receives the
parameters for a window (such as frame, line size, column size, base line, and base column).

What it does

It returns the SET CONTROL parameters to define the window. For example, if the
parameters are:

CSASETW.FRAME=TRUE
CSASETW.LINE-SIZE=70
CSASETW.COLUMN-SIZE=5

This subprogram returns:

Natural Construct Administration and Modeling348

External Objects

DescriptionCSUSETW

CSASETW.SET-CONTROL.PARM='WBFL70C5'

PDAs used ■ CSASETW
■ CSASTD

Files accessed ■ None

349Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTESETW N a t u r a l C o n s t r u c t CTESETW1
 Aug 14 Driver for subprogram CSUSETW 1 of 1

 Frame......: _ Line Size..: ___ Base Line..: ___ Required Width : ___
 Column Size: ___ Base Column: ___ Required Height: ___

 Set Control Parm:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUSORT Program

DescriptionCSUSORT

Sorts a 2-dimensional array based on specified columnpositions. This subprogram
receives a 2-dimensional array and sorts the array based on the desired column

What it does

positions. A Natural SORTSIZE is not required because the sort uses an internal
bubble sort algorithm.

Note: For an example of how to call this subprogram, refer to the CSASORT data
area.

Parameters/PDAs used ■ CSASORT
■ #SORT-DATA(A1/1:V,1:V)
■ CSASTD

Files accessed ■ None

Natural Construct Administration and Modeling350

External Objects

CSUSPLIT Program

DescriptionCSUSPLIT

Splits lines in the source buffer that are longer than 72 characters. Only lines with code
extending beyond column 72 are split; lines with comments extending beyond column 72,

What it does

but not code, are ignored. If a text string (enclosed within quotes) extends beyond column
72, the entire string is moved to the next line.

PDAs used ■ None

Files accessed ■ None

351Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTESPLIT N a t u r a l C o n s t r u c t CTEMAP1
 Aug 14 Driver for program CSUSPLIT 1 of 1

 +------------------------------------+
 | |
 | PRESS ENTER TO EXECUTE. |
 | |
 +------------------------------------+

 Read in New Source: _
 *New Source Name...: ________
 New Source Library: DEVPR___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUSUB Program (Mainframe)

DescriptionCSUSUB

Submits a job for execution. The JCL for the jobmust be in the source buffer. This subprogram
is used in conjunction with the CSUSUB command. For information, see JCL Submit Utility
(Mainframe), Natural Construct Generation.

What it does

PDAs used ■ None

Files accessed ■ None

CSUSUBP Subprogram

DescriptionCSUSUBP

Returns information about a Natural Construct model subprogram, such as the PF-key
settings and the window sizes. This subprogram receives the name of a model subprogram

What it does

and returns information about that subprogram. The information corresponds to the data
accessed through the Maintain Subprograms function.

Note: For more information, seeMaintain Subprograms Function.

PDAs used ■ CSASUBP

Natural Construct Administration and Modeling352

External Objects

DescriptionCSUSUBP

■ CSASTD

Files accessed ■ NCST-SUBPROGRAM

353Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTESUBP N a t u r a l C o n s t r u c t CTESUBP1
 Aug 15 Driver for subprogram CSUSUBP 1 of 1

 Subprogram Name: ________
 Description....:

 Backward Forward Flag: Window Length : Key Name No. Other Keys: _
 Left Right Flag......: Window Columns: --------
 Test Key Flag........:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUTEST Program

DescriptionCSUTEST

Tests the subprograms for Natural Construct-generated models. This program tests the
individual subprograms for Natural Construct-generatedmodels. For information, see Test
the Model Subprograms.

What it does

PDAs used ■ None

Files accessed ■ NCST-SUBPROGRAM
■ NCST-CONTROL

Natural Construct Administration and Modeling354

External Objects

Drivers Menu Option

 CSUTEST N a t u r a l C o n s t r u c t CSUTESM1
 Aug 14 Single Module Test Program 04:54 PM

 Code Function *Model: ________________________________
 ---- ------------------- Number all subprograms to be executed
 R Release Variables | |
 * Execute All Subp. V |
 1-9 Execute One Subp. _ Clear : ________ V
 E Edit source _ Mod 1: ________ _ Mod 6: ________
 C Clear Edit Buffer _ Mod 2: ________ _ Mod 7: ________
 ? Help _ Mod 3: ________ _ Mod 8: ________
 . Terminate _ Mod 4: ________ _ Mod 9: ________
 ---- ------------------- _ Mod 5: ________ _ Mod 10: ________
 _ _ Pregen: ________ _ Save : ________
 Source _ Documt: ________ _ Postgn: ________
 Lines
 Total: 133 Frame Parameter or Exit Name
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSUTLATE Subprogram

DescriptionCSUTLATE

Translatesmessage text at runtime. This subprogram receives amessage number andposition
value and retrieves the appropriate text. If themessage text containsmultiple items delimited
by a slash (/), the position value identifies which text is translated.

This subprogram is invoked from the CSUCURS and CSUCURS1 subprograms.

What it does

PDAs used ■ CSATLATE
■ CSASTD

Files accessed ■ SYSTEM-FUSER

355Natural Construct Administration and Modeling

External Objects

CSUTRANS Subprogram

DescriptionCSUTRANS

Translates screen prompts before they are displayed. This subprogram receives a defined data
structure (typically a translation LDA) containing SYSERR message numbers and translates
them into the appropriate text.

CSUTRANS reads the supplied data structure, searching for one of two message number
patterns: *NNNN or *NNNN.A, where *NNNN identifies the message number and .A identifies a

What it
does

position within the message number. If a message number of the type *NNNN is located, the
entire SYSERRmessage is retrieved. If a message number of type *NNNN.A is located, the portion
of the message corresponding to the .A notation is retrieved. A message number can have up
to 15 positions: the values 1 to 9 represent the first nine positions, and the values A to F represent
the 10th to 15th positions.

To locate the text corresponding to a message number, specify the library in which the SYSERR
message numbers and text reside. By default, CSUTRANS checks the SYSERRmessageCSTLDA
library. In most cases, you will create your own SYSERR message library. When you do, enter
the library name in the #MESSAGE-LIBRARY field.

In addition to retrieving the appropriate language message text, CSUTRANS searches for any
formatting characters and formats the text as appropriate.

CSUTRANS requires a specific data structure. The following example shows the translation
LDA for the Standard Parameters panel for the Batch model:

* * **SAG TRANSLATION LDA
* * * used by CTETRANS.
1 CTE-MAL
 2 TEXT /* Corresponds to syserr message
 3 #GEN-PROGRAM A 20 INIT<'*2000.1,.'>
 3 #SYSTEM A 20 INIT<'*2000.2,+'>
 3 #GDA A 20 INIT<'*2000.3,>'>
 3 #TITLE A 20 INIT<'*2001.1,+/16'>
 3 #DESCS A 20 INIT<'*2001.2,.'>
 3 #GDA-BLOCK A 20 INIT<'*2001.3,>'>
 3 #MAP-HEADER1 A 20 INIT<'*2049.1,./18'>
 3 #MAP-HEADER2 A 20 INIT<'*2049.2,>/18'>
 3 #USE-MSG-NR A 20 INIT<'*2050.1,.'>
 3 #PASSWORD-CHECK A 20 INIT<'*2050.2,./20'>
 2 TEXT
 3 TRANSLATION-TEXT
 4 TEXT-ARRAY A 1 (1:200)
 2 ADDITIONAL-PARMS
 3 #MESSAGE-LIBRARY A 8 INIT<'CSTLDA'>
 3 #LDA-NAME A 8 INIT<'CTE-MAL'>
 3 #TEXT-REQUIRED L INIT<TRUE>
 3 #LENGTH-OVERRIDE I 4 /* Length to translate

Natural Construct Administration and Modeling356

External Objects

DescriptionCSUTRANS

Other details about the structural elements include:

■ The first comment line (**SAG TRANSLATION LDA) indicates that this is a translation LDA.
During a static install, Natural Construct scans for this comment line and replaces the SYSERR
numbers with the appropriate text.

■ The CTE-MAL level 1 structure name is typically the LDA name; use this qualifier whenever
the variables are accessed.

■ The level 3 variables (#GEN-PROGRAM, #SYSTEM, #GDA, etc.) are screen prompts that are
initialized with a valid SYSERR number. All SYSERR numbers use the *NNNN.A notation and
are listed in sequential order.

Note: This sequence does not apply to positions after the periodwithin the *NNNN.A notation.
For example, you can list *2000.2 before *2001.1.

■ The TEXT-ARRAY value must match the total number of bytes in all prompt variables to be
translated.

■ The #MESSAGE-LIBRARY value indicates the SYSERR library in which the text is stored.
■ The #TEXT-REQUIRED logical indicates whether translation is required, If it is, this field
ensures that translation is performed only once.

Note:

1. For more information about SYSERR message numbers, see Use SYSERR References.

2. Formore information about formatting themessage text, see Format SYSERRMessage Text.

PDAs
used

■ CSATRANS
■ CSASTD

Files
accessed

■ SYSTEM-FUSER

357Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTETRANS ***** Natural Related subprograms *****
 Oct 21 - Driver for subprogram CSUTRANS - 1 of 1

 Translation LDA CTE-MAL

 Input Parameters ... #GEN-PROGRAM *2000.1,.___________
 #SYSTEM *2000.2,+___________
 #GDA *2000.3,>___________
 #TITLE *2001.1,+/16________
 #DESCS *2001.2,.___________
 #GDA-BLOCK *2001.3,>___________
 #MAP-HEADER1 *2049.1,./18________
 #MAP-HEADER2 *2049.2,>/18________
 #USE-MSG-NR *2050.1,.___________
 #PASSWORD-CHECK *2050.2,./20________
 #MESSAGE-LIBRARY CSTLDA__
 #LDA-NAME CTE-MAL_
 #TEXT-REQUIRED X
 #LENGTH-OVERRIDE __________0
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help quit reset bkwrd frwrd right left

Note: This driver program is provided as a sample only. Because the screen prompts
translated byCSUTRANSvary depending on the application under development, the driver
program must be tailored to the application.

CSUXCHK Subprogram

DescriptionCSUXCHK

Scans for the existence of a user exit in the edit buffer. This subprogram receives the name
of a user exit and scans the edit buffer for that name.

What it does

PDAs used ■ CSAXCHK

Files accessed ■ None

Natural Construct Administration and Modeling358

External Objects

Drivers Menu Option

 CTEXCHK N a t u r a l C o n s t r u c t CTEXCHK1
 Aug 14 Driver for subprogram CSUXCHK 1 of 1

 User Exit Name....: ________________________________
 Found.............:

 Read in New Source: _
 *New Source Name...: ________
 New Source Library: DEVPR___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CSU2LONG Subprogram

DescriptionCSU2LONG

Converts a long variable name to an abbreviation. This subprogram receives a long character
string (32 characters) and a desired length, and returns the truncated string (abbreviation).

What it does

The sixth position of the string is the first position truncated. If no length is given, the default
is 30.

If the long string is not longer than the desired length, the string is still truncated. For
example, if the long string is “THIS-IS-A-LONG-VARIABLE” and the desired length is 20,
the short string is “THIS-A-LONG-VARIABLE”.

Tip: Use this subprogram when you add characters to a file or field name that is already 32
characters long.

PDAs used ■ CSA2LONG

Files accessed ■ None

359Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTE2LONG N a t u r a l C o n s t r u c t CTE2LNG1
 Aug 14 Driver for subprogram CSU2LONG 1 of 1

 Long Name.....: ________________________________
 Maximum Length: ___

 Short Name....:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

Predict-Related Subprograms (CPU*)

The subprograms described in this section retrieve information from the Predict data dictionary.
While someof these subprogramsgenerate code,most supply information to the calling subprogram
and the calling subprogram generates the code.

Notes:

1. If you use Software AG’s Entire Net-work, the Predict data can reside on a platform other than
the platform on which Natural Construct is running.

2. Driver programs for many of the supplied programs/subprograms are available through the
Drivers menu option on the Administration main menu. If a driver program is available, its
location is listed in the Drivers Menu Option section in the program/subprogram’s description.
For more information about the supplied driver programs, seeDrivers Menu Function.

This section covers the following topics:

■ With Natural Security Installed
■ CPU-OBJ Subprogram
■ CPU-OBJ2 Subprogram
■ CPU-OREL Subprogram
■ CPU-VIEW Subprogram
■ CPUEL Subprogram
■ CPUELDE Subprogram

Natural Construct Administration and Modeling360

External Objects

■ CPUELKY Subprogram
■ CPU-FREL Subprogram
■ CPUELNX Subprogram
■ CPUELRD Subprogram
■ CPUELVE Subprogram
■ CPUEXIST Subprogram
■ CPUFI Subprogram
■ CPUHOLD Subprogram
■ CPUKY Subprogram
■ CPUREDEF Subprogram
■ CPURL Subprogram
■ CPURLRD Subprogram
■ CPUSUPER Subprogram
■ CPUUNIQ Subprogram
■ CPUVE Subprogram
■ CPUVERUL Subprogram
■ CPUXPAND Subprogram

With Natural Security Installed

If Natural Security is installed, the Predict-related subprograms restrict access to file and field in-
formation. Users can only retrieve information for files linked to the current application.

While generating a program, the programmay access information about the same filemany times.
To avoid security checks each time, the access subprograms use the FILE-CODE field. This IN-
PUT/OUTPUT field accesses file information and acts as a cipher code to avoid multiple security
checks on the same file; it is available for all supplied subprograms.

If you are developing under Natural Security, include the FILE-CODE field in the model PDA for
each file usedmultiple times during generation. The FILE-CODE field is passed in the PDA of the
access subprogram and reassigned back to the model PDA after each call.

