
SELECT - SQL
This chapter covers the following topics:

Function

Syntax 1 - Cursor-Oriented Selection

Syntax 2 - Non-Cursor Selection

Join Queries

Belongs to Function Group: Database Access and Update

See also the following sections in the Database Management System Interfaces documentation:

SELECT - SQL in the Natural for DB2 part.

SELECT - SQL in the Natural SQL Gateway part.

SELECT - SQL in the Natural for SQL/DS part.

Function
The SELECT statement supports both the cursor-oriented selection that is used to retrieve an arbitrary
number of rows and the non-cursor selection (singleton SELECT) that retrieves at most one single row.
With the SELECT ... END-SELECT construction, Natural uses the same database loop processing as
with the FIND statement.

Two different structures are possible.

Syntax 1 - Cursor-Oriented Selection
Like the Natural FIND statement, the cursor-oriented SELECT statement is used to select a set of rows
(records) from one or more DB2 tables, based on a search criterion. Since a database loop is initiated, the
loop must be closed by a LOOP (reporting mode) or END-SELECT statement. With this construction,
Natural uses the same loop processing as with the FIND statement.

In addition, no cursor management is required from the application program; it is automatically handled
by Natural.

Common Set Syntax:

1

SELECT - SQLSELECT - SQL

SELECT selection INTO parameter,
VIEW {view-name [correlation-name]},

table-expression

UNION
EXCEPT
INTERSECT

DISTINCT
ALL

[(]SELECT selection table-expression[)]

 ORDER BY integer
column-reference
expression

ASC
DESC

 statement

END-SELECT (structured mode only)

LOOP (reporting mode only)

Extended Set Syntax:

2

Syntax 1 - Cursor-Oriented SelectionSELECT - SQL

[WITH_CTE common-table-expression,...]

SELECT selection INTO parameter,
VIEW {view-name [correlation-name]},

UNION
EXCEPT
INTERSECT

DISTINCT
ALL

[(]SELECT selection table-expression[)]

 ORDER BY Clause

 [OPTIMIZE FOR integer ROWS]

WITH CS

RR

UR

RS

RS KEEP UPDATE LOCKS

RR KEEP UPDATE LOCKS

 [SKIP LOCKED DATA]

 QUERYNO integer

FETCH FIRST 1 ROW ONLY

integer ROWS

 [WITH HOLD]

 [WITH RETURN]

WITH ASENSITIVE SCROLL [:]scroll_hv [GIVING [:] sqlcode

INSENSITIVE SCROLL

SENSITIVE STATIC SCROLL

SENSITIVE DYNAMIC SCROLL

WITH ROWSET
POSITIONING FOR

[:]
row_hv

ROWS ROWS_RETURNED [:]
ret_row

integer

 [IF-NO-RECORDS-FOUND-clause]

 statement

END-SELECT (structured mode only)

LOOP (reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description - Syntax 1:

Similar to the FIND statement, a cursor-oriented selection is used to select a set of rows (records) from
one or more database tables, based on a search criterion. In addition, no cursor management is required
from the application program; it is automatically handled by Natural.

3

SELECT - SQLSyntax 1 - Cursor-Oriented Selection

Syntax Element Description

INTO INTO Clause:

The INTO clause is used to specify the target fields in the program
which are to be filled with the result of the selection. For further
information and examples, see INTO Clause below.

VIEW VIEW Clause:

If one or more views are referenced in the INTO clause, the number of
items specified in the selection must correspond to the number of
fields defined in the view(s) (not counting group fields, redefining fields
and indicator fields). For further information and examples, see VIEW
Clause below.

table-expression Table Expression:

A table-expression consists of a FROM clause and an optional
WHERE clause. For further information and examples, see
table-expression below.

EXCEPT Difference Set Specification:

Specifies the difference set of the result sets of two select expressions.
For further information and an example, see Query Involving UNION
below.

INTERSECT Intersection Specification:

Specifies the intersection of the two result sets. For further information
and an example, see Query Involving UNION below.

UNION Query Involving UNION Clause:

UNION unites the results of two or more select expressions. For further
information and an example, see Query Involving UNION below.

ALL Including Redundant Rows:

Specifies the result set contains redundant (duplicate) rows.

DISTINCT Excluding Redundant Rows:

Specifies the result set does not contain redundant (duplicate) rows.

ORDER BY ORDER BY Clause:

The ORDER BY clause arranges the result of a SELECT statement in a
particular sequence. For further information and examples; see ORDER
BY Clause below.

