
Creating New Models
This section describes the procedure to create a new Natural Construct model and contains information
about testing the components of a model and debugging a model. In addition, it describes special
considerations for building statement models and presents a summary of tips and precautions. This section
also provides information about the utility subprograms and helproutines supplied with Natural Construct.
These utilities can help you create your new model.

This section covers the following topics:

Components of a Natural Construct Model

How the Natural Construct Nucleus Executes a Model

Build a New Model

Test the Model Subprograms

Implement Your Model

Create Statement Models

Use the Supplied Utility Subprograms and Helproutines

Components of a Natural Construct Model
A Natural Construct model is the combination of several components which, when used together, generate
a Natural module. Natural Construct provides models you can use to help generate many of these
components. The following table lists the components of a Natural Construct model, as well as the name
of the model you can use to generate each component (if applicable):

1

Creating New ModelsCreating New Models

Component Model Used to Generate

Code frames None (either create manually or copy and modify existing).

Model PDA CST-PDA model (described in CST-PDA Model).

Translation LDAs for
dynamic translation

None (either create manually or copy and modify existing).

Maintenance maps Map model (described in Natural Construct Generation).

Maintenance
subprogram(s)

CST-Modify or CST-Modify-332 model (described in CST-Modify and
CST-Modify-332 Models).

Pre-generation
subprogram

CST-Pregen model (described in CST-Pregen Model).

Generation
subprograms

CST-Frame model (described in CST-Frame Model).

Post-generation
subprogram

CST-Postgen model (described in CST-Postgen Model).

Clear subprogram CST-Clear model (described in CST-Clear Model).

Save subprogram CST-Save model (described in CST-Save Model).

Read subprogram CST-Read model (described in CST-Read Model).

Sample subprogram(s)CST-Frame model (described in CST-Frame Model).

Documentation
subprogram

CST-Document model (described in CST-Document Model).

Stream subprogram CST-Stream model (described in CST-Stream Model).

Validation subprogram CST-Validate model (described in CST-Validate Model).

How the Natural Construct Nucleus Executes a Model
The Natural Construct nucleus is a sophisticated driver program that assembles the model components and
sets them in motion. Although it invokes the subprograms at the appropriate time in the generation process
and performs the functions common to all models, it is not aware of the code generated by the models.

The nucleus communicates with the model subprograms through standard parameter data areas (PDAs).
These PDAs contain fields assigned by Natural Construct, as well as fields that are redefined as required
by a model.

The generation process uses each model component at a different time. The following diagram illustrates
the components of a model and how they interact with each other and the nucleus. The large letters in red
correspond to the function codes a user enters on the Generation main menu to invoke the corresponding
subprogram(s):

2

How the Natural Construct Nucleus Executes a ModelCreating New Models

Build a New Model
This section describes how to build a new Natural Construct model. These steps are:

Step 1: Define the Scope of the Model

Step 2: Create the Prototype

Step 3: Scrutinize the Prototype

Step 4: Isolate the Parameters in the Prototype

Step 5: Create Code Frame(s) and Define the Model

Step 6: Create the Model PDA

Step 7: Create the Translation LDAs and Maintenance Maps

Step 8: Create the Model Subprograms

3

Creating New ModelsBuild a New Model

Step 1: Define the Scope of the Model

Before you can build the new model, you must decide what type of module the model will generate. The
following diagram illustrates the varying scope and overlapping functionality of different module types:

Is the Scope Too Broad?

If your model contains many parameters (one that generates complex modules with broad functionality), it
may:

Confuse and frustrate developers

Lengthen the time it takes developers to specify parameters

Require complex code frames with many conditions

Make the model so flexible that generated code may deviate from standards

For example, the model should not allow developers to define PF-keys used for standard features (these
should be standardized across all applications). On the other hand, these models can be very powerful and
flexible — once the developer is familiar with them.

Is the Scope Too Narrow?

If your model contains few parameters (one that generates simple modules with narrow functionality), it
may:

Make the model inflexible

Limit the model’s usefulness

4

Step 1: Define the Scope of the ModelCreating New Models

On the other hand, these models are simple to use and easy to maintain.

What to Generate and Why

Typically, models generate Natural source code — but the possibilities are endless. Natural Construct was
designed to generate text in any form: Unix scripts, JCL, COBOL, Visual Basic, C++, HTML scripts, etc.

As a general rule, you will want your models to generate common modules that cannot be parameterized
at execution time. This type of module often involves file accesses or compile-time statements, such as:

map names

parameter lists

FORMAT statements

I/O statements

file definitions

Alternately, you may want the model to generate modules that can be parameterized at execution time but
are hardcoded for performance reasons (menus, for example).

Step 2: Create the Prototype

Once you determine the purpose and scope of the model, you can create a Natural module (program,
subprogram, map, etc.) to base your model on. This module should perform all the functions you defined
for the scope of the model.

If the scope contains mutually-exclusive options, you should prepare several prototypes. For example, if
the Natural code to maintain a file with a superdescriptor is significantly different from the code that
maintains a file with a descriptor, create two prototypes. If possible, generate the more complex prototype
first and add the simpler prototype later.

Step 3: Scrutinize the Prototype

After creating your prototype Natural program, perform the following checks:

Ensure that the program is fully commented

Check the code indentation

Check the clarity of the program

Ensure that the program conforms to standards

Evaluate the efficiency of the program

Ensure that variable names are sorted

After you have scrutinized the prototype as thoroughly as possible, have someone else perform the same
checks and tests.

5

Creating New ModelsStep 2: Create the Prototype

Step 4: Isolate the Parameters in the Prototype

The basic premise behind program generation is to take a working module that performs a fixed function
and generalize the module so it performs varying functions based on parameter values. To isolate the
parameters:

Determine Which Elements Need to be Parameterized
Remove Redundant Parameters
Choose Between Compile Time and Runtime

Determine Which Elements Need to be Parameterized

The first step is to determine which program lines remain constant in the generalized module and which
lines vary. If the prototype reads a file and displays information, for example, the file and information
varies with each generation. Therefore, this information must be parameterized. To make the prototype
easier to generate, try to reduce the number of parameters in your prototype without affecting the
functionality.

Remove Redundant Parameters

Programs often contain several instances of the same parameter. These can be reduced to a single instance
of the parameter by using a constant variable. Consider the following examples:

Redundant Parameters Single Parameter

DEFINE DATA LOCAL
01 #A(A1/1:50
.
.
END-DEFINE
.
.
IF #A(#CUR:50) NE ’ ’ THEN
FOR #I = #CUR TO 50
etc.

DEFINE DATA LOCAL
01 #ASIZE(P3) CONST<50>
01 #A(A1/1:#ASIZE)
.
END-DEFINE
.
.
IF #A(#CUR:#ASIZE) NE ’ ’ THEN
FOR #I = #CUR TO #ASIZE
etc.

This technique makes the prototype easier to generate, since there are fewer parameter instances. In
addition, the generated programs are easier to read, since it is more obvious that the constant value always
refers to the same thing.

Choose Between Compile Time and Runtime

Ensure that your prototype does not contain hardcoded parameters that could easily be calculated at
runtime. Consider the following examples:

6

Step 4: Isolate the Parameters in the PrototypeCreating New Models

Unnecessary Constant Determine at Runtime

DEFINE DATA LOCAL
 01 #MAX-LINES(P3) CONST <15>
 01 #LINE-NR(P3/1:#MAX-LINES)
INIT<1,2,3,4,5,6,7,8,9,10,11,12,13,
 15>
END-DEFINE

DEFINE DATA LOCAL
 01 #MAX-LINES(P3) CONST <15>
 01 #LINE-NR(P3/1:#MAX-LINES)
 01 #I (P3)
END-DEFINE
FOR #I = 1 TO #MAX-LINES
 ASSIGN #LINE-NR (#I) = #I
END-FOR

Both the INIT statement on the left and the FOR loop on the right initialize an array with consecutive
numbers. However, the code on the right does not vary based on the value of #MAX-LINES. No special
processing is required to generate the code on the right, as it is constant for each generation. To make the
prototype more flexible and easier to generate, use Natural system variables to determine the values at
runtime.

Note:
Ensure you do not sacrifice program efficiency to achieve this goal.

Once you have written and tested your prototype, save it in the SYSCST library.

Step 5: Create Code Frame(s) and Define the Model

This section covers the following topics:

Create the Code Frames
Define the Model

Create the Code Frames

If the prototype program is large, you can create multiple code frames with a portion of the program in
each code frame. You can also use nested code frames.

 To create the code frames:

1. Invoke the Code Frame editor.

2. Read your prototype into the editor.

3. Determine the parameters required for the code frame.

These include substitution parameters, code frame conditions, generation subprograms, nested code
frames, and user exits. The following example shows a code frame in the Code Frame editor:

7

Creating New ModelsStep 5: Create Code Frame(s) and Define the Model

 Frame PRSLCC9 SIZE 1125
 Description Browse Select Code©) Inline Subroutines FREE 59940
 > > + ABS X X-Y X S 18 L 1
 All...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
 *
 * Subroutines (in alphabetical order).
 * Check wildcard processing *
 CHECK-WILD-CHARACTER 1
 CUSLCWC? F "
 * Initializations *
 CUSLCI? F
 Subprogram: CUSCGBND Parameter: INITIALIZE N
 * Initialize the input key to the minimum key value specified
 ASSIGN #INPUT.&PRIME-KEY = #MIN-KEY-VALUE
 Process Selected Column or Record *
 PROCESS-SELECTION-COLUMN OR PROCESS-SELECTED-RECORD 1
 CUSLCPS? F "
 * Final Processing *
 CUSLCFP? F
 MISCELLANEOUS-SUBROUTINES U
 PERFORM FINAL-PROCESSING
 END
 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T

For a description of the Code Frame editor, see Using the Code Frame Editor. For information about edit
commands, see Edit Commands.

The code frame example above demonstrates different methods of supplying parameters for a code frame.
These methods are:

Use Substitution Parameters
Use Parameters Supplied by Generation Subprograms
Use Parameters Supplied by Nested Code Frames
Use Parameters Supplied by User Exits
Use Code Frame Conditions

Use Substitution Parameters

One type of code frame parameter is substitution parameters. These parameters are always present in the
same format, but their values change. You can usually assign substitution parameters by replacing the
values with unique substitution strings. To identify a parameter as a substitution, use an ampersand (&) at
the beginning of the substitution string in the editor.

The code frame example above contains the following substitution parameter:

* Initialize the input key to the minimum key value specified
 ASSIGN #INPUT.&PRIME-KEY = #MIN-KEY-VALUE

Values are substituted after the module is fully generated. The unique identifier (&PRIME-KEY in the
example above) is substituted for the derived value by placing the unique identifier and the value in the
Natural stack.

Note:
For more information about substitution during the post-generation phase, see Post-Generation
Subprogram.

8

Step 5: Create Code Frame(s) and Define the ModelCreating New Models

The following stipulations apply:

Substitution parameters cannot span multiple lines.

Substitution parameters always begin with an ampersand (&).

The substitution string can be up to 32 characters in length.

The substitution value can be up to 72 characters in length.

The name of the parameter should correspond to the name of the model PDA variable that supplies the
value. For example, &VAR is assigned the value of #PDA-VAR or #PDAX-VAR. Following this naming
convention makes it easier to generate the model subprograms using the supplied models. For more
information about the model PDA, see Model PDA.

Use Parameters Supplied by Generation Subprograms

A generation subprogram can supply the code frame parameters. When a substitution parameter spans
more than one line, varies in length, or performs complex calculations (centering, for example), you can
supply the parameters in a generation subprogram.

An example of this type of parameter is a file view where the developer specifies the name of the file to
use. Instead of supplying a list of the fields in the view, you can specify the name of a subprogram to
supply this list.