To avoid security checks for each access, the model subprogram that invokes CPUEL contains the
following statements:

ASSIGN CPAEL.FILE-CODE = #PDA-FILE-CODE
CALLNAT 'CPUEL' CPAEL CSASTD
ASSIGN #PDA-FILE-CODE = CPAEL.FILE-CODE

Note: For an example of using these subprograms to restrict access to file and field inform-
ation, refer to the CUSCGPR program in the SYSCST library.

361Natural Construct Administration and Modeling

External Objects

CPU-OBJ Subprogram

DescriptionCPU-OBJ

Generates an external data area based on a Predict file view. This subprogram receives the
view name and a set of logical variables that define the generation options. It generates an

What it does

external data area structure to match the view. It can also generate the C# variables for each
C* variable that corresponds to anMU or PE and/or includes the corresponding REDEFINE
fields for redefined fields or superdescriptors.

Note: For information about INPUT/OUTPUT parameters, refer to the CPA-OBJ data area
in the SYSCST library.

PDAs used ■ CPA-OBJ
■ CSASTD

Files accessed ■ SYSDIC-EL
■ SYSDIC-FI

Natural Construct Administration and Modeling362

External Objects

Drivers Menu Option

 CTE-OBJ N a t u r a l C o n s t r u c t CTE-OBJ1
 May 12 Driver for subprogram CPU-OBJ 1 of 1

 *File: ________________________________

 Build Redefines..: _ Structure Level: _
 SuperDe Redefines: _ Joined Fld Name: ________________________________
 Cstars...........: _ Joined Length..: ___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CPU-OBJ2 Subprogram

DescriptionCPU-OBJ2

Issues CALLNAT to the #CALLNAT subprogram and passes information about
elements that make up an object. This subprogram receives:

What it does

■ a view name
■ a key name
■ a set of options
■ the name of a passed subprogram to CALLNAT

An object is derived from view and key names. The view and key names are based on
intra-object relationships defined in Predict (for example,
ORDER-HEADER-HAS-ORDER-LINES).

The elements of an object are the individual fields in the files that make up the object.
This subprogram traverses the object tree and checks each element. For each element,
it CALLNATs the #CALLNAT subprogram and passes it information about the element
(for example, the format, length, and type).

You can set options to limit or extend the number of elements to check (for example,
whether to include all field redefinitions or just the lowest levels).

Note: This subprogram replaces the CPU-OBJ subprogram; for all new development,
use CPU-OBJ2.

363Natural Construct Administration and Modeling

External Objects

DescriptionCPU-OBJ2

Parameters/PDAs
used

■ CPA-OBJ2
■ CPA-ODAT
■ CU--PDA
■ #PASS(A1/1:V)
■ CSASTD

Files accessed ■ SYSDIC

CPU-OREL Subprogram

DescriptionCPU-OREL

Adds entity information to a table. This subprogram receives the name of an object and
information about each entity belonging to the object. It adds this information to a table.
Optionally, it can display tracing information.

Note: For more information, refer to CPA-OREL.ENTITY(*).

What it does

PDAs used ■ CPA-OREL
■ CU__PDA
■ CSASTD

Files accessed ■ SYSDIC-RL
■ SYSDIC-FI
■ SYSDIC-EL

CPU-VIEW Subprogram

DescriptionCPU-VIEW

Generates field definitions based on the contents of a Predict view. This subprogram receives
the name of a Predict view and a set of logical parameters defining the options to be

What it does

generated. It generates the view definition as it should appear in the DEFINE DATA . . .
END-DEFINE block of a Natural program, subprogram, or helproutine.

This subprogram can also generate the C# variables for each C* variable that corresponds
to an MU (multiple-valued) or PE (periodic group), and/or includes the corresponding
REDEFINE fields for redefined fields or superdescriptors.

You can use this subprogram to define a structure based on a view in Predict. The format
and length for each field is generated.

Note:

Natural Construct Administration and Modeling364

External Objects

DescriptionCPU-VIEW

1. This subprogram differs from CPU-OBJ in that it generates internal rather than external
data structures.

2. For information about INPUT/OUTPUT parameters, refer to the CPA-VIEW data area in
the SYSCST library.

PDAs used ■ CPA-VIEW
■ CSASTD

Files accessed ■ SYSDIC-EL
■ SYSDIC-FI

365Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTE-VIEW N a t u r a l C o n s t r u c t CTE-VEW1
 May 12 Driver for subprogram CPU-VIEW 1 of 1

 *File....: ________________________________
 View....: ________________________________ Gen 01 Level......: _
 Omit Fld: ________________________________

 Variable Indexes : _ Include Hyper DE...: _ Include MU Counter: _
 Build Redefines..: _ Include Phonetic DE: _ Include PE Counter: _
 SuperDe Redefines: _ Include Sub DE.....: _ Include MU Hyper..: _
 Specify Formats..: _ Include Super DE...: _ Include PE Hyper..: _
 Cstars...........: _ Redefine Cstars....: _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CPUEL Subprogram

DescriptionCPUEL

Returns Predict information about a field in a file. This subprogram finds a field in a Predict
file and returns information about the field.

What it does

PDAs used ■ CPAEL
■ CSASTD

Files accessed ■ SYSDIC-EL

Natural Construct Administration and Modeling366

External Objects

Drivers Menu Option

 CTEEL N a t u r a l C o n s t r u c t CTEEL11
 Aug 14 Driver for subprogram CPUEL 1 of 2

 *File Name..: ________________________________ DDM Prefix: ________________
 *Field Name : ________________________________
 Simple Outputs: _

 Fld Found...: Adabas Fld Name: Fld Format....: Field Uq :
 Ver Found...: Fld Length.....: Predict Format: De Type..:
 Lvl Number..: Sign...........: Suppression...: Gr Struct:
 Occurrences.: Fld Type.......: A/Descend.....: Pe Ind...:
 Fld Redefined : Rank..........:

 Edit Mask...: Field Headings:
 DDM Fld Name:
 Index Name..:
 Fld Sequence:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit left right mai

Press Enter to display the second panel. For example:

 CTEEL N a t u r a l C o n s t r u c t CTEEL21
 Aug 14 Driver for subprogram CPUEL 2 of 2

 File Name..:
 Field Name :

 LEVEL

 DDM Field Name Field Type Is Redefined

367Natural Construct Administration and Modeling

External Objects

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit left right mai

CPUELDE Subprogram

DescriptionCPUELDE

Returns a description attribute from a specified file. This subprogram receives the name of
a file and finds a description attribute. It returns the names of all fields that have the
DESCRIPTION keyword.

What it does

PDAs used ■ CPAELDE
■ CSASTD

Files accessed ■ SYSDIC-FI
■ SYSDIC-EL
■ SYSDIC-KY

CPUELKY Subprogram

DescriptionCPUELKY

Returns keywords linked to a field in a specified file. This subprogram receives the name
of a file and field; it returns keywords linked to the field.

What it does

PDAs used ■ CPAELKY
■ CSASTD

Files accessed ■ SYSDIC-FI
■ SYSDIC-EL
■ SYSDIC-KY

CPU-FREL Subprogram

DescriptionCPU-FREL

Retrieves information about a foreign relationship and CALLNATs a pass-through
subprogram.This subprogrampassesCPA-FREL,CU--PDA, andCSASTD to thepass-through
subprogram.

What it does

PDAs used ■ CPARLRD
■ CU--PDA
■ CPA-FREL
■ CSASTD

Natural Construct Administration and Modeling368

External Objects

DescriptionCPU-FREL

Files accessed ■ SYSDIC-FI
■ SYSDIC-EL

CPUELNX Subprogram

DescriptionCPUELNX

Returns field-by-field information if it is called repeatedly. This subprogram receives the
name of a Predict file, the CPAELNX data area (contains options for field types), and the

What it does

CPRELNX data area (contains information about current processing), and logically reads
through the fields in the file.

Note:

1. CPRELNX contains reserved variables that keep track of the current position; it must not
be modified by the calling program.

2. For information about INPUT/OUTPUT parameters, refer to the CPAELNX data area in
the SYSCST library.

PDAs used ■ CPAELNX
■ CPRELNX
■ CSASTD

Files accessed ■ SYSDIC-EL
■ SYSDIC-FI

369Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEELNX N a t u r a l C o n s t r u c t CTEENX11
 Aug 14 Driver for subprogram CPUELNX 1 of 2

 *File Name....: ________________________________ First Time : X EOF.....:
 DDM Prefix...: ________________

 Redef Base Fld: _ Super Subs: _ Mus.......: _ Nulls Only : _ Counters: _
 First Redefine: _ Phonetics : _ Pe Groups : _ Seq Only...: _ Groups..: _
 All Redefines : _ Hypers....: _ Pes.......: _ Uq Only....: _ Fillers : _
 Max Rede Rank : _ Derived...: _ Mus in Pes: _ VE Only....: _ REDE STR: _

 Fld Name......: Fld Type...:
 Fld Format....: Length.....:
 Predict Format: Sign.......:

 Adabas Name...: Fld Def...: De Type...: Fld Count..: Rank..:
 Level Number..: Fld Uq....: Pe Ind....: Occurrences:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit left right mai

Press Enter to display the second panel. For example:

 CTEELNX N a t u r a l C o n s t r u c t CTEENX21
 Aug 14 Driver for subprogram CPUELNX 2 of 2

 Field Headings

 IMS Offset....: Access Lvl:
 IMS Fld Name..: Update Lvl:
 IMS Fld Length:

 Index Name..:
 DDM Fld Name:

 Edit Mask...:
 Level Type Trail: -> -> -> -> -> -> ->
 Redefine Trail..: -> -> -> -> -> -> ->

 Fld is Redefined: Redefine Cnt:

Natural Construct Administration and Modeling370

External Objects

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit left right mai

CPUELRD Subprogram

DescriptionCPUELRD

Reads through the fields in a Predict file, issues a CALLNAT for the specified subprogram
for each field, and passes information about the field to the subprogram. It receives:

What it does

■ the name of a file
■ the name of a subprogram to CALLNAT
■ the selection criteria (in CPAELRD.INPUTS)

The subprogram traverses the specified file. For each selected field, it CALLNATs the passed
subprogram to process the current field.

PDAs used ■ CPAELRD
■ CU--PDA (model PDA)
■ CSAPASS (can be redefined as required and used to store additional information that
must be preserved between CALLNATs)

■ CSASTD

Files accessed ■ SYSDIC-EL

371Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEELRD N a t u r a l C o n s t r u c t CTEELRD1
 Aug 14 Driver for subprogram CPUELRD 1 of 1

 *File Name.......: ________________________________ Fld Count......:
 *Key Name........: ________________________________ Level..........:
 CALLNAT..........: CTELRDSM Max Rede Rank..: _

 ReDe Base Fld: _ SPs/SBs..: _ Pes...: _ Pe Group: _ Only VE..: _ Fillers: _
 First ReDe...: _ Phonetics: _ Mus...: _ Mu in Pe: _ Only UQ..: _ Derived: _
 All ReDe.....: _ Hypers...: _ Groups: _ Counters: _ Only Null: _ Rede St: _

 Fld Name : Format : PRD Format :
 DDM Field : Fld UQ : Length.....:
 Index.... : Type...: Adabas Name:
 Headings : De Type: Occurrences:
 Pe Type: :
 Edit Mask : Rank...: :
 Type Trail: Redef..: ReDe Count :
 ReDe Trail:
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit bkwrd frwrd mai

Note: If you change the name of the subprogram in the CALLNAT field, the specified sub-
program must have the same parameters as those in the PDAs used by CPUELRD.

CPUELVE Subprogram

DescriptionCPUELVE

Returns the verification rule names for a field in a file. This subprogram finds a field in
Predict and returns the names of the verification rules of type N (Natural Construct).

What it does

PDAs used ■ CPAELVE
■ CSASTD

Files accessed ■ SYSDIC-EL

Natural Construct Administration and Modeling372

External Objects

Drivers Menu Option

 CTEELVE N a t u r a l C o n s t r u c t CTEELVE1
 Aug 14 Driver for subprogram CPUELVE 1 of 1

 *File Name : ________________________________ Field Found.........:
 *Field Name: ________________________________ Num of Verifications:

 +----------------------------------+
 | 1__ VERIFICATION NAME |
 | ------------------------------- |
 | |
 | |
 | |
 | |
 | |
 +----------------------------------+

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit bkwrd frwrd mai

CPUEXIST Subprogram

DescriptionCPUEXIST

Verifies the existence of a specified Predict object. This subprogram receives the name and
type of an object and verifies its existence in Predict.

What it does

PDAs used ■ CPAEXIST
■ CSASTD

Files accessed ■ SYSDIC-SY
■ SYSDIC-PR
■ SYSDIC-KY
■ SYSDIC-DB
■ SYSDIC-FI
■ SYSDIC-RL
■ SYSDIC-VE

373Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTEXIST N a t u r a l C o n s t r u c t CTEXST1
 Aug 14 Driver for subprogram CPUEXIST 1 of 1

 Object Name: ________________________________ Object Exists:
 Object Type: __ (SY,PR,KY,FI,DB,RL,VE)

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CPUFI Subprogram

DescriptionCPUFI

Returns Predict information about a file. This subprogram receives the name of a file and
returns Predict information about that file.

What it does

PDAs used ■ CPAFI
■ CSASTD

Files accessed ■ SYSDIC-FI

Natural Construct Administration and Modeling374

External Objects

Drivers Menu Option

 CTEFI N a t u r a l C o n s t r u c t CTEFI1
 Aug 14 Driver for subprogram CPUFI 1 of 1

 *File Name: ________________________________ Ripp File Nr..:
 File Type: Ext File Nr..:

 Master File Name..:
 Primary Seq Field :

 DDM Prefix........: IMS DB Number.: 00
 DDM File Name.....: IMS File Level:
 IMS Parent File...: IMS File Nr...: 00
 IMS Root File Name: IMS Seg Type..:
 IMS DBD Name......: IMS DDM Suffix:
 IMS Seg Name......: DDM Matches...:
 IMS Root Seg Name :

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CPUHOLD Subprogram

DescriptionCPUHOLD

Determines the hold field for a file. This subprogram receives the name of a file and
determines the hold field for the file. To define a hold field, attach theHOLD-FIELDkeyword
to the field in Predict.

