
Developing Business Services
This section describes how to create and maintain business services. The following topics are covered:

Create a Business Service

Regenerate a Business Service

Regenerate a Business Service Proxy

Test a Business Service Method

Test a Business Service

Delete a Business Service

Edit a Service Definition

Edit the Service Modules

Transform a Browse Module

Create a Business Service
A business service consists of a collection of methods related to a common business entity. Use the
Business Service wizard to create and maintain a business service.

During generation, the Business Service wizard creates a subprogram proxy to translate data (including
Unicode formats) and then adds an entry in the Business Service repository. It also generates additional
subprograms as required.

 To create a new business service:

1. Select Business Services > Business Service Wizard on the Tools menu.

The Create a Business Service panel is displayed. For example:

1

Developing Business ServicesDeveloping Business Services

2. Select Next.

The Choose Type panel for the Business Service wizard is displayed:

2

Create a Business ServiceDeveloping Business Services

3. Select one of the following options:

Based on existing subprograms

By generating new subprograms for data access

By creating an empty service skeleton

By using custom code generation model

Depending on which option you select, one or more additional panels are displayed. After filling in
the appropriate information, select Next on the last specification panel. The Enter Service Name
and Select Domain panel is displayed. For example:

3

Developing Business ServicesCreate a Business Service

Note:
This panel contains an additional field (called Create FindBy* methods) when invoked from the
program editor for an object browse subprogram. For information, see Create FindBy* Methods.

Use this panel to name your business service and assign the service to a domain. Optionally, you can:

4

Create a Business ServiceDeveloping Business Services

Task Procedure

Create a new domain Select Create new domain. For information, see Create a New
Domain.

Change the version number for
the service

Type a new version number in Version number. Version
numbers help protect changes to the service that can disrupt
client communications. Use version 1.1.1 (default) for a new
service.

Create the service interface
using Unicode

Select Unicode enable service. Select this option if your service
has Unicode fields (U data type). Services that use a Unicode
dispatcher require a special EntireX runtime server definition.
For information, see Use Unicode Parameters for Your Business
Service.

4. Type the name of your business service.

This name should clearly identify the service (for example, CustomerWithContacts).

5. Select the business domain in Business domain name.

A domain groups business services into logical application sets. If a domain does not currently exist,
select Create new domain to create one. For information, see Create a New Domain.

6. Verify the service version number.

7. Type the service identifier for generated subprograms in Identifier .

The service identifier can be up to five characters in length and will be used with a wizard-generated
prefix and suffix to identify the generated subprograms used for this service.

8. Type a brief description of your service in Service description.

9. Select Finish to generate the business service.

The Generation Status window is displayed, showing the progress of the generation. When
generation is completed, the window shows the names of the files generated for the business service.

The Results column indicates that the generated files have been generated for the first time (New).

Note:
To return to the wizard without saving the files, select Cancel.

10. Select Save to save the files.

You have successfully generated and saved a new business service. For information on testing the
business service, see Test a Business Service.

Based on Existing Subprogram(s)

If you want to create a business service based on existing subprograms, you have various options:

5

Developing Business ServicesBased on Existing Subprogram(s)

Directly enable a subprogram

This option associates the DEFAULT method with an existing subprogram by directly enabling the
subprogram. For information, see Directly Enable Subprograms.

Note:
This option is only available when one subprogram is listed in Selected Subprogram(s) and the
option applies to that subprogram alone.

Categorize parameters

If the subprogram(s) was generated by the Object-Browse or Object-Maint models, this option
creates a business service that has associated methods. For information, see Categorize Parameters.

Use traditional defaults and FindBy methods

If the subprogram(s) was generated by Natural Construct, these options let you take advantage of the
Business Service wizard’s knowledge of Natural Construct models and allow it to generate default
methods for your business service. For information, see Select the Type of Methods Generated.

When you select Based on existing subprogram(s) on the Choose Type panel, the Select Subprograms
panel is displayed. For example:

6

Based on Existing Subprogram(s)Developing Business Services

If a subprogram was not generated by Natural Construct, the Business Service wizard allows you to
determine what the interface will look like (i.e., what data the service will expose to users) and which
methods it will use. Use this panel to indicate which Natural subprograms the business service will call.

Note:
The list of available libraries is retrieved from either the FUSER or FNAT file. The wizard determines
which libraries to display based on the library that is currently selected (i.e., the library in which the
modules will be created). If the current library is an FNAT library, all libraries in the FNAT are available.
If it is an FUSER library, all libraries in the FUSER are available.

1. Select Refresh.

A list of available subprograms in the current library is displayed.

Note:
The list of available libraries is retrieved from either the FUSER or FNAT file. The wizard
determines which libraries to display based on the library that is currently selected in Natural for
Windows (i.e., the library in which the modules will be created). If the current library is an FNAT
library, all libraries in the FNAT are available. If it is an FUSER library, all libraries in the FUSER
are available.

7

Developing Business ServicesBased on Existing Subprogram(s)

If all subprograms cannot be displayed in the space provided, select More to display the
additional subprograms.

To limit the list, enter a starting value and/or wildcard characters in Filter . In the example
above, all subprograms in the current library will be displayed.

If desired, select a different library in Current library .

2. Select the subprogram you want to include.

3. Select Add.

Each selected subprogram is listed in Selected subprogram(s). To remove a subprogram from this
list, select the subprogram and select Remove.

