
Developing Business Services
This section describes how to create and maintain business services. A business service consists of a
collection of methods related to a common business entity. Use the Business Service wizard to create and
maintain a business service. The following topics are covered:

Create a Business Service

Regenerate a Business Service

Regenerate a Service Proxy

Test a Business Service Method

Test a Business Service

Delete a Business Service

Edit a Service Definition

Edit Service Modules

Note:
You must use a SPoD connection to create, test, or deploy business services.

Create a Business Service
A business service consists of a collection of methods related to a common business entity. Use the
Business Service wizard in the Eclipse plug-in to create and maintain a business service. This wizard
generates a subprogram proxy to translate data (including Unicode formats) and then adds an entry in the
NBS Repositories view. It also generates additional subprograms as required.

 To create a new business service:

1. Open the context menu for the SPoD connection in the NBS Repositories view.

For an example of this menu, see Access Connection Options.

2. Select Create business service.

The Define the Service panel is displayed. For example:

1

Developing Business ServicesDeveloping Business Services

3. Select one of the following options:

Based on existing subprogram(s)

By generating new subprograms for data access

By creating an empty service skeleton

By using custom code generation model

Optionally, you can change the library in which to generate the service.

Depending on which option you select, one or more additional panels are displayed. After specifying
the appropriate information, select Next on the last specification panel. The Enter Service Name
and Select Domain panel is displayed. For example:

2

Create a Business ServiceDeveloping Business Services

Use this panel to name your business service and assign it to a domain. Optionally, you can:

3

Developing Business ServicesCreate a Business Service

Task Procedure

Create a new domain Select Create new domain. For information, see Create a New
Domain.

Change the version number for
the service

Type a new version number in Version number. Version
numbers help protect changes to the service that can disrupt
client communications. Use version 1.1.1 (default) for a new
service.

Create the service interface
using Unicode

Select Unicode enable service if your service has Unicode
fields (U data type). Services that use a Unicode interface
require a special EntireX runtime server definition. For
information, see Use Unicode Parameters for Your Business
Service.

Generate Natural clients Select Auto generate Natural clients. This option
automatically generates Natural clients, which can be used to
invoke the business service from a Natural environment. The
Business Service wizard generates a Natural client for each
server proxy your business service creates. For information, see
Natural Business Services Subprogram-Proxy-Client Model.

4. Enter the name of your service in Business service name.

This name should clearly identify the service (for example, CustomerWithContacts).

5. Select the business domain from Business domain name.

6. Verify the service version number.

7. Type the service identifier for generated subprograms in Identifier .

The service identifier can be up to five characters in length and will be used with a wizard-generated
prefix and suffix to identify the generated subprograms used for this service.

8. Type a brief description for your service in Service description.

This description can be useful when searching for a service.

9. Select Finish to generate the business service.

The Generation Status window is displayed, showing the progress of the generation. When
generation is completed, the window shows the names of the files generated for the business service.

The Results column indicates that the generated files have been generated for the first time (New).

Note:
To return to the wizard without saving the files, select Cancel.

10. Select Save to save the files.

4

Create a Business ServiceDeveloping Business Services

Note:
For information on testing your business service, see Test a Business Service.

Based on Existing Subprogram(s)

If you want to create a business service based on existing subprograms, you have various options:

Directly enable a subprogram

This option associates the DEFAULT method with an existing subprogram by directly enabling the
subprogram. For information, see Directly Enable Subprograms.

Note:
This option is only available when one subprogram is listed in Selected Subprogram(s) and the
option applies to that subprogram alone.

Categorize parameters

If the subprogram(s) was generated by the Object-Browse or Object-Maint models, this option
creates a business service that has associated methods. For information, see Categorize Parameters.

Use traditional defaults and FindBy methods

If the subprogram(s) was generated by Natural Construct, these options let you take advantage of the
Business Service wizard’s knowledge of Natural Construct models and allow it to generate default
methods for your business service. For information, see Select the Type of Methods Generated.

When you select the Based on existing subprogram(s) option on the Define the Service panel, the
Select Subprograms panel is displayed. For example:

5

Developing Business ServicesBased on Existing Subprogram(s)

If a subprogram was not generated by Natural Construct, the Business Service wizard allows you to
determine what the interface will look like (i.e., what data the service will expose to users) and which
methods it will use. Use this panel to indicate which Natural subprograms the business service will call.

Note:
The list of available libraries is retrieved from either the FUSER or FNAT file. The wizard determines
which libraries to display based on the library that is currently selected (i.e., the library in which the
modules will be created). If the current library is an FNAT library, all libraries in the FNAT are available.
If it is an FUSER library, all libraries in the FUSER are available.

1. Select Refresh.

A list of available subprograms for the current library is displayed.

If all subprograms cannot be displayed in the space provided, use the scroll bar to display the
additional subprograms.

To limit the list, enter a starting value and/or wildcard characters in Filter . In the example
above, all subprograms in C52DEMO will be displayed.

If desired, select a different library from Current library .

2. Select the subprogram you want to use.

3. Select Add.

6

Based on Existing Subprogram(s)Developing Business Services

Each selected subprogram is listed in Selected Subprogram(s). To remove a subprogram from this
list, select the subprogram and select Remove.

By default, the Business Service wizard will:

Generate a subprogram proxy

Populate the service repository on the server

Generate a subprogram to call one or more existing subprograms

This occurs when the Use traditional defaults and FindBy methods options are NOT selected on
the Select Subprograms panel. The wizard uses the Object-Generic-Subp model to generate the new
subprogram. You can choose which methods the service will use and which combination of
subprograms will be required to implement these methods. You can define customized methods for
the business service, add user exit code, and choose and categorize attributes to be exposed to the
business service user. Categorizing the attributes helps the business service user identify input,
input/output, output, or state parameter structures.

