
Developing Client Proxy Classes and Web
Services
This section describes how to develop client proxy classes and Web services. The following topics are
covered:

Generate a Client Proxy Class

Customize a Generated Client Proxy Class

Use the Generated Client Proxy Classes

Generate log4j Log Statements

Generate a Client Proxy Class
You can use the Natural Business Services Eclipse plug-in to create proxy classes in Java. Client proxy
classes provide access to business services running in Natural. The generated classes are plain Java
classes. Typically, proxy classes have properties and methods that map to their Natural counterparts.

Note:
This procedure differs, based on whether the target Java Virtual Machine (VM) is original or enhanced.

During generation, the wizard creates a folder called .nbsMetadata containing the specifications for the
Java class. This allows the specifications to be associated with a project rather than a workspace. The
metadata can be stored in CVS, as well as exported with the project.

Note:
A Java project must currently exist. For information, refer to the Eclipse documentation.

This section covers the following topics:

Java Original

Java Enhanced

Deploy the Client Proxy Class as a Web Service Class

Java Original

This section describes how to generate a client proxy class for Java Virtual Machine (VM) version 1.4.

Note:
For information on setting the VM version, see Preferences for Java Classes.

 To generate a client proxy class for Java original:

1. Open the context menu for a business service in the NBS Repositories view.

1

Developing Client Proxy Classes and Web ServicesDeveloping Client Proxy Classes and Web Services

2. Select Create class.

The Configure generated class panel is displayed. For example:

This panel displays the default configuration settings for the class to be generated. Optionally, you
can:

2

Java OriginalDeveloping Client Proxy Classes and Web Services

Task Procedure

Change the project folder Select a new root source folder in Project folder.

Change the package name Select a new package in Package name.

Change the scope of the classSelect the class scope from Class scope. By default, public is
the class scope.

Rename the class Enter a new name in Class name.

Create a class that can be run
in the JUnit testing framework

Select Generate JUnit test class. This test class will contain
default tests for each method used by your business service. The
name of the file used to store the test is displayed in Test file
name.

Create additional Web service
deployment files and classes

Select Generate Web service class and enter the Web service
class name and .aar file name. For more information, see Deploy
the Client Proxy Class as a Web Service Class.

Rename the Web service Enter a new name in Web service name.

Refresh metadata from the
server

Select Retrieve metadata from server.

3. Select Next.

The wizard downloads metadata from the service repository on the server and displays the Ready to
generate panel. For example:

3

Developing Client Proxy Classes and Web ServicesJava Original

Use this panel to customize the methods and data parameters your class will support. The Methods
tab allows you to customize how class methods will be generated based on your existing business service
methods.

4. Select the Data tab.

For example:

4

Java OriginalDeveloping Client Proxy Classes and Web Services

The Data tab allows you to customize how Get and Set methods for your business service properties
will be generated.

5. Select Finish to generate the client proxy class.

Java Enhanced

This section describes how to generate a client proxy class that takes advantage the enhanced features of
Java Virtual Machine (VM) version 5. These features include:

5

Developing Client Proxy Classes and Web ServicesJava Enhanced

Try/Catch statements that throw exceptions for server errors when calling business service methods
for a class

Method definitions that include the correct input/output parameters based on the style of business
service

Note:
For information on setting the VM version, see Preferences for Java Classes.

 To generate a client proxy class for Java enhanced:

1. Open the context menu for a business service in the NBS Repositories view.

2. Select Create class.

The Configure generated class panel is displayed. For example:

6

Java EnhancedDeveloping Client Proxy Classes and Web Services

This panel displays the default configuration settings for the class to be generated. Optionally, you
can:

7

Developing Client Proxy Classes and Web ServicesJava Enhanced

Task Procedure

Change the project folder Select a new root source folder in Project folder.

Change the package name Select a new package in Package name.

Change the scope of the classSelect the class scope from Class scope. By default, public is
the class scope.

Rename the class Enter a new name in Class name.

Copy the field structure as
defined in the PDAs generated
for the business service
subprograms

De-select Auto detect class design. If this option is selected,
the wizard will determine which model to use when generating
the subprograms on the server and design an object class
hierarchy that is appropriate for the model. For example, the
generated Get method will accept the primary key as input and
return an object that includes all fields.

The wizard recognizes subprograms generated by the
Object-Maint-Subp, Object-Browse-Subp, and
Object-Browse-Select-Subp models.

Create a class that can be run
in the JUnit testing framework

Select Generate JUnit test class. This test class will contain
default tests for each method used by your business service. The
name of the file used to store the test is displayed in Test file
name.