By default, the Business Service wizard will:

Generate a subprogram proxy

Populate the Business Service repository

Generate a subprogram to call one or more existing subprograms

This occurs when the Use traditional defaults and FindBy methods options are NOT selected on
the Select Subprograms panel. The wizard uses the Object-Generic-Subp model to generate the new
subprogram. You can choose which methods the service will use and which combination of
subprograms will be required to implement these methods. You can define customized methods for
the business service, add user exit code, and choose and categorize attributes to be exposed to the
business service user. Categorizing the attributes helps the business service user identify input,
input/output, output, or state parameter structures.

Note:
State is similar to input/output, except that it identifies parameters that are not exposed to the
business service user and are only required to maintain the state of the business object.

4. Select Next.

The Define Methods panel is displayed. For example:

8

Based on Existing Subprogram(s)Developing Business Services

Use this panel to define the methods the business service will expose to the consumer and provide a
brief description of the subprograms. Each time you enter a method name and select Add, the method
is listed in Method Name.

You can change the functionality of each method by changing the Callnat sequence. For information,
see Change the Method Callnat Sequence.

5. Select Next.

The last specification panel for the Business Service wizard is displayed. For a description of this
panel, see Enter Service Name and Select Domain.

Directly Enable Subprograms

Whether a subprogram is directly enabled or not, the Business Service wizard:

Generates a subprogram proxy

9

Developing Business ServicesBased on Existing Subprogram(s)

Populates the service repository on the server

When a subprogram is directly enabled, the wizard does not generate a “wrapper” subprogram to call the
specified subprograms. It does, however, create one method called DEFAULT. This method searches the
subprogram from top to bottom and exposes each attribute in the subprogram’s PDA when the
subprogram is executed.

 To directly enable a subprogram:

1. Select a subprogram listed on the Select Subprograms panel.

2. Select Add.

The subprogram is listed in Selected Subprogram(s).

3. Select Directly enable subp.

4. Select Next.

The Enter Service Name and Select Domain panel is displayed.

Tip:
You can also directly enable a subprogram from the program editor view by opening the context menu for
the subprogram and selecting Create Service. The Enter Service Name and Select Domain panel is
displayed.

Notes:

1. This option is only available when there is one subprogram listed in Selected Subprogram(s) and
the option applies to that subprogram alone.

2. Once the business service has been created, you can only change the method names; the basic
functionality cannot be changed without modifying the existing subprogram or the input parameters
for the subprogram.

Categorize Parameters

You can categorize parameters for your business service. Categorizing parameters allows users to easily
identify input, input/output, state, and output requirements. This functionality allows the business service
developer to understand the Natural subprogram without having to know Natural.

Notes:

1. To reduce network traffic, we recommend that only user-required fields be exposed in the interface.
2. By default, the categorization is turned off and the parameters for existing subprograms are used at

the same level for the service interface. Categorizing parameters moves these parameters under new
level 1 structures for input, output, input/output, and state interface styles.

3. Whenever two subprograms interact, the exposed interface must be defined carefully. For
information, see Interface Considerations.

When categorizing parameters, you must ensure that parameters containing the same name (but different
values) are not placed in the same category. If this happens, the subprogram will generate but not compile
and you will have to decide how to handle the duplicate names.

10

Based on Existing Subprogram(s)Developing Business Services

When two subprograms contain level 1 structures with the same field or variable name, they must have
different interface styles (for example, one can be input/output and the other can be input only). For
example:

If the data for both parameters is the same, only one parameter must be exposed

If the data is different, the parameters must have unique names so users can easily differentiate
between the two

Note:
Parameters are not categorized by default, but this option is recommended for experienced users.

If you select Categorize parameters on the Select Subprograms panel, the Define Interface panel is
displayed when you select Next. For example:

This panel lists each level 1 structure in the selected subprograms. By default, the parameters use the input
and output interface style. To change the interface style for each parameter listed, select one of the
following options:

11

Developing Business ServicesBased on Existing Subprogram(s)

Input

Data is moved from the exposed interface to the internal business service variables. These exposed
fields will not be changed, even if the internal server fields change.

State

There is no coding difference between input and output and state interfaces styles. These structures
just make it easier to identify which fields should be exposed to the user and which are only required
to maintain a state with the server.

Output

Output parameters are reset. Even if the client copies data to the output structure, the data will be
erased. Only data the server puts in these fields is sent back to the client.

After categorizing the parameters, select Next to display the Define Methods panel.

Interface Considerations

The following table lists several cases you can consider when defining the interface for your business
service:

Case Same
Parameter
Name

Example Same Data Example

1 No Name, Make No Smith, Toyota

2 Yes Personnel-ID, Personnel-IDYes 1111, 1111

3 No #first, #num Yes 4, 4

4 Yes Name, Name No Smith, D&D Company

Case 1

This case is simple and can be handled by the wizard.

Case 2

This case is relatively simple. Consider the following example:

01 #BIZ-INPUTS
 02 VEH
 03 PERSONNEL-ID (A8)
 03 MAKE (A30)
 03 MODEL (A30)
 02 EMP
 03 PERSONNEL-ID (A8)
 03 NAME

 To solve this problem, do one of the following:

12

Based on Existing Subprogram(s)Developing Business Services

Put one of the parameters under #BIZ-INPUTS and the other under #BIZ-INPUTS-OUTPUTS
(although this will expose the same attribute and data twice, creating some confusion for the business
service user)

Or:
Define the parameters as follows:

01 #BIZ-INPUTS
 02 VEH
* 03 PERSONNEL-ID (A8)
 03 MAKE (A30)
 03 MODEL (A30)
 02 EMP
* 03 PERSONNEL-ID (A8)
 03 NAME
 02 PERSONNEL-ID (A8)

Note:
This solution will work as long as PERSONNEL-ID is not part of a redefined field and reserving a
position in memory.

