
Using the Object-Generic-Subp Model
This section describes the Object-Generic-Subp model, which generates a business service (a wrapper
subprogram) associated with up to 10 subprograms and 20 methods. The following topics are covered:

Introduction

Parameters for the Object-Generic-Subp Model

User Exits for the Object-Generic-Subp Model

Note:
For more information about object-oriented development, see Overview of Object-Oriented Development.

Introduction
The Object-Generic-Subp model:

Creates a subroutine for each subprogram used by the business service (maximum of 10
subprograms)

Note:
You can create additional subroutines within user exits to perform specialized functions.

Creates methods to call the subroutines and user exits (maximum of 20 methods).

Parameters for the Object-Generic-Subp Model
The Object-Generic-Subp model has two specification panels: Standard Parameters and Additional
Parameters. This section describes these panels. The following topics are covered:

Standard Parameters Panel

Additional Parameters Panel

Standard Parameters Panel

The following example shows the first specification panel, the Standard Parameters panel:

1

Using the Object-Generic-Subp ModelUsing the Object-Generic-Subp Model

 CUOGMA OBJECT-GENERIC-SUBP Subprogram CUOGMA0
 Aug 20 Standard Parameters 1 of 2

 Module NEW_____
 System BIZDEMO_________________________

 Title Generic Business Service_
 Description This subprogram is used to maintain the generic________
 business service______________________________

 Message numbers _ Categorize parameters _

 Subprograms
 ________ * ________ * ________ * ________ * ________ *
 ________ * ________ * ________ * ________ * ________ *

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 right help retrn quit right main

The fields in the upper portion of this panel are similar for all models. For a description of these fields, see
Common Fields on the Standard Parameters Panel.

Note:
If you select the Categorize Parameters option, the PARAMETER-DATA user exit is required. For
information on this exit, see PARAMETER-DATA User Exit. For information on categorizing
parameters, see Categorize Parameters.

The subprograms listed in Subprograms in the lower portion of this panel:

Should have no screen I/O or navigation functionality (i.e., they cannot contain INPUT, WRITE,
PRINT, DISPLAY, REINPUT statements or manage PF key functions)

Must have at least one parameter

You can specify the names of up to 10 subprograms; you must specify at least one subprogram name.

Additional Parameters Panel

The following example shows the second specification panel, the Additional Parameters panel:

2

Additional Parameters PanelUsing the Object-Generic-Subp Model

 CUOGMB OBJECT-GENERIC-SUBP Subprogram CUOGMB0
 Aug 20 Additional Parameters 2 of 2

 Method ... 1 ________________________________ of 20

 Before After
 Code Order Subroutine Code
 _ __ CALLNAT-ACUSTN__________________ _
 _ __ CALLNAT-BCUSTN__________________ _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit bkwrd frwrd left userX main

Use this panel to name the methods used by your business service and to indicate the functionality of each
method (i.e., which subprogram to execute and the order of execution for the subprograms specified on
the Standard Parameters panel and wrapped in the subroutines listed). In addition:

You must define at least one method

A subprogram is part of a method if an order number is assigned to it

Each order (sequence) number must be unique; you cannot use the same number more than once

You cannot mark the Before Code or After Code fields unless an order (sequence) number is
specified

If a level 1 parameter grouping is in more than one subprogram, the first one encountered is the one
that is used

User Exits for the Object-Generic-Subp Model
The following example shows the User Exits panel for the Object-Generic-Subp model:

3

Using the Object-Generic-Subp ModelUser Exits for the Object-Generic-Subp Model

 CSGSAMPL OBJECT-GENERIC-SUBP Subprogram CSGSM0
 Aug 19 User Exits 1 of 1

 User Exits Exists Sample Required Conditional
 -------------------------------- -------- ---------- -------- ------------
 _ CHANGE-HISTORY Subprogram
 _ PARAMETER-DATA Subprogram X X
 _ PARAMETER-DATA-UNCATEGORIZED X
 _ LOCAL-DATA
 _ MOVE-TO
 _ MOVE-TO-UNCATEGORIZED X
 _ UNDEFINED-METHOD
 _ BEFORE-CODE Subprogram X
 _ AFTER-CODE Subprogram X
 _ MATERIALIZE-XARRAY-PDA-TO-LDA X
 _ MATERIALIZE-XARRAY-LDA-TO-PDA X
 _ RESET-TEMP-MATERIALIZED X
 _ MOVE-BACK
 _ MOVE-BACK-UNCATEGORIZED X
 _ MISC-SUBROUTINES

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit bkwrd frwrd

Notes:

1. For information about the standard user exits, see User Exits for the Generation Models, Natural
Construct Generation.

