N——
-
Z 5
Z /v/

Document content not changed since release 10.0.17 It applies to the current version
without changes.

This document applies to ARIS Version 10.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Copyright © 2010 - 2022 Software AG, Darmstadt, Germany and/or Software AG USA Inc.,
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or
registered trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries
and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its
subsidiaries is located at https://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms.
These terms are part of the product documentation, located at
https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products". For certain specific third-party license
restrictions, please refer to section E of the Legal Notices available under "License Terms and
Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software
AG Products". These documents are part of the product documentation, located at
https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Contents

(0) =T 01 = P I
B o Yo [T uf oY o I P 1
1.1 LU = 1= [2
1.2 L o oY A TR O 1 PP 2
1.3 U] =T [=T o g Y o 1= 3
1.3.1 Class diagram ... e 4
1.3.2 1@{e]0 gYoTo] =T o1 ola [F=Ta =T o 1 [P 6
1.3.3 Composite structure diagrami....ccoooeiiiiii i s aeaas 7
1.3.4 (0] o) [=Tol e [=Ta | =] o 1 [P 8
1.3.5 Package diagram ..o 9
1.3.6 Profile diagram .o 10
1.3.7 Deployment diagram ..o i 12
1.3.8 ACHIVITY diagram oo i e 13
1.3.9 (0TS ot= 1Y = 11T | =] o o 15
1.3.10 Communication didgram ...cioeeiieiiii s ae s ee s e 17

1 G 0 A Y =Ta [1=T g Vol e =T | =1 o [19
N 10 7 [0 1 T o 1 =T = o 1P 20
1.3.13 Interaction Overview diagramccviieiiriiiniiiri i raneranereanness 21
1.3.14 State machine diagrami.....cooiiiiiiiiii i e 22
1.3.15 Protocol State machine diagramc.ccviiiiiiiii i 24
1.4 Special features in ARIS UML DeSIGNEr ...cvviviiiiiiiitiiiiiiei i e e neenaans 26
1.4.1 DY F=To [=1 g g o] 1 = | G 27
1.4.2 Names of UML elements. . ..ooiiii i i i aaeas 28
1.4.3 Multilingual capabilityoviiri i e 28
1.5 The UML mMetamodel ...t e e e aeeans 29
1.5.1 100] 2 010 aTe] o = ¥ Lo o U] < PP 30
1.5.1.1 0 0) 30
1.5.1.2 N =T 0 =T o = [ol 1= 33
1.5.1.3 Types and MUItiplCItieScviiii i e 35
1.5.2 L@ 1= 117 | o= | o o 1 36
1.5.2.1 (O =17 1 1= o= 36
1.5.2.2 FATUN S o i e 38
1.5.3 Structured Classifiers ..ouiii i i 40
1.5.3.1 L1 =7 40
1.5.3.2 71 o To{ 1= o] 1= 41
1.5.3.3 Simple Classifiers — DataTyPeS . cviiri i i 42

2 ARIS UML DESIGNEI OVEIVIEW . utiiuiitiiieitsstsatsast st saesssesasssasssass e ssnsaasssaessanssnessness 43
2.1 Specifying the working environmMeNtot e 43
2.2 [tq] Lo <] PP 45
2.2.1 NaVIgation Dar. ..o e 47
2.2.1.1 Eptqo] (o] =T ol o o 1= PP 47
2.2.1.2 D =T | =] 0 o =T 51
2.2.2 o] 01T =TSl = T = 52
2.2.2.1 Information (elements, diagrams, groups)ccvvevviiiiiiiiieiineiiennens 52
2.2.2.2 General (elements, diagrams, groUpS).....uveeiiiieiiiiieiiiieiiieiiieeannens 54
2.2.2.3 Relationships (elements) ..o 59
2.2.2.4 Linked diagrams (elements).....cceiiriiiiiiii i 60
2.2.2.5 Presentations in diagrams (elements)cccoviiiiiiiiiiiiiiiiiic 61
2.2.2.6 Presentations (diagrams)ccoviiiiiiiiii e 62

2.2.2.7 Connected objects (diagrams) . .c.cuiiei it i i i e 62

2.2.3 Properties dialogs .. ocuiiiiiiiii i e 63
2.2.4 Creating new elements in EXPlOrerccoeiii i 65
2.2.5 Creating new diagrams in EXpPlOrero 72
2.3 D73 T | =T 73
2.3.1 NaVIGation Dar.......coiii e 74
2.3.1.1 Diagram OVEIVIEW ..uiiuiiiiiiiiiis i iiisss s s ss s saas s ssnns e 74
2.3.1.2 Visualized elements ... 74
2.3.2 Properties Dar ..o e 75
2.3.3 0 1 = 75
2.3.4 SYMDOIS DAl i 76
2.3.5 Implicit Changes bar.....ccviiii i e e 83
2.3.6 1 T 1= 17T [N 84
2.3.6.1 Creating new node presentations........ccoiviiiiiiii i 85
2.3.6.2 Creating a new edge presentation.......c.cccoviiiiiiiiiiiiiii i 88
2.3.6.3 Deleting presentations and elements.........ccoviviiiiiiiiiciiic i 91
2.3.6.4 N 1T T oo 1 - | P 91
2.3.6.5 Modeling and hierarchy in EXplOrercvviiiiiiiiiiii e 93
2.3.6.6 GraphiC NESEINGS .. v e 95
2.3.6.7 LIS 1 1=E] o e S 99
2.3.6.8 Modeling iN groUPINGS ..c.ueeiie e e e e e 101
2.3.6.9 UML-specific modeling SUPPOrt.....cviiiiii i i e ane s 102
2.3.6.9.1 Specifying the navigability of an association end................... 103
2.3.6.9.2 Creating getter and setter operationscccooviiiiiiiinnnnns 106

2.4 L@ T [0 1= 108
2.4.1 L= 1T o= PR 109
2.4.2 1o o [11 o T 110
2.4.3 Designer > GENEIAl ... e 112
2.4.4 [rd 0] [0 = ol P 113
2.4.5 Designer > For new diagrams > ApPPEaAranCe......cvveeiuirinrrnerransrnnernersneenes 114
2.4.6 Designer > For new diagram elements.........ooiiiiiiiiiii i 114
2.4.7 Designer > Property tabs ...cciiiiiiiii i 117
2.4.8 Designer > UML2 MOdeling ...oovviieiiiiiiiiii i i ree e e e e 118
2.5 AdmiINIstration tabcceii e 119
2.5.1 1= Lo T I 1 =T 121
2.5.2 T S 1= 123
2.5.3 DB =10 T U1 ol <= PP 124
2.5.4 Data transfer from ARIS UML DESIGNEr 7.X «iuviiiiiiiiiii it i i niaeaeann 124
Mapping UML to the ARIS object model ..o 125
3.1 Group and object properties of UML elements.......cccviiiiiiiiiiiiiiiciii i 126
3.2 Complexity of edge presentationsccvviiiiiiiiii i 127
3.3 The most important mappings from UML t0 ARISoiiiiiiiiiiii e 129
Linking business process and UML mModelingcoovviiiiiiiiiiii i vnee e neenneenes 130
4.1 Assignment of UML diagrams to business process objects........cccvvviiiiiiiiiinnnnns 131
4.1.1 Creating an assignment in ARIS UML DeSignerc.oiviiiiiiiiiiiiiiiiiinnnennns 131
4.1.2 Creating an assignment in ARIS Architect/Designercoovvviviiiiviiinnnnns 134
4.2 Reusing business process objects as UML elementscoooiiiiiiiiiiiiiiiiiciiiienns 138
4.2.1 Specifying the mapping of ARIS to UML typescociviiiiiiiiiiiiii i 138
4.2.2 Reusing an ARIS object in @ UML diagramccoiviiiiiiiiiiii e 143
4.2.3 Managing the object link definitions........ccoiiiiii s 147

4.3 Navigation between ARIS Architect/Designer and ARIS UML Designer 148

4.3.1 Navigation from ARIS Architect/Designer to ARIS UML Designer 148
4.3.2 Values — Litrals .ot e 150
4.3.3 Navigation from ARIS UML Designer to ARIS Architect/Designer 152
L] o o) =P 155
5.1 Predefined profiles in ARIS UML DeSIgNer.....c.oiuiiiiiiiiiie it eae e 155
5.2 L3 Lo T o o) 1 = 156
5.2.1 Assignment of profiles to @ package.........ocoiiiiiiiii 156
5.2.2 Assignment of stereotypes to a UML element ..., 159
5.2.3 Creating stereotyped elements in the Explorerccooiviiiiiiiiiiiiiii i 162
5.2.4 Stereotypes in the Symbols bar of diagramscccviviiiiiiiiiic e 164
5.3 User-defined UML Profiles ...t e e 166
5.3.1 The UML metamodel generatorovveiieiiii e e 167
5.3.2 Creating @ Profile .o 173
5.3.3 Creating @ StereOtyPe .o s 176
5.3.4 Defining NEW PropPerties .. .o.ee et eeaeas 179
5.3.5 ARIS-specific features of user-defined properties........cccovvviiiiiiiiiiiiinnnn. 185
5.3.6 Inheritance relationships between stereotypescovvviiiiiiiiiienenen 189
5.3.7 Creating a filter profile......cooe i 191
5.3.8 Creating a diagram StereOtY Pe .. iiii it i i i e as 193
Differences from ARIS ArchiteCt/DeSigNerciiriiiei i s i 197
6.1 Relevance of the model and its diagrams in terms of semantics....................... 197
6.2 The Save and Undo/Redo fUNCLIONS ...uvviiiiiiiiiiii i i v v e enreeraneens 198
6.3 (@] o7=T o 1 a e o I T=Ta] =] o 0 13 198
6.4 Element hierarChies ...o.vviiii i e aes 199
6.5 Graphical connections and edges in diagramsc..cviiiiiiiiiiiiiii s 199
6.6 1] e | T 1= = 199
6.7 Creating ARIS SCHIPES .uiuuiiiiiiiiii i e raeaas 199
Differences from ARIS UML DESIGNEI 7.X «uciuiiuiiuiiiiiaeieeieeae e e ee e e e enens 200
7.1 LU V=T = [o 200
7.2 Mapping Of UML 10 ARIS ...ttt e e it a e aaeaas 200
7.3 Reuse of business process objects in UMLcoiiiiiiiiiii e 201
7.4 Saving and undoing Changes ..o 201
7.5 Integration of UML into the EXPlorer treeovvviiiiiiiiii i e 201
7.6 Separate window for ARIS UML DESIgNer......couiuiiiiiiiii e e e 202
7.7 D14} B 0N =T =T = P 202
P Y 0 o 1=T o Lo 1t 203
8.1 [C] [1= 1 Y 203
8.2 Additional documents and referenCes........ivviiii it i e 204
8.2.1 [Lo To{ U [5 0 =] o | = 204
8.2.2 DS (=] = (oL 204
(0= = I) o] .0 T= o) o TS 205
9.1 [DeTal8 1o T=T g1 e=) o] o HE=Y ol 0] o 1= P 205

9.2 1 050 PP 206

1 Introduction

This document provides an overview of the key functionalities of ARIS UML Designer 9 and
higher and outlines the underlying concepts. It is aimed at all UML modelers, developers of
UML-specific reports and macros, and ARIS administrators. If you are not yet familiar with
ARIS, you should first read the document ARIS Architect Quick Start Guide, as basic
knowledge of ARIS is essential to understand this introduction.

