
Creating a Web Service
This section describes how to use the Natural Business Services Visual Studio add-in to generate a Web
service that invokes a Natural subprogram (business service) over the inter/intranet via the W3C SOAP
standard.

This section does not provide information about the following topics. We assume that you are either
familiar with the topics or have access to other sources of information about them:

Microsoft Visual Studio

Natural programming language and environment

EntireX Communicator

XML, XSL

Web service technologies

HTML, JavaScript

Note:
If you are using Natural Construct and Predict and will be generating Web services for Natural
Construct-generated subprograms, you should also be familiar with these Software AG products.

 To create a Web service:

1. Create the Web service project (see Step 1: Create a Web Service Project).

2. Use the Business Service Explorer to locate the business service (see Use the Business Service
Explorer).

3. Use the Web Service wizard to generate the service (see Generate a Web Service).

4. Edit the configuration files (see Modify Web.config Files).

5. Test the service (see Test a Web Service).

This section covers the following topics:

Overview

Generate a Web Service

Use Business Data Types (BDTs)

Validate Input

Test a Web Service

Build a Web Application

1

Creating a Web ServiceCreating a Web Service

Use the Cache Engine

Customize Web Services

Tips and Techniques

Overview
Natural Business Services creates Web services that invoke Natural objects from a Windows platform via
standard XML conventions (SOAP, WSDL, XSD, etc.). These XML-based Web services provide a
standard way to call and integrate existing or new Natural objects into other platforms and systems.

Natural Business Services simplifies the creation of Web service components; you do not have to write,
develop, code, or compile in any language other than Natural. This SDK supports and utilizes the newest
features of Visual Basic .NET, part of Microsoft’s Visual Studio .NET. Those who want to continue using
Visual Basic can do so. Others can use the new framework that does not require Visual Basic coding, but
takes advantage of the .NET platform. For advanced customizations, you can code in your choice of .NET
languages, including Visual Basic, C#, J#, and JavaScript.NET.

Using the .NET technology, you can test existing Web service runtime and generation components that
were written in Visual Basic and compiled as ActiveX/COM components. Or you can migrate these
components to .NET and its common language runtime.

Note:
If you currently only use the runtime components to code custom applications, you can continue to do so
after migrating to Visual Studio.NET.

Natural Business Services performs two functions:

Generates Web services for Natural objects

Integrates the Web services into application frameworks that support web (HTML) interfaces, based
on .NET technology.

To create a Web service, you can use an existing Natural Construct-generated object browse or object
maintenance subprogram on the server or any Natural subprogram that does not have a user interface.
Natural Construct-generated objects include various methods, standards, and security integration that
make generating a complete application time efficient and standardized. However, the ability to access
any Natural subprogram provides the practical flexibility required in a production shop.

Natural Construct-generated objects interface with the middleware and client environments through the
supplied middleware. Server application code is then ready to be accessed by any of the following:

Web service

HTML page

Visual Basic application

ActiveX component

2

OverviewCreating a Web Service

Generate a Web Service
This section describes how to use the Web Service wizard to generate a new Web service. The following
topics are covered:

Step 1: Create a Web Service Project

Step 2: Invoke the Web Service Wizard (WSW)

Step 3: Select the Business Service

Step 4: Configure the Methods (Optional)

Step 5: Configure the XML Layout (Optional)

Step 6: Name the Web Service

Regenerate a Web Service

Notes:

1. If you do not override settings for the steps marked as optional, the default settings are used.
2. For information on validation edits, see Validate Input.

Step 1: Create a Web Service Project

Before you can create a Web service, you must first create a project into which you can generate the
service.

 To create a new Web service project:

1. Select New > Project on the File menu.

The New Project window is displayed.

2. Select Natural Business Services from the Project types list.

The list of available templates is displayed on the right. For example:

3

Creating a Web ServiceGenerate a Web Service

3. Select WebServiceApplication from Templates.

4. Provide the following information about the new project:

Setting Description

Name Name of the new project. When naming projects, the following
restrictions apply to the name:

Cannot contain spaces

First character must be alpha

All other characters must be alphanumeric

Location Location of the new project.

Solution name Name of this solution.

Create directory for
solution

If this option is selected, a directory is created for the solution.

Add to Source ControlIf this option is selected, the project will be added to Source Control.

4

Step 1: Create a Web Service ProjectCreating a Web Service

5. Select OK to create the project.

The Create IIS Application window for your project is displayed. For example:

6. Provide the following configuration values for your new Web service project:

5

Creating a Web ServiceStep 1: Create a Web Service Project

Setting Description

Application name Descriptive name of the project.

Host name Host name your services will run under. This name will be resolved by
your DNS to a physical network address.

Port TCP/IP port number your web server will run on. This is either the port
your existing IIS server is running on or the port you want the ASP.NET
server to run on.

Tip:
Ensure there are no other applications using the same port number. If
another application is using the same port, the server will not start.

Virtual path Path name or root name for the web server used to access your Web
service. The URL format is:

http://hostname:port#/virtual_path/service

For example:

http://myserver:8080/myservices/customerservice

IIS physical path Location where your IIS server stores web pages. The default location
is:

c:\inetpub\wwwroot

Use ASP.NET
development server

If this option is selected, your services will only run inside Visual Studio
.NET using the ASP.NET development server. This option starts a small
web server for use while you are running or testing your project. When
your project is not running and Visual Studio is not open, the services
will not be available. If you use the ASP.NET development server, you
can later move your application to an IIS server by creating a virtual
root in IIS and pointing to the physical location where you saved your
project. For more information, see Use the ASP.NET Development
Server.

7. Select OK .

Natural Business Services adds the following items to the Visual Studio Solution Explorer. For
example:

6

Step 1: Create a Web Service ProjectCreating a Web Service

These items are common to all Web service projects. For example, you can use the Web.config node
in the Solution Explorer to edit the Web.config file in Visual Studio and change the connection used by
your Web services. For information, see Modify Web.config Files.

Step 2: Invoke the Web Service Wizard (WSW)

 To invoke the Web Service wizard:

1. Ensure the appropriate Web service project is active.

2. Locate the business service in the Business Service Explorer.

For information, see Use the Business Service Explorer.

3. Open the context menu for the service.

4. Select Create Web service on the submenu.

The Start panel for the Web Service wizard is displayed.

7

Creating a Web ServiceStep 2: Invoke the Web Service Wizard (WSW)

5. Select Next to proceed.

Note:
If you do not want the Start panel displayed when you use the wizard in the future, select Do not
show this panel again.

The Select Business Service panel is displayed.

Step 3: Select the Business Service

 To select a service:

1. Ensure the appropriate connection is selected.

If the default is not appropriate, use the drop-down list to select the correct connection.

2. Select the business service for which you are generating this Web service.

8

Step 3: Select the Business ServiceCreating a Web Service

To select the service, do one of the following:

Select the browse button (...). A window is displayed, showing the available business services.

Type the following:

The name of the domain in Domain.

The name of the business service in Service.

Optionally, type a version number in Version.

3. Optionally, select Filter by proxy to limit the number of subprogram proxies used for the Web
service.

If you select this option, the Select Service Proxies panel is displayed. For information, see Filter by
Proxy.

4. Optionally, select metadata options.

You can specify the following metadata options:

Refresh

Retrieves metadata from the server before configuring the methods, PDAs, and Web service.

Show summary of changes

Displays a summary report of any metadata changes.

5. Select Next to proceed.

The Configure Methods panel is displayed.

Filter by Proxy

If you select Filter by proxy on the Select Business Service panel, the Select Service Proxies panel is
displayed. For example:

9

Creating a Web ServiceStep 3: Select the Business Service

Use this panel to indicate which subprogram proxies to use for your Web service. After selecting or
de-selecting the proxies, select Next to proceed.

Step 4: Configure the Methods (Optional)

10

Step 4: Configure the Methods (Optional)Creating a Web Service

When you generate a Web service for a Natural subprogram, you must decide which methods (actions)
will be permitted on the client. For example, most subprograms support the DEFAULT method, browse
subprograms also support the BROWSE method, and maintenance subprograms support the methods
shown above.

Typically, the wizard-generated defaults are sufficient. However, you can use this panel to customize the
methods and Input/Output settings your Web service will expose to the user, as well as any field overrides
for server data.

Note:
The buttons displayed for methods on maintenance pages and pages generated for non-Natural
Construct-generated subprograms are generated generically at runtime using XSL and the method names
selected for the Web service.

 To configure the methods:

1. Open the node for each method.

11

Creating a Web ServiceStep 4: Configure the Methods (Optional)

2. Define any field overrides for the method.

For information, see Add Override.

3. Verify the Input/Output settings for each PDA used by the method.

To re-display all default values, select Defaults.

If you intend to use the Web Application wizards, select the appropriate BDTs and levels of
redefinition within the data PDAs (maintenance PDA for the maintenance module and row PDA for the
browse module). As state must be maintained, do not eliminate any fields from a Natural
Construct-generated maintenance module (although the fields can be hidden using the Web Page wizard).
Accept the defaults for any other Natural Construct-supplied PDA.

4. Select Next to proceed.

The Configure XML Layout panel is displayed.

Add Override

A field override initializes custom data in the PDA before sending the data to the server. The data does not
have to be public to the client. An example of this functionality is overriding an input value. For example,
CITY=’TORONTO’ forces the CITY value to be Toronto, even if another value was passed to the
website.

The Web Service wizard assigns the appropriate value to CDAOBJ2.#FUNCTION, which determines the
default action applied to a Natural Construct-generated maintenance object. For an example of this, open
the NEXT method and look at the override for CDAOBJ2.#FUNCTION. If you know the intended values
for a field, you can apply similar techniques to modules that were not generated by Natural Construct.

You can also use the override option for security purposes. For example, if the Web service is intended for
a specific city, you can set the override for the City field to that city only. Any other value in the City field
is ignored and the user only receives data for the specified city — even if other data exists.

 To add a field override:

1. Select Add Override on the Configure Methods panel.

The Field Overrides fields are displayed. For example:

12

Step 4: Configure the Methods (Optional)Creating a Web Service

2. Select the field name from Field Name.

3. Specify the override value.

4. Specify the XML format or tag name.

 To remove a field override:

1. Select the field name.

2. Press Delete.

Step 5: Configure the XML Layout (Optional)

13

Creating a Web ServiceStep 5: Configure the XML Layout (Optional)

Use this panel to indicate which server fields the Web service will make public to the client.

The following example shows the expanded OUTPUT-DATA node:

14

Step 5: Configure the XML Layout (Optional)Creating a Web Service

You can also use this panel to do the following:

Override global configuration settings.

To override the global Web.config file settings, use BDT modifiers. For more information, see
Modify Web.config Files and BDT Modifiers.

Configure array fields.

You can eliminate unnecessary XML nodes that appear in array fields. For more information, see
Modify Array Fields.

Create multilingual Web services.

If you are using message numbers in CDPDA-M for your Web service (because the subprogram was
generated with the message number option), select Perform message substitution for CDPDA-M.
At runtime, Natural Business Services scans for the :1::2::3: place holders and retrieves the
appropriate message. This option is selected by default if CDPDA-M is available for this Web
service.

15

Creating a Web ServiceStep 5: Configure the XML Layout (Optional)

Tip:
If you are not using message numbers, de-select this option to eliminate unnecessary CPU usage.

Note:
To re-display all default values, select Defaults.