What it does

PDAs used ■ CPAHOLD
■ CSASTD

Files accessed ■ SYSDIC-FI
■ SYSDIC-EL

375Natural Construct Administration and Modeling

External Objects

CPUKY Subprogram

DescriptionCPUKY

Retrieves information related to a Predict keyword. You can use the keyword comments to
store attribute values that can be returned by this subprogram.

What it does

PDAs used ■ CPAKY
■ CSASTD

Files accessed ■ SYSDIC-KY
■ SYSDIC-EL

CPUREDEF Subprogram

DescriptionCPUREDEF

Generates redefinitions for compound keys, superdescriptors, or redefined fields in Predict.
This subprogram invokes the CPUXPAND subprogram, which retrieves the components

What it does

of the field to be redefined. Redefinitions can be generated in either inline or external data
area format.

PDAs used ■ CPAREDEF
■ CSASTD

Files accessed ■ SYSDIC-EL

Natural Construct Administration and Modeling376

External Objects

Drivers Menu Option

 CTEREDEF N a t u r a l C o n s t r u c t CTERDEF1
 Aug 14 Driver for subprogram CPUREDEF 1 of 1

 *File : ________________________________ Redef Level.........: _
 *Field: ________________________________ Change Format N to A: _

 Super Options

 Include Deriv Level: _ Inside Histogram: _
 Include Redef Level: _ Omit Format.....: _

 Resets Required:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CPURL Subprogram

DescriptionCPURL

Returns information about a relationship in Predict. This subprogram receives a Predict
relationship name and returns information about the relationship.

What it does

PDAs used ■ CPARL
■ CSASTD

Files accessed ■ SYSDIC-RL

377Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTERL N a t u r a l C o n s t r u c t CTERL1
 Aug 14 Driver for subprogram CPURL 1 of 1

 *Relationship Name: ________________________________ Relationship Found:
 Relationship Type :

 Relationship File Relationship Field Card
 -------------------------------- -------------------------------- ----

 Ddm Relationship Field Minimum Average Maximum
 -------------------------------- ------- -------- -------

 Constraint Type Upd: Db2 Constraint Name:
 Constraint Type Del:
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CPURLRD Subprogram

DescriptionCPURLRD

Retrieves the Predict relationships for a specified file, and optionally a specified type. This
subprogram receives:

What it does

■ the name of a file
■ a relationship type (optional)
■ the name of a subprogram (in CPARLRD.INPUTS)

It finds relationships for the specified file, issues a CALLNAT to the specified subprogram,
and passes the information about the relationship to the subprogram for processing.

PDAs used ■ CPARLRD
■ CU--SYSLIBSPDA (model PDA)
■ CSAPASS (can be redefined as required and used to store additional information that
must be preserved between CALLNATs)

■ CSASTD

Natural Construct Administration and Modeling378

External Objects

DescriptionCPURLRD

Files accessed ■ SYSDIC-FI
■ SYSDIC-KL

379Natural Construct Administration and Modeling

External Objects

Drivers Menu Option

 CTERLRD N a t u r a l C o n s t r u c t CTERLRD1
 Aug 14 Driver for subprogram CPURLRD 1 of 1

 *File Name.............: ________________________________
 Relationship Type.....: _
 CALLNAT...............: CTELRDSM
 Relationship Count....:
 Relationship Name.....:
 Relationship File:
 Relationship Field....:
 DDM Relationship Field:
 Cardinality...........:
 Minimum...............:
 Average...............:
 Maximum...............:
 DB2 Constraint Name...:
 Constraint Type Upd...:
 Constraint Type Del...:
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10-
 help retrn quit

CPUSUPER Subprogram

DescriptionCPUSUPER

Returns the definition for a super/subdescriptor (or DB2 compound key). This subprogram
receives the name of a superdescriptor or subdescriptor (or DB2 compound key) and the

What it does

name of the Predict file or table to which it belongs. It returns information about the derived
fields.

PDAs used ■ CPASUPER
■ CSASTD

Files accessed ■ SYSDIC-EL

Natural Construct Administration and Modeling380

External Objects

Drivers Menu Option

 CTESUPER ***** Predict Related Subprograms ***** CTESUPR1
 Oct 09 - Driver for subprogram CPUSUPER - 03:08 PM

 *File Name : ________________________________ Superde Length....:
 *Field Name: ________________________________ Superde Format....:

 Contains Repeating Fields: C#Derivation Group:
 +---
 | 1__ Start End A/ Fld Sup PE Dimension
 | Source Field Name Char Char D Typ Opt Ind 1 2 3
 | -------------------------------- ----- ----- - --- --- --- --- --- ---
 |
 |
 |
 |
 |
 +---

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit bkwrd frwrd mai

CPUUNIQ Subprogram

DescriptionCPUUNIQ

Determines the unique description field (primary key). This subprogram receives the name
of a file and determines the unique description field (primary key) for the file.

What it does

PDAs used ■ CPAUNIQ
■ CSASTD

Files accessed ■ SYSDIC-FI
■ SYSDIC-EL

381Natural Construct Administration and Modeling

External Objects

CPUVE Subprogram

DescriptionCPUVE

Prints verification rules to the source buffer. This subprogram prints either the code or the
data definition for a type N (Natural Construct) verification rule to the source buffer.

What it does

PDAs used ■ CPAVE
■ CSASTD

Files accessed ■ SYSDIC-VE-ACT

Natural Construct Administration and Modeling382

External Objects

Drivers Menu Option

 CTEVE N a t u r a l C o n s t r u c t CTEVE1
 Aug 14 Driver for subprogram CPUVE 1 of 1

 Verification Name: ________________________________ Verification Found:
 *User View Name...: ________________________________ Rule Generated....:
 *DDM Field Name...: ________________________________

 Generate Data....: _
 Occurrences......: _______________

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit mai

CPUVERUL Subprogram

DescriptionCPUVERUL

Returns information about Predict verification rules.What it does

PDAs used ■ CPAVERUL
■ CSASTD

Files accessed ■ SYSDIC-VE

383Natural Construct Administration and Modeling

External Objects

CPUXPAND Subprogram

DescriptionCPUXPAND

Expands a super/subdescriptor or redefined field. This subprogram receives:What it does

■ the name of a super/subdescriptor (or DB2 compound key)
■ the name of the Predict file (or table) to which the key belongs
■ the expansion options
■ the name of a subprogram to CALLNAT (in CPAXPAND.INPUTS)
■ the parameters in the model PDA (CU--PDA)
■ an additional A1/1:v parameter (CSAPASS)

It expands the specified super/subdescriptor (or DB2 compound key) into its underlying
components. For each component, it CALLNATs the specified subprogram.

Note: When this subprogram expands a superdescriptor, redefinitions of the derived fields
are included.

PDAs used ■ CPAXPAND
■ CU--PDA
■ CSAPASS
■ CSASTD

Files accessed ■ SYSDIC-EL

Natural Construct Administration and Modeling384

External Objects

Drivers Menu Option

 CTEXPAND N a t u r a l C o n s t r u c t CTEXPN11
 Aug 14 Driver for subprogram CPUXPAND 1 of 3

 *File Name......: ________________________________ Phantom Bytes: _
 *Base Field Name: ________________________________ Fillers......: _
 CALLNAT.........: CTELRDSM P

 Base Field Information Field Headings
 ---------------------- --------------------------------
 Sequence: Adabas Field Name: :
 Format..: Field Definition : :
 Length..: Field Type.......: :

 Edit Mask......:
 DDM Field Name :

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit left right mai

Note: If you change the name of the subprogram in the CALLNAT field, the specified sub-
program must have the same parameters as those in the PDAs used by CPUXPAND.

Press Enter to display the second panel. For example:

 CTEXPAND N a t u r a l C o n s t r u c t CTEXPN21
 Aug 14 Driver for subprogram CPUXPAND 2 of 3

 Derived Field Information Field Headings
 ------------------------- ----------------------------------
 First Showing.: :
 Field Count...: :
 Whole Field...: :

 Sequence......: Adabas Field Name: Start Character:
 Format........: Field Definition : End Character:
 Length........: Field Type.......:

385Natural Construct Administration and Modeling

External Objects

 Edit Mask.....:
 Field Name....:
 DDM Field Name:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit left right mai
 Scrolling performed

Press Enter to display the third panel. For example:

 CTEXPAND N a t u r a l C o n s t r u c t CTEXPN31
 Aug 14 Driver for subprogram CPUXPAND 3 of 3

 Ascending/Descending
 Expanded Field Information Field Headings
 -------------------------- ----------------------------------
 Field Count..: :
 Offset Start..: :
 Offset End....: :

 Sequence......: Predict Format...: Special characteristic:
 Format........: Field Definition :
 Length........:

 Edit Mask.....:
 Field Name....:
 DDM Field Name:

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn quit left right mai
 Scrolling performed

Predict-Related Helproutines (CPH*)

You can attach the following helproutines to fields that require the input of Predict information.
They are active helproutines that fill the field to which they are attached.

Note: Some of the following routines provide help information, although they are coded as
subprograms and not as helproutines. This provides greater flexibility to access help inform-
ation.

This section covers the following topics:

■ CPHEL Subprogram
■ CPHELB Subprogram
■ CPHFI Helproutine
■ CPHFIB Subprogram

Natural Construct Administration and Modeling386

External Objects

■ CPHPRED Helproutine
■ CPHRL Helproutine
■ CPHSET Helproutine

CPHEL Subprogram

DescriptionCPHEL

Browses the fields in a file for selection. This subprogram receives the name of a Predict file.
(If no file name is specified, it provides file selection.) It browses all the fields in the specified
file and returns the selected field.

What it does

Input of a Predict field name.Attached to

PDAs used ■ CPAHEL
■ CSASTD

Files accessed ■ SYSDIC-FI

CPHELB Subprogram

DescriptionCPHELB

Browses the fields in a file for selection. This subprogram receives the name of a file and
browses all the fields in the file for selection. Optionally, this subprogram can browse only
the descriptor fields.

Note: For information about INPUT/OUTPUT parameters, refer to the CPHELBA data area
in the SYSCST library.

What it does

PDAs used ■ CPAHEL
■ CSASTD

Files accessed ■ SYSDIC-EL

CPHFI Helproutine

DescriptionCPHFI

Browses Predict views/files for selection. This helproutine browses all the views and files
in Predict for selection.

What it does

Input of a Predict file name.Attached to

Parameters used ■ #PDA-FILE(A32)

Files accessed ■ SYSDIC-FI

387Natural Construct Administration and Modeling

External Objects

CPHFIB Subprogram

DescriptionCPHFIB

Browses Predict views and files for selection.What it does

Parameters/PDAs used ■ #PDA-KEY(A32)
■ CSASTD

Files accessed ■ SYSDIC-FI

CPHPRED Helproutine

DescriptionCPHPRED

Browses Predict objects (by object type) for selection. This helproutine receives an object
type and browses the Predict objects of that type for selection. Valid object types are:

What it does

■ S (system)
■ P (program)
■ K (keyword)
■ M (module)
■ R (report)

Input of a Predict object type.Attached to

Parameters used ■ #PDA-TYPE(A1)
■ #PDA-KEY(A32)

Files accessed ■ SYSDIC-SY
■ SYSDIC-PR
■ SYSDIC-KY
■ SYSDIC-RE
■ SYSDIC-MO

Natural Construct Administration and Modeling388

External Objects

CPHRL Helproutine

DescriptionCPHRL

Browses the names of Predict relationships for selection. This helproutine receives the
names of a Predict relationship and a file and returns the selected relationship. If a file

What it does

name is specified, the helproutine browses only the Predict relationships for that file. If
no file name is specified, it browses all existing relationships.

Input of a Predict relationship name.Attached to

Parameters used ■ #PDA-FILE(A32)
■ #PDA-RELATIONSHIP-NAME(A32)

Files accessed ■ SYSDIC-FI
■ SYSDIC-RL

CPHSET Helproutine

DescriptionCPHSET

Sets a flag to indicate that help was requested for a field. This helproutine receives the
name of a parameter and sets a flag to indicate helpwas requested. The parameter should

What it does

be checked after the INPUT statement. If a flag is set, for example, reset the flag and issue
CALLNATs to do the help processing.

This technique allows the helproutine to access all data entered in a single panel
transaction.When you generate a browse subprogram, for example, you can type the file
name (without pressing Enter) on the Additional Parameters panel and request help for
a field.

Any input field.Attached to

Parameters used ■ #PDA-SET-HELP(L)

Files accessed ■ SYSDIC-FI
■ SYSDIC-RL

389Natural Construct Administration and Modeling

External Objects

General Purpose Generation Subprograms (CU--*)

The subprograms described in this section are general purpose generation subprograms. These
subprograms are identified by a CU-- prefix.

CU--EM Subprogram

DescriptionCU--EM

Returns edit masks used by the generated programs for displaying date and time fields. This
subprogram can be changed to suit your standards. Changes to this routine should be made

What it does

in a higher level steplib to minimize maintenance. Unless you modify your models, the date
and time field edit masks should not be longer than nine characters.

PDAs used ■ CU--EMA

CU--LRP Subprogram

DescriptionCU--LRP

Returns the left and right prompt displayed on the Natural Construct panels. The
left prompt displays the current month and day in *DATX (EM=LLL’’DD), which

What it does

can be language sensitive. The right prompt displays the “1 of 1” or “1 of 3” panel
indicators, depending on the number of panels. This prompt uses several control
record fields to build the prompt position indicators, which are compressed on both
sides of the “of” indicator.