This introduction is divided into the following sections:

UML basics (page 2): Contains a brief introduction to UML and introduces the diagram types
supported by ARIS UML Designer. This section also sets out the basics of the UML metal
model, which is an essential requirement for you to understand the subsequent topics of
Mapping UML to the ARIS object model and UML profiles.

ARIS UML Designer overview (page 43): Introduces the most important components of
ARIS UML Designer and their functionality.

Mapping UML to the ARIS object model (page 125): Shows how UML content is stored in
ARIS so that you can understand how ARIS standard functions, such as definition copy, merge
or access privileges affect UML content.

Linking business process and UML modeling (page 130): Outlines the relevant technical
principles.

UML profiles (page 155): Provides an overview of the extension and filter mechanisms in
UML, which differ fundamentally from the classic ARIS method configuration.

Differences from ARIS Architect/Designer (page 197): Shows the special features of ARIS
UML Designer and the resulting differences from classic ARIS modeling.

Differences from ARIS UML Designer 7.x (page 200): Deals with the new features of ARIS
UML Designer 9 and higher compared to the previous version 7.x.

As the terms model and object that are familiar from ARIS have a different meaning in UML,
the terms diagram and element are used to refer to them in this document. Thus, in this
document an EPC is not a model but a diagram, and an EPC function is not an object but an
element.

ARIS UML Designer 9 and higher supports UML version 2.5. For compatibility reasons, ARIS
Architect/Designer still supports the old UML version 1.4. However, this is not done using UML-
specific notation but in the form of classic ARIS diagrams. Where the term UML is used without
a version number in this document, it always refers to the version 2.5 supported by ARIS UML
Designer.

1.1 UML basics

This section contains a brief introduction to UML and the underlying metamodel, where this is
necessary to understand the remaining sections of this document and to start using ARIS UML
Designer. For detailed information on UML and the individual UML element and diagram types,
refer to the UML specification itself and to relevant secondary literature. In addition, basic
knowledge of object-oriented principles is very useful in understanding UML.

1.2 What is UML?

UML stands for Unified Modeling Language and is a modeling language for object-oriented
(software) systems. The word software is in brackets here as the design and description of
software systems was definitely the focus in the development of UML; in theory UML is actually
suitable for modeling any systems using an object-oriented perspective. One example would
be describing the IT-related aspects of a business domain as part of an object-oriented
analysis, in order to derive requirements for a corresponding software system.

UML was presented in the mid-1990s by Grady Booch, Ivar Jacobson, and James Rumbaugh as
a joint development of their own object-oriented methods (Booch method, OOSE, and OMT).
Since 1997, UML has been published as a standard by the OMG and has been continuously
developed. The OMG (Object Management Group) is a non-profit organization that is
responsible for a range of important standards in the IT industry. In addition to UML, these
include BPMN.

The current UML version at the time of this document's creation is 2.5. This is also the version
supported by ARIS UML Designer 9 and higher. The corresponding UML specification is
available from the OMG at the following address: http://www.omg.org/spec/UML/
(http://www.omg.org/spec/UML/).

http://www.omg.org/spec/UML/

1.3 UML diagram types

UML differentiates two categories of diagrams - structure diagrams and behavior diagrams. In
structure diagrams, the focus is on static structures. One example is the Component diagram,
which is used to model the relationships between individual (software) components. By
contrast, there are behavior diagrams, which focus on the dynamic behavior of a system. An
example of a behavior diagram would be the State machine diagram, which shows how the
instance of a class changes its internal state when particular events occur.

A typical feature of structure diagrams is that they show a selected section of a UML structure.
They represent a view of a freely definable subset of this structure. By contrast, behavior
diagrams (apart from the Use case diagram) describe the dynamic behavior of a particular
element, normally a state machine, an activity, or an interaction.

UML defines the following diagram types:

Structure diagrams Behavior diagrams
Class diagram (page 4) Activity diagram (page 13)
Component diagram (page 6) Communication diagram (page 17)
Composite structure diagram (page 7) Interaction Overview diagram (page 21)
Deployment diagram (page 12) Protocol state machine diagram (page 24)
Object diagram (page 8) Sequence diagram (page 19)

Package diagram (page 9) State machine diagram (page 22)

Profile diagram (page 10) Timing diagram (page 20)

Use case diagram (page 15)

The individual diagram types are briefly introduced below using simple examples relating to
the topic of order processing. These examples are not intended to provide a complete or
technically correct representation. They are merely intended to illustrate how particular
situations relating to the topic can be represented using the different UML diagram types.

1.3.1 Class diagram

Class diagrams primarily show relationships between classes and their properties.

itern line
order 1.* item "
ttem_1 1 {ordered} | Order tem | * 1 o
L . "
. i Itermn number:String
order number:string number:Integer Label String
Key customer order A key customer arder is zprimitive s zprimitive =
e discountable. String Integer
discountinteger

Figure 1: Class diagram

The image above shows a simple Class diagram with four classes Order, Key customer
order, Order item, and Item, two primitive data types String and Integer, and a comment.
The classes each contain one to two attributes (UML type Property). For example, the Order
class contains the Order number attribute, which is of the Integer type. This means that the
order number is a property whose value is a whole number.

UML itself does not stipulate which data types are to be used when modeling and how they
should be denoted!. In the example above, the two types String and Integer could also be
called Character string and Whole number.

iternline
1.7

Order 1 {ordered} Order item

Order number:integer Mumber:Integer

Figure 2: Association between two classes

The Order and Order item classes are linked together by an association. This association has
an association end order with the multiplicity 1 and an association end itemline with the
multiplicity 1..*. The multiplicity 1..* at the itemline association end means that at least one
and up to any number of order items are assigned to an order. The property {ordered}
specifies that the order items are assigned to the order in a particular sequence. The
multiplicity 1 at the order association end means that an order item is always assigned to only
one order.

The black diamond on the association indicates that the order items are part of the order and if
an order is deleted its order items will also be deleted automatically.

1 One exception is the modeling of profiles in ARIS UML Designer, where the corresponding
types specified by UML have to be used for primitive data types.

The two black dots at the end of the association edge mean that the corresponding association
ends are simultaneously attributes of the respective opposing class. Figure 3 therefore shows a
semantically equivalent alternative appearance of Figure Association between two classes?.

Order item
Order
number:Integer
Order number:Integer item:ltem
itemline:Order item([1..*]{ordered} order:Order

Figure 3: Association ends as attributes

An arrow head at an association end means that the association is navigable in the direction of
the arrow. The following image shows an association that is only navigable in one direction.

arder item itermn
* i Item

Order item

= lterm number:integer
Label:5tring

number:integer

Figure 4: Unidirectional association

In this example, the order item knows which item it relates to. Conversely, the item has no
knowledge of the order items by which it is used.

An association end is classed as navigable if it is simultaneously an attribute of the opposite
class3. If both ends of an association are navigable, there is no need for you to display the two
arrows in the diagram (see figure Association between two classes).

Order

Crder number: Integer

Key customer order

DiscountInteger

Figure 5: Generalization between two classes

The image above shows a generalization relationship between the Key customer order and
Order classes. This means that the Key customer order class is a specialization of the Order
class and thus inherits all properties from it.

2 The order attribute for the Order item class is displayed within the class without specifying its
multiplicity 1 as the value 1 is the default value for multiplicities and it is not normally
displayed within classes.

3 There is another method of specifying the navigability of an association end. However, it will
not be discussed here.

1.3.2 Component diagram

Component diagrams show relationships between components and their properties.

CH

o components
order management

o s
cdependencys - ~, cdependencys
A .,
s .
.-,_»_" k}_-.
H] &1
o COmponents ccomponents
dient management item managemernt

Figure 6: Component diagram

The image above shows the simplest form of a Component diagram. It shows three (software)
components and their dependencies. From it, we can determine that the components for client
and item management can work independently of other components, while the order
management component has dependencies on the other two components. This diagram
provides no information about the nature of these dependencies.

The component dependencies can be described in more detail by using ports and interfaces.
The following shows an example of this.

=]

o GO T M Nt
order management

custorner data acces itern dats access

/ \

wdep endencyms ."(\'\ wde pendencym

/

=] 2]
o0 0T o 1 o fraetedy Yl T Ty)
A custorner data access itern data access il an=e rart

Figure 7: Components with ports and interfaces

The client management component uses a port to provide an interface called customer
data access, which can be used to retrieve customer data from the component. Likewise, the
item management component also provides a corresponding interface called item data
access. In turn, the order management component uses two ports to specify that it requires
access to the customer data access and item data access interfaces. Two dependency
relationships illustrate the access to the interfaces.

1.3.3 Composite structure diagram

Composite structure diagrams show the internal structure of a class and the relationships of
the individual class components to one another.

temline
order 1.*
Order 1 fordered}

Order item

Creler number: Int eger number:Integer

order T
—
1 -
P o
- line tem
~ 1.0
invoice - o
o1 - Invoice line tem
.. P
-
.-"'-f-.
P

Invoice -

item number: Integer

Figure 8: Class diagram with order components

The image above extends the example from Figure 2 with an additional class involved in an
order, the invoice. Unlike the order item, the invoice is not a compositional component of an
order but is directly assigned to it. The invoice also refers to the individual order items.

Order

—————— 1
| | 1 pilnveoice line item 1
| invoicelnvoice[0..1] temline:Order tem[1.."ordered}

Figure 9: Composite structure diagram for the Order class

The Composite structure diagram in Figure 9 provides an alternative representation to the
Class diagram in Figure 8. The two attributes invoice and itemline are represented
graphically in the Order class as symbols of the Property or Part type. The dotted border of
the invoice property symbol indicates that the invoice is not a compositional component of the
order, while the solid border of the itemline part symbol means that order items are included
in the composition of the order.

The two symbols are linked by a connector with the name p, which refers to the Invoice line
item association shown in Figure 8.

1.3.4 Object diagram

Object diagrams show the relationships between instances of different classes.

Orderd2:Order order iternline | :0rgler tem | orderitem iterm Screw:item
Order number= 42 = =1 number= 100 [tem number= 28.97.08.0040
Label= Machine screw M8 40 mm

order itemline | :Orderitem | orderitern item Female screw:ttem
~ = number= 100 Item number= 28.98.08.0001
Label=female screw M8 self-retaining

Figure 10: Object diagram with order instance

Figure 10 shows a specific order with two order items.

The order, the two order items, and the two items are instances of the corresponding classes
from Figure 1. Their relationships represent instances of the associations between these
classes.

Instances of classes are also referred to as objects and instances of associations as links.
However, all instances are technically of the UML type InstanceSpecification®.

Instances can optionally show their own name and/or the name of their class, separated by a
colon. In this example, the order object and the two item objects show both their own names
and the name of their class, while the two order item objects only show their class names.

The attribute values for the objects are of the UML type Slot. A Slot shows the name of an
attribute of the class for the instance (for example, Order number) and the value that this
attribute has for the instance (for example, 42). The link ends (for example, position) are
also of the Slot type. However, as they are directly linked to their value, that is, the
corresponding object, in the diagram, only the relevant attribute name is displayed in the
diagram.

4 UML 2 defines only one InstanceSpecification type for instances of all classifier types,
whereas UML 1.4 defined a special instance type for each classifier type (e.g., Class -> Object,
Association -> Link, AssociationClass -> LinkObject, Component -> Componentlnstance etc.).

1.3.5 Package diagram

Package diagrams show package hierarchies and dependencies between packages.

—1 —1

zRefings
L) emEE - Vi

—-

Analysis model

i I

Design model

zdependencys
Production Sales Framework [~ — — — —] Modules
S¥] 3%
— ‘ — ‘ — 1
Use cases Technical class Sales module Production module

Figure 11: Package diagram

Figure 11 shows a Package diagram with two package hierarchies and dependency
relationships.