Note:
State is similar to input/output, except that it identifies parameters that are not exposed to the
business service user and are only required to maintain the state of the business object.

4. Select Next.

The Define Methods panel is displayed. For example:

7

Developing Business ServicesBased on Existing Subprogram(s)

Use this panel to define the methods the business service will expose to the consumer and provide a
brief description of the subprograms. Each time you enter a method name and select Add, the method
is listed in Method Name.

You can change the functionality of each method by changing the Callnat sequence. For information,
see Change the Method Callnat Sequence.

5. Select Next.

The last specification panel for the Business Service wizard is displayed.

8

Based on Existing Subprogram(s)Developing Business Services

Directly Enable Subprograms

Whether a subprogram is directly enabled or not, the Business Service wizard:

Generates a subprogram proxy

Populates the service repository on the server

When a subprogram is directly enabled, the wizard does not generate a “wrapper” subprogram to call the
specified subprograms. It does, however, create one method called DEFAULT. This method searches the
subprogram from top to bottom and exposes each attribute in the subprogram’s PDA when the
subprogram is executed.

 To directly enable a subprogram:

1. Select a subprogram listed on the Select Subprograms panel.

2. Select Add.

The subprogram is listed in Selected Subprogram(s).

3. Select Directly enable subprogram.

4. Select Next.

The Enter Service Name and Select Domain panel is displayed.

Tip:
You can also directly enable a subprogram from the program editor view by opening the context menu for
the subprogram and selecting Create Service. The Enter Service Name and Select Domain panel is
displayed.

Notes:

1. This option is only available when there is one subprogram listed in Selected Subprogram(s) and
the option applies to that subprogram alone.

2. Once the business service has been created, you can only change the method names; the basic
functionality cannot be changed without modifying the existing subprogram or the input parameters
for the subprogram.

Categorize Parameters

You can categorize parameters for your business service. Categorizing parameters allows users to easily
identify input, input/output, state, and output requirements. To reduce network traffic, we recommend that
only user-required fields be exposed in the interface.

Note:
By default, the categorization is turned off and the parameters for existing subprograms are used at the
same level for the service interface. Categorizing parameters moves these parameters under new level 1
structures for input, output, input/output, and state interface styles.

9

Developing Business ServicesBased on Existing Subprogram(s)

Note:
Whenever two subprograms interact, the exposed interface must be defined carefully. For information, see
Interface Considerations.

When categorizing parameters, you must ensure that parameters containing the same name (but different
values) are not placed in the same category. If this happens, the subprogram will generate but not compile
and you will have to decide how to handle the duplicate names.

When two subprograms contain level 1 structures with the same field or variable name, they must have
different interface styles (for example, one can be input/output and the other can be input only). For
example:

If the data for both parameters is the same, only one parameter must be exposed

If the data is different, the parameters must have unique names so users can easily differentiate
between the two

Note:
Parameters are not categorized by default, but this option is recommended for experienced users.

When you select this option on the Select Subprograms panel, the Define Interface panel is displayed
when you select Next. For example:

10

Based on Existing Subprogram(s)Developing Business Services

This panel lists each level 1 structure in the selected subprograms. By default, the parameters use the
input/output interface style.

To change the interface style for a parameter, select the parameter and one of the following options:

Input

Data is moved from the exposed interface to the internal business service variables. These exposed
fields will not be changed, even if the internal server fields change.

State

There is no coding difference between input/output and state interfaces styles. These structures just
make it easier to identify which fields should be exposed to the user and which are only required to
maintain a state with the server.

Output

Output parameters are reset. Even if the client copies data to the output structure, the data will be
erased. Only data the server puts in these fields is sent back to the client.

11

Developing Business ServicesBased on Existing Subprogram(s)

Tip:
If parameters are not unique within each parameter structure, a compile time error may occur. You can fix
this error in the Natural editor.

After categorizing the parameters, select Next to display the Define Methods panel. For information, see
Define Methods.

Interface Considerations

The following table lists several cases you can consider when defining the interface for your business
service:

Case Same
Parameter
Name

Example Same Data Example

1 No Name, Make No Smith, Toyota

2 Yes Personnel-ID, Personnel-IDYes 1111, 1111

3 No #first, #num Yes 4, 4

4 Yes Name, Name No Smith, D&D Company

Case 1

This case is simple and can be handled by the wizard.

Case 2

This case is relatively simple. Consider the following example:

01 #BIZ-INPUTS
 02 VEH
 03 PERSONNEL-ID (A8)
 03 MAKE (A30)
 03 MODEL (A30)
 02 EMP
 03 PERSONNEL-ID (A8)
 03 NAME

 To solve this problem, do one of the following:

Put one of the parameters under #BIZ-INPUTS and the other under #BIZ-INPUTS-OUTPUTS
(although this will expose the same attribute and data twice, creating some confusion for the business
service user)

Or:
Define the parameters as follows:

12

Based on Existing Subprogram(s)Developing Business Services

01 #BIZ-INPUTS
 02 VEH
* 03 PERSONNEL-ID (A8)
 03 MAKE (A30)
 03 MODEL (A30)
 02 EMP
* 03 PERSONNEL-ID (A8)
 03 NAME
 02 PERSONNEL-ID (A8)

Note:
This solution will work as long as PERSONNEL-ID is not part of a redefined field and reserving a
position in memory.

