
Using the Object-Maint Models
This section describes how to use the Object-Maint series of models to generate the modules required for
an object-maintenance process. The following topics are covered:

Introduction

Object-Maint-Subp Model

Object-Maint-Dialog Model

Object-Maint-Dialog-Subp Model

Note:
For more information on object-oriented development, see Overview of Object-Oriented Development.

Introduction
The following diagram shows the components of an object-maintenance process:

1

Using the Object-Maint ModelsUsing the Object-Maint Models

Within this hierarchy, the object-maintenance dialog program is not concerned with the internal structure
of the files (which is hidden by the PDA), nor the implementation of the data actions (which is hidden by
the object subprogram).

The following table lists the modules required to maintain a maintenance object and the models used to
generate each module:

Module Model Used to Generate

Object-maintenance subprogram Object-Maint-Subp model

Object-maintenance dialog program Object-Maint-Dialog model

Object-maintenance dialog subprogram Object-Maint-Dialog-Subp model

To maintain an object, such as add a new record or modify an existing one, an object-maintenance dialog
invokes an object-maintenance subprogram.

 To implement an object-maintenance process using the Object-Maint models:

1. Define the files and relationships in the Predict data dictionary.

Identify the object, the integrity between objects, and the automatic rules that apply to each object.
For more information, see Define Natural Construct Objects.

2. Create the subprogram using the Object-Maint-Subp model.

This subprogram updates all entities within the object. Subprograms generated by the
Object-Maint-Subp model contain the full range of integrity checks (as defined by the Predict
relationships) and object semantics, whether they are in the form of Predict automatic rules or object
manipulation within user exits.

The Object-Maint-Subp model also creates the parameter data areas (PDAs) for the object: the object
PDA and the restricted PDA. The object PDA contains fields to store all occurrences of attributes
defined in the object. This PDA is the only part of the object that is exposed to the rest of the
application (for update purposes only). The restricted PDA stores information that is used internally
by the subprogram. The values in this PDA must only be altered by the subprogram.

3. Create maps to input values for the object (if a dialog program invokes the object).

Use the Map model or Natural Map editor to create the maps, which extract fields from the object
PDA.

4. Create the object-maintenance dialog program or subprogram using the Object-Maint-Dialog or
Object-Maint-Dialog-Subp model.

This module provides the user interface to the object.

The following sections describe the Object-Maint models in the order they are implemented.

2

IntroductionUsing the Object-Maint Models

Object-Maint-Subp Model
The Object-Maint-Subp model generates a subprogram that maintains complex data objects. The
subprogram updates all entities within an object and contains a full range of integrity checks (as defined
by Predict relationships) and object semantics (in the form of Predict automatic rules or object
manipulation within user exits).

This section covers the following topics:

CDAOBJ2 Data Area

Object PDA

Restricted PDA

Editing and Processing of Entities

Additional Checks within User Exits

Processing Order in Adabas Files

Processing Order in Non-Adabas Files

Pre-editing Checks

Post-editing Checks

Object Instance Hierarchy Tree

Data Access Subroutines

Store a Before Image of Data

Parameters for the Object-Maint-Subp Model

User Exits for the Object-Maint-Subp Model

CDAOBJ2 Data Area

The Object-Maint-Subp model uses the CDAOBJ2 data area. This data area contains parameters that are
common to all object-maintenance subprograms. For example:

3

Using the Object-Maint ModelsObject-Maint-Subp Model

1 CDAOBJ2
 *
 * This data area contains all
 * parameters that are common to
 * OBJECT-MAINT-SUBPrograms.
 *
 2 INPUTS
 3 #FUNCTION (A15) /* GET, NEXT, UPDATE, DELETE,
 * /* STORE, EXISTS, INITIALIZE
 * /* Other User Defined Functions.
 4 #CLEAR-AFTER-UPDATE (L) /* Initialize object variables
 * /* after a successful UPDATE,
 * /* DELETE or STORE.
 4 #RETURN-OBJECT (L)
 4 #ET-IF-SUCCESSFUL (L) /* Commit the record updates

 4 #USE-ISN (L)
 /* If the OBJECT was
/* generated with the
/* condition code
/* GET-BY-ISN and
/* this flag is true the
/* GET-OBJECT and
/* HOLD-OBJECT subroutines
/* will retrieve the
/* record by ISN

 4 #IGNORE-HELD-ID-CHECK (L) /* Can be used to ignore
 * /* the HELD-ID check;
 * /* This check can be
 * /* ignored if hash locking
 * /* is used
 4 #BACKOUT-ISSUED (L) /*when true the Object Maint issued a backout transaction
 2 OUTPUTS
 4 #OBJECT-CONTAINS-DERIVED-DATA (L)
 4 #EXISTS (L) /* Requested object exists.

The following sections describe some of the fields in this data area.

Conditional END OF TRANSACTION (ET) Statement

The Object-Maint-Subp model supports a conditional END OF TRANSACTION (ET) statement. When
client and server components are on different platforms, the ET logic is not easily transmitted across the
network. To make this process simpler and more automated, the Object-Maint-Subp model generates a
conditional ET statement that is controlled by two logical variables: #UPDATE-PERFORMED and
#ET-IF-SUCCESSFUL.

Both variables must be set to True before an ET is performed. The #UPDATE-PERFORMED variable is
internally set in the object-maintenance subprogram (depending on the method that was requested). The
#ET-IF-SUCCESSFUL variable is set by the callers of the subprogram and passed across different
platforms via the CDAOBJ2 data area.

If both components reside on the same platform:

The object-maintenance dialog modules can continue to issue the ET as before (by default, the dialog
module issues the ET)

4

CDAOBJ2 Data AreaUsing the Object-Maint Models

or

The object-maintenance subprogram can perform the ET

The following conditional statement is generated:

IF #UPDATE-PERFORMED AND CDAOBJ2.#ET-IF-SUCCESSFUL THEN
 END OF TRANSACTION
END-IF

Note:
If upgrading a generated object-maintenance subprogram from Natural Construct V3 to version 4 or
higher, you must also regenerate the calling dialogs. The order of generation is important; first regenerate
the object-maintenance subprograms and then regenerate the dialog modules.

GET-BY-ISN Option

The Natural Construct administrator can set up the Object-Maint-Subp model to generate code that
retrieves data by ISN for Adabas files. This functionality allows a GET BY ISN statement to be converted
into a CALLNAT to the object-maintenance subprogram. The GET BY ISN code is only executed if:

CDAOBJ2.#USE-ISN is set to True

ObjectName.OBJECT-ISN has a value

the NEXT or FORMER actions are not being used

If an object is generated with the GET-BY-ISN condition code and the #USE-ISN field set to True, the
GET-OBJECT and HOLD-OBJECT subroutines retrieve the record by ISN.

To determine whether the GET-BY-ISN condition code is set, see Determine Which Condition Codes are
Set.

Note:
For information on using the Adabas ISN as a unique primary key for maintenance, see Use *ISN as the
Unique Primary Key for Maintenance.

Object PDA

The Object-Maint-Subp model generates the object PDA. This PDA allows data to be transferred between
an object-maintenance subprogram and the object-maintenance dialog program or subprogram, and/or any
other programs that invoke the object-maintenance subprogram.

