
Tips and Techniques
This section provides helpful tips and techniques you can reference when using the Transform-Browse
model. The following topics are covered:

Access Maps and Menus from Original Browse Module

Transform More Than One Browse Module

Transform in a Secure Environment

Display a Variable Number of Lines per Record

Display Correct Number of Rows

Display Direct Command Line on a Screen

Use Edit Masks

Stop Screens from Advancing Data

Check for Data Access Code in the PROCESS-SELECTED-RECORD User Exit

Reference Field Names

Use Wildcard Characters for Numeric Fields

Coordinate Data Areas for Browse Program Modules

Modify Transformation Data

Change Error Message When No Records Match Selection

Use the Find Objects Window to Scan a Library (Natural Plug-in Only)

Access Maps and Menus from Original Browse Module
To ensure that the transformed object browse modules have access to other required modules, such as
maps or menus used by the original browse module, include the name of the current library in the steplib
chain for the transformed module library.

Transform More Than One Browse Module
When using the Transform-Browse model in the Generation subsystem to transform more than one
browse module:

Ensure specifications are cleared between transformations. If not, the module names from the first
transformation may be inadvertently used to name the modules for the second transformation.

1

Tips and TechniquesTips and Techniques

Since naming conventions require modules to exist, do not save the specifications for the first
transformation without generating the object modules. If you do, the Transform-Browse model may
overwrite the specifications. For example, assume the first transformation created the name BR01PN2 for
the object browse subprogram and then saved the specifications. If the module is not generated and moved
to the transformed module library, the Transform-Browse model is unaware of its existence and may
create the same name for the object browse subprogram for the second transformation. During generation,
the Transform-Browse model will successfully transform the first browse module but will display a
message indicating that the object browse subprogram already exists when transforming the second
browse module. If you mark yes to replace the subprogram, the object browse subprogram for the first
transformation will be overwritten.

Note:
If you use the Transform Browse wizard, the specifications will not be overwritten because you cannot
save the specifications without generating the modules.

Transform in a Secure Environment
When using the Transform-Browse model in a secure environment, a SYSMAIN error may occur. If this
happens, try setting the RUNSIZE value to 40.

Display a Variable Number of Lines per Record
If a browse module can have more than one line per record, but the number of lines per record can vary
based on user input, developer intervention is required.

The number of lines per record is specified when the transformation is initially performed (see
Specification Parameters). Since this number can vary based on user input, specify the smallest number of
lines per record. This will create enough space for the most number of rows.

After transforming the browse module, add code to the AFTER-INPUT user exit for the object browse
dialog module to change the number of rows requested based on what the user selects. For an example of
this functionality, transform the NCCSCUST module in the Demo application and specify one line per
record. Next, edit the AFTER-INPUT user exit for the object browse dialog module and specify what
processing to perform. This user exit contains the following sample code:

*
* If this Browse is transformed to an object browse specifying how
* the requested rows for each screen is important. To solve this
* uncomment the following lines
* IF #OPTION = ’M’ OR = ’S’ OR= ’C’ THEN
* CDBRPDA.ROWS-REQUESTED := 2
* ELSE
* CDBRPDA.ROWS-REQUESTED := 12
* END-IF
*
* Processing to be performed just after the exit checks, after input.
IF NOT (#OPTION = ’ ’ OR = ’M’ OR = ’S’ OR = ’C’) THEN
 REINPUT ’Valid options are "M", "S", "C", or blank’
 MARK *#OPTION ALARM
END-IF

2

Transform in a Secure EnvironmentTips and Techniques

Display Correct Number of Rows
After transforming a browse module, you may encounter the following interface problems:

Too many rows on a screen

If a screen has too many rows (i.e., a row is overwritten by the input prompt), modify the
specifications on the Standard Parameters panel for the Transform-Browse model, add more lines for
the field headings (by default, the Transform-Browse model reserves two lines for field headings),
and regenerate the model. Before regenerating, move the original browse module to the current
library and set the Replace option to overwrite the modules in the transformed module library.