 To configure the XML layout:

1. Select each node.

The MFInfo read-only settings show the level and Natural name and format for each field in the
PDA. The modifiable settings show the client name for the field, the business data type (BDT), and
the BDT modifiers. BDTs provide a way to present data to the user in a format that is consistent and
based on business conventions, rather than on programming language conventions. For example, a
BDT can format a phone number with dashes (-) so it is easily recognized as a phone number. For
more information, see Use Business Data Types (BDTs).

2. Optionally, select the More field to define the number of occurrences of an array returned from
Natural.

For information, see Modify Array Fields.

3. Select or de-select fields in each PDA used by your Web service.

Important:
If a field is not selected and an update is performed, the data in the non-selected field is blanked out
at runtime. De-selection of a field implies that the field value is blank when it reaches the server,
unless a value is assigned by a field override.

4. Define the XML tag name or format for each selected field, if required.

5. Select Next to proceed.

The Name Web Service panel is displayed.

Modify Array Fields

This section describes how to modify the number of occurrences of an array field.

 To modify the number of occurrences of an array field:

Select More for an array field on the Configure XML Layout panel.

The Advanced PDA Configuration window is displayed. Use this window to specify one of the
following options:

16

Step 5: Configure the XML Layout (Optional)Creating a Web Service

Option Description

None All occurrences of the array are represented by XML nodes.

Stop blank field All occurrences of the array are represented as XML nodes until the first
blank node is encountered.

Control field Use a control ©#) field to indicate the number of occurrences returned
from Natural.

Step 6: Name the Web Service

Use this panel to verify the service information, such as the name of the service, the path, and the URL to
invoke the service.

You can also select Generate initialize to generate local initialization data (for example, create
WSE_Initialize) or select Generate metadata to create an xml file containing metadata for the Web
Application wizard (metadata.xml), such as the name of the primary key and the hold field, the types of
PDAs used by the service, a description of the object, and the Predict data. These options are required
when using the Web Application wizard to build your web application.

17

Creating a Web ServiceStep 6: Name the Web Service

 To name the Web service:

1. Type a name of your Web service in Service name.

2. Verify the following settings:

Setting Description

Path Path to the local folder containing the Web service.

Note:
If the local folder does not exist, you are prompted to create the folder.

URL URL used to invoke the Web service.

Important:
If you intend to use the Web Application wizard to build your web application, do not de-select
Generate initialize or Generate metadata.

3. Select Finish to generate the Web service.

The Generate Status window is displayed, showing the progress of the generation. When generation
is completed, the window shows the names of the files generated for the Web service. For example:

The Results column indicates that the generated files have been generated for the first time (New).

18

Step 6: Name the Web ServiceCreating a Web Service

Note:
To return to the wizard without saving the files, select Cancel.

4. Select Save to save the files.

The Web service is now displayed in the Solution Explorer. For example:

You have successfully generated and saved a new Web service.

For information on testing the Web service, see Test a Web Service.

For information on creating a web application for your Web service, including web pages and menus,
see Build a Web Application.

Regenerate a Web Service

In addition to creating new Web services, you can use the Web Service wizard to retrieve and regenerate
the specifications for an existing Web service.

Warning:
Regeneration may affect the code generated by the Web Application
wizards.

 To regenerate an existing Web service:

19

Creating a Web ServiceRegenerate a Web Service

1. Open the context menu for the Web service root node in the Solution Explorer.

2. Select one of the following options on the submenu:

Option Description

Show Wizard The Start panel for the Web Service wizard is displayed. Edit the panels
as desired and select Finish on the last panel. The Generate Status
window is displayed. The Results column indicates whether a file is the
same as the previous generation or different from the previous
generation. If a file is different, select the file and select Compare to
invoke your code comparison tool.

Important:
If the parameters on the server change, the changes may not be
incorporated if the cache is not cleared. To clear the cache, select
Refresh in Metadata Settings on the Select Business Service panel
before choosing Show Wizard.

Regenerate The Web service is regenerated without displaying the wizard panels.

Make Changes Accessible to Users

If you make changes to a generated Web service and do not change the Web.config file, the updates will
not be accessible to users invoking your service. To make the changes accessible, do one of the following:

Recycle IIS (Internet Information Server)

Unload the Root application

Save the Web.config file

Use Business Data Types (BDTs)
Business data types (BDTs) help ensure that information is displayed in a way that is consistent and easy
to understand. BDTs convert Natural data types into values displayed to the user in a browse or
maintenance window. For example, a BDT can reformat a telephone number that was entered without
dashes. Using BDTs offers three primary benefits:

Consistency

BDTs ensure that each data type is displayed to the user in a consistent format.

Flexibility

BDTs recognize a variety of input formats, which makes using the Web service easier.

Accuracy

BDTs centralize the validation code for a data type and provide a consistent mechanism for returning
validation error messages.

20

Use Business Data Types (BDTs)Creating a Web Service

Natural Business Services supplies a number of predefined BDTs you can use — or you can create your
own. If there is a piece of information whose format you are constantly validating, consider creating a
BDT to handle it. Once a BDT has been created, you can use it in other Web services. For more
information, see Create a Custom BDT.

This section covers the following topics:

BDT Modifiers

Supplied BDTs

BDT Modifiers

Some of the BDTs include modifiers, additional parameters you can use to further refine the display of
data. For example, you can use BDTAlpha with a modifier of CASE=U to convert the contents of a field
into upper case.

You can also specify more than one BDT modifier for a field. For example, you can use BDTNumeric
with modifiers of ROUND=1 | GS=ON to round the field value to one decimal and display the group
separator (separator for numeric values in the thousands).

Note:
Use the "|" character to separate multiple BDT modifiers.

Supplied BDTs

Natural Business Services supplies several BDTs you can use to format input data. The following table
lists the supplied BDTs, as well as the Web service and Predict keywords:

BDT Name Type Applied to Predict Keyword

BDTAlpha Alpha Alphanumeric data BDT_Alpha

BDTBoolean Boolean Data that can have a value of either true or
false

BDT_Boolean

BDTCurrency Currency Currency data BDT_Currency

BDTDateTime Date/Time Date and time data BDT_Date/BDT_Time

BDTHexByte Hex byte Hex data in a string format BDT_HexByte

BDTNumeric Numeric Numeric data BDT_Numeric

BDTPhone Phone Data that represents a phone number BDT_Phone

BDTPostalCodePostal
code

Data that represents a postal code BDT_PostalCode

The following sections describe the supplied BDTs and the modifiers each supports.

Note:
BDTPhone and BDTPostalCode do not support modifiers.

21

Creating a Web ServiceBDT Modifiers

BDTAlpha

BDTAlpha is applied to alphanumeric data.

Modifier Description

CASE=U|L Forces the text into upper case (U) or lower case (L). If you do not specify this
modifier, the default is to not change the case. This modifier affects
ConvertToDisplay and ConvertFromDisplay behavior.

HEXString=True Formats output into a string of hex numbers and vice versa. For example:

 Server (ASCII) Client
 06 31 95 49 “06 1F 5F 31”
 _ 1 (printable characters)

NullString=custom
text

Replaces null characters with custom text. By default, EBCDIC “OO” on the
server becomes “{~NULL~}” (NullChar) in the Web service.

TRIM=L|T|LT Trims leading spaces (L), trailing spaces (T), or leading and trailing spaces (LT).
If you do not specify this modifier, the default is no trimming. This affects
ConvertToDisplay and ConvertFromDisplay behavior.

BDT Boolean

BDTBoolean is applied to data that can have a value of either False or True.

22

Supplied BDTsCreating a Web Service

Modifier Description

O/I=<False>|<True> Displays Output (False) or Input (True) settings. The default is False.

EM=<False>|<True> Displays the <False> string for False and the <True> string for True. The
default is EM=False|True. ConvertFromDisplay compares the formatted
data to the <False> and <True> strings and recognizes a match if the value
unambiguously matches the beginning of either string. The modifier syntax
is not case-sensitive.

Note:
The left side of the edit mask always represents the negative (false) and the
right side always represents the positive (true).

The following examples show various types of edit mask values, user input,
and results:

 EM Value User Input Formatted Value

 EM=False|True T, t, tr, TRU, F, false,
yes, <blank>

True, True, True, True,
False, False, Error:
Invalid, Error: Invalid

 EM=True|False true, F False, True

 EM=Off|On off, on, o False, True, Error:
Ambiguous

 EM=|X x, <blank>, xx True, False, Error:
Invalid

Note:
If you are using the Web Page wizard and have set non-standard BDTBoolean values, modify the
evaluateBoolean function in the NBSShared.js file.

BDTCurrency

BDTCurrency is applied to any currency values.

Modifier Description

BRACKETS=OFF/ON Displays negative numbers within brackets. For example, if
"BRACKETS=ON", -124.22 is displayed as (124.22).

ZERO=OFF|ON Suppresses (OFF) or displays (ON) zero values. The default is ON.

BDTDateTime

BDTDateTime is applied to any date or time value.

23

Creating a Web ServiceSupplied BDTs

Modifier Description

DisplayDateFormat,
DisplayTimeFormat

ConvertToDisplay formats the Date (DisplayDateFormat) or Time
(DisplayTimeFormat). For the syntax for the format string, see
MSDN.

ISDate=<True>|<False> Converts Date (True) or Time (False).

XML=<True>|<False> Converts to or from an XML compliant string.

Note:
If the date field does not contain a date (is null) in Natural, the BDTDateTime outputs an empty string in
XML.

BDTHexByte

BDTHexByte is applied to hex data in a string format.

Modifier Description

HexPrefix, HexSuffix Indicates the string used at the beginning (HexPrefix) or end (HexSuffix) of
hex data.

Note:
If HexSuffix is not specified, spaces are used by default.

BDTNumeric

BDTNumeric is applied to any numeric data.

24

Supplied BDTsCreating a Web Service

Modifier Description

DEC=n Forces the display of n decimal places. The default is to display as many
decimal places as there are significant decimal digits when the Natural format
is not provided, or to use a fixed number of decimal places if the Natural
format is provided. In this latter case, use DEC=-1 to ignore the Natural
format and display significant decimal digits only.

BRACKETS=OFF/ON Displays negative numbers within brackets. For example, if BRACKETS=ON,
-12.5 is displayed as (12.5).

EM=xxx Formats any format string understood by the Visual Basic Format function.
ConvertToDisplay uses the Format function to format the value according to
that format string.

GS=OFF|ON Used to suppress (OFF) or display (ON) group separators (thousands
separators). The default is OFF.

ROUND=n Rounds the value to n decimal places. If n is negative, it rounds to the left of
the decimal. The default is no rounding.

SCIENTIFIC=OFF|ONDisplays the value in normal (OFF) or scientific notation (ON). The default is
OFF.

SIGN=OFF|ON Suppresses (OFF) or displays (ON) the sign for positive numbers. The default
is OFF.

ZERO=OFF|ON Suppresses (OFF) or displays (ON) zero values (for output only). The default
is OFF.

Validate Input
If an error occurs on any wizard panel, Natural Business Services displays an error window pointing to the
field in error. The following example shows the Select Business Service panel with an error in the
Domain field:

25

Creating a Web ServiceValidate Input

The Error window describes the error. In this example, the domain name for the Web service was not
supplied. To continue creating the Web service, you must enter the name of a domain.

Test a Web Service
Use the SOAP Client testing tool to test your generated Web service. SOAP (Simple Object Access
Protocol) is part of the Web service definition and contains the XML message sent via HTTP. A Web
service sends PDA data in the form of an XML document inside a SOAP document. The SOAP document
contains the format of the message used on the wire to receive and respond to Web service requests,
including information that indicates which method is being invoked. The response is returned via a SOAP
document. Standard SOAP technologies, such as the SOAP:Fault section, are used to transmit error and
status information.