To indicate that a subprogram is called on this line, enter "N" (Natural subprogram) in the corresponding
T (Type) field. To pass a parameter to the subprogram, specify the parameter value after the subprogram
name. The parameter can be a literal string, 1–32 characters in length.

Natural Construct passes the following structures to each generation subprogram:

Model PDA (CUxxPDA), containing model-specific parameters

CSASTD, containing the standard messaging parameters

CU—PDA, containing the standard generation parameters (the #PDA-FRAME-PARM field in this
PDA passes the parameter literal string)

The following code frame line indicates that the CUSCGBND subprogram is invoked from this point in
the code frame and passed the INITIALIZE value:

Subprogram: CUSCGBND Parameter: INITIALIZE N

Because code frame parameters are supplied in a generation subprogram, the same subprogram can be
invoked several times within the code frame. The subprogram uses the value of the passed parameter to
determine what to generate each time.

Use Parameters Supplied by Nested Code Frames

Another method of supplying parameters to a code frame is to use nested code frames. As with generation
subprograms, nested code frames can perform substitutions on lines of varying length. In fact, nested code
frames have all substitution options available to the calling code frame. For example, a nested code frame
can have substitution parameters, generation subprograms, and its own nested code frames.

9

Creating New ModelsStep 5: Create Code Frame(s) and Define the Model

All code frames supplied with Natural Construct end with 9 (see the description of the Code frame(s) field
in Maintain Models Function) and 8 is reserved for any future updates. When you reference a code frame
from within another code frame, use a question mark (?) instead of 9. The ? indicates a hierarchy structure
in which Natural Construct uses the code frame with the lowest number during generation.

For specific hardcoded references, you can specify a nested code frame without using the question mark
(?) — but if you want to change what the nested code frame generates, you must modify every calling
code frame and its reference. When you use the question mark (?) character, Natural Construct
automatically calls your new version of the nested code frame.

Note:
To make nested code frames more reusable across multiple models, it is important to use the same naming
conventions. In this way, the nested code frame logical and substitution parameters are always available
within the model PDAs.

To indicate that another code frame is called on a Code Frame editor line, enter "F" in the corresponding T
(Type) field. The following code frame line indicates that the CUSLCIn code frame supplies parameters
for the code frame, where n is a number from 1 to 9:

CUSLCI? F

To modify a supplied code frame, copy the code frame, change the 9 to a lesser number from 1 to 7 (8 is
used for code frame fixes supplied between releases), and modify the code frame as desired. The next time
Natural Construct calls that code frame, the one you created with the lesser number is used. For example,
you can copy the CUSLCI9 code frame, change the name to CUSLCI7, and edit it as desired. The next
time Natural Construct calls CUSLCI?, CUSLCI7 is used.

In the following example, the CUSAA9 code frame has two nested code frames (CUSAB? and CUSAC?).
The arrows indicate which code frame is used:

10

Step 5: Create Code Frame(s) and Define the ModelCreating New Models

Tip:
Ensure that you do not create endless loops within nested code frames; endless loops result when a code
frame calls itself, either directly or indirectly as a nested code frame.

Use Parameters Supplied by User Exits

Parameters for a code frame can also be supplied by user exits. User exits provide maximum flexibility for
defining parameters because parameters are specified in the form of embedded Natural code. User exits
allow programmers/analysts to provide specialized portions of code at various points within the generated
module.

 To supply parameters for a code frame through a user exit:

1. Enter the name of the user exit in the text portion of a line.

2. Enter "U" in the corresponding T (Type) field.

3. Optionally, you can specify additional attributes by entering ".E" at the beginning of the user exit
line.

11

Creating New ModelsStep 5: Create Code Frame(s) and Define the Model

For example:

 Frame CUSLD9 SIZE 5973
 Description Browse Select Subp. Define Data Area FREE 54796
 > > + ABS X X-Y _ S 102 L 1
 Top...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
 CU--B? F
 DEFINE DATA
 GDA-SPECIFIED 1
 GLOBAL USING &GDA &WITH-BLOCK "
 PARAMETER
 01 #PDA-KEY(&PARM-NAT-FORMAT) /* Start/Returned key.
 VARIABLE-MIN-MAX AND PREFIX-IS-PDA-KEY 1
 01 REDEFINE #PDA-KEY "
 02 #PDA-KEY-PREFIX(&PREFIX-NAT-FORMAT) "
 PARAMETER USING CDSELPDA /* Selection info
 PARAMETER USING CU—PDA /* Global parameters
 PARAMETER USING CSASTD /* Message information
 .eRAMETER-DATA U
 LOCAL USING CDDIALDA /* Used by dialog objects.
 LOCAL USING CDENVIRA /* Used to capture/restore previous environment.
 DIRECT-COMMAND-PROCESSING 1
 LOCAL USING CDGETDCA /* Used to get direct command info. "
 MULTIPLE-WINDOWS 1
 +....1....+....2....+....3....+....4....+....5....+....6....+....7.. T
 CUSLD9 read

4. Press Enter.

The Maintain User Exit window is displayed. For example:

CSMUSEX Natural Construct
Jul 05 Maintain User Exit 1 of 1
 User exit name START-OF-PROGRAM
 Code frame name COBB9 Conditional N
 User exit required _
 Generate as subroutine . _
 Sample subprogram ________ GUI sample subprogram .. ________
 Default user exit code .
 *___
 * Specify code to be executed at the beginning of the object subprogram.
 * This might include security checking logic.___________________________
 __
 __
 __
 __
 __
 __
 __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF1
 help retrn

Use this window to specify information about the user exit. The fields in this window are:

Field Description

User exit name Name of the user exit.

12

Step 5: Create Code Frame(s) and Define the ModelCreating New Models

Field Description

Code frame name Name of the code frame for the user exit.

Conditional Condition code for the user exit. If the user exit is conditional (required
only under certain conditions), "Y" is displayed. If it is not conditional,
"N" is displayed.

User exit required If this field is marked, the user exit is required; if this field is blank, the
user exit is optional.

Generate as subroutineIf the user exit is used in more than one place in the module, enter "Y".
The code is generated as an inline subroutine. During generation,
Natural Construct places the code in a subroutine with the same name as
the user exit. This allows you to execute the code several times using a
PERFORM user-exit-name statement.

If the user exit is optional, the PERFORM statement can be conditional
on the presence of the user exit itself (for information, see Use Code
Frame Conditions).

Regardless of whether user exits are generated as subroutines or
embedded code, use the DEFINE EXIT keyword to specify all user
exits.

Sample subprogram If a subprogram contains the sample code for the user exit, enter the
name of the subprogram. The sample code is generated after the
developer enters the SAMPLE command in the User Exit editor and
selects an exit.

Natural Construct passes three parameter data areas (PDAs) to each
sample subprogram: the model PDA, CU—PDA, and CSASTD. For
more information, see Step 6: Create the Model PDA.

Note:
The SAMPLE command is executed automatically when you enter "U"
on the Generation main menu or press PF11 (userX) on the last
specification panel for a model that supports user exits, but none have
been specified.

GUI sample
subprogram

GUI sample subprogram invoked when the code is being generated from
the client. This subprogram should not display input panels. If the
sample subprogram does not use input panels, it can be used in the GUI
sample subprogram. If the sample subprogram includes input panels,
create a copy and modify it to use the defaults.

Default user exit codeIf complex processing or calculations are not required, you can enter up
to 10 lines of sample code. This code becomes the default sample code
for this user exit.

Note:
If you specify a sample subprogram name and provide default user exit
code, Natural Construct generates the user exit code before it generates
the sample subprogram code.

13

Creating New ModelsStep 5: Create Code Frame(s) and Define the Model

Use Code Frame Conditions

Frequently, a block of statements is inserted in a program based on a condition or combination of
conditions specified in the code frame. In the following example, the INPUT WITH TEXT+MSG
USING MAP ’&MAP-NAME’ INPUT statement is generated if a map is used. Otherwise, the
INPUT(AD=OI) statement is generated:

Top...+....1....+....2....+....3....+....4....+....5....+....6....+....7.. T C
MAP-USED 1
INPUT WITH TEXT + MSG USING MAP ’& MAP-NAME’ "
ELSE 1
INPUT(AD=OI) *PROGRAM #HEADER1 "
/ *DATX #HEADER2 *TIMX "

Note:
To identify a condition line, enter a number in the C (Condition) column in the Code Frame editor.
Number "1" initiates a new condition; higher numbers represent nested conditions that are only evaluated
if all active lower conditions are True.

To identify a statement as conditional, enter """ in the C column. The corresponding statement is included
in the generated module only if the current condition is True.

When you use code frame conditions, consider the following points:

The names of conditions must correspond to the names of logical variables defined in the model
PDA, with the #PDAC- prefix removed. (For more information about the model PDA, see Step 6:
Create the Model PDA.) The MAP-USED condition, for example, corresponds to the
#PDAC-MAP-USED logical variable.

Note:
These condition variables must be part of the redefinition of the #PDA-CONDITION-CODES field
in the model PDA.

When Natural Construct generates a module, it checks the condition code values to determine
whether the condition is True. It then resets the conditions before invoking the maintenance
subprograms. Condition codes should be selectively set to True by either the pre-generation
subprogram or one of the maintenance subprograms.

Conditions can be negated, ANDed and ORed (in order of precedence).

Conditions can be nested and ELSEed (ELSE refers back to the previous condition at the same level
number).

The RETURN-TO-CONDITION keyword can close levels of conditioning.

A special condition line can check for the existence of a specific user exit. To specify this type of
condition, enter the name of the user exit as the condition value and specify a line type of "X". These
conditions cannot be negated, ANDed, or ORed, but can be nested. They do not require a
corresponding #PDAC variable.

The following example shows code frame conditions:

14

Step 5: Create Code Frame(s) and Define the ModelCreating New Models

FrameABC SIZE 68
DescriptionExample of conditions FREE 36676
 > > + ABS X X-Y _ S 21 L 1
Top.+...1...+...2...+...3...+...4...+...5...+...6...+...7.. T C Notes
MAP-USED 1
INPUT WITH TEXT + MSG USING MAP ’&MAP-NAME’1 “ 1
ELSE 1
INPUT(AD=OI) *PROGRAM #HEADER1 " 2
/ *DATX #HEADER2 *TIMX " 2
ROOM-FOR-SKIP 2
/ " 3
RETURN-TO-CONDITION 1
/ 20T #FUNCTION-HEADING " 2
 NOT MAP-CONTAINS-PARAMETERS 2
 CODE1-SPECIFIED 3
/ 16T #CODE(1) 20T #FUNCTION(1) " 4
 CODE2-SPECIFIED 3
/ 16T #CODE(2) 20T #FUNCTION(2) " 5
 .
 .
 .
 CODE12-SPECIFIED 3
/ 16T #CODE(12) 20T #FUNCTION(12) " 6
 RETURN-TO-CONDITION 2
/ 11T ’Code:’ #CODE(AD=M) " 7
 ELSE 2
Subprogram: CUMNGIN Parameter N " 8
RETURN-TO-CONDITION 1
21/1 ’Direct Command:’ #COMMAND(AD=M) " 2
RESET +MSG 9
AFTER-INPUT
AFTER-INPUT X 1
PERFORM AFTER-INPUT " 10

Higher-level numbers (nested conditions) are always joined with an AND statement to previous lower
condition numbers.

Notes

The lines of code corresponding to each note number in the above example are inserted into the generated
module when the following Boolean conditions are met:

15

Creating New ModelsStep 5: Create Code Frame(s) and Define the Model

Note Number Boolean Condition

1 #PDAC-MAP-USED = TRUE

2 #PDAC-MAP-USED = FALSE

3 #PDAC-MAP-USED = FALSE and

#PDAC-ROOM-FOR-SKIP = TRUE

4 #PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and

#PDAC-CODE1-SPECIFIED = TRUE

5 #PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and

#PDAC-CODE2-SPECIFIED = TRUE

6 #PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE and

#PDAC-CODE12-SPECIFIED = TRUE

7 #PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = FALSE

8 #PDAC-MAP-USED = FALSE and

#PDAC-MAP-CONTAINS-PARAMETERS = TRUE

9 Line is inserted unconditionally.

10 Line is inserted only when the AFTER-INPUT user exit is specified in the User Exit
editor before the module is generated.