Create additional Web service
deployment files and classes

Select Generate Web service class and enter the Web service
class name in Service class name. For more information, see
Deploy the Client Proxy Class as a Web Service Class.

Rename the Web service Enter a new name in Web service name.

Refresh metadata from serverSelect Retrieve metadata from server.

3. Select Next.

The wizard downloads metadata from the service repository on the server and displays the
Customize Generated Class panel. For example:

8

Java EnhancedDeveloping Client Proxy Classes and Web Services

Use this panel to design how each method will work when generating Java classes for services that
were not generated by Natural Construct models.

4. Expand a method listed in Methods.

5. Open the context menu for Parameters.

For example:

9

Developing Client Proxy Classes and Web ServicesJava Enhanced

6. Select Add Parameter.

The parameter settings are displayed. For example:

10

Java EnhancedDeveloping Client Proxy Classes and Web Services

Use this panel to add a parameter to the method and bind it to an existing field in the service.
Optionally, you can:

Task Procedure

Provide an index value for the
Natural field

Type the value in Index.

Bind the parameter to an inner
class

Select Class and specify the class.

Select the return value for a
method

Select the method (for example, Add) and specify the return
settings. For information, see Select Return Value for a Method.

7. Type the name of the parameter in Name.

11

Developing Client Proxy Classes and Web ServicesJava Enhanced

8. Select the Natural field in Bind to field.

9. Select Finish to generate your classes and files.

The new class is displayed in the program editor view.

Select Return Value for a Method

 To select the return value for a method:

1. Select a method listed in Methods.

Information about the method is displayed. For example:

12

Java EnhancedDeveloping Client Proxy Classes and Web Services

This panel displays the name of the method on the client and on the server, as well as the scope
(public or private) and description of the method. Optionally, you can:

Task Procedure

Change the name of the
method

Type a new name in Name.

Change the scope of the
method

Select the new scope in Scope.

Remove the option to verify
the result

De-select Check result.

Change the description of the
method

Type a new description in Description.

13

Developing Client Proxy Classes and Web ServicesJava Enhanced

2. Select one of the following binding options for the return value:

Bind to field

To bind the return value to a field, select the field and, optionally, provide an index value.

Bind to class

To bind the return value to an inner class, select the class.

For example, if you select Bind to field and OUTPUT-DATA.#RESULT, the Add method changes from:

public void Add() throws BusinessServiceException

to:

public double Add(double firstNum,
 double secondNum)
 throws BusinessServiceException

Deploy the Client Proxy Class as a Web Service Class

When generating a client proxy class, one of the wizard options generates a class and descriptor files to
deploy the client proxy class as a Web service class. Web service deployment is handled by the WS-Stack
plug-in. For information about this plug-in, refer to http://rndcvweb.eur.ad.sag/Projects/WSS/Kits/.

Note:
To deploy the client proxy class as a Web service class, Generate Web service class must be selected on
the Configure Generated Class panel.

This section covers the following topics:

Add CentraSite Associations
Deploy to an Internal Axis Server
Deploy to an External Application Server
Override the Generated Connection Settings

Add CentraSite Associations

The WS-Stack plug-in will not add an association between a Web service being added to CentraSite and
the NBS repository metadata in CentraSite. You must add each association manually.

 To add associations to CentraSite:

1. Open the context menu for the .aar file in the Package Explorer view.

2. Select Business Services > Add CentraSite association.

The CentraSite Connection window is displayed. For example:

14

Deploy the Client Proxy Class as a Web Service ClassDeveloping Client Proxy Classes and Web Services

Use this window to add up to two associations between a Web service and the NBS repository
metadata to CentraSite. These associations are:

Association Description

Service uses business serviceAssociation between the Web service and its corresponding
NBS business service metadata (for example,
CalculatorClassWS Uses DEMO.Calculator.v1.1.1).

Business service has parent
domain

Association between the NBS business service metadata and its
corresponding NBS domain metadata (for example,
DEMO.Calculator.v1.1.1 HasParent DEMO).

3. Confirm the connection details.

4. Type the CentraSite password in Password.

15

Developing Client Proxy Classes and Web ServicesDeploy the Client Proxy Class as a Web Service Class

5. Select the associations you want to add.

6. Select Finish.

The selected associations are added to CentraSite.

Deploy to an Internal Axis Server

The Web service can be deployed to an internal Axis server. The internal server will use your PC name as
the web server name.

