
Function Call
call-name (< ([prototype-cast] [intermediate-result-definition]) [parameter] [, [parameter]] ... >
)

This chapter covers the following topics:

Calling User-Defined Functions

Restrictions

Syntax Description

Related Topics: DEFINE FUNCTION | DEFINE PROTOTYPE

Calling User-Defined Functions
Function calls can be used to call user-defined functions which are defined inside special objects of type
function.

There are different ways to call a function:

Symbolic Function Call

Function Call Using a Variable

Symbolic Function Call

When using the symbolic function call, the user specifies exactly the name of the function to be executed
at runtime.

If only a symbolic function call is specified in the Natural source, the corresponding Natural function
definition is retrieved automatically, unless a suitable prototype definition has been specified before. The
corresponding name of the object, which contains the Natural function definition, is retrieved according to
the symbolic logical function name. This is done using the link records of the FILEDIR.SAG file. In this
case, the corresponding function definition must have been stowed before the link record can be generated
for the first time.

This feature causes that all parameter definitions of a Natural function call are always checked for valid
format/length definitions.

Function Call Using a Variable

In a function call using a variable, the name of the desired function definition is stored inside an
alphanumeric variable. At runtime, Natural jumps into the corresponding function definition, the name of
which has been stored inside the variable.

1

Function Call Function Call

In order to identify these two kinds of function calls, a corresponding prototype definition must be
specified. Additionally, the prototype may contain the whole signature of the function definition. If no
signature has been given, the function call must contain a PT clause in order to specify the missing parts
of the signature. Therefore, the VARIABLE keyword of such a prototype specified inside the PT clause
has no effect. For variable function calls, there must be a valid prototype with the same name as the
alphanumeric variable containing the function name.

If no prototype can be assigned to the function call, a special prototype-cast is necessary in order to
define the return format/length at compilation time. The prototype-cast and the parameter list must
be enclosed in pointy brackets and parentheses, as displayed in the syntax diagram.

If you want to use the variable method, you must define a prototype with the same name as the
variable-name using the keyword VARIABLE.

Example:

DEFINE PROTOTYPE VARIABLE variable-name

Note:
You can only use a function call when the operand involved cannot be modified. However, if a function
call is used in an INPUT statement, the return value will be displayed as an "output only" field (AD=O).

Restrictions
Function calls are not allowed in the following situations:

in a DEFINE DATA statement;

in a database access or update statement (READ, FIND, SELECT, UPDATE, STORE, etc.);

in an AT BREAK or IF BREAK statement;

as an argument of the system functions AVER, COUNT, MAX, MIN, NAVER, NCOUNT, NMIN, OLD,
SUM, TOTAL;

as index notation.

Syntax Description
A function call may consist of the following syntax elements:

call-name

prototype-cast

intermediate-result-definition

Parameter(s)

2

RestrictionsFunction Call

call-name

function-name

prototype-variable-name

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

prototype-variable-name S A A U yes no

Syntax Element Description:

function-name The function-name clause is the symbolic function name. The
corresponding function definition is defined in a certain function
object file.

prototype-variable-name The prototype-variable-name is the name of the variable
containing the real name of the function which is to be called. An
alphanumeric or Unicode variable with the same name must have
already been defined.

prototype-cast

PT= prototype-name

prototype-variable-name

The prototype-cast must be used for function calls where no signature is specified in the
corresponding function prototype (for example, signature clause of prototype definition is defined as
UNKNOWN).

intermediate-result-definition

 IR= format-length [/array-definition]

(A
U
B

[/array-definition]) DYNAMIC

This clause enables you to specify the format-length/array-definition of the return value for
a function call without using an explicit or implicit prototype definition, that is, it enables the explicit
specification of an intermediate result.

3

Function Call call-name

If, in addition, a prototype is valid for the function call, it is checked that the
format-length/array-definition of the return value of the function definition is
move-compatible to the intermediate result. If this is not the case, an error will be raised. The intermediate
result is taken for the return value.

Alternatively, arrays are possible as return values, that is, array definitions may be specified as
intermediate results. With an array-definition, you define the lower and upper bound of a
dimension in an array definition. See Array Dimension Definition in the Statements documentation.

format-length The format and length of the field.

For information on format/length definition of user-defined variables, see
Format and Length of User-Defined Variables.

A, B or U Data format: Alphanumeric, binary or Unicode for dynamic variables.

array-definition With an array-definition, you define the lower and upper bounds of the
dimensions in an array definition.

See Array Dimension Definition in the Statements documentation.

DYNAMIC A field may be defined as DYNAMIC.

For further information on processing dynamic variables, see Introduction to
Dynamic Variables and Fields.

Parameter(s)

Each parameter may be an operand when calling the function. If a parameter is defined with the keyword
OPTIONAL in the subprogram’s DEFINE DATA PARAMETER statement, the corresponding operand
values may be omitted in the function call. In this case, use the nX notation (where n is a whole integer
greater than or equal to 1) or just omit this argument.

You can specify the session parameter AD for each argument.

 nX

 M
O
A

operand (AD=)

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand C S A G A N P I F B D T L C G O yes yes

4

Parameter(s)Function Call

For an example of the proper usage of this function call, see the example in the description of the DEFINE
PROTOTYPE statement.

nX Parameters to be Skipped:

With the notation nX you can specify that the next n parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the
next n parameters no values are passed to the subprogram.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the
subprogram’s DEFINE DATA PARAMETER statement. OPTIONAL means that a value can -
but need not - be passed from the invoking object to such a parameter.

AD= Attribute Definition:

If operand is a variable, you can mark it in one of the following ways:

AD=O Non-modifiable, see session parameter AD=O.

Note:
Internally, AD=O is processed in the same way as BY VALUE (see the section
parameter-data-definition in the description of the DEFINE DATA statement).

AD=M Modifiable, see session parameter AD=M.

This is the default setting.

AD=A Input only, see session parameter AD=A.

If operand is a constant, AD cannot be explicitly specified. For constants, AD=O always applies.

5

Function CallParameter(s)

	 Function Call
	 Calling User-Defined Functions
	 Symbolic Function Call
	Function Call Using a Variable

	Restrictions
	Syntax Description
	 call-name
	 prototype-cast
	intermediate-result-definition
	Parameter(s)