Tip:
You can use the SOAP Client to test any Web service, not just a Natural Business Services-generated Web
service.

26

Test a Web ServiceCreating a Web Service

In the SOAP Client, which is case-sensitive, the SOAP actions correspond to the methods defined for the
subprogram. The URL is the URL set up in the configuration file. For example:

http://localhost/NBSDemos/WebServices/Calculator/Calculator.sws

For examples of input to the SOAP Client, see the Samples directory.

Note:
To view the incoming and outgoing data while your Web service is running, use the Trace utility in the
Microsoft SOAP toolkit.

 To test your generated Web service:

1. Open the context menu for the Web service in the Solution Explorer.

2. Select Set WebServiceName as Startup Service on the submenu.

3. Do one of the following:

Press PF5.

Select the Debug menu in Visual Studio.

This will start the ASP.NET server and display the SOAP Client Session window, if necessary. For
example:

27

Creating a Web ServiceTest a Web Service

The results of the test are displayed in the Output window.

Tip:
If the server does not start, check the project properties in the Properties pane and ensure the correct
port number is being used and/or check the status of your IIS server.

Tip:
Save time by using the File menu to save and load previously issued requests.

Tip:
Use the WSE_INITIALIZE method to retrieve sample values.

Change the Connection ID Used for SOAP Requests

You can change the default connection ID used for SOAP requests by modifying the global Web.config
file and the SOAP header. For information, see Modify Web.config Files and ConnectionID.

Build a Web Application
After generating and testing your Web service, you can create a web application for your service. A web
application consists of a menu and a collection of related web pages.

Applications built using the Visual Studio add-in have a unique architecture that runs completely in the
browser and submits Web service requests to previously generated services. The builder creates an HTML
page containing JavaScript that uses Microsoft XML ActiveX components to directly parse and submit
XML SOAP documents to the IIS (Internet Information Server) hosting your generated Web services. The

28

Build a Web ApplicationCreating a Web Service

JavaScript then receives the XML SOAP response and applies a generated XSL template to transform the
data into an HTML user interface. This architecture has numerous advantages, including a better
separation of business and presentation logic and increased network performance. Network performance is
increased because the browser only sends and receives the data (in XML format) — not the entire HTML
presentation.

Note:
Applications built using the Visual Studio add-in only run in Internet Explorer 5.0 or higher and require
the ActiveX scripting security settings in Internet Explorer to be enabled.

To build a web application:

Step 1: Create the Web Application Project

Step 2: Generate a Web Page

Step 3: Generate the Menu

Run Your Web Application Project

Step 1: Create the Web Application Project

Before creating a web application, you must create a web application project and/or have one or more
Natural Business Services-generated Web services running on an IIS web server with the Download
metadata option enabled.

 To create a web application project:

1. Select New > Project on the File menu.

The New Project window is displayed.

2. Select Natural Business Services from the Project types list.

The list of available templates is displayed. For example:

29

Creating a Web ServiceStep 1: Create the Web Application Project

3. Select WebPageApplication from Templates.

4. Provide the following information about the new project:

Setting Description

Name Name of the new project. When naming projects, the following
restrictions apply to the name:

Cannot contain spaces

First character must be alpha

All other characters must be alphanumeric

Location Location of the new project.

Solution name Name of this solution.

Create directory for
solution

If this option is selected, a directory is created for the solution.

Add to Source ControlIf this option is selected, the project will be added to Source Control.

30

Step 1: Create the Web Application ProjectCreating a Web Service

5. Select OK to create the project.

The Create Web Application window is displayed. For example:

6. Provide the following configuration values for your new web application project:

31

Creating a Web ServiceStep 1: Create the Web Application Project

Setting Description

Host name Name of the host your web application will run under. This name will be
resolved by your DNS to a physical network address.

Port TCP/IP port number your web application will run on. This is either the
port your existing IIS server is running on or the port you want the
ASP.NET server to run on.

Tip:
Ensure there are no other applications using the same port number. If
another application is using the same port, the server will fail to start.

Virtual path Path name or root name for the web server used to access your Web
services. The URL format for the web application is:

http://hostname:port#/virtual_path/page.html

For example:

http://myserver:8081/myservices/mainpage.html

IIS physical path Location where your IIS server stores web pages. The default location
is:

c:\inetpub\wwwroot

Default web service
root

Default location of the Web service directory.

Use ASP.NET
development server

If this option is selected, your web application will only run inside
Visual Studio .NET using the ASP.NET development server. This
option starts a small web server for use while you are running or testing
your project. When your project is not running and Visual Studio is not
open, the services will not be available. If you use the ASP.NET
development server, you can later move your web application to an IIS
server by creating a virtual root in IIS and pointing to the physical
location where you saved your project. For more information, see Use
the ASP.NET Development Server.

7. Select OK .

Natural Business Services adds the following items to the Visual Studio Solution Explorer:

32

Step 1: Create the Web Application ProjectCreating a Web Service

These items are common to all web application projects.

You can now invoke wizards to generate a web page and menu for your new web application.

For information on creating a web page, see Step 2: Generate a Web Page.

For information on creating a menu, see Step 3: Generate the Menu.

Use the ASP.NET Development Server

 To use the ASP.NET development server:

1. Display both projects (Web service and web application) in the Solution Explorer.

2. Define both projects as startup projects (open the context menu for the solutions and select Set
Startup Projects).

3. Set the Use SoapClient option to False for the Web service project (open the context menu for the
Web service project and select Properties).

4. Ensure both projects use a separate port number (open the context menu for each project and select
Properties).

5. Run the solution.

6. Press F5 or select Start Debugging on Debug.

Step 2: Generate a Web Page

Next, use the Web Page wizard to generate a maintenance or browse page for your web application. The
following example generates a maintenance web page for the Web service generated in Generate a Web
Service.

33

Creating a Web ServiceStep 2: Generate a Web Page

 To generate a web page for your web application:

1. Open the context menu for the web application project in the Solution Explorer.

2. Select Add > New Item on the submenu.

The Add New Item window is displayed. For example:

3. Select WebPage.

4. Type a name for your web page in Name.

5. Select Add.

The Start panel for the Web Page wizard is displayed. This panel is similar for most wizards.

6. Select Next to proceed.

The Select Web Service panel is displayed. For example:

34

Step 2: Generate a Web PageCreating a Web Service

Use this panel to identify the location of the Web service for your web page. You can also use this
panel to indicate the following metadata options:

Option Description

Refresh Retrieves metadata from the server before configuring the page.

Show summary of
changes

Displays a summary report of any metadata changes.

7. Type the location of the Web service (from an existing project or from a service that is running under
IIS) in Web service URL.

8. Select the browse button (...).

9. Select the Web service.

For example:

35

Creating a Web ServiceStep 2: Generate a Web Page

10. Select OK .

The URL for the service is displayed. For example:

36

Step 2: Generate a Web PageCreating a Web Service

11. Select Next to proceed.

The Configure Page panel is displayed. For example:

37

Creating a Web ServiceStep 2: Generate a Web Page

This panel shows the default name of the web page, page title, and the primary HTML and XSL file
names. Optionally, you can use this panel to access the following options:

Option Description

Configure HTML Tailor the HTML for your web page. It includes advanced options, such
as linking web pages or defining the value list. For information, see
Configure HTML Option.

Configure methods Indicate which methods are available on your web page. For
information, see Configure Methods Option.

Configure tertiary
display

Define the headings for tertiary data displayed on your web page. For
information, see Configure Tertiary Display Option.

Configure browse
keys

Define which fields are available to browse on your web page. For
information, see Configure Browse Keys Option.

12. Select Finish.

38

Step 2: Generate a Web PageCreating a Web Service

The Generate Status window is displayed.

13. Select Save to save the web page files.

Your web page is added to your web application. Next, you can generate a menu for your web application.
For information, see Step 3: Generate the Menu.

Configure HTML Option

This section describes how to configure the HTML for your web page.

 To configure the HTML for your web page:

1. Select Configure HTML on the Configure Page panel.

The Configure HTML window is displayed. For example:

Use this window to indicate how information is displayed on your web page.

2. Specify the following options to perform the associated tasks:

39

Creating a Web ServiceStep 2: Generate a Web Page

Option Task

Heading Change the prompt displayed for the field.

HTML Control Change the HTML control for the field (for example, changes a text box
to a combo box). For a description of the HTML controls, see HTML
Controls.

Display Width Change the display size (width) of the field.

Field Length Change the length of data that can be entered in the field.

More Set advanced HTML options, such as linking your web page to other
web pages or specifying the value list. For information, see Set
Advanced HTML Options.

HTML Controls

The following table describes each HTML control, as well as any requirements for the control and the
values to which the control applies:

HTML
Control

Description Requirements Applies to

CheckBox Check box Boolean Boolean values

Combo Box Drop-down
selection box

Values provided by the Value list (see Define
or Edit Values for the Value List)

Elementary values

Display Read only None All variables

Hidden Invisible None All variables

RadioButton Selection buttonsValues provided by the Value list (see Define
or Edit Values for the Value List)

Elementary values

TextArea Multi-line text
box

One-dimensional array One-dimensional
arrays

TextBox Standard input None All variables

Note:
If you select a display option of Hidden at a group level for an HTML control, no field is displayed in the
group — regardless of the display options selected at the field level.

Set Advanced HTML Options

You can set advanced HTML options if desired. For example, you can link multiple web pages and/or
provide a list of valid values for a field.

 To set advanced HTML options:

1. Select More for a field on the Configure HTML panel.

The browse button (...) is displayed.

40

Step 2: Generate a Web PageCreating a Web Service

2. Select the browse button.

The Advanced Options window is displayed, showing the options on the Linking tab:

The Linking tab allows you to specify links between web pages, update links between pages, or remove
links between pages. For example, you can link a customer browse page to an order browse page. When
users select a customer number on the customer page, they can drill-down to details about all orders for
that customer. Or you can link an order browse page to an order maintenance page. When users select an
order on the order browse page, they can drill-down to the order maintenance page.

You can also use the ValueList tab in this window to define or edit the list of valid values for a combo box
or radio button.

Add a Link Between Web Pages

 To add a link between web pages:

1. Select Add Link .

The names of the source page and source field are displayed and other fields in the window become
active.

2. Type a name for this link in Link Name.

41

Creating a Web ServiceStep 2: Generate a Web Page

3. Select the page you want to link your web page to from Foreign page.

When linking a maintenance page to a browse page, the code is generated as follows:

A lookup for a whole
object

For example, you can browse the Customer file and select a customer
for maintenance activities. All the data for the Customer object is then
displayed on the maintenance page for that customer.

A lookup for a single
field

For example, if you do not know the warehouse ID, but you know the
name of the warehouse, you can browse the Warehouse file until you
find the one you want, select the warehouse, and the warehouse ID field
is populated.

4. Select the matching field from Fields to Match.

This option differs, depending on the retrieval style:

A lookup for a whole
object

For this option, provide the matching fields for this object. If the object
was Order line, for example, users can provide an order and line number
and then information for the whole object is returned, such as the
quantity, unit price, line total, etc.

A lookup for a single
field

For this option, the matching fields are similar to a look up. For
example, you can attach a browse page to the warehouse ID field so
users can browse through the Warehouse file by name. After they select
a warehouse, however, only the warehouse ID field is populated on the
maintenance page.