Case 3

In this case, you must decide which parameter should be exposed. Once this decision is made, you must
ensure that the correct data is moved into the other parameter using the MOVE-TO and MOVE-BACK
user exits. For example, if #NUM is exposed, add the following code to the MOVE-TO exit:

#FIRST := #NUM

Add the following code to the MOVE-BACK exit:

#NUM := #FIRST

Case 4

In this case, you must decide what “name” means and clarify the term for the business service user.
Consider the following parameters:

01 #BIZ-INPUTS
 02 EMP
 03 NAME (A30)
 03 PHONE (N10)
 02 BUS
 03 NAME (A50)
 03 ADDRESS (A100/5)

For example, you can change the names to OWNER-NAME and BUSINESS-NAME:

01 #BIZ-INPUTS
 02 EMP
* 03 NAME (A30)
 03 OWNER-NAME (A30)
 03 PHONE (N10)
 02 BUS
* 03 NAME (A50)
 03 BUSINESS-NAME (A30)
 03 ADDRESS (A100/5)

If the parameter data area changes, you must define the names in the MOVE-TO and MOVE-BACK user
exits as follows:

Add the following code to the MOVE-TO exit:

13

Developing Business ServicesBased on Existing Subprogram(s)

EMP.NAME := OWNER-NAME
BUS.NAME := BUSINESS-NAME

Add the following code to the MOVE-BACK exit:

OWNER-NAME := EMP.NAME
BUSINESS-NAME := BUS.NAME

Important:
If you change the business service interface (parameters), you must regenerate the subprogram proxy (or
proxies). For information, see Regenerate a Service Proxy.

Modify a Subprogram That is Not Directly Enabled

If you do not select the Directly enable a subprogram option, the Business Service wizard generates
another subprogram between the existing business service subprogram(s) and the proxy. This intermediate
subprogram can contain multiple, named methods that call one or more subprograms.

Note:
For an example of the intermediate subprogram, refer to BNUM in the demo application.

When the Categorize Parameters option is selected (for information, see Categorize Parameters), the
parameter data areas (PDAs) are generated into the PARAMETER-DATA user exit. This allows the
programmer to decide which parameters to expose in the client code.

Generating the PDAs into a user exit creates a problem, however, if the subprogram being called has been
changed. These changes will not be picked up. To solve this problem, use the Regeneration wizard. This
wizard adds comment indicators to the existing PDA code and creates a “fresh” PDA. Unfortunately, this
solution does not re-incorporate any manual changes. The programmer must re-evaluate the
PARAMETER-DATA user exit to determine which portion of the old and “fresh” code to keep.

For example, if you regenerated the CalculatorAdvance service in the DEMO domain, BNUM appears as
follows:

**SAG DEFINE EXIT PARAMETER-DATA
/* 01 #BIZ-INPUT-OUTPUTS
/* 02 E1-INPUT-DATA
/** 03 #FUNCTION (A30)
/* 03 #FIRST-NUM (N5.2)
/** 03 REDEFINE #FIRST-NUM
/** 04 #OPERAND-1 (I4)
/* 03 #SECOND-NUM (N5.2)
/** 03 REDEFINE #SECOND-NUM
/** 04 #OPERAND-2 (I4)
/* 03 #SUCCESS-CRITERIA (N5)
/** 02 E1-GCD-DATA
/** 03 #OPERAND-1 (I4)
/** 03 #OPERAND-2 (I4)
/** 03 #RESULT (I4) /* result goes into #GCD
/* 01 #BIZ-OUTPUTS
/* 02 E1-OUTPUT-DATA
/* 03 #RESULT (N11.2)
/* /* Because result is used in both subprograms and because
/* /* some methods will expose both the calculator result
/* /* and the Greatest Common Denominator, a new exposed field
/* /* has been created
/* 03 #GCD (I4)
/* 03 #TIME (T)

14

Based on Existing Subprogram(s)Developing Business Services

/* 03 #SUCCESS (L)
/* 03 #ERROR-MESSAGE (A79)
* Note: This EXIT creates MOVE-TO and MOVE-BACK exits.
* To regenerate, delete all 3 exits
*
 01 #BIZ-INPUT-OUTPUTS
 02 E1-INPUT-DATA
 03 #FUNCTION (A30)
 03 #FIRST-NUM (N5.2)
 03 #SECOND-NUM (N5.2)
 03 #SUCCESS-CRITERIA (N5)
 02 E1-GCD-DATA
 03 #OPERAND-1 (I4)
 03 #OPERAND-2 (I4)
 03 #RESULT (I4)
 01 #BIZ-OUTPUTS
 02 E1-OUTPUT-DATA
 03 #RESULT (N11.2)
 03 #TIME (T)
 03 #SUCCESS (L)

In this example, the code added by the programmer before the regeneration has been commented out and
may need to be re-incorporated.

Select the Type of Methods Generated

For Natural Construct-generated subprograms, you can use the Select Subprograms panel to select the
type of methods generated for your business service. After selecting and adding one or more subprograms,
the following options are available for the subprogram(s) listed in Selected Subprogram(s):

If an object browse OR object maintenance subprogram is listed, the Use traditional defaults field is
selected and the wizard will:

Generate a subprogram proxy

Populate the repository with the default methods associated with either the Object-Browse or
Object-Maint models

If an object browse AND an object maintenance subprogram are listed, and they access the same file,
the Use traditional defaults field is selected and the wizard will:

Generate a subprogram proxy for each subprogram

Populate the repository with the default methods associated with both the Object-Browse and
Object-Maint models

If a single object browse subprogram is listed, OR if an object browse AND an object maintenance
subprogram are listed that access the same file and the file has no intra-object relationships (i.e.,
relationships with other files that are maintained at the same time as the primary file), the Use
traditional defaults and FindBy methods fields are selected and the wizard will:

Generate an object browse select subprogram and subprogram proxy

Populate the repository with the FindBy methods associated with the
Object-Browse-Select-Subp model (and the default methods associated with the Object-Maint
models, if an object maintenance subprogram is also selected)

15

Developing Business ServicesBased on Existing Subprogram(s)

For more information on the Object series of models, see Natural Construct Object Models.