 To deploy to an internal Axis server:

1. Open the context menu for the .aar file in the Package Explorer view.

2. Select Business Services > Internal Axis Deploy.

The deployed service is displayed in the Internal Web Browser view. For example:

16

Deploy the Client Proxy Class as a Web Service ClassDeveloping Client Proxy Classes and Web Services

Deploy to an External Application Server

The Web service can be deployed to an external application server. This functionality is handled by the
WS-Stack plug-in. For information, refer to http://rndcvweb.eur.ad.sag/Projects/WSS/Kits/.

Before you can deploy the Web service, you must prepare the application server.

 To prepare the application server for Web service deployment:

Copy the NBSAxis2.war file to the ..\tomcat\webapps\Axis2 Install folder.

Note:
While deploying a Web service, the wizard can generate debug log statements. For information, see
Generate log4J Log Statements.

Tip:
After making changes (such as changing the Java runtime version used by your classes and then
redeploying the class), you may have to restart the application server.

Tip:
If an error occurs while deploying a service to an external application server, ensure that the Java version
running on the server is correct. To determine which version is running, open the context menu for your
Java project and select Properties. View the Java Build Path and verify the JRE system library setting.

17

Developing Client Proxy Classes and Web ServicesDeploy the Client Proxy Class as a Web Service Class

Override the Generated Connection Settings

When deploying a client proxy class as a Web service class, the Java Class wizard creates two files: the
.aar file and the NBSConfigWS class. This class is responsible for creating the dispatcher and setting the
credentials used to communicate with the server. If desired, you can override the connection settings
generated into the NBSConfigWS class by overwriting the settings in the NBSAxis.properties file (located
in C:\Documents and Settings\All Users\Application Data\Software AG\Natural Business
Services\Configuration).

Customize a Generated Client Proxy Class
After generating a client proxy class, you can customize the code that was generated for a method or field
used by the class. However, regeneration will overwrite your changes unless you place the following
annotation immediately preceding the customized code:

@NBSPreserve("")

The annotation preserves the code for that method or field only.

Note:
Although providing a comment about the customization is optional, you must include the comment
indicators (i.e., the brackets and quotation marks).

Use the Generated Client Proxy Classes
This section describes the contents of the generated client proxy classes, how to execute the methods of a
client proxy, and how to use the Natural Business Services runtime client dispatcher. The following topics
are covered:

Contents of a Generated Client Proxy Class

Execute Methods of a Client Proxy Class

Use the Natural Business Services Runtime Client Dispatcher

Contents of a Generated Client Proxy Class

Generated client proxy classes have the following contents:

Init Method
Methods
Data

Init Method

This method contains a parameter called IRemoteCaller, which communicates with the server (it is also
called a client dispatcher). You must create an instance of a class that supports the IRemoteCaller
interface. Use the NBS runtime and ServiceFactory contained in the dispatchclient package to do this. For
example:

18

Customize a Generated Client Proxy ClassDeveloping Client Proxy Classes and Web Services

import com.softwareag.nbs.bshelper.*;
import com.softwareag.nbs.dispatchclient.*;

Config.getDispatchClientConfig("c:/eclipse/plugins/com.softwareag.nbs.ui_5.3.1/DispatchClient.config");
IRemoteCaller dispatcher = ServiceFactory.createDispatcher("Default Broker");
dispatcher.setUserID("GUEST");
dispatcher.setPassword("");
dispatcher.logon();

CalculatorClass bs = new CalculatorClass();
bs.init(dispatcher);

Note:
Although calling the dispatcher.logoff() method is not mandatory, it is recommended. Calling
the logoff method is important, especially with SPoD connections, as it releases server connections sooner
rather than waiting for them to be released during garbage collection. Calling the logon method is
mandatory.

When using the ServiceFactory to create an instance of IRemoteCaller, you must pass in the name of a
connection ID. For example:

IRemoteCaller dispatcher = ServiceFactory.createDispatcher("My Connection");

This is the name you specified when creating new connections in the NBS Repositories view. You must
also load the configuration file using the getDispatchClientConfig method of the Config object. For
example:

Config.getDispatchClientConfig("c:/My NBS Files/DispatchClient.config");

Methods

Each method in the class corresponds to a method in the business service.