5. Select OK .

Note:
Typically, linked web pages show up as windows. To change the size or display characteristics of the
windows, select Defaults and specify the style using the parameters provided in Window style.

If the Linking option is defined, an L is displayed in the corresponding More column on the Configure
HTML panel.

Define or Edit Values for the Value List

 To define or edit values for the Value list:

1. Select the ValueList tab in the Advanced Options window.

The following example shows the values for the Province field:

42

Step 2: Generate a Web PageCreating a Web Service

The list is populated from table verification rules attached to fields in Predict.

Note:
: Predict only populates the list if values are defined for the field. If there are no values in Predict,
you can add your own values to the list.

2. Use the ValueList tab to:

Add, remove, or update the list of valid values for a combo box or radio button.

Use the arrow and insert keys to position values on the list.

Add a line break after each radio button.

To add
 to the HTML after each radio button, select Add line break.

Display a blank if the value is blank.

To display a blank, instead of the first value for a field, select Add blank first row . This option
is useful if you do not want data displayed on the screen.

If the ValueList option is defined, a V is displayed in the corresponding More column on the Configure
HTML panel.

43

Creating a Web ServiceStep 2: Generate a Web Page

Configure Methods Option

This section describes how to configure the methods available for your web page.

 To configure the methods for your web page:

1. Select Configure methods on the Configure Page panel.

The Configure Methods window is displayed. For example

This example shows the methods available for a maintenance web page.

Tip:
To initialize the page locally, select WSE_INITIALIZE .

2. Indicate which methods are available on your web page or change the name displayed on the web
page for that method (for example, change “Store” to “Add”).

Configure Tertiary Display Option

This section describes how to configure the display of a tertiary group.

 To configure the tertiary display for your web page:

1. Select Configure tertiary display on the Configure Page panel.

44

Step 2: Generate a Web PageCreating a Web Service

The Tertiary Display window is displayed. For example:

When displaying a tertiary group, a two-dimensional array must be presented in a one-dimensional
window. To handle this complexity, only one occurrence of one of the dimensions is displayed at one
time. For example, each order line is associated with one or more distributions. Only the distributions
associated with the current order line are displayed at one time. To distinguish between lines, a field on
the secondary file (for example, line number) can be displayed as part of the header, along with a prefix
and/or suffix.

2. Define the headings displayed in the tertiary grid.

In this example, you can use Prefix to define the beginning of the heading for LineNumber and use
Suffix to define the ending. For example, if the:

Line number is “111”

Prefix is “Product”

Suffix is “Row”

The tertiary group heading is:

“Product 111 Row”

Configure Browse Keys Option

This section describes how to configure the browse keys for a browse web page.

45

Creating a Web ServiceStep 2: Generate a Web Page

 To configure the browse keys for a browse web page:

1. Select Configure browse keys on the Configure Page panel.

The Configure Browse Keys window is displayed. For example:

2. Select which fields will be available to browse on your web page.

Add Custom Code in User Exits

The Web Page wizard supports user exits for generated JavaScript in the HTML files. The syntax is:

//<nbs:exit Name="Exit Name">
//</nbs:exit>

You can place custom code between the start and end nbs:exit XML tags contained in JavaScript
comments (//). Exits are placed at strategic locations within the code, but you can also modify the code
frames to add your own exits. For more information, see the code frames folder.

Regenerate a Web Page

The Web Page wizard supports regeneration.

 To regenerate a web page:

1. Open the context menu for the web page in the Solution Explorer.

2. Select one of the following options on the submenu:

46

Step 2: Generate a Web PageCreating a Web Service

Option Description

Show Wizard Displays the Start panel for the Web Page wizard. Edit the panels as
desired and select Finish on the last panel. The Generate Status
window is displayed, showing which files were changed during
regeneration. Select Save to save the changes.

Regenerate Regenerates the web page without displaying the wizard panels.

Step 3: Generate the Menu

For your web application to run, you must create the main menu. The following example generates a
menu for the web page generated in Step 2: Generate a Web Page.

 To generate a menu for one or more web pages:

1. Open the context menu for Menu in the Solution Explorer.

2. Select Show Wizard on the submenu.

The Start panel for the Menu wizard is displayed.

3. Select Next to proceed.

The Configure Menu panel is displayed, showing all pages created for the selected application. For
example:

47

Creating a Web ServiceStep 3: Generate the Menu

Use this panel to load application objects and to add, update, or delete web pages. To position menu
items, use drag and drop functionality in the Menu Layout area or the up and down arrows. You can
change the page names as desired by selecting the name in Menu Layout and changing the name in
Display.

Note:
To include web pages that were not generated by the Web Page wizard, select Other Pages in Menu
Layout and type the page names in Display and the full URLs in File name.

4. Enter a name for the menu in Menu title.

5. Select Finish.

The Generate Status window is displayed.

6. Select Save to save your menu.

You have successfully generated a new web application, page, and menu.

48

Step 3: Generate the MenuCreating a Web Service

Regenerate a Menu

The Menu wizard supports regeneration.

 To regenerate a menu:

1. Open the context menu for the menu in the Solution Explorer.

2. Select Show Wizard on the submenu.

The Menu wizard is displayed, showing the information specified for the selected menu.

3. Modify the specifications as desired and select Finish.

The Generate Status window is displayed, showing which files were changed during regeneration.

4. Select Save to save the files.

Run Your Web Application Project

To run your web application project, you must ensure that it is selected as the start up project in Visual
Studio.

Important:
If you are using the ASP.NET development server for both Web services and web applications, you will
have to toggle between each project to set the start up project. In addition, ensure that each of your
projects uses a different port number (per machine or host). For example, if your Web services use port
8085, your web application must use a different port number (for example, 8086). For more information,
see Use the ASP.NET Development Server.

 To run your web application project:

1. Open the context menu for the project in the Solution Explorer.

2. Select Set as Startup Project from the submenu.

3. Press F5 or select Start Debugging on Debug.

Debugging the project will launch your web browser and display the application. For example:

49

Creating a Web ServiceRun Your Web Application Project

Use the Cache Engine
This section describes the cache engine supplied for Natural Business Services. It describes how the cache
engine works and how to configure the cache service. It also contains examples of client input and lists the
XSL and browse considerations.

The following topics are covered:

Overview

Configuration Settings

Client Input

XSL Considerations

Browse Object Considerations

Cache Engine Demo

50

Use the Cache EngineCreating a Web Service

Overview

It is not uncommon for a Web service to have non-volatile data that is accessed frequently, such as sales
taxes based on a particular region. The cache engine allows Web services to store data in memory for a
specified period of time. The cache engine re-populates the data in memory as required and retrieves the
data from memory. While the cache engine can handle any SOAP request, it has a special feature that
allows it to retrieve and cache all data from a Natural Construct-generated browse object.

The cache engine is implemented as an XML Web service. To make a request to the service, the client
passes the ID and Key field values. The ID field value represents a cache setting defined in the
configuration file for the cache engine. The Key field values define how data is retrieved by the target
Web service to be cached (for example, <Key Name="CustomerNumber">10003</Key>). The
combination of these fields becomes the unique key for the cached item.

After making a request, the following processing is performed:

If the unique key is found in the cache, the cached response is returned.

If the unique key is not found in the cache, the target Web service is called. The response from the
Web service is transformed using an XSL style sheet and the results are returned to client and cached
for future requests.

How the Cache Engine Works

The cache engine requires its own Web.config file. This file is similar to the Web.config files found in the
Web Services directories, except it has additional cache-specific nodes. These nodes define cache
information such as:

the type of data stored in the cache

how the data is accessed

how the data is transformed when it is passed out of the cache

how long the data stays in the cache

If you use the cache engine with a Natural Construct-generated browse object, you can take advantage of
several generated features. Typically, a Natural Construct-generated browse object retrieves n rows of
data at a time, where n is specified when generating the service. When using the cache engine with the
isBrowse configuration flag set to true, the cache engine continues to retrieve n rows until the end of data
is reached. Although this can make the first access of the data more time intensive, all other requests will
retrieve the data from memory — even from multiple users. To populate the cache in this scenario,
multiple SOAP requests must be made. These requests will vary (starting value, for example).

Since the cache engine knows the attributes of a Natural Construct-generated browse object, only the
TemplateRequest setting is required. All additional SOAP requests are determined by the cache engine.
Ensure that the input values for the CDBRPDA parameter data area, such as the number of rows requested
and the range option, are specified in TemplateRequest. (For more information on these options, see Using
the Object-Browse Models).

Substitution can take place in TemplateRequest at runtime using the <nbs:KeyField> tag. For
example, if the SOAP request from the client has the following nodes:

51

Creating a Web ServiceOverview

<cache ID="Order-Browse">
 <Key Name="CustomerNumber">10003</Key> and the TemplateRequest in the
</cache ID>

And the configuration file has the following nodes:

<cache ID="Order-Browse">
 <nbs:KeyField Name="CustomerNumber" />
</cache ID>

At runtime, <nbs:KeyField Name="CustomerNumber" /> is replaced with 10003.

If you are not using a Natural Construct-generated browse object, only one SOAP request can be made.
The cache engine only issues one SOAP request if the isBrowse flag is set to false.

Data is stored internally in XML format, which is the built-in format provided by the specified XSL.
There is a close relationship between the SOAP TemplateRequest setting in the Web.config file and the
XSL in the file/URL specified in the Web.config <OutputXSL> tag. For a Natural Construct-generated
browse object, the output XSL should contain the ActualRowsReturned and the processing for the row
PDA (see the examples in XSL Considerations).

On web pages, this data can be accessed by issuing a SOAP request. For an example of this functionality,
see the demo application for OrderMaint.html. The list of warehouses on this page is retrieved from the
cache.

Configuration Settings

To configure the cache engine, modify the settings in the Web.config file for the cache engine. This file is
located in the following directories:

http://localhost/NBS/CacheService

C:\Inetpub\wwwroot\NBS\CacheService

Default Web.config File for the Cache Engine

This section describes the settings in the default cache Web.config file. The following topics are covered:

Global Settings
Cache Item Settings

Global Settings

The global settings in the cache Web.config file are:

Setting Description

AllowRemoveAll Boolean value that enables the Remove All functionality in the cache
engine. The default is false. For more information on the Remove All
functionality, see SOAP Action.

52

Configuration SettingsCreating a Web Service

Cache Item Settings

The cache item settings in the cache Web.config file are:

Setting Description

Expiration Type Expiration policy that determines when data in the cache has expired and a new
Web service request must be made. The following options are available:

 timeOfDay The cached item expires at a specified time on a daily basis. The format for this
setting is:

HH:MM:SS

where the valid duration is 24 hours and 00 indicates midnight. For example:

<Expiration Type="timeOfDay" Value="11:44:30"/>

 lastAccess The cached item expires after not being accessed for the specified period of time.
The format for this setting is:

DD:HH:MM:SS

where the valid duration is greater than 0 and less than 1 year. For example:

<Expiration Type="lastAccess" Value="00:00:00:30"/>

IsBrowse Boolean value that indicates whether the target Web service is a Natural
Construct-generated browse object. If it is, the service will continue browsing
until the end of data condition.

BrowseNamespaceNamespace for the application browse object. For example:

PDA:WH--BSP.CDBRPDA

OutputXSL Location of the XSL file used to transform the response(s) from the Web service.

URL URL of the Web service for which you want to cache data.