4

Syntax 1 - Cursor-Oriented SelectionSELECT - SQL

Syntax Element Description

IF NO RECORDS
FOUND

IF NO RECORDS FOUND Clause:

The IF NO RECORDS FOUND clause is used to initiate a processing
loop if no records meet the selection criteria specified in the preceding
SELECT statement. For further information, see IF NO RECORDS
FOUND Clause below.

END-SELECT
LOOP

End of SELECT Statement:

In structured mode, the Natural reserved keyword END-SELECT must
be used to end the SELECT statement.

In reporting mode, the LOOP statement must be used to end the SELECT
statement.

The following syntax elements belong to the SQL Extended Set:

Syntax Element Description

WITH_CTE
common-table-expression,...

WITH_CTE Clause:

This optional clause allows you to define a
result table which can be referenced in any
FROM clause of the SELECT that follows.
Multiple common-table-expressions can be
specified following the single WITH_CTE
keyword. Each
common-table-expression can also be
referenced in the FROM clause of a subsequent
common-table-expression.

For further information, see WITH CTE
common-table-expression,... below.

OPTIMIZE FOR OPTIMIZE FOR Clause:

For more information, see the OPTIMIZE FOR
integer ROWS in the section SELECT -
Cursor-Oriented

WITH CS/RS/UR/... WITH CS/RS/UR/... Clause:

This clause allows you to specify an explicit
isolation level with which the statement is to be
executed. For more information, see WITH -
Isolation Level.

QUERYNO QUERYNO Clause:

The QUERYNO clause specifies the number to
be used for this SQL statement in EXPLAIN
output and trace records.

For more information, see QUERYNO in the
section SELECT - Cursor-Oriented.

5

SELECT - SQLSyntax 1 - Cursor-Oriented Selection

Syntax Element Description

SKIP LOCKED DATA SKIP LOCKED DATA Clause:

The SKIP LOCKED DATA clause specifies
that rows are skipped when incompatible locks
are held on the row by other transactions.

FETCH FIRST FETCH FIRST Clause:

This clause limits the number of rows that can
be fetched. For more information, see FETCH
FIRST in the section SELECT -
Cursor-Oriented.

WITH HOLD WITH HOLD Clause:

For more information, see WITH HOLD in the
section SELECT - Cursor-Oriented.

WITH RETURN WITH RETURN Clause:

For more information, see WITH RETURN in
the section SELECT - Cursor-Oriented.

6

Syntax 1 - Cursor-Oriented SelectionSELECT - SQL

Syntax Element Description

WITH ... SCROLL WITH ... SCROLL Clause:

DB2 scrollable cursors are enabled with this
clause. Scrollable cursors can be
ASENSITIVE , INSENSITIVE , SENSITIVE
STATIC or SENSITIVE DYNAMIC .

WITH ASENSITIVE SCROLL specifies
that the cursor is either INSENSITIVE or
SENSITIVE DYNAMIC . This is
determined by DB2 at open time of the
cursor, depending on the read-only
property of the cursor: If the cursor is
read-only, the cursor will become
INSENSITIVE . If the cursor is not
read-only, the cursor will become
SENSITIVE DYNAMIC .

WITH INSENSITIVE SCROLL
specifies that the cursor is insensitive for
updates, deletes and inserts executed
against the base table, after the cursor has
been updated. Positioned updates and
deletes are not allowed against
INSENSITIVE SCROLL cursors.

WITH SENSITIVE STATIC specifies
that the cursor is sensitive for updates and
deletes against the base table, but not
against inserts, after the cursor has been
opened. Positioned updates and deletes are
allowed against SENSITIVE STATIC
SCROLL cursors.

WITH SENSITIVE DYNAMIC specifies
that the cursor is sensitive for updates,
deletes and inserts against the base table,
after the cursor has been opened.
Positioned updates and deletes are allowed
against SENSITIVE DYNAMIC
SCROLL cursors.

Scrollable cursors allow the application to
position any row in the cursor at any time as
long as the cursor is open.

The positioning is performed depending on the
content of the scroll_hv. The content is
evaluated each time a FETCH against DB2 is
executed.

For more information, see WITH
INSENSITIVE/SENSITIVE in the section
SELECT - Cursor-Oriented.

