Developing Business Services Developing Business Services

Developing Business Services

This section describes how to create and maintain business services. A business service consists of a
collection of methods related to a common business entity. Use the Business Service wizard to create and
maintain a business service. The following topics are covered:

® Create a Business Service

® Regenerate a Business Service
® Regenerate a Service Proxy

® Test a Business Service Method
® Test a Business Service

® Delete a Business Service

® Edit a Service Definition

® Edit Service Modules

Note:
You must use a SPoD connection to create, test, or deploy business services.

Create a Business Service

A business service consists of a collection of methods related to a common business entity. Use the
Business Service wizard in the Eclipse plug-in to create and maintain a business service. This wizard
generates a subprogram proxy to translate data (including Unicode formats) and then adds an entry in the
NBS Repositoriesview. It also generates additional subprograms as required.

» To create a new business service:
1. Open the context menu for the SPoD connection iNBf& Repositoriesview.
For an example of this menu, skecess Connection Options
2. SelecCreate business service

TheDefine the Servicepanel is displayed. For example:

Developing Business Services Create a Business Service

'Ei Create Business Service |Z|@®

Define the Service

Choose one of the Follmwing options to create a new business service, ; | '

Define a new service:!

() Based on existing subprogram(s)

() By generating new subprograms for data access
() By creating an emply service skeleton

) By using custom code generation model

Current Matural library for code generation:

CS3DEMD w

3. Select one of the following options:
® Based on existing subprogram(s)
® By generating new subprograms for data access
® By creating an empty service skeleton
® By using custom code generation model
Optionally, you can change the library in which to generate the service.

Depending on which option you select, one or more additional panels are displayed. After specifying
the appropriate information, seld¢éxt on the last specification panel. TBater Service Name
and Select Domairpanel is displayed. For example:

Create a Business Service Developing Business Services

reate Business Service

Enter Service Name and Select Domain

Mame your new business service and assign it ko a domain. E | '

Enter the name of wour service. This name is recorded in the repository and should dearly identify this service (For example, CustomertithContacts),

Busingss service name! | |

Select the business domain, Domains group your services into logical application sets. Choose an existing domain or select Create new domain.

1
Business domain name: | DEMO bl [Qeate news domain, ..

Select service version number. Versioning prokects changes bo your service that could break client connections.

‘Yersion number: |1 || 1 | |1 |

Service identifier For generated subprograms {max 5 characters):
Identifier: | [

Type a brief description For vour service, This text can be useful to locate the service,

Service description: 3) i
s This service. ..,

[Junicode enable service frequires cuskom runtime configuration)

] auto generate Matural clientis)

Use this panel to name your business service and assign it to a domain. Optionally, you can:

Developing Business Services Create a Business Service

Task Procedure

Create a new domain SelectCreate new domain For information, se€reate a New
Domain

Change the version number | Type a hew version number¥Wersion number. Version

the service numbers help protect changes to the service that can disrupt
client communications. Use version 1.1.1 (default) for a new
service.

Create the service interface | SelectUnicode enable servicéf your service has Unicode
using Unicode fields (U data type). Services that use a Unicode interface
require a special EntireX runtime server definition. For
information, sedJse Unicode Parameters for Your Business
Service

Generate Natural clients SelectAuto generate Natural clients This option
automatically generates Natural clients, which can be used|to
invoke the business service from a Natural environment. The
Business Service wizard generates a Natural client for eack
server proxy your business service creates. For information|, see
Natural Business Services Subprogram-Proxy-Client Mode

4. Enter the name of your serviceBasiness service name
This name should clearly identify the service (for example, CustomerWithContacts).
5. Select the business domain frBusiness domain name
6. Verify the service version number.
7. Type the service identifier for generated subprograrteimnifier .

The service identifier can be up to five characters in length and will be used with a wizard-generated
prefix and suffix to identify the generated subprograms used for this service.

8. Type a brief description for your serviceSarvice description
This description can be useful when searching for a service.
9. SelecFinish to generate the business service.

The Generation Statuswindow is displayed, showing the progress of the generation. When
generation is completed, the window shows the names of the files generated for the business service.

The Results column indicates that the generated files have been generated for the first time (New).

Note:
To return to the wizard without saving the files, se(@ahcel

10. SelecBaveto save the files.

Based on Existing Subprogram(s) Developing Business Services

Note:
For information on testing your business service,T&s a Business Service

Based on Existing Subprogram(s)
If you want to create a business service based on existing subprograms, you have various options:

® Directly enable a subprogram

This option associates the DEFAULT method with an existing subprogram by directly enabling the
subprogram. For information, sBérectly Enable Subprograms

Note:

This option is only available when one subprogram is list&klacted Subprogram(sand the
option applies to that subprogram alone.

e Categorize parameters

If the subprogram(s) was generated by the Object-Browse or Object-Maint models, this option
creates a business service that has associated methods. For informa@Gategesze Parameters

® Use traditional defaults and FindBy methods

If the subprogram(s) was generated by Natural Construct, these options let you take advantage of the
Business Service wizard’s knowledge of Natural Construct models and allow it to generate default
methods for your business service. For information Ssdect the Type of Methods Generated

When you select thBased on existing subprogram(spption on theDefine the Servicepanel, the
Select Subprogramsanel is displayed. For example:

Developing Business Services

m Create Business Service

Based on Existing Subprogram(s)

Filker: |

| Subprogram
ACLSTN
ACLSTHZO
ACLSTZN
ACRDN
APRODD
APRODN
AHM
BCUSTEN
BMLIM
BORDN
BSTRIMGN
CALC
CSUCASE
£

Select Subprograms

Select the Matural subprograms your business service will call,

| Current fbrary: | CS3DEMO

Madel

OBJECT-BROWSE-SUBP
QBJECT-BROMWSE-STATIC
OBJECT-BROWSE-SLER
OBJECT-BROWSE-SUBP
OBJECT-BROWSE-DIALOG
OBJECT-BROWSE-SUBP
QBJECT-BROMWSE-SLIER
OBIECT-BROMWSE-SELECT-SUER
OBJECT-GENERIC-SUEBP
OBJECT-BROWSE-SELECT-5LER
OBJECT-GEMERIC-SUBP

CST-SHELL

Userid
MESS3
MBSS3
MESS3
SACAMGA
MESSS
MESS3
MEBSS3
MES53
MESS3
SACAMGA
MEBSS3
MBSS21
MESS3

Drate | Time e
05/05/2008-11:45 prm
05/09/2008-11:46 pm
05/09/2008-11:45 pm
08/06(2008-4:14 pm
05/05/2008-11:45 pm
05/05/2008-11:45 pra
05/09/2008-11:45 pm
05/09(2008-11:45 pm
05/09/2008-11:46 pm
08/06(2008-4:14 pm
05/08(2008-11:46 pm
03/22/2007-9:02 pm
05/09/2008-11:46 pm it

Selected Subprogramis)

Subprogram

Cancel

If a subprogram was not generated by Natural Construct, the Business Service wizard allows you to
determine what the interface will look like (i.e., what data the service will expose to users) and which
methods it will use. Use this panel to indicate which Natural subprograms the business service will call.