TemplateRequestTemplate for the SOAP message sent to the Web service specified in URL above.
The sample message in this file has nbs:KeyField nodes that are replaced by
values passed in by the client invoking the cache engine.

Example of Configuration Settings

To view an example of the configuration settings for the cache engine, see the Samples directory.

Tip:
For Natural Construct-generated browse objects, incorporate CDBRPDA and the Object Key PDA into
TemplateRequest. To determine the SOAP message layout, use the SOAP client and the
WSE_INITIALIZE action for the required browse Web service. (Although the layouts for the private,

53

Creating a Web ServiceConfiguration Settings

row, and message PDAs are also returned, these are not required for the TemplateRequest setting.)

Client Input

This section describes the sample input for SOAP requests on the client. The following topics are covered:

SOAP Action
SOAP Body

SOAP Action

Use one of the following actions in the SoapAction http header:

Action Description

Retrieve Retrieves the specified cached item.

Remove Removes the specified cached item from cache.

RemoveAll Removes all items from the cache.

SOAP Body

The SOAP body consists of an XML node containing the Cache ID and any key substitution. Key
substitution is done by replacing the nbs:KeyField nodes in the sample request with the actual value
in the Key Name field from the client. The substitution value is based on the Key Name attribute. The
following example shows the SOAP body for CustomerNumber:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" >
 <soap:Body>
 <Cache ID="Order-Browse">
 <Key Name="CustomerNumber">10003</Key>
 </Cache>
 </soap:Body>
</soap:Envelope>

The Key Name field above matches the nbs:KeyField Name in the sample request. For example:

<nbs:KeyField Name="CustomerNumber"/>

XSL Considerations

When multiple calls are made to a target Web service, the cache engine appends each response to a
“Cache” XML node. Typically, multiple calls are made when the target Web service is used for a Natural
Construct-generated browse object and the IsBrowse setting in the cache Web.config file is set to true.
This allows the XSL to treat each response individually.

The following example shows the sample Cache node sent to the XSL:

<Cache>
 <!-- First response -->
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/ envelope/">
 <soap:Body>
 <!-- Web Service Body ... -->
 </soap:Body>

54

Client InputCreating a Web Service

 </soap:Envelope>

 <!-- Second response -->
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/ envelope/">
 <soap:Body>
 <!--Web Service body ...-->
 </soap:Body>
 </soap:Envelope>
</Cache>

The following example shows the XSL for a browse Web service. Notice the input used for the
ActualRowsReturned node:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/ Transform" xmlns:fo="http://www.w3.org/1999/XSL/Format" xmlns:row="PDA:ORD-BSP.ORD-BROW" xmlns:soap="http:// schemas.xmlsoap.org/soap/envelope/">
 <xsl:output method="xml"/>
 <xsl:template match="/">
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/ envelope/">
 <soap:Body>
 <!-- Process Each Soap response individually -->
 <xsl:apply-templates select="//soap:Envelope/soap:Body"/>
 </soap:Body>
 </soap:Envelope>
 </xsl:template>
 <xsl:template match="soap:Envelope/soap:Body" xmlns:cd="PDA:ORD- BSP.CDBRPDA">
 <!-- Get the Actual rows returned -->
 <xsl:variable name="ActualRowsReturned" select="./cd:CDBRPDA/ cd:Cdbrpda/cd:Outputs/cd:ActualRowsReturned"/>
 <!-- Process row nodes whose position is less than or equal to ActualRowsReturned -->
 <xsl:apply-templates select="./row:ORD-BROW/row:OrdBrow/ row:Row[position() <= $ActualRowsReturned]"/>
 </xsl:template>
 <!-- Process Row for output -->
 <xsl:template match="row:Row">
 <OrderNumber>
 <xsl:value-of select="./row:OrderNumber"/>
 </OrderNumber>
 </xsl:template>
</xsl:stylesheet>

Browse Object Considerations

When caching the Web service data for a Natural Construct-generated browse subprogram, the
ActualRowsReturned and EndofData fields must be exposed in the following manner:

Both fields must be part of the browse output for the Web service.

The actual rows returned must be in the XSL (see the example in the previous section). Note that the
“cd” alias namespace in cd:ActualRowsReturned must match the BrowseNamespace value in
the cache Web.config file. It is important that the XSL matches the output data. To use the sample in
the previous section, change the row and CDBRPDA information to reflect your browse Web
service.

Note:
The locations and names in the example are the defaults used by the Web Service wizard.

Cache Engine Demo

When using the cache engine to cache data for a Web service, you must modify several files. These
include the following:

Web.config

XSL for the cache engine

HTML/Javascript for the page the cache engine is used on

XSL for the application that the cache information is required for

To help you define these files for your Web services, Natural Business Services supplies the cache engine
demo containing the files for a sample cache service. Refer to these files for examples of settings for the
cache engine. The files are located in the following directories:

55

Creating a Web ServiceBrowse Object Considerations

http://localhost/NBS/ExampleCacheService

C:\Inetpub\wwwroot\NBS\ExampleCacheService

To view an example of the cache service, see the Samples directory. Refer to the CacheItem ID
entries, Warehouse-Browse and Order-Browse , and note the following settings:

The setting for IsBrowse is true for both entries, implying that a Natural Construct-generated
browse object is being used.

The BrowseNamespace values match the namespace associated with CDBRPDA.

CDBRPDA occurs in both CacheItem ID entries, but the namespaces are different.

The TemplateRequest nodes look similar to SOAP input messages.

The "ExampleCacheService" folder also contains two xsl files: Order.xsl and Warehouse.xsl. Look at
these files to get an idea of how to create xsl files for your browse services. The xsl files must be setup
correctly for the output from the cache to be correct.

To use the cache functionality, call the Web service from within HTML or Javascript. View the
OrderMaint.html file and scan for the "GetWarehouseCache" function. All the data comes from the cache,
but the cache determines when to refresh the data ("CacheLocation" indicates where the Web.config file is
located).

Once the data is returned, it is transformed into a selection box by passing the warehouse cache to the
XSL and then transforming the XSL. Note that "xslProc" populates the inner HTML, as opposed to the
usual Transform node. This is because a parameter is passed to the XSL. Refer to the following
customizations in C:\Inetpub\wwwroot\Examples\Application\Order Entry
System\OrderMaintMainDisplay:

The code to receive the passed parameter

The code to call the XSL template to populate the combo box

The code to create code for the dynamic combo box

Customize Web Services
This section describes how to modify Web.config files, create a request for a Natural Business Services
security token, and add custom code for your Web service. It also describes how to create a custom BDT,
change the names of action buttons, and add a new Web services root directory.

This section covers the following topics:

Modify Web.config Files

Create a Request for a Security Token

Add Custom Code

56

Customize Web ServicesCreating a Web Service

Create a Custom BDT

Change Action Button Names

Add a Web Services Root Directory

Test the Performance of the Web Service Engine (WSE)

Modify Web.config Files

Natural Business Services includes three web configuration files you can use to set options for your Web
services. Although all three files are named Web.config, each file is located in a different directory and
contains different settings. These files are:

File Location

Global Web.config file Web services root directory

Local Web.config file Private directory in the local directory after generating a
Web service

Cache Web.config file CacheService directory in the Web services root directory

The following sections describe the settings in the global and local Web.config files.

Note:
For information on the cache Web.config file, see Use the Cache Engine.

Global Web.config File

During the installation of Natural Business Services, the Web services root directory is created:

C:\inetpub\wwwroot\[NBS\NBSWebServices]

This directory contains the "Cache", "Common", and "Login" directories, as well as the following public
files:

File Description

.xsd files Contain XML data used by each Web service.

.wsdl (Web Service Definition
Language) file

Contains information specific to the SOAP Client. This file
describes each Web service and its methods. It also imports
the .xsd files.

Web.config file Contains information common to all Web services, such as
the trace and message options, security settings, and error
and language options.

If you make changes to a generated Web service, you can refresh IIS (Internet Information Server) by
modifying the global Web.config file. This allows the updates to be accessible to users invoking your
service. IIS is refreshed automatically after you modify and save the file.

57

Creating a Web ServiceModify Web.config Files

Note:
Alternately, you can enter "IISReset" on the command line to refresh IIS.

Note:
Before making any changes to the Web.config file, make a backup copy of the file.

 To modify the global Web.config file for your environment:

1. Open the project containing your Web service.

For example:

2. Open the context menu for the global Web.config file in the Solution Explorer.

3. Select Open on the submenu.

The Web.config file is displayed. For example:

58

Modify Web.config FilesCreating a Web Service

4. Scroll to the "NBS" node.

5. Modify the settings.

For a description of these settings, see the following section.

Important:
Some settings in the Web.config file are required by the Web Service wizard and should not be
modified. For example, "configSections" contains the IIS settings that associate the .sws files to the
Natural Business Services Web Services Engine.

6. Make the changes accessible to users.

To make changes accessible to users, do one of the following:

Recycle IIS (Internet Information Server)

Unload the root application

Re-save the Web.config file

59

Creating a Web ServiceModify Web.config Files

NBS Settings in the Global Web.config File

This section describes the Web service settings in the global Web.config file.

Trace

The Web Service Engine (WSE) takes advantage of ASPX technology to provide trace options for a Web
service. Within ASPX, trace statements are sent to a special web site, trace.axd, for each web application.
For example, the URL to tracing information for the demo web application is: Web services
URL/trace.axd. This is the main trace page. By default, the last 10 requests are shown.

Warning:
If tracing is enabled, sensitive data may be viewed. It is highly
recommended that you only use the Trace option in development
environments and disable the option in runtime (production)
environments.

Natural Business Services allows you to customize the Microsoft defaults for ASPX. Use the following
settings to specify Trace options:

<Trace Option="DataIn" ErrorOption="FormatError" Level="0" CaptureAppTrace="true"/>

where:

60

Modify Web.config FilesCreating a Web Service

Setting Description

Trace Option Indicates when tracing occurs. Possible settings are:

DataIn

DataOut

DataInOut

ErrorsOnly

WriteToSource

ErrorOption Indicates which errors to trace. Possible settings are:

All

FormatError

Level Indicates which level of detail to trace. The higher the number, the more
detail will be produced. The default is 0.

CaptureAppTrace Indicates which trace statements to capture. Possible settings are:

True (captures trace statements from the entire Application domain,
including trace statements unrelated to the current request and trace
statements made outside the WebServiceEngine DLL)

False (captures trace statements from the current request only; trace
statements in the DispatchClient DLL will not be captured)

The default is false.

MessageDatabase

Use this setting to indicate where messages are located. You can either supply the file location for your
own messages (for example, mymessages.xml) or you can modify messages in the supplied messages.xml
file (message numbers 5700–5799). You can also add the text for other languages to the message file.

Note:
We recommend that you only append information to this file, although you can make minor text changes,
such as changing the language number or value.

RetrieveMetadata

Use this setting to indicate whether to retrieve metadata for use with the Web Application wizards. For
example:

<RetrieveMetadata Enabled="true">

61

Creating a Web ServiceModify Web.config Files

If you are not using these wizards, set this option to False.

Important:
If you set this option to True to retrieve the metadata for security purposes, ensure that you switch it to
False before going into production.

NBSSecurity

Use the following settings to specify NBSSecurity options for Web services:

Setting Description

Token Sends a token with the SOAP message. For example:

NBSSecurity Mode="Token"

A token is a unique, system-generated, identification number that allows
users to logon the first time with a user ID and password and then request a
token for subsequent calls to the server. For more information, see Create a
Request for a Security Token.

