
Use and Structure of DEFINE DATA
Statement
The first statement in a Natural program written in structured mode must always be a DEFINE DATA
statement which is used to define fields for use in a program.

This chapter covers the following topics:

Field Definitions in DEFINE DATA Statement

Defining Fields within a DEFINE DATA Statement

Defining Fields in a Separate Data Area

Structuring a DEFINE DATA Statement Using Level Numbers

Storage Alignment

For information on structural indentation of a source program, see the Natural system command STRUCT.

Field Definitions in DEFINE DATA Statement
In the DEFINE DATA statement, you define all the fields - database fields as well as user-defined
variables - that are to be used in the program.

There are two ways to define the fields:

The fields can be defined within the DEFINE DATA statement itself (see below).

The fields can be defined outside the program in a local or global data area, with the DEFINE DATA
statement referencing that data area (see below).

If fields are used by multiple programs/routines, they should be defined in a data area outside the
programs.

For a clear application structure, it is usually better to define fields in data areas outside the programs.

Data areas are created and maintained with the data area editor, which is described in the Editors
documentation.

In the first example below, the fields are defined within the DEFINE DATA statement of the program. In
the second example, the same fields are defined in a local data area (LDA), and the DEFINE DATA
statement only contains a reference to that data area.

Defining Fields within a DEFINE DATA Statement
The following example illustrates how fields can be defined within the DEFINE DATA statement itself:

1

Use and Structure of DEFINE DATA StatementUse and Structure of DEFINE DATA Statement

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
1 #VARI-A (A20)
1 #VARI-B (N3.2)
1 #VARI-C (I4)
END-DEFINE
...

Defining Fields in a Separate Data Area
The following example illustrates how fields can be defined in a local data area (LDA):

Program:

DEFINE DATA LOCAL
 USING LDA39
END-DEFINE
...

Local Data Area LDA39:

I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- ---------------------------------
 V 1 VIEWEMP EMPLOYEES
 2 NAME A 20
 2 FIRST-NAME A 20
 2 PERSONNEL-ID A 8
 1 #VARI-A A 20
 1 #VARI-B N 3.2
 1 #VARI-C I 4

Structuring a DEFINE DATA Statement Using Level
Numbers
The following topics are covered:

Structuring and Grouping Your Definitions

Level Numbers in View Definitions

Level Numbers in Field Groups

Level Numbers in Redefinitions

Structuring and Grouping Your Definitions

Level numbers are used within the DEFINE DATA statement to indicate the structure and grouping of the
definitions. This is relevant with:

view definitions

2

Defining Fields in a Separate Data AreaUse and Structure of DEFINE DATA Statement

field groups

redefinitions

Level numbers are 1- or 2-digit numbers in the range from 01 to 99 (the leading zero is optional).

Generally, variable definitions are on Level 1.

The level numbering in view definitions, redefinitions and groups must be sequential; no level numbers
may be skipped.

Level Numbers in View Definitions

If you define a view, the specification of the view name must be on Level 1, and the fields the view is
comprised of must be on Level 2. (For details on view definitions, see Database Access.)

Example of Level Numbers in View Definition:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BIRTH
...
END-DEFINE

Level Numbers in Field Groups

The definition of groups provides a convenient way of referencing a series of consecutive fields. If you
define several fields under a common group name, you can reference the fields later in the program by
specifying only the group name instead of the names of the individual fields.

The group name must be specified on Level 1, and the fields contained in the group must be one level
lower.

For group names, the same naming conventions apply as for user-defined variables.

Example of Level Numbers in Group:

DEFINE DATA LOCAL
1 #FIELDA (N2.2)
1 #FIELDB (I4)
1 #GROUPA
 2 #FIELDC (A20)
 2 #FIELDD (A10)
 2 #FIELDE (N3.2)
1 #FIELDF (A2)
...
END-DEFINE

In this example, the fields #FIELDC , #FIELDD and #FIELDE are defined under the common group
name #GROUPA. The other three fields are not part of the group. Note that #GROUPA only serves as a
group name and is not a field in its own right (and therefore does not have a format/length definition).

3

Use and Structure of DEFINE DATA StatementLevel Numbers in View Definitions

Level Numbers in Redefinitions

If you redefine a field, the REDEFINE option must be on the same level as the original field, and the
fields resulting from the redefinition must be one level lower. For details on redefinitions, see Redefining
Fields.

Example of Level Numbers in Redefinition:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF STAFFDDM
 2 BIRTH
 2 REDEFINE BIRTH
 3 #YEAR-OF-BIRTH (N4)
 3 #MONTH-OF-BIRTH (N2)
 3 #DAY-OF-BIRTH (N2)
1 #FIELDA (A20)
1 REDEFINE #FIELDA
 2 #SUBFIELD1 (N5)
 2 #SUBFIELD2 (A10)
 2 #SUBFIELD3 (N5)
...
END-DEFINE

In this example, the database field BIRTH is redefined as three user-defined variables, and the
user-defined variable #FIELDA is redefined as three other user-defined variables.

Storage Alignment
The storage area, in which all user-defined variables are stored, always begins on a double-word
boundary.

If a DEFINE DATA statement is used, all data blocks (for example, LOCAL, GLOBAL blocks) are
double-word aligned, and all hierarchical structures (view definitions and groups) on Level 1 are full-word
aligned. Redefinitions, scalar and array variables are not aligned, even if they are defined at level 1.

Alignment within the data area is the responsibility of the user and is governed by the order in which
variables are defined to Natural.

4

Storage AlignmentUse and Structure of DEFINE DATA Statement

	Use and Structure of DEFINE DATA Statement
	Field Definitions in DEFINE DATA Statement
	Defining Fields within a DEFINE DATA Statement
	Defining Fields in a Separate Data Area
	Structuring a DEFINE DATA Statement Using Level Numbers
	Structuring and Grouping Your Definitions
	Level Numbers in View Definitions
	Example of Level Numbers in View Definition:

	Level Numbers in Field Groups
	Example of Level Numbers in Group:

	Level Numbers in Redefinitions
	Example of Level Numbers in Redefinition:

	Storage Alignment