Parameters/PDAs
used

■ #PDA-LEFT-PROMPT(A9)
■ #PDA-LEFT-INDICATOR(A4)
■ #PDA-RIGHT-PROMPT-OF(A4)
■ #PDA-RIGHT-INDICATOR(A4)
■ #PDA-RIGHT-PROMPT(A9)
■ CSASTD

Natural Construct Administration and Modeling390

External Objects

CU--MSG Subprogram

DescriptionCU--MSG

Returns the text for an application error message. It receives a message number in
#PDA-FRAME-PARM. After ensuring this literal is numeric, it retrieves the short message
for the SYSTEM application and the *Language variable.

The error message is written (left-justified and enclosed within single quotes) to the source
buffer, thus substituting for the frame parameter. The usual search criteria and defaults
(English) apply. The following example shows a code frame:

What it does

USE-MSG-NR 1
ASSIGN MSG-INFO.##MSG-NR = 8123 "
ELSE 1
ASSIGN MSG-INFO.##MSG = "
SUBPROGRAM:CU--MSG PARAM: 8123 N "

PDAs used ■ CU--PDA
■ CSASTD

Files accessed ■ Application error message file

CU--UL Subprogram

DescriptionCU--UL

Returns the underscore line used on Natural Construct panels. This subprogram
receives an underscore character set and creates the underscore line. The character(s)
specified on the control record (A4) is duplicated to fill the A80 length.

What it does

Parameters/PDAs used ■ #PDA-UNDERSCORE(A4)
■ #PDA-UNDERSCORE-LINE(A80)
■ CSASTD

391Natural Construct Administration and Modeling

External Objects

392

24 Supplied Administration Utilities

■ Introduction .. 394
■ Import and Export Utilities ... 394
■ Frame Hardcopy Utility ... 397
■ Comparison Utilities ... 397
■ Upper Case Translation Utility .. 400
■ Additional Utilities .. 401

393

This section describes the utilities supplied with Natural Construct for use in the Administration
subsystem. The following topics are covered:

Introduction

This section describes the utilities supplied with Natural Construct for all supported platforms.
To invoke a utility, enter its name at the Next prompt (Direct Command box for Unix).

Note: When a description refers to “your print file” for mainframe users, it refers to Print
File 1. When a description refers to “your print file” for Unix users, it refers to DEVICE
LPT1.

Import and Export Utilities

This section explains how to transfer data across dissimilar platforms (for example, from Unix to
mainframe).

Natural Construct’s import and export utilities read and write their data from and to work file 1.
This is true for each of the following utilities:

Described inUtility

Multiple Code Frame Import Utility

Multiple Code Frame Export Utility

CSFLOAD

CSFUNLD

Natural Construct Help TextCSHLOAD

CSHUNLD

Natural Construct GenerationCSMLOAD

CSMUNLD

A work file written on one platform (such as Unix) can be read by another platform (such as
mainframe) if the following conditions are met:

Natural Construct Administration and Modeling394

Supplied Administration Utilities

■ The work file must be an ASCII file. For example:

How to save as an ASCII filePlatform

Define work file 1 as a PC file and activate PC Connection before running the utility. (PC
Connection translates from EBCDIC to ASCII.)

Mainframe

Set the work file specification in your NATPARM to any extension other than “SAG”.Unix

■ When transferring thework file between platforms, select the appropriate translator. For example,
the file transfer method you select to move a file from a PC to a Unix machine must translate
the PC’s CR/LFs to CRs.

Multiple Code Frame Import Utility

The CSFLOAD frame import utility imports selected code frames from work file 1 to the code
frame file. A report of the imported code frames is written to your print file.

CSFLOAD accepts up to 100 frame names and replace options in the form:

Code frame . ________ Replace _

The following example shows the CSFLOAD window:

 CSFLOAD ***** Natural Construct ***** CSFLOAD0
 Nov 18 Multiple Code frame Import 1 of 1

 Code frame . ________ Replace _

 Selected

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--P
 help retrn

Note: To replace the existing code frames with code frames with the same names in work
file 1, mark the Replace field. If you do not want to replace the existing code frames, leave
the Replace field blank.

395Natural Construct Administration and Modeling

Supplied Administration Utilities

Examples of Input Values

ResultValues entered

Imports all code frames fromwork file 1. If a code frame with the same name exists
in the code frame file, it is not replaced.

Code frame: *

Imports the “MENU” code frame fromwork file 1. If the “MENU” code frame exists
in the code frame file, it is not replaced.

Code frame: MENU

Imports the “MENU” code frame fromwork file 1. If the “MENU” code frame exists
in the code frame file, it is replaced.

Code frame: MENU

Replace: X

Imports all code frames beginningwith “FM” fromwork file 1. If a code framewith
the same name exists in the code frame file, it is not replaced.

Code frame: FM*

Terminates the CSFLOAD utility.

Note: When running in batchmode, the CSFLOADutilitywill terminatewith RC=0
if an error occurs due to problems with the internal layout structure of work file 1.

Code frame: . (period)

To terminate the batch Natural session with RC=99, add “Y” to the end of the last
frame input combination (for example: FM*,,Y).

Multiple Code Frame Export Utility

The CSFUNLD frame export utility exports selected code frames from the code frame file to work
file 1. A report of the exported code frames is written to your print file.

Note: You can export a maximum of 1000 code frames at one time.

Enter each code frame name one name at a time. As you enter the names, they are automatically
displayed on the panel.

For each exported code frame, you can specifywhether to export its recursive (nested) code frames
— if any exist. To export recursive code frames, mark the Include recursive code frames field. If
you do not want to export recursive code frames, leave the field blank.

Examples of Input Values

ResultValues entered

Exports all code frames to work file 1.*

Exports the “MENU” code frame including any recursive (nested) code frames to work file
1.

MENU

X

Exports all code frames beginning with “FM” to work file 1.FM*

Enter a period (.) to terminate the input.

Natural Construct Administration and Modeling396

Supplied Administration Utilities

Frame Hardcopy Utility

The CSFHCOPY frame hardcopy utility allows you to print a hardcopy list of your code frames,
regardless of your teleprocessing monitor. All output is routed to your print file.

Enter each code frame name one name at a time. As you enter the names, they are automatically
displayed on the panel.

Examples of Input Values

ResultValues entered

Routes all code frames to your print file.*

Routes the “MENU” code frame to your print file.MENU

Routes all code frames beginning with “FM” to your print file.FM*

Enter a period (.) to terminate the input.

Comparison Utilities

This section describes utilities you can use to compare twoNatural sourcemodules and to compare
a range of models in different libraries.

CSGCMPS Utility

This program compares two Natural source modules. You can compare the contents of two saved
modules or you can compare the contents of the module currently in the source buffer to the
contents of a saved module.

Specify the library ID, module name, database ID, and file number for each module you want to
compare. In addition, you can specify the following options:

■ ignore comment lines
■ ignore trailing comments
■ ignore leading spaces
■ provide summary only

397Natural Construct Administration and Modeling

Supplied Administration Utilities

When you invoke the CSGCMPS utility online, the following window is displayed:

 Compare Criteria
 Library Object Database File or Source Area
 ======== ======== ======== ==== ===========
 Old version ===> CST411M_ CSGCMPS_ 017 029 _
 New version ===> CST411M_ CSGCMPS_ 017 029 _

 Options...
 Ignore comment lines...... _
 Ignore trailing comments.. _
 Ignore leading spaces..... _
 Summary only.............. _
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF1
 quit

CSGCMPL Utility

This program compares a range of modules in one library to the samemodules in another library.

Specify the library ID, database ID, file number, and range value for the modules you want to
compare. In addition, you can specify the following options:

■ summary only
■ only report if different
■ ignore comment lines
■ ignore trailing comments
■ ignore leading spaces
■ only compare object types

Online

When you invoke the CSGCMPL utility online, the following window is displayed:

 Source Range Compare Facility
 Library Database File Dominant
 ======== ======== ==== ========
 Old library............... ________ __17 __29 X
 New Library............... ________ __17 __29 _
 Program range............. ________ thru ________
 Summary only.............. _
 Only report if different.. _
 Ignore comment lines...... _
 Ignore trailing comments.. _
 Ignore leading spaces..... _
 Only compare object types __________ (ACGHLMNPST)

Natural Construct Administration and Modeling398

Supplied Administration Utilities

The Dominant column indicates the range of modules to be compared. Only modules that exist
in the dominant library and in the other specified library are included in the compare results.
Modules that only exist in the non-dominant library are not included.

The Only compare object types field limits the comparison to modules of a specified object type.
Valid object types are:

DescriptionObject Type

ParameterA

CopycodeC

Global data areaG

HelproutineH

Local data areaL

MapM

SubprogramN

Parameter data areaP

SubroutineS

TextT

In Batch

Batchmode is themost efficientmethod of comparingmanymodules. The following SYSIN shows
an example of using this utility in batch:

LOGON CST421M
CSGCMPL OLD-LIB,001,002,X,NEW-LIB,003,004, ,BEGIN,END,S,D,C,T,L,NPH
FIN

where:

Indicates the name of a library containing modules to be compared.OLD-LIB

Indicates the database ID for OLD-LIB.001

Indicates the system file number for OLD-LIB.002

Indicates that the OLD-LIB is dominant (all modules in the dominant library are compared to
matching modules in the other specified library).

X

Indicates the name of a library containing modules to be compared.NEW-LIB

Indicates the database ID for NEW-LIB.003

Indicates the system file number for NEW-LIB.004

If blank, indicates that OLD-LIB is dominant. If X, indicates that NEW-LIB is dominant.blank

Indicates the name of the first module in the range compared.BEGIN

Indicates the name of the last module in the range compared.END

399Natural Construct Administration and Modeling

Supplied Administration Utilities

Indicates a summary report (does not display detailed differences). This option displays the
names of the modules and whether the module contents are the same in both libraries.

S

Indicates that only modules that are different are included on the output report. Modules that
are identical in both libraries are not included.

D

Indicates that Natural comment lines (lines beginning with “*” or “/*”) are not compared.C

Indicates that trailing comments (comments beginning with “/*”) are not compared.T

Indicates that leading spaces are not compared (changes in alignment will not show up as
differences).

L

Indicates the list of Natural object types compared within the specified range of modules.NPH

Upper Case Translation Utility

If you are developing applications in a language that does not support lower case Latin characters,
use the supplied CVUPPERC utility to convert the Natural Construct components to upper case.
This utility converts all Natural Construct-installed SYSERRmessage text and source code, aswell
as the contents of the Natural Construct system file, to upper case.

Notes:

1. Since this conversion requires a significant amount of processing, only run this utility in a batch
environment.

2. Before running this utility, ensure that the batch job defines the correct Natural Construct logical
file, FUSER system file, and FNAT system file.

Use the following SYSIN to invoke the CVUPPERC utility:

LOGON SYSCST
CVUPPERC
FIN

After converting the components to upper case, this utility issues a CATALL in the SYSCST library.
To reflect the changes in your production environment, manually transfer all modules from the
SYSCST library to the SYSLIBS library after the modules have been cataloged.

Natural Construct Administration and Modeling400

Supplied Administration Utilities

Additional Utilities

The utilities in this section generate cross-reference information for all subprograms referenced
by a code frame or model. You can use these utilities either online (recommended) or in batch
mode to determine which subprograms are invoked. If subprograms are missing, the utility will
write a report to the screen.

Determine Which Subprograms Are Referenced by Code Frames

To determine which subprograms are referenced by code frames, run the CVUVALF utility either
online or in batch mode. The CVUVALF utility:

■ Verifies that all subprograms referenced by all code frames exist in the current library.
■ Generates CALLNAT statements for all subprograms used in the code frames. Online, these
statements are generated into the program editor and you can view the parameter list.

Online

To invoke the CVUVALF utility online:

1 Logon to the SYSCST library.

2 Run the CVUVALF program.

In Batch

To invoke the CVUVALF utility in batch mode:

■ Use the following SYSIN:

LOGON SYSCST
CVUVALF
FIN

In this example, the utility provides a list of all subprograms that are referenced by all code
frames and do not exist in the SYSCST library.

401Natural Construct Administration and Modeling

Supplied Administration Utilities

Determine Which Subprograms Are Referenced by Models

To determine which subprograms are referenced by models, run the CVUVALM utility either
online or in batch mode. The CVUVALM utility:

■ Verifies that all subprograms referenced by all models exist in the current library.
■ GeneratesCALLNAT statements for all subprogramsused in themodels.Online, these statements
are generated into the program editor and you can view the parameter list.

Online

To invoke the CVUVALM utility online:

1 Logon to the SYSCST library.

2 Run the CVUVALM program.

In Batch

To invoke the CVUVALM utility in batch mode:

■ Use the following SYSIN:

LOGON SYSCST
CVUVALM
FIN

In this example, the utility provides a list of all subprograms that are referenced by all models
and do not exist in the SYSCST library.

Natural Construct Administration and Modeling402

Supplied Administration Utilities

25 Using SYSERR for Multilingual Support

■ Introduction .. 404
■ Define SYSERR References .. 404
■ Use SYSERR References ... 405
■ Format SYSERR Message Text .. 411
■ Supported Areas in Natural Construct .. 412
■ CSUTRANS Utility ... 413
■ CNUMSG Utility .. 416
■ Static (One-Language) Mode ... 417

403

This section describes how Natural Construct uses the Natural SYSERR utility to dynamically
translate text andmessages. SYSERR contains reference numbers that reference text strings in one
or more languages. This section covers the following topics:

Introduction

Natural Construct supports the dynamic translation of text and messages on many specification
panels. Instead of typing text for panel headings, field prompts, error messages, etc., you can use
a SYSERR reference number. At runtime, the reference number is replaced with its corresponding
SYSERR text.

Maintenance

Using SYSERR references reduces your maintenance efforts. To modify a field prompt used on
many panels, for example, you can change the text in SYSERR and all fields that use that reference
number display the new name at runtime. It also helps maintain consistency throughout your
generated applications, by ensuring that the same text is displayed in multiple locations.

Translation

For each SYSERR reference number, you can define message text in other languages. At runtime,
text for the currently-selected language (the current value of the *Language system variable) is
retrieved.

