
Loop Processing
A processing loop is a group of statements which are executed repeatedly until a stated condition has been
satisfied, or as long as a certain condition prevails.

This chapter covers the following topics:

Use of Processing Loops

Limiting Database Loops

Limiting Non-Database Loops - REPEAT Statement

Example of REPEAT Statement

Terminating a Processing Loop - ESCAPE Statement

Loops Within Loops

Example of Nested FIND Statements

Referencing Statements within a Program

Example of Referencing with Line Numbers

Example with Statement Reference Labels

Use of Processing Loops
Processing loops can be subdivided into database loops and non-database loops:

Database processing loops
are those created automatically by Natural to process data selected from a database as a result of a
READ, FIND or HISTOGRAM statement. These statements are described in the section Database
Access.

Non-database processing loops
are initiated by the statements REPEAT, FOR, CALL FILE , CALL LOOP, SORT, and READ WORK
FILE .

More than one processing loop may be active at the same time. Loops may be embedded or nested within
other loops which remain active (open).

A processing loop must be explicitly closed with a corresponding END-... statement (for example,
END-REPEAT, END-FOR)

The SORT statement, which invokes the sort program of the operating system, closes all active processing
loops and initiates a new processing loop.

1

Loop Processing Loop Processing

Limiting Database Loops
The following topics are covered below:

Possible Ways of Limiting Database Loops

LT Session Parameter

LIMIT Statement

Limit Notation

Priority of Limit Settings

Possible Ways of Limiting Database Loops

With the statements READ, FIND or HISTOGRAM, you have three ways of limiting the number of
repetitions of the processing loops initiated with these statements:

using the session parameter LT,

using a LIMIT statement,

or using a limit notation in a READ/FIND/HISTOGRAM statement itself.

LT Session Parameter

With the system command GLOBALS, you can specify the session parameter LT, which limits the number
of records which may be read in a database processing loop.

Example:

GLOBALS LT=100

This limit applies to all READ, FIND and HISTOGRAM statements in the entire session.

LIMIT Statement

In a program, you can use the LIMIT statement to limit the number of records which may be read in a
database processing loop.

Example:

LIMIT 100

The LIMIT statement applies to the remainder of the program unless it is overridden by another LIMIT
statement or limit notation.

2

Limiting Database LoopsLoop Processing

Limit Notation

With a READ, FIND or HISTOGRAM statement itself, you can specify the number of records to be read in
parentheses immediately after the statement name.

Example:

READ (10) VIEWXYZ BY NAME

This limit notation overrides any other limit in effect, but applies only to the statement in which it is
specified.

Priority of Limit Settings

If the limit set with the LT parameter is smaller than a limit specified with a LIMIT statement or a limit
notation, the LT limit has priority over any of these other limits.

Limiting Non-Database Loops - REPEAT Statement
Non-database processing loops begin and end based on logical condition criteria or some other specified
limiting condition.

The REPEAT statement is discussed here as representative of a non-database loop statement.

With the REPEAT statement, you specify one or more statements which are to be executed repeatedly.
Moreover, you can specify a logical condition, so that the statements are only executed either until or as
long as that condition is met. For this purpose you use an UNTIL or WHILE clause.

If you specify the logical condition

in an UNTIL clause, the REPEAT loop will continue until the logical condition is met;

in a WHILE clause, the REPEAT loop will continue as long as the logical condition remains true.

If you specify no logical condition, the REPEAT loop must be exited with one of the following statements:

ESCAPE terminates the execution of the processing loop and continues processing outside the loop
(see below).

STOP stops the execution of the entire Natural application.

TERMINATE stops the execution of the Natural application and also ends the Natural session.

Example of REPEAT Statement
** Example ’REPEAX01’: REPEAT
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 SALARY (1:1)
*
1 #PAY1 (N8)
END-DEFINE

3

Loop ProcessingLimiting Non-Database Loops - REPEAT Statement

*
READ (5) MYVIEW BY NAME WHERE SALARY (1) = 30000 THRU 39999
 MOVE SALARY (1) TO #PAY1
 /*
 REPEAT WHILE #PAY1 LT 40000
 MULTIPLY #PAY1 BY 1.1
 DISPLAY NAME (IS=ON) SALARY (1)(IS=ON) #PAY1
 END-REPEAT
 /*
 SKIP 1
END-READ
END

Output of Program REPEAX01:

Page 1 04-11-11 14:15:54

 NAME ANNUAL #PAY1
 SALARY
-------------------- ---------- ---------

ADKINSON 34500 37950
 41745

 33500 36850
 40535

 36000 39600
 43560

AFANASSIEV 37000 40700

ALEXANDER 34500 37950
 41745

Terminating a Processing Loop - ESCAPE Statement
The ESCAPE statement is used to terminate the execution of a processing loop based on a logical
condition.