Define the Methods

As with the interface considerations, decisions must also be made as to which subprograms are executed
for each method and what order they are executed. In addition, data may need to be massaged before the
subprograms are executed for the method to work effectively and accurately. For a better understanding of
this, refer to the BNUM and BSTRING subprograms in the SYSBIZDE library. For information, see
Define Methods.

Change the Method Callnat Sequence

By default, the subprograms are executed in the order they were selected on the Select subprogram(s)
panel.

 To change the method Callnat sequence:

1. Select a method from Method Name on the Define Methods panel.

2. Select Callnat sequence.

The Method Callnat Sequence window is displayed. For example:

This window displays the name of each subprogram that is executed for the selected method and in
what order it is executed. Use this window to change the order of subprograms (select a subprogram
and select Move up or Move down) or to de-select a subprogram that should not be executed with
this method.

16

Based on Existing Subprogram(s)Developing Business Services

3. Select OK to save your changes.

In addition to these changes, you can further customize the functionality of methods within user exits
generated into the Natural code by the Business Service wizard. The subprogram created by the wizard is
called BserviceIdentifier and is located in the current library when the wizard is invoked.

Important:
If you make any changes to the exposed interface in this subprogram (i.e., changes to the PDAs), you must
regenerate the service proxy. For information, see Regenerate a Service Proxy.

By Generating New Subprograms for Data Access

This option will create the minimum components for a business service (a subprogram proxy and an entry
in the NBS Repositories view), as well as at least one Natural Construct object subprogram. Depending
on which data access type is selected on the Select Data Access Type panel, one of the following will be
generated:

An object maintenance subprogram

An object browse subprogram

An object browse-select subprogram

A combination of these subprograms

When you select the By generating new subprograms for data access option on the Define the Service
panel, the Define the Data Parameters panel is displayed. For example:

17

Developing Business ServicesBy Generating New Subprograms for Data Access

Use this panel to indicate the name of the file and the primary key used for data maintenance. To select
advanced options for additional data access customizations, select Advanced options. For information
about this window, see Specify Advanced Options for Data Access.

1. Select the name of the file used for data maintenance from Data file.

This file must currently exist in Predict.

2. Select the primary key for the specified file from Primary key.

3. Select Next.

The Select Data Access Type panel is displayed. For example:

18

By Generating New Subprograms for Data AccessDeveloping Business Services

4. Select one of the following data access types:

19

Developing Business ServicesBy Generating New Subprograms for Data Access

Data Access Type Description

Generate single view
data access service

Generates an object browse, object maintenance, and object
browse-select subprogram and the business service will have the
following methods: Delete, MultiMaint, Store, Update, FindBy (one or
more, such as the FindByDomainName method), and, optionally, Count
(one or more, such as the ServiceCountByDomain method). This access
type does not work with files that have intra-object relationships (for
example, the Order header has an intra-object relationship with Order
lines). But if only one physical file is involved, this type only requires
one user interface to browse and maintain data. It is also designed for
network efficiency, which means n rows of data can be processed at a
time for browse or data maintenance activities.

Generate compound
data access service

Generates an object browse and object maintenance subprogram and the
business service will have the following methods: BROWSE, DELETE,
FORMER, EXISTS, GET , INITIALIZE, NEXT, STORE, UPDATE. In
addition, two subprogram proxies are created: one for the BROWSE
method and one for all other methods. This access type handles complex
data structures with intra-object relationships that must be maintained. It
assumes that the data browse subprogram has a different interface than
the data maintenance subprogram. A high-level browse interface can be
exposed with multiple rows, but when an object must be maintained, all
details can be exposed. For example, the maintenance subprogram can
display all fields for Order and the browse subprogram can display the
Order header for n rows.

Note:
The wizard assumes 20 rows, but if the rows are very large, the wizard
will lower the number of rows until it reaches a reasonable message
size.

For more information, see More About the Object Browse-Select Subprogram.

5. Select which subprograms (and proxies) to generate.

Generate maintenance and browse (the default)

Generate browse only

Generate maintenance only

6. Select Next.

The last specification panel for the Business Service wizard is displayed.

Specify Advanced Options for Data Access

This option is available if an object maintenance subprogram will be generated.

 To specify advanced options for data access:

20

By Generating New Subprograms for Data AccessDeveloping Business Services

1. Select Advanced options on the Define the Data Parameters panel.

The Advanced Options window is displayed. For example:

The first option in this window allows the wizard to generate code to maintain a log file whenever
data is modified through this business service. The second option specifies the record-locking
method. The object maintenance subprogram has two methods to lock records: hash locking and
timestamp field locking. The traditional method is using a timestamp. This method works well if the
file is always maintained by Natural Construct-generated objects. If not, data may have changed and
the timestamp field may not have been updated. The hash locking method checks all data to ensure
that nothing has been changed between when the user saw the data and when the database locks the
data.

Note:
To locate subprograms to use with your business service, select Find.

2. Type a suffix in Log file suffix.

The suffix identifies the log files for this business service.