The text on all Natural Construct panels can be dynamically translated into anyNatural-supported
language.

Note: If you only require one language, this feature can be disabled during installation. For
more information, see Static (One-Language) Mode.

The default language for Natural Construct is English (*Language 1), which is always supported.
Check with your local Software AG office to ensure that your language is supported.

Define SYSERR References

Each SYSERR reference number can have up to 15 distinct text entries — each one separated by a
(/) slash delimiter. For information about setting up reference numbers, refer to the SYSERR utility
in the Natural Utilities documentation.

To use SYSERR reference numbers inNatural Construct, the referencemust follow a patternwhere
the first character is an * (asterisk) and the next four digits represent a valid SYSERR reference
number. For example:

Natural Construct Administration and Modeling404

Using SYSERR for Multilingual Support

*nnnn

where * indicates the currently specified SYSERR message library and nnnn represents a valid
reference number. To identify one of the 15 possible positions within a SYSERR reference number,
use the following notation:

*nnnn.A

where A is a number from 1–9 or a letter from A–F. The numbers 1–9 represent the first nine posi-
tions and the letters A–F represent the 10th to 15th positions. For example, to reference the fifteenth
position within a reference number, specify:

*nnnn.F

Note: We recommend that you always specify a position value, even if there is only one
occupied position in the reference number. This eliminates the need to modify SYSERR
references if additional positions are occupied in the future.

Use SYSERR References

You can use SYSERR reference numbers in several ways, such as:

■ On Maps (Screen Prompts)
■ For Panel Headings and PF-Key Names
■ In Messages
■ For Text Translation
■ With Substitution Values

All text members, excluding the help text members, reside within the SYSERR utility. Each text
member is identified by a two-part key — a SYSERR library name and a four-digit number.

■ For more information about SYSERR, refer to the Natural Utilities documentation.
■ For information about using SYSERR references in help text, seeMessage Numbers, Natural
Construct Help Text.

On Maps (Screen Prompts)

To display panels in many languages, Natural Construct uses a single map approach. Variables
for all screen prompts are defined and initialized in a translation local data area (LDA) associated
with each map.

Translation LDAs initialize the screen promptswith SYSERR references for the dynamic translation
version or constants for the static version. All supplied LDAs use SYSERR references by default,
but you can change this if desired. For more information about dynamic and static installations,
refer to the installation documentation.

405Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

The one-to-one association between a map and its translation LDA is an effective method for
naming and tracking panels and their prompts. Each supplied map and its translation LDA have
identical names— except for the last character. The last character in a map name is “0” (zero) and
the last character in a translation LDA name is “L”. For example, the second specification panel
for the Menu model is CUMNMB0 and the translation LDA is CUMNMBl.

Screen prompts are typically translated prior to displaying a panel, and panels usually have more
than one prompt. For this reason, Natural Construct uses the CSUTRANS utility to receive a block
of text and translate all references numbers. TheCSTLDA library in SYSERR isNatural Construct’s
dedicated library and contains all language-independent prompt text.

For more information, see CSUTRANS Utility.

For Panel Headings and PF-Key Names

You define and maintain panel headings and PF-key names in the Administration subsystem: the
first heading for amodel specification panel on theMaintainModels panel and the PF-key settings
on the Natural Construct control record.

Note: When we refer to panel headings and PF-key names, we are referring to the Natural
Construct panels and PF-keys and not those used by the generated applications.

You define and maintain panel headings and PF-key names in the Administration subsystem: the
first heading for amodel specification panel on theMaintainModels panel and the PF-key settings
on the Natural Construct control record.

If desired, you can use the CST-Modify model to generate a maintenance subprogram for the
model that can override these defaults. Maintenance subprograms reference the #HEADER1 and
#HEADER2 internal variables to display panel headings. If these headings are not overridden by
themaintenance subprograms, Natural Construct automatically uses the defaults supplied by the
nucleus (in theCU—PDA.#HEADER1andCU—PDA.#HEADER2variables). Formore information
about overriding panel headings, see Standard Parameters Panel.

All Natural Construct panel headings and PF-key names support text or SYSERR references (the
*nnnn.A notations). For example, to name a PF-key “main” on the control record, enter one of the
following:

■ "*0033.5" (which corresponds to “main” in SYSERR)
■ "main" (which disables the dynamic translation feature)

All heading and PF-key text is saved in the same SYSERR library as the prompt text (CSTLDA).

Natural Construct Administration and Modeling406

Using SYSERR for Multilingual Support

In Messages

AllNatural Constructmessages also support dynamic translation.Messages have action properties
(verbs), whereas screen prompts have descriptive properties (adjectives). For this reason, the
message and prompt text is stored in separate SYSERR libraries and use separate translation util-
ities:

■ Messages are stored andmaintained in the CSTMSG library and are accessed via the CNUMSG
single message utility.

■ Screen prompts are stored and maintained in the CSTLDA library and are accessed via the
CSUTRANS utility.

If you change the supplied screen prompt text, ensure that the screen prompt and message text
are consistent. If the message text references a different SYSERR number than the screen prompt,
the message may be confusing.

Withmodules forwhich source is not supplied, Natural Construct uses the text substitution feature
supported by theCNUMSGutility (where :1::2::3: are place holders for potential substitution values).
For example, if the screen prompt is "Module name" and the message is ":1::2::3:is required", the
message is displayed as: Module name is required.

This message substitution feature provides many benefits, including:

■ Consistent use of panel and message text
■ Reuse of common messages, such as “is required”
■ Reduced volume of message translation
■ Consistent wording between modules
■ Support for a cleaner and crisper look

The following example shows a typical message and how it is coded:

ASSIGN CNAMSG.MSG-DATA(1) = CU—MAL.#GEN-PROGRAM
INCLUDE CU—RMSG '2001'
 ''':1::2::3:is required'''
 '#PDA-PROGRAM-NAME'

This assignment transfers the contents of the corresponding prompt variable into the first (of a
possible three) substitution datamember: CNAMSG.MSG-DATA(1). Themembers are then transferred
into an INCLUDE member that calls the CNUMSG utility.

In the preceding code example, CU—MAL is the translation LDA for the CU—MA0 map and
CU—MAL. #GEN-PROGRAM is the prompt variable containing the initialized text (either
“Module” or the SYSERR number that references “Module”). The 2001 on the INCLUDE line
represents the SYSERR reference number that points to the message: “:1::2::3:is required”. The
“:1::2::3:is required” text below the INCLUDE code is used as an internal default should the text
not be found.

407Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

You can use the Natural Construct messaging infrastructure to override the message lookup and
force the CNUMSG utility to disregard the SYSERR reference number and use the text (:1::2::3:is
required) instead. This feature is useful duringmodel development because you can entermessage
text in the source code or test the code without calling the SYSERR utility. To do this for a single
module, add a single line before the previous code example as follows:

ASSIGN CNAMSG.INSTALL-LANGUAGE = *LANGUAGE

To do this for an application, change the initial value for the CNAMSG.INSTALL-LANGUAGE
variable and recompile all the Natural Construct model subprograms.

The following INCLUDE code members all retrieve message text, but process the text in different
ways:

DescriptionINCLUDE Code Member

Retrieves and displays messages on current panel.INCLUDE CU—RMSG

Retrieves and sets error code messages and then exits current module.INCLUDE CU—SERR

Retrieves messages and continues processing (typically used for warning
messages).

INCLUDE CU—GMSG

Retrieves messages and continues processing, but does not transfer the text to the
CSASTD structure (typically used to perform initializations without corrupting
the messaging data in CSASTD).

INCLUDE CU—GTXT

For Text Translation

You can translate text in one of two ways: mass translation from within the SYSERR utility or
context translation fromwithin Natural Construct, which uses the SYSERR utility to store text for
all supported *Language values. English is the default language; it is always supplied and suppor-
ted.

Since translation is typically performed once shortly after installation (or not at all if the product
is delivered with the text translated), Natural Construct provides a special translation mode that
is invoked via a command you can secure. This command, menut, accesses the Administration
subsystem in translation mode with all translatable prompts and headings highlighted for easy
identification.

Natural Construct Administration and Modeling408

Using SYSERR for Multilingual Support

Mass Translation

All Natural Construct text is available in SYSERR. The combination of the SYSERR library name
and a four-digit number is the unique key or pointer to a particular text member. For example,
the “:1::2::3:is required” message is stored in the CSTMSG library and its four-digit number is
2001; the “Module” screen prompt is stored in the CSTLDA library and its four-digit number is
1000.

In SYSERR, you can translatemanymessages one after the other (mass translation). Thismechanism
is fine formessageswhere the context is not critical. For example, the “:1::2::3:is required”message
is universal and used frequently by all types of modules.

Screen prompts are more context sensitive; they may belong in a particular group or depend on
a heading formeaning. To translate screen prompts, it is a good idea to perform amass translation
first and then check each panel individually for context. This is the most efficient way to translate
a large number of text members, as this translation can be accomplished by less experienced Nat-
ural Construct users or a translation service.

Context Translation

Natural Construct’s context (cursor-sensitive) translation provides a simple but effective method
to check or change the results of a mass translation. It allows you to display a panel, place your
cursor on highlighted text, press Enter, and be presented with a window in which you can change
or translate the text. For example:

 CSUTLATE Natural Construct
 Jul 04 Translate Short Message 1 of 1

 Language Short Message (CSTLDA2101)
 ————+....1....+....2....+....3....+....4....+....5....+....6....+

 English Module/Model/Maps /+20

This feature is even more convenient on a PC using Entire Connection, in which case you can
double-click any prompt to perform the translation.

Notes:

1. You can also use the context translation mechanism to perform the original translation (instead
of mass translation).

2. Because messages are displayed one at a time, they do not require context translation.

Since translation is typically performed once shortly after installation (or not at all if the product
is delivered with the text translated), Natural Construct provides a translation mode command
that you can secure. This command, menut, accesses the Administration subsystem in translation
mode with all translatable prompts and headings highlighted for easy identification.

409Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

Unlike messages, which all use the same byte length, screen prompts vary in length depending
on panel design and available space. For performance and space considerations, multiple screen
prompts may share the same SYSERR location. For example, SYSERR number 2000 corresponds
to the following text:

CSTLDA2000 Module/System/Global data area /+20

where CSTLDA2000 indicates the SYSERR library and the four-digit number that identifies the
values: Module, System, and Global data area (delimited by a “/”). Decimal numbers indicate
which text is retrieved (for example, 2000.1 for Module, 2000.2 for System, and 2000.3 for Global
data area). Since prompts can be different lengths, the /+20 notation indicates that each of these
prompts can occupy up to 20 bytes on any panel they are used.

With Substitution Values

Substitution values are additional data that can be displayed with message text at runtime. For
example, you can specify that Menu (the substitution value) be displayed withMain (the message
text). The actual substitution value can be either text or another reference number. Most areas in
Natural Construct that support reference numbers also support data substitution. For information
about supported areas, see Supported Areas in Natural Construct.

To use substitution values with a reference number, the reference number must be defined in the
SYSERR utility with the :1::2::3: place holders. For more information, refer to REINPUT Statement,
Natural Statements documentation.

To specify substitution values for a reference number that contains place holders, type the reference
number (*nnnn.A format), followed by a comma (,) delimiter, and up to three substitution values.
For example, if you enter:

0200.1,Menu,Model

where 0200.1 corresponds to the message text :1::2::3:Program, and Menu and Model are the
substitution values. At runtime, the following text is displayed:

Menu Model Program

In this example, Menu replaced the first place holder and Model replaced the second.

Note: If no substitution values are defined, the place holders are ignored.

You can enter text, or reference numbers, or both as substitution values. For example, if you enter:

0200.1,Menu,0502.4

where Menu is the first substitution value and 0502.4 is the second substitution value (which cor-
responds to the message text “Model”). At runtime, the following message is displayed:

Natural Construct Administration and Modeling410

Using SYSERR for Multilingual Support

Menu Model Program

Format SYSERR Message Text

In some areas where SYSERR references are used, you can specify how the retrieved message text
is formatted at runtime. The following table describes the formatting characters:

DescriptionCharacter

Separates the *nnnn.A notation from the format characters.,

Fills the remaining blanks..

Centers the retrieved text.+

Left-justifies the retrieved text. Typically, you will not use this character because retrieved text
is left-justified by default.

<

Right-justifies the retrieved text.>

Indicates the end of format characters and the beginning of the field length override. For example,
“+/30” indicates that the first 30 characters of returned text are centered. Any additional characters
are truncated. This character is used with alignment characters (such as +, <, or >).

/

Indicates the field length override value. Using the example above (+/30), the field length override
is 30 characters.

NN

The following examples show different methods of formatting the text for SYSERR reference
number 0210.1 (which references the text, “Field Help”):

ResultFormat Specified

Centers text in 24 bytes. At runtime, text is displayed as:

| Field Help |

*0210.1,+/24

Right-justifies text. At runtime, text is displayed as:

| Field Help|

*0210.1,>/24

Left-justifies text (the default). At runtime, text is displayed as:

|Field Help |

*0210.1,/24 or *0210.1,</24

Left-justifies text and fills the remaining blank spaces with periods. At runtime,
text is displayed as:

|Field Help..................................|

*0210.1,./24

411Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

Supported Areas in Natural Construct

The following table lists the areaswhere you can use SYSERR references. The Substitutions column
indicates whether substitution values are supported for the corresponding panel; the Formatting
column indicates whether formatting is supported.

FormattingSubstitutionsPanel ElementLocation

NoNoPF-key namesMaintain Control Record panel

NoNoPanel indicators

NoYesDescriptionMaintain Models panel

NoYesDescriptionMaintain Subprogram panel

NoNoPF-key names

Text centering onlyYesHeader 1Standard Parameters panel (CST-Modify model)

Text centering onlyYesHeader 2

NoNoPF-key names

Partial supportYesCNUMSG utilityTranslation local data areas (LDAs)

YesYesCSUTRANS utility

NoYesHeader 1Help Text editor

NoYesHeader 2

NoYesHotlinks

YesYesBody of help text

■ For information on substitution values, seeWith Substitution Values.
■ For information on formatting, see Format SYSERRMessage Text.