2. For information about the User Exit editor, see User Exit Editor, Natural Construct Generation.

The following user exits are either required by or specific to the Object-Generic-Subp model:

AFTER-CODE User Exit

BEFORE-CODE User Exit

MATERIALIZE-XARRAY-LDA-TO-PDA User Exit

MATERIALIZE-XARRAY-PDA-TO-LDA User Exit

MOVE-BACK User Exit

MOVE-BACK-UNCATEGORIZED User Exit

MOVE-TO User Exit

MOVE-TO-UNCATEGORIZED User Exit

PARAMETER-DATA User Exit

PARAMETER-DATA-UNCATEGORIZED User Exit

RESET-TEMP-MATERIALIZED User Exit

4

User Exits for the Object-Generic-Subp ModelUsing the Object-Generic-Subp Model

UNDEFINED-METHOD User Exit

AFTER-CODE User Exit

The code in this exit is executed after all subprograms that had the After Code option selected on the
Additional Parameters panel have been executed. If method-specific code is required, you can add it based
on the value of +METHOD (indicates which business service method is executed).

To only execute the portion of the code associated with a specific subprogram, ensure that the appropriate
code is specified in VALUE in the DECIDE clause associated with the corresponding subroutine (i.e.,
only the code in the VALUE "CALLNAT-GCDN" clause will be executed when the CALLNAT-GCDN
subroutine invokes it). For example, the CALLNAT-GCDN subroutine contains a CALLNAT to the
GCDN subprogram and this code is executed after that CALLNAT.

The following example shows code in the AFTER-CODE user exit for the BNUM subprogram in the
SYSCSTDE library:

DEFINE EXIT AFTER-CODE
** Note +METHOD can also be used to
** determine lines of execution
** e.g. IF +METHOD = ... THEN
 DECIDE ON FIRST VALUE OF #SUBROUTINE-NAME
 VALUE "CALLNAT-GCDN"
 IF +METHOD = ’SolutionWithLowerNumbers’
/* Lower the first number by the GCD
 #FUNCTION := ’Divide’
 INPUT-DATA.#SECOND-NUM := GCD-DATA.#RESULT
 PERFORM CALLNAT-CALC
/* Instead of using temporary variables; temporarily used
/* exposed field variables
 #BIZ-INPUT-OUTPUTS.#FIRST-NUM := OUTPUT-DATA.#RESULT
/* Lower the second number by the GCD
 INPUT-DATA.#FIRST-NUM :=
 #BIZ-INPUT-OUTPUTS.#SECOND-NUM
 INPUT-DATA.#SECOND-NUM := GCD-DATA.#RESULT
 PERFORM CALLNAT-CALC
 #BIZ-INPUT-OUTPUTS.#SECOND-NUM := OUTPUT-DATA.#RESULT
/* Move results to Calc input again to do actual division
/* of reduced numbers
 MOVE BY NAME #BIZ-INPUT-OUTPUTS TO INPUT-DATA
 END-IF
 IF +METHOD = ’GreatestCommonDenominator’
 IF GCD-DATA.#RESULT > 1 THEN
 OUTPUT-DATA.#SUCCESS := TRUE
 ELSE
 OUTPUT-DATA.#SUCCESS := FALSE
 END-IF
 END-IF
 NONE
 IGNORE
 END-DECIDE
END-EXIT

5

Using the Object-Generic-Subp ModelAFTER-CODE User Exit

BEFORE-CODE User Exit

The code in this exit is similar to the code in the AFTER-CODE user exit except it is executed before the
corresponding subroutine is executed. If method-specific code is required, you can add it based on the
value of +METHOD (indicates which business service method is executed).

