
Supplied Demo Applications
Natural Business Services provides sample business services in the DEMO domain. All the Natural
modules for these services are located in the SYSBIZDE library on the server. For more information about
these services, see DEMO Domain.

Note:
If the sample services are not listed in the Business Service explorer, have your Natural Business Services
administrator run the CSRLOAD program to load the repository.

In addition, client consumers (for example, Web services or client proxy classes) have been generated to
demonstrate executing these services using Visual Studio and Java. Each business service was used to
generate a Web service and then the Web services were used to generate the demo web application (web
pages and menus).

This section describes the various business service types used in the demo application and highlights
several features of the subprograms and proxies supplied in SYSBIZDE. The following topics are
covered:

Business Service Types

Features of the Demo Application

Additional Features When Using Predict

Business Service Types
Each business service has a type, which is determined by the wizard based on user input. On the client, the
type is hidden from the user. On the server, it determines which Natural Construct model is used to
generate the service. When the subprogram proxy is generated, the business service type is also stored in
the business repository.

The business service types are:

Type Service

blank Arbsub (arbitrary subprogram)

1 Traditional

2 Object-Browse-Select without maintenance

3 Object-Browse-Select with maintenance

4 Object-Generic

A user may be able to identify which type a business service uses by its methods. The business service
types are described in the following sections:

Arbsub (Arbitrary Subprogram)

1

Supplied Demo ApplicationsSupplied Demo Applications

Traditional

Object-Browse-Select (Without Maintenance)

Object-Browse-Select (With Maintenance)

Object-Generic

Arbsub (Arbitrary Subprogram)

This business service (Type blank) assumes that the subprogram associated with it was not generated by
Natural Construct. As Natural Business Services has no knowledge of the methods or required input and
output parameters, all parameters are exposed to the client and the DEFAULT method is created. You can
rename this method, as well as create other methods, by modifying the business repository information for
this service.

An example of this type is the Calculator service, which has four methods: Add, Divide, Multiply and
Subtract. As these methods would have behaved the same way as the DEFAULT method, overrides were
added when the Web service was generated; the #FUNCTION parameter required a different value for
each of the four new methods. For example, the Add #FUNCTION method required an override of “Add”.

A developer determines the value of #FUNCTION and decides what the subprogram will require to
perform the function. For example, the Calculator service in the business repository uses the CALCY
subprogram proxy in the SYSBIZDE library to call the CALC subprogram. If #FUNCTION is Add,
CALC executes the appropriate code.

The main drawback to the Arbsub business service type is the amount of control given to the client. For
example, if a Web service developer accidentally set the #FUNCTION override to Divide for the Add
method, a user who only had permission to perform the Add method could inadvertently perform the
Divide function.

Tip:
If this is a concern, use an Object-Generic business service type.

Traditional

This business service (Type 1) has two subprograms associated with it: an object maintenance subprogram
(generated by the Object-Maint-Subp model) and an object browse subprogram (generated by the
Object-Browse-Subp model).

The typical methods associated with this type are:

Delete

Exists

Former

Get

Initialize

2

Arbsub (Arbitrary Subprogram)Supplied Demo Applications

Next

Store

Update

Browse

An example of this type is the Customer business service, version 010101. The Browse method calls the
ACUSTY proxy, which calls the ACUSTN browse subprogram. The other methods call the MCUSTY
proxy, which calls the MCUSTN maintenance subprogram.

Object-Browse-Select (Without Maintenance)

This business service (Type 2) is created using the Object-Browse-Select-Subp model and behaves in the
same manner as a Browse-Select subprogram. Internally, it is different since you only want to pass a
limited number of rows across the wire at one time in a client/server environment.

The object browse select subprogram requires an object browse subprogram. Based on the keys for the
object browse subprogram, the Object-Browse-Select-Subp model creates the FindBy… methods. The
method names can be modified during generation and methods can be removed if they are not required. If
the HISTOGRAM option is selected for a browse key in the object browse subprogram, the object browse
select subprogram defines count methods for the key. The key values and a count are provided, instead of
all the data for the record (using FindBy… methods).

An example of the Object-Browse-Select business service type is Order, version 020101. The
FindByOrderWarehouseId method returns all data in Warehouse ID order. A related method,
OrderWarehouseIdCount, returns only the specified warehouse ID and a count of the number of orders for
that warehouse. This service uses the BORDY subprogram proxy, which accesses the BORDN object
subprogram.