If you set this option, you can also set the timeout limit for the cache. For
example:

TokenCacheTimeout="25"

Password Sends the specified UserID and Password with the SOAP message.

None Indicates no Natural Business Services security.

HardCoded Indicates security on the server, but you do not want to send the token or
password with the SOAP message.

SavePDA

Use the following settings to specify parameter saving options for debugging purposes:

62

Modify Web.config FilesCreating a Web Service

Setting Description

Enabled Indicates whether to save input and output from a CallNat to the server and
then view the data in the PDA Viewer. For example:

SavePDA Enabled="true"

Input Timestamp Adds a date and time to the specified input PDA.

Output Timestamp Adds a date and time to the specified output PDA.

Note:
If you do not want timestamp information for the files, set the timestamp
attributes to False.

For more information, see Save the State of Natural PDAs.

TestMode

Use this setting to cache server requests in the Web Service Engine (WSE). For example:

TestMode Enabled="true"

One request is sent to the server and then cached in the WSE. You can also specify the following settings:

63

Creating a Web ServiceModify Web.config Files

Setting Description

Cache Sets the following options for the cache:

"Timeout"

Number of seconds before cache is refreshed. For example:

Timeout>60

"Keyfields"

Key fields used to identify unique requests to be cached.

Delay Sets the following options for the cache:

"Time"

Number of seconds delay to simulate a request to and from the server.
Possible settings are "Auto" (the time required to complete the first
server call will be used for all subsequent calls) and "Number of
seconds".

"Percentsleep"

The percentage of delay time in which the thread is inactive. For
example, if the Delay Time value is 4 seconds and the Percentsleep
value is 50%, the thread is inactive for 2 seconds.

ErrorOptions

Use this setting to define error options. You can also specify the following settings:

64

Modify Web.config FilesCreating a Web Service

Setting Description

Log To log errors to the Windows Event log under the NBS category, set this
option to true. For example:

log="true"

StackTrace To output the call stack, set this option to true. For example:

stackTrace="true"

Email To send errors by email, set this option to true and then specify all email
nodes except CC (optional). For example:

email="true"

Note:
You can also use this option to override all error messages to one generic message (for example, NBS
error).

DefaultLanguage

Use this setting to indicate the default language used for Web services. If the language code is not
specified in the Business Service Administration subsystem for a user, the language code specified here is
used. For more information about language codes, refer to the Natural documentation.

EventHandler

Use this setting to identify the type and location of custom event handlers. The FileName setting is
optional, but you must specify the Type setting to identify the DLL files. For an example of an event
handler, see "[NBS install directory]\Sample Event".

Note:
Event handlers execute customized code based on a Web service runtime event. For information on how
to load the assembly containing your event handlers, see Modify the Web.config File for Custom Code.
For information on creating event handlers, see Create a Custom Event Handler Class.

ConnectionID

Use this setting to indicate which connection ID (dispatcher) to use for SOAP requests. You can also:

Specify a connection ID to use for all SOAP requests. For example:

<ConnectionID AllowDynamic="false">DISPATCH</ConnectionID>

65

Creating a Web ServiceModify Web.config Files

Allow users to specify a connection ID for each request. For example:

<ConnectionID AllowDynamic="true"> Some Other Connection</ConnectionID>

To allow users to specify the connection ID, you must also add the following in the SOAP header:

<ConnectionID> Some Other Connection</ConnectionID>

BDTs

If there are no overrides in the private folder (local Web.config file) for a Web service, this setting
specifies the BDT defaults. For example, you may want "BDTNumeric" to suppress zeros for most Web
services, but display zeros for one.

Local Web.config File

After generating a Web service, a private directory is created in the local directory. For example:

This directory contains the following files:

66

Modify Web.config FilesCreating a Web Service

File Description

One .xml file for each
PDA used by the Web
service

Contains the mapping between Natural and XML. File names are derived
from the PDA name. For example:

CDAOBJ2_PDAMap.xml

.xml file Contains metadata for the Web Application wizards (if selected on the
wizard panels).

.swsd file Contains the Web Service wizard specifications.

Web.config file Contains information specific to this Web service, such as the names of the
PDAs and methods used by the service, as well as any overrides.

You can copy any global Web.config file setting into the local Web.config file to create an override, but
changes will be lost if you regenerate the service. While the global Web.config file remains unchanged
during generation, the local Web.config files are recreated each time a service is regenerated. Use the local
file for overrides only (for example, for BDT modifiers).

With the exception of events, which are processed in both files, the settings in the local Web.config files
override the settings in the global Web.config file.

Event Hierarchy and Inheritance

The Web.config file settings are used by the Web Service Engine (WSE). Settings specified in the global
Web.config file in a parent directory are inherited into the local Web.config files within the .NET
framework. For example, the connection ID used for all Web services is defined in the global Web.config
file in the Web services root directory (NBS/WebServices). Every child directory (directory containing
one Web service) in the root directory inherits the global ConnectionID setting. If the connection ID is
specified in a local directory, as well as the NBS/WebServices directory, the setting in the local directory
is used.

Events from the WSE are handled in a slightly different manner. Rather that overwriting the event settings
in the global Web.config file, the events specified in the global file are appended to those in the local
Web.config file. For example, if an assembly is specified in the global Web.config file to handle the
onException event and an assembly is also specified in a local Web.config file, both event handlers are
invoked if an exception is raised in the child.

.SWS Mapping

For the Web Service Engine (WSE) to process *.sws requests from the internet, both IIS (Internet
Information Server) and the .NET framework must be configured:

Within IIS, the *.sws files must be mapped to the .NET framework. (aspnet_isapi.dll). When a .sws
request comes to IIS, IIS calls .NET to handle the request. This configuration is done automatically
during installation of the SDK.

Within .NET, .sws requests must be mapped to the WSE.

67

Creating a Web ServiceModify Web.config Files

The following example illustrates this mapping:

*.sws Request -> IIS -> .NET framework (aspnet_isapi.dll) -> WSE

Create a Request for a Security Token

You must create a request for a token if the NBSSecurity node in the Web.config file is set to Token. A
token is a unique, system-generated identification number that allows users to logon to a Web service
using their user ID and password and then request a token for subsequent calls.

Use the SOAP Client testing tool to create the request for a security token. For information on using this
tool, see Test a Web Service.

The following example shows input for the SOAP Client to create the request:

URL: http://localhost/NBS/WebServices/login.sws

SOAP action: "Login"

Parameters: "UserID" and "Password"

XMLInput:

<?xml version="1.0" encoding="UTF-8"?><soap:Envelope xmlns:soap="http:/ /schemas.xmlsoap.org/soap/envelope/" xmlns:nbs="http://SoftwareAG.com/NaturalBusinessServices/2006">
<soap:Body>
 <nbs:User>
 <nbs:UserID>Drew</nbs:UserID>
 <nbs:Password>My Password</nbs:Password>
</nbs:User>
</soap:Body></soap:Envelope>

XMLOutput:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <nbs:Token xmlns:nbs="http://SoftwareAG.com/NaturalBusinessServices/2006">f7e759ae-9e00-4097-b04a-aa0726f7ff42</nbs:Token>
 </soap:Body>
</soap:Envelope>

For more information, refer to the login.wsdl file in the Web services root directory (NBS/WebServices).

Add Custom Code

You can write custom code, called an event handler, to react to events raised within the Web Service
Engine (WSE). If an event handler “subscribes” to an event, the custom code will be invoked whenever
that event is raised within the WSE. The following topics are covered:

Web Service Engine (WSE) Events
Event Arguments
Create a Custom Event Handler Class
Modify the Web.config File for Custom Code

Web Service Engine (WSE) Events

The following table describes the WSE events:

68

Create a Request for a Security TokenCreating a Web Service

Event Description Argument Usage

ValidateUser Allows you to add custom
validation routines to validate a user
ID. If a validation is successful, set
the UserArgs.UserValidated
property to True (default is False).
Unless the UserValidated
property is manually set to True, this
event will fail and an exception will
be thrown by the WSE.

ValidateUserEventArgs To authenticate
a user against
an external
source.

BeforeCallnat Is raised after a SOAP message is
read into
BeforeCallnatEventArgs.Fields and
before Natural is called. The XML
document exposed in this event is
included for your information only.
If you modify this document, the
changes will not be sent to the
server. To send data to the server,
modify the "NatFields" object.

BeforeCallnatEventArgs To look up data
in an external
source and then
save it in
Natural or to
“massage” data
going to the
server. For
example, you
can access an
external source
for additional
information
and then
modify the
SOAP message
accordingly.

AfterCallnat Is raised after the call to Natural is
returned and the SOAP response has
been built and is ready to be sent to
the client. As with the BeforeCallnat
event, the InputXML and Fields
properties are provided for your
information only. To send data back
to the client, modify the
OutPutSOAPNode property.

AfterCallnatEventArgs To look up data
in an external
source based
on data
returned from a
Natural
subprogram.
The data is then
sent to the
client.

ExceptionThrownIs raised when the WSE encounters
an exception. Subscribing to this
event does not stop the exception
from being thrown nor allow you to
“fix” the exception.

ExceptionThrownEventArgsTo log an
exception to an
external source.

Event Arguments

The following sections describe the arguments provided for the WSE events.

69

Creating a Web ServiceAdd Custom Code

Note:
All of the Event arguments have a Handled property (Boolean), which indicates how the event is
handled. If this property is set to True, other subscribers to that event will not be invoked.

NBSEventArgs

The supplied Natural Business Services events support the following arguments:

Argument Type Information only Description

InputXML XMLNode yes Contains the SOAP message.

InputXMLName
SpaceManager

XMLNameSpace
Manager

yes Contains the namespace manager for
InputXML.

WebServiceName String yes Contains the name of the Web service.

Timestamp DateTime yes Contains the date and time from the IIS
(Internet Information Server) machine
that the event was raised.

ValidateUserEventArgs

Inherits the NBSEventArgs arguments; supports the following arguments:

Argument Type Information only Description

User UserCredentials no Contains user information.

UserValidated Boolean no Indicates whether the user ID is
validated.

HTTPContext Contains application, system, and
request information from ASP.Net.

BeforeCallnatEventArgs

Inherits the NBSEventArgs arguments; supports the following arguments:

Argument Type Information only Description

Fields NatFields no Contains the collection of fields passed
to the Natural subprogram.

HTTPContext Contains application, system, and
request information from ASP.Net.

AfterCallnatEventArgs

Inherits the NBSEventArgs arguments; supports the following arguments:

70

Add Custom CodeCreating a Web Service

Argument Type Information
only

Description

OutPutSOAPNodeXMLNode no Contains the XML node sent to the client.

Fields NatFields Contains the collection of fields passed to the
Natural subprogram.

HTTPContext Contains application, system, and request
information from ASP.Net.

ExceptionThrownEventArgs

Supports the following arguments:

Argument Type Information only Description

Exception Exception yes Contains the exception that was thrown.

Handled Boolean no Indicates how the event is handled. See
note in Event Arguments.

ServiceName String yes Contains the name of the Web service
being invoked.

Create a Custom Event Handler Class

If desired, you can create a custom event handler class.

Note:
The SampleEvent project in your install directory contains a sample event handler.

 To create a custom event handler class:

1. Create a new class library in Visual Studio.net.

2. Within this library, add a reference to the following dll file (located in your Natural Business
Services install directory):

SoftwareAG.NBS.WebServiceEngine.dll

3. Create a class that implements ISpeEventHandler.

4. Create the desired event handler methods.

5. Subscribe the methods in the ISpeEventHandler.WireUp method to their corresponding
events.

6. Modify the Web.config file and add the appropriate "EventHandler" node. For information, see
Modify the Web.config File for Custom Code.