Case 3

In this case, you must decide which parameter should be exposed. Once this decision is made, you must
ensure that the correct data is moved into the other parameter using the MOVE-TO and MOVE-BACK
user exits. For example, if #NUM is exposed, add the following code to the MOVE-TO exit:

#FIRST := #NUM

Add the following code to the MOVE-BACK exit:

#NUM := #FIRST

Case 4

In this case, you must decide what “name” means and clarify the term for the business service user.
Consider the following parameters:

01 #BIZ-INPUTS
 02 EMP
 03 NAME (A30)
 03 PHONE (N10)
 02 BUS
 03 NAME (A50)
 03 ADDRESS (A100/5)

For example, you can change the names to OWNER-NAME and BUSINESS-NAME:

01 #BIZ-INPUTS
 02 EMP
* 03 NAME (A30)
 03 OWNER-NAME (A30)
 03 PHONE (N10)
 02 BUS
* 03 NAME (A50)
 03 BUSINESS-NAME (A30)
 03 ADDRESS (A100/5)

13

Developing Business ServicesBased on Existing Subprogram(s)

If the parameter data area changes, you must define the names in the MOVE-TO and MOVE-BACK user
exits as follows:

Add the following code to the MOVE-TO exit:

EMP.NAME := OWNER-NAME
BUS.NAME := BUSINESS-NAME

Add the following code to the MOVE-BACK exit:

OWNER-NAME := EMP.NAME
BUSINESS-NAME := BUS.NAME

Important:
If you change the business service interface (parameters), you must regenerate the subprogram proxy (or
proxies). For information, see Regenerate a Business Service Proxy.

Modify a Subprogram That is Not Directly Enabled

If you do not select the Directly enable a subprogram option, the Business Service wizard generates
another subprogram between the existing business service subprogram(s) and the proxy. This intermediate
subprogram can contain multiple, named methods that call one or more subprograms.

Note:
For an example of the intermediate subprogram, refer to BNUM in the demo application.

When the Categorize Parameters option is selected (for information, see Categorize Parameters), the
parameter data areas (PDAs) are generated into the PARAMETER-DATA user exit. This allows the
programmer to decide which parameters to expose in the client code.

Generating the PDAs into a user exit creates a problem, however, if the subprogram being called has been
changed. These changes will not be picked up. To solve this problem, use the Regeneration wizard. This
wizard adds comment indicators to the existing PDA code and creates a “fresh” PDA. Unfortunately, this
solution does not re-incorporate any manual changes. The programmer must re-evaluate the
PARAMETER-DATA user exit to determine which portion of the old and “fresh” code to keep.

For example, if you regenerated the calculatorAdvance service in the demo application, BNUM appears as
follows:

**SAG DEFINE EXIT PARAMETER-DATA
/* 01 #BIZ-INPUT-OUTPUTS
/* 02 E1-INPUT-DATA
/** 03 #FUNCTION (A30)
/* 03 #FIRST-NUM (N5.2)
/** 03 REDEFINE #FIRST-NUM
/** 04 #OPERAND-1 (I4)
/* 03 #SECOND-NUM (N5.2)
/** 03 REDEFINE #SECOND-NUM
/** 04 #OPERAND-2 (I4)
/* 03 #SUCCESS-CRITERIA (N5)
/** 02 E1-GCD-DATA
/** 03 #OPERAND-1 (I4)
/** 03 #OPERAND-2 (I4)
/** 03 #RESULT (I4) /* result goes into #GCD
/* 01 #BIZ-OUTPUTS
/* 02 E1-OUTPUT-DATA
/* 03 #RESULT (N11.2)

14

Based on Existing Subprogram(s)Developing Business Services

/* /* Because result is used in both subprograms and because
/* /* some methods will expose both the calculator result
/* /* and the Greatest Common Denominator, a new exposed field
/* /* has been created
/* 03 #GCD (I4)
/* 03 #TIME (T)
/* 03 #SUCCESS (L)
/* 03 #ERROR-MESSAGE (A79)
* Note: This EXIT creates MOVE-TO and MOVE-BACK exits.
* To regenerate, delete all 3 exits
*
 01 #BIZ-INPUT-OUTPUTS
 02 E1-INPUT-DATA
 03 #FUNCTION (A30)
 03 #FIRST-NUM (N5.2)
 03 #SECOND-NUM (N5.2)
 03 #SUCCESS-CRITERIA (N5)
 02 E1-GCD-DATA
 03 #OPERAND-1 (I4)
 03 #OPERAND-2 (I4)
 03 #RESULT (I4)
 01 #BIZ-OUTPUTS
 02 E1-OUTPUT-DATA
 03 #RESULT (N11.2)
 03 #TIME (T)
 03 #SUCCESS (L)

In this example, the code added by the programmer before the regeneration has been commented out and
may need to be re-incorporated.

Select the Type of Methods Generated

For Natural Construct-generated subprograms, you can use the Select Subprograms panel to select the
type of methods generated for your business service. After selecting and adding one or more subprograms,
the following options are available for the subprogram(s) listed in Selected Subprogram(s):

If an object browse OR object maintenance subprogram is listed, the Use traditional defaults field is
selected and the wizard will:

Generate a subprogram proxy

Populate the repository with the default methods associated with either the Object-Browse or
Object-Maint models

If an object browse AND an object maintenance subprogram are listed, and they access the same file,
the Use traditional defaults field is selected and the wizard will:

Generate a subprogram proxy for each subprogram

Populate the repository with the default methods associated with both the Object-Browse and
Object-Maint models

If a single object browse subprogram is listed, or if an object browse and an object maintenance
subprogram are listed that access the same file and the file has no intra-object relationships (i.e.,
relationships with other files that are maintained at the same time as the primary file), the Use
traditional defaults and FindBy methods fields are selected and the wizard will:

15

Developing Business ServicesBased on Existing Subprogram(s)

Generate an object browse select subprogram and subprogram proxy

Populate the repository with the FindBy methods associated with the
Object-Browse-Select-Subp model (and the default methods associated with the Object-Maint
models, if an object maintenance subprogram is also selected)

For more information on the Object series of models, see Natural Construct Object Models.