At the top level it contains the two models Analysis model and Design model. Unlike in
ARIS, in UML the term model does not refer to a diagram, but to a view of a physical system
in a defined context. A model normally contains a whole series of elements, relationships, and
diagrams, which all combine together to describe the model.

In line with this definition, in this example the analysis model represents an object-oriented
view of the business processes to be supported by a new piece of software to be developed.
This is used to derive a design model, which specifies the architecture and the individual
modules of the software in more detail. This derivation is represented by a Refine relationship
in the diagram. This relationship is an element of the UML type Abstraction with the
stereotype «Refine».

Within the desigh model, the dependency relationship between the Modules and Framework
packages indicates that the Framework defines structures that are required by the modules.

1.3.6 Profile diagram

Profiles represent user-defined extensions or restrictions of the UML metamodel. They can be
created using Profile diagrams.

erEferenc es P

sprofiles 4 __ = - gMetamodel
Analysis profile 7 UML :

zstereotypes=
Analysis element
Contact person:String
\
zstereatypes =M etaclasss
Technical class » Class
zstereotypes
Business use case > zMetaclasss
«ExtendedProperty= Requirements:String UseCase

Priorit:Pricrity

Figure 12: Profile diagram

Figure 12 shows a Profile diagram for defining a simple profile for object-oriented analysis.

On the left-hand side, the diagram contains the Analysis profile, which defines the two
stereotypes Technical class and Business use case. Both of these inherit from an abstract
stereotype Analysis element, which defines the Contact attribute. In addition to the
stereotypes, the profile also defines an enumeration called Priority, which is used as a type by
the attribute of the same name for the Business use case stereotype.

The right-hand side of the diagram contains the UML metamodel and two of its metaclasses.
The profile has a relationship of the Metamodel reference® type to the metamodel. This
relationship is always necessary if all UML content is to be available within packages to which
the profile is assigned.

> Strictly speaking, it is a relationship of the UML type Packagelmport, which is referred to as a
metamodel reference in this context and is also displayed in the graphical view with the
keyword «reference» instead of «import».

The two stereotypes Technical class and Business use case have a relationship of the UML
type Extension with the Class metaclass or the UseCase metaclass. This relationship
specifies the UML elements to which the stereotype can be assigned.

The attributes of a stereotype are available as additional properties for the UML elements to
which the stereotype is assigned. In this example, a use case with the «Business use case»
stereotype has the additional properties Contact and Priority in addition to the properties
defined by the UML specification.

UML profiles (page 155) contains more information about profiles and stereotypes.

1.3.7

Deployment diagrams show the assignment of software components to physical IT systems

Deployment diagram

and the networking of these systems with one another.

E cmanifests E‘

ccomponents et - — — — — — —] cartifacts

it em data aocecs item management item_manage ment jar

E crmanifests b

cCompaonents N S cartifacts

client manage ment customer _management jar
customer data access
™ 2]

crmanifests G

customer daa access ccomponents

) order manage mert
™
vy

item data access

cartifacts
order_manage ment jar

Figure 13: Deployment diagram with components and artefacts

Figure 13 shows the physical manifestation of the components from Figure 7 as JAR files®. This

is done using UML elements of the Artefact type, which are linked to the corresponding
components by a relationship of the Manifestation type.

Application server

canifacts

order_management .jar

e
cdependencys - Y
. .,

L o

cdependencyo

gy
[l
carnifacts

customer _management . jar

cartifacts

iterm_managem

ert.jar

Database server

Figure 14: Deployment of software components on physical systems

Figure 14 shows how the artefacts or software components defined in Figure 13 are deployed

on physical systems and the relationships between these systems.

6 Java libraries

INTRODUCTION

1.3.8 Activity diagram

Activity diagrams show dynamic processes in the form of a graph of individual actions. They
can describe both a process with a high level of abstraction or details of an algorithm in a piece
of software.

Orderitem

Figure 15: Create order activity diagram

13

Figure 15 shows the process for creating an order in the form of a UML Activity diagram. The
activity starts with an element of the InitialNode type and ends with an element of the
ActivityFinal type.

The first step is to check the customer data. This is done using an action of the
CallBehaviorAction type. This is an action that in turn invokes an activity Check customer
data. This is described in another Activity diagram (see Figure 16).

The other actions are all of the OpaqueAction type. They are characterized by the fact that
they are specified by a simple text and have no further UML semantics.

The individual purchase or order items are processed in an ExpansionRegion. This has the
customer's purchase items as its input elements and the corresponding order items as its
output elements. The ExpansionRegion is run through for each input element.

The relationships in the two Activity diagrams are all of the ControlFlow type. If a text in
square brackets is specified on one of these control flow edges, it describes the condition that
has to be met for the control flow to proceed along this edge.

Check customer data

)

[Chmk cust omer data}

b
[Custormer data unknown] _..--""ﬁ'"“'-u.._ [Customer data up-to-date]

[Custorner data outdated]

h h

[Hennrd customer data} [u pdate customer data}

. il
B il

®

Figure 16: Check customer data activity diagram

1.3.9 Use case diagram

Use case diagrams are used as part of an object-oriented requirements analysis to describe
the use cases to be analyzed and the actors involved.

Check customer
data

S ,

/ RN

Create order

extension points
Discount caleulation

& ondition:
{ Customer is key customer}

extension points:
Diszount calculation

Create key custo...

Figure 17: Use case diagram

Figure 17 shows a Use case diagram with one actor and three use cases. Actors are people,
roles, or systems that interact with the system to be analyzed. A use case represents a self-
contained functionality that can be invoked from outside the system and leads to a particular
result.

The relationships between the actor and the use cases are associations. In Use case diagrams,
these are normally shown without annotations such as names or multiplicities.

A relationship of the Include type runs between the Create order and Check customer
data use cases. This means that the Create order use case includes the Check customer
data use case, that is, when creating an order the customer data is checked.

The Create order use case defines an extension point called Rebate calculation. An
extension point indicates a particular point in the internal process of the use case at which
additional functionality can be added to the process. In this example, this is the calculation of a
rebate.

The Extend relationship between the Create key customer order and Create order use
cases states that the Create key customer use case supplements the Create order use case
with this functionality at its Rebate calculation extension point, in this case by calculating a
special key customer rebate. In addition, the Extend relationship includes a specification of the
condition under which the extension is permitted, namely that the customer must be a key
customer.

Typically, the internal process of the use cases would be described using behavior diagrams,
for example the two Activity diagrams in Figure 15 and Figure 16.

1.3.10 Communication diagram

Communication diagrams show how elements exchange messages with one another as part of
an interaction. In contrast to Sequence diagrams (page 19), in Communication diagrams the
focus is on the channels via which these messages are sent rather than on the chronological
sequence of exchanging messages.

=d Create on:lerJ

= 1inew
- 3iitem line Create ("28 97 .08.0040",100)
— 5itemline Create ("28 .98.08.0001",100)

:order manageme rt

2reserve (28.97.080040",100) ->3.1:new('28.97.08.0040",100)
A 2.1retum true order42:0rder itemline1:0rder item

I dreserve (22.98.080001",100)
v 4. 1retum true

item manageme rt =5.1:new (28 98 08.0001",100)

iternline2:0rder item

Figure 18: Create order communication diagram

Figure 18 uses a Communication diagram to show how an order is created in the system. The
background object that contains all other elements is the interaction itself. The contained
elements are elements of the Lifeline type. The term Lifeline comes from its use in Sequence
diagrams, where it is represented by a rectangle with a vertical line attached to the bottom.

The lifelines do not show their own names in the diagram, they show the name of the element
represented and/or the type name of the element represented’. Depending on the context, the
element represented can be an attribute (property), a port, or a parameter. In the above
example a property has been created as an attribute for the interaction for the :Order
management lifeline and the Order management component from Figure 6 has been
assigned to it as the type. As the name of the attribute is irrelevant here, the lifeline only
shows the type name.

The relationships between the lifelines are the connectors familiar from Composite structure
diagrams. It is important to note that although they connect the lifelines with one another
graphically in the diagram, they are actually relationships between the elements represented.
This means that if no represented element is assigned to a lifeline, you cannot connect it to
another lifeline in the diagram using a connector.

The messages that the lifelines exchange with one another along the connectors are displayed
as text on the connector. An arrow specifies the direction of the message, and the order is
given by the sequence numbers of the messages. If the messages have arguments, they are
listed in brackets after the message.

7 The element represented is assigned to the lifeline through its represents property.

This Communication diagram should be read as follows:

1: Order management creates a new order object.

2: Order management reserves 100 items with the item number 28.97.08.0040.
2.1: Item management confirms the reservation.

3: Order management instructs the order object to create a new order item for the item
number 28.97.08.0040 with the quantity 100.

3.1: The order object creates a new order item with the corresponding parameters.

4, -5.1: This process is repeated for another item.

The sequence numbers are automatically calculated in ARIS UML Designer based on the
sequence of the messages on the source and target lifelines. If you want to change them, you
have to do this in the Properties dialog for the relevant lifelines. Alternatively, you can hide the

display of the calculated sequence numbers and assign your own numbers as part of the
message name.

1.3.11 Sequence diagram

Sequence diagrams show how elements exchange messages with one another as part of an
interaction. In contrast to Communication diagrams (page 17), in Sequence diagrams the
focus is on the chronological sequence of exchanging messages rather than on the channels

via which these messages are sent.

= Creae orderJ

:orde rmanageme nt item mana ge ment

I

|
_________ |_ —_— orderd2 :Order

reserve ("28.97.08.00 40°,100)
- |
retum:tus
L |

l e
l} Ll
new ('28.97.08.00.40",100)
_—— = item line 1:Order item

itemlineCeate {28.98.08.00.01",100)

it mline2:Orde ritem

|
|
S :
| new (728.98.08.0001",100)
- %
|
| |

Figure 19: Create order sequence diagram

Figure 19 shows the Create order interaction shown in Figure 18 in the form of a

Communication diagram (page 17) as a Sequence diagram. Both diagrams contain elements of

the Lifeline type. However, in the Sequence diagram they have an additional dotted vertical
line®. The messages are represented by graphical edges in the Sequence diagram.

While the chronological order of the messages is given by their sequence numbers in the
Communication diagram, in the Sequence diagram this is defined by their vertical

arrangement. The time axis, which is not explicitly visible, runs vertically from top to bottom in

the diagram, that is, messages closer to the top are transferred before messages located

further down.

The rectangles on the lifelines are elements of the ExecutionSpecification type. They

indicate when the object represented by the lifeline is active.

8 The name Lifeline can be traced back to this type of graphical representation.

1.3.12 Timing diagram

Timing diagrams show how the state of the elements involved changes when exchanging
messages as part of an interaction. The notation is based on corresponding diagrams from
digital technology. This diagram type is primarily of interest for modeling of software systems
closely related to hardware and has only rudimentary support in ARIS UML Designer 9 and
higher.

= Order states/l

I@ {1d..2d} %
new >< released >< in delivery >< delivered

‘O

Figure 20: Order states timing diagram

In Figure 20 a simple Timing diagram using compact notation® shows the states an order can
have. The Order states element is an interaction, the :Order element is a lifeline, and the
different states are represented using state invariants. The DurationConstraint element also
specifies that the delivery state can only last for one to two days.

° The detailed notation with which the states and their transitions are displayed using timelines
is not supported by ARIS UML Designer.