Note:
As the input prompt may overwrite one of the data rows, this problem may not be apparent until
runtime. If this is the case, the input prompt may inadvertently change input values while trying to
select the hidden row.

Too few rows on a screen

If a screen has too few rows, modify the specifications on the Standard Parameters panel for the
Transform-Browse model, lower the number of lines reserved for the field headings, and regenerate
the model. If the Transform-Browse model reserves two lines for field headings and only one is used,
there will be a blank(s) in front of the input prompt and the direct command line will be missing (if
the generated module supports direct command processing).

Display Direct Command Line on a Screen
If the direct command is not being displayed on the transformed object browse dialog, ensure the correct
number of field heading lines have been specified (see Too few rows on a screen above). If this is not the
problem, ensure the dialog specifications include the following line:

**SAG INTERNATIONAL-PARMS: F01CSTAPPL CSTAPPL FF

The second last letter indicates whether direct command processing is enabled. F means False (direct
command code will not be generated) and T means True (direct command code will be generated).

Use Edit Masks
Since the object browse dialog module does not have access to the Natural views, edit masks are not
automatically derived from DDMs. Unless the edit masks have been hard coded in user exits, they will not
be included in the transformed code. If edit masks are required, you must manually add them to the object
browse dialog.

Stop Screens from Advancing Data
References to SET CONTROL Q, N, or K0 statements in the original browse module may
inadvertently advance screens. By default, the browse module does not populate the first screen; the
Transform-Browse model sets the POPULATE-FIRST-SCREEN specification to False. When this
happens, the following changes are made to the generated object browse dialog code:

3

Tips and TechniquesDisplay Correct Number of Rows

01 #FORWARD(L) INIT<FALSE> /* Forward scrolling

CDBRPDA.ACTUAL-ROWS-RETURNED := 1

Using this solution, items for WRITE statements may be derived too early. To solve this problem,
determine whether the derived code is in the correct position. We recommend that derived values go into
the object browse subprogram and that you create additional PDAs for them. If not, the derived values
will be lost when dialogs are replaced with web pages or Web services.

If you determine that the derived values should stay in the dialog, they should be wrapped in an IF
statement to avoid being processed with the first screen. For example:

 IF FIRST-TIME NE " " THEN
 DECIDE ON FIRST VALUE OF WORK2D.TRANSFORM-IMPACT(#ROW)
 VALUE ’E’
 #ERROR-TRANSLATION := #E
 VALUE ’S’
 #ERROR-TRANSLATION := #S
 NONE
 #ERROR-TRANSLATION := #T
 END-DECIDE
 END-IF

Check for Data Access Code in the
PROCESS-SELECTED-RECORD User Exit
There is a high probability that the PROCESS-SELECTED-RECORD user exit contains data access code.
Because the object browse dialog is replaced by Web services or pages, check for this code when web
enabling to ensure that the code is not lost.

Reference Field Names
To ensure proper referencing, field names must be fully qualified. For example, use
NCST-CUSTOMER.CUSTOMER-NUMBER, not just CUSTOMER-NUMBER. Natural Engineer can do
this for you.

Use Wildcard Characters for Numeric Fields
For the MOVE-BY-NAME functionality to work correctly, variables generated for the #INPUT statement
in the original browse module must match those in the key PDA. In anticipation of wildcard support, the
#INPUT statement in the browse module defines the variable as alphanumeric. This feature is not
available for numeric fields in the object browse subprogram. In addition, any references to redefined
numeric values within the #INPUT statement will not allow the module to be compiled. If the browse
module uses the #NUM-inputComponent syntax, it will be converted to inputComponent in the user exit
code (because #NUM- is no longer available).

4

Check for Data Access Code in the PROCESS-SELECTED-RECORD User ExitTips and Techniques

Coordinate Data Areas for Browse Program Modules
After transforming a browse program module, you must ensure that the parameter data area used by the
object browse subprogram (CDPDA-D, for example) contains the same fields as the global data area used
by the transformed browse program module (CDGDA, for example).