3. Select one of the record-locking options.

4. Select OK .

More About the Object Browse-Select Subprogram

An object browse-select subprogram can:

Determine the key fields for the object browse subprogram and separate them into different methods
(for example, the various FindBy and Count methods)

Allow a row-state attribute on each row to process methods at the row level

21

Developing Business ServicesBy Generating New Subprograms for Data Access

Reduce network traffic by executing both the object browse and object maintenance subprograms
from the same object browse-select subprogram

For example, if the row-state attribute determines that rows 3, 5, and 10 in the object browse
subprogram must be modified, and the modified values are sent back to the server with all the rows, three
calls to the object maintenance subprogram can be processed without going back to the client.

Be modified through user exit code.

You can write Natural code to massage the data and/or call other Natural subprograms.

Expose the data as a dataset

This allows the Natural Business Services .NET plug-in to take advantage of dataset processing and
handle row processing beyond the n rows defined for the object browse-select subprogram. For
example, the object browse-select subprogram can pass the 20 rows it receives from the object browse
subprogram. But if the user adds four rows, special processing must be done internally because the object
browse-select subprogram only handles a specified number of rows. In this case, two calls to the server
must be made to process the 24 rows. Similar complexities arise when a user deletes rows.

The flexibility of allowing methods to be processed at the row level adds some complexity to security
considerations. For example, assume that one user is allowed to add, update, and delete rows, and wants to
do this to a group of rows at a time, but another user can only add and update rows. When an object
browse-select subprogram is used, the FindBy* methods retrieve the data and the MultiMaint method
processes row-level methods. As Delete, Store, and Update are row-level methods, both users can be
granted access to the MultiMaint method, but only the first user will be granted access to the Delete
method.

The Business Service wizard automatically generates the standard methods, but you can also add custom
methods to the object browse-select subprogram. For information about this model, see
Object-Browse-Select-Subp Model.

By Creating an Empty Service Skeleton

Use this option when you want full control of creating a new subprogram to be used as a business service.
The wizard will generate the subprogram proxy and populate the service repository on the server. You can
edit the new subprogram in the program editor view.

Note:
For information on determining the module names that belong to a business service and loading the
modules into the editor, see Edit Service Modules.

When you select By creating an empty service skeleton on the Define the Service panel, the Define
Service Parameters panel is displayed. For example:

22

By Creating an Empty Service SkeletonDeveloping Business Services

Use this panel to define parameters for the business service. Optionally, you can select Import schema to
import an external schema to use as the data parameters for the service skeleton. For information, see
Import Schema.

1. Enter the parameters for the new business service in the space provided.

The parameters must be in standard Natural parameter format (see example above).

2. Select Next.

The Define Skeleton Methods panel is displayed. For example:

23

Developing Business ServicesBy Creating an Empty Service Skeleton

This panel lists the methods your skeleton service will expose to the user (DEFAULT in this
example).

To add a new method, type the method name in New method name, a brief description of the
method in New method description, and select Add.

To remove a method, select the method name and select Remove.

3. Select Next.

The last specification panel for the Business Service wizard is displayed.

Import Schema

 To import an external schema to use as the data parameters for the service skeleton:

1. Select Import schema on the Define Service Parameters.

The Import XSD/WSDL window is displayed. For example:

24

By Creating an Empty Service SkeletonDeveloping Business Services

Use this panel to import a schema and, optionally, change the field names, data types, and array
definitions (i.e., the use of dynamic or X-array variables). The schema can be either an XSD (XML
Schema document) or WSDL (Web Service Description Language) file. The selected XML schema will
be converted into Natural data area format.

2. Select Import .

A selection window is displayed to select the schema to import. Once the fields are displayed in
Imported parameter definition , you can change the following options for a selected field:

Option Description

Name Name of the field.

Type Data type.

Size Use of dynamic variables (either type or remove "D").

Lower bound Use of X-array variables for the lower bound (either type or remove
"*").

Upper bound Use of X-array variables for the upper bound (either type or remove
"*").

3. Select OK to save the changes to the parameter definition.

25

Developing Business ServicesBy Creating an Empty Service Skeleton

By Using Custom Code Generation Model

Use this option if the subprogram to be used as a business service was generated by a custom model.

Note:
To implement this option, the Custom models file field in the Preferences window for Natural Business
Services must be set to a valid models.xml file. For information, see Set Natural Business Service
Preferences.

During installation, the default models.xml file is copied to the following folder:

C:\Documents and Settings\All Users\Application Data\Software AG\Natural Business
Services\Configuration

Note:
If the models.xml file currently exists in this folder, the new file will not be copied. This protects any
changes you made to your models.xml file from being overwritten. In this case the new models.xml file is
also copied to the NBS install folder (C:\Program Files\Software AG\Natural Business Services\Vn.n).

When you select the By using custom code generation model option on the Define the Service panel,
the Select Custom Model panel is displayed. For example:

26

By Using Custom Code Generation ModelDeveloping Business Services

1. Select the custom model from Custom model name.

The fields available for the custom model are displayed.

2. Specify the field names and values.

If a field does not have lookup values available, the value must be manually entered. If lookup logic
is available, the Lookup value button becomes active when you select the field. For example:

27

Developing Business ServicesBy Using Custom Code Generation Model

Note:
Although lookup values for Predict files and keys are supplied, they must be enabled. You can also
define your own lookup logic for a custom model. For information, see Define Lookup Values.

3. Select Next.

The last specification panel for the Business Service wizard is displayed.

Note:
The custom model must be defined in the Natural Business Services Administration. For information, see
Using Custom Models with Natural Business Services.

Define Lookup Values

This section describes how to enable the supplied lookup logic for Predict files and keys, as well as how to
define your own lookup logic for a custom model.