1.3.13 Interaction Overview diagram

An Interaction Overview diagram is part of a larger scenario and shows the sequence of
individual interactions, which are normally modeled using Communication (page 17) or
Sequence diagrams (page 19).

These diagrams are Activity diagrams (page 13) in which only actions of the
CallBehaviorAction type are used, which invoke interactions.

Manage order

[Orderiscmated] _ne_fJ [Odercannotbe created]
Create order

= .

Release omer

e

Deliver order Create invoice

o ——_
-

Figure 21: Manage order interaction overview diagram

Figure 21 shows an Interaction overview diagram, which invokes interactions including the
Create order interaction modeled in Figure 18. The individual actions of the
CallBehaviorAction type each show the name of the interaction invoked.

1.3.14 State machine diagram

State machine diagrams show which states a system can take on, the relationships between
them, and which events trigger the relevant state transitions. A State machine diagram
represents a state machine. The states and their transitions are parts of this state machine.
The state machine can describe the behavior of a class, the behavior of another classifier of
the UML type BehavioredClassifier, or the behavior of an operation. However, it can describe
a behavior very generally without relating to one of these elements.

-
Orderstates]

new
entry / enter arder tems
exit/ check availahiftiy

[item available] / release [tem not availakle] / reject

released
entry / resernve item

when items are resenved [deliver

\

processing
do/ packaging and shipping items

when iterm are shipped

|
| delivered rejected |

@~

Figure 22: Order states state machine diagram

Figure 22 shows the states of an order. While the Timing diagram from Figure 20 only shows a
sequence of state transitions, the State machine diagram includes the entire state machine
with all states and their possible transitions as graphical edges, which link the states to one

another.

The first state that an order can have is the new state. When this state occurs, the order
items are recorded (entry property of the UML type State). An availability check for the items
in the order items completes the state (exit property of the UML type State).

If a text is displayed in square brackets on a state transition, it refers to the condition (guard
property of the UML type Transition) that has to be met for the state transition to occur. In
the example diagram, these are the two conditions [Items are available] and [Items are
not available].

The text that follows the / character at a state transition refers to a behavior that is triggered
by the state transition (effect property of the UML type Transition). In the example diagram,
this would be release, reject, and deliver.

If a text at a state transition is neither in square brackets nor after a slash, it is the trigger of
the state transition (trigger property of the UML type Transition). In the example diagram,
these are the two texts that start with the word when. The keyword when means that the
triggers are assigned events of the UML type ChangeEvent (event property of the UML type
Trigger).

INTRODUCTION

1.3.15 Protocol State machine diagram

Protocol state machines show the externally observable states and state transitions for a
classifier. They define a protocol that the implementations of the relevant classifier must
adhere to and show when, in what order, and on which conditions the publicly visible
operations for that classifier are invoked.

.

Figure 23: Order class with operations

Figure 23 shows the Order class with its public operations (UML elements of Operation type
with the property visibility = public, in each case identifiable by the + character at the

beginning of the name).

Figure 24: Order states protocol state machine diagram

The Protocol state machine diagram in Figure 24 shows how invocations of these operations
result in corresponding state changes. Instead of normal state transitions, protocol state
transitions are used in protocol state machines.

24

Protocol state transitions have a different notation than normal state transitions. The notation
for a protocol state transition is: [Precondition] Event / [Postcondition]

The precondition is mapped to the preCondition property of the UML type
ProtocolTransition, and the postcondition to the postCondition property. As for normal
state transitions, the event is mapped to the trigger property, and the triggers are assigned
events of the UML type CallEvent, which in turn refer to the corresponding operations for the
class, which means that the corresponding operation is displayed as the event in the diagram.

1.4 Special features in ARIS UML Designer

Protocol state machines show the externally observable states and state transitions for a
classifier. They define a protocol that the implementations of the relevant classifier must
adhere to and show when, in what order, and on which conditions the publicly visible

operations for that classifier are invoked.

1.4.1 Diagram content

The UML specification states that product manufacturers can extend the typical content it
proposes for the different diagram types with content of other UML diagram types.

ARIS UML Designer supports any UML content for structure diagrams. In addition to the
elements provided for the corresponding diagram type, you have the option of modeling all
other UML constructs. This enables overview diagrams to be created, for example containing
both class hierarchies and complete state machines and interactions in Sequence diagram
notation. This also enables UML elements that are actually assigned to different diagram types
to be linked to one another graphically.

oG omponents
Crder manage ment

Create order
......................... B i ier T I

Sdes representative

Order f b

Order number:integer Create order item

e

1 WY
T o

Check availsbility

- Y
iternline 3
q." [tem available] [ltern not available]
{ordered} %%
Order item i
—_——
Number:Integer
Reserve item
o o
order item
1
i W
e
Release order Reject order
-
WA
tem — @ =
Item number:Integer
Label: String

Figure 25: UML notation from different diagram types in a class diagram

Figure 25 shows elements from Class, Use case, Component and Activity diagrams together in
a single Class diagram.

1.4.2 Names of UML elements

The UML specification describes a small nhumber of element types whose elements cannot have
names. Examples of these types include Comment and Generalization. Because of the mapping
of UML elements to ARIS objects, these types also have a name in ARIS UML Designer.

1.4.3 Multilingual capability

The UML specification does not include a facility for specifying element names, comments, or
other text properties in different languages. The only exception is the UML type
OpaqueExpression, which allows the containing expression to have multiple values; you can
specify a language for each of these values. However the term Language has a broader
meaning than in ARIS and can also refer to a programming language.

ARIS UML Designer supports the familiar ARIS multilingual capability for UML content, but only

for element and diagram names, comments, and descriptions. All other text properties are not
multilingual.

1.5 The UML metamodel

A special feature of the UML specification is that it defines UML using a subset of UML. It uses
Class diagrams to describe which UML element types exist, what properties they have, and
how they are related to one another. The entirety of what is shown in these Class diagrams is
referred to as the UML metamodeli®. In this metamodel, the UML element types are defined in
the form of metaclasses. The various properties of the UML element types are described using
attributes and associations. Abstract metaclasses define properties that are shared by several
different UML element types and whose metaclasses inherit from these abstract metaclasses.

The architecture for description and implementation of metamodels is described in the MOF!!
standard published by the OMG. An ARIS-specific MOF implementation called OMF'? represents
a central component of the architecture of ARIS UML Designer.

Basic knowledge of the UML meta model is useful to understand UML and is essential for
modeling UML profiles (see UML profiles (page 155)).

A short extract of the UML metamodel is introduced below, which defines those UML elements
that are used in the Class diagram from Figure 1. The metamodel diagrams shown largely
correspond to the relevant originals from the UML 2.5 specification. However, in some cases
they have been adapted to the needs of this section by omitting individual metaclasses that
are not dealt with further here, or by adding content from other diagrams in the UML
specification.

The section headings used below correspond to the headings of the sections from the UML
specification that contain the corresponding diagrams, so that you can easily find them in the
UML specification to extend your knowledge of the subject.

10 Apart from the Class diagrams, the UML specification also includes numerous OCL
expressions, which describe consistency conditions on the one hand and the implementation of
complex queries on the other. These are also part of the UML metamodel but will not be
discussed further in this UML introduction.

11 MOF stands for Meta Object Facility

12 OMF stands for Object Modeling Framework

1.5.1 Common structure

1.5.1.1 Root

cMetaclasss
ArisHemeni

name: String

description: StringD..1]

identifier: StringD..1]

fguid:String[D..1]{re ad O nk}
fereator:StringD.. 1){read2nky}
fereationDate: Time Stamp[0..1]{read Onhd}
flastUser:String[0..1]{read 2nk}
fNastChange: TimeStamp[D..1]{read Onhy}
xmild:String[D..1]

fsource
1.

annotate dE le ment

{subsets relatedElement,readCn by, union}

p

cMetaclasss
BHemeni

n

ftarget
1.7
{subsets relatedElement,readCn by, union}

p

frelatedElernent
1."
{readOnly,union}

p

fdescription:String[0.. 1}{redefines description}

owning Element
0.1
{subsets owner}

fowner
0.1
freadOnby,union}

frelationship

freadOn by, union}

fownedElement

fread O nly,union}

ownedZomment

n

cMetaclass - oMetaclass »

IdirectedRelationship

{subsets relationship,read Cnby,union}

Relationship Comment

L{su bsets ownedElement, ardered}

body: String[D.. 1]

comment

L]

fdirectedRelationship

{subsets relationship,readCnly,union}

cMetaclasss
DirectedRelationship

Figure 26: Root diagram from the UML specification with ARIS specific extensions

Figure 26 shows the Root diagram from the UML specification, supplemented with ARIS-
specific extensions. The metaclasses from the UML metamodel form an inheritance hierarchy
with the abstract metaclass Element at the top. In this context, "abstract" means that there
are no UML elements of the Element type, only that properties are defined here for other
element types that inherit from Element. Abstract classes in UML diagrams are indicated by the

name being written in italics.

In ARIS UML Designer, the UML metaclass Element inherits from an abstract metaclass
ArisElement. This means that all UML elements are extended with ARIS-specific properties
such as creator, creationDate, nhame, description, and identifier!3.

The non-abstract Comment metaclass inherits from the Element metaclass. Each UML
element can have any number of these comments through its ownedComment property. In
turn, a comment can refer to any number of UML elements through its annotatedElement
property.

Key customer order A Key customer orderis
discountable.

discount:Integer

Figure 27: Comment with class as annotated element

Comments are displayed in diagrams as a rectangle with a turned-down corner. The text within
the comment shows the value of the Comment::body property. The
Comment::annotatedElement property is shown as a dotted edge to the annotated element
in the diagram (see Figure 27).

The Element::/description property also represents an ARIS-specific extension of the UML
metamodel. It redefines the ARIS property ArisElement::description for UML elements by
deriving the description from the first comment that the Element has'4. This means that UML
elements have the ARIS property description in ARIS UML Designer. However, its value is not
lost when exchanging data with other tools via XMI as it is saved as ownedComment for the
element. Conversely, it means that every UML element that is imported into ARIS UML
Designer via XMI and has a comment automatically has a value for its description property.

The Root diagram in Figure 26 also shows that in theory every UML element can have other
UML elements. For this purpose, Element defines two properties /owner and
/ownedElement. Both of these are so-called derived unions. This means that you can ask
an element for its owner or the elements it contains, but other properties of the Element type
and its specializations specify the way in which the element can contain other elements, or the
way in which it can be contained in another element. An initial example of this is included in
the same diagram. For the Element::ownedComment property there is subsets
ownedElement and for the Comment::owningElement property there is subsets owner.
This means that whenever an element is asked for the value of its ownedElement property,
the values it returns include the value of the ownedComment property, that is, the
comments that it has. The same applies to asking a comment for its owner property. In this
case the value of the owningElement is returned.

13 A slash / in front of an attribute name means that its value is derived from other properties
at runtime. This also applies to ARIS properties such as creator or GUID, as they are not
mapped internally to ARIS attributes but result directly from the ARIS object.

14 For this purpose, the isOrdered flag is set for the Element::ownedComment in ARIS UML
Designer, while the UML metamodel does not originally provide ordering here.

In addition, the Root diagram contains the two abstract metaclasses Relationship and
DirectedRelationship. All metaclasses that primarily define semantics for relationships
between elements inherit from these classes. These relationship elements are frequently
shown as graphic edges in diagrams. This metamodel concept includes the two metaclasses
Generalization and Association as examples of these relationship types.