The following table lists sections where you can find more information about each of the Natural
Construct functions and utilities in which SYSERR reference numbers are supported:

Refer ToTo Learn More About

Maintain Control Record FunctionMaintain Control Record panel

Maintain Models FunctionMaintain Models panel

Maintain Subprograms FunctionMaintain Subprogram panel

Parameters for the CST-Modify ModelCST-Modify model Standard Parameters panel

Translation LDA utilities (CNUMSG and CSUTRANS) ■ CNUMSG Subprogram
■ CNUMSG Utility
■ CSUTRANS Subprogram
■ CSUTRANS Utility

Natural Construct Administration and Modeling412

Using SYSERR for Multilingual Support

Refer ToTo Learn More About

Editing Help Text, Natural Construct Help TextHelp Text editor

CSUTRANS Utility

Natural Construct translates screen prompts before they are displayed. As most panels have
multiple prompts, Natural Construct incorporates the CSUTRANS utility to receive a block of text
and translate all references to SYSERR numbers into the appropriate *Language text.

CSUTRANS translates 1:V data structures and is used extensively for dynamic translation. The
utility reads through a supplied local data area, looking for one of two patterns: *nnnn or *nnnn.A.

The *nnnn pattern returns all text for that SYSERR number, whereas the *nnnn.A pattern returns
only the text in the specified position (delimited by a /, such as *nnnn.1 for the first position, *nnnn.2
for the second, *nnnn.A for the 10th, etc.). The extension in the *nnnn.A pattern is alphanumeric;
valid values range from 1–9 and A–F, for a total of 15 possible positions.

To retrieve a validmessage, youmust also specify the SYSERR library name (CSTLDA, by default).

Note: To change the library name, use the #MESSAGE-LIBRARY variable.

You can also use SYSERR numbers to assign the INIT values for fields in the translation LDAs.
These LDAs are passed through the CSUTRANS utility, which expects a certain data structure.
The following example illustrates this structure for the Standard Parameters panel for the Batch
model:

***SAG TRANSLATION LDA
***used by map CUBAMA0.
 1 CUBAMAL
 2 TEXT /* Corresponds to SYSERR message
 3 #GEN-PROGRAM A 20 INIT<'*2000.1,.'>
 3 #SYSTEM A 20 INIT<'*2000.3,.'>
 3 #GDA A 20 INIT<'*2000.2,.'>
 3 #TITLE A 20 INIT<'*2001.3,.'>
 3 #DESCRIPTION A 20 INIT<'*2001.2,.'>
 3 #GDA-BLOCK A 20 INIT<'*2001.1,.'>
 R 2 TEXT
 3 TRANSLATION-TEXT
 4 TEXT-ARRAY A 1 (1:120)
 2 ADDITIONAL-PARMS
 3 #MESSAGE-LIBRARY A 8 INIT<'CSTLDA'>
 3 #LDA-NAME A 8 INIT<'CUBAMAL'>
 3 #TEXT-REQUIRED L INIT<TRUE>
 3 #LENGTH-OVERRIDE I 4 /* Explicit length to translate

413Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

Some of the important structural elements in this LDA are:

■ The first comment line (**SAG TRANSLATION LDA) indicates that this is a translation LDA.During
a Static install, Natural Construct scans for this comment line and replaces the SYSERRnumbers
with the appropriate text.

■ The CUBAMAL level 1 structure name is typically the LDA name. You should use this qualifier to
reference the variables.

■ The level 3 variables (#GEN-PROGRAM, #SYSTEM, #GDA-BLOCK, etc.) are the screen prompts, which
are initialized with a SYSERR number. All SYSERR numbers use the *nnnn.A notation and are
listed in sequential order (so that CSUTRANS does not retrieve SYSERR *2000, then *2001, and
then *2000 again).

Note: The sequence order does not apply to the *nnnn.A notation extensions (.A). For ex-
ample, you can list *2000.2 before *2001.1.

■ The TEXT-ARRAY value must match the total number of bytes in all screen prompt variables to
be translated.

■ The #MESSAGE-LIBRARY value indicates the SYSERR library name used to retrieve text.
■ The #TEXT-REQUIRED logical variable indicates whether translation is required for Natural
Construct modules. If translation is required, #TEXT-REQUIRED ensures that translation is only
performed once.

The SYSERR INIT values have the following format:

FormatPosition

Must be an asterisk (*).Byte 1

Must be numeric and represent a valid SYSERR number. The first five bytes are mandatory.
These values are used to retrieve the text associated with the corresponding SYSERR number
and the current value of *Language.

If the text for the current language is not available, CSUTRANS follows amodifiable hierarchy
of *Language values until text is retrieved (you define this hierarchy in the

Bytes 2–5

DEFAULT-LANGUAGE field within the CNAMSG local data area). As the original
development language, English (*Language 1) should always be available.

Note: CSUTRANS does not perform substitutions (using :1::2::3:). To perform substitutions,
call the CNUMSG subprogram. For information, see CNUMSG Subprogram.

Can be a period (.), which indicates that the next byte is a position value.Byte 6

Can be a position value. Valid values are 1–9, A (byte 10), B (byte 11), C (byte 12), D (byte 13),
E (byte 14), F (byte 15), and G (byte 16). For example, *2000.2 identifies the text for SYSERR

Byte 7

number 2000, position 2 (as delimited by a / in SYSERR). If the message for SYSERR number
2000 is Module/System/Global data area, only System is retrieved.

Natural Construct Administration and Modeling414

Using SYSERR for Multilingual Support

FormatPosition

If you reference the same SYSERR number more than once in a translation LDA, define the
INIT values on consecutive lines to reduce the number of calls to SYSERR. (The position values
for a SYSERR number can be referenced in any order.)

Tip: To minimize confusion, we recommend that you use the .A extension even when there
is only one position defined for the SYSERR number.

Can be a comma (,), which indicates that the next byte or bytes contain special format
characters. Values specified before the comma (,) indicatewhat text to retrieve; values specified
after the comma indicate how the text is displayed.

Note: Although you can use a comma in byte 6 (instead of a period), use the .A extension in
bytes 6 and 7.

Byte 8

After the comma, can be one of the following:Byte 9

■ . (period)

Indicates that the first position after the field name is blank and the remainder of the field
prompt is filled with periods (Module:, for example).

■ +

Indicates that the text is centered using the specified field length override (see description
of Byte 10). If you do not specify the override length, Natural Construct uses the actual field
length.

■ <

Indicates that the text is left-justified (this is the default).
■ >

Indicates that the text is right-justified.
■ /

Indicates that a length override value follows. This character is placed after the alignment
character (+,< or >). For example, /+20 indicates that the text is centered within 20 bytes.

After the / (override length indicator), indicates the override length in bytes.Bytes 10–16

If you want to use the override length notation (*0200.4,+/6, for example) and the LDA field is too
small (A6, for example), define a larger field, redefine it using a shorter display value, and then
use the override length notation. For example:

01 #FIELD-NAME A 12 INIT<'*0200.4+/6'>
01 Redefine #FIELD-NAME
 02 #SHORT-FIELD-NAME A 6

415Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

CNUMSG Utility

Unlike CSUTRANS, the CNUMSGutility only retrieves text for onemessage at a time. It is typically
used to retrieve warning or error messages, and sometimes to retrieve text for initialization.

The CNUMSG utility retrieves message text in one of two ways. If a reference number is specified
(CNAMSG.MSG-NR), CNUMSGuses that number to retrieve the SYSERRmessage text. If a refer-
ence number is not specified, CNUMSG checks the message text (CNAMSG.MSG) for the *nnnn
or *nnnn.A notation and uses the specified notation to retrieve the SYSERR message text.

CNUMSG can also substitute values in the text it retrieves (up to amaximum of three substitution
values). CNUMSG retrieves the message from SYSERR and checks to see whether the message
has any substitution place holders. If it does, then the substitution text data members
(CNAMSG.MSG-DATA(*)) are substituted into the appropriate place holder. If the data member
is another SYSERR reference, it is retrieved and substituted. All unused substitution place holders
are removed. By default, CNUMSG uses the CSTMSG SYSERR library for messages and the
CSTLDA SYSERR library for substitution data fields.

Examples of Using the CNUMSG Utility

For the following examples, assume you want to create the message: ADD Action Description
is required and the available SYSERR numbers and text are:

SYSERR TextSYSERR LibrarySYSERR Reference Number

:1::2::3:is requiredCSTMSG*2001

Action/SubprogramCSTLDA*1116.1

DescriptionCSTLDA*1117.1

Example 1: Typical Text Retrieval

ASSIGN #DESCRIPTION ="*1117.1"... /* Variable with a SYSERR reference
ASSIGN CNAMSG.MSG-DATA(1) = "ADD" /* Hardcoded text
ASSIGN CNAMSG.MSG-DATA(2) = "*1116.1" /* SYSERR Reference
ASSIGN CNAMSG.MSG-DATA(3) = #DESCRIPTION /* Variable reference
INCLUDE CU—GMSG "2001"
 """:1::2::3:is required"
 """ """

Natural Construct Administration and Modeling416

Using SYSERR for Multilingual Support

Example 2: Text Retrieval Using a Comma as the Delimiter

ASSIGN CNAMSG.MSG = "*2001,ADD,*1116.1,*1117.1"
INCLUDE CU—GMSG " "
 """:1::2::3:is required"
 """ """

Both of these examples build the same message. Example 1 is the preferred method because it is
much more explicit. The method in Example 2 is useful when only the message text is available
and the input must be entered in one field, such as the Description, Header, or Title fields.

Note: Example 2 also supports centering. If you specify +/NN in yourmessage text, CNUMSG
uses the NN value as the centering length and removes the remainder of the text (the ,+/NN
pattern).

To perform a desired function, CNUMSG can also be called with a method. Natural Construct
supports the following methods:

DescriptionMethod

Retrieves the SYSERR message “as is” without any text substitution. This method works well for
cases where substitutions are not desirable and the :1::2::3: place holders should be left intact (for
example, when generating a call to CNUMSG itself).

R

Substitutes the data into the :1::2::3: place holders without retrieving the main message text. For
example, you can use this method to apply substitutions to a text string that is created

S

programmatically. This method only substitutes the available (passed) data into the place holders.
Unused place holders are removed.

Retrieves themessage text and performs the substitutions. This is themost commonly usedmethod
and is the default setting when the method is blank.

B

Defaults to method B.blank

All other method settings will return a fatal error without performing any actions.

Static (One-Language) Mode

By default, Natural Construct is installed in dynamic (multilingual) mode, which allows users to
display Natural Construct in any available language. If you intend to operate Natural Construct
in one language only anddo not require dynamic translation, you can replace all SYSERR references
with text when Natural Construct is installed. During installation, Natural Construct provides a
Static option that retrieves and replaces the *nnnn references with the appropriate *Language text.

Notes:

417Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

1. Before using the Static option, check with your local Software AG office to ensure that your
language is supported. If you are installing a static version in any language except English,
which is always supported, review all messages in the CSTLDA library in SYSERR to ensure
they are translated into the desired language.

2. Installing in static mode does not limit your ability to generate multilingual applications; static
mode applies to the interface only.

The Static option does not replace every SYSERR reference with text; it only replaces SYSERR
references in the most frequently used modules. The following table describes the areas affected
and the replacements made:

ReplacementsArea

In all translation LDAs forwhich source is supplied (CUprefix), the Static option
replaces references with text. To identify a translation LDA, Natural Construct
checks the first comment line for **SAG TRANSLATION LDA.

Screen prompts

For themost frequently used translation LDAs for which source is not supplied,
you can generate static text LDAs and subprograms. For information, seeCreate
Performance LDAs and Subprograms.

Translation LDAs

For all panel headings and PF-key names (which are installed with SYSERR
references), you have the option of replacing the references with text.

Headings and PF-key
names

Dynamically translated at runtime (since messages are only displayed during
an error or warning condition).

Messages

Dynamically displayed at runtime (displayed on request).Help text

Note: Natural Construct can also use the English text supplied with each INCLUDE code
member and bypass the SYSERR retrieval process (see In Messages).

There are two options for installing in static mode:

■ Install Natural Construct in Static Mode
■ Create Performance LDAs and Subprograms

You can specify either or both options.

Note: If you are installing a static version in any language except English, review allmessages
in the CSTLDA library in SYSERR to ensure they are translated into the desired language.

Natural Construct Administration and Modeling418

Using SYSERR for Multilingual Support

Install Natural Construct in Static Mode

To install Natural Construct in static mode:

1 Log onto the SYSCST library.

2 Enter "NCSTI" (Natural Construct Install) at the Natural prompt.

The Natural Construct Installation main menu is displayed. For example:

 NCSTI ***** N A T U R A L C O N S T R U C T *****

 Feb 27 - Installation Main Menu - 9:52 AM

 Code Function

 ---- ---

 S Static Install (one language)

 L Create Performance LDAs

 I Create Performance Subps

 ? Help

 . Terminate

 ---- ---

 Code: _

 Direct command...: ___

419Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

 Enter--PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-
 help retrn quit flip main

3 Enter "S" in Code.

The Static Install (one language) window is displayed. For example:

 INSTALL ***** N A T U R A L C O N S T R U C T *****

 Feb 27 - Static Install (one language) - 9:57 AM

 Enter the language in which you would like Natural Construct

 installed (Any PF-key to quit): 1_

4 Enter the number for the language inwhich youwant to install Natural Construct (for example,
"2" for German, "3" for French).

Natural Construct recreates all the LDAs for the model specification panels and replaces the
SYSERR references to field prompts with the text for the language specified. The following
window is displayed:

 INSTALL ***** N A T U R A L C O N S T R U C T *****

 Feb 27 - Static Install (one language) - 10:37 AM

 All data areas have been populated with text appropriate to

 language 1 .