Two CustomModelLookups extensions are supplied with the Business Service wizard:

PredictFileCustomLookup (displays a list of Predict files)

28

By Using Custom Code Generation ModelDeveloping Business Services

PredictKeyCustomLookup (displays a list of key fields for the selected Predict file)

To enable the supplied Predict extensions, the models.xml file for the custom model must include a
binding between a parameter field name and a CustomModelLookups extension contribution.

 To enable the supplied lookup logic for Predict files and keys:

Modify the models.xml file (defined in the Natural Business Service Preferences window) and bind
the parameter field names for your custom model to the Predict extensions listed above.

Note:
For more information, see the comments in the supplied default models.xml file (located in
C:\Documents and Settings\All Users\Application Data\Software AG\Natural Business
Services\Configuration).

If desired, you can also define your own lookup options for a custom model.

 To define custom lookup logic:

1. Create a plug-in project to store your custom lookup code.

2. Add the com.softwareag.nbs.ui plugin as a dependency in your plug-in project.

3. Create a java class that extends com.softwareag.nbs.generation.server.CustomLookupBase.

4. Implement logic in the lookup() method for your java class to return a String value (this value will be
automatically set in the service wizard custom model field table).

5. Add an extension contribution to the com.softwareag.nbs.ui.CustomModelsLookups extension point.

6. Name the extension with a unique ID and set the class to the java class created in Step 3.

7. Modify the models.xml file (defined in the Natural Business Service Preferences window) and bind
the parameter field names for your custom model to the new custom models lookup contribution.

Note:
For more information, see the comments in the supplied default models.xml file.

Regenerate a Business Service
Note:
This option is only available for SPoD connections.

 To regenerate a business service:

1. Open the context menu for the business service in the NBS Repositories view.

For an example of this menu, see Access Connection Options.

2. Select Regenerate service.

29

Developing Business ServicesRegenerate a Business Service

The Regenerate Business Service wizard panels are displayed, showing the specifications used to
generate the service.

3. Revise the specifications as desired.

For information about the options on the wizard panels, see Create a Business Service.

4. Select Finish on the last wizard panel to regenerate the service.

Regenerate a Service Proxy
The service proxy is also referred to as the subprogram proxy. It provides the link between a subprogram
and the Natural Business Services dispatch server.

When you change the parameters in a subprogram used for a business service, you must also change the
subprogram proxy for the service to accommodate the new message size. This is done by regenerating the
business service proxy.

Note:
If the parameters for a business service have changed and a business service consumer has already
incorporated the service, the consumer code (i.e., the Java class) must be regenerated as well.

 To regenerate a business service proxy:

1. Open the context menu for the business service in the NBS Repositories view.

2. Select Regenerate service proxy(s).

The Eclipse plug-in regenerates the service proxy (or proxies) without displaying the wizard panels.
New metadata is downloaded from the server before regeneration.

Test a Business Service Method

 To test a method used by a business service:

1. Expand the business service node in the NBS Repositories view.

Folders containing the methods and modules used for the business service are displayed. For
example:

30

Regenerate a Service ProxyDeveloping Business Services

2. Expand the Methods node.

3. Open the context menu for the method you want to test.

4. Select Test.

The test window is displayed. For a description of this window, see Test a Business Service.

Parameters for the Standard Methods

Certain methods are standard to business services. These methods can be divided into the following
categories:

Category Standard Methods

Single-row access DELETE, EXIST, FORMER, GET, INITIALIZE, NEXT, STORE, and
UPDATE

Multiple-row access BROWSE, MultiMaint, Update, Delete, Store, and the FindBy* series of
methods

31

Developing Business ServicesParameters for the Standard Methods

Understanding the parameters for these methods will simplify the testing process. This section covers the
following topics:

Single-Row Access
Multiple-Row Access

Single-Row Access

The DELETE, EXIST, FORMER, GET, INITIALIZE, NEXT, STORE, and UPDATE methods are used
on a single row of data. All methods that access a single row of data contain the same PDAs. These PDAs
are:

PDA Description

Data Contains the -ID values (for example, MCUSTA-ID).

Restricted Determines whether data has been modified between the time it was
retrieved for the test and the time a data maintenance method was requested.
This PDA should not be altered.

Tip:
The name of this PDA typically ends with an “R”.

Method (CDAOBJ2) Contains method data that is handled by Natural Business Services.

MSG-INFO Contains messages from the server; it is used for output only.

This section covers the following topics:

DELETE Method
EXIST Method
FORMER, GET, or NEXT Method
INITIALIZE Method
STORE Method
UPDATE Method

DELETE Method

 To test the DELETE method:

1. Issue the GET, NEXT, or FORMER method to retrieve a record.

2. Issue the DELETE method to delete the record.

A confirmation message should be displayed.

Note:
Ensure you are deleting the correct record.

32

Parameters for the Standard MethodsDeveloping Business Services

EXIST Method

 To test the EXIST method:

1. Issue the INITIALIZE method (to delete all data).

2. Enter a customer number (for example, "5555").

3. Issue the EXIST method.

This request will be successful whether the customer exists or not. The result of the request is
contained within the method PDA (CDAOBJ2) under OUTPUTS (the EXIST flag will be either True
or False).

FORMER, GET, or NEXT Method

The easiest single-row access method to test is NEXT because it does not require any input parameters.
This method simply gets the next record in the dataset.

The sequence of records within the dataset is determined by the PDA values that end with -ID. For
example, when testing the NEXT method for the Customer business service in the Demo domain,
MCUSTA and MCUSTA-ID will be displayed (MCUSTA will contain additional data). When you
expand MCUSTA-ID, CUSTOMER-NUMBER is displayed. This indicates that the next highest customer
number is displayed when the NEXT method is issued (and the previous customer number is displayed
when the FORMER method is issued).

