
Data Computation
This chapter discusses arithmetic statements that are used for computing data:

COMPUTE

ADD

SUBTRACT

MULTIPLY

DIVIDE

In addition, the following statements are discussed which are used to transfer the value of an operand into
one or more fields:

MOVE

COMPRESS

Important:
For optimum processing, user-defined variables used in arithmetic statements should be defined with
format P (packed numeric).

The following topics are covered:

COMPUTE Statement

Statements MOVE and COMPUTE

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

Example of MOVE, SUBTRACT and COMPUTE Statements

COMPRESS Statement

Example of COMPRESS and MOVE Statements

Example of COMPRESS Statement

Mathematical Functions

Further Examples of COMPUTE, MOVE and COMPRESS Statements

COMPUTE Statement
The COMPUTE statement is used to perform arithmetic operations. The following connecting operators are
available:

1

Data Computation Data Computation

** Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

() Parentheses may be used to indicate logical grouping.

Example 1:

COMPUTE LEAVE-DUE = LEAVE-DUE * 1.1

In this example, the value of the field LEAVE-DUE is multiplied by 1.1, and the result is placed in the
field LEAVE-DUE.

Example 2:

COMPUTE #A = SQRT (#B)

In this example, the square root of the value of the field #B is evaluated, and the result is assigned to the
field #A.

SQRT is a mathematical function supported in the following arithmetic statements:

COMPUTE

ADD

SUBTRACT

MULTIPLY

DIVIDE

For an overview of mathematical functions, see Mathematical Functions below.

Example 3:

COMPUTE #INCOME = BONUS (1,1) + SALARY (1)

In this example, the first bonus of the current year and the current salary amount are added and assigned to
the field #INCOME.

Statements MOVE and COMPUTE
The statements MOVE and COMPUTE can be used to transfer the value of an operand into one or more
fields. The operand may be a constant such as a text item or a number, a database field, a user-defined
variable, a system variable, or, in certain cases, a system function.

The difference between the two statements is that in the MOVE statement the value to be moved is
specified on the left; in the COMPUTE statement the value to be assigned is specified on the right, as
shown in the following examples.

2

 Statements MOVE and COMPUTEData Computation

Examples:

MOVE NAME TO #LAST-NAME
COMPUTE #LAST-NAME = NAME

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
The ADD, SUBTRACT, MULTIPLY and DIVIDE statements are used to perform arithmetic operations.

Examples:

ADD +5 -2 -1 GIVING #A
SUBTRACT 6 FROM 11 GIVING #B
MULTIPLY 3 BY 4 GIVING #C
DIVIDE 3 INTO #D GIVING #E

All four statements have a ROUNDED option, which you can use if you wish the result of the operation to
be rounded.

For rules on rounding, see Rules for Arithmetic Assignment.

The Statements documentation provides more detailed information on these statements.

Example of MOVE, SUBTRACT and COMPUTE
Statements
The following program demonstrates the use of user-defined variables in arithmetic statements. It
calculates the ages and wages of three employees and outputs these.

** Example ’COMPUX01’: COMPUTE
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 2 SALARY (1:1)
 2 BONUS (1:1,1:1)
*
1 #DATE (N8)
1 REDEFINE #DATE
 2 #YEAR (N4)
 2 #MONTH (N2)
 2 #DAY (N2)
1 #BIRTH-YEAR (A4)
1 REDEFINE #BIRTH-YEAR
 2 #BIRTH-YEAR-N (N4)
1 #AGE (N3)
1 #INCOME (P9)
END-DEFINE
*
MOVE *DATN TO #DATE
*
READ (3) MYVIEW BY NAME STARTING FROM ’JONES’
 MOVE EDITED BIRTH (EM=YYYY) TO #BIRTH-YEAR
 SUBTRACT #BIRTH-YEAR-N FROM #YEAR GIVING #AGE
 /*

3

Data Computation Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

 COMPUTE #INCOME = BONUS (1:1,1:1) + SALARY (1:1)
 /*
 DISPLAY NAME ’POSITION’ JOB-TITLE #AGE #INCOME
END-READ
END

Output of Program COMPUX01:

Page 1 04-11-11 14:15:54

 NAME POSITION #AGE #INCOME
-------------------- ------------------------- ---- ----------

JONES MANAGER 63 55000
JONES DIRECTOR 58 50000
JONES PROGRAMMER 48 31000

COMPRESS Statement
The COMPRESS statement is used to transfer (combine) the contents of two or more operands into a single
alphanumeric field.

Leading zeros in a numeric field and trailing blanks in an alphanumeric field are suppressed before the
field value is moved to the receiving field.

By default, the transferred values are separated from one another by a single blank in the receiving field.
For other separating possibilities, see the COMPRESS statement option LEAVING NO SPACE (in the
Statements documentation).

Example:

COMPRESS ’NAME:’ FIRST-NAME #LAST-NAME INTO #FULLNAME

In this example, a COMPRESS statement is used to combine a text constant (’NAME:’), a database field
(FIRST-NAME) and a user-defined variable (#LAST-NAME) into one user-defined variable
(#FULLNAME).