The following example shows a PDA generated by the Object-Maint-Subp model:

5

Using the Object-Maint ModelsObject PDA

 15:06:58 ***** E D I T DATA ***** 01-05-16
 Library: SYSCSTDE Name: ORDERPDA PARAMETER DBID: 18 FNR: 4
 Command: > +
 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- -------------------------------
 1 ORDER /* Object Name
 2 ORDER-NUMBER N 6 /*
 2 ORDER-AMOUNT P 13.2 /*
 2 ORDER-DATE N 8 /*
 2 ORDER-CUSTOMER-NUMBER N 5 /*
 2 ORDER-WAREHOUSE-ID A 3 /*
 2 INVOICE-NUMBER N 6 /*
 2 ORDER-TIMESTAMP T /*
 2 C#DELIVERY-INSTRUCTIONS N 3 /* Counter Field
 2 DELIVERY-INSTRUCTIONS A 60 (1:20)
 *
 2 C#NCST-ORDER-HAS-LINES N 3 /* Counter field
 2 NCST-ORDER-HAS-LINES (1:30) /* NCST-ORDER-LINES
 3 LINE-NUMBER N 2 /*
 3 ORDER-PRODUCT-ID A 6 /*
 3 LINE-DESCRIPTION A 40 /*
 3 QUANTITY P 9 /*
 3 UNIT-COST P 7.2 /*
 3 TOTAL-COST P 9.2 /*
 *
 3 C#NCST-LINE-HAS-DISTRIBUTION N 3 /* Counter field
 3 NCST-LINE-HAS-DISTRIBUTION (1:10) /* NCST-ORDER-DISTRIBUTION
 4 DIST-LINE-NUMBER N 2 /*
 4 DIST-NUMBER N 2 /*
 4 ACCOUNT A 9 /*
 R 4 ACCOUNT /* REDEF. BEGIN : ACCOUNT
 5 COST-CENTER A 2 /*
 5 ACCT A 4 /*
 5 PROJECT A 3 /*
 4 DIST-AMOUNT P 9.2 /*
 *
 1 ORDERPDA-ID N 6 /* Object identifier
 R 1 ORDERPDA-ID /* REDEF. BEGIN : ORDERPDA-ID
 2 STRUCTURE /* To allow MOVE BY NAME
 3 ORDER-NUMBER N 6 /*

Restricted PDA

The Object-Maint-Subp model also generates the restricted object PDA. The generated
object-maintenance subprogram uses the restricted object PDA to store information that is used across
multiple applications. An example of such information is the Adabas ISNs (Internal Sequence Numbers)
of all entities within an object when the object is read. In this way, the entities can be easily retrieved for
an Update action. The actual contents of the restricted PDA are only used internally by the generated
object-maintenance subprograms.

For more information, see Define Object Relationships in Predict and Support for Predict Automatic
Rules.

Note:
An object-maintenance subprogram has no user-interface component. For more information, see
Parameters for the Object-Maint-Subp Model. To see a sample subprogram, refer to ORDERN in the
Natural Construct demo system.

6

Restricted PDAUsing the Object-Maint Models

Editing and Processing of Entities

An object consists of a primary entity and all its child entities (sub-entities). Each entity is processed in
the following order:

1. Pre-editing checks, which consist of all the edit checks done before the child or children of the
current entity are processed.

2. Processing, during which the current entity is updated, added, or deleted.

3. Post-editing checks, which consist of all the edit checks done after the child or children of the current
entity are processed.

Automatic Validation

The generated subprogram performs automatic validation using information stored in Predict. It checks
for:

The uniqueness of a key, if required

Foreign referential constraints (inter-object relationships)

Predict automatic rules

Cardinality constraints for Predict relationships

Additional Checks within User Exits

This section describes different uses for user exits supplied for the Object-Maint-Subp model. The
following topics are covered:

Provide Conditional ET Statements within User Exits
Specify Validation Subroutines

Provide Conditional ET Statements within User Exits

In addition to a conditional END OF TRANSACTION (ET) statement, the Object-Maint-Subp model
offers user exits called BEFORE-ET, BEFORE-ET-PROCESSING and AFTER-ET-PROCESSING.
These exits provide the same capabilities for the ET statement in the object-maintenance subprogram as
are available in dialog modules. The following conditional statement and user exits (if requested) are
generated:

 **SAG DEFINE EXIT BEFORE-ET
 * Any special processing before an ET, where this code will be executed
 * whether an ET is issued or not.
 **SAG END-EXIT
 IF #UPDATE-PERFORMED AND CDAOBJ2.#ET-IF-SUCCESSFUL THEN

IF #UPDATE-PERFORMED AND CDAOBJ2.#ET-IF-SUCCESSFUL THEN
**SAG DEFINE EXIT BEFORE-ET-PROCESSING
 /* Any special processing before an ET.
**SAG END-EXIT
 END OF TRANSACTION

7

Using the Object-Maint ModelsEditing and Processing of Entities

**SAG DEFINE EXIT AFTER-ET-PROCESSING
 /* Any special processing after an ET.
**SAG END-EXIT
END-IF

For information about these user exits, see BEFORE-ET, BEFORE-ET-PROCESSING and
AFTER-ET-PROCESSING, Natural Construct Generation.

Specify Validation Subroutines

You can specify additional edit checks within the UPDATE-EDITS user exit and additional referential
integrity checks within the EXTENDED-RI-CHECKS user exit. The UPDATE-EDITS user exit contains
validation subroutines that execute edit checks at different points during the processing of an entity. You
can create subroutines for each entity within an object.

The UPDATE-EDITS user exit contains the following validation subroutines:

Subroutine Description

V0-entity-name Executed during the pre-editing phase, before the Predict automatic rules
are checked and the children of the current entity are processed.

V1-entity-name Executed during the pre-editing phase, after the Predict automatic rules are
checked and before the children of the current entity are processed.

V2-entity-name Executed during the post-editing phase, after the Predict automatic rules are
checked and all children of the current entity are processed.

The EXTENDED-RI-CHECKS user exit contains the following validation routine:

Subroutine Description

V-relationship-name Executed during the pre-editing phase, after the Predict automatic rules are
checked and after the V1-entity-name subroutine for the current entity is
executed.

For more information about these validation subroutines and user exits, see Object Instance Hierarchy
Tree and UPDATE-EDITS and EXTENDED-RI-VIEWS, Natural Construct Generation.

Processing Order in Adabas Files

In Adabas files, Natural Construct processes each entity in the following order:

1. Performs pre-edit checks.

2. Processes all children.

3. Performs post-editing checks.

4. Adds, updates, or deletes the entity.

8

Processing Order in Adabas FilesUsing the Object-Maint Models

Processing Order in Non-Adabas Files

In non-Adabas files (VSAM, DB2, DL1/IMS), Natural Construct processes each entity in the following
order:

Add or Update Action

1. Performs pre-edit checks on the current entity.

2. Adds or updates the entity.

3. Processes all children of the entity.

4. Performs post-edit checks.

Note:
For VSAM, DB2, or DL1/IMS files with a primary key, if the key for an entity is updated to a new value,
the record with the new key value is added before the child records are processed and the record with the
old key value is deleted after the child records are processed. Otherwise, the key is updated as usual.

Delete Action

1. Performs pre-edit checks on the current entity.

2. Processes all children of the entity.

3. Deletes the entity.

Note:
For relational database and DL1/IMS files with referential integrity rules (Predict type R relationships)
defined for intra-object relationships with type C (Cascade) constraint type, the DELETE statement is
generated only at the primary level. The DBMS handles the cascading delete through all child records.