71

Creating a Web ServiceAdd Custom Code

Modify the Web.config File for Custom Code

To execute your customized code, the WSE must know how to load the assembly containing your event
handlers. To do this, you must make an entry in the "EventHandler" node in the appropriate Web.config
file. The following sections contain two methods of doing this.

Note:
The Type attribute format is the same format used to load a custom HTTP handler in Asp.net. For more
information, refer to the Microsoft documentation.

Method 1

This method loads the assembly based on the file name specified:

<EventHandler FileName="" Type=""/>

For example:

<EventHandler FileName="C:\[Path to DLL]\SoftwareAG.NBS.TestEvent.dll" Type="SoftwareAG.NBS.TestEvent.Sample"/>

Method 2

This method loads the assembly based on the type specified:

<EventHandler Type=""/>

This method is more secure than method 1, because the assembly is digitally signed and registered into the
GAC. This minimizes the risk of unauthorized users inserting their own assembly or tampering with the
original assembly.

For example:

<EventHandler Type="SoftwareAG.NBS.TestEvent.Sample, SoftwareAG.NBS.TestEvent, Version=1.0.1.1, Culture=neutral, PublicKeyToken=30e0547b9a8498ae"/>

Note:
If users are using the GAC, they must generate their own tokens.

Create a Custom BDT

Creating a custom BDT for a Web service is different from creating a custom BDT for a web application.
Once created, you can use your custom BDT with any Web service.

 To create a custom BDT:

1. Create a .NET class library project.

2. Add a reference to SoftwareAG.NBS.BusinessDataTypes.dll in this project.

3. Create a new class that inherits from the BDT (for example, BDT class).

72

Create a Custom BDTCreating a Web Service

4. Call the BDT constructor with the following parameters:

Parameter Comments

Name of the BDT Ensure that the name easily identifies this BDT.

Character array of Natural types this
BDT will support

The characters correspond to those used in Natural (A
for Alpha, for example).

In Visual Basic .NET, for example:

Mybase.new("ExternalBDT", new Char() {"A"c, "N"c})

5. Override the "ConvertFromDisplay" and "ConvertToDisplay" functions and add your custom code.

6. Compile the class library.

Use the BDT During Generation

After creating the custom BDT, you can use it during generation.

 To use the BDT during generation:

1. Add an entry in the BDTs.xml file in your install directory.

For a description of this file, see BDTs.xml File.

2. Add an entry for your BDT in the "BDTs" node in the Web.config file.

For example:

<BDTFile FileName="[ExternalBDT.dll]">
 <BDT Type="[ClassName]" SetDefault="true">
 <Modifier Name="[ModName]">[Value]</Modifier>
 </BDT>
</ BDTFile >

The user provides substitution values for ClassName, ModName, and Value.

BDTs.xml File

There are two types of XML nodes in the BDTs.xml file:

"BDT" declares a BDT for use within the Web Service wizard.

"DataType" matches a Natural data type to a BDT.

The following sections describe each of these nodes.

73

Creating a Web ServiceCreate a Custom BDT

BDT Node

The following table describes the settings for the "BDT" node in the BDTs.xml file:

Node Name Attributes Parent Description

BDT N/A Parent node used to declare a BDT.

XSDTypes BDT Container for Type nodes.

Type true|false (default) XSDTypes XSD types used with Web services.

PredictMap Corresponding Predict keyword.

The following example shows the BDT node settings:

<BDT Name="BDTNumeric">
 <XSDTypes>
 <Type>xsd:string</Type>
 <Type>xsd:decimal</Type>
 <Type Default="true">xsd:double</Type>
 <Type>xsd:float</Type>
 <Type >xsd:int</Type>
 <Type>xsd:short</Type>
 <Type>xsd:long</Type>
 </XSDTypes>
 <PredictMap>BDT_NUMERIC</PredictMap>
</BDT>

DataType Node

When using the Web Service wizard, the wizard tries to determine which BDT to use for a field based on
the Natural format for the field. The "DataType" node determines the search criteria. The Type attribute
contains a regular expression that is compared to the Natural format. If the regular expression matches,
then that BDT is chosen.

The following table describes the settings for the "DataType" node in the BDTs.xml file:

Node Name Attributes Parent Description

DataType Type is the regular expression to be
compared to the Natural format.

N/A

BDT true|false (default)

If this BDT is chosen, use it as the
default.

 Name of a BDT.

The following example shows the DataType node settings:

<DataType Type="[ANP]10$">
 <BDT>BDTPhone</BDT>
</DataType>

74

Create a Custom BDTCreating a Web Service

If the Natural format is A10, N10, or P10, BDTPhone is used because the “A10”, “N10”, or “P10” string
matches the “[ANP]10$” regular expression.

Change Action Button Names

You can change the default names displayed on maintenance pages by modifying the MethodMap.xml file.
This file is located in the install directory.

Add a Web Services Root Directory

Natural Business Services supplies a default Web services root directory during installation. If desired,
you can add your own Web services root directory.

 To add an additional Web services root directory:

1. Select Control Panel > Administrative Tools > Internet Information Services.

2. Scroll to the directory you want to add and open the directory.

3. Select Properties > Configuration > .sws.

4. Select Edit .

5. Copy the name displayed in the "Executable" field to the clipboard.

The executable name is used to associate .sws with the .NET runtime environment.

6. Select Cancel to close .sws.

7. Select Add to add another mapping.

8. Paste the executable name in the "Executable" field.

9. Type ".sws" in the "Extension" field.

10. Select OK three times to close the Internet Services Manager.

Test the Performance of the Web Service Engine (WSE)

The code for the Web Service Engine (WSE) contains debug statements you can use to test the
performance of the WSE. For example:

Context.Trace.Write(" Retrieve", " Start")

where:

Retrieve is the name of the chunk of code being timed

Start indicates the beginning of the chunk of code

75

Creating a Web ServiceChange Action Button Names

This code is completed with a closing statement. For example:

Context.Trace.Write(" Retrieve", " Stop")

where:

Stop indicates the end of the chunk of code being timed

To retrieve the actual timings, run a Web service and then look at the Trace.axd file from the Web service
location. For example, run the following Web service:

http://localhost/NBS/WebServices/ord-bsp/ord-bsp.sws

Next, open Internet Explorer and look at the following Trace file:

http://localhost/NBS/WebServices/ord-bsp/Trace.axd

Tips and Techniques
This section contains tips and techniques you can consult when using Natural Business Services to create
Web services. It also contains troubleshooting information for common errors you may encounter while
using the SDK.

The following topics are covered:

Tips for Data Updates

Security Options for Web Services

Miscellaneous Tips

Supplied Samples

Troubleshooting Common Errors

Debugging Tips

Tips for Data Updates

This section contains helpful tips and techniques when using the UPDATE action.

The following topics are covered:

Verify Namespace Names
Exclude Attributes During an Update
Use the CDAOBJ2 Parameter Data Area

76

Tips and TechniquesCreating a Web Service

Verify Namespace Names

If data is not returned in your input tags, verify that the namespace name is correct. For example:

xmlns="PDA:SIMPLEP.SIMPMSR"

The following table lists some of the common namespaces used:

Namespace Description

http://SoftwareAG.com/NaturalBusinessServices/2006 Used in Natural Business Services.

http://SoftwareAG.com/NaturalBusinessServices/2006/SecurityUsed for security information.

http://SoftwareAG.com/NaturalBusinessServices/2006/InfoUsed for general information.

http://SoftwareAG.com/NaturalBusinessServices/2006/FaultUsed for Natural Business Services
faults.

Exclude Attributes During an Update

If attributes are excluded during an update, data may be inadvertently deleted. For example, if delivery
lines are not included in the Order object XML, it is assumed that the delivery lines are blank. It is also
extremely important that the values in the restricted PDA remain unchanged when the object file is read. If
not, data may be duplicated or a modification may not take place.

Use the CDAOBJ2 Parameter Data Area

The following example shows the structure of the CDAOBJ2 parameter data area when all fields are
requested at the lowest level of definition:

<CDAOBJ2 xmlns:nbs="http://SoftwareAG.com/NaturalBusinessServices/2006" xmlns="PDA:SIMPLEP.CDAOBJ2">
- <Cdaobj2>
- <Inputs>
 <Function>EXISTS</Function>
 <ClearAfterUpdate>false</ClearAfterUpdate>
 <ReturnObject>false</ReturnObject>
 <EtIfSuccessful>false</EtIfSuccessful>
 </Inputs>
- <Outputs>
 <ObjectContainsDerivedData>false</ObjectContainsDerivedData>
 <Exists>true</Exists>
 </Outputs>
 </Cdaobj2>
 </CDAOBJ2>

If the outer node (<CDAOBJ2> </CDAOBJ2>) is not defined in the input XML, everything inside
the node is ignored as irrelevant data. For example, the following is ignored because it is not within
the context of CDAOBJ2:

77

Creating a Web ServiceTips for Data Updates

<Cdaobj2>
- <Inputs>
 <Function>EXISTS</Function>
 <ClearAfterUpdate>false</ClearAfterUpdate>
 <ReturnObject>false</ReturnObject>
 <EtIfSuccessful>false</EtIfSuccessful>
 </Inputs>
</Cdaobj2>

If you set ReturnObject in "Inputs" to true, the calculated values from the server are passed back
to the client. This option is set in the Web Service wizard by default.

For a Natural Construct-generated maintenance object to perform maintenance functions, you must
include #FUNCTION. The Web service defaults the appropriate #FUNCTION value for the object.

Security Options for Web Services

This section describes the security options available when using generated Web services, as well as
information about possible errors in the Visual Studio add-in, server, or web. The following topics are
covered:

IIS (Internet Information Server)
External User Authentication
Natural Business Services Web Service User Authentication
Error When Calling the Security Server
Token Security With Hard-Coded File Names
Server Security Tips

IIS (Internet Information Server)

This section does not provide complete details about the various security options available within IIS. For
more information about these options, see http://www.microsoft.com/technet/security/default.mspx.

We recommend that you use the standard DMZ architecture — an IIS box between two firewalls. The
firewall exposed to the public (Internet) only allows HTTP/HTTPS (ports 80 and 443) requests through.
For the firewall that links IIS to the corporation, only allow the ports required by EntireX and Natural
Business Services to be used. By placing the IIS machine in the DMZ, any EntireX requests coming from
the Internet are blocked by the first firewall because it only allows HTTP/HTTPS requests.

To secure the communication between the client and IIS, we highly recommend that you use HTTPS.
HTTPS does two things:

Eliminates the potential of a third party entity impersonating either the client or the host.

Encrypts communication between the client and the host.

To use HTTPS, you must first obtain a public certificate from a Certificate Authority, such as VeriSign.
To setup HTTPS, refer to the documentation from VeriSign and Microsoft.

78

Security Options for Web ServicesCreating a Web Service

http://www.microsoft.com/technet/security/default.mspx

External User Authentication

If desired, you can provide your own user authentication within the Web Service Engine (WSE). Before
the WSE calls the Natural subprogram, the "ValidateUser" event is thrown. When this event is thrown, the
user’s credentials are passed. This allows you to verify, and potentially modify, the user name and
password used to invoke the service.

Note:
To provide custom authentication, also set the UserArgs.UserValidated property to True.