1.5.1.2 Namespaces

zMetaclass=
Element
fownedMember
* «ENUMErations
{subsets member ownedElement, readOnly, union} T = VisibilityKind
NamedElement public
Imeamber i
= name:Stringiredefines name} pr:ftet 3
{readOnly,union} | faualfiedName:String[0..1}readOnly} p;u‘z ee
visihility:Visibilty Kind[0. 1] parau
i
Imemberklamespace
{readCnly, union} e
PackageableElement
Inamespace zMetaclasss
01 Namespace visihility Visibilitykind[0.. 1]=public{redefines visibility}
{subsets memhberhlamespace, owner,read2nly, union} -
packagedElement
{subsets ownedWember}
owningPackage
<Metaclasss 0.1
{subsets namespace}
Package .
URIString[0..1]

Figure 28: Namespaces diagram from the UML specification

Figure 28 shows the Namespaces diagram from the UML specification. It defines the three
abstract types NamedElement, Namespace, and PackageableElement, and the non-
abstract type Package. NamedElement defines the name property, which means that only
UML elements whose type inherits from NamedElement can actually have a name. As all
objects can have a name in ARIS and Element inherits from ArisElement in the ARIS
implementation of the UML metamodel, the suffix {redefines name} for
NamedElement::name specifies that a second name property is not defined, but that this
definition of name replaces the ArisElement::name definition in the inheritance hierarchy for
NamedElement. Both properties — ArisElement::name and NamedElement::name - are
mapped to the ARIS attribute type Name in the ARIS object model.

Namespace is an abstract type for UML elements whose contained elements are differentiated
using their name. The non-abstract type Package, which can contain elements of the abstract
type PackageableElement, inherits from this.

The Namespaces diagram in Figure 28 also contains a further example of derived unions:
The Package::packagedElement property contributes to the Namespace::member
property, which in turn contributes to the Element::ownedElement property.

Sales module Production module

Figure 29: Example of owningPackage edges

The Package::packagedElement or PackageableElement::owningPackage property can
be represented graphically as an edge in diagrams (see Figure 29).

1.5.1.3 Types and multiplicities

zMetaclass: zletaclasss:
NamedElement PackageableElermnent
typedElement type
sMetaclasss * 0.1 sMetaclasss:
TypedElement y Type

zMetaclasss

Element
owning Lower [owery'alue
0.1 0.1
- {subsets owner} {subsets ownedElemeant} J
MuitiplicityElement
isOrdered:Boolean=false =Metaclasss
islnigue:Boolean=true S
i . ValueSpecification
lowerInteger[0..1]=1 nwmragh_lppm uppgﬂqalue P
R S Rt & [1]=1 {subsets owner} {subsets ownedElemeant}

Figure 30: Types and multiplicities diagram from the UML specification

Figure 30 shows the Types and multiplicities diagram from the UML specification. It defines
the abstract metaclasses Type, TypedElement, and MultiplicityElement.

Metaclasses whose elements can be assigned a type inherit from the abstract metaclass
TypedElement. Typical examples of these elements are attributes (UML metaclass Property)
and parameters (UML metaclass Parameter).

The abstract metaclass MultiplicityElement is the base class for all metaclasses whose
elements can have a multiplicity. Once again, attributes and parameters are typical examples
here. At this point, UML 2 is more complex than UML 1.x in the sense that the upper and lower
limit for a multiplicity is no longer a primitive data type (not a simple number) but is a UML
element whose metaclass inherits from the abstract type ValueSpecification. In addition to
the corresponding MultiplicityElement::lowerValue and MultiplicityElement::upperValue
properties, two further properties MultiplicityElement::/lower and
MultiplicityElement::/upper are defined with a primitive data type, but these are derived
from the assighed ValueSpecification elements.

1.5.2

Classification

1.5.2.1 Classifiers
o etaclasss chMetaclass chMetaclass o
Namespace Type DireciedR elationship
) 7
i L
specific generalization
1 =
[subsets ownersource} {subsets directedRelationship, ownedElement}
chMetaclass o . o Metaclass »

Classifier

Generalization

isAbstract:Boolear~fake
isFinal Specialzation :Boole armfalse

general gener alization
B

1
{subsets target} {subsets directedRelationship}

isSubstitutable:Boolean[D.. 1J=true

fredefinable Element

{read O nly, union}

L]

RedefinableElement

cMetaclass »

A dred efinition Contesxt

{readCnby,union}

fredefinedElement

{read Only, union}

isLeaf:Boole an=false

Jfred efin able Eleme nt

L]

{readOnly,union}

Y

"

NamedElement

chMetaclass o

Figure 31: Classifiers diagram from the UML specification

Figure 33 shows the Classifiers diagram from the UML specification. It defines the two
abstract metaclasses RedefinableElement and Classifier, and the non-abstract metaclass

Generalization.
RedefinableElement is the basis for all UML element types for which it will be possible for a
UML element to replace another existing UML element in a particular context. The UML
specification itself uses this feature in its own diagrams. Figure 28 shows an example of this.
The PackageableElement::visibility attribute replaces the corresponding attribute from the
NamedElement base class, as unlike NamedElement::visibility it has a default value.

Classifier is the basis for all UML element types for whose elements inheritance relationships
can exist. These inheritance relationships are based on the Generalization metaclass.

Order

Crder number: Integer

Key customer order

DiscountInteger

Figure 32: Generalization relationship between two classes

Figure 34: Generalization relationship between two classes

Figure 34 shows this kind of generalization relationship between the two classes Key
customer order and Order. This relationship itself is a UML element of the Generalization
type. In line with the compositional property Classifier::general this element is part of the
derived class Key customer order and its Generalization::general property refers to the
base class Order.

1.5.2.2 Features

chetaclass o
RedefinableElem ent

cMetaclass»

chMetaclasso Eocture chMetaclasso

TypedElement Muliplicity Element
s Static:Boolean=fake

T, 7 i

cMetaclasss
StructuralFeature

isReadOnly:Boolean=fals e

property
property Metac| : "
" " F'E - atss.: {subsets redefinableElement}
roperty

aggregation:AggregationKind=none

fdefault:StringD..1]

lisComposite:Boolean=false .

tDerived:Boolean=fak e redeflneSF'r-:-perh,r
e sDerivedUnion:Boolean=fals e .

" ID:Boolear=fake {subsets redefinedElement}

anningProperty
0.1
{subsets owner}

defaultalue
0.1
{subsets ownedElement}

cenumerations
AggregationKind

cMetaclasss nong
ValueSpecification shared :
composite

Figure 33: Features diagram from the UML specification

Figure 35 shows an extract from the Features diagram, supplemented with content from the
Properties diagram in the UML specification. At the center is the non-abstract metaclass

Property with its base classes. Attributes of classes and association ends are based on the
Property metaclass.

temline
arder 1.*
Order 1 {ordered} Order item
Qrder numkber: Integer numkber:integer

Figure 34: Class diagram with attributes and association ends

The Class diagram in Figure 36 shows four UML elements of the Property type: the Order
number and Number attributes, and the order and itemline!5 association ends. The
association edge shows a black diamond at the opposite end of order. This means that the
order items are part of the order and are existentially dependent on it, that is, deleting the
order includes deleting its order items. This kind of association is known as a composition. At
the order association end, the diamond is displayed if the Property::aggregation property of
the itemline association end has the value AggregationKind::composite.

15 These diagrams actually also include the two Attribute association ends for the respective
opposite class. This is dealt with in more detail in the section on the Association metaclass.

1.5.3 Structured Classifiers

1.5.3.1 Classes

fclassifier

cMetaclasso
Classifier

0.1
{subsets featuringClassifier,redefinitionContext, readOn by, union}

fattribute

i

{subsets feature redefinableElement readOnby, union, orde red}

‘ structuredC lassifier

chetaclasso
BehavioredClassifier

£y

0.1
oMetac|ass o {subsets namespace, classifier,redefines structuredC lassifier}
StructuredClassifier it on ed At ibute
T {subsets role,ownedMember, attribute,ordere d}
cMetaclass o

EncapsulatedClassifier

T

cMetaclass o
Class

class
0.1
{subsets structuredClassifier,classifier,namespace}

isActive:Boolean=fake

isAbstract:Boolean=fak e{redefines isAbstract}

own ed Attribute

{subsets attribute, ownediember redefines owne ditiribute ordered}

Figure 35: Classes diagram from the UML specification

chletaclass s
Froperty

Figure 37 shows an extract from the Classes diagram supplemented with content from the

Structured Classifiers and Encapsulated Classifiers diagrams in the UML specification. The

central metaclass in this diagram is Class. The three abstract base classes
BehavioredClassifier, StructuredClassifier, and EncapsulatedClassifier are only included
here to illustrate the inheritance relationship between Class and Classifier. They define
additional properties that will not be discussed further in this introduction.

The diagram also shows that attributes (UML type Property) can theoretically be assigned to
all classifiers using the derived property Classifier::/attribute. The type of the specific
assignment is defined by the corresponding specializations. For the Class metaclass it is the
compositional property ownedAttribute. An example of the representation of attributes in
classes is shown in Figure 36.

1.5.3.2 Associations

cMetaclasss cMetaclasss
Relationship Classifier

i T

ownedEnd -‘7 -‘7

{subsets redefinableElement, me mberEnd featur e, owne dMember,ord ered}
‘. chMetaclass o
owningAsso ciation Assaciation
0.1
[subsets namespace,featuring Classifier, association, redefinition C o ntext isDerived:Boolean=false
navigableOwnedEnd association
" 0.1
cMetaclasso {zutsets ownedEnd; {subsets owningAssociation}
Property
memberEnd association
2.7 0.1
{subsets member,ordered} {subsets memberMamespace}

Figure 36: Associations diagram from the UML specification

Figure 38 shows an extract from the Associations diagram from the UML specification. It
defines the Association relationship type as the central metaclass. Associations are used to
model structures made up of one or more classes or other UML types. The association is not
directly linked to the partners in the relationship, but uses an element of the UML type
Property, often referred to as association ends in this context. The
Association::memberEnd property is critical here, and its multiplicity limit of 2 means that
an association must have at least two association ends?®.

These association ends can either be contained in the association itself using the
Association::ownedEnd property, or can be an attribute of the opposite relationship partner
(in the case of a class this would be the Class::ownedAttribute property). If the association
end is an attribute of the opposite relationship partner, the association is navigable towards
the association end. Alternatively, an association end that is not an attribute (that is, it belongs
to its association as ownedEnd) can also be navigable if it is also assigned to the association as
navigableOwnedEnd.

arder item itern ltem
Order item * 1

N

[tem number:integer

number:integer Label:String

Figure 37: Class diagram with an association

16 Associations with two ends are also referred to as binary associations. These are normally
shown as a graphic edge in diagrams. If an association has more than two ends, we refer to a
multiple association. Multiple associations are shown in diagrams as diamonds with edges to
the relationship partners.

The association in Figure 39 links two classes with one another. The item association end is an
attribute of the Order item class (Class::ownedAttribute property). You can identify this by
the black dot at the end of the edge. As an attribute of the class, the end of a binary
association is automatically navigable and is shown with an arrow head!”. This means that an
order item recognizes the item assigned to it. By contrast, the order item association end is
part of the association (Association::ownedEnd property) and is not navigable.