Pre-editing Checks

This editing is performed before the children of the current entity are processed. Natural Construct creates
pre-editing subroutines (called EDIT-OBJECT for the primary entity and E-entity-name for sub-entities)
and executes them in the following order:

Add or Update Action

1. Builds the key for the current entity.

2. Ensures the uniqueness of the key (if required).

3. Executes the V0-entity-name subroutine within the UPDATE-EDITS user exit.

4. Enforces the Predict automatic rules.

5. Executes the V1-entity-name subroutine within the UPDATE-EDITS user exit.

9

Using the Object-Maint ModelsProcessing Order in Non-Adabas Files

6. Enforces the Restricted Update for Insertion (RUI) rules.

7. Enforces the Restricted Update (RU) rules (if the entity is greater than level 1).

Delete Action

1. Executes the D-entity-name subroutine within the DELETE-EDITS user exit.

2. Enforces the Restricted Delete (RD) rules.

Post-editing Checks

This editing is performed by the V2-entity-name subroutine after the children of the current entity are
processed. Natural Construct generates the PERFORM V2-entity-name statement in the following
subroutines:

CHECK-AND-UPDATE-OBJECT (for the primary entity)

C-entity-name (for the sub-entity)

Post-editing allows the upper level to maintain some desired redundancy. For example, an insurance
policy requires a premium for each vehicle insured under the policy. For performance reasons, the policy
has a redundant field called POLICY-TOTAL-PREMIUM. You can determine the total premium by
looking at the primary entity for the object; you do not have to go through all the vehicle entities.

Object Instance Hierarchy Tree

An object is built from a primary entity and its child entities (sub-entities), which are defined in Predict
with entity relationships. An instance (object value) of the object consists of occurrences (records) of the
constituent entities. Depending on the update constraint type specified, the following interpretations of
null occurrence are adopted:

For update constraint type C (Cascade), an entity record is set to null if its key suffix value is set to
null. An exception to this occurs when the length of the key for the child entity is equal to the length
of the key for its parent entity (there is no suffix, for example). In this case, a record is set to null if
all non-key attributes are null.

For update constraint type L (suffix is a line number) and type N (renumbered suffix), an entity
record is set to null if all the non-key attributes are set to null.

Each instance of the object can be represented by an object instance hierarchy tree, where the occurrence
of the primary entity forms the node at the root of the tree and each occurrence of its child entities forms a
node at a lower level. A null occurrence of an entity within the object does not correspond to any node of
the hierarchy tree. With this representation, the following properties can be observed:

Each non-null occurrence of an entity must correspond to a non-null occurrence of its parent entity; if
an entity occurrence is set to null, so are all the occurrences of its child entities. This property of
existence can be seen as a downward propagation from parent to child. If a record is set to null during
an update, that record and all its child records are deleted.

The attributes (field values) of an entity occurrence can propagate downward to those of its child
entities. This type of propagation can be seen while traversing a pre-order tree. When a node is
encountered for the first time, it can take on the attributes of its parent node. (To implement this

10

Post-editing ChecksUsing the Object-Maint Models

propagation, refer to the V0-entity-name and V1-entity-name subroutines in the UPDATE-EDITS
user exit.)

The attributes of an entity occurrence can propagate upward to those of its parent entity. This type of
propagation can be seen while traversing a post-order tree. When a node is encountered for the last time,
the entity occurrence can contribute to the attributes of its parent since all of its attributes (and its child
attributes) are already processed. (To implement this propagation, refer to the V2-entity-name
subroutine in the UPDATE-EDITS user exit.)

Tip:
An instance of an object can be referred to as an instance of a class.

Consider an insurance policy object defined with the following entity relationships:

An object instance consisting of a policy with two inquiries and two vehicles, where the first vehicle has
two coverages and the second has three, can be represented by the following object hierarchy tree:

This object hierarchy tree can be equally represented by the following diagram, which illustrates the
pre-order and post-order traversing of a tree:

11

Using the Object-Maint ModelsObject Instance Hierarchy Tree

In this diagram, the V0 and V1 on the left side or bottom of each node represent the V0-entity-name and
V1-entity-name subroutines; the V2 on the right side of the node represents the V2-entity-name subroutine
for the corresponding entity. In this example, the following subroutines are involved:

V0-INS-POLICY and V1-INS-POLICY
V2-INS-POLICY
V0-INS-VEHICLE and V1-INS-VEHICLE
V2-INS-VEHICLE
V0-INS-COVERAGE and V1-INS-COVERAGE
V0-INS-INQUIRY and V1-INS-INQUIRY

Each node corresponding to an occurrence of the INS-COVERAGE and INS-INQUIRY entities does not
have any child nodes and is called a leaf (of the tree). While traversing the object instance hierarchy tree,
the first time a leaf is encountered is also the last time. Therefore, a leaf does not have a V2-entity-name
subroutine.

The Object-Maint-Subp model generates PERFORM-subroutine statements that allow attributes to
propagate with the V0-, V1-, or V2-entity-name subroutines.

Example of PERFORM Statements

The following example shows PERFORM statements generated by the Object-Maint-Subp model:

*PROCESS INS-POLICY
 *FOR EACH POLICY:
 PERFORM V0-INS-POLICY
 PERFORM INS-POLICY-PREDICT-VERIFICATIONS
 (Check Predict automatic rules for INS-POLICY)
 PERFORM V1-INS-POLICY
 *PROCESS INS-VEHICLE
 *PROCESS INS-INQUIRY
 PERFORM V2-INS-POLICY
 *PROCESSING FOR THE INS-POLICY

*PROCESS INS-VEHICLE
 *FOR EACH VEHICLE:
 PERFORM V0-INS-VEHICLE
 PERFORM INS-VEHICLE-PREDICT-VERIFICATIONS
 (Check Predict automatic rules for INS-VEHICLE)
 PERFORM V1-INS-VEHICLE

12

Object Instance Hierarchy TreeUsing the Object-Maint Models

 *PROCESS INS-COVERAGE
 PERFORM V2-INS-VEHICLE
 *PROCESSING FOR THE INS-VEHICLE

*PROCESS INS-COVERAGE
 *FOR EACH COVERAGE:
 PERFORM V0-INS-COVERAGE
 PERFORM INS-COVERAGE-PREDICT-VERIFICATIONS
 (Check Predict automatic rules for INS-COVERAGE)
 PERFORM V1-INS-COVERAGE
 *PROCESSING FOR THE INS-COVERAGE

*PROCESS INS-INQUIRY
 *FOR EACH INQUIRY:
 PERFORM V0-INS-INQUIRY
 PERFORM INS-INQUIRY-PREDICT-VERIFICATIONS
 (Check Predict automatic rules for INS-INQUIRY)
 PERFORM V1-INS-INQUIRY
 *PROCESSING FOR THE INS-INQUIRY

Data Access Subroutines

If a Natural object contains a FIND statement that must be converted to an object-maintenance
subprogram, you can create a new data access function and code the FIND statement in user exits. To
accommodate this functionality, and the GET BY ISN data access statement, certain code has been placed
in subroutines. This allows the same code to be executed — regardless of the access method. These
subroutines are:

HOLD-PRIMARY-RECORDS-FOUND (when the data is accessed with a hold)

GET-PRIMARY-RECORDS-FOUND (when the data is accessed without a hold)

NO-PRIMARY-RECORDS-FOUND

For examples of these subroutines, refer to the GET-OBJECT and HOLD-OBJECT routines.

Store a Before Image of Data

An object-maintenance subprogram generated by the Object-Maint-Subp model stores a “before” image of
data (for example, what an order looked like before a user made changes). The before image is kept on the
database and is re-requested before an update is performed.

To do this, the code must be generated with the hash-locking feature. Logical variables are then stored as
Alpha format in the local data area to process the hashed values. All data has to hash to the same value as
when the data was requested. If it does, then the data has not changed.

Note:
For information about hash locking, see Hash-Locking Option.

Tip:
As the local data area is populated with the original data, you can use this data in your own logic.

13

Using the Object-Maint ModelsData Access Subroutines

Parameters for the Object-Maint-Subp Model

The Object-Maint-Subp model has two specification panels: Standard Parameters and Additional
Parameters. This section describes these panels. The following topics are covered:

Standard Parameters Panel
Additional Parameters Panel

Note:
For more information about creating an object-maintenance process, see Design Methodology, Natural
Construct Generation.

