Developing Client Proxy Classes and Web Services Developing Client Proxy Classes and Web Services

Developing Client Proxy Classesand Web
Services

This section describes how to develop client proxy classes and Web services. The following topics are
covered:

® Generate a Client Proxy Class
® Customize a Generated Client Proxy Class
® Use the Generated Client Proxy Classes

® Generate log4j Log Statements

Generate a Client Proxy Class

You can use the Natural Business Services Eclipse plug-in to create proxy classes in Java. Client proxy
classes provide access to business services running in Natural. The generated classes are plain Java
classes. Typically, proxy classes have properties and methods that map to their Natural counterparts.

Note:
This procedure differs, based on whether the target Java Virtual Machine (VM) is original or enhanced.

During generation, the wizard creates a folder called .nbsMetadata containing the specifications for the
Java class. This allows the specifications to be associated with a project rather than a workspace. The
metadata can be stored in CVS, as well as exported with the project.

Note:
A Java project must currently exist. For information, refer to the Eclipse documentation.

This section covers the following topics:
e Java Original
® Java Enhanced

® Deploy the Client Proxy Class as a Web Service Class

Java Original
This section describes how to generate a client proxy class for Java Virtual Machine (VM) version 1.4.

Note:
For information on setting the VM version, $&eferences for Java Classes

» Togenerateaclient proxy classfor Javaoriginal:

1. Open the context menu for a business service INB&Repositories view.

Developing Client Proxy Classes and Web Services Java Original

2. SelecCreate class.

TheConfigure generated class panel is displayed. For example:

¥ Create Class |ZI@

Configure generated class

Enter the desired project settings and parameters for the class ko be generated, -l

The generated class will be based on DEMO. Calculator w1, 1.1 service

Project Parameters

Broject folder: | Jtestisrc | [Brl:uwse...]
Package name: | dev53 | [Brn:lwse...]
File name: | CalculakorClass, java |

Client Promy Class

Class scope: | public W |

Class name: | CalculatorClass |

Generate JUnit test class |:|

Test file name: | |

Web Service

Generate Web service class [

Web Service Class: | |

aat File name: | |

®

This panel displays the default configuration settings for the class to be generated. Optionally, you
can:

Java Original

Developing Client Proxy Classes and Web Services

Task

Procedure

Change the project folder

Select a new root source folderRnoject folder.

Change the package name

Select a new package Rackage name.

Change the scope of the clag

the class scope.

Select the class scope frabhass scope. By default, public is

Rename the class

Enter a new name i@lass name.

Create a class that can be ru
in the JUnit testing framewor

SelectGenerate JUnit test class. This test class will contain
default tests for each method used by your business servic
name of the file used to store the test is display@aghfile
name.

b. The

Create additional Web servic
deployment files and classes

SelectGenerate Web service class and enter the Web servicg
class name and .aar file name. For more informatiorDeptoy
the Client Proxy Class as a Web Service Class

Rename the Web service

Enter a new name Web service name.

Refresh metadata from the
server

SelectRetrieve metadata from server.

3. SelectNext.

The wizard downloads metadata from the service repository on the server and disRegslyhe

generate panel. For example:

Developing Client Proxy Classes and Web Services Java Original

¥l Create Class |Z|@

Ready to generate

The wizard is now ready to generate. Seleck the Finish bukkon to generate the -l
class,

Methods | Diata

= [#] [CalculatorClass Property Yalue
= <> _default]) Service name Caloulator
[#]0 InputDataclass inputData Domain DEMO
[¢]) outputDataClass oukputData Wersian 10101
= <> mulkiply () Descripkion This is a natural :

[#]0 InputDataclass inputData

D CutputDataClass oukputData
=[] add))

[#]0 InputDataclass inputData

D CutputDataClass oukputData
=[] < dividel)

[#]0 InputDataclass inputData

D CutputDataClass oukputData
=-[#] < subkract()

[#]0 InputDataclass inputData

D CutputDataClass oukputData

':?:' Finish l ’ Cancel

Use this panel to customize the methods and data parameters your class will suppbethtde
tab allows you to customize how class methods will be generated based on your existing business service
methods.