7

SELECT - SQLSyntax 1 - Cursor-Oriented Selection

Syntax Element Description

WITH ROWSET POSITIONING FOR … ROWS WITH ROWSET POSITIONING FOR …
ROWS Clause:

This clause enables DB2 rowset processing,
which corresponds to Natural native DML
multifetch processing. [:] row_hv (I4) or
integer determines the maximum number of
rows returned from DB2 to Natural. The
number determines either the size of the Natural
multifetch buffer used for standard multiple row
processing or the maximum number of rows
returned from DB2 into the Natural program for
advanced multiple row processing.

ROWS_RETURNED [:] ret_row ROWS_RETURNED [:] ret_row Clause:

This clause specifies an I4 variable which will
receive the number of rows returned by DB2 on
behalf of the last executed DB2 fetch operation
for advanced multiple row processing.

WITH_CTE common-table-expression,…

This clause permits to define result tables that can be referenced in any FROM clause of the SELECT
statement that follows.

The Natural specific keyword WITH_CTE corresponds to the SQL keyword WITH. WITH_CTE will be
translated into the SQL keyword WITH by the Natural compiler.

Each common-table-expression has to obey the following syntax:

[common-table-expression-name [(column-name,…)] AS (fullselect)]

Syntax Element Description:

Syntax Element Description

common-table-expression-name Has to be an unqualified SQL identifier and must be
different from any other common-table-expression-name
specified in the same statement.

Each common-table-expression-name can be
specified in the FROM clause of any
common-table-expression-name following or in
the FROM clause of the SELECT statement following.

column-name Has to be an unqualified SQL identifier and must be unique
within one common-table-expression-name.

AS (fullselect) The number of column-names must match the number
of columns of the fullselect.

8

WITH_CTE common-table-expression,¼SELECT - SQL

A common-table-expression can be used

in place of a view to avoid creating the view;

when the same result table needs to be shared in a fullselect ;

when the result needs to be derived using recursion.

Queries using recursion are useful in applications such as bill of material.

Example:

WITH_CTE
 RPL (PART,SUBPART,QUANTITY) AS
 (SELECT ROOT.PART,ROOT.SUBPART,ROOT.QUANTITY
 FROM HGK-PARTLIST ROOT
 WHERE ROOT.PART =’01’
 UNION ALL
 SELECT CHILD.PART,CHILD.SUBPART,CHILD.QUANTITY
 FROM RPL PARENT, HGK-PARTLIST CHILD
 WHERE PARENT.SUBPART = CHILD.PART
)
SELECT DISTINCT PART,SUBPART,QUANTITY
 INTO VIEW V1
 FROM RPL
 ORDER BY PART,SUBPART,QUANTITY
END-SELECT

OPTIMIZE FOR integer ROWS

[OPTIMIZE FOR integer ROWS]

The OPTIMIZE FOR integer ROWS clause is used to inform DB2 in advance of the number
(integer) of rows to be retrieved from the result table. Without this clause, DB2 assumes that all rows
of the result table are to be retrieved and optimizes accordingly.

This optional clause is useful if you know how many rows are likely to be selected, because optimizing
for integer rows can improve performance if the number of rows actually selected does not exceed the
integer value (which can be in the range from 0 to 2147483647).

Example:

SELECT name INTO
#name FROM table WHERE AGE = 2 OPTIMIZE FOR 100 ROWS

WITH - Isolation Level

9

SELECT - SQLOPTIMIZE FOR integer ROWS

WITH CS
RR
RR KEEP UPDATE LOCK
RS
RS KEEP UPDATE LOCKS
UR

This WITH clause allows you to specify an explicit isolation level with which the statement is to be
executed. The following options are provided:

Option Meaning

CS Cursor Stability

RR Repeatable Read

RS Read Stability

RS KEEP
UPDATE LOCKS

Only valid if a FOR UPDATE OF clause is specified.

Read Stability and retaining update locks.

RR KEEP
UPDATE LOCKS

Only valid if a FOR UPDATE OF clause is specified.

Repeatable Read and retaining update locks.

UR Uncommitted Read

WITH UR can only be specified within a SELECT statement and when the table is read-only. The default
isolation level is determined by the isolation of the package or plan into which the statement is bound. The
default isolation level also depends on whether the result table is read-only or not. To find out the default
isolation level, refer to the IBM literature.

Note:
This option also works for non-cursor selection.

QUERYNO

[QUERYNO integer]

The QUERYNO clause specifies the number to be used for this SQL statement in EXPLAIN output and
trace records. The number is used as QUERYNO column in the PLAN_TABLE for the rows that contain
information on this statement.

FETCH FIRST

10

QUERYNOSELECT - SQL

FETCH FIRST 1
integer

ROWS
ROW

ONLY

The FETCH FIRST clause limits the number of rows to be fetched. It improves the performance of
queries with potentially large result sets if only a limited number of rows is needed.