Note:

The list of available libraries is retrieved from either the FUSER or FNAT file. The wizard determines
which libraries to display based on the library that is currently selected (i.e., the library in which the
modules will be created). If the current library is an FNAT library, all libraries in the FNAT are available.
If itis an FUSER library, all libraries in the FUSER are available.

1. SelecRefresh

A list of available subprograms for the current library is displayed.

e |f all subprograms cannot be displayed in the space provided, use the scroll bar to display the
additional subprograms.

e To limit the list, enter a starting value and/or wildcard charactdfiter . In the example
above, all subprograms in C52DEMO will be displayed.

e |If desired, select a different library froBurrent library .

2. Select the subprogram you want to use.

3. SeleciAdd.

Based on Existing Subprogram(s) Developing Business Services

Each selected subprogram is listebelected Subprogram(s)To remove a subprogram from this
list, select the subprogram and seRemove

By default, the Business Service wizard will:
® Generate a subprogram proxy
® Populate the service repository on the server
® Generate a subprogram to call one or more existing subprograms

This occurs when thidse traditional defaultsandFindBy methodsoptions are NOT selected on

the Select Subprogramsanel. The wizard uses the Object-Generic-Subp model to generate the new
subprogram. You can choose which methods the service will use and which combination of
subprograms will be required to implement these methods. You can define customized methods for
the business service, add user exit code, and choose and categorize attributes to be exposed to the
business service user. Categorizing the attributes helps the business service user identify input,
input/output, output, or state parameter structures.

Note:
State is similar to input/output, except that it identifies parameters that are not exposed to the
business service user and are only required to maintain the state of the business object.

4. SelecfNext.

TheDefine Methodspanel is displayed. For example:

Developing Business Services Based on Existing Subprogram(s)

4 - -
'&l Create Business Service

Define Methods By
Define the lisk of methods your business service will expose and enter the service description, ; Y '

Enter each method name and select Add. To change the order subprograms are called, select Callnat sequence.

Method name:

| | Method Mame

Enter a brief description For the generated subprograms of the service,

Description:

This service subprogram...

Use this panel to define the methods the business service will expose to the consumer and provide a
brief description of the subprograms. Each time you enter a method name anddstl¢ice method
is listed inMethod Name

You can change the functionality of each method by changing the Callnat sequence. For information,
seeChange the Method Callnat Sequence

5. SelectNext.

The last specification panel for the Business Service wizard is displayed.

Based on Existing Subprogram(s) Developing Business Services

Directly Enable Subprograms

Whether a subprogram is directly enabled or not, the Business Service wizard:
® Generates a subprogram proxy
® Populates the service repository on the server

When a subprogram is directly enabled, the wizard does not generate a “wrapper” subprogram to call the
specified subprograms. It does, however, create one methodBEFEULT This method searches the
subprogram from top to bottom and exposes each attribute in the subprogram’s PDA when the
subprogram is executed.

¥ To directly enable a subprogram:
1. Select a subprogram listed on 8edect Subprogramspanel.
2. SelecAdd.
The subprogram is listed Belected Subprogram(s)
3. SelecDirectly enable subprogram
4. SelectNext.
TheEnter Service Name and Select Domaipanel is displayed.
Tip:
You can also directly enable a subprogram from the program editor view by opening the context menu for

the subprogram and selecti@geate Service TheEnter Service Name and Select Domaipanel is
displayed.

Notes:

1. This option is only available when there is one subprogram listelécted Subprogram(sand
the option applies to that subprogram alone.

2. Once the business service has been created, you can only change the method names; the basic
functionality cannot be changed without modifying the existing subprogram or the input parameters
for the subprogram.

Categorize Parameters

You can categorize parameters for your business service. Categorizing parameters allows users to easily
identify input, input/output, state, and output requirements. To reduce network traffic, we recommend that
only user-required fields be exposed in the interface.

Note:

By default, the categorization is turned off and the parameters for existing subprograms are used at the
same level for the service interface. Categorizing parameters moves these parameters under new level 1
structures for input, output, input/output, and state interface styles.

Developing Business Services Based on Existing Subprogram(s)

Note:
Whenever two subprograms interact, the exposed interface must be defined carefully. For information, see

Interface Considerations

When categorizing parameters, you must ensure that parameters containing the same name (but different
values) are not placed in the same category. If this happens, the subprogram will generate but not compile
and you will have to decide how to handle the duplicate names.

When two subprograms contain level 1 structures with the same field or variable name, they must have
different interface styles (for example, one can be input/output and the other can be input only). For
example:

e |f the data for both parameters is the same, only one parameter must be exposed

e |[f the data is different, the parameters must have unique names so users can easily differentiate
between the two

Note:
Parameters are not categorized by default, but this option is recommended for experienced users.

When you select this option on tBelect Subprogramsanel, theDefine Interface panel is displayed
when you seledilext. For example:

10

Based on Existing Subprogram(s) Developing Business Services

m Create Business Service @

Define Interface 1
Create the interface by selecting structures and determining their interface style. E | '

Parameter structures in your subprograms;

Level 1 Parameter Mame Input Input and Cutput Skate Oukput
WBCUSTE
ACUSTD
ACLSTP
CDERPDA
M3GE-INFC

MMM

Interface Style for Parameter

@ « Back ” Mest >

This panel lists each level 1 structure in the selected subprograms. By default, the parameters use the
input/output interface style.

To change the interface style for a parameter, select the parameter and one of the following options:
® Input

Data is moved from the exposed interface to the internal business service variables. These exposed
fields will not be changed, even if the internal server fields change.

® State

There is no coding difference between input/output and state interfaces styles. These structures just
make it easier to identify which fields should be exposed to the user and which are only required to
maintain a state with the server.

e Output

Output parameters are reset. Even if the client copies data to the output structure, the data will be
erased. Only data the server puts in these fields is sent back to the client.

11

Developing Business Services Based on Existing Subprogram(s)

Tip:
If parameters are not unigue within each parameter structure, a compile time error may occur. You can fix
this error in the Natural editor.

After categorizing the parameters, selekt to display theéDefine Methodspanel. For information, see
Define Methods

Interface Considerations

The following table lists several cases you can consider when defining the interface for your business
service:

Case Same Example Same Data | Example
Parameter
Name
1 No Name, Make No Smith, Toyota
2 Yes Personnel-ID, Personnel-l| Yes 1111, 1111
3 No #first, #num Yes 4,4
4 Yes Name, Name No Smith, D&D Company
Casel

This case is simple and can be handled by the wizard.