Define the Methods

As with the interface considerations, decisions must also be made as to which subprograms are executed
for each method and what order they are executed. In addition, data may need to be massaged before the
subprograms are executed for the method to work effectively and accurately. For a better understanding of
this, refer to the BNUM and BSTRING subprograms in the SYSBIZDE library.

Change the Method Callnat Sequence

By default, the subprograms are executed in the order they were selected on the Select Subprograms
panel.

 To change the method Callnat sequence:

1. Select a method in the Method Name column on the Define Methods panel.

2. Select Callnat sequence.

The Method Callnat Sequence window is displayed. For example:

16

Based on Existing Subprogram(s)Developing Business Services

This window displays the name of each subprogram that is executed for the selected method and in
what order it is executed. Use this window to change the order of subprograms.

3. Select OK to save your changes.

In addition to these changes, you can further customize the functionality of methods within user exits
generated into the Natural code by the Business Service wizard. The subprogram created by the wizard is
called BserviceIdentifier and is located in the library containing Natural for Windows when the wizard is
invoked. If you make any changes to the exposed interface in this subprogram (i.e., changes to the PDAs),
you must regenerate the service proxy. For information, see Regenerate a Business Service Proxy.

By Generating New Subprograms for Data Access

This option will create the minimum components for a business service (a subprogram proxy and an entry
in the Business Service repository), as well as at least one Natural Construct object subprogram.
Depending on which data access type is selected on the Choose Data Access Type panel, one of the
following will be generated:

An object maintenance subprogram

An object browse subprogram

An object browse-select subprogram

A combination of these subprograms

If you select By generating new subprograms for data access on the Choose Type panel, the Data
Parameters panel is displayed. For example:

17

Developing Business ServicesBy Generating New Subprograms for Data Access

Use this panel to indicate the name of the data file and the primary key used for data maintenance. To
select advanced options for additional data access customizations, select Advanced options. For
information, see Specify Advanced Options for Data Access.

1. Select the name of the file used for data maintenance in Data file.

This file must currently exist in Predict.

2. Select the primary key for the specified file in Primary key.

3. Select Next.

The Choose Data Access Type panel is displayed:

18

By Generating New Subprograms for Data AccessDeveloping Business Services

4. Select one of the following data access types:

19

Developing Business ServicesBy Generating New Subprograms for Data Access

Data Access Type Description

Generate single view
data access service

Generates an object browse, object maintenance, and object
browse-select subprogram and the business service will have the
following methods: Delete, MultiMaint, Store, Update, FindBy (one or
more, such as the FindByDomainName method), and, optionally, Count
(one or more, such as the ServiceCountByDomain method). This access
type does not work with files that have intra-object relationships (for
example, the Order header has an intra-object relationship with Order
lines). But if only one physical file is involved, this type only requires
one user interface to browse and maintain data. It is also designed for
network efficiency, which means n rows of data can be processed at a
time for browse or data maintenance activities.

Generate compound
data access service

Generates an object browse and object maintenance subprogram and the
business service will have the following methods: BROWSE, DELETE,
FORMER, EXISTS, GET , INITIALIZE, NEXT, STORE, UPDATE. In
addition, two subprogram proxies are created: one for the BROWSE
method and one for all other methods. This access type handles complex
data structures with intra-object relationships that must be maintained. It
assumes that the data browse subprogram has a different interface than
the data maintenance subprogram. A high-level browse interface can be
exposed with multiple rows, but when an object must be maintained, all
details can be exposed. For example, the maintenance subprogram can
display all fields for Order and the browse subprogram can display the
Order header for n rows.

Note:
The wizard assumes 20 rows, but if the rows are very large, the wizard
will lower the number of rows until it reaches a reasonable message
size.

For more information, see More About the Object Browse-Select Subprogram.

5. Select which subprograms (and proxies) to generate.

Generate maintenance and browse (the default)

Generate browse only

Generate maintenance only

6. Select Next.

The last specification panel for the Business Service wizard is displayed. For a description of this
panel, see Enter Service Name and Select Domain.

Specify Advanced Options for Data Access

This option is available if an object maintenance subprogram will be generated.

20

By Generating New Subprograms for Data AccessDeveloping Business Services

 To specify advanced options for data access:

1. Select Advanced options on the Data Parameters panel.

The Advanced Options window is displayed. For example:

Note:
To locate subprograms to use with your business service, select Find.

2. Type a suffix in Log file suffix.

The suffix identifies the log files for this business service. This option allows the wizard to generate
code to maintain a log file whenever data is modified through this business service.

3. Select the record locking option.

The object maintenance subprogram has two methods to lock records: hash locking and timestamp
field locking. The traditional method is using a timestamp. This method works well if the file is
always maintained by Natural Construct-generated objects. If not, data may have changed and the
timestamp field may not have been updated. The hash locking method checks all data to ensure that
nothing has been changed between when the user saw the data and when the database locks the data.