You can place an ESCAPE statement within loops in conditional IF statement groups, in break processing
statement groups (AT END OF DATA , AT END OF PAGE, AT BREAK), or as a stand-alone statement
implementing the basic logical conditions of a non-database loop.

The ESCAPE statement offers the options TOP and BOTTOM, which determine where processing is to
continue after the processing loop has been left via the ESCAPE statement:

ESCAPE TOP is used to continue processing at the top of the processing loop.

ESCAPE BOTTOM is used to continue processing with the first statement following the processing
loop.

You can specify several ESCAPE statements within the same processing loop.

For further details and examples of the ESCAPE statement, see the Statements documentation.

4

Terminating a Processing Loop - ESCAPE StatementLoop Processing

Loops Within Loops
A database statement can be placed within a database processing loop initiated by another database
statement. When database loop-initiating statements are embedded in this way, a "hierarchy" of loops is
created, each of which is processed for each record which meets the selection criteria.

Multiple levels of loops can be embedded. For example, non-database loops can be nested one inside the
other. Database loops can be nested inside non-database loops. Database and non-database loops can be
nested within conditional statement groups.

Example of Nested FIND Statements
The following program illustrates a hierarchy of two loops, with one FIND loop nested or embedded
within another FIND loop.

** Example ’FINDX06’: FIND (two FIND statements nested)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 NAME
 2 PERSONNEL-ID
1 VEH-VIEW VIEW OF VEHICLES
 2 MAKE
 2 PERSONNEL-ID
END-DEFINE
*
FND1. FIND EMPLOY-VIEW WITH CITY = ’NEW YORK’ OR = ’BEVERLEY HILLS’
 FIND (1) VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
 DISPLAY NOTITLE NAME CITY MAKE
 END-FIND
END-FIND
END

The above program selects data from multiple files. The outer FIND loop selects from the EMPLOYEES
file all persons who live in New York or Beverley Hills. For each record selected in the outer loop, the
inner FIND loop is entered, selecting the car data of those persons from the VEHICLES file.

Output of Program FINDX06:

 NAME CITY MAKE
-------------------- -------------------- --------------------

RUBIN NEW YORK FORD
OLLE BEVERLEY HILLS GENERAL MOTORS
WALLACE NEW YORK MAZDA
JONES BEVERLEY HILLS FORD
SPEISER BEVERLEY HILLS GENERAL MOTORS

Referencing Statements within a Program
Statement reference notation is used for the following purposes:

5

Loop ProcessingLoops Within Loops

Referring to previous statements in a program in order to specify processing over a particular range
of data.

Overriding Natural’s default referencing.

Documenting.

Any Natural statement which causes a processing loop to be initiated and/or causes data elements in a
database to be accessed can be referenced, for example:

READ

FIND

HISTOGRAM

SORT

REPEAT

FOR

When multiple processing loops are used in a program, reference notation is used to uniquely identify the
particular database field to be processed by referring back to the statement that originally accessed that
field in the database.

If a field can be referenced in such a way, this is indicated in the Referencing Permitted column of the
Operand Definition Table in the corresponding statement description (in the Statements documentation).
See also User-Defined Variables, Referencing of Database Fields Using (r) Notation.

In addition, reference notation can be specified in some statements. For example:

AT START OF DATA

AT END OF DATA

AT BREAK

ESCAPE BOTTOM

Without reference notation, an AT START OF DATA , AT END OF DATA or AT BREAK statement
will be related to the outermost active READ, FIND, HISTOGRAM, SORT or READ WORK FILE loop.
With reference notation, you can relate it to another active processing loop.

If reference notation is specified with an ESCAPE BOTTOM statement, processing will continue with the
first statement following the processing loop identified by the reference notation.

Statement reference notation may be specified in the form of a statement reference label or a source-code
line number.

Statement reference label
A statement reference label consists of several characters, the last of which must be a period (.). The
period serves to identify the entry as a label.