Define the Model

Use the Maintain Models panel to define your model.

 To display the Maintain Models panel:

1. Log onto the SYSCST library.

2. Enter "MENU" at the Next prompt (Direct Command box for Unix).

The Administration main menu is displayed.

3. Enter "M" in Function.

The Maintain Models panel is displayed. For example:

16

Step 5: Create Code Frame(s) and Define the ModelCreating New Models

 CSDFM N a t u r a l C o n s t r u c t CSDFM0
 Aug 17 Maintain Models 1 of 1

 Action __ A,B,C,D,M,N,P,R
 Model ________________________________
 Description __

 PDA name ________ Status window _
 Programming mode __ Comment start indicator .. ___
 Type _ Comment end indicator ___

 Code frame(s) ________ ________ ________ ________ ________
 Modify server specificatn ________ ________ ________ ________ ________
 ________ ________ ________ ________ ________
 Modify client specificatn ________ ________ ________ ________ ________
 ________ ________ ________ ________ ________

 Clear specification ________ Post-generation ________
 Read specification ________ Save specification ________
 Pre-generation ________ Document specification ... ________
 Command __
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help retrn quit frame main

Use this panel to specify the names of the model components (the generation subprograms require this
model definition); the specified components do not have to currently exist. When naming the model
components, use the naming conventions described in the following section.

For a description of the Maintain Models panel, see Maintain Models Function.

Naming Conventions for Model Components

Standardizing the names of the various components of a model makes it easier to write and debug models.
Supplied model subprograms, maps, and data areas are typically named CUxx, where xx uniquely
identifies each model and y identifies each panel. When naming model components, we recommend the
following naming conventions:

17

Creating New ModelsStep 5: Create Code Frame(s) and Define the Model

Name Model Component

CUxxPDA Parameter data area.

CUxxR Read subprogram.

CUxxC Clear subprogram.

CUxxMA First maintenance subprogram.

CUxxMAn Map associated with the first maintenance subprogram.

To display a map based on the current value of the *Language system
variable, use a *Language value in the last position of the map name.

To support dynamic translation, use a zero (0) in the last position of the
map name.

CUxxMAL Translation local data area (LDA) associated with the first maintenance
subprogram. A translation LDA contains the names of all variables that are
initialized to the maintenance map text and can be translated. You cannot
dynamically translate a map to another language unless the module that
invokes the map has a corresponding translation LDA.

CUxxMB Second maintenance subprogram.

CUxxMBn Map associated with the second maintenance subprogram.

CUxxMBL Translation LDA associated with the second maintenance subprogram.

CUxxSyyy Sample user exit code subprograms, where yyy is a 1–3 character suffix that
uniquely identifies each sample subprogram. For example, the CUFMSRIN
sample subprogram supplies REINPUT statements for the Maint model (if
required).

CUxxGyyy Generation subprograms, where yyy is a 1–3 character suffix that uniquely
identifies each generation subprogram. For example, the CUMNGGL
subprogram generates parameter variables for the Menu model (when a
length and format are specified).

CUxxPR Pre-generation subprogram.

CUxxPS Post-generation subprogram.

CUxxS Save subprogram.

CUxxD Documentation subprogram.

WCNxxMy Construct Program Generation plug-in maintenance subprogram.

WCDxx Construct Program Generation plug-in dialog.

To modify the supplied Natural Construct models, copy the subprograms and change the prefix from CU
(or WC) to CX. This way, you can identify the modified subprograms and include any changes in future
versions of Natural Construct.

After defining a model, it can be used in the Generation subsystem.

18

Step 5: Create Code Frame(s) and Define the ModelCreating New Models

Step 6: Create the Model PDA

All models require three parameter data areas (PDAs). Two of the data areas are supplied with Natural
Construct and the model PDA is user-created for each individual model.

PDAs pass information between the nucleus and the model and code frame subprograms. Every model
subprogram uses the following external PDAs:

PDA Description

Model PDA User-created and named CUxxPDA, where xx uniquely identifies the model.
This PDA contains variables and conditions specific to the model. It is the
only PDA you must create. Use the CST-PDA model to create the model
PDA (see Parameters for the CST-PDA Model).

CU—PDA Supplied with Natural Construct.

CSASTD Supplied with Natural Construct.

These PDAs must contain the following fields:

PDA Required Fields and Format

Model PDA (varies for
each model)

#PDA-CONDITION-CODES (L/1:75)

#PDA-USER-AREA (A100/1:40)

19

Creating New ModelsStep 6: Create the Model PDA

PDA Required Fields and Format

CU--PDA (same for
every model)

#PDA-MODE (A2)

#PDA-OBJECT-TYPE (A1)

#PDA-MODIFY-HEADER1 (A60)

#PDA-MODIFY-HEADER2 (A54)

#PDA-LEFT-PROMPT (A11)

#PDA-LEFT-MORE-PROMPT (A9)

#PDA-RIGHT-PROMPT (A11)

#PDA-RIGHT-MORE-PROMPT (A9)

#PDA-PHASE (A1)

#PDA-DIALOG-METHOD (I1)

#PDA-TRANSLATION-MODE (L)

#PDA-USERX-NAME (A10)

#PDA-PF-NAME (A10/1:12)

#PDA-MAIN-NAME (A10)

#PDA-RETURN-NAME (A10)

#PDA-QUIT-NAME (A10)

#PDA-TEST-NAME (A10)

#PDA-BACKWARD-NAME (A10)

#PDA-FORWARD-NAME (A10)

#PDA-LEFT-NAME (A10)

#PDA-RIGHT-NAME (A10)

#PDA-HELP-NAME (A10)

#PDA-AVAILABLE1-NAME (A10)

#PDA-AVAILABLE2-NAME (A10)

#PDA-AVAILABLE3-NAME (A10)

#PDA-PF-NUMBER (N2/1:12)

#PDA-MAIN (N2)

#PDA-RETURN (N2)

#PDA-QUIT (N2)

#PDA-TEST (N2)

#PDA-BACKWARD (N2)

#PDA-FORWARD (N2)

#PDA-LEFT (N2)

#PDA-RIGHT (N2)

#PDA-HELP (N2)

#PDA-AVAILABLE1 (N2)

#PDA-AVAILABLE2 (N2)

#PDA-AVAILABLE3 (N2)

#PDA-PF-KEY (A4)

#PDA-PF-MAIN (A4)

#PDA-PF-RETURN (A4)

#PDA-PF-QUIT (A4)

#PDA-PF-TEST (A4)

#PDA-PF-BACKWARD (A4)

#PDA-PF-FORWARD (A4)

#PDA-PF-LEFT (A4)

#PDA-PF-RIGHT (A4)

#PDA-PF-HELP (A4)

#PDA-PF-AVAILABLE1 (A4)

#PDA-PF-AVAILABLE2 (A4)

#PDA-PF-AVAILABLE3 (A4)

#PDA-TITLE (A25)

#PDA-GEN-PROGRAM (A8)

#PDA-MODEL-VERSION (N2.2)

#PDA-HELP-INDICATOR (A4)

#PDA-USER-DEFINED-AREA (A1/1:100)

#PDA-UNDERSCORE-LINE (A80)

#PDA-RIGHT-PROMPT-OF (A4)

#PDA-DISPLAY-INDICATOR (A4/1:10)

#PDA-CURS-FIELD (I4)

#PDA-CV1 (C)

#PDA-CV2 (C)

#PDA-CV3 (C)

#PDA-CV4 (C)

#PDA-CV5 (C)

#PDA-CV6 (C)

#PDA-CV7 (C)

#PDA-CV8 (C)

#PDA-SCROLL-INDICATOR (A4)

#PDA-DYNAMIC-ATTR-CHARS (A1/1:13)

#PDA-FRAME-PARM (A32)

#PDA-SYSTEM (A32)

20

Step 6: Create the Model PDACreating New Models

PDA Required Fields and Format

CSASTD (same for
every model)

MSG (A79)

MSG-NR (N4)

MSG-DATA (A32/1:3)

RETURN-CODE (A1)

ERROR-FIELD (A32)

ERROR-FIELD-INDEX1 (P3)

ERROR-FIELD-INDEX2 (P3)

ERROR-FIELD-INDEX3 (P3)

Note:
The CSASTD PDA is used by every model. It passes messages between
subprograms and is typically used for error handling.

The following sections describe the layout of these PDAs.

Model PDA

The following example shows a model PDA:

21

Creating New ModelsStep 6: Create the Model PDA

Parameter CUETPDA Library SYSCST DBID 19 FNR 28
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
Top - -------------------------------- - ---- ---------------------------------
 1 CUETPDA /* Construct Model PDA
 2 #PDA-CONDITION-CODES L (1:75) /* Conditions in frames
 R 2 #PDA-CONDITION-CODES /* REDEF. BEGIN : #PDA-CONDITION
 3 #PDAC-USE-MSG-NR L /* TRUE IF MESSAGE NUMBERS ARE U
 3 #PDAC-FILE-NAME-SPECIFIED L
 3 #PDAC-FIELD-NAME-SPECIFIED L
 3 #PDAC-PDA-SPECIFIED L
 3 #PDAC-COMPLEX-FIELD L /* Field is a PE, MU a STRUCT or
 * /* REDEFINE
 3 #PDAC-SCROLLING L /* Scrolling
 3 #PDAC-NATURAL-WINDOWS L /* Set window sizes
 3 #PDAC-WINDOW-LENGTH L /* Set window line length
 3 #PDAC-WINDOW-COLUMN L /* Set window column height
 3 #PDAC-WINDOW-BASE L /* Set window base
 3 #PDAC-DEFINE-WINDOW L /* Generate DEFINE WINDOW
 2 #PDA-USER-AREA A 100 (1:40) /* Area for INPUT and der
 R 2 #PDA-USER-AREA /* REDEF. BEGIN : #PDA-USER-AREA
 3 RESET-STRUCTURE /* Use for resetting non-alpha
 * /* fields in Clear Subprogram.
 4 #PDAX-DESCS A 55 (1:4) /* description
 4 #PDAX-USE-MSG-NR L
 *
 * Modify screen 2
 4 #PDAX-PDA A 8 /* PDA with display info.
 4 #PDAX-FILE-NAME A 32 /* File name
 4 #PDAX-FIELD-NAME A 32 /* Field name
 4 #PDAX-MAP-NAME A 8 /* Input using map
 4 #PDAX-LINES-PER-SCREEN N 3 /* Number of lines per screen
 *
 * used to generate a
 * DEFINE WINDOW statement.
 4 DEFINE-WINDOW-INFO
 5 #PDAX-WINDOW-SIZE A 6 /* Window size
 R 5 #PDAX-WINDOW-SIZE /* REDEF. BEGIN : #PDAX-WINDOW-S
 6 #PDAX-WINDOW-SIZE-WIDTH N 3 /* Window size width
 6 #PDAX-WINDOW-SIZE-HEIGHT N 3 /* Window size height
 5 #PDAX-WINDOW-BASE A 6 /* Window base
 R 5 #PDAX-WINDOW-BASE /* REDEF. BEGIN : #PDAX-WINDOW-B
 6 #PDAX-WINDOW-BASE-LINE N 3 /* Window base line
 6 #PDAX-WINDOW-BASE-COLUMN N 3 /* Window base column
 5 #PDAX-WINDOW-FRAME-OFF L /* Window frame off
 5 #PDAX-WINDOW-TITLE A 65 /* Window title
 5 #PDAX-WINDOW-CONTROL-SCREEN L /* Window control screen on
 5 #PDAX-DEFINE-WINDOW L /* Use DEFINE WINDOW statement
 4 #PDA-FIELD-TYPE A 2 /* Field type: GR,PE,PC,MU,MC
 * /* S(Structure), F(Single Field)
 * /* R(REDEFINE)
 4 #PDA-FIELD-REDEFINED L
 4 #PDA-LEVEL-NUMBER N 1
 4 #PDA-FIELD-FORMAT A 1
 4 #PDA-FIELD-LENGTH N 3.1
 R 4 #PDA-FIELD-LENGTH
 5 #PDA-UNITS N 3
 5 #PDA-DECIMALS N 1
 4 #PDA-FROM-INDEX N 5 (1:3)
 4 #PDA-THRU-INDEX N 5 (1:3)
 4 #PDA-FIELD-RANK N 1
 4 #PDA-FILE-CODE P 8 /* file code for security check
 4 #PDA-MAX-LINES N 5 /* Num. of occurrences for PE/MU
 4 #PDA-WFRAME A 1 /* Parameters for window setting
 4 #PDA-WLENGTH A 3
 4 #PDA-WCOLUMN A 3
 4 #PDA-WBASE A 7

22

Step 6: Create the Model PDACreating New Models

The fields in the model PDA are described in the following sections.