4. Select OK .

More About the Object Browse-Select Subprogram

An object browse-select subprogram can:

Determine the key fields for the object browse subprogram and separate them into different methods
(for example, the various FindBy and Count methods)

Allow a row-state attribute on each row to process methods at the row level

21

Developing Business ServicesBy Generating New Subprograms for Data Access

Reduce network traffic by executing both the object browse and object maintenance subprograms
from the same object browse-select subprogram

For example, if the row-state attribute determines that rows 3, 5, and 10 in the object browse
subprogram must be modified, and the modified values are sent back to the server with all the rows, three
calls to the object maintenance subprogram can be processed without going back to the client.

Be modified through user exit code.

You can write Natural code to massage the data and/or call other Natural subprograms.

Expose the data as a dataset

This allows the Natural Business Services .NET plug-in to take advantage of dataset processing and
handle row processing beyond the n rows defined for the object browse-select subprogram. For
example, the object browse-select subprogram can pass the 20 rows it receives from the object browse
subprogram. But if the user adds four rows, special processing must be done internally because the object
browse-select subprogram only handles a specified number of rows. In this case, two calls to the server
must be made to process the 24 rows. Similar complexities arise when a user deletes rows.

The flexibility of allowing methods to be processed at the row level adds some complexity to security
considerations. For example, assume that one user is allowed to add, update, and delete rows, and wants to
do this to a group of rows at a time, but another user can only add and update rows. When an object
browse-select subprogram is used, the FindBy* methods retrieve the data and the MultiMaint method
processes row-level methods. As Delete, Store, and Update are row-level methods, both users can be
granted access to the MultiMaint method, but only the first user will be granted access to the Delete
method.

The Business Service wizard automatically generates the standard methods, but you can also add custom
methods to the object browse-select subprogram. For information about this model, see
Object-Browse-Select-Subp Model.

By Creating an Empty Service Skeleton

Use this option when you want full control of creating a new subprogram to be used as a business service.
The wizard will generate the subprogram proxy and populate the Business Service repository. You can
edit the new subprogram in Natural for Windows. For information on determining the module names that
belong to a business service and loading the modules into the Natural for Windows editor, see Edit the
Service Modules.

If you select By creating an empty service skeleton on the Choose Type panel, the Define Service
Parameters panel is displayed. For example:

22

By Creating an Empty Service SkeletonDeveloping Business Services

Use this panel to define parameters for the business service. Optionally, you can:

Task Procedure

Import an external schema to
use as the data parameters for
the service skeleton

Select Import schema. For information, see Import Schema.

1. Enter the parameters for the new business service in the space provided.

The parameters must be in standard Natural parameter format (see example above).

2. Select Next.

The Define Skeleton Methods panel is displayed. For example:

23

Developing Business ServicesBy Creating an Empty Service Skeleton

This panel lists the methods your skeleton service will expose to the user (DEFAULT in this
example). Optionally, you can:

Task Procedure

Add a new method Type the method name in Method name, a brief description of
the method in Method description, and select Add.

Remove a method Select the method name in Method Name and select Remove.

3. Select Next.

The last specification panel for the Business Service wizard is displayed.

Import Schema

 To import an external schema to use as the data parameters for the service skeleton:

1. Select Import schema on the Define Service Parameters.

The Import XSD/WSDL window is displayed. For example:

24

By Creating an Empty Service SkeletonDeveloping Business Services

Use this panel to import a schema and, optionally, change the field names, data types, and array
definitions (i.e., the use of X-array or dynamic variables). The schema can take be either an XSD (XML
Schema document) or WSDL (Web Service Description Language) file. The selected XML schema will
be converted into Natural data area format. Optionally, you can:

Task Procedure

Change the field name Select the field in Imported parameter definition and type a
new name in Name.

Change the data type Select the field in Imported parameter definition and select a
different data type in Type.

Change the use of dynamic
variables

Select the field in Imported parameter definition and either
type "D" in Size or remove "D" from Size.

Change the use of lower bound
X-array variables

Select the field in Imported parameter definition and either
type "*" in Lower bound or remove "*" from Lower bound.

Change the use of upper bound
X-array variables

Select the field in Imported parameter definition and either
type "*" in Upper bound or remove "*" from Upper bound.

25

Developing Business ServicesBy Creating an Empty Service Skeleton

2. Select Import .

A selection window is displayed to select the schema to import.

3. Select OK to save the changes to the parameter definition.

By Using Custom Code Generation Model

Use this option if the subprogram to be used as a business service was generated by a custom model. If
you select By using custom code generation model on the Choose Type panel, the Configure Custom
Model panel is displayed. For example:

1. Select the custom model in Custom model name.

The fields available for the model are displayed.

2. Enter the fields and values required to use the code generation model.

26

By Using Custom Code Generation ModelDeveloping Business Services

3. Select Next.

The last specification panel for the Business Service wizard is displayed. For a description of this
panel, see Enter Service Name and Select Domain.

Note:
The custom model must be set up in Natural Business Services Administration. For information, see
Using Custom Models with Natural Business Services.

Create a New Service from the Program Editor

You can also create a new business service from a subprogram in the program editor. For example:

 To create a new service from the program editor:

1. Open the context menu for the subprogram.

2. Select Create Service.

The Enter Service Name and Select Domain panel is displayed. For example:

27

Developing Business ServicesCreate a New Service from the Program Editor

Notice the Create FindBy* methods option on this panel. This option is available when the module in the
program editor is an object browse subprogram.

For information on the Create FindBy* methods option, see Create FindBy* Methods.

For a description of the Enter Service Name and Select Domain panel, see Enter Service Name and
Select Domain.