6

Referencing Statements within a ProgramLoop Processing

A statement that is to be referenced is marked with a label by placing the label at the beginning of the
line that contains the statement. For example:

0030 ...
0040 READ1. READ VIEWXYZ BY NAME
0050 ...

In the statement that references the marked statement, the label is placed in parentheses at the
location indicated in the statement’s syntax diagram (as described in the Statements documentation).
For example:

AT BREAK (READ1.) OF NAME

Source-code line number
If source-code line numbers are used for referencing, they must be specified as 4-digit numbers
(leading zeros must not be omitted) and in parentheses. For example:

AT BREAK (0040) OF NAME

In a statement where the label/line number relates a particular field to a previous statement, the
label/line number is placed in parentheses after the field name. For example:

DISPLAY NAME (READ1.) JOB-TITLE (READ1.) MAKE MODEL

Line numbers and labels can be used interchangeably.

See also User-Defined Variables, Referencing of Database Fields Using (r) Notation.

Example of Referencing with Line Numbers
The following program uses source code line numbers (4-digit numbers in parentheses) for referencing.

In this particular example, the line numbers refer to the statements that would be referenced in any case by
default.

0010 ** Example ’LABELX01’: Labels for READ and FIND loops (line numbers)
0020 **
0030 DEFINE DATA LOCAL
0040 1 MYVIEW1 VIEW OF EMPLOYEES
0050 2 NAME
0060 2 FIRST-NAME
0070 2 PERSONNEL-ID
0080 1 MYVIEW2 VIEW OF VEHICLES
0090 2 PERSONNEL-ID
0100 2 MAKE
0110 END-DEFINE
0120 *
0130 LIMIT 15
0140 READ MYVIEW1 BY NAME STARTING FROM ’JONES’
0150 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (0140)
0160 IF NO RECORDS FOUND
0170 MOVE ’***NO CAR***’ TO MAKE
0180 END-NOREC
0190 DISPLAY NOTITLE NAME (0140) (IS=ON)
0200 FIRST-NAME (0140) (IS=ON)

7

Loop ProcessingExample of Referencing with Line Numbers

0210 MAKE (0150)
0220 END-FIND /* (0150)
0230 END-READ /* (0140)
0240 END

Example with Statement Reference Labels
The following example illustrates the use of statement reference labels.

It is identical to the previous program, except that labels are used for referencing instead of line numbers.

** Example ’LABELX02’: Labels for READ and FIND loops (user labels)
**
DEFINE DATA LOCAL
1 MYVIEW1 VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
1 MYVIEW2 VIEW OF VEHICLES
 2 PERSONNEL-ID
 2 MAKE
END-DEFINE
*
LIMIT 15
RD. READ MYVIEW1 BY NAME STARTING FROM ’JONES’
 FD. FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
 IF NO RECORDS FOUND
 MOVE ’***NO CAR***’ TO MAKE
 END-NOREC
 DISPLAY NOTITLE NAME (RD.) (IS=ON)
 FIRST-NAME (RD.) (IS=ON)
 MAKE (RD.)
 END-FIND /* (RD.)
END-READ /* (RD.)
END

Both programs produce the following output:

 NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

JONES VIRGINIA CHRYSLER
 MARSHA CHRYSLER
 CHRYSLER
 ROBERT GENERAL MOTORS
 LILLY FORD
 MG
 EDWARD GENERAL MOTORS
 LAUREL GENERAL MOTORS
 KEVIN DATSUN
 GREGORY FORD
JOPER MANFRED ***NO CAR***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL ***NO CAR***
JUNG ERNST ***NO CAR***
JUNKIN JEREMY ***NO CAR***
KAISER REINER ***NO CAR***
KANT HEIKE ***NO CAR***

8

Example with Statement Reference LabelsLoop Processing

	 Loop Processing
	Use of Processing Loops
	Limiting Database Loops
	Possible Ways of Limiting Database Loops
	LT Session Parameter
	Example:

	LIMIT Statement
	Example:

	Limit Notation
	Example:

	Priority of Limit Settings

	Limiting Non-Database Loops - REPEAT Statement
	Example of REPEAT Statement
	Terminating a Processing Loop - ESCAPE Statement
	Loops Within Loops
	Example of Nested FIND Statements
	Referencing Statements within a Program
	Example of Referencing with Line Numbers
	Example with Statement Reference Labels