#PDA-CONDITION-CODES

This field (L/1:75) is an array of condition codes that allow you to define up to 75 logical conditions for
each model. The field is usually redefined into separate logical variables, one for each condition variable
used by the model code frames. The name of the logical condition variable in the PDA must be the same
as the condition, with a #PDAC- prefix added.

When a module is generated, the condition values are checked to determine whether the condition is True.
The conditions are reset before the maintenance subprograms are invoked. Along with the pre-generation
subprogram, the maintenance subprograms assign all True condition values.

Note:
To make nested code frames more reusable across multiple models, it is important to use exactly the same
naming conventions. In this way, the nested code frame logical and substitution parameters are always
available to the model PDAs.

#PDA-USER-AREA

This field (A100/1:40) defines a large block of data that is passed between the Natural Construct nucleus
and the model subprograms. Always redefine this field into separate fields that refer to the module being
generated. The following information can be passed:

Data entered by the developer on a maintenance panel. The names of the fields that receive the
parameters should be prefixed by #PDAX- and appear first in the redefinition of
#PDA-USER-AREA. Usually, the values for these fields are written as comments at the beginning of
the generated program. This allows Natural Construct to read the parameters for subsequent
regeneration.

You can also group a series of related parameters into a single external parameter by redefining the
#PDAX- variable into sub-fields. This technique reduces the number of comment lines at the
beginning of a generated program.

Note:
This technique should only be used when the length of the sub-fields does not change.

Data calculated during the generation process and shared with the model subprograms. The variable
names should be prefixed by #PDA- and appear second in the redefinition of #PDA-USER-AREA
(after the #PDAX- variables).

The pre-generation subprogram assigns these internal generation variables; all subsequent code frame
and model subprograms can use the values.

When you use substitution parameters in code frames, a variable with the same name and a #PDAX-
or #PDA- prefix should be in the redefinition of the #PDA-USER-AREA variable. For example, the
&MAX-SELECTIONS substitution parameter value should be supplied by the
#PDA-MAX-SELECTIONS variable or the #PDAX-MAX-SELECTIONS variable.

Note:
To make nested code frames more reusable across multiple models, it is important to use exactly the
same naming conventions. In this way, the nested code frame logical and substitution parameters are
always available to the model PDAs.

23

Creating New ModelsStep 6: Create the Model PDA

CU—PDA

The following example shows the CU—PDA data area:

24

Step 6: Create the Model PDACreating New Models

Parameter CU—PDA Library SYSCST DBID 19 FNR 28
Command > +
I T L Name F Leng Index/Init/EM/Name/Comment
Top - -------------------------------- - ---- ---------------------------------
 * Parameters used by all user
 * subprograms
 *
 1 CU—PDA
 *
 * Parameters used by generating
 * subprograms
 2 #PDA-MODE A 2 /* R=Report, S=Struct, SD=Str data
 2 #PDA-OBJECT-TYPE A 1 /* P=Program, N=Subprogram,etc.
 *
 *
 * Parms used by modify screens
 2 #PDA-MODIFY-HEADER1 A 60 /* First heading on modify scr
 2 #PDA-MODIFY-HEADER2 A 54 /* Second heading on modify scr
 2 #PDA-LEFT-PROMPT A 11 /* Date
 R 2 #PDA-LEFT-PROMPT
 3 #PDA-LEFT-MORE-PROMPT A 9
 2 #PDA-RIGHT-PROMPT A 11 /* n of n
 R 2 #PDA-RIGHT-PROMPT
 3 #PDA-RIGHT-MORE-PROMPT A 9
 2 #PDA-PHASE A 1 /* Modify, Generate, Clear etc.
 2 #PDA-DIALOG-METHOD I 1 /* See CSLMMETH
 * /* 1 = Input + Validate
 * /* 2 = Input no validate
 * /* 3 = Validate no input
 * /* 4 = Validate input on error
 2 #PDA-TRANSLATION-MODE L /* Translation mode
 *
 * The following PF key variables are only required if the modify
 * or sample program requires the use of additional PF keys other
 * than the standard MAIN, RETURN, QUIT, HELP keys.
 *
 * Place the following key names at the bottom of map instead of
 * using the KD option. The modify program should reset the keys
 * that are not being used or assign the available key names
 * to set additional keys.
 *
 2 #PDA-USERX-NAME A 10 /* User Exit name.
 2 #PDA-PF-NAME A 10 (1:12)
 R 2 #PDA-PF-NAME /* REDEF. BEGIN : #PDA-PF-NAME
 3 #PDA-MAIN-NAME A 10 /* Main menu key name.
 3 #PDA-RETURN-NAME A 10 /* Return key name.
 3 #PDA-QUIT-NAME A 10 /* Quit key name.
 3 #PDA-TEST-NAME A 10 /* Test key name.
 3 #PDA-BACKWARD-NAME A 10 /* Bkwrd key name.
 3 #PDA-FORWARD-NAME A 10 /* Frwrd key name.
 3 #PDA-LEFT-NAME A 10 /* Left key name.
 3 #PDA-RIGHT-NAME A 10 /* Right key name.
 3 #PDA-HELP-NAME A 10 /* Help key name.
 3 #PDA-AVAILABLE1-NAME A 10 /* Not used by default.
 3 #PDA-AVAILABLE2-NAME A 10 /* Not used by default.
 3 #PDA-AVAILABLE3-NAME A 10 /* Not used by default.
 *
 * This array contains the PF-KEY number associated with each
 * standard key setting as well as the numbers of the available
 * numbers for non-standard key use.
 2 #PDA-PF-NUMBER N 2 (1:12)
 R 2 #PDA-PF-NUMBER /* REDEF. BEGIN : #PDA-PF-NUMBER
 3 #PDA-MAIN N 2 /* Main menu key number.
 3 #PDA-RETURN N 2 /* Return key number.
 3 #PDA-QUIT N 2 /* Quit key number.
 3 #PDA-TEST N 2 /* Test key number.
 3 #PDA-BACKWARD N 2 /* Bkwrd key number.
 3 #PDA-FORWARD N 2 /* Frwrd key number.
 3 #PDA-LEFT N 2 /* Left key number.
 3 #PDA-RIGHT N 2 /* Right key number.
 3 #PDA-HELP N 2 /* Help key number.
 3 #PDA-AVAILABLE1 N 2 /* Not used by default.
 3 #PDA-AVAILABLE2 N 2 /* Not used by default.
 3 #PDA-AVAILABLE3 N 2 /* Not used by default.
 *
 * This array corresponds to the above array except the ’PF’
 * ’PF’ string prefixes the key for easy comparison to *PF-KEY.
 2 #PDA-PF-KEY A 4 (1:12)
 R 2 #PDA-PF-KEY /* REDEF. BEGIN : #PDA-PF-KEY
 3 #PDA-PF-MAIN A 4 /* PFnn where nn = main key.
 3 #PDA-PF-RETURN A 4
 3 #PDA-PF-QUIT A 4
 3 #PDA-PF-TEST A 4
 3 #PDA-PF-BACKWARD A 4
 3 #PDA-PF-FORWARD A 4
 3 #PDA-PF-LEFT A 4
 3 #PDA-PF-RIGHT A 4
 3 #PDA-PF-HELP A 4
 3 #PDA-PF-AVAILABLE1 A 4 /* Not used by default.
 2 #PDA-CV3 C /* Special characters in T mode
 2 #PDA-CV4 C /* Column headings in T mode
 2 #PDA-CV5 C /* CV 5
 2 #PDA-CV6 C /* CV 6
 2 #PDA-CV7 C /* CV 7
 2 #PDA-CV8 C /* CV 8
 2 #PDA-SCROLL-INDICATOR A 4 /* Scroll region indicator
 *
 * Dynamic attribute characters
 * from the control record. The
 * following index values represent
 * 1=Default, 2=Intensify, 3=Blink, 4=Italics, 5=Underline,
 * 6=Reversed, 7=Blue, 8=Green, 9=White, 10=Pink, 11=Red,
 * 12=Turquoise, 13=Yellow.
 2 #PDA-DYNAMIC-ATTR-CHARS A 1 (1:13)
 *
 * Passed parameter from code frame
 2 #PDA-CV6 C /* CV 6
 2 #PDA-CV7 C /* CV 7
 2 #PDA-CV8 C /* CV 8
 2 #PDA-SCROLL-INDICATOR A 4 /* Scroll region indicator
 *
 * Dynamic attribute characters
 * from the control record. The
 * following index values represent
 * 1=Default, 2=Intensify, 3=Blink, 4=Italics, 5=Underline,
 * 6=Reversed, 7=Blue, 8=Green, 9=White, 10=Pink, 11=Red,
 * 12=Turquoise, 13=Yellow.
 2 #PDA-DYNAMIC-ATTR-CHARS A 1 (1:13)
 *
 * Passed parameter from code frame
 2 #PDA-FRAME-PARM A 32
 2 #PDA-SYSTEM A 32 /* System must exist in dict.
 *

25

Creating New ModelsStep 6: Create the Model PDA

The fields in CU—PDA are described in the following sections:

#PDA-MODE
#PDA-OBJECT-TYPE
#PDA-MODIFY-HEADER1
#PDA-MODIFY-HEADER2
#PDA-LEFT-PROMPT
#PDA-RIGHT-PROMPT
#PDA-PHASE
#PDA-DIALOG-METHOD
#PDA-TRANSLATION-MODE
#PDA-USERX-NAME
#PDA-PF-NAME
#PDA-PF-NUMBER
#PDA-PF-KEY
#PDA-TITLE
#PDA-GEN-PROGRAM
#PDA-MODEL-VERSION
#PDA-HELP-INDICATOR
#PDA-USER-DEFINED-AREA
#PDA-UNDERSCORE-LINE
#PDA-RIGHT-PROMPT-OF
#PDA-DISPLAY-INDICATOR
#PDA-CURS-FIELD
#PDA-CVn
#PDA-SCROLL-INDICATOR
#PDA-DYNAMIC-ATTR-CHARS
#PDA-FRAME-PARM
#PDA-SYSTEM

#PDA-MODE

This field (A2) identifies the programming mode. The value for this field is the programming mode
specified on the Maintain Models panel. Valid values for this field are S (structured), SD (structured data),
and R (reporting) mode.

#PDA-OBJECT-TYPE

This field (A1) identifies the type of module generated. The value for this field is the module type
specified on the Maintain Models panel. This field is useful when a model subprogram is associated with
multiple models that use different module types. In this case, the presence or format of certain generated
code may be dependent on the type of module generated.