Case 2

This case is relatively simple. Consider the following example:

01 #BIZ-INPUTS

02 VEH
03 PERSONNEL-ID (A8)
03 MAKE (A30)
03 MODEL (A30)

02 EMP
03 PERSONNEL-ID (A8)
03 NAME

¥ To solve this problem, do one of the following:

® Put one of the parameters under #BIZ-INPUTS and the other under #BIZ-INPUTS-OUTPUTS
(although this will expose the same attribute and data twice, creating some confusion for the business
service user)

Or:
Define the parameters as follows:

12

Based on Existing Subprogram(s) Developing Business Services

01 #BIZ-INPUTS
02 VEH
* 03 PERSONNEL-ID (A8)
03 MAKE (A30)
03 MODEL (A30)
02 EMP
* 03 PERSONNEL-ID (A8)
03 NAME
02 PERSONNEL-ID (A8)

Note:
This solution will work as long as PERSONNEL-ID is not part of a redefined field and reserving a
position in memory.

Case 3

In this case, you must decide which parameter should be exposed. Once this decision is made, you must
ensure that the correct data is moved into the other parameter using the MOVE-TO and MOVE-BACK
user exits. For example, #NUMs exposed, add the following code to the MOVE-TO exit:

#FIRST = #NUM

Add the following code to the MOVE-BACK exit:

#NUM = #FIRST

Case 4

In this case, you must decide what “name” means and clarify the term for the business service user.
Consider the following parameters:

01 #BIZ-INPUTS
02 EMP
03 NAME (A30)
03 PHONE (N10)
02 BUS
03 NAME (A50)
03 ADDRESS (A100/5)

For example, you can change the names to OWNER-NAME and BUSINESS-NAME:

01 #BIZ-INPUTS
02 EMP
* 03 NAME (A30)
03 OWNER-NAME (A30)
03 PHONE (N10)
02 BUS
* 03 NAME (A50)
03 BUSINESS-NAME (A30)
03 ADDRESS (A100/5)

If the parameter data area changes, you must define the names in the MOVE-TO and MOVE-BACK user
exits as follows:

Add the following code to the MOVE-TO exit:

13

Developing Business Services Based on Existing Subprogram(s)

EMP.NAME := OWNER-NAME
BUS.NAME := BUSINESS-NAME

Add the following code to the MOVE-BACK exit:

OWNER-NAME := EMP.NAME
BUSINESS-NAME := BUS.NAME

Important:
If you change the business service interface (parameters), you must regenerate the subprogram proxy (or
proxies). For information, séRegenerate a Service Proxy

Modify a Subprogram That is Not Directly Enabled

If you do not select thBirectly enable a subprogramoption, the Business Service wizard generates
another subprogram between the existing business service subprogram(s) and the proxy. This intermediate
subprogram can contain multiple, named methods that call one or more subprograms.

Note:
For an example of the intermediate subprogram, refer to BNUM in the demo application.

When the Categorize Parameters option is selected (for informaticDasesgorize Parametgrshe
parameter data areas (PDASs) are generated into the PARAMETER-DATA user exit. This allows the
programmer to decide which parameters to expose in the client code.

Generating the PDAs into a user exit creates a problem, however, if the subprogram being called has been
changed. These changes will not be picked up. To solve this problem, use the Regeneration wizard. This
wizard adds comment indicators to the existing PDA code and creates a “fresh” PDA. Unfortunately, this
solution does not re-incorporate any manual changes. The programmer must re-evaluate the
PARAMETER-DATA user exit to determine which portion of the old and “fresh” code to keep.

For example, if you regenerated the CalculatorAdvance service in the DEMO domain, BNUM appears as
follows:

*SAG DEFINE EXIT PARAMETER-DATA

/* 01 #BIZ-INPUT-OUTPUTS

/* 02 E1-INPUT-DATA

/** 03 #FUNCTION (A30)

/* 03 #FIRST-NUM (N5.2)

[** 03 REDEFINE #FIRST-NUM

[** 04 #OPERAND-1 (14)

/* 03 #SECOND-NUM (N5.2)

/** 03 REDEFINE #SECOND-NUM

[** 04 #OPERAND-2 (14)

/* 03 #SUCCESS-CRITERIA (N5)

[** 02 E1-GCD-DATA

/** 03 #OPERAND-1 (14)

/** 03 #OPERAND-2 (14)

/¥ 03 #RESULT (14) /* result goes into #GCD

/* 01 #BIZ-OUTPUTS

/* 02 E1-OUTPUT-DATA

/* 03 #RESULT (N11.2)

I* /* Because result is used in both subprograms and because
I* /* some methods will expose both the calculator result
1* /* and the Greatest Common Denominator, a new exposed field
* [* has been created

I* 03 #GCD (14)

I* 03 #TIME (T)

14

Based on Existing Subprogram(s) Developing Business Services

/* 03 #SUCCESS (L)

I* 03 #ERROR-MESSAGE (A79)

* Note: This EXIT creates MOVE-TO and MOVE-BACK exits.
* To regenerate, delete all 3 exits

*

01 #BIZ-INPUT-OUTPUTS
02 E1-INPUT-DATA
03 #FUNCTION (A30)
03 #FIRST-NUM (N5.2)
03 #SECOND-NUM (N5.2)
03 #SUCCESS-CRITERIA (N5)
02 E1-GCD-DATA
03 #OPERAND-1 (14)
03 #OPERAND-2 (14)
03 #RESULT (14)
01 #BIZ-OUTPUTS
02 E1-OUTPUT-DATA
03 #RESULT (N11.2)
03 #TIME (T)
03 #SUCCESS (L)

In this example, the code added by the programmer before the regeneration has been commented out and
may need to be re-incorporated.

Select the Type of Methods Generated

For Natural Construct-generated subprograms, you can uSeldwt Subprogramganel to select the
type of methods generated for your business service. After selecting and adding one or more subprograms,
the following options are available for the subprogram(s) list&elacted Subprogram(s)

e |[f an object browse OR object maintenance subprogram is listedsthraditional defaultsfield is
selected and the wizard will:

O Generate a subprogram proxy

O Populate the repository with the default methods associated with either the Object-Browse or
Object-Maint models

e |f an object browse AND an object maintenance subprogram are listed, and they access the same file,
theUse traditional defaultsfield is selected and the wizard will:

O Generate a subprogram proxy for each subprogram

O Populate the repository with the default methods associated with both the Object-Browse and
Object-Maint models

e |[f a single object browse subprogram is listed, OR if an object browse AND an object maintenance
subprogram are listed that access the same file and the file has no intra-object relationships (i.e.,
relationships with other files that are maintained at the same time as the primary flligethe
traditional defaults andFindBy methodsfields are selected and the wizard will:

O Generate an object browse select subprogram and subprogram proxy

O Populate the repository with the FindBy methods associated with the
Object-Browse-Select-Subp model (and the default methods associated with the Object-Maint
models, if an object maintenance subprogram is also selected)

15

Developing Business Services Based on Existing Subprogram(s)

For more information on the Object series of modelsNsgaral Construct Object Models

Define the Methods

As with the interface considerations, decisions must also be made as to which subprograms are executed
for each method and what order they are executed. In addition, data may need to be massaged before the
subprograms are executed for the method to work effectively and accurately. For a better understanding of
this, refer to the BNUM and BSTRING subprograms in the SYSBIZDE library. For information, see

Define Methods

Change the Method Callnat Sequence

By default, the subprograms are executed in the order they were selecteGelethsubprogram(s)
panel.