 In order to complete this process, please recompile all

 Natural modules in the SYSCST library beginning with CU, CG

 and copy the object code for these modules to SYSLIBS.

Note: Set the Natural RUNTIME parameter to 40.

5 Perform a CATALL on modules beginning with “CU” or “CG” in the SYSCST library.

You need only select the subprogram and local data area (LDA) modules. In addition, mark
the Catalog ALL Source-programs option to catalog all source modules. You may want to

Natural Construct Administration and Modeling420

Using SYSERR for Multilingual Support

do this step in batch mode, because many modules are affected. You can use the following
input:

LOGON SYSCST
CATALL CU*,,X,,,X,,,,X,,,,,
CATALL CG*,,X,,,X,,,,X,,,,,
FIN

6 Copy the object code from these modules into the SYSLIBS library.

If you prefer to do this in batch mode, the SYSMAIN input commands are supplied below.
Ensure that the IM=D parameter is set in your NATPARM. Use the following batch input:

LOGON SYSTEM
SYSMAIN
MENU C,C,CU*,TYPE,N,FM,SYSCST,DBID,xxx,FNR,yyy,TO,SYSLIBS,DBID,xxx,%
FNR,yyy,REP
SYSMAIN
MENU C,C,CG*,TYPE,N,FM,SYSCST,DBID,xxx,FNR,yyy,TO,SYSLIBS,DBID,xxx,%
FNR,yyy,REP
FIN

Create Performance LDAs and Subprograms

Regardless of whether you choose the Static Install function or not, this option will enhance per-
formance by creating several subprograms that eliminate calls to SYSERR to build many of the
frequently used screens (such as the Generation main menu). Because these programs are not
supplied in source form, use the Create Performance LDAs function to create LDAs containing
the text appropriate to the desired language and then use the Create Performance Subps function
to create the performance subprograms. You can repeat these two steps as many times as desired,
depending on how many languages you want to make available.

Note: Natural Construct supplies the performance subprograms for English. If you are
runningNatural Construct in a language forwhich these subprogramshave not been created,
the English subprograms will be invoked.

To create performance LDAs and subprograms for the Natural Construct nucleus:

1 Copy the contents (source and object) of the SYSCST00 library into the SYSCSTnn library
(where nn is the language code for the language you want to support, such as 1 for English,
2 for German, 3 for French).

2 Log onto the SYSCSTnn library.

3 Enter "NCSTI" (Natural Construct Install) at the Natural prompt.

The Natural Construct Installation main menu is displayed.

421Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

Note: When running NCSTI to create these LDAs and subprograms, the DC and ID
characters must be set to the default (DC=. and ID=,).

4 Enter "L" in Code.

The Create Performance LDAs window is displayed. For example:

 INSTALL2 ***** N A T U R A L C O N S T R U C T *****

 Feb 27 - Create Performance LDAs - 10:18 AM

 NOTE: You must be in library SYSCSTnn (where nn represents

 the language number) in order to execute this function.

 This step may be repeated for as many languages

 as desired.

 You are currently in library: SYSCST01

 About to create performance LDAs for language: 1

 Press ENTER to continue - any PF-key to stop.

5 Press Enter.

A confirmation window is displayed. For example:

 INSTALL2 ***** N A T U R A L C O N S T R U C T *****

 Feb 27 - Create Performance LDAs - 10:21 AM

 All data areas have been populated with text appropriate to

 language 1 . Please CATALL this library (SYSCST01)

 before creating the Performance Subprograms.

Note: You must be logged onto the SYSCSTnn library corresponding to the language
for which you are creating the LDAs. This allows multiple languages to be supported,
since the LDAs are created in different libraries.

Natural Construct Administration and Modeling422

Using SYSERR for Multilingual Support

6 Press Enter.

7 Perform a CATALL on this library, ensuring that all 10 LDAs are cataloged successfully.

8 Log onto the SYSCST library.

9 Enter "NCSTI" at the Natural prompt.

The Natural Construct Installation main menu is displayed.

10 Enter "I" in Code.

The Create Performance Subps window is displayed. For example:

 CSTTRANS ***** N A T U R A L C O N S T R U C T *****

 Feb 27 - Create Performance Subps - 10:24 AM

 NOTE: This function must be executed from library SYSCST

 Enter the language number for which you would like

 performance subprograms generated: __

 (Press any PF-key to stop)

11 Enter the number of the language for which you have created performance LDAs.

Natural Construct creates object-only performance subprograms for the specified language.

12 Copy the performance subprograms from the SYSCST library to the SYSLIBS library.

Thesemodules beginwith “CZ” and endwith the *Language value for the language inwhich
you are installing (for example, CZHOBJ2 for German).

13 Log onto the SYSCSTX library and edit the CSXDEFLT subprogram as follows:

■ Set the PERFORMANCE default to TRUE (must be in uppercase). For example:

**SAG DEFINE EXIT GENERATE-CODE
*
* Your code to implement defaulting for your CST models.
DECIDE ON FIRST VALUE CSADEFLT.PARM-NAME
 VALUE 'PERFORMANCE'
 ASSIGN CSADEFLT.PARM-VALUE = 'TRUE'
 NONE
 IGNORE

423Natural Construct Administration and Modeling

Using SYSERR for Multilingual Support

END-DECIDE
**SAG END-EXIT

■ Save the CSXDEFLT subprogram in the SYSCSTX library.
■ Use the Natural SYSMAIN utility to copy CSXDEFLT to the SYSCST library.
■ Catalog CSXDEFLT in the SYSCST library.
■ Use the SYSMAIN utility to copy the CSXDEFLT object code to the SYSLIBS library.

Natural Construct Administration and Modeling424

Using SYSERR for Multilingual Support

A Appendix A: Glossary of Terms

The following terms are used throughout this documentation:

DefinitionTerm

Program that retrieves records from a specified file and allows users to select a
record for processing. Sometimes referred to as a query program.

Browse program

View the records in a specified file.Browse a file

Block of code that performs a specified function.A code frame is the basic element
of a model; it is a skeleton outline of the code generated by the model.

Code frame

Value that is always the same.Constant

Static code that is provided to copy and use in INCLUDE statements.Copycode

Ability to move the cursor to an item on the screen and press Enter to select the
item. If you are using a PC connection to access Natural Construct, you can
double-click with the mouse to select.

Cursor-sensitive orCursor
sensitivity

Natural module in which data is stored. For example, a parameter data area
(PDA) stores parameters that are passed between subprograms, and a global
data area (GDA) stores data that is used by all programs within an application.

Data area

Type a value in a field and press Enter (or Return).Enter

Start or display a program, menu, panel, editor, utility, etc. Also referred to as
“invoke”.

Execute

Area in a window or on a panel that either displays information or requires the
user to specify information (for example, type or select information).

Field

Menu option, for example, theMaintainModels function on the Administration
main menu.

Function

Natural module that displays a help panel.Helproutine

See Execute.Invoke

Type any non-blank character in the field.

Note: You may also be required to press the Enter key.

Mark a field

425

DefinitionTerm

Natural Construct template used to record specifications and generate source
code into a Natural buffer.

Model

Any object that is generated by Natural Construct or created in Natural.Module

Any entity that represents a business function and is used byNatural Construct.Object

Field for which information is optional rather than required.Optional field

Screen or map on which parameters may be specified.Panel

Value for a field.Parameter

Program function key. To perform the associated function, press that key. For
example, pressing PF1 (help) displays help information.

PF-key

Block of code that performs a function, such as a subprogram, subroutine,
helproutine, etc. Also referred to as a module.

Program

See Browse program.Query program

Field for which input is required.Required field

Code entered on a menu to return to the previous panel. The return code on
Natural Construct menus is a period (.)

Return code

Move forward (down), backward (up), left, or right through the information
displayed on a panel or in a window.

Scroll

Supply a value for an input field (for example, by typing a value in the field and
pressing the Enter key or by marking the field).

Specify

Self-contained block of code that is called via parameters by a program to perform
a function.

Subprogram

Block of code (within a larger block of code) that is referenced one ormore times.
A subroutine is typically used to perform repetitive tasks or to isolate a specific
task.

Subroutine

Parameters that have the same format and different values at generation time.Substitution parameters

End your Natural Construct session.Terminate

Area in the program code that is reserved for user-defined functions. In these
areas, users can change the functionality of the generated functions to suit their
own requirements. User exit code is preservedwhen the program is regenerated.

User exit

Supplied program that performs a specific function (for example, themodel load
utility).

Utility

Value that represents one of many possible values. The actual value can be
supplied byNaturalwhen the program is executed or supplied by other variables
(either user-supplied or derived).

Variable

Separate, self-contained area displayed on a panel (for example, a helpwindow).Window

Natural Construct Administration and Modeling426

Appendix A: Glossary of Terms

	Natural Construct Administration and Modeling
	Table of Contents
	1 Natural Construct Administration and Modeling
	User Documentation
	Installation Documentation
	Other Documentation
	Related Courses
	Conventions

	2 Introduction to Natural Construct
	What is Natural Construct?
	Natural Construct Subsystems

	Access Natural Construct
	Natural Construct Libraries
	SYSLIBS Library
	SYSTEM (FNAT) Library
	SYSCST Library
	SYSCSTX Library
	SYSCSTDE, SYSCSTD2, SYSCSTDV, and SYSCSTDS Libraries
	USERLIB Library
	Execute Generation Facilities from a Steplib with Natural Security Installed

	Use Standard PF-Keys
	Help and Return Codes on Menus

	Access Online Help
	Panel-Level Help
	Field-Level Help
	Passive
	Active

	Convert Text to Upper Case
	Maintain Messages for Generated Programs
	Store Saved Modules
	Use Direct Commands

	3 Using the Administration Subsystem
	Access the Administration Main Menu
	Create and Maintain Natural Construct Models
	Maintain Models Function
	Select a Code Frame for Editing
	Naming Conventions for Code Frames
	Use Nested Code Frames

	Code Frame Menu Function
	Edit Code Frame
	Create a New Code Frame
	Modify an Existing Code Frame

	Save a Code Frame
	List Code Frames for Selection
	Purge a Code Frame
	Clear Edit Buffer
	Print Saved Code Frame

	Maintain Subprograms Function
	Maintain Control Record Function
	Compare Menu Function
	Compare Models
	Compare a Model in Different Files
	Compare Two Models in the Same File
	Compare a Range of Models in Different Files

	Compare Frames
	Compare Two Code Frames in Different Files
	Compare All Frames For Two Models
	Compare a Range of Frames in Different Files

	Drivers Menu Function

	Multilingual Support for Natural Construct
	Libraries Supplying Multilingual Text
	Display Text in Another Language
	Maintain Panel and Message Text

	Access the Administration Main Menu in Translation Mode
	Use Translation Mode
	Translate Text for the Generation Subsystem
	Translate Text for the Help Text Subsystem
	Edit Text in the Current Language
	Translate Text to Another Language
	Use Substitution Variables

	Access and Use the Sample Exit Subprograms
	Supplied Sample Exit Subprograms
	Define Default Specifications
	Determine the Name of the Clear Subprogram
	Set the Default Specification Values
	Use CSXDEFLT Overrides
	Modify the CSXDEFLT Subprogram
	Modify the DEFAULT Keyword
	Use *ISN as a Unique Primary Key for Maintenance

	Assign Your Own Defaults
	Use Predict Keywords
	Define a Default Primary Key
	Define a Default Logical Hold Field
	Define a Default Object Description

	4 Using the Code Frame Editor
	Access the Code Frame Editor
	From the Administration Main Menu
	From the Command Line
	From the Maintain Models Panel

	Features of the Code Frame Editor
	Use Commands in the Code Frame Editor
	Order of Command Execution
	Line Commands
	Edit Commands
	Positional Edit Commands

	Change the PF-Key Profile for the Current Session
	Save the Contents of the Edit Buffer
	Create GUI Sample Subprograms

	5 Creating New Models
	Components of a Natural Construct Model
	How the Natural Construct Nucleus Executes a Model
	Build a New Model
	Step 1: Define the Scope of the Model
	Is the Scope Too Broad?
	Is the Scope Too Narrow?
	What to Generate and Why

	Step 2: Create the Prototype
	Step 3: Scrutinize the Prototype
	Step 4: Isolate the Parameters in the Prototype
	Determine Which Elements Need to be Parameterized
	Remove Redundant Parameters
	Choose Between Compile Time and Runtime

	Step 5: Create Code Frame(s) and Define the Model
	Create the Code Frames
	Use Substitution Parameters
	Use Parameters Supplied by Generation Subprograms
	Use Parameters Supplied by Nested Code Frames
	Use Parameters Supplied by User Exits
	Use Code Frame Conditions

	Define the Model
	Naming Conventions for Model Components

	Step 6: Create the Model PDA
	Model PDA
	#PDA-CONDITION-CODES
	#PDA-USER-AREA

	CU—PDA
	#PDA-MODE
	#PDA-OBJECT-TYPE
	#PDA-MODIFY-HEADER1
	#PDA-MODIFY-HEADER2
	#PDA-LEFT-PROMPT
	#PDA-RIGHT-PROMPT
	#PDA-PHASE
	#PDA-DIALOG-METHOD
	#PDA-TRANSLATION-MODE
	#PDA-USERX-NAME
	#PDA-PF-NAME
	#PDA-PF-NUMBER
	#PDA-PF-KEY
	#PDA-TITLE
	#PDA-GEN-PROGRAM
	#PDA-MODEL-VERSION
	#PDA-HELP-INDICATOR
	#PDA-USER-DEFINED-AREA
	#PDA-UNDERSCORE-LINE
	#PDA-RIGHT-PROMPT-OF
	#PDA-DISPLAY-INDICATOR
	#PDA-CURS-FIELD
	#PDA-CVn
	#PDA-SCROLL-INDICATOR
	#PDA-DYNAMIC-ATTR-CHARS
	#PDA-FRAME-PARM
	#PDA-SYSTEM

	CSASTD PDA
	MSG
	MSG-NR
	MSG-DATA
	RETURN-CODE
	ERROR-FIELD
	ERROR-FIELD-INDEXn

	Step 7: Create the Translation LDAs and Maintenance Maps
	Format of the Translation LDAs
	Maintenance Maps

	Step 8: Create the Model Subprograms
	Maintenance Subprograms
	When are Maintenance Subprograms Invoked?