The following example shows code in the BEFORE-CODE user exit for the BSTRINGN subprogram in
the SYSCSTDE library:

DEFINE EXIT BEFORE-CODE
** Note +METHOD can also be used to
** determine lines of execution
** e.g. IF +METHOD = ... THEN
 DECIDE ON FIRST VALUE OF #SUBROUTINE-NAME
 VALUE "CALLNAT-CSUCASE" /* U=Upper, L=Lower, M=Mixed Case
 DECIDE ON FIRST VALUE OF +METHOD
 VALUE ’ConvertToUpperCase’
 CSACASE.#FUNCTION := ’U’
 VALUE ’ConvertToLowerCase’
 CSACASE.#FUNCTION := ’L’
 VALUE ’ConvertToMixedCase’
 CSACASE.#FUNCTION := ’M’
 ANY
 EXAMINE FULL #BIZ-INPUT-OUTPUTS.#STRING FOR ’ ’
 GIVING LENGTH IN #BIZ-INPUT-OUTPUTS.STRING-LENGTH
 NONE
 IGNORE
 END-DECIDE
 IGNORE
 NONE
 IGNORE
 END-DECIDE
END-EXIT

MATERIALIZE-XARRAY-LDA-TO-PDA User Exit

This exit is used when you add X-array fields to the object generic PDA. It is used in conjunction with the
MATERIALIZE-XARRAY-PDA-TO-LDA and RESET-TEMP-MATERIALIZED user exits. The code in
this exit prepares for a MOVE BY NAME from a local data area (LDA) containing X-arrays to a
parameter data area (PDA) containing similar X-arrays. This code temporarily resizes X-arrays before
performing the MOVE BY NAME to the PDA.

These exits are only required when an X-array parameter is added to the object generic PDA (in one of the
PARAMETER-DATA exits) and has not been included in the supplied subprograms. This code eliminates
runtime errors when X-arrays have not been sized before a MOVE BY NAME is performed.

Tip:
To use these exits, refer to the code preceding the exits that was generated for known X-arrays.

MATERIALIZE-XARRAY-PDA-TO-LDA User Exit

This exit is used when you add X-array fields to the object generic PDA. It is used in conjunction with the
MATERIALIZE-XARRAY-LDA-TO-PDA and RESET-TEMP-MATERIALIZED user exits. The code in
this exit prepares for a MOVE BY NAME from a parameter data area (PDA) containing X-arrays to a
local data area (LDA) containing similar X-arrays.

6

BEFORE-CODE User ExitUsing the Object-Generic-Subp Model

For more information, see MATERIALIZE-XARRAY-LDA-TO-PDA User Exit.

MOVE-BACK User Exit

This exit is used in conjunction with the MOVE-TO user exit and the PARAMETER-DATA user exit,
which contains the data that is exposed to the client from the object generic subprogram. After the internal
subprograms have been invoked, the data must be exposed via the parameter data area (PDA). The local
variables are moved to the parameter variables in the MOVE-BACK user exit.

For more information, see PARAMETER-DATA User Exit.

MOVE-BACK-UNCATEGORIZED User Exit

This exit is used in conjunction with the MOVE-TO-UNCATEGORIZED user exit and the
PARAMETER-DATA-UNCATEGORIZED user exit, which contains the data that is exposed to the client
from the object generic subprogram. After the internal subprograms have been invoked, the data must be
exposed via the parameter data area (PDA). The local variables are moved to the parameter variables in
the MOVE-BACK-UNCATEGORIZED user exit.

For more information, see PARAMETER-DATA-UNCATEGORIZED User Exit.

MOVE-TO User Exit

This exit is used in conjunction with the MOVE-BACK user exit and the PARAMETER-DATA user exit,
which contains the data that is exposed to the client from the object generic subprogram. To pass this data
to subprograms, the data must be moved to local data areas in the MOVE-TO user exit.

For more information, see PARAMETER-DATA User Exit.

MOVE-TO-UNCATEGORIZED User Exit

This exit is used in conjunction with the MOVE-BACK-UNCATEGORIZED user exit and the
PARAMETER-DATA-UNCATEGORIZED user exit, which contains the data that is exposed to the client
from the object generic subprogram. To pass this data to subprograms, the data must be moved to local
data areas in the MOVE-TO-UNCATEGORIZED user exit.

For more information, see PARAMETER-DATA-UNCATEGORIZED User Exit.

PARAMETER-DATA User Exit

The PARAMETER-DATA user exit is required if you specified the Categorize Parameters option on the
Standard Parameters panel. This exit is used in conjunction with two other exits: MOVE-TO and
MOVE-BACK. (For more information on categorizing parameters, see Categorize Parameters.)