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

 CUOBMA Object-Maint-Subp Subprogram CUOBMA0
Jan 25 Standard Parameters 1 of 2

 Module MCUST2N_
 System DEMO____________________________

 Title Object Title_____________
 Description Object description_____________________________________
 for...___

 Message numbers X
 Hash locking _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
right help retrn quit right main

The fields in the upper portion of this panel are similar for all models. For a description of these fields, see
Common Fields on the Standard Parameters Panel. For information on the hash-locking option, see
Hash-Locking Option.

Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

14

Parameters for the Object-Maint-Subp ModelUsing the Object-Maint Models

CUOBMB Object-Maint-Subp Subprogram CUOBMB0
Aug 11 Additional Parameters 2 of 2
 Predict view ________________________________ *
 Primary key ________________________________ *
 Hold field ________________________________ *

 Object description ____________________

 Generate Source Object
 Object PDA ________ * _ C421 C421
 Restricted PDA ________ * _ C421 C421
 Object name ________________________________

 Next action prefix _
 Log file suffix ________
 Trace relationships _

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
main help retrn quit left userX main

Tip:
If the Predict view is blank and there is a value in Object PDA, you can enter the name of another PDA
(which must be generated by Natural Construct and available in the current library) in Object PDA to
populate the Predict view, Primary key and Object name fields with the values from this PDA.

The fields on this panel are:

Field Description

Predict view Name of the Predict view. A file definition for this view must exist in
Predict. Predict type N (Natural Construct) relationships relating to the
primary file are processed by the generated object-maintenance subprogram.
Relationships defined with a cascading delete constraint are maintained as
part of the object; relationships defined with a restricted delete constraint
are used by the object-maintenance subprogram to implement referential
constraints.

Primary key Name of the key in Predict for the primary file. This key becomes the
primary key to access the view for maintenance. The key can be a
descriptor, superdescriptor, or subdescriptor. If the key does not exist in the
specified Predict file, an error message is displayed.

15

Using the Object-Maint ModelsParameters for the Object-Maint-Subp Model

Field Description

Hold field Name of the field used to logically protect the record against intervening
update or delete actions. Because an object-maintenance subprogram does
not use the record-holding facilities of the DBMS to lock records during a
GET operation, a “hold” field must exist in the primary file for the object.
Valid data types are:

T *TIMX

A10 *TIME

B8 *TIMESTMP

N7 *TIMN

A26 *TIMX (DB2 time stamp format)

If the format is none of the above, it must be numeric.

Note:
If the hash-locking method is used, this field is not displayed. For more
information, see Hash-Locking Option.

Object description Object description used in messages. If you specify “Person”, for example,
messages are displayed as “Person not found” and “Person displayed.”

Object PDA Name of the parameter data area (PDA) used in conjunction with the
object-maintenance subprogram. For more information, see Object PDA.

Restricted PDA Name of the restricted PDA used in conjunction with the
object-maintenance subprogram. For more information, see Restricted PDA.

Generate If a generated PDA is not found in the steplib chain, this field is marked and
protected. Natural Construct will generate the PDA.

Source Name of the first library in which the source code for the module is found.
The source code for the module may exist in multiple libraries in the
Natural steplib chain.

If the source code resides in the current library, regenerating it will execute
a STOW command and overwrite the previous version.

Object Name of the first library in which the object code for the module is found.
The object code for the module may exist in multiple libraries in the Natural
steplib chain.

If the object code resides in the current library, regenerating it will execute a
STOW command and overwrite the previous version.

Note:
If the Generate field is marked, the PDAs specified on this panel are
generated and stowed when the object-maintenance subprogram is
generated — regardless of whether the subprogram is stowed.

16

Parameters for the Object-Maint-Subp ModelUsing the Object-Maint Models

Field Description

Object name Name of the level 1 structure used to qualify the fields in the object PDA.
(It is easier to identify the source of these attributes if the PDA name is used
for this purpose.) The object name should be kept to a reasonable length.

Note:
The object name cannot match the name of a file included in the object, nor
any field in the object.

Next action prefix If the primary key is compound or redefined into various components,
supply a value to limit the number of prefixed components confined on the
Next action. This allows the subprogram to maintain objects with a common
prefix value.

For example, if the primary key is made up of Company + Account +
Division and you do not want the Next action to span division values,
specify “2”. Specify “1” if the Next action is to be limited to the current
Company value.

17

Using the Object-Maint ModelsParameters for the Object-Maint-Subp Model

Field Description

Log file suffix If you want to log objects, you have to create a log file corresponding to
each entity within the object. The name of the log file is the name of the
object file concatenated with the suffix specified here. For example, if the
object consists of the NCST-ORDER-HEADER and
NCST-ORDER-LINES entities and you specify “-LOG”, the log file names
are NCST-ORDER-HEADER-LOG and NCST-ORDER-LINES-LOG.

The following fields are required in the log file that corresponds to the
header entity in the object:

LOG-TIME

Assigned with *TIMX for T format or *TIMN for N7 format.

LOG-DATE

Assigned with *DATX for D format or *DATN for N8 format. (If
LOG-TIME has an embedded date, such as *TIMX, this field is not
required.)

LOG-TID

Assigned with *INIT-ID.

LOG-USER

Assigned with *INIT-USER.

LOG-ACTION

Assigned with the #ADD, #MODIFY, or #PURGE log action codes,
which are defined in the CDACTLOG local data area. You can
initialize the values for these log action codes within CDACTLOG to
suit your environment.

In the log files corresponding to the sub-entities in the object, only the
LOG-ACTION field is required.

Note:
For relational databases, use the underscore (_) character instead of the dash
(-) for the log field names (LOG_TIME, LOG_DATE, LOG_TID,
LOG_USER, LOG_ACTION).

Trace relationships If this field is marked, Natural Construct displays the relationships it has
accepted or rejected. During the generation process, all accepted and
rejected relationships are displayed with a message indicating the type of
relationship.

18

Parameters for the Object-Maint-Subp ModelUsing the Object-Maint Models

Hash-Locking Option

The Natural Construct administrator can change optimistic record locking from the default timestamp
method to the hash-locking method. If the hash-locking method of record locking is specified, the Hold
field is not available on the Additional Parameters panel. Instead, an Object LDA field is displayed,
showing the name of the object local data area generated for the object-maintenance subprogram. For
example:

CUOBMB Object-Maint-Subp Subprogram CUOBMB0
Jan 13 Additional Parameters 2 of 2

 Predict view NCST-ORDER-HEADER_______________ *
 Primary key ORDER-NUMBER____________________ *

 Object description ORDER_______________

 Generate Source Object
 Object PDA ORDERPDA * X SHDEMO SHDEMO
 Restricted PDA ORDERPDR * X SHDEMO SHDEMO
 Object name ORDER___________________________
 ** Object LDA is generated when Object PDA is generated
 Object LDA ORDERNH_ * SHDEMO SHDEMO
 Next action prefix _
 Log file suffix ________
 Trace relationships _

The hash-locking method retains the functionality of the object-maintenance subprogram. The only
difference is that it checks all the object data, not just the timestamp, to ensure there have been no
intervening modifications.

If the hash-locking method was specified:

An object LDA is generated

The generated code contains the #HASH-RETRIEVE and #HASH-DATABASE fields in the
restricted PDA and will reference a Natural user exit called USR4011N

Tip:
You can use this option to store a before image of data. For information, see Store a Before Image of
Data.