4, Select th®ata tab.

For example:

Java Enhanced Developing Client Proxy Classes and Web Services

n Create Class |Z|@

Ready to generate

The wizard is now ready to generate, Select the Finish button o generate the -l
class,

Methcn:ls| Data |

= [#][0 CalculatorClass Propesty Yalue
=-[¢]) inputData (InputDataClass) Setvice name Calculakor
Function (Skring) Domain DEMO
Firsthurm {double) Wersion 10101
secondhum {double) Description This is a natural sub

successiCriteria (ink)

= r_—l outpukDats (OutputDataClass)
result {double)
kime (jawva.util.Date)
success (boolean)

Einish] [Cancel

TheData tab allows you to customize how Get and Set methods for your business service properties
will be generated.

5. SelecfFinish to generate the client proxy class.
Java Enhanced

This section describes how to generate a client proxy class that takes advantage the enhanced features of
Java Virtual Machine (VM) version 5. These features include:

Developing Client Proxy Classes and Web Services Java Enhanced

e Try/Catch statements that throw exceptions for server errors when calling business service methods
for a class

e Method definitions that include the correct input/output parameters based on the style of business
service

Note:
For information on setting the VM version, d&eferences for Java Classes

¥ Togenerateaclient proxy classfor Java enhanced:
1. Open the context menu for a business service iINB&Repositories view.
2. SelecCreateclass.

TheConfigure generated class panel is displayed. For example:

Java Enhanced Developing Client Proxy Classes and Web Services

& Create Class |ZIE]

Configure generated class

Enter the desired project settings and parameters for the class to be generated. -l

The generated class will be based on DEMO. Calculator.wl.1.1 service

Praoject Pararneters

Froject folder: | Vrest sre | [Eiru:uwse...]
Package name: | deS3 | [Brn:nwse...]
Eile name: | CalculatorClass, java |

Client Prosey Class

lass scope: | public W |

Class name: | CalculakorClass |
Auto detect class design
Generate IUnik kest class |:|

Test File name:; | |

weh Service

[] Generate Web service class

Service class name:

®

This panel displays the default configuration settings for the class to be generated. Optionally, you
can:

Developing Client Proxy Classes and Web Services

Task

Procedure

Change the project folder

Select a new root source folderRnoject folder.

Change the package name

Select a new package Rackage name.

Change the scope of the clag

Select the class scope frabhass scope. By default, public is
the class scope.

Rename the class

Enter a new name i@lass name.

Copy the field structure as
defined in the PDASs generats
for the business service
subprograms

De-seleciAuto detect class design. If this option is selected,
the wizard will determine which model to use when generat
the subprograms on the server and design an object class
hierarchy that is appropriate for the model. For example, th
generated Get method will accept the primary key as input
return an object that includes all fields.

The wizard recognizes subprograms generated by the
Object-Maint-Subp, Object-Browse-Subp, and
Object-Browse-Select-Subp models.

Java Enhanced

ng

U

and

Create a class that can be ru
in the JUnit testing framewor

SelectGenerate JUnit test class. This test class will contain
default tests for each method used by your business servic
name of the file used to store the test is display@adhfile
name.

. The

Create additional Web servic
deployment files and classes

SelectGenerate Web service class and enter the Web serviceg
class name i®ervice class name. For more information, see
Deploy the Client Proxy Class as a Web Service Class

Rename the Web service

Enter a new name Web service name.

Refresh metadata from serve

SelectRetrieve metadata from server.

3. SelectNext.

The wizard downloads metadata from the service repository on the server and displays the
Customize Gener ated Class panel. For example:

Java Enhanced Developing Client Proxy Classes and Web Services

& Create Class |:|@

Customize Generated Class
Modify the default class design, (Optional) -l

ame Name: | CalculatorC] |
ame: alculakorClass
= & calculatorClass

[= 8 Service Data Parameters SCope:

8 InputData

Descripkion:
o ogkpukDat
® HpUtLiata This is a natural subprogram that is .
= Inner classes used to do simple caloulator funckions,
® InputDataClass It also evaluates the solution a nd
w
C] OutputDataclass =

= @ Properties

@ InputDaka
@ OukputData
Methods

@ Add
Cefault
Divide
rultiply
Subtract

BB EE- @
LI

Einish] [Cancel

Use this panel to design how each method will work when generating Java classes for services that
were not generated by Natural Construct models.