» 10 change the method Callnat sequence:
1. Select a method froMethod Nameon theDefine Methodspanel.
2. SelectCallnat sequence

TheMethod Callnat Sequencewindow is displayed. For example:

& Method Callnat Sequence E|

subpragram Callnat Mave up
MCUSTC
CALCC

WH--B5P

Ik] [Cancel

This window displays the name of each subprogram that is executed for the selected method and in
what order it is executed. Use this window to change the order of subprograms (select a subprogram
and selecMove up or Move down) or to de-select a subprogram that should not be executed with

this method.

16

By Generating New Subprograms for Data Access Developing Business Services

3. SelecOK to save your changes.

In addition to these changes, you can further customize the functionality of methods within user exits
generated into the Natural code by the Business Service wizard. The subprogram created by the wizard is
called Bserviceldentifier and is located in the current library when the wizard is invoked.

Important:
If you make any changes to the exposed interface in this subprogram (i.e., changes to the PDASs), you must
regenerate the service proxy. For information,RRegenerate a Service Proxy

By Generating New Subprograms for Data Access

This option will create the minimum components for a business service (a subprogram proxy and an entry
in theNBS Repositoriesview), as well as at least one Natural Construct object subprogram. Depending

on which data access type is selected orstect Data Access Typpanel, one of the following will be
generated:

® An object maintenance subprogram
® An object browse subprogram

® An object browse-select subprogram
® A combination of these subprograms

When you select thBy generating new subprograms for data accesgption on theDefine the Service
panel, theDefine the Data Parameterganel is displayed. For example:

17

Developing Business Services By Generating New Subprograms for Data Access

'E'I Create Business Service @

Define the Data Parameters

Select the data parameters required to create your new business service, ; \)

Select the data file and primary key for data maintenance

Data File: | | [Browse. ..]

Primary key: | | [Browse, ..]

Select advanced options For additional data access customizations

Advanced options. ..

Use this panel to indicate the name of the file and the primary key used for data maintenance. To select
advanced options for additional data access customizations,selectced options For information
about this window, se8pecify Advanced Options for Data Access
1. Select the name of the file used for data maintenancefedanfile.
This file must currently exist in Predict.
2. Select the primary key for the specified file frBnmary key.
3. SeleciNext.

TheSelect Data Access Typpanel is displayed. For example:

18

By Generating New Subprograms for Data Access Developing Business Services

- - -
'&I Create Business Service

Select Data Access Type

Select the data access bvpe For wour service, The service can have a single view of data parameters or a compaund
interface {different parameters For different methods),

Seleck the data access type:
() Generate single view data access service {not valid if other files are involved)

@ Generate compound data access service

Select subprograms (and proxy bo generate:

() Generate maintenance and browse
() Generate browse only

O Generate mainkenance only

e} < Back ” Mext =

Cancel

4. Select one of the following data access types:

19

Developing Business Services By Generating New Subprograms for Data Access

Data Access Type | Description

Generate single view| Generates an object browse, object maintenance, and object
data access service |browse-select subprogram and the business service will have the
following methods: Delete, MultiMaint, Store, Update, FindBy (one [or
more, such as the FindByDomainName method), and, optionally, Gount
(one or more, such as the ServiceCountByDomain method). This gccess
type does not work with files that have intra-object relationships (fo
example, the Order header has an intra-object relationship with Orger
lines). But if only one physical file is involved, this type only requires
one user interface to browse and maintain data. It is also designed|for
network efficiency, which meamsrows of data can be processed at &
time for browse or data maintenance activities.

=

Generate compound | Generates an object browse and object maintenance subprogram and the
data access service |business service will have the following methods: BROWSE, DELHTE,
FORMER, EXISTS, GET , INITIALIZE, NEXT, STORE, UPDATE.%n

addition, two subprogram proxies are created: one for the BROWS|E
method and one for all other methods. This access type handles complex
data structures with intra-object relationships that must be maintained. It
assumes that the data browse subprogram has a different interface than
the data maintenance subprogram. A high-level browse interface cpn be
exposed with multiple rows, but when an object must be maintainef, all
details can be exposed. For example, the maintenance subprograrp can
display all fields for Order and the browse subprogram can display|the
Order header fom rows.

Note:
The wizard assumes 20 rows, but if the rows are very large, the wigard
will lower the number of rows until it reaches a reasonable message
size.

For more information, sedore About the Object Browse-Select Subprogram
5. Select which subprograms (and proxies) to generate.
® Generate maintenance and browse (the default)
® Generate browse only
® Generate maintenance only
6. SeleciNext.
The last specification panel for the Business Service wizard is displayed.
Specify Advanced Options for Data Access

This option is available if an object maintenance subprogram will be generated.

» To specify advanced options for data access:

20

By Generating New Subprograms for Data Access Developing Business Services

1. SelecAdvanced optionson theDefine the Data Parametergpanel.

The Advanced Optionswindow is displayed. For example:

& Advanced Options

X

Lag File suffiz: | |

Optimistic Locking Method
(%) Hash locking

) Timestamp field locking

Ik,] [Cancel

The first option in this window allows the wizard to generate code to maintain a log file whenever

data is modified through this business service. The second option specifies the record-locking
method. The object maintenance subprogram has two methods to lock records: hash locking and
timestamp field locking. The traditional method is using a timestamp. This method works well if the

file is always maintained by Natural Construct-generated objects. If not, data may have changed and
the timestamp field may not have been updated. The hash locking method checks all data to ensure
that nothing has been changed between when the user saw the data and when the database locks the
data.

Note:
To locate subprograms to use with your business service, Baldct

2. Type a suffix irLog file suffix.
The suffix identifies the log files for this business service.
3. Select one of the record-locking options.
4. SelecOK.
More About the Object Browse-Select Subprogram
An object browse-select subprogram can:

e Determine the key fields for the object browse subprogram and separate them into different methods
(for example, the various FindBy and Count methods)

e Allow a row-state attribute on each row to process methods at the row level

21

Developing Business Services By Creating an Empty Service Skeleton

® Reduce network traffic by executing both the object browse and object maintenance subprograms
from the same object browse-select subprogram

For example, if the row-state attribute determines that rows 3, 5, and 10 in the object browse
subprogram must be modified, and the modified values are sent back to the server with all the rows, three
calls to the object maintenance subprogram can be processed without going back to the client.