User Exits for the Object-Maint-Subp Model

The following example shows the User Exits panel for the Object-Maint-Subp model:

19

Using the Object-Maint ModelsUser Exits for the Object-Maint-Subp Model

 CSGSAMPL OBJECT-MAINT-SUBP Subprogram CSGSM0
 Aug 27 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA Example
 _ EXTENDED-RI-VIEWS
 _ LOCAL-DATA Example
 _ START-OF-PROGRAM Example
 _ SELECT-STATEMENT Subprogram X
 _ USER-DEFINED-FUNCTIONS Example
 _ BEFORE-ET Example X
 _ BEFORE-ET-PROCESSING Example
 _ AFTER-ET-PROCESSING Example
 _ PROCESS-ERROR-MESSAGE
 _ ERROR-MESSAGE-PDAS
 _ END-OF-PROGRAM Example
 _ BEFORE-STORE Example
 _ AFTER-STORE
 _ AFTER-GET Example
 _ BEFORE-DELETE X
 _ AFTER-INIT Example
 _ UPDATE-EDITS Subprogram
 _ DELETE-EDITS Subprogram
 _ AFTER-GET-EDITS Subprogram
 _ EXTENDED-RI-CHECKS Subprogram
 _ ADJUST-OBJECT-ID-IN-MSG Example
 _ AFTER-UPDATE
 _ OVERRIDE-MINIMUM Example
 _ OVERRIDE-MAXIMUM Example
 _ MISCELLANEOUS-SUBROUTINES Example

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 frwrd help retrn quit bkwrd frwrd

Notes:

1. For information about the standard user exits, see User Exits for the Generation Models, Natural
Construct Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

The following user exits are specific to the Object-Maint-Subp model:

AFTER-STORE User Exit
AFTER-UPDATE User Exit
BEFORE-DELETE User Exit
BEFORE-STORE User Exit

AFTER-STORE User Exit

The code in this exit is executed after the data is stored, but before the END TRANSACTION is issued.
For example, it can be used in conjunction with Adabas TRS (Text Retrieval System). As TRS cannot
invert a document index unless the document record exists, the code in this exit calls TRS to invert the
document. In that way, the transaction can be backed out if there are any problems with TRS.

AFTER-UPDATE User Exit

The code in this exit is executed after the data is updated, but before the END TRANSACTION is issued.
For example, it can be used in conjunction with Adabas TRS (Text Retrieval System). As TRS does not
have an update document index function, the code in this exit calls TRS to delete the document index and
then calls TRS again to invert the document.

BEFORE-DELETE User Exit

The code in this exit is executed before the data is deleted. For example, it can be used in conjunction with
Adabas TRS (Text Retrieval System). TRS requires the document index to be deleted before the document
record is deleted. The code in this exit can call TRS to delete the document index so the document record
can be deleted.

20

User Exits for the Object-Maint-Subp ModelUsing the Object-Maint Models

BEFORE-STORE User Exit

The code in this exit is executed before the STORE command is issued. Use this exit when you want to
change the primary key for an object (for example, when you want to generate a unique primary key
number).

Object-Maint-Dialog Model
The Object-Maint-Dialog model generates the dialog component (Natural program) of an
object-maintenance process. The dialog component communicates with the user and invokes methods
(data actions) implemented by the object-maintenance subprogram. To generate a complete maintenance
process using Natural Construct’s object-oriented approach, the Object-Maint-Dialog model must be used
in conjunction with the Object-Maint-Subp model (which also generates the object PDA and restricted
PDA). The dialog program performs the following functions:

Executes all INPUT/OUTPUT functions:

input object data and actions executed on the object

mark fields in error and display error messages

Invokes the object-maintenance subprogram and passes it the object and action to be executed.

Supports left/right scrolling for multiple panels.

Controls up to four scroll regions on each panel. A region can also be scrolled simultaneously on two
panels.

Displays information for related entities outside the object (sub-entities).

The following example shows a generated object-maintenance dialog (only the first panel is displayed):

21

Using the Object-Maint ModelsObject-Maint-Dialog Model

 Add Browse Clear Display Modify Next Purge

 NCOMENT ***** ORDER SUBSYSTEM ***** NCOMEM11
 Oct 28 - MAINTAIN ORDER ENTRIES - 1 more >
 Action...........: __
 Order Number.....: 111111 Invoice Number.....: 111111
 *Customer Number..: 11111 QUAKER OATS
 *Warehouse ID.....: 113 SOUTHERN DISTRIBUTORS LIMITED
 Order Date.......: Order Amount: 1500.00
 1_ ----- Product Information ------ 1_ Distribution Information
 1 *Product....: 187361 /\ Account Amount
 Quantity...: 10_______ 1 _________ ____________ /\
 Cost/Unit..: 150.00 2 _________ ____________
 Total......: 1500.00 3 _________ ____________
 Description: CAT NUGGETS \/ 4 _________ ____________ \/
 1_ Delivery Instructions (Scroll right for full screen)
 1 /\
 2 \/
 Direct Command: ___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 confm help retrn quit flip pref bkwrd frwrd left right main
 Related information displayed.

Notes:

1. PF5 (flip) and PF6 (pref) are available on the panel. For a description of these PF-keys, see Defining
PF-Keys for Generated Applications, Natural Construct Generation.

2. By default, this program prompts users to press Enter to confirm a Purge action. If you choose a
confirmation key other than Enter, users must confirm Add, Modify, and Purge actions. For a
description of how to change the confirmation key, see Confirmation Key Setup, Natural Construct
Generation.

3. To see the specifications for this example, refer to the NCOMENT program in the Natural Construct
demo system.

This section covers the following topics:

Multiple Scroll Regions

Parameters for the Object-Maint-Dialog Model

User Exits for the Object-Maint-Dialog Model

Multiple Scroll Regions

In the Object-Maint-Dialog model example, there are three scroll regions:

Product Information (order lines entity).

Distribution Information (distribution entity).

Delivery Instructions (array within the primary entity).

22

Multiple Scroll RegionsUsing the Object-Maint Models

Depending on where the user places the cursor, pressing PF7 (bkwrd) or PF8 (frwrd) scrolls through the
data in each of the regions.

Parameters for the Object-Maint-Dialog Model

The Object-Maint-Dialog model has four specification panels: Standard Parameters, Additional
Parameters, Scroll Region Parameters, and Related File Parameters. This section describes these panels.
The following topics are covered:

Standard Parameters Panel
Additional Parameters Panel
Scroll Region Parameters Panel
Related File Parameters Panel
Variables You Can Use with Object-Maint-Dialog Model Maps

Note:
For information about creating an object-maintenance process, see Design Methodology, Natural
Construct Generation.

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

 CUOMMA Object-Maint-Dialog Program CU--MA0
 Sep 16 Standard Parameters 1 of 4

 Module ________
 System CST341S_________________________
 Global data area ... CDGDA___ *
 With block ________________________________

 Title Object Dialog..._________
 Description This program is used to maintain the...________________

 First header __
 Second header __

 Command _
 Message numbers _
 Password _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help retrn quit right main

The fields on this panel are similar for all models. For a description of these fields, see Common Fields on
the Standard Parameters Panel.

23

Using the Object-Maint ModelsParameters for the Object-Maint-Dialog Model

Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

CUOMMB Object-Maint-Dialog Program CUOMMB0
Nov 19 Additional Parameters 2 of 4

 Object maint subprogram .. ________ *

 #ACTION field length 1 Add X Browse ... ________ *
 Clear X Display .. X
 Modify ... X Next X
 Purge X Former ... _

 Window support _
 Push-button support _
 Mark cursor field __

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit windw left right main

The fields on this panel are:

Field Description

Object maint
subprogram

Name of the subprogram invoked by the generated module. (Use the
Object-Maint-Subp model to generate the subprogram.) The specified
subprogram must exist in the current library.

24

Parameters for the Object-Maint-Dialog ModelUsing the Object-Maint Models

Field Description

#ACTION field length Length of the action field (1, by default). By default, all action fields except
Former are marked. If you do not want the program to perform a particular
action, enter a blank in that action field. At least one action must be marked.