WITH HOLD

[WITH HOLD]

The WITH HOLD clause is used to prevent cursors from being closed by a commit operation within
database loops. If WITH HOLD is specified, a commit operation commits all the modifications of the
current logical unit of work, but releases only locks that are not required to maintain the cursor. This
optional clause is mainly useful in batch mode; it is ignored in CICS pseudo-conversational mode and in
IMS message-driven programs.

Example:

SELECT name INTO #name FROM table
WHERE AGE = 2 WITH HOLD

WITH RETURN

[WITH RETURN]

The WITH RETURN clause is used to create result sets. Therefore, this clause only applies to programs
which operate as Natural stored procedure. If the WITH RETURN clause is specified in a SELECT
statement, the underlying cursor remains open when the associated processing loop is left, except when
the processing loop had read all rows of the result set itself. During first execution of the processing loop,
only the cursor is opened. The first row is not yet fetched. This allows the Natural program to return a full
result set to the caller of the stored procedure. It is up to you to decide how many rows are processed by
the Natural stored procedure and how many unprocessed rows of the result set are returned to the caller of
the stored procedure. If you want to process rows of the select operation in the Natural stored procedure,
you must define

IF *counter =1 ESCAPE TOP END-IF

in order to avoid processing of the first "empty row" in the processing loop. If you decide to terminate the
processing of rows, you must define the following statement in the processing loop:

IF condition ESCAPE BOTTOM END-IF

If the program reads all rows of the result set, the cursor is closed and no result set is returned for this
SELECT WITH RETURN to the caller of the stored procedure.

The following programs are examples for retrieving full result sets (Example 1) and partial result sets
(Example 2).

11

SELECT - SQLWITH HOLD

Examples:

Example 1:

DEFINE DATA LOCAL
. . .
END DEFINE
*
* Return all rows of the result set
*
SELECT * INTO VIEW V2
 FROM SYSIBM-SYSROUTINES
 WHERE RESULT_SETS > 0
 WITH RETURN
ESCAPE BOTTOM
END-SELECT
END

Example 2:

DEFINE DATA LOCAL
. . .
END DEFINE
*
* Read the first two rows and return the rest as result set
*
SELECT * INTO VIEW V2
 FROM SYSIBM-SYSROUTINES
 WHERE RESULT_SETS > 0
 WITH RETURN
WRITE PROCEDURE *COUNTER
IF *COUNTER = 1 ESCAPE TOP END-IF
IF *COUNTER = 3 ESCAPE BOTTOM END-IF
END-SELECT
END

WITH INSENSITIVE/SENSITIVE

WITH ASENSITIVE SCROLL
INSENSITIVE SCROLL
SENSITIVE STATIC SCROLL
SENSITIVE DYNAMIC SCROLL

[:] scroll_hv [GIVING [:] sqlcode]

Natural for DB2 supports DB2 scrollable cursors by using the clauses WITH ASENSITIVE SCROLL ,
WITH SENSITIVE STATIC SCROLL and SENSITVE DYNAMIC SCROLL. Scrollable cursors allow
Natural for DB2 applications to position randomly any row in a result set. With non-scrollable cursors, the
data can only be read sequentially, from top to bottom.

12

WITH INSENSITIVE/SENSITIVESELECT - SQL

Syntax Element Description

ASENSITIVE
SCROLL

ASENSITIVE scrollable cursors are either INSENSITIVE - if the cursor is
READ-ONLY - or SENSITIVE DYNAMIC - if the cursor is not READ-ONLY.

INSENSITIVE
SCROLL

INSENSITIVE SCROLL refers to a cursor that cannot be used in Positioned
UPDATE or Positioned DELETE operations. In addition, once opened, an
INSENSITIVE SCROLL cursor does not reflect UPDATE, DELETE or
INSERT operations against the base table after the cursor was opened.

See also Note.

SENSITIVE
STATIC SCROLL

SENSITIVE STATIC SCROLL refers to a cursor that can be used for
Positioned UPDATEs or Positioned DELETE operations. In addition, a
SENSITIVE STATIC SCROLL cursor reflects UPDATE and DELETE
operations of base table rows. The cursor does not reflect INSERT operations.

See also Note.

SENSITIVE
DYNAMIC
SCROLL

SENSITIVE DYNAMIC scrollable cursors reflect UPDATE, DELETE and
INSERT operations against the base table while the cursor is open.