4. Expand a method listed Methods.
5. Open the context menu for Parameters.

For example:

Developing Client Proxy Classes and Web Services Java Enhanced

Marne:

= @ CalculatorClass
=l 8 Service Data Parameters
8 InputData
o OutputData
=@ Inner classes
R C) InputDataclass
C CutputDataClass
=l & Propetties
@ InputData
@ OutputData
=l @ Methods

+

EFarametets
- @ Service Dat
@ Defaul

@ Divide
@
@

add Parareter
Q-éh Refresh

Mulkiply
Subtrack

o R T R A B

6. SelecAdd Parameter.

The parameter settings are displayed. For example:

10

Java Enhanced Developing Client Proxy Classes and Web Services

& Create Java Class Wizard @

Customize Generated Class A—

Madify the defaulk class design. (Optional) J
Mame
= @ caleulatorclass Hame: ||:|arameter |
[=}~ 8 Service Data Parameters Options
o InputData (®)Bind ta Field | v|
o QukputData
=@ Inner classes Inde:: | |

C] InputDataclass
C] CutputDataClass
=)~ @ Properties
@ InputDaka
@ QutputDaka
Methods
Add
[= & Parameters

() Class

m- @
@

LW Carameker
@ Service Data Para
@ Default

@ Divide

@ Mulkiply

@ Subtract

[B

@ Einish] [Cancel

Use this panel to add a parameter to the method and bind it to an existing field in the service.
Optionally, you can:

Task Procedure
Provide an index value for th| Type the value imndex.
Natural field

Bind the parameter to an inn(SelectClass and specify the class.
class

Select the return value for a | Select the method (for example, Add) and specify the retur
method settings. For information, s&elect Return Value for a MethoTﬂ

7. Type the name of the parameteNmme.

11

Developing Client Proxy Classes and Web Services

8. Select the Natural field iind to field.
9. SelecfFinish to generate your classes and files.
The new class is displayed in the program editor view.
Select Return Value for a Method
» To sdlect thereturn value for a method:

1. Select a method listed Miethods.

Information about the method is displayed. For example:

12

Java Enhanced

Java Enhanced Developing Client Proxy Classes and Web Services

& Create Java Class Wizard E]

Customize Generated Class

Modify the default class design, (Optional) y -l |
e Marne;
= & caleulatorclass ﬁidd |
=~ 8 Service Data Parameters } .
- o InputData Server name:
P om OutputDats |E|:I|:I |
= & 1rner classes Scope:!

R C) InputDataClass

i . ublic ;
w3 CutputDataclass Iu

=~ @ Properties [+] Check, resul:

{ @ InputData Return

; - @ CutputDaka @Nu rekurm

=@ Methods i i
=Y 3 Bind to field

=& Parameters S =t
© & parameter

- @ Service DataPara () Bind ko class
[# @ Defaul
[#- @ Divide Description:
#- @ Mulkipl B
% P Adds bwo numbers together, '
[+ @ Subtrack

@ Mt = Firish] [Cancel

This panel displays the name of the method on the client and on the server, as well as the scope
(public or private) and description of the method. Optionally, you can:

Task Procedure
Change the name of the Type a new name iName.
method

Change the scope of the Select the new scope $tope.
method

Remove the option to verify | De-selecCheck result.
the result

Change the description of th¢ Type a hew description Description.
method

13

Developing Client Proxy Classes and Web Services Deploy the Client Proxy Class as a Web Service Class

2. Select one of the following binding options for the return value:
e Bind to field
To bind the return value to a field, select the field and, optionally, provide an index value.
® Bind to class
To bind the return value to an inner class, select the class.
For example, if you sele&ind to field and OUTPUT-DATA#RESULT, the Add method changes from:
public void Add() throws BusinessServiceException

to:

public double Add(double firstNum,
double secondNum)
throws BusinessServiceException

Deploy the Client Proxy Classasa Web Service Class

When generating a client proxy class, one of the wizard options generates a class and descriptor files to
deploy the client proxy class as a Web service class. Web service deployment is handled by the WS-Stack
plug-in. For information about this plug-in, referttip://rndcvweb.eur.ad.sag/Projects/WSS/Kits/

Note:
To deploy the client proxy class as a Web service dzassrate Web service class must be selected on
the Configure Generated Class panel.