Natural Business Services Web Service User Authentication

A Natural Business Services-generated Web service has four different security settings available, which
you can define in the "NBSSecurity XML" node for the Web.config file used by the associated web
application. These settings are described in the following sections:

Token
Password
None
HardCoded

Token

A security token is a unique string used to identify a user. Rather than passing a user’s credentials every
time a request is made, the credentials are only passed once when the token is created.

To use a token, a request with the user’s credentials is made to the security service built into the Web
Service Engine (WSE). The credentials are then stored in IIS (Internet Information Server) and a token is
returned to the client. When the client makes subsequent requests, the token is supplied rather than the
credentials. When the WSE receives the request, the user’s credentials are retrieved from IIS using the
token as the unique key.

For further security, the client’s IP address is also stored when a token is created. When subsequent
requests are made, the WSE verifies that the request came from the same IP address that created the token.
If the IP addresses do not match, an exception is thrown.

Password

The user’s credentials are passed in the SOAP header.

None

No authentication occurs. The default Natural Business Services user, GUEST, is used.

HardCoded

The user is specified within the "NBSSecurity XML" node in the Web.config file.

79

Creating a Web ServiceSecurity Options for Web Services

Error When Calling the Security Server

NBS5120 error: The dispatcher received an NA2NRES 1150 NAT0920 error while calling the Security
server. This error occurs when the Security routine linked to Natural cannot be found. Ensure that the
Natural batch job incorporates the Security routine.

Token Security With Hard-Coded File Names

At runtime, the security mode for the WebApplication option in the application support
directory\AppSettings.XML file must match the security mode for the WebApplication option in the
Web.config file. When running with token security, the cookies are unreliable if the URL contains a
hard-coded file name. To be reliable, it must use the http://localhost format.

If a web page is accessed by selecting the page name in the Business Service Explorer, the file name
is hard coded.

If a web page is accessed by highlighting the application name on the menu and selecting the Run
button, the http://localhost format is used.

Tip:
The login.html is generated because it contains the address of the Web service; if you are using token
security and copy this file from another application, you may lose the tokens. To solve this problem,
ensure that the hard-coded reference in this file contains the correct directory.

Server Security Tips

When running with a non-trusted user, the user ID and password assigned to the Web service are used for
commands.

To test whether your batch job is running with Natural/SAF and NSC, set up a Natural profile that uses
NSC and execute the following code:

//CMSYNIN DD *
SYSSAF,USERID, PASSWORD
NA2PRES6
FIN

If the job is running correctly, you should receive a message similar to the following:

#RES-RETC #RES-SERR #RES-ATTR
--------- ---------------- ---------

 16 0444040000000000 02

If you receive an NA2NRES 1150 NAT0920 Program NA2PNA cannot be loaded
(80600004) error, there is a problem with the Natural setup.

Miscellaneous Tips

This section describes miscellaneous tips and techniques when using Natural Business Services.

The following topics are covered:

80

Miscellaneous TipsCreating a Web Service

Override Web Service Wizard BDT Defaults
Change the Connection ID
Correct an Invalid Subprogram Method List
Use an Arbsub with CDAOBJ2 and MSA-ID

Override Web Service Wizard BDT Defaults

BDTs are used to do simple data validation. Based on the formats and lengths of the fields being used, the
Web Service wizard (WSW) “guesses” which BDT to use. For example, if a field is A6, it assigns a
default BDT postal code check.

 To override the Web Service wizard BDT defaults:

1. Create a backup of the following file:

Program Files\Software AG\NBS\WebService\BDTs.xml

2. Modify the original BDTs.xml file.

For example, to remove the default BDT postal code check, comment out the following:

<DataType Type="A6$">
<BDT>BDTPostalCode</BDT>
</DataType>

Change the Connection ID

This section describes how to change the connection ID in a development and runtime (production)
environment.

Development Environment

To change the connection ID in a development environment, modify the configuration settings (select
Configuration on the NBS menu). This environment is used for generation activities, such as generating
Web services.

Runtime Environment

To change the connection ID in a runtime (production) environment, modify the ConnectionID setting in
the Web.config file. This environment is used to run an application from a web page or execute SOAP
messages, for example. For information, see Modify Web.config Files.

Correct an Invalid Subprogram Method List

If the Web Service wizard (WSW) does not list the correct methods, ensure that your service has the same
domain and service name as indicated in the Business Service Administration subsystem. If they differ,
confirm that the correct LFILE locations are listed in the client configuration (for example, determine
where 136 is pointing). If the configuration is correct, regenerate the service and then ensure that the
cache is cleared in the WSW.

81

Creating a Web ServiceMiscellaneous Tips

Tip:
Shutting down the WSW does not clear the cache; you must manually clear it. To clear the cache, select
the Cache icon in the window, select the cache to be cleared, and select Delete.

Use an Arbsub with CDAOBJ2 and MSA-ID

If an arbsub uses the "CDAOBJ2" PDA and "MSA-ID", customize the client as follows:

Ensure that "CDAOBJ2.#FUNCTION" in the Web service has an appropriate METHOD override.

Change the XSL in the GUI to ensure that the ID data is correctly populated. In the XPATH,
reference the two different nodes from the same Value tab. For example:

xpath="soap:Envelope/soap:Body/BSIF___A/Bsif___a/
O_domain~soap:Envelope/soap:Body/BSIF___A/Structure/O_domain"

Note:
The ~ character allows two fields to retrieve the same value.

Change the mode in the XSL field to reflect something besides the default action value (for example,
change 56 to 127).

Supplied Samples

Natural Business Services supplies samples you can refer to when developing Web services.

Web service samples are loaded into the NBSExamples\WebServices directory

Web application samples are loaded into the NBSExamples\WebApplications directory

Sample SOAP Messages

To view examples of input for each SOAP action, see the Samples directory.

Troubleshooting Common Errors

This section describes some of the errors you may encounter and what you can do to resolve them. The
following topics are covered:

Set Zero Suppression
Correct Errors During an Update

Set Zero Suppression

At runtime, you may get an error converting a BDT default value. For example:

<BDTName>BDTCurrency</BDTName>
 <FieldName>ORD-MSA.UNIT-COST(2)</FieldName>
 <Message>Error converting value: .</Message>

This error occurs when the runtime BDT default does not accept zeros as input. To allow zeros, add (or
modify) the BDTCurrency line to the Web.config file. Name must be ZERO and the setting must be ON.
For example:

82

Supplied SamplesCreating a Web Service

<BDTs>
<Modifier BDTName="BDTCurrency" Name="ZERO">ON</Modifier>
</BDTs>

Note:
If BDTCurrency is ZERO=ON, null values are not converted to zeros.

Correct Errors During an Update

While performing the UPDATE action, you may receive the following message:

Attempted to update/delete:1:that was not in hold status
Intervening modification, please try again

This message indicates that the MSA-ID did not match the HELD-ID. The timestamp on the database
differs from the timestamp in XML. Ensure the Web.config file includes the following:

<Modifier BDTName="BDTDateTime" Name="XML">true</Modifier>

Note the format of the date/time modifier. In addition, retrieve the date from the database to confirm that
the timestamp in the XML document is the same as the database. (If there is a date in the XML document,
it is assumed that it is the current date.)

Important:
If input parameters are not specified for an update, they are assumed to be blank.

Debugging Tips

This section describes some of the debugging options available with Natural Business Services. The
following topics are covered:

Save the State of Natural PDAs

Save the State of Natural PDAs

For debugging purposes, the Web service can save the state of the Natural parameter data areas (PDAs)
before and after a CallNat to a subprogram on the server. You can then use the supplied PDA Viewer
utility to view the contents of the PDAs.

The PDAViewer.exe file is installed in the install folder. When you invoke the utility, you are prompted to
enter the name of the debugging file.

Note:
To have a Web service save PDA debugging information, you must first define the SavePDA setting in
the Web.config file. For information, see SavePDA.

83

Creating a Web ServiceDebugging Tips

	Creating a Web Service
	Overview
	Generate a Web Service
	Step 1: Create a Web Service Project
	Step 2: Invoke the Web Service Wizard (WSW)
	Step 3: Select the Business Service
	Filter by Proxy

	Step 4: Configure the Methods (Optional)
	Add Override

	Step 5: Configure the XML Layout (Optional)
	Modify Array Fields

	Step 6: Name the Web Service
	Regenerate a Web Service
	Make Changes Accessible to Users

	Use Business Data Types (BDTs)
	BDT Modifiers
	Supplied BDTs
	BDTAlpha
	BDT Boolean
	BDTCurrency
	BDTDateTime
	BDTHexByte
	BDTNumeric

	Validate Input
	Test a Web Service
	Change the Connection ID Used for SOAP Requests

	Build a Web Application
	Step 1: Create the Web Application Project
	Use the ASP.NET Development Server

	Step 2: Generate a Web Page
	Configure HTML Option
	HTML Controls
	Set Advanced HTML Options
	Add a Link Between Web Pages
	Define or Edit Values for the Value List

	Configure Methods Option
	Configure Tertiary Display Option
	Configure Browse Keys Option
	Add Custom Code in User Exits
	Regenerate a Web Page

	Step 3: Generate the Menu
	Regenerate a Menu

	Run Your Web Application Project

	Use the Cache Engine
	Overview
	How the Cache Engine Works

	Configuration Settings
	Default Web.config File for the Cache Engine
	Global Settings
	Cache Item Settings

	Example of Configuration Settings

	Client Input
	SOAP Action
	SOAP Body

	XSL Considerations
	Browse Object Considerations
	Cache Engine Demo

	Customize Web Services
	Modify Web.config Files
	Global Web.config File
	NBS Settings in the Global Web.config File
	Trace
	MessageDatabase
	RetrieveMetadata
	NBSSecurity
	SavePDA
	TestMode
	ErrorOptions
	DefaultLanguage
	EventHandler
	ConnectionID
	BDTs

	Local Web.config File
	Event Hierarchy and Inheritance
	.SWS Mapping

	Create a Request for a Security Token
	Add Custom Code
	Web Service Engine (WSE) Events
	Event Arguments
	NBSEventArgs
	ValidateUserEventArgs
	BeforeCallnatEventArgs
	AfterCallnatEventArgs
	ExceptionThrownEventArgs

	Create a Custom Event Handler Class
	Modify the Web.config File for Custom Code
	Method 1
	Method 2

	Create a Custom BDT
	Use the BDT During Generation
	BDTs.xml File
	BDT Node
	DataType Node

	Change Action Button Names
	Add a Web Services Root Directory
	Test the Performance of the Web Service Engine (WSE)

	Tips and Techniques
	Tips for Data Updates
	Verify Namespace Names
	Exclude Attributes During an Update
	Use the CDAOBJ2 Parameter Data Area

	Security Options for Web Services
	IIS (Internet Information Server)
	External User Authentication
	Natural Business Services Web Service User Authentication
	Token
	Password
	None
	HardCoded

	Error When Calling the Security Server
	Token Security With Hard-Coded File Names
	Server Security Tips

	Miscellaneous Tips
	Override Web Service Wizard BDT Defaults
	Change the Connection ID
	Development Environment
	Runtime Environment

	Correct an Invalid Subprogram Method List
	Use an Arbsub with CDAOBJ2 and MSA-ID

	Supplied Samples
	Sample SOAP Messages

	Troubleshooting Common Errors
	Set Zero Suppression
	Correct Errors During an Update

	Debugging Tips
	Save the State of Natural PDAs