Note:
INSENSITIVE and SENSITIVE STATIC scrollable cursors use temporary result tables and require a
TEMP database in DB2 (see the relevant DB2 literature by IBM).

Below is information on:

scroll_hv
scroll_hv Sensitivity Specification
scroll_hv Options
GIVING [:] sqlcode

scroll_hv

The variable scroll_hv must be alphanumeric.

The variable scroll_hv specifies which row of the result table will be fetched during one execution of
the database processing loop. Additionally, it specifies the sensitivity of UPDATEs or DELETEs against
the base table row during a FETCH operation. The contents of scroll_hv is evaluated each time the
database processing loop cycle is executed.

13

SELECT - SQLWITH INSENSITIVE/SENSITIVE

INSENSITIVE
SENSITVE

AFTER
BEFORE
CURRENT
FIRST
LAST
PRIOR
NEXT

ABSOLUTE
RELATIVE

+
-

integer

scroll_hv Sensitivity Specification

The specification of the sensitivity INSENSITIVE or SENSITIVE is optional.

If it is omitted from a FETCH against an INSENSITIVE SCROLL cursor, the default will be
INSENSITIVE .

If it is omitted from a FETCH against a SENSITIVE STATIC /DYNAMIC SCROLL cursor, the
default will be SENSITIVE .

The sensitivity specifies whether or not the rows in the base table are checked when performing a FETCH
operation for a scrollable cursor.

If the corresponding base table column qualifies for the WHERE clause and has not been deleted, a
SENSITIVE FETCH will return the row of the base table.

If the corresponding base table column does not qualify for the WHERE clause or has not been
deleted, a SENSITIVE FETCH will return an UPDATE hole or a DELETE hole state (SQLCODE
+222).

An INSENSITIVE FETCH will not check the corresponding base table column.

scroll_hv Options

Below is an explanation of the options available to determine the row(s) to fetch, the position from where
to start the fetch and/or the direction in which to scroll:

14

WITH INSENSITIVE/SENSITIVESELECT - SQL

Option Explanation

AFTER Positions after the last row. No row is fetched.

BEFORE Positions before the first. No row is fetched.

CURRENT Fetches the current row (again).

FIRST Fetches the first row.

LAST Fetches the last row.

NEXT Fetches the row after the current one. This is the default value.

PRIOR Fetch the row before the current one.

+/- integer Only applies in connection with ABSOLUTE or RELATIVE.

Specifies the position of the row to be fetched ABSOLUTE or
RELATIVE.

Enter a plus (+) or minus (-) sign followed by an integer.

The default value is a plus (+).

ABSOLUTE Only applies in connection with +/- integer.

Uses integer as the absolute position within the result set
from where the row is fetched.

See the DB2 SQL reference by IBM about further details
regarding positive and negative position numbers.

RELATIVE Only applies in connection with +/- integer.

Uses integer as the relative position to the current position
within the result set from where the row is fetched.

See the DB2 SQL reference by IBM about further details
regarding positive and negative position numbers.

GIVING [:] sqlcode

The specification of GIVING [:] sqlcode is optional. If specified, the Natural variable [:]
sqlcode must be of format I4. The values for this variable are returned from the DB2 SQLCODE of the
underlying FETCH operation. This allows the application to react to different statuses encountered while
the scrollable cursor is open. The most important status codes indicated by SQLCODE are listed in the
following table:

15

SELECT - SQLWITH INSENSITIVE/SENSITIVE

SQLCODE Explanation

0 FETCH operation successful, data returned except for FETCH with option BEFORE or
AFTER.

+100 Row not found, cursor still open, no data returned.

+222 UPDATE or DELETE hole, cursor still open, no data returned. The corresponding row of
the base table has been updated or deleted, so that the row no longer qualifies for the
WHERE clause.

+231 Fetch operation with the option CURRENT, but cursor not positioned on any row, no
data returned. This occurs if the previous FETCH returned SQLCODE +100.

If you specify GIVING [:] sqlcode, the application must react to the different statuses. If an
SQLCODE +100 is entered five times successively and without terminal I/O, the Natural for DB2
runtime will issue Natural error NAT3296 in order to avoid application looping. The application can
terminate the processing loop by executing an ESCAPE statement.

If you do not specify GIVING [:] sqlcode, except for SQLCODE 0 and SQLCODE +100, each
SQLCODE will generate Natural error NAT3700 and the processing loop will be terminated. SQLCODE
+100 (row not found) will terminate the processing loop.