The available actions are:

Add

Adds the specified object.

Browse

Name of the browse subprogram that supports the Browse action. (Use
the Browse-Subp or Browse-Select-Subp model to generate browse
subprograms.)

Clear

Clears the specified field values from the panel.

Display

Displays the specified object.

Modify

Modifies the specified object.

Next

Displays the contents of the record having the next higher primary key
value from the current key value. If no higher value exists, the End of
Data reached message is displayed.

Purge

Purges the specified object.

Former

Displays the contents of the record having the next lower primary key
value from the current key value. If no lower value exists, the Start of
Data reached message is displayed.

Note:
To add user-defined actions, see Add an Action, Natural Construct
Generation. When using the Object-Maint-Dialog model, this feature works
together with two user exits. For information about these exits, see
SELECT-ADDITIONAL-ACTIONS and ADD-ACTION-PROCESSING,
Natural Construct Generation.

Window support If this field is marked, the output from the generated object-maintenance
dialog is displayed in a window instead of on a panel.

25

Using the Object-Maint ModelsParameters for the Object-Maint-Dialog Model

Field Description

Push button support If this field is marked, actions can be selected by cursor or mouse.

Mark cursor field Name of the field on the map where the cursor is automatically placed by
the generated dialog program.

Change the Default Window Settings

 To change the default window settings for your object-maintenance dialog:

Press PF5 (windw) on the Additional Parameters panel.

The Window Parameters window is displayed. For a description of this window, see Change the
Default Window Settings.

Scroll Region Parameters Panel

The following example shows the third specification panel, the Scroll Region Parameters panel:

 CUOMMC Object-Maint-Dialog Program CUOMMC0
 Sep 16 Scroll Region Parameters 3 of 4

 Horizontal panels 1

 >> 1 Input using map CDLAY___ *

 Scrollable Regions 1 2 3 4
 Total occurrences ___ ___ ___ ___
 Screen occurrences ___ ___ ___ ___
 Starting from #ARRAY1 #ARRAY2 #ARRAY3 #ARRAY4
 Scroll with panel _ _ _ _

 Top left Line ___ ___ ___ ___
 Column ___ ___ ___ ___
 Bottom right .. Line ___ ___ ___ ___
 Column ___ ___ ___ ___

 Depth occurrences ___

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit deflt bkwrd frwrd left right main

The fields on this panel are:

Field Description

Horizontal panels Number of horizontal panels. If the generated program requires more than
one input panel to accept all values that are being maintained, specify the
total number of panels in this field. By default, “1” is displayed. If you
specify more than one panel, Natural Construct activates the left and right
PF-keys in the generated program to allow left and right scrolling between
panels.

26

Parameters for the Object-Maint-Dialog ModelUsing the Object-Maint Models

Field Description

>> 1 If you specify more than one panel, you can display the map specification
fields for another panel by entering that panel number in this field. By
default, “1” is displayed. The number specified in this field cannot exceed
the number specified in the Horizontal panels field.

Note:
You can also scroll to another panel by pressing the frwrd or bkwrd
PF-keys. The number of the current panel is automatically displayed in this
field.

Input using map Name of the map for the current panel. If you enter scroll region
information, the specified map should contain array fields that match the
specified values.

You can create the maps using the Map model or the Natural Map editor. If
you require scrolling regions, you can use the CDLAYMP1 layout map with
the Map model. The Map model generates all of the required indexes to
control scrolling. If you create the map in the Map editor, use the
CDLAYOM1 layout map.

Note:
For a description of the variables you can use on maps, see Variables You
Can Use with Object-Maint-Dialog Model Maps.

Scrollable Regions Number of the scroll region for the corresponding scroll specifications. You
can define the specifications for up to four vertical scroll regions (consisting
of vertical arrays) for each panel.

Total occurrences Total number of scrollable lines required for the scroll region. The total
occurrences value applies if the generated program includes a line scroll
feature to scroll records in a secondary or tertiary file, or multiple-valued
fields (MUs), or periodic groups (PEs). The program ensures that the values
assigned to the array index values (#ARRAY1 through #ARRAY4) do not
exceed the total occurrences value for each array.

Screen occurrences If you specify a total occurrences value, specify the total number of lines
displayed on the panel at one time.

Starting from Starting index for each scroll region. Repeating fields in a scroll region must
be indexed by #ARRAYn for scroll region n (where n = 1, 2, 3, or 4).

Scroll with panel If you want to force a particular “Starting from” value for a panel (so it has
the same value as another panel), specify the panel number in this field.
Each panel maintains its own current values for the “Starting from” field
(#ARRAYn where n = 1, 2, 3, or 4).

27

Using the Object-Maint ModelsParameters for the Object-Maint-Dialog Model

Field Description

Scroll region location Location of the corresponding scroll region. A scroll region is always
rectangular and is defined by specifying the panel coordinates of the top left
and bottom right corners. In the generated dialog, pressing the bkwrd and
frwrd PF-keys positions the scroll regions backward and forward.

When you specify the location of each scroll region, you make the
generated program sensitive to the position of the cursor in an active scroll
region. If the cursor is inside a defined region, pressing these keys moves
the cursor to the base of the active scroll region and only that region is
scrolled. If the cursor is not inside a defined region, pressing these keys
scrolls all regions.

Note:
Press the deflt PF-key to compute these coordinates by examining the map’s
source.

Top left Line Starting line number (vertical axis) for the scroll region.

Top left Column Starting column number (horizontal axis) for the scroll region.

Bottom right Line Ending line number (vertical axis) for the scroll region.

Bottom right Column Ending column number (horizontal axis) for the scroll region.

Depth occurrences To create scroll region with a third dimension, specify the maximum depth
occurrences value. For a calendar with the months and days forming the
first two dimensions (horizontal and vertical) and the year forming the third
dimension (depth), for example, you can specify “3” to scroll up to three
yearly tables of calendar months and days, and within each yearly table,
scroll vertically through the days.

To allow the value of the #DEPTH variable to be changed, you can either
place the #NEXT-DEPTH (P3) variable on the specified map or use
PF-keys that you process in the AFTER-INPUT user exit.

Tip:
You can think of a two-dimensional (2D) array as a collection of many one-dimensional (1D) arrays. And
you can think of a fixed instance of a third dimension of a three-dimensional (3D) array as a 2D array.
Therefore, a vertical scroll region used in this model can consist of 1D, 2D, or 3D arrays.

This section covers the following topics:

Retrieve Default Values for Scroll Region Parameters
Display Specifications for Previous Panel
Display Specifications for Next Panel

Retrieve Default Values for Scroll Region Parameters

If the object-maintenance map contains scrolling regions with one-dimensional arrays, you can retrieve
the default values for the scroll region parameters by pressing PF5 (deflt). The values for the scroll region
parameters are read from the specified map. The scroll regions must be indexed by #ARRAY1 through
#ARRAY4.

28

Parameters for the Object-Maint-Dialog ModelUsing the Object-Maint Models

Display Specifications for Previous Panel

Press PF7 (bkwrd) to display the scroll region specifications (Map name, Scroll region, etc.) for the
previously-defined panel.

Display Specifications for Next Panel

Press PF8 (frwrd) to display the scroll region specifications (Map name, Scroll region, etc.) for the next
panel.

Related File Parameters Panel

The following example shows the fourth specification panel, the Related File Parameters panel:

 CUOMMD Object-Maint-Dialog Program CUOMMD0
 Jun 21 Related File Parameters 4 of 4

 >> _1 Predict Relationships ________________________________ *

 View Generation Options
 User generated _ Use relationship name _
 Predict generated _
 Generate from map on panel _

 Relationship Processing
 New object displayed _
 Control variable modified ___________________________________

 Related File Processing
 MOVE BY NAME to __
 PERFORM subroutine ________________________________
 IF found ... _
 IF not found _
 IF null _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit bkwrd frwrd left userX main

Use this panel to retrieve additional panel information. Specify the Predict relationships that relate foreign
keys within the object to other tables and then define how you want Natural Construct to process the
specified relationship.