This section covers the following topics:

Add CentraSite Associations

Deploy to an Internal Axis Server

Deploy to an External Application Server
Override the Generated Connection Settings

Add CentraSite Associations

The WS-Stack plug-in will not add an association between a Web service being added to CentraSite and
the NBS repository metadata in CentraSite. You must add each association manually.

¥ To add associationsto CentraSite:
1. Open the context menu for the .aar file inRaekage Explorer view.
2. SelecBusiness Services > Add CentraSite association.

The CentraSite Connection window is displayed. For example:

14

Deploy the Client Proxy Class as a Web Service Class Developing Client Proxy Classes and Web Services

& Add CentraSite Associations

CentraSite Connection

Enter the Centrasite connection details Far the associations vau want b add,

Conneckion Dekails

Liser ID: Liser
Passward:
SEFVEr: http: [flacalhost: 53305/ CentrasiteCentrasite

Organization: | CenbraSite

Associakions
Zelect the associations ko be added.

Service uses business service

Business setvice has parent domain

(z) Cancel

Use this window to add up to two associations between a Web service and the NBS repository
metadata to CentraSite. These associations are:

Association Description

Service uses business servig Association between the Web service and its corresponding
NBS business service metadata (for example,
CalculatorClassWS Uses DEMO.Calculator.v1.1.1).

Business service has parent| Association between the NBS business service metadata aphd its
domain corresponding NBS domain metadata (for example,
DEMO.Calculator.v1.1.1 HasParent DEMO).

3. Confirm the connection details.

4. Type the CentraSite passwordPassword.

15

Developing Client Proxy Classes and Web Services Deploy the Client Proxy Class as a Web Service Class

5. Select the associations you want to add.
6. SelecFinish.
The selected associations are added to CentraSite.
Deploy to an Internal Axis Server

The Web service can be deployed to an internal Axis server. The internal server will use your PC name as
the web server name.

» Todeploy to an internal Axisserver:
1. Open the context menu for the .aar file inRhekage Explorer view.
2. SelecBusiness Services > Internal Axis Deploy.

The deployed service is displayed in the Internal Web Browser view. For example:

16

Deploy the Client Proxy Class as a Web Service Class Developing Client Proxy Classes and Web Services

% Package Explor 27 E Hierarchy =] |1| Calculatorclass.java @ Internal Web Browser 52 =4d
EE (TR .http:,l',l'localhost:BDBI,l'axisZ,l'ser\-'ices,l' v B ==
= 7J test e
] _ -
= src
- - Deployed services
& |J] CalculatorClass.java
- [J] CalculatarClassws.java Version
- |J| MESConfigws.java
#-|J]| TestP307949C|ass. java Avyailable operations
=

] Ql TestP 307945 Class WS . java

CaloulatorClass. aar:

i o getVersion
- A TestP307949C|ass. aar g

[+-B, IRE Syskem Library [jrel 5.0_12]
B4, Referenced Libraries
= lb

TestP307949Class WS

Available operations

o _default
WhStackAdminService
Available operations

s getEngagedldodulesInGroup v

Deploy to an External Application Server

The Web service can be deployed to an external application server. This functionality is handled by the
WS-Stack plug-in. For information, refer ittp://rndcvweb.eur.ad.sag/Projects/WSS/Kits/

Before you can deploy the Web service, you must prepare the application server.

¥ To preparetheapplication server for Web service deployment:
® Copy theNBSAxis2.wafile to the..\tomcat\webapps\Axis2 Instédilder.