Create FindBy* Methods

If the subprogram in the program editor is an object browse subprogram, the Enter Service Name and
Select Domain panel includes an additional field called Create FindBy* methods. Select this option to
generate business-like method names for browse business services, as opposed to the default BROWSE
method. The Business Service wizard:

Generates a subprogram proxy

Populates the Business Service repository

28

Create a New Service from the Program EditorDeveloping Business Services

Generates an object browse-select subprogram containing FindBy* methods, such as
FindByBusinessName or FindByDomainName

Regenerate a Business Service

 To regenerate a business service:

1. Open the context menu for the business service in the Business Service Repository.

Note:
For information, see Using the Business Service Repository.

2. Select Regenerate Service.

The Regenerate Business Service wizard panels are displayed, showing the specifications used to
generate the service.

3. Revise the specifications as desired.

For information about the options on the wizard panels, see Create a Business Service.

4. Select Finish on the last wizard panel to regenerate the service.

Regenerate a Business Service Proxy
When you change the parameters in a subprogram used for a business service, you must also change the
subprogram proxy for the service to accommodate the new message size. This is done by regenerating the
business service proxy.

Note:
If the parameters for a business service have changed and a business service consumer has already
incorporated the service, the consumer code (i.e., the .NET class) must be regenerated as well.

 To regenerate a business service proxy:

1. Expand the domain node in the repository explorer for the business service you want to regenerate.

2. Open the context menu for the business service.

3. Select Regenerate Service Proxy(s).

The Natural plug-in regenerates the service proxy (or proxies) without displaying the wizard panels.
New metadata is downloaded from the server before regeneration.

Note:
The service proxy is also referred to as the subprogram proxy. It provides the link between a
subprogram and the Natural Business Services dispatch server.

29

Developing Business ServicesRegenerate a Business Service

Test a Business Service Method

 To test a method used by a business service:

1. Expand the business service node in the repository explorer.

The methods and modules used for the business service are displayed as nodes. For example:

2. Expand the Methods node.

3. Open the context menu for the method you want to test.

4. Select Test.

The test window is displayed. For a description of this window, see Test a Business Service.

Parameters for the Standard Methods

Certain methods are standard to business services. These methods can be divided into the following
categories:

30

Test a Business Service MethodDeveloping Business Services

Category Standard Methods

Single-row access DELETE, EXIST, FORMER, GET, INITIALIZE, NEXT, STORE, and
UPDATE

Multiple-row access BROWSE, MultiMaint, Update, Delete, Store, and the FindBy* series of
methods

Understanding the parameters for these methods will simplify the testing process. This section covers the
following topics:

Single-Row Access
Multiple-Row Access

Single-Row Access

The DELETE, EXIST, FORMER, GET, INITIALIZE, NEXT, STORE, and UPDATE methods are used
on a single row of data. All methods that access a single row of data contain the same PDAs. These PDAs
are:

PDA Description

Data Contains the -ID values (for example, MCUSTA-ID).

Restricted Determines whether data has been modified between the time it was
retrieved for the test and the time a data maintenance method was requested.
This PDA should not be altered.

Tip:
The name of this PDA typically ends with an “R”.

Method (CDAOBJ2) Contains method data that is handled by Natural Business Services.

MSG-INFO Contains messages from the server; it is used for output only.

This section covers the following topics:

DELETE Method
EXIST Method
FORMER, GET, or NEXT Method
INITIALIZE Method
STORE Method
UPDATE Method

DELETE Method

 To test the DELETE method:

1. Issue the GET, NEXT, or FORMER method to retrieve a record.

2. Issue the DELETE method to delete the record.

31

Developing Business ServicesParameters for the Standard Methods

A confirmation message should be displayed.

Note:
Ensure you are deleting the correct record.

EXIST Method

 To test the EXIST method:

1. Issue the INITIALIZE method (to delete all data).

2. Enter a customer number (for example, "5555").

3. Issue the EXIST method.

This request will be successful whether the customer exists or not. The result of the request is
contained within the method PDA (CDAOBJ2) under OUTPUTS (the EXIST flag will be either True
or False).

FORMER, GET, or NEXT Method

The easiest single-row access method to test is NEXT because it does not require any input parameters.
This method simply gets the next record in the dataset.

The sequence of records within the dataset is determined by the PDA values that end with -ID. For
example, when testing the NEXT method for the Customer business service in the Demo domain,
MCUSTA and MCUSTA-ID will be displayed (MCUSTA will contain additional data). When you
expand MCUSTA-ID, CUSTOMER-NUMBER is displayed. This indicates that the next highest customer
number is displayed when the NEXT method is issued (and the previous customer number is displayed
when the FORMER method is issued).

To ensure that the restricted PDA is populated correctly, a record must be retrieved before an UPDATE or
DELETE method can be issued. The record can be retrieved by issuing the NEXT or FORMER method,
or issuing the GET method when you know what the key value is and whether the data for the key value is
supplied in the data PDA.

 To test the GET method:

1. Enter a valid customer number in CUSTOMER-NUMBER in the data PDA.

2. Issue the GET method.

The record associated with specified customer number should be displayed.

INITIALIZE Method

 To test the INITIALIZE method:

Issue the INITIALIZE method to delete all data except the key values.

Tip:
You can also delete the data from the -ID section of the data PDA and from the restricted PDA (except for
the first reference to the key value) and then reissue the GET method. This should retrieve all the values

32

Parameters for the Standard MethodsDeveloping Business Services

for a customer based on the customer number provided, assuming that number exists. If the record does
not exist, a message is displayed.

STORE Method

 To test the STORE method:

1. Enter a unique value in the key field in the data PDA.

2. Issue the STORE method to store the record.

A confirmation message should be displayed.

UPDATE Method

 To test the UPDATE method:

1. Issue the GET, NEXT, or FORMER method to retrieve a record.

2. Change the fields in the data PDA.

3. Issue the UPDATE method to update the record.

A confirmation message should be displayed.