#PDA-MODIFY-HEADER1

This field (A60) contains the description specified on the Maintain Models panel. Maintenance panels use
the #HEADER1 variable for the first heading, instead of #PDA-MODIFY-HEADER1. If #HEADER1 has
not been assigned a value, it is assigned the contents of #PDA-MODIFY-HEADER1.

26

Step 6: Create the Model PDACreating New Models

#PDA-MODIFY-HEADER2

This field (A54) contains the description specified on the Maintain Models panel. Maintenance panels use
the #HEADER2 variable for the second heading, instead of #PDA-MODIFY-HEADER2. If #HEADER2
has not been assigned a value, it is assigned the contents of #PDA-MODIFY-HEADER2.

#PDA-LEFT-PROMPT

This field (A11) is redefined into the #PDA-LEFT-MORE-PROMPT field (A9). The
#PDA-LEFT-MORE-PROMPT field indicates the current date. Place this field as an output field in the
top left corner of all maintenance panels. (If you require more than nine bytes, you can use the full length
of A11.)

#PDA-RIGHT-PROMPT

This field (A11) is redefined into the #PDA-RIGHT-MORE-PROMPT field (A9). The
#PDA-RIGHT-MORE-PROMPT field indicates the current panel and the total number of panels (1 of 4,
for example). Place this field as an output field in the top right corner of all maintenance panels. (If you
require more than nine bytes, you can use the full length of A11.)

#PDA-PHASE

This field (A1) identifies the current phase of the Natural Construct nucleus (see the CSLPHASE data area
for an example). Valid values for this field are A (post-generation), B (batch), C (clear), D (default), G
(generation), L (translate), M (modify), P (pre-generation), R (read), U (sample user exit), and V (save).
The value for this field is typically controlled by the Natural Construct nucleus and should not be
manipulated locally.

Note:
Maintenance subprograms are also invoked prior to SAMPLE processing in the User Exit editor (in which
case, the phase is U) and prior to the generation phase (in which case, the phase is G).

Since some subprograms are invoked during more than one phase, this field activates the subprogram
logic for the current phase. For example, the maintenance subprograms performed during the maintenance
phase (M) are invoked (with data stacked) during the generation (G) and sample user exit (U) phases. It
may be inappropriate for the maintenance subprogram to perform certain processing during any of these
phases.

#PDA-DIALOG-METHOD

This field (I1) is reserved for future use.

#PDA-TRANSLATION-MODE

This field (L) is reserved for future use.

#PDA-USERX-NAME

This field (A10) is for internal use only.

27

Creating New ModelsStep 6: Create the Model PDA

#PDA-PF-NAME

This field (A10/1:12) is an array containing the names of the standard PF-keys and is redefined into the
following fields (A10):

Field Description

#PDA-MAIN-NAME Main menu key name.

#PDA-RETURN-NAME Return key name.

#PDA-QUIT-NAME Quit key name.

#PDA-TEST-NAME Test key name.

#PDA-BACKWARD-NAME Backward key name.

#PDA-FORWARD-NAME Forward key name.

#PDA-LEFT-NAME Left key name.

#PDA-RIGHT-NAME Right key name.

#PDA-HELP-NAME Help key name.

#PDA-AVAILABLE1-NAME Not used (by default).

#PDA-AVAILABLE2-NAME Not used (by default).

#PDA-AVAILABLE3-NAME Not used (by default).

The names are in the same order as the key settings specified on the Natural Construct control record. The
name for PF1 is stored in the first position, PF2 is stored in the second position, etc.

You can define special PF-keys for maintenance subprograms (or sample generation subprograms) by
specifying the desired PF-key values and names on the Maintain Subprograms panel (S function on the
Administration main menu).

Occasionally, a subprogram may need to modify its PF-key assignments based on internal program
functions and parameter values. If this is the case, place this array of PF-key names on the model panels
and set the appropriate PF-key names (assuming your model supports variable PF-keys).

If a subprogram requires PF-keys for non-standard functions that are not known at compile time, display
this array on the map (instead of using the SET KEY statement and the KD option of the FORMAT
statement).

#PDA-PF-NUMBER

This field (N2/1:12) is an array containing the PF-keys that support the standard PF-key functions and is
redefined into the following fields (N2):

28

Step 6: Create the Model PDACreating New Models

Field Description

#PDA-MAIN Main menu key number.

#PDA-RETURN Return key number.

#PDA-QUIT Quit key number.

#PDA-TEST Test key number.

#PDA-BACKWARD Backward key number.

#PDA-FORWARD Forward key number.

#PDA-LEFT Left key number.

#PDA-RIGHT Right key number.

#PDA-HELP Help key number.

#PDA-AVAILABLE1 Not used (by default).

#PDA-AVAILABLE2 Not used (by default).

#PDA-AVAILABLE3 Not used (by default).

The values in this array assign a PF-key function to a PF-key number (for indexing on the
#PDA-PF-NAME table). The first occurrence contains the PF-key number associated with the “main”
function, the second occurrence contains the PF-key number associated with the “return” function, etc.

To include additional PF-keys, use the PF-key corresponding to the numbers assigned to
#PDA-AVAILABLE1 through #PDA-AVAILABLE3.

#PDA-PF-KEY

This field (A4) is an array corresponding to the #PDA-PF-NUMBER array (see #PDA-PF-NUMBER)
except the values have a PF- prefix. This makes it easy to compare the value of a *PF-KEY system
variable to one of the following fields (A4):

29

Creating New ModelsStep 6: Create the Model PDA

Field Description

#PDA-PF-MAIN PFnn, where nn is the main menu key number.

#PDA-PF-RETURN PFnn, where nn is the return key number.

#PDA-PF-QUIT PFnn, where nn is the quit key number.

#PDA-PF-TEST PFnn, where nn is the test key number.

#PDA-PF-BACKWARD PFnn, where nn is the backward key number.

#PDA-PF-FORWARD PFnn, where nn is the forward key number.

#PDA-PF-LEFT PFnn, where nn is the left key number.

#PDA-PF-RIGHT PFnn, where nn is the right key number.

#PDA-PF-HELP PFnn, where nn is the help key number.

#PDA-PF-AVAILABLE1 Not used (by default).

#PDA-PF-AVAILABLE2 Not used (by default).

#PDA-PF-AVAILABLE3 Not used (by default).

Note:
The PF-key variables defined in this PDA allow your models to automatically use the PF-key values and
names specified on the Natural Construct control record. If you do not require this flexibility, use
hardcoded PF-key values and names.

#PDA-TITLE

This field (A25) contains the title of the module that is generated, which is required for the generation
process. The title identifies the module for the List Generated Modules function on the Generation main
menu. Place this field on the model maintenance panels.

#PDA-GEN-PROGRAM

This field (A8) contains the name of the module that is generated, read, or saved. The value for this field
is the module name specified on the Generation main menu. Place this field on the first maintenance panel
for the model.

#PDA-MODEL-VERSION

This field (N2.2) contains the number of the Natural Construct version used to generate the model.

#PDA-HELP-INDICATOR

This field (A4) contains the help indicator for maps. The value for this field is the help indicator specified
on the control record, such as an asterisk (*).

#PDA-USER-DEFINED-AREA

This field (A1/1:100) is available to the user.

30

Step 6: Create the Model PDACreating New Models

#PDA-UNDERSCORE-LINE

This field (A80) contains the 1- to 4-character set used to create the underscore line for text on maps. The
specified set is repeated until all spaces are filled (80, by default). The value for this field is the underscore
character set specified on the Natural Construct control record.

For example, if "----" is specified, the underscore line is:

Or if "++" is specified, the underscore line is:

++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

#PDA-RIGHT-PROMPT-OF

This field (A4) contains the text used in the right prompt for maps. The value for this field is the of
indicator specified on the Natural Construct control record (1 of 4, for example).

#PDA-DISPLAY-INDICATOR

This field (A4/1:10) is an array corresponding to the position indicators used on maps. The values for this
field are the position indicators specified on the Natural Construct control record (1, 2, 3..., for example).

#PDA-CURS-FIELD

This field (I4) contains the cursor position for dynamic translation on maps.

#PDA-CVn

These fields ©) are control variables (#PDA-CV1 through #PDA-CV8) used on maps to dynamically
control the text displayed on a panel. These control variables are:

Control Variable Description

#PDA-CV1 Controls field prompts.

#PDA-CV2 Controls prompt headings.

#PDA-CV3 Controls special characters.

#PDA-CV4 Controls column headings.

#PDA-CV5 Not currently used.

#PDA-CV6 Not currently used.

#PDA-CV7 Not currently used.

#PDA-CV8 Not currently used.

31

Creating New ModelsStep 6: Create the Model PDA

#PDA-SCROLL-INDICATOR

This field (A4) contains the scroll region indicator(s) used on maps. The value for this field is the
character(s) specified on the Natural Construct control record (>>, for example).

#PDA-DYNAMIC-ATTR-CHARS

This field (A1/1:13) is an array containing the default dynamic attribute characters. The values for this
array are the dynamic attributes specified on the Natural Construct control record. Dynamic attribute
characters allow the developer to embed special characters within text that change how the text is
displayed.

These dynamic attribute characters correspond to the following index occurrences:

Attribute Index Occurrence

Default return 01

Intensify 02

Blinking 03

Italics 04

Underline 05

Reverse video 06

Blue 07

Green 08

White 09

Pink 10

Red 11

Turquoise 12

Yellow 13

The CSUDYNAT subprogram uses these settings for the Natural dynamic attribute parameter (DY=). For
more information, see CSUDYNAT Subprogram.

#PDA-FRAME-PARM

This field (A32) contains different values depending on the type of subprogram. The Natural Construct
nucleus can set this field before the code frame subprograms are invoked; this field is always set before
the sample user exit subprograms are invoked.

For code frame generation subprograms, this field contains the value of the constant literal entered in the
subprogram line in the code frame (next to the Parameter prompt). For sample user exit subprograms, this
field contains the name of the user exit for which the sample was invoked.

32

Step 6: Create the Model PDACreating New Models

#PDA-SYSTEM

This field (A32) contains the default system name when Predict program entries are generated from within
Natural Construct. (Programmers/analysts can document generated modules in Predict by pressing the
optns PF-key on the Generation main menu before saving or stowing the module.) Place this field on the
first maintenance panel for the model.

Any supplied model that generates a dialog also uses this field as part of the key to access help
information. The system value corresponds to the Major component of the help key.

CSASTD PDA

The CSASTD PDA is used by every model. It passes messages between subprograms and is typically
used for error handling. CSASTD PDA contains the fields described in the following sections:

MSG
MSG-NR
MSG-DATA
RETURN-CODE
ERROR-FIELD
ERROR-FIELD-INDEXn

MSG

This field (A79) is used with the RETURN-CODE field (see RETURN-CODE) to pass messages between
the Natural Construct nucleus and the model subprograms. It should be displayed on the message line of
all maintenance panels and reset after all inputs.

MSG-NR

This field (N4) is not currently used.

MSG-DATA

This field (A32/1:3) contains the values for embedded substitution strings. If a message contains the :1:,
:2:, or :3: substitution strings, you can supply values to these strings in MSG-DATA(1), MSG-DATA(2),
and MSG-DATA(3), respectively.

RETURN-CODE

This field (A1) is used with the MSG field (see MSG). When a module is generated, the model
subprograms or related code frame subprograms may encounter problems. When this happens, the
subprogram should assign the RETURN-CODE field before returning to the Natural Construct nucleus. It
should also assign an error message to the MSG field.

If the value assigned to the RETURN-CODE field is blank (informational message) or W (warning
message), a warning is issued by Natural Construct and a message is displayed in the Status window. The
developer can either ignore the warning and continue the generation process or terminate generation.

