
Creating a Client Proxy Class
Client proxy classes provide access to business services running in Natural. You can create proxy classes
in C# or Visual Basic .NET. The classes support any project types that use these languages. Typically,
proxy classes have properties and methods that map to their Natural counterparts.

 To create a client proxy class:

1. Create a C# or Visual Basic .NET project.

For information, see the Visual Studio documentation.

The new project is displayed in the Solution Explorer.

2. Select the connection and domain containing the business service in the Business Service Explorer.

For example:

1

Creating a Client Proxy ClassCreating a Client Proxy Class

3. Open the context menu for the business service.

4. Select Generate proxy class on the submenu.

Note:
You can also use the Find service/create class option on the submenu to find the business service
and then generate the client proxy class.

The Define Class Name panel is displayed. For example:

This panel displays the name and version of the business service on which the class is based, as well
as the type of class that is generated.

5. Optionally, change the name of the class to be generated and the scope (for example, from public to
private).

6. Select Next to download the server metadata from the Natural server.

Natural Business Services retrieves the service metadata and displays the Specify Advanced
Options panel. For example:

2

Creating a Client Proxy ClassCreating a Client Proxy Class

Use this panel to specify any advanced options for methods or data properties, as well as select
additional generation options. Summary provides details about the metadata retrieved from the server.

7. Define advanced options for methods or data properties.

For information on defining advanced method options, see Configure the Methods Generated
for a Client Proxy Class.

For information on defining advanced data property options, see Customize the Fields
Generated for a Client Proxy Class.

8. Select additional generation options.

For example:

Select Generate strongly typed dataset to increase the usability of your proxy class, as the
dataset can be used directly with other .NET framework components (for example, databind to a
grid) and .NET keeps track of groups of rows. You can generate a strongly typed dataset for
services that were generated using the single-view code generation pattern generated by the
Object-Browse-Select-Subp model. The wizard recognizes when this model was used to
generate the target subprogram and automatically enables and selects a strongly typed dataset.

3

Creating a Client Proxy ClassCreating a Client Proxy Class

Select Generate NUnit test class to generate code into an additional class where you can
modify the condition of your test cases. One test case is generated for each service method. Another class,
called TestSettings, is also generated into the project. This class contains the user ID, password, and
connection settings for the generated tests.

9. Select Finish to generate the client proxy class.

The Generate Status window is displayed. All required references and dependencies are included in
the project. If a generation error occurred, a message is displayed in the lower portion of the window.

Note:
To return to the wizard and make modifications, select Cancel.

10. Select Save to save the code to your project.

The client proxy class is listed in the Solution Explorer. For example:

Note:
Remember to save your project in Visual Studio.

Configure the Methods Generated for a Client Proxy Class
You can customize how methods are generated for the class. The Client Proxy wizard overloads the
methods with no parameters. This allows the service to call the same function with different parameters.

Note:
When an empty method is called, instance variables are passed.

 To configure the methods generated for a client proxy class:

4

Configure the Methods Generated for a Client Proxy ClassCreating a Client Proxy Class

1. Select Methods on the Specify Advanced Options panel.

The Configure Methods window is displayed. For example:

This window provides read-only information about the following:

Proxy Type

Lists the types of Natural code generation patterns (if applicable). For example, a method can
invoke the following types:

Data maintenance (maint)

Data query (browse)

Single view query/maintenance (browse-select)

Generic wrapper (generic)

Customer (arbsub)

Server Method

5

Creating a Client Proxy ClassConfigure the Methods Generated for a Client Proxy Class

Name of the method on the server.

2. Modify the following default settings:

Setting Description

Name Method name used for the class.

Generate If this option is selected, the corresponding method will be generated for
the class.

Scope Scope for the method. Valid values are: public, private, or friend.

Input If this option is selected, the corresponding parameter group will be sent
on input calls.

Output The corresponding parameter group will be sent on output calls.

Overrides Override indicators. Field overrides are based on the Natural field name
and allow you to set conditions when invoking the method. The override
indicators are:

FieldName

Name of a field in a parameter grouping with a field override.

Value

Value set for the field when the corresponding method is invoked.

3. Select OK.

Customize the Fields Generated for a Client Proxy Class
You can customize how fields are generated for a client proxy class.