® Be modified through user exit code.
You can write Natural code to massage the data and/or call other Natural subprograms.
® Expose the data as a dataset

This allows the Natural Business Services .NET plug-in to take advantage of dataset processing and
handle row processing beyond theows defined for the object browse-select subprogram. For

example, the object browse-select subprogram can pass the 20 rows it receives from the object browse
subprogram. But if the user adds four rows, special processing must be done internally because the object
browse-select subprogram only handles a specified number of rows. In this case, two calls to the server
must be made to process the 24 rows. Similar complexities arise when a user deletes rows.

The flexibility of allowing methods to be processed at the row level adds some complexity to security
considerations. For example, assume that one user is allowed to add, update, and delete rows, and wants to
do this to a group of rows at a time, but another user can only add and update rows. When an object
browse-select subprogram is used, the FindBy* methods retrieve the data and the MultiMaint method
processes row-level methods. As Delete, Store, and Update are row-level methods, both users can be
granted access to the MultiMaint method, but only the first user will be granted access to the Delete

method.

The Business Service wizard automatically generates the standard methods, but you can also add custom
methods to the object browse-select subprogram. For information about this model, see
Object-Browse-Select-Subp Model

By Creating an Empty Service Skeleton

Use this option when you want full control of creating a new subprogram to be used as a business setrvice.
The wizard will generate the subprogram proxy and populate the service repository on the server. You can
edit the new subprogram in the program editor view.

Note:
For information on determining the module names that belong to a business service and loading the
modules into the editor, séalit Service Modules

When you seledBy creating an empty service skeletoon theDefine the Servicepanel, theDefine
Service Parameterganel is displayed. For example:

22

By Creating an Empty Service Skeleton Developing Business Services

I8 Create Business Service |Z|@@

Define Service Parameters

Define the parameters wour service will expose. ! Y '

Enter the parameters for wour service in Matural parameter Format, Import Schema. ..

01 #INPUTS
02 INPUT-FIELD (4207
01 #QUTPUTS
02 CUTPUT-FIELD (AZ20)
01 #INPUTS-CUTPUTS
02 INPUT-OUTPUT-FIELD (4207
01 #STATE
02 STATE-FIELD (AZ0)

':':’:' < Back. “ Mext =

Use this panel to define parameters for the business service. Optionally, you camgeldctchemato
import an external schema to use as the data parameters for the service skeleton. For information, see
Import Schema

1. Enter the parameters for the new business service in the space provided.
The parameters must be in standard Natural parameter format (see example above).
2. SelectNext.

TheDefine Skeleton Methodgpanel is displayed. For example:

23

Developing Business Services By Creating an Empty Service Skeleton

I Create Business Service @

Define Skeleton Methods

Define the methods your skeleton service will expose.,

Mew method name: |

Mew method description: |

Method Mame
DEFALLT

Method Description

< Back,][Mexk =

This panel lists the methods your skeleton service will expose to the user (DEFAULT in this
example).

® To add a new method, type the method nanidew method name a brief description of the
method inNew method description and selecfdd.

® To remove a method, select the method name and Rdeuive

3. SelectNext.

The last specification panel for the Business Service wizard is displayed.
Import Schema

» 1o import an external schema to use as the data parameters for the service skeleton:

1. Selectmport schemaon theDefine Service Parameters

Thelmport XSD/WSDL window is displayed. For example:

24

By Creating an Empty Service Skeleton Developing Business Services

& Import XSDASDL

X

Imported Parameter Definition;

Mame:

Type: hd

Size: Enter d For Dynamic

Lower bound: Enter * For ¥ array

ppet bound: Enter * For ¥ array
Mokes

] 4] [Cancel

Use this panel to import a schema and, optionally, change the field names, data types, and array
definitions (i.e., the use of dynamic or X-array variables). The schema can be either an XSD (XML
Schema document) or WSDL (Web Service Description Language) file. The selected XML schema will
be converted into Natural data area format.

2. Selectmport.

A selection window is displayed to select the schema to import. Once the fields are displayed in
Imported parameter definition, you can change the following options for a selected field:

Option Description

Name Name of the field.

Type Data type.

Size Use of dynamic variables (either type or remove "D").

Lower bound Use of X-array variables for the lower bound (either type or remove
oy

Upper bound Use of X-array variables for the upper bound (either type or remove
)

3. SelecOK to save the changes to the parameter definition.

25

Developing Business Services By Using Custom Code Generation Model

By Using Custom Code Generation Model
Use this option if the subprogram to be used as a business service was generated by a custom model.

Note:
To implement this option, th@ustom models filefield in thePreferenceswindow for Natural Business
Services must be set to a vatmbdels.xmfile. For information, se8et Natural Business Service

Preferences
During installation, the defauthodels.xmfile is copied to the following folder:

C:\Documents and Settings\All Users\Application Data\Software AG\Natural Business
Services\Configuration

Note:

If the models.xmfile currently exists in this folder, the new file will not be copied. This protects any
changes you made to yomodels.xmfile from being overwritten. In this case the newdels.xmfile is
also copied to the NBS install foldeZ:{Program Files\Software AG\Natural Business ServicesyVn.n

When you select thBy using custom code generation modelption on theéDefine the Servicepanel,
the Select Custom Modebanel is displayed. For example:

26

By Using Custom Code Generation Model Developing Business Services

K& Create Business Service |ZI®

Select Custom Model L
Enter the fields required by the custom model to create vour new business service, g A '
Custom model name: | [

Field Mame Field Yalue
@

1. Select the custom model frd@ustom model name
The fields available for the custom model are displayed.

2. Specify the field names and values.

If a field does not have lookup values available, the value must be manually entered. If lookup logic
is available, the.ookup value button becomes active when you select the field. For example:

27

Developing Business Services By Using Custom Code Generation Model

I8 Create Business Service

Select Custom Model b
Enter the Fields required by the custom model to create your new business service, E | }
Custarn model name: |OBJECT—MAINT—SUBP—2 v|

Field Marne Field Yalus Lookup value
PREDICT-FILE N
PREDICT-KEY
FPROYINCE
@ < Back " et =
Note:

Although lookup values for Predict files and keys are supplied, they must be enabled. You can also
define your own lookup logic for a custom model. For informationDsdmme Lookup Values

3. SelectNext.

The last specification panel for the Business Service wizard is displayed.

Note:
The custom model must be defined in the Natural Business Services Administration. For information, see

Using Custom Models with Natural Business Services

Define Lookup Values

This section describes how to enable the supplied lookup logic for Predict files and keys, as well as how to
define your own lookup logic for a custom model.

Two CustomModelLookups extensions are supplied with the Business Service wizard:

e PredictFileCustomLookup (displays a list of Predict files)

28

Regenerate a Business Service Developing Business Services

e PredictKeyCustomLookup (displays a list of key fields for the selected Predict file)

To enable the supplied Predict extensionsnbédels.xmfile for the custom model must include a
binding between a parameter field name and a CustomModelLookups extension contribution.

¥ To enable the supplied lookup logic for Predict files and keys:

o Modify the models.xmfile (defined in the Natural Business Service Preferences window) and bind

the parameter field names for your custom model to the Predict extensions listed above.