If the value assigned to the RETURN-CODE field is C (communication error) or E (error), the error
message is displayed but the developer cannot continue the generation process.

33

Creating New ModelsStep 6: Create the Model PDA

The CSLRCODE local data area contains valid return codes for the RETURN-CODE field.

ERROR-FIELD

This field (A32) identifies a field in error. The field name is displayed with the error message.

ERROR-FIELD-INDEX n

These fields (P3) identify occurrences of fields in error. If the error field is an element of an array, they
identify the specific occurrence of the field in error.

Step 7: Create the Translation LDAs and Maintenance Maps

After defining the parameters and creating the parameter data area (PDA) for the model, you may want to
create translation LDAs to support multilingual specification panels and the maintenance maps (panels) to
accept parameters from the developer. These procedures are described in the following sections:

Format of the Translation LDAs
Maintenance Maps

Format of the Translation LDAs

To support multilingual text and messages, each maintenance panel can use up to five translation local
data areas (LDAs). These LDAs contain the names of the fields that can be translated. You cannot display
a panel in another language unless the module that invokes the panel has a corresponding translation
LDA.

All translation LDAs must have following format:

Local CUBAMAL Library SYSCST DBID 18 FNR 4
Command > +
 I T L Name F Leng Index/Init/EM/Name/Comment
 All - -------------------------------- - ---- ---------------------------------
 * * **SAG TRANSLATION LDA
 * * * used by map CUBAMA0.
 1 CUBAMAL
 2 TEXT /* Corresponds to syserr message
 3 #GEN-PROGRAM A 20 INIT<’*2000.1,.’>
 3 #SYSTEM A 20 INIT<’*2000.2,.’>
 3 #GDA A 20 INIT<’*2000.3,.’>
 3 #TITLE A 20 INIT<’*2001.1,.’>
 3 #DESCRIPTION A 20 INIT<’*2001.2,.’>
 3 #GDA-BLOCK A 20 INIT<’*2001.3,.’>
 R 2 TEXT
 3 TRANSLATION-TEXT
 4 TEXT-ARRAY A 1 (1:120)
 2 ADDITIONAL-PARMS
 3 #MESSAGE-LIBRARY A 8 INIT<’CSTLDA’>
 3 #LDA-NAME A 8 INIT<’CUBAMAL’>
 3 #TEXT-REQUIRED L INIT<TRUE>
 3 #LENGTH-OVERRIDE I 4 /* Explicit length to translate

In this example, the fields in CUBAMAL correspond to the following fields on the Standard Parameters
panel for the Batch model:

34

Step 7: Create the Translation LDAs and Maintenance MapsCreating New Models

Field Name in LDA Field Name on Panel

#GEN-PROGRAM Module

#SYSTEM System

#GDA Global data area

#TITLE Title

#DESCRIPTION Description

#GDA-BLOCK With block

When naming your translation LDAs, we recommend using the name of the module that uses the LDA
and adding an "L" in the last position. For example, the CUBAMA maintenance subprogram uses the
CUBAMAL translation LDA.

The sum of the lengths of all fields in the translation LDA must match the length of the text array. In the
CUBAMAL example, each of the six fields has a length of 20 and the text array is 1:120 (6 x 20).

To support multilingual specification panels, use SYSERR numbers to assign the INIT values for the
translation LDA fields. The translation LDAs are passed through the CSUTRANS utility, which expects
the structure in the previous example. CSUTRANS also expects the SYSERR INIT values in the
following format:

Position Format

Byte 1 Must be an asterisk (*).

Bytes 2–5 Must be numeric and represent a valid SYSERR number.

The first five bytes are mandatory (bytes 1–5); these values are used to
retrieve the text associated with the corresponding SYSERR number and the
current value of the *Language Natural system variable.

If the text for the current language is not available, CSUTRANS follows a
modifiable hierarchy of *Language values until text is retrieved (you can
define this hierarchy in the DEFAULT-LANGUAGE field within the
CNAMSG local data area). As the original development language, English
(*Language 1) should always be available.

Note:
CSUTRANS does not perform any substitutions using :1::2::3:. To perform
substitutions, you must call the CNUMSG subprogram.

Byte 6 Can be a period (.), which indicates that the next byte is a valid position
value.

35

Creating New ModelsStep 7: Create the Translation LDAs and Maintenance Maps

Position Format

Byte 7 Can be a position value. Valid values are 1 to 9, A (byte 10), B (byte 11), C
(byte 12), D (byte 13), E (byte 14), F (byte 15), and G (byte 16). For
example, *2000.2 identifies the text for SYSERR number 2000, position 2
(as delimited by "/" in SYSERR). If the message for SYSERR number 2000
is Module/System/Global data area, only System is retrieved.

If you reference the same SYSERR number more than once in a translation
LDA, define the INIT values on consecutive lines to reduce the number of
calls to SYSERR; the position values for a SYSERR number can be
referenced in any order.

To minimize confusion, we recommend that you use the .n notation even
when there is only one message for the SYSERR number.

Byte 8 Can be a comma (,), which indicates that the next byte or bytes contain
special format characters. Values specified before the comma (,) indicate
what text to retrieve; values specified after the comma indicate how the text
is displayed.

Note:
Although you can use a comma in byte 6 (instead of a period), we
recommend that you always use the .n position indicator in bytes 6 and 7.

Byte 9 After the comma, can be one of the following:

.

Indicates that the first position after the field name is blank and the
remainder of the field prompt is filled with periods. For example,
Module name:

+

Indicates that the text is centered using the specified field length
override (see description of Byte 10). If you do not specify the override
length, Natural Construct uses the actual field length.

<

Indicates that the text is left justified (this is the default).

>

Indicates that the text is right justified.

/

Indicates that a length override value follows.

Bytes 10–16 After the / override length indicator (see above), indicates the actual
override length in bytes.

36

Step 7: Create the Translation LDAs and Maintenance MapsCreating New Models

If you want to use the override length notation (*0200.4,+/6, for example) and the LDA field is too small
(A6, for example), you can define a larger field (A12, for example), redefine it using a shorter display
value, and then use the override length notation:

01 FIELD-NAME A1 INIT<’*0200.4+/6’>
01 Redefine #FIELD-NAME
 02 #SHORT-FIELD-NAME A6

Note:
For more information, see Use SYSERR References.

Maintenance Maps

Normally, each maintenance subprogram is associated with a different maintenance map. You can use a
layout map as a starting layout for your maintenance maps and then list the model PDA fields in the Map
editor and select the desired fields. For a standard maintenance map, use the CDLAY layout map. For a
multilingual maintenance map, you can also use the CDLAY layout map and remove all text except the
lines containing the first and second headings. (For an example of a multilingual maintenance map, refer
to CU--MA0 in the SYSCST library.)

You can also use the Map model to create maintenance maps. For a description, refer to the applicable
section in Natural Construct Generation.

Step 8: Create the Model Subprograms

You can use the supplied models to generate the subprograms described in this step. For a detailed
description of a model, refer to the applicable section in this documentation. The model generation models
are described in the order they are implemented during the generation process.

Maintenance Subprograms

Generated using the CST-Modify model, these subprograms receive the specification parameters (#PDAX
variables in the model PDA) from the developer and should ensure that the parameters are valid.
Maintenance subprograms can also set condition codes and assign derived PDA variables.

Maintenance subprograms are executed in the same order as they appear on the Maintain Models panel.
Usually, there is one maintenance subprogram for every left/right (horizontal) maintenance panel. Data
edits should only be applied if the developer presses Enter or PF11 (right). Either the maintenance
subprogram or the maintenance map can validate the parameters.

You should only trap PF-keys that perform specialized functions related to the panel. If you want the
PF-key settings to be dependent on the default settings specified on the control record, the subprogram
should not contain hardcoded PF-keys (check the PF-key values using the variables specified in
CU—PDA).

You can define special PF-keys and window settings for each maintenance subprogram (see Maintain
Subprograms Function).

Note:
A maintenance subprogram can test the value of CU—PDA.#PDA-PHASE to identify the phase during
which it was invoked.

37

Creating New ModelsStep 8: Create the Model Subprograms

References

For an example of a generated maintenance subprogram, refer to CUMNMA and CUMNMB in the
SYSCST library.

For information about the CST-Modify model, see CST-Modify Model.

When are Maintenance Subprograms Invoked?

The Natural Construct nucleus invokes the maintenance panels in the following situations:

Generation Main Menu

When the developer supplies the following input on the Generation main menu:

Field Input

Function M

Module TEST

Model model name

The nucleus invokes the first maintenance panel for the specified model.

If the developer presses Enter or PF11 (right) on the first panel, the nucleus invokes the second panel;
if there are no other panels, the nucleus invokes the Generation main menu.

When the developer supplies the following input on the Generation main menu:

Field Input

Function M

Module TEST

Panel 2

Model model name

The nucleus invokes the second maintenance panel for the specified model.

If the developer presses Enter or PF11 (right) on the second panel, the nucleus invokes the second
panel; if there are no other panels, the nucleus invokes the Generation main menu.

If the developer presses PF10 (left), invokes the second panel and displays the message: Beginning of
specification panels.

When the developer supplies the following input on the Generation main menu:

38

Step 8: Create the Model SubprogramsCreating New Models

Field Input

Function G

Module TEST

Model model name

The nucleus invokes all maintenance panels for the specified model to ensure that all parameters have
been edited before generation. The input panels are not displayed unless an error is encountered.

User Exit Editor

When the developer supplies the following input on the command line in the User Exit editor:

> SAMPLE

The nucleus invokes all maintenance panels for the specified model to ensure that all parameters have
been edited before generation. The input panels are not displayed unless an error is encountered.

Pre-Generation Subprogram

Generated using the CST-Pregen model, this subprogram is invoked either after all maintenance
subprograms have been executed during the generation phase or after the SAMPLE command has been
issued from the User Exit editor. It is the first user subprogram invoked. It assigns all True condition
values, based on user-supplied input parameters or other calculated values.

Note:
All #PDAC- condition values are reset before the generation process is started.

This subprogram should also calculate the values of any #PDA variables required by subsequent
generation subprograms. For simple models that do not have code frames, this subprogram can also
perform the functions of a generation subprogram. (Condition code values and derived fields can also be
assigned within the maintenance subprograms.)

References

For an example of a generated pre-generation subprogram, refer to CUMNPR in the SYSCST library.

For more information about the CST-Pregen model, see Parameters for the CST-Pregen Model.

Generation Subprograms

Because the lengths and contents of certain code frame parameters change based on user-supplied input
values or information in Predict, these parameters must be supplied by the generation subprograms. These
subprograms write statements to the Natural edit buffer, based on user-supplied input parameters or other
calculated values.

To write to the edit buffer, include a DEFINE PRINTER(SRC=1) OUTPUT ’SOURCE’ statement in
the subprogram that routes the output to the source work area. To allow models to be ported to multiple
platforms, use the CU--DFPR copycode member to define the SRC printer.

39

Creating New ModelsStep 8: Create the Model Subprograms

All WRITE (SRC) , DISPLAY (SRC) , and PRINT (SRC) statement output for your print file is
written to the edit buffer. Use the NOTITLE option on each of these statements. If a DISPLAY statement
is used in the subprogram, also use the NOHDR option.

Tip:
When trailing blanks should be suppressed in variable names, the PRINT statement can be a useful
alternative to the WRITE statement. However, you may want to increase the line length of the edit buffer
when using the PRINT statement, so variable names are not split at the "-" character.

Because generation logic can be highly complex, these subprograms allow ultimate flexibility. However,
they are less maintainable than code frame statements since you must change Natural programs to modify
the generated code.

Generation subprograms can also accept the #PDA-FRAME-PARM constant code frame parameter in
CU—PDA. This parameter allows a subprogram to be invoked several times within the generation
process. Each time the generation subprogram is invoked, it can use the value of this parameter to
determine what to generate.