The fields on this panel are:

29

Using the Object-Maint ModelsParameters for the Object-Maint-Dialog Model

Field Description

Predict Relationships Name of the first relationship. You can define up to 10 relationships. After
defining the first, press PF8 (frwrd) to display the specification fields for the
next relationship; press PF7 (bkwrd) to return to the previous relationship. If
you specify a relationship, the program performs file lookups (joins) on the
file related to the object file in Predict.

In each relationship, the cardinality of the object file must be N or CN,
while the cardinality of the related file must be 1 or C. The update constraint
type must be R (restricted update) and the delete constraint type can be
blank or R. Only type N (Natural Construct) relationships are processed.

Note:
For relational databases, type R (referential constraint) relationships are also
processed.

View Generation
Options

If you specify a relationship in the Predict relationships field, indicate which
fields in the related file are placed in the local view used to retrieve foreign
file information. Indicate one of the following view creation options:

User generated

To define your own view of the related file in the LOCAL-DATA user
exit, mark this field.

Use relationship name

To use the relationship name as the user view name for the related file,
mark this field. To avoid generating multiple views with the same
name, you should specify this option when the related file can be
involved in multiple lookup relationships. If you are using a map
and/or defining the related file view in the LOCAL-DATA user exit,
you must also use the relationship name as the related file view.

Predict generated

To have Natural Construct generate a view for you, based on the
specified relationship, mark this field. (All fields in the related file are
generated into the view.)

Generate from map on panel

To use the fields in a view used on another panel, specify the panel
number. Natural Construct generates a view with those fields prefixed
by the name of the related file on the map used for the specified panel.
(The file is determined through the specified relationship name.)

30

Parameters for the Object-Maint-Dialog ModelUsing the Object-Maint Models

Field Description

Relationship ProcessingTo specify when relationship processing is performed by the generated
program, indicate one or both of the following processing options:

New object displayed

To perform a file lookup on the related file each time a new object is
displayed, mark this field.

Control variable modified

To perform a file lookup whenever a field associated with a control
variable is modified, specify the name of the control variable. If the
field associated with the control variable is an array, the control
variable must be defined with an asterisk (*) on the map.

MOVE BY NAME to To copy the lookup data to another structure, specify the name of the
structure.

PERFORM subroutine To perform other processing for each file lookup, specify the name of the
subroutine in this field (the subroutine is defined in the
AFTER-LOOKUP-SUBROUTINE user exit) and mark one of the following
options:

IF found

If you want the subroutine performed whenever the object’s foreign
key is updated with a value that exists in the related foreign table, mark
this field. Before the subroutine is performed, the
#LOOKUP-STATUS variable is assigned the value “FOUND”.

IF not found

If you want the subroutine performed whenever the object’s foreign
key is updated with a value that does not exist in the related foreign
table, mark this field. Before the subroutine is performed, the
#LOOKUP-STATUS variable is assigned the value “NOT FOUND”.

IF null

If you want the subroutine performed whenever the object’s foreign
key is updated to a null value (blank for alphanumeric and 0 for
numeric), mark this field. Before the subroutine is performed, the
#LOOKUP-STATUS variable is assigned the value “NULL”.

Note:
If the object field defined by the relationship is within an array, the control variable must be defined with
an asterisk (*) notation on the map; the occurrence that triggered the subroutine is given in the #I1
variable.

31

Using the Object-Maint ModelsParameters for the Object-Maint-Dialog Model

Variables You Can Use with Object-Maint-Dialog Model Maps

You can use the following variables with maps for object-maintenance programs or subprograms:

Variable Format Definition Description

#PROGRAM A8 Output Name of the program that invoked the map.

#HEADER1 A60 Output First heading for the program.

#HEADER2 A58 Output Second heading for the program.

#LEFT-
PROMPT

A9 Output For programs with more than one panel, this variable
indicates the number of panels to the left of the
current panel. If the current panel is the leftmost
panel, this variable contains the current date.

#RIGHT-
PROMPT

A9 Output For programs with more than one panel, this variable
indicates the number of panels to the right of the
current panel. If the current panel is the rightmost
panel, this variable contains the current time.

#ACTION A1 Modifiable Action applied to the current object occurrence.

#VAL-ACT A18 Output List of available actions.

#DIRECT-
COMMAND

A60 Modifiable Indicates support for direct command processing.

#HPARM A65 Output/NondisplayKey to Natural Construct’s passive help file for the
current program (system name concatenated with
program name). Place this variable on the map and
pass it to the CD-HELPR helproutine.

#NEXT-ARRAY P5 Modifiable Current panel number. Users can change the value in
this field to reposition to the specified panel. This
field is used for programs with more than one panel.

#ARRAY1 N7 Array Index Index for fields in scroll region 1 that are scrolled by
pressing PF7 (subtract lines-per-panel from
#ARRAY1) or PF8 (add lines-per-panel to
#ARRAY1). Also see #NEXT-ARRAY1.

#NEXT-
ARRAY1

P5 Modifiable Index of the first displayed occurrence of the fields in
scroll region 1. Users can change the value in this
field to reposition scroll region 1 to the specified
panel number. This field is used for panels that
support scroll region 1.

#ARRAY2 N7 Array Index Similar to #ARRAY1, except it indexes the fields in
scroll region 2.

#NEXT-
ARRAY2

P5 Modifiable Similar to #NEXT-ARRAY1, except it indexes scroll
region 2.

#ARRAY3 N7 Array Index Similar to #ARRAY1, except it indexes the fields in
scroll region 3.

32

Parameters for the Object-Maint-Dialog ModelUsing the Object-Maint Models

Variable Format Definition Description

#NEXT-
ARRAY3

P5 Modifiable Similar to #NEXT-ARRAY1, except it indexes scroll
region 3.

#ARRAY4 N7 Array Index Similar to #ARRAY1, except it indexes the fields in
scroll region 4.

#NEXT-
ARRAY4

P5 Modifiable Similar to #NEXT-ARRAY1, except it indexes scroll
region 4.

#DEPTH N7 Array Index Index for fields that are scrolled whenever the
#NEXT-DEPTH value changes. By default, no
PF-key is assigned to alter the value of #DEPTH.
However, this can be achieved through user exit
processing.

#NEXT- DEPTH P3 Modifiable Indicates support for third-dimension scrolling. By
default, this field indicates the current depth level.
Users can change this value to reposition to a
different depth level.

#LIN P3 Output Single-dimension array containing sequential
numbers (starting from 1). The occurrences of this
array match the value of the highest upper bounds
specified for any scroll region. This array can be
placed on the panel whenever you want to show the
current scroll index value beside a scroll region.

#KD-LINE1/

#KD-LINE2/

#KD-LINES(*)

A79 Output Names of the available actions or alternate PF-key
display formats (supplied in CDDIALDA). Place
them either at the top of the map or at the bottom
immediately above the standard PF-key lines.

To use the Push Button feature, include the
#KD-LINES-CV control variable and the
’00V(NP’02 dynamic attribute. To display the push
buttons in red, use ’00VRE(NP’02.

The CDLAYOM2 layout map provides push button
support.