Object-Browse-Select (With Maintenance)

This business service (Type 3) is also created using the Object-Browse-Select-Subp model and takes
advantage of more features of the model. The CustomerWithContactData, version 020101, business
service calls both the object browse and object maintenance subprograms from the same object browse
select subprogram. To allow this functionality, an object maintenance subprogram was added to the
Object-Browse-Select-Subp model specifications. This created four new methods: MultiMaint, Update,
Delete and Store, which can be applied to the entire business service (i.e., a group of rows).

The action applied to each row is indicated by the row state, for example: U for Update, D for Delete, and
A for Add. Each row sent to the server for maintenance requires a row state. For the server to apply these
actions, the business method must be MultiMaint, Update, Delete or Store.

In general, the client never needs to use the Update, Delete or Store methods because the MultiMaint
method handles all of them. The methods are supplied for security purposes. For example, if an
administrator applied security at the method level to revoke Delete privileges for a user, the business
service will not allow the user to use a D (for Delete) row state.

The CustomerWithContactData business service, version 020101, uses the BCUST2Y subprogram proxy,
which calls the BCUST2N object subprogram. The Object-Browse-Select service uses the ACUST2N
object browse subprogram and the MCUST2N object maintenance subprogram.

3

Supplied Demo ApplicationsObject-Browse-Select (Without Maintenance)

Object-Generic

This business service (Type 4) allows the business service to access up to 10 subprograms and create up to
20 different methods. Each method can be clearly defined on the server by hard-coding certain values.
This prevents security from being breached and allows one client interface to be used for multiple
subprograms.

An example of this type is the CalculatorAdvance business service. This service invokes the BNUMY
proxy, which calls the BNUM subprogram. BNUM accesses two subprograms: CALC and GCDN. As the
data for these subprograms is similar, the exposed variables have been reduced (this is why some of the
parameters are commented out in the generated PARAMETER-DATA user exit code). Before either
subprogram is called, data must be moved from the exposed data area to the local data areas used to pass
data into these subprograms. This is done in the generated MOVE-TO user exit code. Similarly, data must
be moved back to the exposed data area before control is returned to the client. This is done in the
generated MOVE-BACK user exit code.

While defining methods for the CalculatorAdvance service, the developer specified which subprograms to
execute for each method, the execution order of these subprograms, and whether code should be executed
before and/or after the subprogram. For example, the SolutionWithLowerNumbers method has code that
is executed after the GCDN subprogram is executed. This method also executes the CALC subprogram.
(Refer to the AFTER-CODE subroutine in the BNUM subprogram.) This code reduces the first and
second number based on the greatest common denominator and then calculates the division between the
two numbers.

The Subtract method executes code before the CALC subprogram is executed. Refer to the
BEFORE-CODE subroutine to see how #FUNCTION is assigned. This process is similar to providing
overrides for the Calculator service, except the Web service cannot change #FUNCTION for the Subtract
method because it will always be overridden in the BNUM subprogram.

Features of the Demo Application
This section describes the features of the demo application, SYSBIZDE. The following topics are covered:

Subprogram Proxies

Web and Business Services

SOAP Client

Subprogram Proxies

As data typically comes from a different platform and uses a different character set, each business service
requires a subprogram proxy to retrieve data off the wire. Although the proxy is required, all business
code is contained in the subprogram that is called by the proxy.

During generation of the subprogram proxy, the business repository is populated with the methods used by
the service, as well as the domain/service/version specifications.

4

Features of the Demo ApplicationSupplied Demo Applications

Web and Business Services

The SYSBIZDE demo application includes the following Web and business services:

Web Service Name (or business service name
when different)

Type Proxy Subprogram

Calculator Arbsub CALCY CALC

CalculatorAdvance Object-Generic BNUMY BNUM

CALC

GCDN

CustomerCreditAnalysis Traditional MCUST3Y MCUST3N

CustomerPlain

Customer, version 010101

Traditional

With browse

MCUSTY

ACUSTY

MCUSTN

ACUSTN

CustomerWithContactData Object-Browse-Select

With browse

With maintenance

BCUST2Y BCUST2N

ACUST2N

MCUST2N

CustomerWithContactDataTraditional

CustomerWithContactData, version 010101

Traditional

With browse

MCUST2Y

ACUST2Y

MCUST2N

ACUST2N

ErrorMessageTesting Basic Arbsub FLIPSTY FLIPSTR

FlipString Arbsub with defined
method

FLIPSTY FLIPSTR

GreatestCommonDenominator (also used with
CalculatorAdvance)