Note:
While deploying a Web service, the wizard can generate debug log statements. For information, see
Generate log4J Log Statements

Tip:
After making changes (such as changing the Java runtime version used by your classes and then
redeploying the class), you may have to restart the application server.

Tip:
If an error occurs while deploying a service to an external application server, ensure that the Java version

running on the server is correct. To determine which version is running, open the context menu for your
Java project and seldetoperties. View the Java Build Path and verify the JRE system library setting.

17

Developing Client Proxy Classes and Web Services Customize a Generated Client Proxy Class

Override the Generated Connection Settings

When deploying a client proxy class as a Web service class, the Java Class wizard creates two files: the
.aar file and the NBSConfigWs class. This class is responsible for creating the dispatcher and setting the
credentials used to communicate with the server. If desired, you can override the connection settings
generated into the NBSConfigWs class by overwriting the settings MBB&AXis.propertiefile (located

in C:\Documents and Settings\All Users\Application Data\Software AG\Natural Business
Services\Configuration

Customize a Generated Client Proxy Class

After generating a client proxy class, you can customize the code that was generated for a method or field
used by the class. However, regeneration will overwrite your changes unless you place the following
annotation immediately preceding the customized code:

@NBSPreserve(")
The annotation preserves the code for that method or field only.

Note:
Although providing a comment about the customization is optional, you must include the comment
indicators (i.e., the brackets and quotation marks).

Use the Generated Client Proxy Classes

This section describes the contents of the generated client proxy classes, how to execute the methods of a
client proxy, and how to use the Natural Business Services runtime client dispatcher. The following topics
are covered:

e Contents of a Generated Client Proxy Class
® Execute Methods of a Client Proxy Class

® Use the Natural Business Services Runtime Client Dispatcher

Contents of a Generated Client Proxy Class
Generated client proxy classes have the following contents:

® |nit Method
e Methods
® Data

Init Method

This method contains a parameter called IRemoteCaller, which communicates with the server (it is also
called a client dispatcher). You must create an instance of a class that supports the IRemoteCaller
interface. Use the NBS runtime and ServiceFactory contained in the dispatchclient package to do this. For
example:

18

Contents of a Generated Client Proxy Class Developing Client Proxy Classes and Web Services

import com.softwareag.nbs.bshelper.*;
import com.softwareag.nbs.dispatchclient.*;

Config.getDispatchClientConfig(“c:/eclipse/plugins/com.softwareag.nbs.ui_5.3.1/DispatchClient.config");
IRemoteCaller dispatcher = ServiceFactory.createDispatcher("Default Broker");
dispatcher.setUserID("GUEST");

dispatcher.setPassword("");

dispatcher.logon();

CalculatorClass bs = new CalculatorClass();
bs.init(dispatcher);

Note:

Although calling thalispatcher.logoff() method is not mandatory, it is recommended. Calling

the logoff method is important, especially with SPoD connections, as it releases server connections sooner
rather than waiting for them to be released during garbage collection. Calling the logon method is
mandatory.

When using the ServiceFactory to create an instance of IRemoteCaller, you must pass in the name of a
connection ID. For example:

IRemoteCaller dispatcher = ServiceFactory.createDispatcher("My Connection™);

This is the name you specified when creating new connections NBiB&epositories view. You must
also load the configuration file using the getDispatchClientConfig method of the Config object. For
example:

Config.getDispatchClientConfig(“"c:/My NBS Files/DispatchClient.config");

Methods

Each method in the class corresponds to a method in the business service.
Data

Each level 1 field from a PDA used in a business service becomes a Get/Set function of the class. Each
group within a PDA becomes a subclass. For example, if the following definition is specified:

01 Groupl

02 Group2
03 Field1 (A10)

The following is generated in the client proxy class:
public class Group1 {
public class Group2 {

public String getField1() {
return pda_inputData.getString("Field1",_ax);
}
}
}

19

Developing Client Proxy Classes and Web Services Execute Methods of a Client Proxy Class

Execute M ethods of a Client Proxy Class

When executing a method of a client proxy class, use the BusinessServiceResult return value to check for
communication and/or runtime errors. For example:

BusinessServiceResult bsr = businessSerivce.add(); // Invoke the add method.
if (bsr.isSuccess())

{

/I Success

}

else

{
String s = bsr.getDispatchResult().toString();

}

If your business service was generated using code generation patterns, or it uses a standard error message
parameter group, verify whether business service errors or warnings are present. The msg field will also
contain status messages. For example:

if (bs.getMessage().getReturnCode() == "E")
{

String s = bs.getMessage().getMsg(); // Error, warning or status message
Int | = bs.getMessage().getMsgNr(); // Error number

}

Usethe Natural Business Services Runtime Client Dispatcher

The runtime client dispatcher that uses the IRemoteCaller interface has properties and methods you can
use to provide additional functionality.

Set Security

When creating dispatcher objects, you must set the correct user ID and password to be used for remote
calls. For example:

dispatcher.setUserID("GUEST");
dispatcher.setPassword("secret");

Use Transactions

You can invoke business services in a transactional context by usstgtfi@ansaction ,
commit , andabort methods. For example:

Servicel svl = new ServicelClass();
Service2 sv2 = new Service2Class();

IRemoteCaller dispatcher = ServiceFactory.createDispatcher("Default Broker");
svl.init(dispatcher);
sv2.init(dispatcher);

dispatcher.startTransaction();
/I Call methods of sv1 and sv2.

/' If successful calls
dispatcher.commit();

/['If an error in a method
dispatcher.abort();

20

Generate log4j Log Statements Developing Client Proxy Classes and Web Services

Note:

To control transactions, the same dispatcher object must be used for each business service. For more
information, see the Java transaction example in the Samples folder. You can copy the Samples folder
from the installation CD.

Generatelog4j Log Statements

While creating a Java class and deploying a Web service to an external application server (for example,
Apache Tomcat), the wizard can generate debug log statements into each Web service method that
corresponds to a business service method.

Each Web service request is recorded in a log file with the following information:
o Name of the Web service (unigue identifier)
e User ID (found in DispatchClient.config)
e Timestamp indicating when the application server retrieves the Web service (Start of Request)
e Timestamp indication when the Web service leaves the application server (End of Request)

® Calculated time difference between the two timestamps (Request Elapsed Time)

» Toenablelogging:
1. Edit thelog4j.propertiedfile.

This file is located in a subfolder in tieBSAxis2\WEB-INF\classéslder where your application
server is running.

2. Add the following line:

log4j.logger.[package]=DEBUG, CONSOLE

where[package] s the Java package for your project containing the generated Java and Web
service classes. This will log all Web services in this package to the log file.

Tip:
You can also include the class name after the package name, for example
[package].[classnameWS] , which will enable logging for that class only.

3. Restart your application server.
Entries will be written to log files for standard output.

The log files use the following naming convention:

stdout_[date].log

These files are stored in different locations, depending on the application server you are using. (For
Apache Tomcat, they are stored in the Logs subfolder in which Tomcat is installed.)

21

Developing Client Proxy Classes and Web Services Generate log4j Log Statements

For more information, see:
® [o0g4J manualhttp://logging.apache.org/log4j/1.2/manual.html

e Using Log4J from Tomcahttp://tomcat.apache.org/tomcat-5.5-doc/logging.html

22

http://logging.apache.org/log4j/1.2/manual.html
http://tomcat.apache.org/tomcat-5.5-doc/logging.html

	Developing Client Proxy Classes and Web Services
	Generate a Client Proxy Class
	Java Original
	Java Enhanced
	Select Return Value for a Method

	Deploy the Client Proxy Class as a Web Service Class
	Add CentraSite Associations
	Deploy to an Internal Axis Server
	Deploy to an External Application Server
	Override the Generated Connection Settings

	Customize a Generated Client Proxy Class
	Use the Generated Client Proxy Classes
	Contents of a Generated Client Proxy Class
	Init Method
	Methods
	Data

	Execute Methods of a Client Proxy Class
	Use the Natural Business Services Runtime Client Dispatcher
	Set Security
	Use Transactions

	Generate log4j Log Statements