33

Using the Object-Maint ModelsParameters for the Object-Maint-Dialog Model

Variable Format Definition Description

#BKWRD-LAB1

#BKWRD-LAB2

#BKWRD-LAB3

#BKWRD-LAB4

#FRWRD-LAB1

#FRWRD-LAB2

#FRWRD-LAB3

#FRWRD-LAB4

A2 Output Enable backward/forward scrolling push buttons
(supplied in CDKEYLDA). Place them on the map(s)
next to the fields where you want to enable
backward/forward scrolling.

Include reverse video display among the push button
attributes.

User Exits for the Object-Maint-Dialog Model

The following examples show the User Exits panel for the Object-Maint-Dialog model:

34

User Exits for the Object-Maint-Dialog ModelUsing the Object-Maint Models

CSGSAMPL Natural Construct CSGSM0
Dec 19 User Exits 1 of 1

 User Exit Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA Example X
 _ LOCAL-DATA
 _ START-OF-PROGRAM
 _ BEFORE-INPUT
 _ BEFORE-STANDARD-KEY-CHECK Example
 _ AFTER-INPUT
 _ AFTER-OBJECT-CALL Example
 _ AFTER-GET Example
 _ AFTER-SCREEN-CLEAR Example
 _ END-OF-PROGRAM Example
 _ SELECT-ADDITIONAL-ACTIONS Example
 _ SET-PF-KEYS Example
 _ ADD-ACTION-PROCESSING X
 _ BROWSE-ACTION-PROCESSING X
 _ BEFORE-BROWSE-CALLNAT X
 _ AFTER-BROWSE-CALLNAT X
 _ CLEAR-ACTION-PROCESSING X
 _ DISPLAY-ACTION-PROCESSING X
 _ MODIFY-ACTION-PROCESSING X
 _ NEXT-ACTION-PROCESSING X
 _ FORMER-ACTION-PROCESSING X
 _ PURGE-ACTION-PROCESSING X
 _ COPY-ACTION-PROCESSING X
 _ ADDITIONAL-ACTIONS-PROCESSING
 _ BEFORE-ET-PROCESSING Example
 _ AFTER-ET-PROCESSING Example
 _ REINPUT-SCREEN
 _ AFTER-LOOKUP-SUBROUTINES Subprogram
 _ MISCELLANEOUS-SUBROUTINES Example

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
frwrd help retrn quit bkwrd frwrd

Notes:

1. For information about these user exits, see User Exits for the Generation Models, Natural Construct
Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

Object-Maint-Dialog-Subp Model
The Object-Maint-Dialog-Subp model generates a dialog component (Natural subprogram) of a
maintenance process, similar to the object-maintenance dialog program described in the preceding section.
The only difference between the two is that the action in the object-maintenance dialog subprogram is
controlled by the calling program.

A browse-select program, for example, can call an object-maintenance dialog subprogram and pass it the
#ACTION parameter (specifying the action to be performed). When this happens, certain attributes on the
map used by the object-maintenance dialog subprogram are modified by two control variables the model
generates. These variables define the display attributes of the map, according to the #ACTION parameter:

35

Using the Object-Maint ModelsObject-Maint-Dialog-Subp Model

#ACTION Parameter Control Variable Attribute

Display, Purge #KEY-CV

#SCR-CV

Locked

Locked

Modify #KEY-CV

#SCR-CV

Locked

Open

Add, Copy #KEY-CV

#SCR-CV

Open

Open

The control variables generated by the Object-Maint-Dialog-Subp model are:

Variable Associated With

#KEY-CV Key fields for the object data used on maps.

#SCR-CV All other fields for the object data used on maps.

#PROTECT-CV Action field. Since programs generated with the Object-Maint-Dialog and
Object-Maint-Dialog-Subp models generally use the same map, this control
variable protects the Action field for the subprogram.

The following example shows a generated object-maintenance dialog subprogram:

 NCOSELN ***** ORDER SUBSYSTEM ***** NCOSEM11
 May 30 - MAINTAIN ORDER ENTRIES - 1 more >

 *Action (A,D,M,P,C): D Order Number: 90008_
 *Customer Number....: 22222 KENT VETERINARY CLINIC
 *Warehouse ID.......: 638 WATERLOO WAREHOUSING LTD.
 Invoice Number.....: 333331
 Order Date.........: 93/04/26 Order Amount: 229898.50

 1_ ----- Product Information ------ 1_ -- Distribution Information --
 1 *Product....: 333333 Account Amount
 Quantity...: 500______ 1 676767676 3233.00_____
 Cost/Unit..: 50.00 2 676767678 90.00_______
 Total......: 25000.00 3 989898989 80.00_______
 Description: OATS AND BARLEY CE 4 789078900 89.00_______
 1_ Delivery Instructions (Scroll right for full screen)
 1 TO BE DELIVERED TO SHIPPING/RECEIVING IF BEFORE 5:00 PM,
 2 ELSE TO NIGHT DROP-OFF.SSS
 Direct Command: ___
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF
 help retrn quit flip bkwrd frwrd left right ma
 Order 90008 displayed successfully.

This section covers the following topics:

Parameters for the Object-Maint-Dialog-Subp Model

36

Object-Maint-Dialog-Subp ModelUsing the Object-Maint Models

User Exits for the Object-Maint-Dialog-Subp Model

Note:
To see the specifications for this example, refer to the NCOSELN subprogram in the Natural Construct
demo system.

Parameters for the Object-Maint-Dialog-Subp Model

The specification panels for the Object-Maint-Dialog-Subp model are similar to the panels for the
Object-Maint-Dialog model, with one exception. The Additional Parameters panel for the
Object-Maint-Dialog-Subp model contains the Multiple action support field. If this field is specified, the
generated subprogram allows users to perform multiple actions in succession.

Note:
For information about the parameters on these panels, see Parameters for the Object-Maint-Dialog Model.

User Exits for the Object-Maint-Dialog-Subp Model

The User Exits panels for the Object-Maint-Dialog-Subp model are identical to the User Exits panels for
the Object-Maint-Dialog model. For information about these panels, see User Exits for the
Object-Maint-Dialog Model.

37

Using the Object-Maint ModelsParameters for the Object-Maint-Dialog-Subp Model

	Using the Object-Maint Models
	Introduction
	Object-Maint-Subp Model
	CDAOBJ2 Data Area
	Conditional END OF TRANSACTION (ET) Statement
	GET-BY-ISN Option

	Object PDA
	Restricted PDA
	Editing and Processing of Entities
	Automatic Validation

	Additional Checks within User Exits
	Provide Conditional ET Statements within User Exits
	Specify Validation Subroutines

	Processing Order in Adabas Files
	Processing Order in Non-Adabas Files
	Add or Update Action
	Delete Action

	Pre-editing Checks
	Add or Update Action
	Delete Action

	Post-editing Checks
	Object Instance Hierarchy Tree
	Example of PERFORM Statements

	Data Access Subroutines
	Store a Before Image of Data
	Parameters for the Object-Maint-Subp Model
	Standard Parameters Panel
	Additional Parameters Panel
	Hash-Locking Option

	User Exits for the Object-Maint-Subp Model
	AFTER-STORE User Exit
	AFTER-UPDATE User Exit
	BEFORE-DELETE User Exit
	BEFORE-STORE User Exit

	Object-Maint-Dialog Model
	Multiple Scroll Regions
	Parameters for the Object-Maint-Dialog Model
	Standard Parameters Panel
	Additional Parameters Panel
	Change the Default Window Settings

	Scroll Region Parameters Panel
	Retrieve Default Values for Scroll Region Parameters
	Display Specifications for Previous Panel
	Display Specifications for Next Panel

	Related File Parameters Panel
	Variables You Can Use with Object-Maint-Dialog Model Maps

	User Exits for the Object-Maint-Dialog Model

	Object-Maint-Dialog-Subp Model
	Parameters for the Object-Maint-Dialog-Subp Model
	User Exits for the Object-Maint-Dialog-Subp Model