 To customize the fields generated for a client proxy class:

1. Select Data on the Specify Advanced Options panel.

The Configure Data Objects window is displayed. For example:

6

Customize the Fields Generated for a Client Proxy ClassCreating a Client Proxy Class

The tree on the left lists the parameter groups, array groups, and structures for each class, as well as
the name of the class in brackets. The fields derived for each group or structure are displayed with the
field type in brackets.

Note:
For redefined fields, you can either select the base field or one of the redefined fields.

2. Modify the following default settings:

7

Creating a Client Proxy ClassCustomize the Fields Generated for a Client Proxy Class

Setting Description

Field Natural field name.

Generate If this option is selected, the corresponding property will be generated
for the class.

Note:
You can set overrides at the method level for fields that are not
generated.

Name Property name used for the field.

Scope Scope for the property. Valid values are: public, private, or friend.

Sub-class name Name of the class that will implement the child properties for parameter
groups, array groups, and structures.

Counter field Name of the field used to determine how many instances of an array are
used for the business service. This field is used in conjunction with the
Use generics field (see below).

Use standard PDA If this option is selected, certain parameter groups will use the standard
PDAs at runtime (for example, the CDPDA-M error message PDA).
Properties will not be generated for these parameters groups and runtime
versions of the standard PDAs will be used instead.

Use generics If this option is selected, a Generic collection of up to 20 array items
will be used for one-dimensional arrays (i.e., a collection of <Field
Type> values). To determine how many instances of the array are used,
you can specify a Counter field (see above).

3. Select OK.

Items Generated
Depending on the options specified for the class you are generating, the Client Proxy wizard generates the
following items into your project:

Item Description

ClassName Generated proxy class.

ParameterGroupName Generated metadata definition for a parameter group, which is
saved in a child resx resource file.

ClassNameTest Class containing generated NUnit tests.

TestSettings Class containing settings used to run NUnit tests in this project.

ClassNameDatasetBase Schema describing the dataset. It is only generated for services that
have the Generate strongly typed dataset option selected on the
Specify Advanced Options panel for the Client Proxy wizard.

8

Items GeneratedCreating a Client Proxy Class

Regenerate a Client Proxy Class
Proxy classes can be run through the code generator more than once (called regeneration). The wizard
saves specification data at the bottom of the class (see the Specs DO NOT DELETE region).

 To regenerate a client proxy class:

1. Open the context menu for the class in the Solution Explorer.

2. Select one of the following options on the submenu:

Option Description

Show Wizard Displays the Client Proxy wizard panel. Edit the panel as desired and
select Finish.

Regenerate Regenerates the client proxy without displaying the wizard panel. New
metadata is downloaded from the server before regeneration. All of your
previous settings are preserved (such as customizations to methods and
properties).

Tip:
To regenerate multiple client proxy classes, select them in the Solution
Explorer, open the context menu, and select Regenerate.

Example of a Client Proxy Class
This section contains an example of a class generated by the Client Proxy wizard. The example uses the
Order service, version 020101, in the DEMO domain. The following topics are covered:

Output Generated

Example of Using the Order Client Proxy Class

Output Generated

The following items were generated for the client proxy class for the Order business service:

Child resx File
Client Proxy Class
Client Proxy Test
Client Proxy Dataset Base

Child resx File

This resource file stores PDA definitions for a class and creates the corresponding NaturalDataArea
objects.

9

Creating a Client Proxy ClassRegenerate a Client Proxy Class

Client Proxy Class

Called Order.vb, this is the main class that invokes the remote Natural Business Services methods. This
class includes:

Item Description

Constructor Contains a parameter called IRemoteCaller, which communicates with the
server.

Methods Each method for the class corresponds to a method in the business service.
For each method that included the Generate Strongly Typed Dataset option
(selected on the Specify Advanced Options panel for the Client Proxy
wizard), a corresponding method is generated in the class to accept a dataset
as a parameter.