Natural Construct assumes that the following level one structures in the GDA will always be available
(see CDGDA for an example):

DIALOG-INFO

MSG-INFO

PASS

As the object browse subprogram has no access to the GDA, Natural Construct supplies the following
PDAs:

CDPDA-D (containing the DIALOG-INFO structure)

CDPDA-M (containing the MSG-INFO structure)

CDPDA-P (containing the PASS structure)

This allows data to be easily moved from the global data area for the browse program module to the PDAs
for the object browse subprogram. If you have customized your version of the CDGDA global data area,
ensure that the fields in each level one structure in CDGDA match those in the CDPDA-P parameter data
area for the object browse subprogram (for example, the PASS structure).

For an example of coordinating data areas after customizations, refer to the browse modules in the
SYSCSTDE library. These modules use:

A customized global data area, called NCGDA, which has a different level 1 PASS variable from the
standard GDA (called CDGDA)

A customized copy of the CDPDA-P parameter data area, which is different from the standard PDA
found in the SYSTEM library

If you create another browse module in the SYSCSTDE library that uses CDGDA, it will work correctly
because no PDA is required. But if you transform the browse module, the generated object browse
subprogram will be compiled with the customized copy of the CDPDA-P data area in SYSCSTDE. As
this PDA reflects the NCGDA data area, a NAT0935 error (conflicting number of parameters) occurs
when the object browse dialog driver program is executed and tries to pass the level 1 PASS variable (as
the driver program uses CDGDA).

Modify Transformation Data
The CUTRLDA local data area contains basic transformation data that is not related to specifications. For
example, it handles situations where the user exit functionality and variables are similar in the different
models but do not have the same names. CUTRLDA contains a list of user exit names, the object name for
each exit (if it is different), and the name of the Object model(s) to which the user exit will be transferred.
In addition, CUTRLDA contains an array of all variables in the browse module and which variables they

5

Tips and TechniquesCoordinate Data Areas for Browse Program Modules

should be mapped to in the transformed object modules. You can modify this LDA to reflect your site
requirements, if necessary.

Note:
If you modify CUTRLDA, you must recompile the CUTRPR, CUTRPR1, and CUTRVAL subprograms
for the Transform-Browse model. Make all changes in the SYSCST library and then use the Natural
SYSMAIN utility to copy the object code to the SYSLIBS library.

Change Error Message When No Records Match Selection
If no records match a selection for the object browse subprogram, an 8004 error message is displayed (to
be consistent with the original browse module). You can replace this message with 8074 (the default error
message number for an object browse subprogram) by modifying the CBDBD09 code frame.

Use the Find Objects Window to Scan a Library (Natural
Plug-in Only)
If you use the Transform Browse wizard in the Natural Business Services Natural plug-in, you can use the
Find Objects window to scan a library, determine which modules can be transformed, and display them
in the editor. For example, you can scan for the following line:

**SAG GENERATOR: BROWSE

Note:
The example above will also find modules generated by the Browse-Subp, Browse-Select, and
Browse-Select-Subp models.

6

Change Error Message When No Records Match SelectionTips and Techniques

	Tips and Techniques
	Access Maps and Menus from Original Browse Module
	Transform More Than One Browse Module
	Transform in a Secure Environment
	Display a Variable Number of Lines per Record
	Display Correct Number of Rows
	Display Direct Command Line on a Screen
	Use Edit Masks
	Stop Screens from Advancing Data
	Check for Data Access Code in the PROCESS-SELECTED-RECORD User Exit
	Reference Field Names
	Use Wildcard Characters for Numeric Fields
	Coordinate Data Areas for Browse Program Modules
	Modify Transformation Data
	Change Error Message When No Records Match Selection
	Use the Find Objects Window to Scan a Library (Natural Plug-in Only)