To ensure that the restricted PDA is populated correctly, a record must be retrieved before an UPDATE or
DELETE method can be issued. The record can be retrieved by issuing the NEXT or FORMER method,
or issuing the GET method when you know what the key value is and whether the data for the key value is
supplied in the data PDA.

 To test the GET method:

1. Enter a valid customer number in CUSTOMER-NUMBER in the data PDA.

2. Issue the GET method.

The record associated with specified customer number should be displayed.

INITIALIZE Method

 To test the INITIALIZE method:

Issue the INITIALIZE method to delete all data except the key values.

Tip:
You can also delete the data from the -ID section of the data PDA and from the restricted PDA (except for
the first reference to the key value) and then reissue the GET method. This should retrieve all the values
for a customer based on the customer number provided, assuming that number exists. If the record does
not exist, a message is displayed.

33

Developing Business ServicesParameters for the Standard Methods

STORE Method

 To test the STORE method:

1. Enter a unique value in the key field in the data PDA.

2. Issue the STORE method to store the record.

A confirmation message should be displayed.

UPDATE Method

 To test the UPDATE method:

1. Issue the GET, NEXT, or FORMER method to retrieve a record.

2. Change the fields in the data PDA.

3. Issue the UPDATE method to update the record.

A confirmation message should be displayed.

Multiple-Row Access

The BROWSE, MultiMaint, Update, Delete, and Store methods, as well as the FindBy* series of methods,
are used on multiple rows of data.

Note:
The Update, Delete, and Store methods are handled internally by the MultiMaint method and should not
be used as individual methods. They allow administrators to revoke access to these methods when the
MultiMaint method is used.

All methods that access multiple rows of data contain the same PDAs. These PDAs are:

34

Parameters for the Standard MethodsDeveloping Business Services

PDA Description

Row Contains the rows of data retrieved from the database (in an array of 1:20).

Tip:
The name of this PDA typically ends with a “D” or “E1”.

Key Contains the key fields and starting values for components of the key being
used. For example, if you enter "M" in BUSINESS-NAME for the
Customer business service in the Demo domain, the BROWSE method
displays records beginning at "M".

Tip:
The name of this PDA typically ends with a “K”.

Restricted Contains state information, such as where to resume browsing, as well as
fields like FIRST-TIME and KEY-DATA. This PDA should not be altered.

Tip:
The name of this PDA typically ends with a “P”.

MSG-INFO Contains messages from the server; it is used for output only.

This section covers the following topics:

BROWSE Method
MultiMaint and FindBy* Methods

BROWSE Method

In addition to the standard PDAs, the BROWSE method contains additional PDAs that provide
specialized functionality. For example, the BROWSE method can sort data up to six different ways
depending on the availability of server-side keys. In addition, the server-side keys can be derived (so that
they make up more than one field).

Unfortunately, which keys are available, and which fields make up the keys, is unknown during testing.
The names of the fields that make up the keys are contained in the key PDA.

 To test the BROWSE method:

1. Determine which keys are available and which fields make up the keys.

To do this, refer to the specification lines for the object browse subprogram. For example, the
following keys are contained in the specifications for the ACUSTN subprogram used by the
Customer business service in the Demo domain:

**SAG LOGICAL-KEY(2): NAME-BACKWARDS
**SAG PHYSICAL-KEY(2,1): BUSINESS-NAME
**SAG DESCENDING(2,1): X

where LOGICAL-KEY contains the field used to sort data in a particular order and PHYSICAL-KEY
contains the fields that make up that key. For instance, back to our customer business service in the
demo domain.

35

Developing Business ServicesParameters for the Standard Methods

2. Enter "NAME-BACKWARDS" in the SORT-KEY field in the CDBRPDA PDA.

The results should be sorted by name in descending order.

You can also use other fields in CDBRPDA to test the BROWSE method. For example, if the row PDA
contains the COUNT field, you can use the HISTOGRAM field to return the number of key values, as
opposed to the entire record (such as "SMITH 20" to indicate there are 20 Smiths in the database).

You can also request that fewer rows of data be returned (than the standard 20 rows) by entering a number
in the ROWS-REQUESTED field.

Note:
For obvious reasons, you cannot specify a value higher than the number of rows available.

To specify a range of values, enter a number in the RANGE-OPTION field based on the following
information:

3 DEFAULT N 1 INIT<0> /* Input specifies a starting value, LE or GE will be determined based the sort order.
 * /* Embedded wildcard can be specified using >, < and characters for Alpha an
 * /* numeric characters.
 3 LESS-THAN N 1 INIT<1>
 3 LESS-THAN-OR-EQUAL N 1 INIT<2>
 3 EQUAL N 1 INIT<3>
 3 GREATER-THAN-OR-EQUAL N 1 INIT<4> /* Default
 3 GREATER-THAN N 1 INIT<5>
 3 BEGINS-WITH N 1 INIT<6> /* Prefix of key mat
 * /* the input key.
 3 NO-WILDCARD N 1 INIT<7>

If the RESTART field is False and the data has not changed, the BROWSE method will continue to get
the next n rows of data until the end of data is reached.

Tip:
The end of data is reached when the END-OF-DATA field is True.

Note:
If the RESTART field is True, the browse action will restart.

The ACTUAL-ROWS-RETURNED field contains the number of rows returned.