See also the example program DEM2SCRL supplied in the Natural system library SYSDB2.

Syntax 2 - Non-Cursor Selection
Common Set Syntax:

SELECT SINGLE

 selection INTO parameter , table-expression

VIEW {view-name [correlation-name]},

 [IF-NO-RECORDS-FOUND-clause]

 statement

END-SELECT (structured mode only)

LOOP (reporting mode only)

Extended Set Syntax:

16

Syntax 2 - Non-Cursor SelectionSELECT - SQL

SELECT SINGLE

 selection INTO parameter , table-expression

VIEW {view-name [correlation-name]},

WITH CS

RR

UR

 [IF-NO-RECORDS-FOUND-clause]

 statement

END-SELECT (structured mode only)

LOOP (reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Element Description - Syntax 2:

The SELECT SINGLE statement supports the functionality of a non-cursor selection (singleton
SELECT); that is, a select expression that retrieves at most one row without using a cursor. It cannot be
referenced by a positioned UPDATE or a positioned DELETE statement.

17

SELECT - SQLSyntax 2 - Non-Cursor Selection

Syntax Element Description

INTO INTO Clause:

The INTO clause is used to specify the target fields in the program
which are to be filled with the result of the selection.

For further information and examples, see INTO Clause below.

VIEW VIEW Clause:

If one or more views are referenced in the INTO clause, the number of
items specified in the selection must correspond to the number of fields
defined in the view(s) (not counting group fields, redefining fields and
indicator fields).

For further information and examples, see VIEW Clause below.

table-expression Table Expression:

The table-expression consists of a FROM clause and optionally of
a WHERE clause, a GROUP BY clause and a HAVING clause. For further
information, see selection and table-expression.

See also see Examples of table-expression below.

WITH CS/RR/UR WITH CS/RR/UR Clause:

This option allows you to specify an explicit isolation level with which
the statement is to be executed.

CS Cursor Stability

RR Repeatable Read

RS Read Stability

IF NO RECORDS
FOUND

IF NO RECORDS FOUND Clause:

This clause is used to initiate a processing loop if no records meet the
selection criteria specified in the preceding SELECT statement.

For further information, see IF NO RECORDS FOUND Clause below.

END-SELECT
LOOP

End of SELECT Statement:

In structured mode, the Natural reserved keyword END-SELECT must
be used to end the SELECT statement.

In reporting mode, the LOOP statement must be used to end the SELECT
statement.

18

Syntax 2 - Non-Cursor SelectionSELECT - SQL

INTO Clause

INTO parameter ,

VIEW {view-name [correlation-name]},

The INTO clause is used to specify the target fields in the program which are to be filled with the result of
the selection. The INTO clause can specify either single parameters or one or more views as defined
in the DEFINE DATA statement.

All target field values can come either from a single table or from more than one table as a result of a join
operation (see also the section Join Queries).

Note:
In standard SQL syntax, an INTO clause is only used in non-cursor select operations (singleton SELECT)
and can be specified only if a single row is to be selected. In Natural, however, the INTO clause is used
for both cursor-oriented and non-cursor select operations.

The selection can also merely consist of an asterisk (*). In a standard select expression, this is a
shorthand for a list of all column names in the table(s) specified in the FROM clause. In the Natural
SELECT statement, however, the same syntactical item SELECT * has a different semantic meaning: all
the items listed in the INTO clause are also used in the selection. Their names must correspond to names
of existing database columns.

Examples:

Example 1:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
END-DEFINE
...
SELECT *
 INTO NAME, AGE

Example 2:

...
SELECT *
 INTO VIEW PERS

These examples are equivalent to the following ones:

Example 3:

...
SELECT NAME, AGE
 INTO NAME, AGE

Example 4:

19

SELECT - SQLINTO Clause

...
SELECT NAME, AGE
 INTO VIEW PERS

VIEW Clause

VIEW { view-name [correlation-name]},

If one or more views are referenced in the INTO clause, the number of items specified in the selection
must correspond to the number of fields defined in the view(s) (not counting group fields, redefining
fields and indicator fields).

Note:
Both the Natural target fields and the table columns must be defined in a Natural DDM. Their names,
however, can be different, since assignment is made according to their sequence.

Example of INTO Clause with View:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
END-DEFINE
...
SELECT FIRSTNAME, AGE
 INTO VIEW PERS
 FROM SQL-PERSONNEL
...

The target fields NAME and AGE, which are part of a Natural view, receive the contents of the table
columns FIRSTNAME and AGE.