1.5.3.3 Simple Classifiers — DataTypes

chMetaclass o
Classifier

T
A

—[datatype owun edAttribute
0.1 =

cMetaclass {subsets classifier,namespace} {zubsets ownedMember, attribute,ordered} cMetaclass -

DataType . Property

-
A

1

chMetaclasss

PrimitiveType

Figure 38: DataTypes diagram from the UML specification

Figure 40 shows an extract from the DataTypes diagram from the UML specification. It defines
the two non-abstract metaclasses DataType and PrimitiveType. These data types differ from
classes in the sense that there is no object identity for their instances. Instances of data types
are only differentiated from one another based on their value. Simple data types
(PrimitiveTypes metaclass) have no internal structure.

primitiv ez e primitive =
String Integer

Figure 39: Class diagram with two primitive data types

Figure 41: Class diagram with two primitive data types

17 1If both ends of a binary association are navigable, displaying the arrow heads in the
diagram is optional.

2 ARIS UML Designer overview

This section provides a brief introduction to the individual components of ARIS UML Designer

and their key functionalities.

ARIS UML Designer provides different functional components depending on the selected
working environment in the perspective.

2.1 Specifying the working environment

You can specify the perspective and therefore the working environment by selecting the Select

perspective menu item.

Mew

Save Strg+5
Save all strg=U
Print...

Search

Explorer

Administration

Select perspective...
Options...

Help
About...

Exit

Figure 40: Menu item for specifying the perspective

This launches a wizard for specifying the perspective.

F

Perspective Wizard @

1. Select topics

Do you want to enable all topics included in your license?

1. Select topics If not, disable the ones that are not required.

2. Select working environment Tepics included in your license

« UML 2 Modeling
Provides the basic UML modeling functionality.

m Finish Cancel Help

Figure 41: Topic selection in the Perspective Wizard

In contrast to ARIS Architect/ARIS Designer, apart from UML modeling no other license-
dependent topics are available for ARIS UML Designer.

Perspective Wizard @

2. Select working environment

Do you want to perform only simple tasks? Simplify ARIS according to your requirements by moving

1. Select topics the slider to the left.

2. Select working environment [Q
I I I
P
%
Review Modeling Analysis & Configuration &

Management Administration

Configuration & Administration
Create your projects, improve them, and edit and analyze their content.

For example, you can specify modeling conventions, define access privileges, write your own
reports, define scheduled reports, or create and modify symbaols.

Back Cancel Help

Figure 42: Working environments in the Perspective Wizard

By selecting the working environment, you adjust the range of functions in ARIS UML Designer
to the work you are involved in.

Review allows read-only access to the UML content. It is not possible to make any changes to
the data and diagrams.

Modeling allows you to edit the content.

Analysis & Management enables additional functionalities such as XML export and XML
import.

Configuration & Administration includes administrative activities in ARIS such as editing
method filters or configuration of reuse options for business process objects in UML, and
creation and editing of scripts.

2.2 Explorer

When you launch ARIS UML Designer, the Explorer tab is displayed.

UML - ARIS UML Designer =N
Start Contents Evaluate ~
 Refresh
Mavigation x Orma General ala Reuse : : g 5 Fipe &
Explorer tree Diagram tree i =t el B‘@
! ¥ General
~ B8 ARIS UML Designer Examples | Type tbeses
Default symbol @ Use case
* [0 Main group vu »
» I Bample diagrams ~ axtensianPaint
3 Meta model <0 Discount calculation
» B8 COrganization ¥ include
-
4 Processes nclude
¥ BehavioredClassifier
-
S TR ¥ ownedBehavior
' Analysis diagrams [UML2 Model] 2 Create order
» Relationships ¥ Hement
b [Classes [UML2 Packagel description Comprises the creation of a customer order in the sales system.
hd dC t
'El Use Cases [UML2 Package] ownedt-ommen
™ Comprises the creation of a customer order in the sales system.
3 Relationsh
SLLE]S ¥ NamedElement
Use cases [UML2 Use case diagram] name () Create order
b 1 Sales representative [UML2 Actor] ¥ Type
b <= A_customerdataCheck_salesrepresentative [UML2 Association] package [Use Cases
b = A_keycustomerorderCreate_salesrepresentative [UML2 Association]
b €= A_orderCreate_salesrepresentative [UML2 Assaciation]
b @ Check customer data [UML2 UseCase]
b @ Create key customer order [UML2 UseCase]
w @ Create order [UML2 UseCase]
NamedElement
» Relationships
¥ 2 Discount calculation [UML2 ExtensionPoint] -
4 3
Waorking environment: Configuration & Administration 5 software~

Figure 43: Explorer tab

Figure 45 shows the Explorer tab in ARIS UML Designer. The Navigation bar on the left-hand
side contains two trees - the Explorer tree and the Diagram tree. The properties of the
element or diagram selected in the tree are displayed on the right-hand side. Alternatively,
you can display the properties in a separate dialog by clicking Properties in the pop-up menu
for an element or diagram.

The Navigation bar can be hidden using the # putton at the right-hand edge of the window
to create more space for the properties pages.

You can use the B button to show and hide the Implicit changes bar at the right-hand edge
of the window. This area logs when a change to a UML element results in implicit changes to
other UML elements. The Implicit changes bar is outlined in more detail in Implicit changes
bar (page 83).

You can use the ? button to hide all areas except for the properties pages. Clicking the button
again reverts to the previous state.

If you have closed the Explorer tab, you can re-open it by selecting Explorer in the ARIS
menu.

Mew b
[l save all

Print... »
% Search
= Explorer

Administration

Select perspective...
Dptions...

Help
About...

Exit

Figure 44: Menu item for displaying the Explorer tab

2.2.1 Navigation bar

2.2.1.1 Explorer tree

The Explorer tree shows the familiar ARIS group hierarchy with diagrams and elements. The
tree includes both standard ARIS and UML content.

Server connection —* ¥ 55 UML
Database ——————» w = ARIS UML Designer Examples
w [l Main group
..---'-"'"-___——" » B8 Example diagrams
» BB Meta model
» B Organization

w [Processes

Groups

B
=

ARIS diagram > = Sales process [ARIS EPC]

[3 COrder can be created [ARIS Event]

[3 COrder cannot be created [ARIS Event]

[3 COrder data recerved [ARI5 Event]

[3 COrder is created [ARIS Event]

» Kl Order is rejected [ARIS Event]

3 COrder is released [ARI5 Event]

[3 u Check customer data [ARI5S Function]

[3 u Create order [ARIS Function]
w [Sales systermn

- E| Analysis diagrams [UML 2 Model]
UML elements b BB Relationships

T~ b [Classes [UML 2 Package]
VD Use Cases [UML 2 Package]
b BB Relationships

ARIS elements

.

LML diagram - Use cases [UML 2 Use case diagram]

[4 '% Sales representative [UML 2 Actor]

b A_customerdataCheck_salesrepresentative [UML 2 Association]

b A_keycustormnerorderCreate_salesrepresentative [UML 2 Association]
UML elements b = A_orderCreate_salesrepresentative [UML 2 Association]

b @ Check customer data [UML 2 UseCase]

b @ Create key customer order [UML 2 UseCase]

Figure 45: Groups, diagrams, and elements in the Explorer tree

A fundamental difference between ARIS and UML is that, unlike ARIS items, UML elements can
form hierarchies, that is, a UML element can contain other UML elements, and this is visible in

the Explorer tree. The root of this kind of hierarchy of UML elements is always a UML element

of the Package, Model, or Profile type. Only these three types can be directly contained in a
group.

Essentially, only new groups, UML elements, and UML diagrams can be created in ARIS UML
Designer. ARIS items and ARIS diagrams are displayed in the Explorer tree in ARIS UML
Designer, but they cannot be created there.

You can filter the Explorer tree content. If you have activated the Explorer tree, top right a b ¢
Filter button is available. To focus on specific elements you can restrict the displayed content.

Y

Metamaodel filter configuration...

Activate model filter

& Show ARIS models
#| Show ARIS objects

#| Show relationship nodes
Reset all filter settings

Figure 46: Explorer tree filter options

You can even define which UML object types should be visible.

To show the content of the UML types Package, Model, and Profil, these superordinated
elements must be included in the Visible elements area. If you, for example, include
subordinated elements of Profil, but not Profil itself, the subordinated elements are not
shown.

P

Configure visible object types @
Specify the elements to be used in the navigation tree,

Invisible elements: Filter = Yisible elements: Filter =

v im UML v i o]

~¥ Ahstraction LiteralBoolean

I AcceptCalliction Literallnteger

I AcceptEventAction LiteralMull

|:| ActionExecutionSpecification LiteralReal

e ActionInputPin LiteralString

2 Activity) LiteralUnlimitedNatural

4

D Package f

@ ActivityFinalNode
|:| ActivityParameterMode

1
.

[FH ActivityPartition
t actor
@0 AddStructuralFeatureValuehction
@0 AddVariableValuefction
S AnyRecervebvent
B Artifact
* Association
15 AssociationClass

D BehaviorExecutionSpecification

m Cancel Help

Figure 47: Explorer tree filter dialog

If you have defined a metamodel filter you can toggle it using the Acitvate model filter menu
item.

The filter symbol indicates, if a filter is set T or Y not. A tooltip informs you about the filter
details, if you move the mouse pointer briefly over the filter icon.

Y

Shows a popup menu to configure visible element types in the navigation tree.
Activated filter:

- Some element types from the meta model are not visible

- ARIS Models are not visible

Figure 48: Explorer tree filter details

2.2.1.2 Diagram tree

The diagram tree provides a view of the database grouped by diagram types. Particularly with
small or medium-sized databases, it offers fast and uncomplicated access to diagrams.

v B umL
v ﬁ ARIS UML Designer Examples
» Bm ARIS
v | uUML2

» B8 UML 2 Activity diagram

» B8 UML 2 Class diagram

» B8 UML 2 Communication diagram

» B8 UML 2 Component diagram

» B8 UML 2 Composite structure diagram

» B8 UML 2 Deployment diagram

» B8 UML 2 Interaction overview diagram

» B8 UML 2 Object diagram

» B8 UML 2 Package diagram

» B8 UML 2 Profile diagram

» B8 UML 2 Protocol state machine diagram

¥ [UML 2 Sequence diagram
- Create order [UML 2 Sequence diagram]
- Deliver order [UML 2 Sequence diagram]
= Release order [UML 2 Sequence diagram]

» B8 UML 2 State machine diagram

» B8 UML 2 Timing diagram

¥ [UML 2 Use case diagram
— Use case diagram example [UML 2 Use case diagram]

-+ Use cases [UML 2 Use case diagram]

Figure 49: Diagram tree

Figure 51 shows the Explorer tab with the diagram tree in the Navigation bar. Below the
database node are the two metamodel nodes ARIS and UML. These each contain the
corresponding diagrams grouped by diagram type.

2.2.2 Properties pages

The properties of the element or diagram selected in the Navigation bar are displayed on
several properties pages on the right-hand side of the Explorer tab. The most important
properties pages are outlined below. Special properties pages relating to UML profiles (page
155) or links between business process and UML modeling (page 130) are explained in the
corresponding sections of this document.

Essentially, all properties pages on the Explorer tab are also displayed in the Properties dialog
for the element or diagram.

2.2.2.1 Information (elements, diagrams, groups)

Information SEnera Relationships Reused objects

Create order

UMLZ UseCase

80d4echl-f4al-11e4-737 e-al 38 dfafBdes

Main group/Sales system/Analysis diagrams/Use Cases
ARIS UML Designer Examples

system

07.05.2018 12:04:52

system

17.07.2018 09:28:45

Comprises the creation of a customer order in the sales system.