To invoke the generation subprograms, specify line type N in the T (type) column in the Code Frame
editor. You can also specify the constant parameter value on this line.

The following example of the Code Frame editor shows the code frame in which the CUMYGVAR
subprogram is invoked. The DEFINE and INIT parameters are passed to this subprogram:

FrameGENSUBP SIZE 172
DescriptionExample of generation subprogram FREE 36572
> > + ABS X X-Y _ S 21 L 1
 +....1....+....2....+....3....+....4....+....5....+....6....+....7..T C
Subprogram: CUMYGVAR Parameter: DEFINE N
 .
 .
 .
Subprogram: CUMYGVAR Parameter: INIT N

Note:
For an example of a generated generation subprogram, refer to CUMNGGL in the SYSCST library.

Post-Generation Subprogram

Generated using the CST-Postgen model, this subprogram provides the values for the substitution
parameters in the code frames identified by an ampersand (&). When the developer enters "G" in Function
on the Generation main menu, this subprogram is invoked as the final stage of the generation process.

During generation, code lines specified in the code frame are written to the edit buffer, as well as the
output of the generation subprogram in the code frame. Substitution parameters are included in the edit
buffer exactly as they appear in the code frame.

After the Generation phase, the content of the edit buffer can be the following:

40

Step 8: Create the Model SubprogramsCreating New Models

 > > + Program : ABCSUBS Lib: CSTDEV
 All +....1....+....2....+....3....+....4....+....5....+....6....+....7..
 0010 DEFINE DATA LOCAL
 0020 01 #MAX-LINES(P3) CONST<&MAX-SELECTIONS>
 0030 01 #LINE-NR(P3/1:#MAX-LINES)
 0040 01 #I(P3)
 0050 END-DEFINE
 0060 FOR #I = 1 TO #MAX-LINES
 0070 ASSIGN #LINE-NR(#I) = #I
 0080 END-FOR
 0090 .
 0100 .
 0110
 0120
 0130
 0140
 0150
 0160
 0170
 0180
 0190
 0200
 +....1....+....2....+....3....+....4....+....5....+... S 10 L 1

The post-generation subprogram substitutes the code frame parameters with the corresponding
substitution values by stacking the substitution parameters and their corresponding values. Use the
STACK TOP DATA FORMATTED statement to stack these values. For example:

DEFINE DATA
 PARAMETER USING CUMYPDA
 PARAMETER USING CU—PDA
 PARAMETER USING CSASTD
END-DEFINE
**
** Stack change commands
STACK TOP DATA FORMATTED ’&KEY’ #PDAX-KEY
STACK TOP DATA FORMATTED ’&KEY-FORMAT’ #PDA-KEY-FORMAT
END

#PDAX-KEY must contain the &KEY substitution parameter value.

#PDA-KEY-FORMAT must contain the &KEY-FORMAT substitution parameter value.

Stack Order of Substitution Parameters

Stacked parameters build a series of CHANGE commands that are applied by the nucleus after the
post-generation subprogram is finished executing. To change the substitution variables embedded within a
longer string, these CHANGE commands use the ABS (Absolute) option. If one substitution variable is a
substring of another substitution variable, stack the longer substitution variable last. Since the STACK
TOP option supplies the substitution values, the changes to the longer substitution value are applied first.
For example:

STACK TOP DATA FORMATTED ’&KEY’ #PDAX-KEY
STACK TOP DATA FORMATTED ’&KEY-FORMAT’ #PDA-KEY-FORMAT

41

Creating New ModelsStep 8: Create the Model Subprograms

Blanks versus Nulls

By default, the substitution parameter is replaced by one blank character if the second parameter (the
substituted value) is blank. If you want to replace a blank substitution value with a null string, use the
following notation:

STACK TOP DATA FORMATTED ’&FILE-PREFIX’ #PDA-FILE-PREFIX ’NULL’

Clear Subprogram

Generated using the CST-Clear model, this subprogram resets the #PDA-USER-AREA variables in the
model PDA. Only non-alphanumeric variables are reset. The clear subprogram can also assign initial
default values for user parameters.

Notes:

1. If you do not specify a clear subprogram, the Clear function on the Generation main menu sets
#PDA-USER-AREA to blanks.

2. The edit buffer is always cleared, regardless of whether the model uses a clear subprogram.

When are Clear Subprograms Invoked?

The Natural Construct nucleus invokes the clear subprogram in the following situations:

When the developer invokes the Clear Edit Buffer function on the Generation main menu.

When the developer changes the model name and the new model uses a different PDA.

Immediately before the Read Specifications function is executed on the Generation main menu.

The following example shows a the code generated for a clear subprogram:

DEFINE DATA
 PARAMETER USING CUMYPDA
 PARAMETER USING CU—PDA
 PARAMETER USING CSASTD
END-DEFINE
**
**Initialize non-alpha fields and set default values.
RESET #PDAX-MAX-PANELS #PDA-KEY-LENGTH
ASSIGN #PDAX-GDA = ’CDGDA’
ASSIGN #PDA-SYSTEM = *LIBRARY-ID
END

Save Subprogram

Generated using the CST-Save model, this subprogram writes the specification parameters to the edit
buffer. To read a previously-generated program, the model must have both a save and a read subprogram.
The save subprogram must contain a separate WRITE statement for each specification parameter (#PDAX
variable). Use the equal (=) notation to include the variable name with the contents of the variables. For
example:

WRITE(SRC) NOTITLE ’=’ #PDAX-variable-name

42

Step 8: Create the Model SubprogramsCreating New Models

Note:
Use a separate WRITE statement for each element of an array.

The following example shows a the code generated for a save subprogram:

DEFINE DATA
 PARAMETER USING CUMYPDA
 PARAMETER USING CU—PDA
 PARAMETER USING CSASTD
 LOCAL
 01 #I(P3)
 01 #TEMP(A25)
END-DEFINE
**
DEFINE PRINTER (SRC=1) OUTPUT ’SOURCE’
FORMAT(SRC) LS=150
**
** Write out parameters to be saved.
WRITE(SRC) NOTITLE ’=’ #PDAX-GDA
WRITE(SRC) NOTITLE ’=’ #PDAX-MAIN-MENU-PROGRAM
WRITE(SRC) NOTITLE ’=’ #PDAX-QUIT-PROGRAM
FOR #I = 1 TO 4
 IF #PDAX-DESC(#I) NE ’ ’ THEN
 COMPRESS ’#PDAX-DESC(’ #I ’):’ TO #TEXT LEAVING NO
 PRINT(SRC) NOTITLE #TEXT #PDAX-DESC(#I)
 END-IF
END-FOR
END

Note:
When compressing an index value that can be more than one digit in length, redefine a numeric index with
an alpha string and compress the alpha string to preserve leading zeros.

Natural Construct changes the output of the subprogram to:

**SAG variable-name: variable contents

For example, #PDAX-MAP-NAME: MYMAP becomes **SAG MAP-NAME: MYMAP. The lines
containing the **SAG parameter values are placed at the beginning of the generated module.

Read Subprogram

Generated using the CST-Read model, this subprogram reads the specification parameters for a generated
module. It contains a series of INPUT statements that accept the data previously placed in the Natural
stack. The read subprogram is invoked when the developer invokes the Read Specifications function on
the Generation main menu.

Before the read subprogram is invoked, all **SAG parameter values are placed on the Natural stack. The
read subprogram repeats a series of INPUT statements to accept the stacked parameters and assign them to
the correct PDA variables. This subprogram must correspond to the save subprogram that writes the
**SAG parameter lines. The read subprogram can also read common parameters from a different model.

Notes:

1. Natural Construct invokes the clear subprogram before invoking the read subprogram. It is not
necessary to save null parameter values.

2. For an example of a generated read subprogram, refer to CUMNR in the SYSCST library.

43

Creating New ModelsStep 8: Create the Model Subprograms

Sample User Exit Subprograms

Generated using the CST-Frame model, these subprograms help the developer create user exit code by
providing a starting sample. The subprograms can be simple or complicated, depending on the model.

When creating a sample subprogram, you can include additional parameters to give the developer more
control over what is generated into the user exit. To pass additional information to the sample subprogram,
use the CU—PDA.#PDA-FRAME-PARM variable.

All maintenance subprograms and the pre-generation subprogram are automatically invoked before the
sample subprograms are invoked. This ensures that the current specification parameters are valid and the
conditions are set.

To define a sample subprogram, enter ".E" at the beginning of a user exit line in the Code Frame editor.
For information, see Use Parameters Supplied by User Exits.

For an example of a sample subprogram, refer to CUFMSRIN in the SYSCST library.

Documentation Subprogram

Generated using the CST-Document model, this subprogram creates an extended Predict description. To
support the generation of a Predict extended description for the generated modules, you must create a
documentation subprogram for your model. This subprogram creates a free-form description of the
generated module using the information entered on the model specification panels. You can write
information in any language for which you have translated help text members. For more information, see
Using SYSERR for Multilingual Support.

The documentation subprogram writes the model description to Predict when the developer turns this
option on (using the optns PF-key on the Generation main menu) and invokes the Save or Stow function.
The functions available on the Generation main menu are described in Natural Construct Generation.

Note:
For an example of a generated documentation subprogram, refer to CUMND in the SYSCST library.

Test the Model Subprograms
Because a model contains several components, it is often better to test each component individually, or
test related subprograms, without the overhead of the Natural Construct nucleus. After defining the model
PDA, maintenance maps, and model subprograms, you can test the individual components of the model.

 To test the model subprograms:

1. Issue the CSUTEST command from the SYSCST library.

The Single Module Test Program panel is displayed. For example:

44

Test the Model SubprogramsCreating New Models

 CSUTEST ***** Natural Construct ***** CSUTESM1
 Oct 09 - SINGLE MODULE TEST PROGRAM -

 Code Function *Model: ________________________________
 ---- ------------------- Number all subprograms to be executed
 R Release Variables | |
 * Execute All Subp. V |
 1-9 Execute One Subp. Clear : V
 E Edit source Mod 1: Mod 6:
 C Clear Edit Buffer Mod 2: Mod 7:
 ? Help Mod 3: Mod 8:
 . Terminate Mod 4: Mod 9:
 ---- ------------------- Mod 5: Mod 10:
 _ Pregen: Save :
 Source Documt: Postgn:
 Lines
 Total: 0 Frame Parameter or Exit Name
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help quit

A typical test will invoke the clear subprogram, one or more maintenance subprograms (indicated by
Mod n), the pre-generate subprogram, and a generation subprogram (in that order).

Note:
This panel is a utility; it is not available in dynamic translation mode.

2. Enter the name of the model in Model.

Note:
If the test conditions and variables for the generation subprogram are set in the pre-generation or
maintenance subprograms, invoke these subprograms first.

The names of the model subprograms are displayed. For example:

45

Creating New ModelsTest the Model Subprograms

 CSUTEST ***** Natural Construct ***** CSUTESM1
 Oct 09 - SINGLE MODULE TEST PROGRAM -

 Code Function *Model: BROWSE-SELECT___________________
 ---- ------------------- Number all subprograms to be executed
 R Release Variables | |
 * Execute All Subp. V |
 1-9 Execute One Subp. _ Clear : CUSLC V
 E Edit source _ Mod 1: CUSCMA _ Mod 6: CUSCMG
 C Clear Edit Buffer _ Mod 2: CUSLMB Mod 7:
 ? Help _ Mod 3: CUSCMC Mod 8:
 . Terminate _ Mod 4: CUSLME Mod 9:
 ---- ------------------- _ Mod 5: CUSLMF Mod 10:
 _ _ Pregen: CUSLPR _ Save : CUSCST
 Source _ Documt: CUSLD _ Postgn: CUSLPS
 Lines
 Total: 0 Frame Parameter or Exit Name
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 _ Other : ________ ________________________________
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help quit
 New model definition read.