Syntax Element Description:

20

VIEW ClauseSELECT - SQL

Syntax Element Description

parameter If single parameters are specified as target fields, their number and formats
must correspond to the number and formats of the columns and/or
scalar-expressions specified in the corresponding selection as
described above (for details, see Scalar Expressions).

Example:

DEFINE DATA LOCAL
01 #NAME (A20)
01 #AGE (I2)
END-DEFINE
...
SELECT NAME, AGE
 INTO #NAME, #AGE
 FROM SQL-PERSONNEL
...

The target fields #NAME and #AGE, which are Natural program variables,
receive the contents of the table columns NAME and AGE.

correlation-name If the VIEW clause is used within a SELECT * construction where multiple
tables are to be joined, correlation-names are required if the specified
view contains fields that reference columns which exist in more than one of
these tables. In order to know which column to select, all these columns are
qualified by the specified correlation-name at generation of the
selection list. The correlation-name assigned to a view must
correspond to one of the correlation-names used to qualify the tables
to be joined. See also the section Join Queries.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 FIRST-NAME
 02 AGE
END-DEFINE
...
SELECT *
 INTO VIEW PERS A
 FROM SQL-PERSONNEL A, SQL-PERSONNEL B
...

Examples of table-expression

Example 1:

DEFINE DATA LOCAL
01 #NAME (A20)
01 #FIRSTNAME (A15)
01 #AGE (I2)
...
END-DEFINE
...
SELECT NAME, FIRSTNAME, AGE
 INTO #NAME, #FIRSTNAME, #AGE

21

SELECT - SQLExamples of table-expression

 FROM SQL-PERSONNEL
 WHERE NAME IS NOT NULL
 AND AGE > 20
...
 DISPLAY #NAME #FIRSTNAME #AGE
END-SELECT
...
END

Example 2:

DEFINE DATA LOCAL
01 #COUNT (I4)
...
END-DEFINE
...
SELECT SINGLE COUNT(*) INTO #COUNT FROM SQL-PERSONNEL
...

Query Involving Set Operations (UNION, EXCEPT, INTERSECT)

Note:
In the following, the term "SELECT statement" is used as a synonym for the whole query-expression
consisting of multiple select expressions concatenated with a Set operation (UNION, EXCEPT,
INTERSECT).

Set operations combine the results of two or more select-expressions. The columns specified in
the individual select-expressions must be Set operation-compatible; that is, matching in number,
type and format.

Redundant duplicate rows are always eliminated from the result of a Set operation unless the Set operation
explicitly includes the ALL qualifier.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
 02 ADDRESS (1:6)
END-DEFINE
...
SELECT NAME, AGE, ADDRESS
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE AGE > 55
UNION ALL
SELECT NAME, AGE, ADDRESS
 FROM SQL-EMPLOYEES
 WHERE PERSNR < 100
ORDER BY NAME
...
END-SELECT
...

In general, any number of select-expressions can be concatenated with UNION.

22

Query Involving Set Operations (UNION, EXCEPT, INTERSECT)SELECT - SQL

The INTO clause must be specified with the first select-expression only.

ORDER BY Clause

ORDER BY sort-key ASC ,

DESC

INPUT-SEQUENCE

ORDER OF table-designator

The ORDER BY clause arranges the result set of a SELECT statement in a particular sequence.

The result set can be ordered by sort-key, by INPUT SEQUENCE or BY ORDER OF
table-designator

Syntax Element Description:

23

SELECT - SQLORDER BY Clause

Syntax Element Description

sort-key You have the following options to specify a sort key:

Specify an integer number n.

Specify that the ordering is done by ordering the values of the nth
column of the result set, or by giving a column name, specifiying
the ordering is done by ordering the values of the given column.

Specify a scalar expression, where specifying the ordering is done
by ordering the values of the expression.

The expression may consist of columns of the result set hostvariables and
constants.

The sort key can be ordered ascending (ASC), which is the default, or
descending (DESC).

If multiple sort keys exist, the rows are ordered by the first sort key;
duplicate first sort keys are ordered by the second sort key, and so on.

If a column name is specified in the sort key of a fullselect including a set
operator (UNION, EXCEPT, INTERSECTION), it has to be unqualified.

INPUT-SEQUENCE Indicates the result table reflects the input order of the rows specified in
the VALUES clause of an INSERT statement.

Specification of INPUT SEQUENCE requires an INPUT statement in the
FROM clause.

ORDER OF
table-designator

Specifies the result table rows should be ordered in the same way as the
table designated by the table-designator.