Note:

For more information, see the comments in the supplied defi@déls.xmfile (located in
C:\Documents and Settings\All Users\Application Data\Software AG\Natural Business
Services\Configuration

If desired, you can also define your own lookup options for a custom model.
¥ To define custom lookup logic:
1. Create a plug-in project to store your custom lookup code.
2. Add the com.softwareag.nbs.ui plugin as a dependency in your plug-in project.

3. Create a java class that extends com.softwareag.nbs.generation.server.CustomLookupBase.

4. Implement logic in the lookup() method for your java class to return a String value (this value will be

automatically set in the service wizard custom model field table).

5. Add an extension contribution to the com.softwareag.nbs.ui.CustomModelsLookups extension point.

6. Name the extension with a unique ID and set the class to the java class created in Step 3.

7. Modify themodels.xmfile (defined in the Natural Business Service Preferences window) and bind
the parameter field names for your custom model to the new custom models lookup contribution.

Note:
For more information, see the comments in the supplied defadlels.xmfile.
Regenerate a Business Service

Note:
This option is only available for SPoD connections.

¥ To regenerate a business service:
1. Open the context menu for the business service NBiSRepositoriesview.
For an example of this menu, skecess Connection Options

2. SelecRegenerate service

29

Developing Business Services Regenerate a Service Proxy

The Regenerate Business Service wizard panels are displayed, showing the specifications used to
generate the service.

3. Revise the specifications as desired.
For information about the options on the wizard panelsCseate a Business Service

4. SelecFinish on the last wizard panel to regenerate the service.

Regenerate a Service Proxy

The service proxy is also referred to as the subprogram proxy. It provides the link between a subprogram
and the Natural Business Services dispatch server.

When you change the parameters in a subprogram used for a business service, you must also change the
subprogram proxy for the service to accommodate the new message size. This is done by regenerating the
business service proxy.

Note:
If the parameters for a business service have changed and a business service consumer has already
incorporated the service, the consumer code (i.e., the Java class) must be regenerated as well.

¥ To regenerate a business service proxy:
1. Open the context menu for the business service INBi$eRepositoriesview.
2. SelecRegenerate service proxy(s)

The Eclipse plug-in regenerates the service proxy (or proxies) without displaying the wizard panels.
New metadata is downloaded from the server before regeneration.

Test a Business Service Method
¥ To test a method used by a business service:
1. Expand the business service node irN\B& Repositoriesview.

Folders containing the methods and modules used for the business service are displayed. For
example:

30

Parameters for the Standard Methods Developing Business Services

E MBS Repositories = O
X (& A~
o =
=[] (gl P

=-Lira) Caloulator(1.1.1)

-] Methods

+-[_] Maodules
+-Lr) CaloulatorAdvance(l.1.1)
#-Lir) Customer(l.1.1)
+-{(r0) CustomerCreditAnalysis(1.1.1)
+-L(r) CustomerWithContactDatall.1.1)
#-Lir) CustomerWithConkactDatal2,1.1)
+-{(r4) ErrorMessageTesting(l.1.1)
+l-{(t4) FlipString(1.1.1)
#-Lir) GreateskCormmonbenominator(1,1,1)
H-{r) Crder(1.1.1)
H-Lr) Crder(2.1.1)
#-Lr) Product{1,1.1}
+-{(r4) StringManipulation{1.1.1) w

£ >

§

2. Expand thélethods node.
3. Open the context menu for the method you want to test.
4. SelecfTest

The test window is displayed. For a description of this window]esea Business Service

Parameters for the Standard Methods

Certain methods are standard to business services. These methods can be divided into the following
categories:

Category Standard Methods

Single-row access DELETE, EXIST, FORMER, GET, INITIALIZE, NEXT, STORE, and
UPDATE

Multiple-row access |BROWSE, MultiMaint, Update, Delete, Store, and the FindBy* series ¢f
methods

31

Developing Business Services Parameters for the Standard Methods

Understanding the parameters for these methods will simplify the testing process. This section covers the
following topics:

® Single-Row Access
e Multiple-Row Access

Single-Row Access

The DELETE, EXIST, FORMER, GET, INITIALIZE, NEXT, STORE, and UPDATE methods are used
on a single row of data. All methods that access a single row of data contain the same PDAs. These PDAs
are:

PDA Description
Data Contains the -ID values (for example, MCUSTA-ID).
Restricted Determines whether data has been modified between the time it was

retrieved for the test and the time a data maintenance method was requested.
This PDA should not be altered.

Tip:
The name of this PDA typically ends with an “R”.

Method (CDAOBJ2) |Contains method data that is handled by Natural Business Services.

MSG-INFO Contains messages from the server; it is used for output only.

This section covers the following topics:

DELETE Method

EXIST Method

FORMER, GET, or NEXT Method
INITIALIZE Method

STORE Method

UPDATE Method

DELETE Method
¥ To test the DELETE method:
1. Issue the GET, NEXT, or FORMER method to retrieve a record.
2. Issue the DELETE method to delete the record.
A confirmation message should be displayed.

Note:
Ensure you are deleting the correct record.

32

Parameters for the Standard Methods Developing Business Services

EXIST Method

» To test the EXIST method:
1. Issue the INITIALIZE method (to delete all data).
2. Enter a customer number (for example, "5555").
3. Issue the EXIST method.

This request will be successful whether the customer exists or not. The result of the request is
contained within the method PDA (CDAOBJ2) under OUTPUTS (the EXIST flag will be either True
or False).

FORMER, GET, or NEXT Method

The easiest single-row access method to test is NEXT because it does not require any input parameters.
This method simply gets the next record in the dataset.

The sequence of records within the dataset is determined by the PDA values that end with -ID. For
example, when testing the NEXT method for the Customer business service in the Demo domain,
MCUSTA and MCUSTA-ID will be displayed (MCUSTA will contain additional data). When you

expand MCUSTA-ID, CUSTOMER-NUMBER is displayed. This indicates that the next highest customer
number is displayed when the NEXT method is issued (and the previous customer number is displayed
when the FORMER method is issued).

To ensure that the restricted PDA is populated correctly, a record must be retrieved before an UPDATE or
DELETE method can be issued. The record can be retrieved by issuing the NEXT or FORMER method,
or issuing the GET method when you know what the key value is and whether the data for the key value is
supplied in the data PDA.

¥ To test the GET method:

1. Enter a valid customer number in CUSTOMER-NUMBER in the data PDA.

2. Issue the GET method.

The record associated with specified customer number should be displayed.

INITIALIZE Method
¥ To test the INITIALIZE method:

® |ssue the INITIALIZE method to delete all data except the key values.
Tip:
You can also delete the data from the -ID section of the data PDA and from the restricted PDA (except for
the first reference to the key value) and then reissue the GET method. This should retrieve all the values

for a customer based on the customer number provided, assuming that number exists. If the record does
not exist, a message is displayed.