10

Output GeneratedCreating a Client Proxy Class

Item Description

Data Each level 1 field from a PDA used in a business service becomes a
property of the class. Each group within a PDA becomes a sub-class. If the
Generate Strongly Typed Dataset option was selected on the Specify
Advanced Options panel for the Client Proxy wizard, an additional
property is generated (called RowDataDataset). For example, if the
following definition is specified:

01 Group1
 02 Group2
 03 Field1 (A10)

The following is generated:

 Public Class SomeService

 Private m_Group1 As Group1Class

 Public Class Group1Class

 Private m_Group2 As Group2Class

 Public Property Group2() As Group2Class
 Get
 Return m_Group2
 End Get
 Set(ByVal Value As Group2Class)
 m_Group2 = Value
 End Set
 End Property
 End Class

 Public Class Group2Class
 Private m_Field1 As String

 Public Property Field1() As String
 Get
 Return m_Field1
 End Get
 Set(ByVal Value As String)
 m_Field1 = Value
 End Set
 End Property
 End Class

 Public Property Group1() As Group1Class
 Get
 Return m_Group1
 End Get
 Set(ByVal Value As Group1Class)
 m_Group1 = Value
 End Set
 End Property
 End Class

11

Creating a Client Proxy ClassOutput Generated

Client Proxy Test

This class contains tests to use with NUnit. A test method is generated for each method in the Client Proxy
class. To run the tests, modify the TestSettings class.

Client Proxy Dataset Base

To take advantage of Visual Studio’s ability to generate strongly typed datasets based on an XSD file, the
Client Proxy wizard generates an XSD file. Visual Studio then converts the generated XSD file into a
strongly typed dataset, which is called the BaseDataset (OrderDatasetBase in this example).

Note:
To create a strongly typed dataset, you must select the option on the Specify Advanced Options panel for
the Client Proxy wizard. For information, see Creating a Client Proxy Class.

Example of Using the Order Client Proxy Class

 To use the sample Order class:

1. Instantiate the IRemoteCaller object used to make the remote calls.

2. Logon to Remote Caller.

3. Instantiate a service by passing the Remote Caller (created in step 1) in the constructor for the
business service.

4. Populate PDA properties with data to be sent.

5. Invoke the desired method.

If you are using the dataset methods, use the overloaded method with the dataset parameter.

6. Check the method result and use the returned data as desired.

For example:

Imports SoftwareAG.NBS.DispatchClient
Imports SoftwareAG.NBS.BusinessServiceHelper

…
 Dim rc As IRemoteCaller
 Dim ord As Order
 Dim logResult As LogonResult
 Dim result As BusinessServiceResult
 Dim iRowsReturned As Integer

 ’ Create the remote caller.
 rc = ServiceFactory.CreateDispatcher("Some ConnectionID")

 ’ Logon
 logResult = rc.Logon("Guest", "", Nothing)
 If Not logResult.Pass Then
 ’ Handle logon error
 End If

 ’ Create the Order object
 ord = New Order(rc)

12

Example of Using the Order Client Proxy ClassCreating a Client Proxy Class

 ’ Populate fields to find all Orders for Customer# 2
 ord.BrowseKey.OrderCustomerNumber = 2
 ord.ServiceState.Inputs.RangeOption = RangeOptions.Equal

 result = ord.FindByOrderCustomerNumber

 If Not result.Success Then
 ’ Handle Error
 End If

 iRowsReturned = ord.ServiceState.InputOutputs.ActualRowsReturned

 For Each row As Order.RowClass In ord.Rows.Row
 ’ Process each row here
 Next

The following references are automatically added:

SoftwareAG.NBS.BusinessDataTypes

SoftwareAG.NBS.BusinessServiceHelper

SoftwareAG.NBS.ClientConfig

SoftwareAG.NBS.DispatchClient

SoftwareAG.NBS.NaturalDataArea

SoftwareAG.NBS.Shared

SoftwareAG.NBS.XMLSerialization

Nunit.framework (only added if the Generate Test Suite option was selected)

13

Creating a Client Proxy ClassExample of Using the Order Client Proxy Class

	Creating a Client Proxy Class
	Configure the Methods Generated for a Client Proxy Class
	Customize the Fields Generated for a Client Proxy Class
	Items Generated
	Regenerate a Client Proxy Class
	Example of a Client Proxy Class
	Output Generated
	Child resx File
	Client Proxy Class
	Client Proxy Test
	Client Proxy Dataset Base

	Example of Using the Order Client Proxy Class