Use Cases [UML2 Package]
public

Figure 50: Information properties page

The Information properties page is displayed for groups, elements, and diagrams. If you click

on Configure information page you can determine the content of the Information properties

page.

o

Configure information page

Information available

Filter =

Specify the information to be shown on the informaticn page.

| Filter list

w [l Systern information
¥ Criginal type
‘ Cwned as
¥ Sterectypes

v i umL
‘ classifierBehavior
¥ clientDependency
‘ collaborationUse
¥ elernentlimport
‘ extend
‘ extensionPoint
‘ externallink
¥ generalization
W identifier
‘ include
‘ interfaceRealization
‘ ishhstract

Information shown

¥

| Filter list

w [l Systern information

‘ Mame

W Type

@ GuD

¥ Group path

‘ Database

W Created by

‘ Created on

¥ Changed by

¥ Changed on

¥ Description

W Locked by user
¥ im umL

¥ package

B visibility

[#] Sort alphabetically

Figure 51: Information properties page configuration

2.2.2.2 General (elements, diagrams, groups)

Information General Relationships Reused objects Lin
|4 [=]=t el woO

b General

F Uselase

b ArisElement

F BehavioredClassifier
F Classifier

¥ [Element

description Comprises the creation of a customer o...

* ownedComment

™ Comprises the creation of a custom...

¥ NamedElement
b clientDependency
name (*) Create order
nameExpression
¥ Namespace
b elementlmport

b ownedRule

Figure 52: General properties page

The General properties page shows all properties that are specified in the metamodel as
attributes of the metaclass for the selected element and as attributes of the meta diagram for
the selected diagram. The lower section of the page shows a description of the selected
property. Properties that the metamodel stipulates must have a value are indicated by an
asterisk (*).

The button ™ Show/Hide description area is used to set whether or not the description
area is displayed.

The properties are grouped by the metaclasses and meta diagrams to which they are assigned
as attributes in the metamodel. Alternatively, you can sort the properties alphabetically
without displaying their metaclasses or meta diagrams (see Figure 55).

The G Categorized and 2l Alphabetically buttons are used to toggle between the
properties being grouped by metaclasses and displayed alphabetically.

General

Ay O
[ti]=]=tel v O

classifierBehavior

F clientDependency
F collaberationbse

description Comprises the creation of a customer order in the sales system.
F elementlmport
F extend
W extensionPoint

2 Discount calculation

F generalization

identifier
* include

""" tInclude

description
Description of the element.
This property is derived from the first owned comment of the element.

Figure 53: Alphabetical property display

Apart from a few exceptions!'®, properties that are based on derived meta attributes, that is,
whose values have to be calculated at runtime based on other properties and elements, are
not displayed by default. You have the option of also displaying derived properties.

18 These exceptions include Element::/description, MultiplicityElement::/lower, and
MultiplicityElement::/upper.

The button w Show derived properties enables or disables the display of derived
properties.

TAatian General Relationships :E_.EEZZ:.'_E:'.E L
|4 = =t &l[w]o
F General
F UseCase

F ArisElement

b BehavioredClassifier
F Classifier

¥ Element

description Comprises the creation of a custormer o...

* pwnedComment

™ Comprises the creation of a custom...
¥ ownedElement

&2 Create order

™ Comprises the creation of a custom...

@ Discount calculation

""" * Include

owWRner BT Use Cases
Figure 54: General properties page with display of derived properties

The example in Figure 56 shows that when displaying derived properties for the Element
metaclass, that is, for all UML elements, the /fownedElement and /owner properties are also
listed (see Figure 26: Root diagram from the UML specification with ARIS-specific extensions).

Their values are written in gray rather than black to indicate that these properties cannot be
changed.

The button © Show specified properties only hides or shows all properties that have no

value.

General

= [4l][=] = = w(o]
Default syrbol @ Use case
Type UseCase

|descripti|:|r1 |C|:|rr|prises the creation of a customer order in the sales system.

» extensionPoint
0 Discount calculation

* include

""" * Include
name (*) Create arder

* ownedBehavior
2 Create order

* ownedComment
™ Comprises the creation of a customer order in the sales system.

package [Use Cases -

description
Description of the elernent.
This property is derived from the first owned comment of the element.

Figure 55: General properties page without properties for which no value is specified

Figure 57 shows the same example as Figure 55, with the difference that all properties for
which no value is specified are hidden here.
Clicking the value of a property allows you to edit it. The type of editing permitted depends on
the property type.
Properties of the String type can be edited directly in the text line:

* NamedElement

b clientDependency
name (*) | Create order| -

nameExpression

Figure 56: Text entry

If the property supports formatted text, this dialog provides the corresponding formatting
tools. ARIS UML Designer only supports this for descriptions and comments:

Enter property 'description’ @
Segoe Ul - |12 - B qF u 5 . - 1‘50 = = "E 4= |- ; -|

Comprises the creation of a customer order in the sales system.

“ Cancel Reset

Figure 57: Editor for formattable text

If the value of the property is a UML element, direct editing in the text line is also possible:

¥ (lass
isfbstract (%) Falze
isfctive (%) False

F nestedClassifier

¥ AR visibility / attribute-name type [multiplicity] = initial-value {property-string}

27 order number:5tring
[item line:Order item[1..*}{ ordered}

Figure 58: Text editing for a UML element in the general properties

During editing, a corresponding UML syntax help is shown above the text line. This UML-
specific text editing option is available in ARIS UML Designer wherever the element is
displayed in this text form - in the Explorer tree, in the properties pages for the superior
element, and in diagrams. It is described in more detail in Creating new elements in
Explorer (page 65).

The button on the far right is used to open a pop-up menu, which provides additional
functionalities for the element:

 ownedAttribute
. order number:String

[itern line:Order item[1..*]{ordered] i Delete element

7 invoicelnvoice[0..1] l' R
F ownedOperation
F ownedReception = Select in Explorer
F superClass i | Properties...

AricFlamant

Figure 59: Additional functionalities for a UML element in the general properties

A pop-up menu is also available in the row of the table containing the name of the property. It
is used to create corresponding new UML elements or to add existing elements to the property.

The button for expanding the menu is available as soon as you click in the corresponding field
in the table.

w ownedittribute -

£ order number:String ~0 ExtensionEnd B create element »
[item line:Order item[1..*]{ ordered]
70 invoiceInvaoice[D.1]
i Fi Property
F ownedOperation L perty

b ownedReception

il Port Use element...

“s Configure menu..
b superClass

Figure 60: Creating new UML elements in the general properties

2.2.2.3 Relationships (elements)

Relationships

Direction & |Relationship Relationship type |Related element Element type
Incoming typedElement L7 orderltern_1 UML 2 Property
Incoming generalization Hem_1 UML 2 Generalization
Incoming f Hem_1 Generalization E Key customer order UML 2 Class
Mon-directed ++ A_item line_order line Association E Order item UML 2 Class
Cutgoing ownedAttribute L7 order numberString UML 2 Property
Cutgoing ownedAttribute [T itern line:Order item([1.*}ordered} UML 2 Property
Outgoing ownedAttribute L7 invoiceInvoice[0.1] UML 2 Property
Cutgoing ownedConnector /" plnvaoice line itemn UML 2 Connector
Cutgoing Owning package [Classes UML 2 Package

Figure 61: Relationships properties page

The Relationships properties page displays all of the selected element's relationships with
other elements. Alongside the direct relationships, those that appear as a direct graphic link
between two elements in the diagram but actually represent a chain of elements and
relationships are also displayed.

The binary association is an example of this kind of relationship. It links two classifiers using a
graphic edge in the diagram, for example a user case and an actor. However, this association
edge does not visualize a direct relationship but a chain of elements consisting of two
association ends (UML type Property) and an association.

The Relationships properties page for the use case shows both the direct relationship
between the use case and the association end as an incoming relationship of the
typedElement type, and the indirect relationship with the actor, which is of the Association
type.

You can call up the following functionalities for every relationship:
=2 Remove relationship
B Go to occurrence of linked element in Explorer

B show element properties for linked element

The other two functionalities are only available in the Designer component and are described in
the corresponding section.

2.2.2.4 Linked diagrams (elements)

Linked diagrams

% % & = H
Diagram & Type Kind
Create order UML 2 Activity diagrarm Mavigation

Figure 62: Linked diagrams properties page

All diagrams that are linked to the selected element are displayed here. If the selected element
has a presentation in a diagram, it is displayed with an assignment symbol. This supports
navigation to the linked diagrams in that diagram.

This kind of link can take three forms:

OWNERSHIP

The diagram belongs to the selected element. It appears as a child node of the element in the
Explorer tree.

NAVIGATION

The diagram has been assigned to the element for the purpose of navigation. This kind of link
has no semantics. It is only used to provide a simple way of navigating from an element to a
diagram. Unlike diagram assignments in the ARIS standard, no restrictions exist here. Every
diagram type can be linked to every element type.

IMPLICIT OWNERSHIP

In this case, the diagram does not directly belong to the selected element. It is a behavior
diagram!® whose owner belongs to the selected element. For example, if you want to model
the internal process of a use case in an Activity diagram, you create an activity as
ownedBehavior of the use case and a corresponding Activity diagram for the activity. This
Activity diagram is automatically linked to the use case through implicit ownership.

You can call up the following functionalities:
%

=2 Removed assigned diagram (only for assignments of Navigation type)

Assign diagram

s Open diagram
B Go to occurrence of diagram in Explorer

B show diagram properties

2.2.2.5 Presentations in diagrams (elements)

Presentations in diagrams

"= & 0@

Diagram = Diagram type

Use cases UML 2 Use case diagram
Figure 63: Presentations in diagrams properties page

The Presentations in diagrams properties page lists all diagrams that contain the selected
element.

You can call up the following functionalities for each diagram:
g, Open diagram
E Go to occurrence of diagram in Explorer

B show diagram properties

19 Implicit ownership is not supported for structure diagrams. For example, if a child package
of a package has Class diagrams, they are not linked to the package.

2.2.2.6 Presentations (diagrams)

Infarmation Genera Presentations Connected objects A
=
= 0

Object & Symbol

= A_customerdataCheck_salesrepresentative Association

= A_keycustomerorderCreate_salesrepresentative Asscciation

= A_orderCreate_salesrepresentative Association

@ Check customner data Uze caze

@ Create key customer order Use case

@ Create order Uze caze

""" * Extend Extend note

""" * Extend Extend

""" * Extend Extend note connector
""" * Include Include

@ Release order Use case

T Sales representative Actor

Figure 64: Presentations properties page

The Presentations properties page lists all elements that appear in the selected diagram.

You can call up the following functionalities for each element:
=] .
B Go to occurrence of element in Explorer

B show element properties

2.2.2.7 Connected objects (diagrams)

Information Genera Presentations Connected objects Applied sterec
= @

Object & Type Kind

£% Create order UML 2 Activity Cwnership

@ Create order UML 2 UseCase Irnplicit ownership

Figure 65: Connected objects properties page

The Connected objects properties page for a diagram shows the element that owns the
diagram and optionally also the implicit owner in the case of a behavior diagram.

You can call up the following functionalities for each element:
=] .
= Go to occurrence of element in Explorer

B show element properties

2.2.3 Properties dialogs

Properties: Create order

Selection Information

General

Description

Relationships

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

Create order

UMLZ UseCase
80d4ect-f4a0-11e4-737e-a1 38 dfafB el

Main group/Sales system/Analysis diagrams/Use Cases
ARIS UML Designer Examples

system
07.05.201512:04:52
system
17.07.2015 09:28:45

Comprises the creation of a customer order in the sales system.

m Cancel Help

Figure 66: Properties dialog for a UML element

When you open the Properties dialog for an element or diagram, it essentially contains the
same properties pages that are displayed on the Explorer tab. In addition, there is a
properties page here for editing the description of the element or the diagram (see Figure 69).