33

Developing Business Services Parameters for the Standard Methods

STORE Method
¥ To test the STORE method:
1. Enter a unique value in the key field in the data PDA.
2. Issue the STORE method to store the record.
A confirmation message should be displayed.
UPDATE Method
¥ To test the UPDATE method:
1. Issue the GET, NEXT, or FORMER method to retrieve a record.
2. Change the fields in the data PDA.
3. Issue the UPDATE method to update the record.
A confirmation message should be displayed.
Multiple-Row Access

The BROWSE, MultiMaint, Update, Delete, and Store methods, as well as the FindBy* series of methods,
are used on multiple rows of data.

Note:

The Update, Delete, and Store methods are handled internally by the MultiMaint method and should not
be used as individual methods. They allow administrators to revoke access to these methods when the
MultiMaint method is used.

All methods that access multiple rows of data contain the same PDAs. These PDAs are:

34

Parameters for the Standard Methods Developing Business Services

PDA Description
Row Contains the rows of data retrieved from the database (in an array of 1:20).
Tip:

The name of this PDA typically ends with a “D” or “E1".

Key Contains the key fields and starting values for components of the key peing
used. For example, if you enter "M" in BUSINESS-NAME for the
Customer business service in the Demo domain, the BROWSE methad
displays records beginning at "M".

Tip:
The name of this PDA typically ends with a “K”.

Restricted Contains state information, such as where to resume browsing, as we|l as
fields like FIRST-TIME and KEY-DATA. This PDA should not be altergd.
Tip:

The name of this PDA typically ends with a “P”.

MSG-INFO Contains messages from the server; it is used for output only.

This section covers the following topics:

® BROWSE Method
e MultiMaint and FindBy* Methods

BROWSE Method

In addition to the standard PDAs, the BROWSE method contains additional PDAs that provide
specialized functionality. For example, the BROWSE method can sort data up to six different ways
depending on the availability of server-side keys. In addition, the server-side keys can be derived (so that
they make up more than one field).

Unfortunately, which keys are available, and which fields make up the keys, is unknown during testing.
The names of the fields that make up the keys are contained in the key PDA.

» To test the BROWSE method:
1. Determine which keys are available and which fields make up the keys.

To do this, refer to the specification lines for the object browse subprogram. For example, the
following keys are contained in the specifications for the ACUSTN subprogram used by the
Customer business service in the Demo domain:

*SAG LOGICAL-KEY(2): NAME-BACKWARDS
*SAG PHYSICAL-KEY(2,1): BUSINESS-NAME
*SAG DESCENDING(2,1): X

whereLOGICAL-KEY contains the field used to sort data in a particular ordePa¥SICAL-KEY
contains the fields that make up that key. For instance, back to our customer business service in the
demo domain.

35

Developing Business Services Parameters for the Standard Methods

2. Enter "NAME-BACKWARDS" in the SORT-KEY field in the CDBRPDA PDA.
The results should be sorted by name in descending order.

You can also use other fields in CDBRPDA to test the BROWSE method. For example, if the row PDA
contains the COUNT field, you can use the HISTOGRAM field to return the number of key values, as
opposed to the entire record (such as "SMITH 20" to indicate there are 20 Smiths in the database).

You can also request that fewer rows of data be returned (than the standard 20 rows) by entering a number
in the ROWS-REQUESTED field.

Note:
For obvious reasons, you cannot specify a value higher than the number of rows available.

To specify a range of values, enter a number in the RANGE-OPTION field based on the following
information:
3 DEFAULT N 1 INIT<O> /* Input specifies a starting value, LE or GE will be determined based the sort order.

/* Embedded wildcard can be specified using >, < and characters for Alpha an
/* numeric characters.

3 LESS-THAN N 1INIT<1>

3 LESS-THAN-OR-EQUAL N 1INIT<2>

3 EQUAL N 1INIT<3>

3 GREATER-THAN-OR-EQUAL N 1 INIT<4> /* Default

3 GREATER-THAN N 1INIT<5>

3 BEGINS-WITH N 1 INIT<6> /* Prefix of key mat
* /* the input key.

3 NO-WILDCARD N 1INIT<7>

If the RESTART field is False and the data has not changed, the BROWSE method will continue to get
the nexin rows of data until the end of data is reached.

Tip:
The end of data is reached when the END-OF-DATA field is True.

Note:
If the RESTART field is True, the browse action will restart.

The ACTUAL-ROWS-RETURNED field contains the number of rows returned.
MultiMaint and FindBy* Methods

In addition to the standard PDAs used for multiple-row access, the MultiMaint and FindBy* series of
methods contain the CDBUPDA PDA, which is a subset of the CDBRPDA PDA used by the BROWSE
method. All fields in CDBUPDA behave the same way as described above. The key differences between
CDBUPDA and CDBRPDA include:

e The SORT-KEY field is not required because the FindBy* methods assign the SORT-KEY value on
the server. You do not have to guess what the sort key should be.

e The BUSINESS-INFO field is a subset of MSG-INFO; this field contains messages that pertain to all
rows, as opposed to messages for a specific row.

Except for the Add action, the MultiMaint method can only be issued after a FindBy* method has
retrieved the rows for maintenance. The MultiMaint method does not retrieve new rows (as do the
FindBy* and BROWSE methods); it only alters the current rows based on the value in the ROW-STATE
field for each row in the data PDA.

36

Test a Business Service Developing Business Services

» To test the MultiMaint method:
1. Enter "A" in the ROW-STATE field in the CDBUPDA PDA.
The output response should be displayed in the state as "AS" add successful.
2. Enter "U" in ROW-STATE.
The output response should be displayed in the state as "US" update successful.
3. Enter "D"in ROW-STATE.

The output response should be displayed in the state as "DS" delete successful.

Note:
The existing states can be found in CDSTATE. For a list of valid valueRQ@®eSTATE Values

Test a Business Service

» To test your business service:
1. Open the context menu for the business service NBiSRepositoriesview.
2. SelecfTest

The test window is displayed. For example:

37

Developing Business Services

L(+) DEMO, Caloulator, 1.1.1 25

Conneckion ID: | Development 2
Damain: DEMO

Service name: | Calculakor
Wersion: 1.1.1

Method: Add

Download Service Parameters

= INPUT-DATA Praperty
#FUNCTION -3 "
#FIRST-NUM -> 0
#SECOMND-NUM - '0'
#SUCCESS-CRITERIA -> 'O
= OUTPUT-DATA
#RESULT ->'0
#TIME - ' <UL
#3UCCESS -3 False'

3. Select a method froMethod.
For this example, seleédd.

4. SelecttFIRST-NUM.

The properties and values for #FIRST-NUM are displayed.

