
WRITE WORK FILE
WRITE WORK [FILE] work-file-number [VARIABLE] operand1

This chapter covers the following topics:

Function

Syntax Description

External Representation of Fields

Handling of Large and Dynamic Variables

Example

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE WORK FILE | READ WORK FILE | CLOSE WORK FILE | DOWNLOAD
PC FILE

Belongs to Function Group: Control of Work Files / PC Files

Function
The WRITE WORK FILE statement is used to write records to a physical sequential work file.

This statement can only be used in batch mode.

It is possible to create a work file in one program or processing loop and to read the same file in a
subsequent independent processing loop or in a subsequent program using the READ WORK FILE
statement.

Note:
For Unicode and code page support, see Work Files and Print Files on Windows, UNIX and OpenVMS
Platforms in the Unicode and Code Page Support documentation.

Syntax Description
Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A G A U N P I F B D T L C G yes no

Note:
When using the work file types ENTIRECONNECTION or TRANSFER, operand1 may neither be of
format C, nor G.

1

WRITE WORK FILEWRITE WORK FILE

Syntax Element Description:

Syntax Element Description

work-file-number Work File Number:

The work file number (as defined to Natural) to be used.

VARIABLE Variable Entry:

It is possible to write records with different fields to the same work file with
different WRITE WORK FILE statements. In this case, the VARIABLE
entry must be specified in all WRITE WORK FILE statements. The records
on the external file will be written in variable format.

When the operand list includes a dynamic variable (that could change in size
for different executions of the WRITE WORK FILE statement), the
VARIABLE entry must be specified in all WRITE WORK FILE statements.

Variable Index Range:

When writing an array to a work file, you can specify a variable index range
for the array. For example:

WRITE WORK FILE work-file-number VARIABLE #ARRAY (I:J)

operand1 Fields to Be Written:

With operand1 you specify the fields to be written to the work file. These
fields may be database fields, user-defined variables, system variables and/or
fields read from another work file using the READ WORK FILE statement.

A database array may be referenced with one single range of indices which
indicates the occurrences that are to be written to the work file. Groups from
database files may be referenced using the group name. All fields belonging
to that group will be written to the work file individually.

External Representation of Fields
Fields written with a WRITE WORK FILE statement are represented in the external file according to
their internal definition. No editing is performed on the field values.

For fields of format A and B, the number of bytes in the external file is the same as the internal length
definition as defined in the Natural program. No editing is performed and a decimal point is not
represented in the value.

For fields of format N, the number of bytes on the external file is the sum of internal positions before and
after the decimal point. The decimal point is not represented on the external file.

For fields of format P, the number of bytes on the external file is the sum of positions before and after the
decimal point, plus 1 for the sign, divided by 2, rounded upward to a full byte.

2

External Representation of FieldsWRITE WORK FILE

Note:
No format conversion is performed for fields that are written to a work file.

Examples of Field Representation:

Field Definition Output Record

#FIELD1 (A10) 10 bytes

#FIELD2 (B15) 15 bytes

#FIELD3 (N1.3) 4 bytes

#FIELD4 (N0.7) 7 bytes

#FIELD5 (P1.2) 2 bytes

#FIELD6 (P6.0) 4 bytes

Note:
When the Natural system functions AVER, NAVER, SUM or TOTAL for numeric fields (format N or P) are
written to a work file, the internal length of these fields is increased by one digit (for example, SUM of a
field of format P3 is increased to P4). This has to be taken into consideration when reading the work file.

Handling of Large and Dynamic Variables

3

WRITE WORK FILEHandling of Large and Dynamic Variables

Work File Type Handling

ASCII
ASCII-COMPRESSED
SAG (binary)

The work file types ASCII , ASCII-COMPRESSED and SAG (binary)
cannot handle dynamic variables and will produce an error. They can,
however, handle large variables with a maximum field/record length of
32766 bytes.

TRANSFER
ENTIRECONNECTION

The work file type TRANSFER can handle dynamic variables with a
maximum field/record length of 32766 bytes. The work file type
ENTIRECONNECTION cannot handle dynamic variables. They can both,
however, handle large variables with a maximum field/record length of
1073741824 bytes.

PORTABLE
UNFORMATTED

Large and dynamic variables can be written into work files or read from
work files using the two work file types PORTABLE and UNFORMATTED.
For these types, there is no size restriction for dynamic variables. However,
large variables may not exceed a maximum field/record length of 32766
bytes.

For the work file type PORTABLE, the field information is stored within the
work file. The dynamic variables are resized during READ if the field size in
the record is different from the current size.

In the WRITE WORK FILE statement, fields are written to the file specified
with their byte length. All data types (DYNAMIC or not) are treated the same.
No structural information is inserted. Note that Natural uses a buffering
mechanism, so you can expect the data to be completely written only after a
CLOSE WORK. This is especially important if the file is to be processed with
another utility while Natural is running.

With the READ WORK FILE statement, fields of fixed length are read with
their whole length. If the end-of-file is reached, the remainder of the current
field is filled with blanks. The following fields are unchanged. In the case of
DYNAMIC data types, all the remainder of the file is read unless it exceeds
1073741824 bytes. If the end of file is reached, the remaining fields
(variables) are kept unchanged (normal Natural behavior).

CSV The maximum field/record length is 32766 bytes for dynamic and large
variables. Dynamic variables are supported. X-arrays are not allowed and
will result in an error message.

Example
** Example ’WWFEX1’: WRITE WORK FILE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 NAME
END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = ’LONDON’
 WRITE WORK FILE 1

4

ExampleWRITE WORK FILE

 PERSONNEL-ID NAME
END-FIND
*
END

5

WRITE WORK FILEExample

	WRITE WORK FILE
	Function
	Syntax Description
	External Representation of Fields
	Handling of Large and Dynamic Variables
	Example