Arbsub GCDY GCDN

Order Object-Browse-Select

With browse

BORDY BORDN

AORDN

OrderTraditional

Order, version 010101

Traditional

With browse

MORDY

AORDY

MORDN

AORDN

Product Traditional

With browse

MPRODY

APRODY

MPRODN

APRODN

StringManipulation Object-Generic BSTRINGY BSTRINGN

FLIBSTR

CSUCASE

5

Supplied Demo ApplicationsWeb and Business Services

Web Service Name (or business service name
when different)

Type Proxy Subprogram

Warehouse Traditional

With browse

MWHY

AWHY

MWHN

AWHN

SOAP Client

The easiest way to test a Web service is to create a SOAP message that uses the service. To do this, open
the context menu for the Web service and select the SOAP Client testing tool. The SOAP Client provides
a list of the available methods. After you select a method, the SOAP Client fills in the URL, method
name, and a simple SOAP Request. If you require specific input values, you can modify the SOAP
message to reflect this.

In some cases, you can use one method to create output for another method to use as input. For example,
the output for a FindBy… method is typically the input for a MultiMaint method. In this case, you can
indicate the rows to be modified by typing a value in the appropriate row states (for example, U for
Update).

Natural Business Services uses services exposed by the SOAP Client. For example:

GetMetaData, which retrieves the metadata for a service

GetServiceList, which determines which services are used in a Web service node

Login, which creates a security token for a user ID and password combination

To view an example of input that has been modified, open the Soap Client example called
CalculatorAdvanceSolutionWithLowerNumbers (located in the SoapClient directory under
inetpubs/wwwroot/NBSDemos). CalculatorAdvanceSolutionWithLowerNumbers divides the first and
second numbers by their greatest common divisor. This produces the lowest numbers that equal the same
result when they are divided. The greatest common divisor is also shown. For example, 30 divided by
24=1.25. The greatest common divisor is 6, so 30 can be reduced to 5 and 24 can be reduced to 4 and the
result is 1.25.

Additional Features When Using Predict
This section describes additional features of the SYSBIZDE demo application when using the Predict data
dictionary.

BDT Options

When data is displayed, formatting should be automatically performed. To do this, you can define BDTs
(business data types) for fields in the Predict file definition. If a BDT is not assigned in Predict, the Web
Service wizard “guesses” which BDT to use. For example, if the field format is numeric with two decimal
places, the wizard guesses that the BDT type is a currency amount. An example of using this BDT is the
Result field for the Calculator service in the DEMO domain. A “$” is automatically placed at the
beginning of this field.

6

Additional Features When Using PredictSupplied Demo Applications

With this rule you may think the FIRST-NUM and SECOND-NUM fields should also have “$” in front of
them. By default they do, but the data type was changed from BDTCurrency to BDTNumeric when the
Web service was generated.

Tip:
To remove the “$” from the Result field, you can assign BDTNumeric to this field and regenerate the Web
service.

ALLOW-LOWER-CASE Option

By default, an object browse subprogram converts all input data into upper case. The
ALLOW-LOWER-CASE option allows users to enter data in lower case. It is useful for a field like
Business Name, where the name is stored in mixed case.

 To specify the lower case option:

1. Associate the ALLOW-LOWER-CASE keyword with the definition for the input field in Predict.

2. Regenerate the object browse subprogram.

For more information, see Natural Construct Object Models.

7

Supplied Demo ApplicationsALLOW-LOWER-CASE Option

	Supplied Demo Applications
	Business Service Types
	Arbsub (Arbitrary Subprogram)
	Traditional
	Object-Browse-Select (Without Maintenance)
	Object-Browse-Select (With Maintenance)
	Object-Generic

	Features of the Demo Application
	Subprogram Proxies
	Web and Business Services
	SOAP Client

	Additional Features When Using Predict
	BDT Options
	ALLOW-LOWER-CASE Option