Data

Each level 1 field from a PDA used in a business service becomes a Get/Set function of the class. Each
group within a PDA becomes a subclass. For example, if the following definition is specified:

01 Group1
 02 Group2
 03 Field1 (A10)

The following is generated in the client proxy class:

public class Group1 {

 public class Group2 {

 public String getField1() {
 return pda_inputData.getString("Field1",_ax);
 }
 }
}

19

Developing Client Proxy Classes and Web ServicesContents of a Generated Client Proxy Class

Execute Methods of a Client Proxy Class

When executing a method of a client proxy class, use the BusinessServiceResult return value to check for
communication and/or runtime errors. For example:

BusinessServiceResult bsr = businessSerivce.add(); // Invoke the add method.
if (bsr.isSuccess())
{
 // Success
}
else
{
 String s = bsr.getDispatchResult().toString();
}

If your business service was generated using code generation patterns, or it uses a standard error message
parameter group, verify whether business service errors or warnings are present. The msg field will also
contain status messages. For example:

if (bs.getMessage().getReturnCode() == "E")
{
 String s = bs.getMessage().getMsg(); // Error, warning or status message
 Int I = bs.getMessage().getMsgNr(); // Error number
}

Use the Natural Business Services Runtime Client Dispatcher

The runtime client dispatcher that uses the IRemoteCaller interface has properties and methods you can
use to provide additional functionality.

Set Security

When creating dispatcher objects, you must set the correct user ID and password to be used for remote
calls. For example:

dispatcher.setUserID("GUEST");
dispatcher.setPassword("secret");

Use Transactions

You can invoke business services in a transactional context by using the startTransaction ,
commit , and abort methods. For example:

Service1 sv1 = new Service1Class();
Service2 sv2 = new Service2Class();

IRemoteCaller dispatcher = ServiceFactory.createDispatcher("Default Broker");
sv1.init(dispatcher);
sv2.init(dispatcher);

dispatcher.startTransaction();
// Call methods of sv1 and sv2.
...
// If successful calls
dispatcher.commit();
...
// If an error in a method
dispatcher.abort();

20

Execute Methods of a Client Proxy ClassDeveloping Client Proxy Classes and Web Services

Note:
To control transactions, the same dispatcher object must be used for each business service. For more
information, see the Java transaction example in the Samples folder. You can copy the Samples folder
from the installation CD.

Generate log4j Log Statements
While creating a Java class and deploying a Web service to an external application server (for example,
Apache Tomcat), the wizard can generate debug log statements into each Web service method that
corresponds to a business service method.

Each Web service request is recorded in a log file with the following information:

Name of the Web service (unique identifier)

User ID (found in DispatchClient.config)

Timestamp indicating when the application server retrieves the Web service (Start of Request)

Timestamp indication when the Web service leaves the application server (End of Request)

Calculated time difference between the two timestamps (Request Elapsed Time)

 To enable logging:

1. Edit the log4j.properties file.

This file is located in a subfolder in the \NBSAxis2\WEB-INF\classes folder where your application
server is running.

2. Add the following line:

log4j.logger.[package]=DEBUG, CONSOLE

where [package] is the Java package for your project containing the generated Java and Web
service classes. This will log all Web services in this package to the log file.

Tip:
You can also include the class name after the package name, for example
[package].[classnameWS] , which will enable logging for that class only.

3. Restart your application server.

Entries will be written to log files for standard output.

The log files use the following naming convention:

stdout_[date].log

These files are stored in different locations, depending on the application server you are using. (For
Apache Tomcat, they are stored in the Logs subfolder in which Tomcat is installed.)

21

Developing Client Proxy Classes and Web ServicesGenerate log4j Log Statements

For more information, see:

Log4J manual: http://logging.apache.org/log4j/1.2/manual.html

Using Log4J from Tomcat: http://tomcat.apache.org/tomcat-5.5-doc/logging.html

22

Generate log4j Log StatementsDeveloping Client Proxy Classes and Web Services

http://logging.apache.org/log4j/1.2/manual.html
http://tomcat.apache.org/tomcat-5.5-doc/logging.html

	Developing Client Proxy Classes and Web Services
	Generate a Client Proxy Class
	Java Original
	Java Enhanced
	Select Return Value for a Method

	Deploy the Client Proxy Class as a Web Service Class
	Add CentraSite Associations
	Deploy to an Internal Axis Server
	Deploy to an External Application Server
	Override the Generated Connection Settings

	Customize a Generated Client Proxy Class
	Use the Generated Client Proxy Classes
	Contents of a Generated Client Proxy Class
	Init Method
	Methods
	Data

	Execute Methods of a Client Proxy Class
	Use the Natural Business Services Runtime Client Dispatcher
	Set Security
	Use Transactions

	Generate log4j Log Statements