MultiMaint and FindBy* Methods

In addition to the standard PDAs used for multiple-row access, the MultiMaint and FindBy* series of
methods contain the CDBUPDA PDA, which is a subset of the CDBRPDA PDA used by the BROWSE
method. All fields in CDBUPDA behave the same way as described above. The key differences between
CDBUPDA and CDBRPDA include:

The SORT-KEY field is not required because the FindBy* methods assign the SORT-KEY value on
the server. You do not have to guess what the sort key should be.

The BUSINESS-INFO field is a subset of MSG-INFO; this field contains messages that pertain to all
rows, as opposed to messages for a specific row.

Except for the Add action, the MultiMaint method can only be issued after a FindBy* method has
retrieved the rows for maintenance. The MultiMaint method does not retrieve new rows (as do the
FindBy* and BROWSE methods); it only alters the current rows based on the value in the ROW-STATE
field for each row in the data PDA.

36

Parameters for the Standard MethodsDeveloping Business Services

 To test the MultiMaint method:

1. Enter "A" in the ROW-STATE field in the CDBUPDA PDA.

The output response should be displayed in the state as "AS" add successful.

2. Enter "U" in ROW-STATE.

The output response should be displayed in the state as "US" update successful.

3. Enter "D" in ROW-STATE.

The output response should be displayed in the state as "DS" delete successful.

Note:
The existing states can be found in CDSTATE. For a list of valid values, see ROW-STATE Values.

Test a Business Service

 To test your business service:

1. Open the context menu for the business service in the NBS Repositories view.

2. Select Test.

The test window is displayed. For example:

37

Developing Business ServicesTest a Business Service

3. Select a method from Method.

For this example, select Add.

4. Select #FIRST-NUM .

The properties and values for #FIRST-NUM are displayed.

5. Type "1" in the Value property.

6. Select #SECOND-NUM.

7. Type "1" in the Value property.

8. Select #RESULT.

9. Type "2" in the Value property.

10. Select Run test.

The results of the test are displayed in #SUCCESS. For example:

38

Test a Business ServiceDeveloping Business Services

You can use this window to test all methods available for this business service.

Test a Business Service with Multiple Rows

If multiple rows occur because an object-browse or object-browse-select subprogram was used to create
the service, two additional fields are available at the bottom of the test window. For example:

39

Developing Business ServicesTest a Business Service with Multiple Rows

These fields provide an alternate, easier way to populate the CDBUPDA.RANGE-OPTION and
CDBUPDA.RESTART parameters. The additional fields are:

Field Description

Restart Select this option to restart the test for multiple rows.

Range Option Select a range option to limit the test results. The range options are:

*

=

>

>=

<

<=

40

Test a Business Service with Multiple RowsDeveloping Business Services

Delete a Business Service
Note:
Removing a business service will only delete the service from the repository, it will not delete the Natural
modules.

 To delete (remove) a business service:

1. Open the context menu for the business service in the NBS Repositories view.

2. Select Delete.

A confirmation window is displayed. For example:

3. Select OK to delete the business service.

Edit a Service Definition

 To edit a business service definition:

1. Open the context menu for the business service in the NBS Repositories view.

2. Select Edit .

The Properties window for the business service is displayed. For example:

41

Developing Business ServicesDelete a Business Service

Use this window to:

42

Edit a Service DefinitionDeveloping Business Services

Task Procedure

Change the business service
description

Type a new description in Description.

Edit an existing method Select the method from Service Methods and change the
information in Selected Method. For example, you can the
change the name, description, server proxy name, or step library
chain.

Add a new method Select New and enter information about the new method in
Selected Method. Select Save Method to save the new method.
The new method is displayed in Service Methods.

Delete a method Select the method from Service Methods and select Delete. The
method is removed from Service Methods.

3. Select OK to close the Properties window.

Edit Service Modules
Note:
You must use a SPoD connection to edit the service modules.

 To edit the modules used for a business service:

1. Expand the business service node in the NBS Repositories view.

The methods and modules used for the business service are displayed as nodes in the repository view.
For example:

43

Developing Business ServicesEdit Service Modules

2. Do one of the following:

To edit all modules, open the context menu for Modules and select Edit all modules.

To edit one module, open the context menu for the module and select Edit .

The module(s) is displayed in the editor. For example:

44

Edit Service ModulesDeveloping Business Services

You can edit the module in this editor and then save the changes. For information on using this
editor, see the Eclipse documentation.

Important:
If you make any changes to the exposed interface in this subprogram (i.e., changes to the PDAs), you
must regenerate the service proxy. For information, see Regenerate a Service Proxy.

45

Developing Business ServicesEdit Service Modules

	Developing Business Services
	Create a Business Service
	Based on Existing Subprogram(s)
	Directly Enable Subprograms
	Categorize Parameters
	Interface Considerations
	Case 1
	Case 2
	Case 3
	Case 4

	Modify a Subprogram That is Not Directly Enabled
	Select the Type of Methods Generated
	Define the Methods
	Change the Method Callnat Sequence

	By Generating New Subprograms for Data Access
	Specify Advanced Options for Data Access
	More About the Object Browse-Select Subprogram

	By Creating an Empty Service Skeleton
	Import Schema

	By Using Custom Code Generation Model
	Define Lookup Values

	Regenerate a Business Service
	Regenerate a Service Proxy
	Test a Business Service Method
	Parameters for the Standard Methods
	Single-Row Access
	DELETE Method
	EXIST Method
	FORMER, GET, or NEXT Method
	INITIALIZE Method
	STORE Method
	UPDATE Method

	Multiple-Row Access
	BROWSE Method
	MultiMaint and FindBy* Methods

	Test a Business Service
	Test a Business Service with Multiple Rows

	Delete a Business Service
	Edit a Service Definition
	Edit Service Modules