The table designator must also be specified in the FROM clause.

Example:

DEFINE DATA LOCAL
1 #NAME (A20)
1 #YEARS-TO-WORK (I2)
END-DEFINE
...
SELECT NAME , 65 - AGE
 INTO #NAME, #YEARS-TO-WORK
 FROM SQL-PERSONNEL
 ORDER BY 2
 ...

The order specified in the ORDER BY clause can be either ascending (ASC) or descending (DESC). ASC
is the default.

Example:

24

ORDER BY ClauseSELECT - SQL

DEFINE DATA LOCAL
1 PERS VIEW OF SQL-PERSONNEL
1 NAME
1 AGE
1 ADDRESS (1:6)
END-DEFINE
...
SELECT NAME, AGE, ADDRESS
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE AGE = 55
 ORDER BY NAME DESC
 ...

See further information on integer values and column-reference.

IF NO RECORDS FOUND-Clause

Note:
This clause actually does not belong to Natural SQL; it represents Natural functionality which has been
made available to SQL loop processing.

Structured Mode Syntax

IF NO [RECORDS] [FOUND]

ENTER

statement

END-NOREC

Reporting Mode Syntax

IF NO [RECORDS] [FOUND]

ENTER

statement

DO statement DOEND

 The IF NO RECORDS FOUND clause is used to initiate a processing loop if no records meet the
selection criteria specified in the preceding SELECT statement.

If no records meet the specified selection criteria, the IF NO RECORDS FOUND clause causes the
processing loop to be executed once with an "empty" record. If this is not desired, specify the statement
ESCAPE BOTTOM within the IF NO RECORDS FOUND clause.

If one or more statements are specified with the IF NO RECORDS FOUND clause, the statements are
executed immediately before the processing loop is entered. If no statements are to be executed before
entering the loop, the keyword ENTER must be used.

25

SELECT - SQLIF NO RECORDS FOUND-Clause

Note:
If the result set of the SELECT statement consists of a single row of NULL values, the IF NO RECORDS
FOUND clause is not executed. This could occur if the selection list consists solely of one of the aggregate
functions SUM, AVG, MIN or MAX on columns, and the set on which these aggregate functions operate is
empty. When you use these aggregate functions in the above-mentioned way, you should therefore check
the values of the corresponding null-indicator fields instead of using an IF NO RECORDS FOUND
clause.

Database Values

Unless other value assignments are made in the statements accompanying an IF NO RECORDS FOUND
clause, Natural resets to empty all database fields which reference the file specified in the current loop.

Evaluation of System Functions

Natural system functions are evaluated once for the empty record that is created for processing as a result
of the IF NO RECORDS FOUND clause.

Join Queries
A join is a query in which data is retrieved from more than one table. All the tables involved must be
specified in the FROM clause.

Example:

DEFINE DATA LOCAL
1 #NAME (A20)
1 #MONEY (I4)
END-DEFINE
...
SELECT NAME, ACCOUNT
 INTO #NAME, #MONEY
 FROM SQL-PERSONNEL P, SQL-FINANCE F
 WHERE P.PERSNR = F.PERSNR
 AND F.ACCOUNT > 10000
 ...

A join always forms the Cartesian product of the tables listed in the FROM clause and later eliminates from
this Cartesian product table all the rows that do not satisfy the join condition specified in the WHERE
clause.

Correlation names can be used to save writing if table names are rather long. Correlation names must be
used when a column specified in the selection list exists in more than one of the tables to be joined in
order to know which of the identically named columns to select.

26

Join QueriesSELECT - SQL

	SELECT - SQL
	Function
	Syntax 1 - Cursor-Oriented Selection
	WITH_CTE common-table-expression,¼
	OPTIMIZE FOR integer ROWS
	WITH - Isolation Level
	QUERYNO
	FETCH FIRST
	WITH HOLD
	WITH RETURN
	Examples:

	WITH INSENSITIVE/SENSITIVE
	 scroll_hv
	 scroll_hv Sensitivity Specification
	 scroll_hv Options
	GIVING [:] sqlcode

	Syntax 2 - Non-Cursor Selection
	INTO Clause
	Examples:

	VIEW Clause
	Examples of table-expression
	Query Involving Set Operations (UNION, EXCEPT, INTERSECT)
	ORDER BY Clause
	IF NO RECORDS FOUND-Clause
	Structured Mode Syntax
	Reporting Mode Syntax
	Database Values
	Evaluation of System Functions

	Join Queries