Multiple-Row Access

The BROWSE, MultiMaint, Update, Delete, and Store methods, as well as the FindBy* series of methods,
are used on multiple rows of data.

Note:
The Update, Delete, and Store methods are handled internally by the MultiMaint method and should not
be used as individual methods. They allow administrators to revoke access to these methods when the
MultiMaint method is used.

All methods that access multiple rows of data contain the same PDAs. These PDAs are:

33

Developing Business ServicesParameters for the Standard Methods

PDA Description

Row Contains the rows of data retrieved from the database (in an array of 1:20).

Tip:
The name of this PDA typically ends with a “D” or “E1”.

Key Contains the key fields and starting values for components of the key being
used. For example, if you enter "M" in BUSINESS-NAME for the
Customer business service in the Demo domain, the BROWSE method
displays records beginning at "M".

Tip:
The name of this PDA typically ends with a “K”.

Restricted Contains state information, such as where to resume browsing, as well as
fields like FIRST-TIME and KEY-DATA. This PDA should not be altered.

Tip:
The name of this PDA typically ends with a “P”.

MSG-INFO Contains messages from the server; it is used for output only.

This section covers the following topics:

BROWSE Method
MultiMaint and FindBy* Methods

BROWSE Method

In addition to the standard PDAs, the BROWSE method contains additional PDAs that provide
specialized functionality. For example, the BROWSE method can sort data up to six different ways
depending on the availability of server-side keys. In addition, the server-side keys can be derived (so that
they make up more than one field).

Unfortunately, which keys are available, and which fields make up the keys, is unknown during testing.
The names of the fields that make up the keys are contained in the key PDA.

 To test the BROWSE method:

1. Determine which keys are available and which fields make up the keys.

To do this, refer to the specification lines for the object browse subprogram. For example, the
following keys are contained in the specifications for the ACUSTN subprogram used by the
Customer business service in the Demo domain:

**SAG LOGICAL-KEY(2): NAME-BACKWARDS
**SAG PHYSICAL-KEY(2,1): BUSINESS-NAME
**SAG DESCENDING(2,1): X

where LOGICAL-KEY contains the field used to sort data in a particular order and PHYSICAL-KEY
contains the fields that make up that key. For instance, back to our customer business service in the
demo domain.

34

Parameters for the Standard MethodsDeveloping Business Services

2. Enter "NAME-BACKWARDS" in the SORT-KEY field in the CDBRPDA PDA.

The results should be sorted by name in descending order.

You can also use other fields in CDBRPDA to test the BROWSE method. For example, if the row PDA
contains the COUNT field, you can use the HISTOGRAM field to return the number of key values, as
opposed to the entire record (such as "SMITH 20" to indicate there are 20 Smiths in the database).

You can also request that fewer rows of data be returned (than the standard 20 rows) by entering a number
in the ROWS-REQUESTED field.

Note:
For obvious reasons, you cannot specify a value higher than the number of rows available.

To specify a range of values, enter a number in the RANGE-OPTION field based on the following
information:

3 DEFAULT N 1 INIT<0> /* Input specifies a starting value, LE or GE will be determined based the sort order.
 * /* Embedded wildcard can be specified using >, < and characters for Alpha an
 * /* numeric characters.
 3 LESS-THAN N 1 INIT<1>
 3 LESS-THAN-OR-EQUAL N 1 INIT<2>
 3 EQUAL N 1 INIT<3>
 3 GREATER-THAN-OR-EQUAL N 1 INIT<4> /* Default
 3 GREATER-THAN N 1 INIT<5>
 3 BEGINS-WITH N 1 INIT<6> /* Prefix of key mat
 * /* the input key.
 3 NO-WILDCARD N 1 INIT<7>

If the RESTART field is False and the data has not changed, the BROWSE method will continue to get
the next n rows of data until the end of data is reached.

Tip:
The end of data is reached when the END-OF-DATA field is True.

Note:
If the RESTART field is True, the browse action will restart.

The ACTUAL-ROWS-RETURNED field contains the number of rows returned.

MultiMaint and FindBy* Methods

In addition to the standard PDAs used for multiple-row access, the MultiMaint and FindBy* series of
methods contain the CDBUPDA PDA, which is a subset of the CDBRPDA PDA used by the BROWSE
method. All fields in CDBUPDA behave the same way as described above. The key differences between
CDBUPDA and CDBRPDA include:

The SORT-KEY field is not required because the FindBy* methods assign the SORT-KEY value on
the server. You do not have to guess what the sort key should be.

The BUSINESS-INFO field is a subset of MSG-INFO; this field contains messages that pertain to all
rows, as opposed to messages for a specific row.

Except for the Add action, the MultiMaint method can only be issued after a FindBy* method has
retrieved the rows for maintenance. The MultiMaint method does not retrieve new rows (as do the
FindBy* and BROWSE methods); it only alters the current rows based on the value in the ROW-STATE
field for each row in the data PDA.

35

Developing Business ServicesParameters for the Standard Methods

 To test the MultiMaint method:

1. Enter "A" in the ROW-STATE field in the CDBUPDA PDA.

The output response should be displayed in the state as "AS" add successful.

2. Enter "U" in ROW-STATE.

The output response should be displayed in the state as "US" update successful.

3. Enter "D" in ROW-STATE.

The output response should be displayed in the state as "DS" delete successful.

Note:
The existing states can be found in CDSTATE. For a list of valid values, see ROW-STATE Values.

Test a Business Service
This section describes how to test a business service. You can open multiple test windows as required.
You can also edit and test code without closing the Test window.