This window also displays the total number of lines in the source buffer.

3. Type a number beside each subprogram you want to test.

4. Type the same number in the input field below the Code column.

Valid codes are:

Code Description

R Resets the parameter data area (PDA) passed to all model subprograms.

* Executes all model subprograms. Subprograms marked with a number are
executed in order from 1 to 9. Code generated into the edit buffer by a
subprogram is delimited by comments containing the name of the
subprogram.

1–9 Executes the specified model subprogram. To execute a specific subprogram,
enter a number from 1 to 9. If you enter 1, for example, all subprograms
marked 1 are executed in the same order they are displayed on the panel.

E Invokes the appropriate Natural editor to edit source.

C Clears the edit buffer. You should clear the edit buffer before testing the next
subprogram.

? Displays help for the panel.

. Terminates the Test utility and displays the Natural Next prompt (Direct
Command box for Unix).

46

Test the Model SubprogramsCreating New Models

Note:
Optionally, you can enter the names of up to four generation subprograms and code frame parameters
or user exits to pass to each subprogram when it is invoked.

5. Press Enter to test the model.

Debug a Model

After creating all the components of a model, you can use several Natural Construct trace facilities to
display information about the generation process.

 To invoke the trace facilities:

1. Enter the specifications for the model you want to test on the Generation main menu.

2. Press PF5 (optns).

The Optional Parameters window is displayed. For example:

 CSGOPTS Natural Construct CSGOPTS0
 Oct 09 Optional Parameters 1 of 1
 Status window _
 Step _
 Text _
 Embedded statements _
 Condition codes _
 Post-generation modifications _
 Specifications only _
 Document in Predict _
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9-
 help retrn quit

3. Mark which trace facilities to invoke while debugging the model.

The trace facility options are:

47

Creating New ModelsDebug a Model

Option Description

Status window Displays the Status window during generation. Messages in this window
indicate which module is executing at each stage of the generation
process.

Note:
The default for this field is determined by the value specified for the
Status field on the Maintain Models panel (see Maintain Models
Function).

The Status window options are:

Step

Allows you to "step" through the stages of the generation process
by pressing Enter; the next message is not displayed until you press
Enter. To have the generation process continue unaided, press PF2
(run).

Text

Displays messages as text (for example, “starting ...” and “ending
...”). If this field is not marked, messages are displayed with
graphics “---> ...” (starting) and “<--- ...” (ending).

Embedded statementsWrites embedded statements to the source buffer as part of the generated
module. These statements indicate where the code originated and the
name of the code frame, generation subprogram, or sample subprogram
that produced it.

Condition codes Displays the values of the condition codes in the Condition Codes
window after the pre-generation subprogram is invoked.

Post-generation
modifications

Displays the values of the code frame substitution parameters, which are
identified by an ampersand (&), in the Post-Generation Modifications
window during generation. The window is displayed after the
post-generation subprogram stacks the substitution values in the code
frame.

Specifications only Saves only the current specifications and user exit code. This function is
helpful if parameter edits do not allow you to complete the generation
process and you want to save the current specifications and user exit
code.

Document in Predict Documents the saved generated module (program, data area, etc.) in the
Predict data dictionary.

4. Type "G" in Function on the Generation main menu.

The following example shows the Status window with graphics instead of text:

48

Debug a ModelCreating New Models

 CSGMAIN N a t u r a l C o n s t r u c t CSGMNM0
 +--+ 1 of 1
 | CSGOPTS Natural Construct CSGOPTS0 |
 | Oct 09 Optional Parameters 1 of 1 |
 +---+
 | CSGENPGF Natural Construct |
 | Oct 09 Status Window 1 of 1 |
 | |
 | <-- SAVE CUGRS |
 | --> FRAME CUGRF9 |
 | --> FRAME CU--B7 |
 | |
 +---+
 | Document in Predict _ |
 | Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9- |
 | help retrn |
 | |
 +--+
 Function g___ Module CUMNR___ Panel __
 Model CST-READ_________________________ Type........ Subprogram
 Command _________________________________ Library SYSCST
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 help quit optns lang

Miscellaneous Tips and Precautions

The following tips and precautions apply when using the model subprograms:

If you modify the redefinitions in a parameter data area (PDA), recatalog all subprograms that use the
PDA. (You can extend redefinitions without recataloging.)

In the post-generation subprogram, use the STACK TOP DATA FORMATTED statement so Natural
does not process input delimiter and assign characters.

In the generation subprograms, use the NOTITLE or WRITE TITLE ’ ’ statements.

To remove trailing blanks, use the PRINT (SRC) NOTITLE statement.

If you include PRINT statements, be sure to use a long line length (LS=150) so Natural does not
break the line on a "-" or other special character.

To write data without embedded spaces, use an edit mask. For example:

PRINT(SRC) NOTITLE #FIELD(EM=’UPDATE-VIEW.’X(32)) ...

In user-supplied text strings that are used to build quoted literals, always change single quotation
marks to double quotation marks. For example:

INCLUDE CU--QUOT /* Assign #DOUBLE-QUOTE based on ASCII/
 /* EBCDIC
EXAMINE #PDAX-HEADING FOR ’’’’
AND REPLACE WITH #DOUBLE-QUOTE

CU--QUOT is supplied with Natural Construct.

49

Creating New ModelsMiscellaneous Tips and Precautions

Note:
For double-byte languages, such as Kanji, use the CSUEXAM subprogram to perform the Examine
and Replace operations.

Although it is always better to use the .n extension when using SYSERR numbers to define field
prompts, you can divide the contents of a delimited SYSERR message (indicated by the "/" character)
with a single definition — if the field prompts are all the same length and are defined in the LDA one after
the other as follows:

#FIELD-ONE A 10 INIT<’*1234’>
#FIELD-TWO A 10
#FIELD-THREE A 10

If the SYSERR message is prompt1/prompt2/prompt3, the result is #FIELD-ONE = prompt1,
#FIELD-TWO = prompt2, and #FIELD-THREE = prompt3.

Implement Your Model
After testing the code frames and model components (data areas, model subprograms, maps, etc.), you are
ready to make your model available to developers in the Generation subsystem. To do this, use the
SYSMAIN utility to copy all the model components to the SYSLIBS library.

Create Statement Models
Statement models generate portions of code, such as Natural statements, Predict views, and field
processing code, which can be used in programs generated by your programmers/analysts.

To create a statement model, specify a period (.) in the Type field on the Maintain Models panel when you
define the model. Typically, a statement model uses a parameter data area (PDA), a maintenance
subprogram, and a pre-generation subprogram (most do not use code frames). Statement models do not
support user exit code. After defining the model and its components, use the SYSMAIN utility to move
the model components into the SYSLIBS library.

Statement models are designed to look like the statement syntax they are generating. For example, the If
model looks like the IF statement:

IF __
THEN __
 __
ELSE __
 __
END-IF

The screen text looks exactly like the Natural syntax. This also eliminates the need for translation, thus
improving performance and screen presentation.

To invoke a statement model, the developer issues the .G line command in the User Exit, code frame, or
Natural program editor. Using statement models can give your programmers/analysts a variety of benefits,
including:

Reduce the need to refer to the Natural Statements documentation for the statement syntax.

50

Implement Your ModelCreating New Models

Reduce the keystrokes required to code Natural statements, since keywords are automatically
generated.

Generate statements into their programs that have a consistent indentation.

Allow their programs to perform tedious calculations (centering headings within a window, for
example).

Allow their programs to access system files and automatically retrieve Predict views, SYSERR
message numbers, etc.

For information about invoking and using statement models, see Statement Models, Natural Construct
Generation.

Code Alignment of Generated Statement Models

By default, Natural Construct aligns the generated block of code so the first generated statement is
indented by the same amount as the line on which the .G command was entered. If you do not want your
model to use this alignment, generate a line beginning with "**" as the first line of your generated code.

Use the Supplied Utility Subprograms and Helproutines
Natural Construct provides many subprograms and helproutines to simplify and standardize the model
creation process. These utilities, which are used by the supplied models, can also be used by your models.
The source for these utilities is not supplied.

All subprograms use an external parameter data area (PDA). The source for this PDA is located in the
SYSCST library. Use this PDA as the local data area (LDA) in the invoking subprograms to determine
required parameters. Parameters are documented within the PDA.

The supplied utilities are divided into categories, based on the type of information they access. The names
of these subprograms and helproutines begin with one of the following prefixes:

Prefix Description

CPU Predict data retrieval subprograms.

CPH Predict data helproutines.

CNU Natural data retrieval subprograms.

CNH Natural data helproutines.

CSU Natural Construct utility subprograms.

Note:
For more information about the supplied utilities, see External Objects.

51

Creating New ModelsUse the Supplied Utility Subprograms and Helproutines

	Creating New Models
	Components of a Natural Construct Model
	How the Natural Construct Nucleus Executes a Model
	Build a New Model
	Step 1: Define the Scope of the Model
	Is the Scope Too Broad?
	Is the Scope Too Narrow?
	What to Generate and Why

	Step 2: Create the Prototype
	Step 3: Scrutinize the Prototype
	Step 4: Isolate the Parameters in the Prototype
	Determine Which Elements Need to be Parameterized
	Remove Redundant Parameters
	Choose Between Compile Time and Runtime

	Step 5: Create Code Frame(s) and Define the Model
	Create the Code Frames
	Use Substitution Parameters
	Use Parameters Supplied by Generation Subprograms
	Use Parameters Supplied by Nested Code Frames
	Use Parameters Supplied by User Exits
	Use Code Frame Conditions
	Notes

	Define the Model
	Naming Conventions for Model Components

	Step 6: Create the Model PDA
	Model PDA
	#PDA-CONDITION-CODES
	#PDA-USER-AREA

	CUžPDA
	#PDA-MODE
	#PDA-OBJECT-TYPE
	#PDA-MODIFY-HEADER1
	#PDA-MODIFY-HEADER2
	#PDA-LEFT-PROMPT
	#PDA-RIGHT-PROMPT
	#PDA-PHASE
	#PDA-DIALOG-METHOD
	#PDA-TRANSLATION-MODE
	#PDA-USERX-NAME
	#PDA-PF-NAME
	#PDA-PF-NUMBER
	#PDA-PF-KEY
	#PDA-TITLE
	#PDA-GEN-PROGRAM
	#PDA-MODEL-VERSION
	#PDA-HELP-INDICATOR
	#PDA-USER-DEFINED-AREA
	#PDA-UNDERSCORE-LINE
	#PDA-RIGHT-PROMPT-OF
	#PDA-DISPLAY-INDICATOR
	#PDA-CURS-FIELD
	#PDA-CVn
	#PDA-SCROLL-INDICATOR
	#PDA-DYNAMIC-ATTR-CHARS
	#PDA-FRAME-PARM
	#PDA-SYSTEM

	CSASTD PDA
	MSG
	MSG-NR
	MSG-DATA
	RETURN-CODE
	ERROR-FIELD
	ERROR-FIELD-INDEXn

	Step 7: Create the Translation LDAs and Maintenance Maps
	Format of the Translation LDAs
	Maintenance Maps

	Step 8: Create the Model Subprograms
	Maintenance Subprograms
	References
	When are Maintenance Subprograms Invoked?
	Generation Main Menu
	User Exit Editor

	Pre-Generation Subprogram
	References
	Generation Subprograms
	Post-Generation Subprogram
	Stack Order of Substitution Parameters
	Blanks versus Nulls

	Clear Subprogram
	When are Clear Subprograms Invoked?

	Save Subprogram
	Read Subprogram
	Sample User Exit Subprograms
	Documentation Subprogram

	Test the Model Subprograms
	Debug a Model
	Miscellaneous Tips and Precautions

	Implement Your Model
	Create Statement Models
	Code Alignment of Generated Statement Models

	Use the Supplied Utility Subprograms and Helproutines