The object generic subprogram wraps up to 10 subprograms into one subprogram. The
PARAMETER-DATA user exit contains the data that is exposed to the client from the object generic
subprogram. To pass this data to the subprograms, it must be moved to local data areas in the MOVE-TO
user exit. Similarly, after the internal subprograms have been invoked, the data must be exposed via the
parameter data area (PDA). The local variables are moved to the parameter variables in the MOVE-BACK
user exit.

7

Using the Object-Generic-Subp ModelMOVE-BACK User Exit

The PARAMETER-DATA user exit allows the user to choose which level 1 parameter groupings will be
input, input-output, state, and output. The same parameter name cannot be listed under the same input,
input-output, state, or output groupings. If this occurs, you must revise the generated code.

To help select the level 1 parameter groupings, the following panel is displayed when you press Enter on
the User Exits panel for the Object-Generic-Subp model:

 CUOGMC Natural Construct CUOGMC0
 Nov 16 Object-Generic-Subp Subprogram Build Report 1 of 1

 1__ Level Ones Input Input-Output State Output
 --------------------------------- ----- ------------ ----- ------
 1 ACUSTNK _ _ _ _
 2 ACUSTND _ _ _ _
 3 ACUSTNP _ _ _ _
 4 CDBRPDA _ _ _ _
 5 MSG-INFO _ _ _ _
 6 BCUSTE1 _ _ _ _
 7 CDBUPDA _ _ _ _
 8 CDBUINFO _ _ _ _
 9 BUSINESS-INFO _ _ _ _

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn gen bkwrd frwrd

Based on the grouping, data is moved from the exposed PDAs to the internal LDAs used for the
subprograms. You can define up to 100 level 1 parameter groupings. Up to four unique PDAs can be
duplicated across the subprograms.

Note:
While using the NCSTBGEN command to regenerate multiple modules in batch mode, object generic
subprograms may not be regenerated. For example, if the parameters have been categorized (i.e., defined
within user exits), you must regenerate the PARAMETER-DATA user exit from the client.

Structure of the Generated Code

The following example shows the skeleton view of code generated by the PARAMETER-DATA user
exit:

DEFINE DATA
PARAMETER
1 #INPUT
…
1 #INPUT-OUTPUT
…
1 #STATE
…
1 #OUTPUT
LDAs
END-DEFINE
MOVE BY NAME Pdas to Ldas

8

PARAMETER-DATA User ExitUsing the Object-Generic-Subp Model

** SAG EXIT POINT AFTER-PDA-TO-LDA-MOVE
DECIDE ON FIRST VALUE OF +METHOD
VALUE ’ABC’
 EXECUTE-BEFORE := TRUE (optional)
 EXECUTE-AFTER := TRUE (optional)
 PERFORM nnnn2-CALLNAT
 EXECUTE-AFTER := TRUE (optional)
 PERFORM nnnn1-CALLNAT
VALUE ’DEF’
 EXECUTE-BEFORE := TRUE (optional)
 EXECUTE-AFTER := TRUE (optional)
 PERFORM nnnn3-CALLNAT
 EXECUTE-AFTER := TRUE (optional)
 PERFORM nnnn1-CALLNAT
END-DECIDE
MOVE BY NAME LDAS to PDAs
** SAG EXIT POINT AFTER-LDA-TO-PDA-MOVE
*
DEFINE SUBROUTINE nnnn1-CALLNAT
 SUBROUTINE-NAME := ’nnnn1-CALLNAT’
 IF EXECUTE-BEFORE THEN
 PERFORM BEFORE
 END-IF
 CALLNAT ’nnnn1’ ….
 IF EXECUTE-AFTER THEN
 PERFORM AFTER
 END-IF
 RESET EXECUTE-BEFORE EXECUTE-AFTER
END-SUBROUTINE
*
DEFINE SUBROUTINE nnnn2-CALLNAT
 SUBROUTINE-NAME := ’nnnn1-CALLNAT’
 IF EXECUTE-BEFORE THEN
 PERFORM BEFORE
 END-IF
 CALLNAT ’nnnn1’ ….
 IF EXECUTE-AFTER THEN
 PERFORM AFTER
 END-IF
 RESET EXECUTE-BEFORE EXECUTE-AFTER
END-SUBROUTINE
*
DEFINE SUBROUTINE nnnn3-CALLNAT
 SUBROUTINE-NAME := ’nnnn1-CALLNAT’
 IF EXECUTE-BEFORE THEN
 PERFORM BEFORE
 END-IF
 CALLNAT ’nnnn1’ ….
 IF EXECUTE-AFTER THEN
 PERFORM AFTER
 END-IF
 RESET EXECUTE-BEFORE EXECUTE-AFTER
END-SUBROUTINE
*
DEFINE SUBROUTINE BEFORE
 EXECUTE-BEFORE := FALSE
** User Exit BEFORE Code
* Note that +METHOD can also be used in this logic
 DECIDE ON FIRST VALUE OF SUBROUTINE-NAME
 VALUE ’nnnn1-CALLNAT’
 IGNORE
 VALUE ’nnnn2-CALLNAT’