5. Type "1" in theValue property.
6. SelecttSECOND-NUM.

7. Type "1" in thevalue property.
8. Select#RESULT.

9. Type "2"in theValue property.

10. SelecRun test

The results of the test are displayed in #SUCCESS. For example:

38

Yalue

Test a Business Service

Test a Business Service with Multiple Rows Developing Business Services

| (7] DEMO, Calculator, 1,1, 52 = 08
Connection ID: | Development 2 e
Dorain: DEMO

Service name: | Calculakor
Version; 1.1.1

Method: Add w

Download Service Parameters

= INPUT-DATA Property Walue
FFUNMCTION -3 'add' Level 2
FFIRST-MUM -='1" Mame #RESLLT
#IECOND-RUM - = '1' Original Line 2 #RESULT ...
#SUCCESS-CRITERIA -='0f value 2

= QUTPUT-DATA
FRESULT -='2"

#TIME -= "Wed Mar 04 15:47:45
#5UCCESS -= 'true'

You can use this window to test all methods available for this business service.

Test a Business Service with Multiple Rows

If multiple rows occur because an object-browse or object-browse-select subprogram was used to create
the service, two additional fields are available at the bottom of the test window. For example:

39

Developing Business Services Test a Business Service with Multiple Rows

| (#1] DEMO, CustomerWithConkactData,2,1.1 &3 =0
onnection ID: | Development 2 w
Damain: DEMO

Service name: | CuskomerwithContactData
Version; z2.1.1

Method: FindByBusinessMame w

[annlnad Service Parameters

= BCUSTZMEL || Property Yalue
H- R 1]

RO [2]

R [3]

R [4]

RO [5] W

|:| Restart

- E-E-E

Range Option: L

These fields provide an alternate, easier way to populate the CDBUPDA.RANGE-OPTION and
CDBUPDA.RESTART parameters. The additional fields are:

Field Description

Restart Select this option to restart the test for multiple rows.

Range Option Select a range option to limit the test results. The range options are:
o *

40

Delete a Business Service Developing Business Services

Delete a Business Service

Note:
Removing a business service will only delete the service from the repository, it will not delete the Natural

modules.

P To delete (remove) a business service:
1. Open the context menu for the business service NBi$eRepositoriesview.
2. SelecDelete

A confirmation window is displayed. For example:

Confirm Business Service Delete

€p | Are you sure you wank ko delete '"Calculator(1,1.1)'7

O, | ’ Cancel

3. SelecOK to delete the business service.

Edit a Service Definition
P To edit a business service definition:
1. Open the context menu for the business service NBiSRepositoriesview.

2. Selectdit.

TheProperties window for the business service is displayed. For example:

41

Developing Business Services Edit a Service Definition

fo Properties for service Calculator in Domain DEMO

Business domain: | DEMO

Service name: | Calculator
Version: | 1.1.1 Default server procy: | CALCY
Descripkion: Performs simple calculator Functions, In addition a success flag is set if the solution is greater than the
sucCcess criteria.
Service Methods:
Method Descripkion Server Proxy Steplib
Subtrack Subtracts bwo numbers,
Mulkiply Mulkiplies bwo numbers,
DEFALLT CALCY
Divide Divides two numbers,
Add Adds bwa numbers together,
ey Delete

Selected Method

Marne:

Descripkion:

SErver proxy: |

Skeplib; | | Save Method

OF. H Cancel]

Use this window to:

42

Edit Service Modules Developing Business Services

Task Procedure

Change the business service Type a new description Description.

description

Edit an existing method Select the method fro®ervice Methodsand change the
information inSelected Method For example, you can the
change the name, description, server proxy name, or step l|brary
chain.

Add a new method SelectNew and enter information about the new method in
Selected Method SelectSave Methodto save the new methogd.
The new method is displayed $®rvice Methods

Delete a method Select the method froBervice Methodsand selecDelete The
method is removed froi@ervice Methods

3. SelecK to close thd’roperties window.

Edit Service Modules

Note:
You must use a SPoD connection to edit the service modules.

¥ To edit the modules used for a business service:
1. Expand the business service node irlNB& Repositoriesview.

The methods and modules used for the business service are displayed as nodes in the repository view.
For example:

43

Developing Business Services Edit Service Modules

\E MBS Repositories = O
X Lo &

=[] (gl
L) Caloulator(1,1.1)
-] Methods
+-[_] Maodules
L) CaloulatorAdwance(1.1.1)
L) Customer(l.1,1)
Lk CustomerCreditAnalysis(1.1.1)
L) CustomerWithContactDatal1.1.1)
L) CustomerwithConkactDatal2,1.1)
Lt ErrorMessageTesting(l.1.1)
Lt FlipString(1.1.1)
L) GreateskCormmonbenominator(1,1,1)
L) Crder(1.1.1)
L) Crder(2.1.1)
L) Product{1,1.1}
Lk StringManipulationf1.1.1) w

2 O R O Y R O O = B 3 B

2. Do one of the following:
® To edit all modules, open the context menuMadules and selecEdit all modules.
® To edit one module, open the context menu for the module and Ediect

The module(s) is displayed in the editor. For example:

44

Edit Service Modules Developing Business Services

I caLC (Development 2, DEMO

* This is a sample subprogram that demostrates some 0f the flexibilivty s

* 0of a regular WNatural subprogram with & weh service

+

% The user can enter the following:

H#FUNCTICON B
ADD, SUBTRACT, MULTIFLY, DIVIDE

H#AUCCESS-CRITERIA iz a walue the user can enter that will
and if the result is higher than that walue the logical flag
will be =set to Lrue

#FIRST-NUMERIC H3IECCOND-NUMERIC are two fields that the user
gends wvalues in to he calculated

#* % # # # # #+ o+ o+ =+

You can edit the module in this editor and then save the changes. For information on using this
editor, see the Eclipse documentation.

Important:
If you make any changes to the exposed interface in this subprogram (i.e., changes to the PDASs), you
must regenerate the service proxy. For informationReggnerate a Service Proxy

45

	Developing Business Services
	Create a Business Service
	Based on Existing Subprogram(s)
	Directly Enable Subprograms
	Categorize Parameters
	Interface Considerations
	Case 1
	Case 2
	Case 3
	Case 4

	Modify a Subprogram That is Not Directly Enabled
	Select the Type of Methods Generated
	Define the Methods
	Change the Method Callnat Sequence

	By Generating New Subprograms for Data Access
	Specify Advanced Options for Data Access
	More About the Object Browse-Select Subprogram

	By Creating an Empty Service Skeleton
	Import Schema

	By Using Custom Code Generation Model
	Define Lookup Values

	Regenerate a Business Service
	Regenerate a Service Proxy
	Test a Business Service Method
	Parameters for the Standard Methods
	Single-Row Access
	DELETE Method
	EXIST Method
	FORMER, GET, or NEXT Method
	INITIALIZE Method
	STORE Method
	UPDATE Method

	Multiple-Row Access
	BROWSE Method
	MultiMaint and FindBy* Methods

	Test a Business Service
	Test a Business Service with Multiple Rows

	Delete a Business Service
	Edit a Service Definition
	Edit Service Modules