 To test your business service:

1. Expand the domain node in the repository explorer for the business service you want to test.

2. Open the context menu for the business service.

3. Select Test.

The Test Service window is displayed for the selected service. The following example shows the
GetLineup method for the XarrayBaseballPlayers business service in the DEMO domain:

36

Test a Business ServiceDeveloping Business Services

Use the panel to test the methods for the business service.

Note:
The XArrays section displays one row for each X-array.

Optionally, you can:

37

Developing Business ServicesTest a Business Service

Task Procedure

Configure the cell alignment
for the Field Name, Index, and
Value columns

Open the context menu for the column and select Cell
alignment. The Cell Alignment window is displayed. For
information, see Configure the Cell Alignment.

Change the number of
elements in an X-array

Type the new value in Size. For information, see Change the
Number of Elements in an X-Array.

Save the test data Select Save data and specify the location in which to save the
test data.

Reload saved data for testingSelect Load data and specify the location from which to
retrieve saved test data. For example, instead of entering "1111"
each time to display customer 1111, you can save the data and
reload it. This is useful when there is more than one data field,
such as: domain (DEMO), service (Customer), and version
(010101).

Display the parameter data in
the editor

Select View buffer.

4. Select a method in Method to test.

5. Select Run.

The result of the test is displayed in Results. You can use this panel to test all methods defined for
this business service.

6. Select Close to close the Test Service window.

Configure the Cell Alignment

You can configure the cell alignment for columns in the Service Parameters section in the Test Service
window

 To configure the cell alignment:

1. Open the context menu for the column.

2. Select Cell alignment.

The Cell Alignment window is displayed. For example:

38

Configure the Cell AlignmentDeveloping Business Services

Select "Left", "Right", or "Center" as the cell alignment for each column. You can select a different
alignment for numeric values than for text values.

Change the Number of Elements in an X-Array

 To change the number of elements in an X-array:

Enter the new number in Size.

The Service Parameters section reflects the change. For example:

39

Developing Business ServicesChange the Number of Elements in an X-Array

Delete a Business Service
Note:
Removing a business service will only delete the service from the repository, it will not delete the Natural
modules.

 To delete an existing business service:

40

Delete a Business ServiceDeveloping Business Services

1. Expand the Domains node in the repository explorer.

2. Open the context menu for the business service you want to delete.

3. Select Delete.

A confirmation window is displayed.

4. Select Yes to delete the business service.

Edit a Service Definition

 To edit a business service definition:

1. Open the context menu for the business service in the repository explorer.

Note:
For information on the Business Service repository, see Using the Business Service Repository.

2. Select Edit .

The Properties window for the business service is displayed. For example:

41

Developing Business ServicesEdit a Service Definition

Use this window to:

Change the business service description.

Edit an existing method.

To edit a method, select the method in Service Methods and change the information in Selected
Method. For example, you can the change the name, description, server proxy name, or step
library chain.

Add a new method.

42

Edit a Service DefinitionDeveloping Business Services

To add a new method, select New and enter information about the new method in Selected
Method. Select Save Method to save the new method. The new method is displayed in Service
Methods.

Delete a method.

To delete a method, select the method in Service Methods and select Delete. The method is
deleted from Service Methods.

3. Select Close to close the Properties window.

Edit the Service Modules

 To edit the business service subprograms:

1. Expand the business service node in the repository explorer.

The methods and modules used for the business service are displayed as nodes in the repository view.

2. Expand the Modules node.

The Natural modules used for the business service are displayed. For example:

43

Developing Business ServicesEdit the Service Modules

3. Do one of the following:

To edit all modules, open the context menu for Modules and select Edit all .

To edit one module, open the context menu for the module and select Edit .

The module(s) is displayed in the editor. For example:

44

Edit the Service ModulesDeveloping Business Services

You can edit the module in this editor and then save the changes. For information on using this
editor, see the Natural documentation.

Transform a Browse Module
Use the Transform Browse wizard to transform a Natural Construct-generated browse module into object
browse modules for use in a client/server environment.

 To access the Transform Browse wizard:

1. Display the browse module in the program editor (for information, see the Natural for Windows
documentation).

2. Select Transform Browse.

The Verify Transformation Specifications panel is displayed. For more information, see Natural
Plug-in in Verify Transformation Specifications Panel.

45

Developing Business ServicesTransform a Browse Module

	Developing Business Services
	Create a Business Service
	Based on Existing Subprogram(s)
	Directly Enable Subprograms
	Categorize Parameters
	Interface Considerations
	Case 1
	Case 2
	Case 3
	Case 4

	Modify a Subprogram That is Not Directly Enabled
	Select the Type of Methods Generated
	Define the Methods
	Change the Method Callnat Sequence

	By Generating New Subprograms for Data Access
	Specify Advanced Options for Data Access
	More About the Object Browse-Select Subprogram

	By Creating an Empty Service Skeleton
	Import Schema

	By Using Custom Code Generation Model
	Create a New Service from the Program Editor
	Create FindBy* Methods

	Regenerate a Business Service
	Regenerate a Business Service Proxy
	Test a Business Service Method
	Parameters for the Standard Methods
	Single-Row Access
	DELETE Method
	EXIST Method
	FORMER, GET, or NEXT Method
	INITIALIZE Method
	STORE Method
	UPDATE Method

	Multiple-Row Access
	BROWSE Method
	MultiMaint and FindBy* Methods

	Test a Business Service
	Configure the Cell Alignment
	Change the Number of Elements in an X-Array

	Delete a Business Service
	Edit a Service Definition
	Edit the Service Modules
	Transform a Browse Module