9

Using the Object-Generic-Subp ModelPARAMETER-DATA User Exit

 IGNORE
 NONE
 IGNORE
 END-DECIDE
** User Exit End code
 ESCAPE ROUTINE
END-SUBROUTINE
*
DEFINE SUBROUTINE AFTER
 EXECUTE-AFTER := FALSE
** User Exit AFTER Begin Code
* Note that +METHOD can also be used in this logic
 DECIDE ON FIRST VALUE OF SUBROUTINE-NAME
 VALUE ’nnnn1-CALLNAT’
 IGNORE
 VALUE ’nnnn2-CALLNAT’
 IGNORE
 NONE
 IGNORE
 END-DECIDE
** User Exit End code
 ESCAPE ROUTINE
END-SUBROUTINE

PARAMETER-DATA-UNCATEGORIZED User Exit

Use this exit if you want to expose more parameters to the client than are found in the specified
subprograms and you did not specify the Categorize Parameters option on the Standard Parameters panel
(for example, you can use this exit to expose a message field if the specified subprograms do not have
one). This exit is optional and is used in conjunction with the MOVE-TO-UNCATEGORIZED and
MOVE-BACK-UNCATEGORIZED user exits. The MOVE-TO-UNCATEGORIZED and
MOVE-FROM-UNCATEGORIZED user exits are similar to the MOVE-TO and MOVE-FROM exits for
the PARAMETER-DATA user exit except they are used when the Categorize Parameters option is not
selected.

If you decide not to categorize parameters, every PDA from the specified subprograms will be exposed to
the client. The subprogram created by the object generic subprogram will have two types of variables:
parameters that will become the parameters of the business service and local data that will become the
parameters to the supplied subprograms.

Initially, code is automatically generated into the MOVE-TO and MOVE-FROM exits when the
Categorize Parameters option is specified. This does not happen when the option is not selected, as more
code can be generated outside of user exits.

RESET-TEMP-MATERIALIZED User Exit

The code in this exit temporarily resizes X-arrays before performing the MOVE BY NAME to the LDA
or PDA. Use this exit when you add X-array fields to the object generic PDA.

This exit is used in conjunction with the MATERIALIZE-XARRAY-LDA-TO-PDA and
MATERIALIZE-XARRAY-PDA-TO-LDA user exits. For more information, see
MATERIALIZE-XARRAY-LDA-TO-PDA User Exit.

10

PARAMETER-DATA-UNCATEGORIZED User ExitUsing the Object-Generic-Subp Model

UNDEFINED-METHOD User Exit

The code in this exit determines what happens when an undefined method is added to the object generic
subprogram and has not been included in the specifications.

Note:
In general, the repository should access the same methods as the object generic code. If not, use this exit
to define the new methods.

11

Using the Object-Generic-Subp ModelUNDEFINED-METHOD User Exit

	Using the Object-Generic-Subp Model
	Introduction
	Parameters for the Object-Generic-Subp Model
	Standard Parameters Panel
	Additional Parameters Panel

	User Exits for the Object-Generic-Subp Model
	AFTER-CODE User Exit
	BEFORE-CODE User Exit
	MATERIALIZE-XARRAY-LDA-TO-PDA User Exit
	MATERIALIZE-XARRAY-PDA-TO-LDA User Exit
	MOVE-BACK User Exit
	MOVE-BACK-UNCATEGORIZED User Exit
	MOVE-TO User Exit
	MOVE-TO-UNCATEGORIZED User Exit
	PARAMETER-DATA User Exit
	Structure of the Generated Code

	PARAMETER-DATA-UNCATEGORIZED User Exit
	RESET-TEMP-MATERIALIZED User Exit
	UNDEFINED-METHOD User Exit