	Pre-Generation Subprogram
	Generation Subprograms
	Post-Generation Subprogram
	Stack Order of Substitution Parameters
	Blanks versus Nulls

	Clear Subprogram
	When are Clear Subprograms Invoked?

	Save Subprogram
	Read Subprogram
	Sample User Exit Subprograms
	Documentation Subprogram

	Test the Model Subprograms
	Debug a Model
	Miscellaneous Tips and Precautions

	Implement Your Model
	Create Statement Models
	Code Alignment of Generated Statement Models

	Use the Supplied Utility Subprograms and Helproutines

	6 New Model Example
	Step 1: Define the Scope of the Model
	Step 2: Create the Prototype
	Step 3: Scrutinize the Prototype
	Step 4: Isolate the Parameters in the Prototype
	Parameters for the Program Header
	Parameters for the Program Body

	Step 5: Create a Code Frame and Define the Model
	Create the Code Frame
	Define the Model

	Step 6: Create the Model PDA
	Step 7: Create Translation LDAs and Maintenance Maps
	Create the Translation LDAs
	Create the Maintenance Maps

	Step 8: Create the Model Subprograms
	Create the Maintenance Subprograms
	Create the Pre-Generation Subprogram
	Create the Post-Generation Subprogram
	Create the Clear Subprogram
	Create the Save Subprogram
	Create the Read Subprogram
	Create the Generation Subprogram
	Create the Documentation Subprogram
	Test the Model Subprograms

	Step 9: Implement the Model

	7 CST-Clear Model
	Introduction
	Parameters for the CST-Clear Model
	Standard Parameters Panel

	User Exits for the CST-Clear Model

	8 CST-Document Model
	Introduction
	Parameters for the CST-Document Model
	Standard Parameters Panel
	Additional Parameters Panel

	User Exits for the CST-Document Model

	9 CST-Frame Model
	Sample Subprograms
	Generation Subprograms
	Parameters for the CST-Frame Model
	Standard Parameters Panel

	User Exits for the CST-Frame Model

	10 CST-Modify and CST-Modify-332 Models
	Introduction
	CST-Modify Model
	Parameters for the CST-Modify Model
	Standard Parameters Panel
	Define Non-Standard PF-Keys

	User Exits for the CST-Modify Model

	CST-Modify-332 Model
	Parameters for the CST-Modify-332 Model
	Standard Parameters Panel

	User Exits for the CST-Modify-332 Model

	11 CST-Panel Model
	Introduction
	Parameters for the CST-Panel Model
	Standard Parameters Panel
	Additional Parameters Panel
	Reset Default Rectangle Y Values
	Reset Default Size and Location Variables

	User Exits for the CST-Panel Model
	CHECK-LOCAL-ERRORS
	COPY-PDA-TO-GUI
	CUSTOM-ASSIGN-ERROR-GUI
	CUSTOM-CONTROLS
	CUSTOM-EVENTS
	CUSTOM-RETURN-DATA
	SET-ERROR-FOCUS

	12 CST-PDA Model
	Introduction
	Parameters for the CST-PDA Model
	Standard Parameters Panel

	13 CST-Postgen Model
	Introduction
	Parameters for the CST-Postgen Model
	Standard Parameters Panel

	User Exits for the CST-Postgen Model

	14 CST-Pregen Model
	Introduction
	Parameters for the CST-Pregen Model
	Standard Parameters Panel

	User Exits for the CST-Pregen Model

	15 CST-Proxy Model
	Introduction
	Parameters for the CST-Proxy Model
	Standard Parameters Panel
	Specify the Number of Occurrences Returned

	User Exits for the CST-Proxy Model

	16 CST-Read Model
	Introduction
	Parameters for the CST-Read Model
	Standard Parameters Panel

	User Exits for the CST-Read Model

	17 CST-Save Model
	Introduction
	Parameters for the CST-Save Model
	Standard Parameters Panel

	User Exits for the CST-Save Model

	18 CST-Shell Model
	Introduction
	Parameters for the CST-Shell Model
	Standard Parameters Panel

	User Exits for the CST-Shell Model

	19 CST-Stream Model
	Introduction
	Parameters for the CST-Stream Model
	Standard Parameters Panel

	User Exits for the CST-Stream Model

	20 CST-Validate Model
	Introduction
	Parameters for the CST-Validate Model
	Standard Parameters Panel

	User Exits for the CST-Validate Model
	Code Validations
	Validate Array Fields
	Tips

	21 User Exits for the Administration Models
	What are User Exits?
	Reuse User Exit Code
	Invoke the User Exit Editor
	Define User Exits

	Supplied User Exits
	ADDITIONAL-INITIALIZATIONS
	ADDITIONAL-SUBSTITUTION-VALUES
	ADDITIONAL-TRANSLATIONS
	AFTER-INPUT
	AFTER-INVOKE-SUBPANELS
	ASSIGN-DERIVED-VALUES
	BEFORE-CHECK-ERROR
	BEFORE-INPUT
	BEFORE-INVOKE-SUBPANELS
	BEFORE-REINPUT-MESSAGE
	BEFORE-STANDARD-KEY-CHECK
	CHANGE-HISTORY
	DESCRIBE-INPUTS
	END-OF-PROGRAM
	GENERATE-CODE
	GENERATE-SUBROUTINES
	GENERATE-VALIDATIONS
	INPUT-ADDITIONAL-PARAMETERS
	INPUT-SCREEN
	LOCAL-DATA
	MISCELLANEOUS-SUBROUTINES
	MISCELLANEOUS-VARIABLES
	PARAMETER-DATA
	PF-KEYS
	PROCESS-SPECIAL-KEYS
	PROVIDE-DEFAULT-VALUES
	SAVE-PARAMETERS
	SET-CONDITION-CODES
	START-OF-PROGRAM
	SUBSTITUTION-VALUES
	VALIDATE-DATA

	22 Modifying the Supplied Models
	Introduction
	Change the Supplied Models
	Modify Code Frames
	Modify the Model Subprograms
	Modify Copycode (CC*) and External Data Areas and Subprograms (CD*)

	Example of Modifying a Model
	Use Steplibs to Modify Models
	Invoke Natural Construct From a Steplib

	23 External Objects
	Introduction
	Object Categories
	Error Processing
	Passing of Structure Names
	Restricted Data Areas
	Callback Functions
	Subprogram Chaining
	Without Subprogram Chaining (CPUELNX)
	With Subprogram Chaining (CPUELRD)

	Natural-Related Subprograms (CNU*)
	CNUEL Subprogram
	Drivers Menu Option

	CNUELNX Subprogram
	CNUELNX On Unix Platforms
	Drivers Menu Option

	CNUERMSG Subprogram
	Drivers Menu Option

	CNUEXIST Subprogram
	Drivers Menu Option

	CNUGDABL Subprogram
	Drivers Menu Option

	CNUGDAEL Subprogram
	Drivers Menu Option

	CNUGENDA Subprogram
	Drivers Menu Option

	CNUMPPRF Subprogram
	Drivers Menu Option

	CNUMSG Subprogram
	Drivers Menu Option

	CNUPEXST Subprogram
	Drivers Menu Option

	CNUSEL Subprogram
	Drivers Menu Option

	CNUSRCNX Subprogram
	Drivers Menu Option

	CNUSRCRD Subprogram
	Drivers Menu Option

	Natural-Related Helproutines (CNH*)
	CNHMDL Helproutine
	CNHMSG Helproutine
	CNHOBJ Helproutine

	Natural Construct Generation Utility Subprograms (CSU*)
	CSU-VAR Subprogram
	Drivers Menu Option

	CSUBANN Subprogram
	CSUBLDRP Subprogram
	CSUBMIT Subprogram (Mainframe)
	CSUBYTES Subprogram
	Drivers Menu Option

	CSUCASE Subprogram
	Drivers Menu Option

	CSUCCMD Subprogram
	CSUCENTR Subprogram
	Drivers Menu Option

	CSUCOMPR Subprogram
	Drivers Menu Option

	CSUCTRL Subprogram
	CSUCURS Subprogram
	CSUCURS1 Subprogram
	CSUDB2SP Subprogram
	Drivers Menu Option

	CSUDELFF Subprogram
	Drivers Menu Option

	CSUDEFLT Subprogram
	CSUDYNAT Subprogram
	Drivers Menu Option

	CSUEMLEN Subprogram
	Drivers Menu Option

	CSUENDX Subprogram
	Drivers Menu Option

	CSUFDEF Subprogram
	Drivers Menu Option

	CSUFRVAR Subprogram
	Drivers Menu Option

	CSUGEN Subprogram
	CSUHEADS Subprogram
	Drivers Menu Option

	CSUINCL Subprogram
	Drivers Menu Option

	CSUIS Subprogram
	Drivers Menu Option

	CSULABEL Subprogram
	Drivers Menu Option

	CSULENGT Subprogram
	Drivers Menu Option

	CSULPS Subprogram
	CSUMAX Subprogram
	Drivers Menu Option

	CSUMIMAX Subprogram
	Drivers Menu Option

	CSUMODEL Subprogram
	Drivers Menu Option

	CSUMORE Subprogram
	Drivers Menu Option

	CSUMPBOX Subprogram
	CSUMPCPR Subprogram
	CSUMPDUP Subprogram
	CSUMPLAY Subprogram
	Drivers Menu Option

	CSUMPMMS Subprogram
	CSUMPOVL Subprogram
	CSUMPREG Subprogram
	Drivers Menu Option

	CSUMPTAB Subprogram
	CSUMPTST Subprogram
	Drivers Menu Option

	CSUNATFM Subprogram
	Drivers Menu Option

	CSUNEWX Subprogram
	Drivers Menu Option

	CSUOG Subprogram
	CSUPARMS Subprogram
	Drivers Menu Option

	CSUPARTY Subprogram
	CSUPPER Program
	Drivers Menu Option

	CSUREADS Subprogram
	CSUREF Subprogram
	CSUSCAN Subprogram
	Drivers Menu Option

	CSUSELFV Subprogram
	CSUSETKY Subprogram
	Drivers Menu Option

	CSUSETW Subprogram
	Drivers Menu Option

	CSUSORT Program
	CSUSPLIT Program
	Drivers Menu Option

	CSUSUB Program (Mainframe)
	CSUSUBP Subprogram
	Drivers Menu Option

	CSUTEST Program
	Drivers Menu Option

	CSUTLATE Subprogram
	CSUTRANS Subprogram
	Drivers Menu Option

	CSUXCHK Subprogram
	Drivers Menu Option

	CSU2LONG Subprogram
	Drivers Menu Option

	Predict-Related Subprograms (CPU*)
	With Natural Security Installed
	CPU-OBJ Subprogram
	Drivers Menu Option

	CPU-OBJ2 Subprogram
	CPU-OREL Subprogram
	CPU-VIEW Subprogram
	Drivers Menu Option

	CPUEL Subprogram
	Drivers Menu Option

	CPUELDE Subprogram
	CPUELKY Subprogram
	CPU-FREL Subprogram
	CPUELNX Subprogram
	Drivers Menu Option

	CPUELRD Subprogram
	Drivers Menu Option

	CPUELVE Subprogram
	Drivers Menu Option

	CPUEXIST Subprogram
	Drivers Menu Option

	CPUFI Subprogram
	Drivers Menu Option

	CPUHOLD Subprogram
	CPUKY Subprogram
	CPUREDEF Subprogram
	Drivers Menu Option

	CPURL Subprogram
	Drivers Menu Option

	CPURLRD Subprogram
	Drivers Menu Option

	CPUSUPER Subprogram
	Drivers Menu Option

	CPUUNIQ Subprogram
	CPUVE Subprogram
	Drivers Menu Option

	CPUVERUL Subprogram
	CPUXPAND Subprogram
	Drivers Menu Option

	Predict-Related Helproutines (CPH*)
	CPHEL Subprogram
	CPHELB Subprogram
	CPHFI Helproutine
	CPHFIB Subprogram
	CPHPRED Helproutine
	CPHRL Helproutine
	CPHSET Helproutine

	General Purpose Generation Subprograms (CU--*)
	CU--EM Subprogram
	CU--LRP Subprogram
	CU--MSG Subprogram
	CU--UL Subprogram

	24 Supplied Administration Utilities
	Introduction
	Import and Export Utilities
	Multiple Code Frame Import Utility
	Multiple Code Frame Export Utility

	Frame Hardcopy Utility
	Comparison Utilities
	CSGCMPS Utility
	CSGCMPL Utility
	Online
	In Batch

	Upper Case Translation Utility
	Additional Utilities
	Determine Which Subprograms Are Referenced by Code Frames
	Online
	In Batch

	Determine Which Subprograms Are Referenced by Models
	Online
	In Batch

	25 Using SYSERR for Multilingual Support
	Introduction
	Maintenance
	Translation

	Define SYSERR References
	Use SYSERR References
	On Maps (Screen Prompts)
	For Panel Headings and PF-Key Names
	In Messages
	For Text Translation
	Mass Translation
	Context Translation

	With Substitution Values

	Format SYSERR Message Text
	Supported Areas in Natural Construct
	CSUTRANS Utility
	CNUMSG Utility
	Examples of Using the CNUMSG Utility

	Static (One-Language) Mode
	Install Natural Construct in Static Mode
	Create Performance LDAs and Subprograms

	A Appendix A: Glossary of Terms