For further information on the COMPRESS statement, please refer to the COMPRESS statement description
(in the Statements documentation).

Example of COMPRESS and MOVE Statements
The following program illustrates the use of the statements MOVE and COMPRESS.

** Example ’COMPRX01’: COMPRESS
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 MIDDLE-I
*
1 #LAST-NAME (A15)
1 #FULL-NAME (A30)
END-DEFINE
*

4

COMPRESS StatementData Computation

READ (3) MYVIEW BY NAME STARTING FROM ’JONES’
 MOVE NAME TO #LAST-NAME
 /*
 COMPRESS ’NAME:’ FIRST-NAME MIDDLE-I #LAST-NAME INTO #FULL-NAME
 /*
 DISPLAY #FULL-NAME (UC==) FIRST-NAME ’I’ MIDDLE-I (AL=1) NAME
END-READ
END

Output of Program COMPRX01:

Notice the output format of the compressed field.

Page 1 04-11-11 14:15:54

 #FULL-NAME FIRST-NAME I NAME
============================== -------------------- - --------------------

NAME: VIRGINIA J JONES VIRGINIA J JONES
NAME: MARSHA JONES MARSHA JONES
NAME: ROBERT B JONES ROBERT B JONES

In multiple-line displays, it may be useful to combine fields/text in a user-defined variables by using a
COMPRESS statement.

Example of COMPRESS Statement
In the following program, three user-defined variables are used: #FULL-SALARY, #FULL-NAME, and
#FULL-CITY . #FULL-SALARY, for example, contains the text ’SALARY:’ and the database fields
SALARY and CURR-CODE. The WRITE statement then references only the compressed variables.

** Example ’COMPRX02’: COMPRESS
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 SALARY (1:1)
 2 CURR-CODE (1:1)
 2 CITY
 2 ADDRESS-LINE (1:1)
 2 ZIP
*
1 #FULL-SALARY (A25)
1 #FULL-NAME (A25)
1 #FULL-CITY (A25)
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM ’NEW YORK’
 COMPRESS ’SALARY:’ CURR-CODE(1) SALARY(1) INTO #FULL-SALARY
 COMPRESS FIRST-NAME NAME INTO #FULL-NAME
 COMPRESS ZIP CITY INTO #FULL-CITY
 /*
 DISPLAY ’NAME AND ADDRESS’ NAME (EM=X^X^X^X^X^X^X^X^X^X^X^X)
 WRITE 1/5 #FULL-NAME
 1/37 #FULL-SALARY
 2/5 ADDRESS-LINE (1)

5

Data ComputationExample of COMPRESS Statement

 3/5 #FULL-CITY
 SKIP 1
END-READ
END

Output of Program COMPRX02:

Page 1 04-11-11 14:15:54

 NAME AND ADDRESS

R U B I N
 SYLVIA RUBIN SALARY: USD 17000
 2003 SARAZEN PLACE
 10036 NEW YORK

W A L L A C E
 MARY WALLACE SALARY: USD 38000
 12248 LAUREL GLADE C
 10036 NEW YORK

K E L L O G G
 HENRIETTA KELLOGG SALARY: USD 52000
 1001 JEFF RYAN DR.
 19711 NEWARK

Mathematical Functions
The following Natural mathematical functions are supported in arithmetic processing statements (ADD,
COMPUTE, DIVIDE , SUBTRACT, MULTIPLY).

Mathematical Function Natural System Function

Absolute value of field. ABS(field)

Arc tangent of field. ATN(field)

Cosine of field. COS(field)

Exponential of field. EXP(field)

Fractional part of field. FRAC(field)

Integer part of field. INT(field)

Natural logarithm of field. LOG(field)

Sign of field. SGN(field)

Sine of field. SIN(field)

Square root of field. SQRT(field)

Tangent of field. TAN(field)

Numeric value of an alphanumeric field. VAL(field)

6

Mathematical FunctionsData Computation

See also the System Functions documentation for a detailed explanation of each mathematical function.

Further Examples of COMPUTE, MOVE and COMPRESS
Statements
See the following example programs:

WRITEX11 - WRITE (with nX, n/n and COMPRESS)

IFX03 - IF statement

COMPRX03 - COMPRESS (using parameters LC and TC)

7

Data ComputationFurther Examples of COMPUTE, MOVE and COMPRESS Statements

	 Data Computation
	COMPUTE Statement
	
	Example 1:
	Example 2:
	Example 3:

	 Statements MOVE and COMPUTE
	
	Examples:

	 Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
	
	Examples:

	Example of MOVE, SUBTRACT and COMPUTE Statements
	COMPRESS Statement
	
	Example:

	Example of COMPRESS and MOVE Statements
	Example of COMPRESS Statement
	Mathematical Functions
	Further Examples of COMPUTE, MOVE and COMPRESS Statements