Properties: Create order @

Selection Description

Information Segoc Ul | - |12 | - ‘ = = u
General

Description Description:

S Comprises the creation of a customer order in the sales system.

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

m Cancel Help

Figure 67: Properties page for displaying and editing the element description

2.2.4 Creating new elements in Explorer

New elements can be created in the Explorer tree by calling up the New element item in the
pop-up menu. This opens a submenu containing the element types that can be created within
the selected element. Figure 70 shows this pop-up menu for a group. The four types Group,
Model, Package, and Profile are available.

w 2% ARIS UML Designer Examples
¥ [Main group

¥ [Example diagrar<

vl a
v [2 UML basics DI R B Group
» B Relationsk &< Cut A Model
» [2.2 Diagra Epy Copy Strg=C [] package
— Profile
> 24 UMy B Delete i)
4 Specific f
B Specificfe C[3 Rename

4 E] 4 UML-Mapp
sot Generate UML metamodels...

> [Meta model

» B Organization ¥. Delete incomplete relationships...

» [Processes Go to 4

’ [}‘j eSSt W Add to favorites...

» B UML Profiles
Import »
Export »
Lock/Unlock »
Evaluate >

BB rproperties...

Figure 68: Pop-up menu for creating a new element in a group

If you call up this pop-up menu for a UML element, the number of possible element types that
you can create within the selected element may exceed the capacity of the submenu. In this
case, only the most important element types are provided directly in the submenu. As the
maximum number of pop-up menu items depends on the screen size and resolution, you can

specify the maximum number of items that this kind of pop-up menu can contain in the global
options for ARIS UML Designer?0,

¥ | | Use Cases [UML2 Pack-~-1

b Relationships
Uze cases [UMLZ L
b T Sales representative
b A _customerdataCh
b A_keycustomerord
b = & orderCreate_sale
b @ Check customer di
b @ Create key customs
b @ Create order [UMLZ
b @ Release order [UML
¥ | | Design diagrams [UML2
Relationships
bt UML Profiles
¥ B Analysis profile [UML2 Pr
4 Relationships
Analysis profile [UML2
b3 UML [UMLZ Packagelr

Epy

ch

Mew element

Mew diagram

Cut

Copy

Delete

Rename

Hide all elements of this type

Delete incomplete relationships...

Go to
Add to favorites...
Import

Export
Lock/Unlock

Evaluate

Properties...

Activity diagram

Class diagram
Communication diagram
Component diagram
Composite structure diagram
Deployment diagram
Object diagram

Package diagram

Profile diagram
Sequence diagram

State machine diagram

Use case diagram

Mare...

Y% Configure menu...

Figure 69: Pop-up menu for creating a new element in a UML package

Figure 71 shows the pop-up menu for creating a new UML element in a UML package. In
addition to the element type, each menu item also contains the property under which the new
element is created in the superior element. In this example, most elements would be created
as packagedElement in the package (see also Figure 28: Namespaces diagram from the UML

specification).

20 ARIS > Options > UML > Explorer > Configure menu

Clicking More... opens the Create element dialog, which lists all UML types that can be
created within a package but are not included in the pop-up menu (see Figure 71).

r

Create element @

Which element type do you want to use?

~¥ Abstraction [packagedElernent]
2 Activity [ownedType]
+ Actor [ownedType]
> AnyReceiveEvent [packagedElement]
|:] Artifact [ownedType]
2 Association [ownedType]
2 Association [packagedElernent]
[= AssociationClass [ownedType]

[= AssociationClass [packagedElement]

-
O il 11 . r ' [l]

Cancel Help

Figure 70: Dialog showing element types that are not included in the pop-up menu

The content of the New element submenu can be individually adapted for each UML element
type, allowing you to add the most important element types from a user perspective to the

menu and to remove those that are not so important. Clicking the Configure menu item
shown in Figure 71 opens the corresponding menu configuration dialog.

-
Configure menu - New elements

Accessible from dialog: Filter ~

Filter list

~ m umL2
=¥ Abstraction [packagedElement]
% Activity [owned Type]
+ Actor [ownedType]
&> AnyReceiveEvent [packagedElement]
E Artifact [ownedType]
= Association [ownedType]
= Association [packagedElement]
I AssociationClass [ownedType]
I AssociationClass [packagedElement]
> CallEvent [packagedElement]
@ ChangeEvent [packagedElement]
E Class [ownedType]
% Collaboration [ownedType]
= CommunicationPath [ownedType]
= CommunicationPath [packagedElemen
$:| Component [ownedType]

4 romnonentRealization [nackaoedFleme ™

4 3

Tt 3

Specify the elernent types to be provided by the pop-up menu (metaclass 'Package’)

Accessible from pop-up menu:

| Filter list

- vz

% Activity [packagedElement]

+ Actor [packagedElement]

E Artifact [packagedElernent]

E Class [packagedElement]

% Collaboration [packagedElement]
™ Comment [ownedComment]

$:| Component [packagedElement]
Constraint [ownedRule]

[:I DataType [packagedElement]

E Enumeration [packagedElement]
EI Interaction [packagedElement]
l:' Interface [packagedElement]

@ Model [packagedElement]

Eﬂ MNode [packagedElement]

D Package [packagedElement]

l:' PrimitiveType [packagedElement]
l:' Signal [packagedElement]

Sort alphabetically

Figure 71: Dialog for configuring the New model element submenu

Figure 73 shows the dialog for configuring the New model element pop-up menu. The right-
hand column contains all element types that are directly included in the pop-up menu, the left-
hand column those that are available for selection in a dialog by selecting More.... If Sort
alphabetically is enabled, the elements in the pop-up menu are sorted alphabetically.
Otherwise, you can individually specify the order of the elements in the pop-up menu.
Regardless of this setting, the element types in the dialog are always sorted alphabetically.

If you have a created a new element in Explorer, UML-specific text editing for the element is
automatically activated.

w] rem [UML 2 Class]

visibility / attribute-rame :type [multiplicity] = initial-value {property-string}
P T I C T T [T 1Ty]

-
¥ L] Label:String EN
g E Key customer order [UML 2 Class]

Figure 72: Text editing for a UML element in Explorer

The syntax help highlights the area to which the current cursor position in the text box relates.
If the current text relates to a different UML element, all UML elements already loaded from

the database whose name begins with the text entered and which are of the matching type are
shown in a selection list:

w] tem* [UML 2 Class]
F [Relationships

T ..

visibility / [attribute-name] dype [multiplicity] = initial-value {property-string}
Pl SO T [TS T Ty

-
¥ 2| tem description:Str EN

¥ [kem [UML 2 Class] | String L
StringExpression

Figure 73: Selection list with matching elements in text editing

If a UML element is referenced that does not yet exist or has not yet been loaded from the
database, its name is underlined with a green wavy line:

¥ [tem® [UML 2 Class]
F 3 Relationships

. T ..

visibility / [attribute-name] stype [multiplicity] = initial-value {property-string}
SSRGS T]

-
¥ 2 em description:5tring EM
¥] em[UML Z Class]

Figure 74: Unknown UML element in text editing

If you exit text editing in this situation, every unknown element is listed in the Assign

reference dialog and you are offered the option of creating new elements or searching the
database for matching elements.

r

-

Assign reference @
Description:

Label:Floating point number

Elements:

Property Name Type Status

type Floating point num... Class ® Iz re-created ®
q:) =

ﬁ Cancel Help

Figure 75: Dialog with unknown references in text editing

With no further entries in the dialog shown in Figure 77, clicking OK creates a new class with
the name String as the type for the Item description attribute.

In the Type column you can specify the exact type if a new element is to be created.

Property Mame Type Status

type string | Class '~ | Is re-created d

B class

|:| DataType
B Enumeration
[] mterface

[PrimitiveType
E Stereotype

Figure 76: Selecting the type for the new element to be created

The Status column describes whether a new element is created or whether an existing
element from the database is assigned. Clicking the button on the far right allows you to select
from both options.

Property Mame Type Status

type string Class ol | Is re-created 1o |
' Create 'Classifier’ |

Use 'Class’

Figure 77: Selection options for creating or using a UML element

Selecting Use opens the Select elements dialog for searching for the element in the database.

F.- o

Select elements @

Search database

Enter the sequence of characters the name of
the elements you are searching for is to begin
with. You can enter ™' to find all elernents. This
may take a very long time depending on the
database.

Elements found {marked with "' if unsaved):

Element ... & |Type Path

Find what:

string Start search

Requested element types:

w| UML2 Activity =
% UML2 AssociationClass
% UML2 Class

Cancel Help

Figure 78: Search dialog

2.2.5

Creating new diagrams in Explorer

UML diagrams are always contained in a UML element. It is not possible to create a UML
diagram directly within an ARIS group. UML elements of the Package, Model, Profile, or
Class?! type can contain any structure diagrams. Behavior diagrams, on the other hand, are
always contained in the element represented, that is, state diagrams in state machines,
Interaction diagrams?? in interactions, and activity diagrams in activities.

New diagrams can be created in the Explorer tree by calling up the New diagram item in the

pop-up menu.

¥ | | Use Cases [UML2 Pack-~-1

b Relaticnships
Use cases [UMLZ Lt
b 1 Sales representative
p = 4 customerdataCh
b & A_keycustomerord
b A_orderCreate_sale
b @ Check customer di
b @ Create key custome
b @ Create order [UMLI
b @ Release order [UML
| 1] Design diagrams [UML2 P
Relationships
- UML Profiles
w P Analysis profile [UML2 Pr
3 Relationships
Analysis profile [UML2
b ooF UML [UMLZ Packagelr

Em

ch

Mew element

Mew diagram

Cut

Copy

Delete

Fename

Hide all elements of this type

Delete incomplete relationships...

Go to

Add to favorites..,
Import

Export
Lock/Unlock

Evaluate

Properties...

Activity diagram

Class diagram
Communication diagram
Component diagram
Compaosite structure diagram
Deployment diagram
Object diagram

Package diagram

Profile diagram
Sequence diagram

State machine diagram

Use case diagram
More...

%% Configure menu...

Figure 79: Pop-up menu for creating new UML diagrams

Figure 81 shows the pop-up menu for creating a new diagram in a UML package. The pop-up
menu provides the same configuration options as the pop-up menu for creating new elements.

21 This also applies to all elements whose metaclass is derived from Class, e.g., Component or

AssociationClass.

22 Communication, Sequence, and Timing diagrams are referred to as Interaction diagrams.

2.3

When you open a UML diagram, it is displayed in the Designer component.

Designer

UML - ARIS UML Designer

Start Contents

Open
Navigation x
Explerer., Diagra. Diagra. Visuali.
T

- El Classes [UML2 Package]
4 Relationships

4 4
Properties x

Informa.. General Present.. Conne.

4 [=]=tet @ O

¥ General
Type

¥ ArisDiagram

Class diagram
name (*) Classes
description

identifier

b externallink

name (* is required)
Diagram name

7 |Classes [UMLZ Class diagran
o i

m - Classes [UML2 Class diagram] * BES

View Insert Format Evaluate
X Cut i Delete ~ y
Em Copy 1 Rename
n Properties
item line
orcer 1.*
Hem 1 1 {ordered}
arder number: String
Key customer order

discount:Integer

Goto~

Up

«Specification=
Order item

number:integer

A key customer order is
______ dizcountable.

4

Working environment: Configuration & Administration

110 %

e

[[0]
? =
P
Symbols x o
L= e g
¥ (Class diagram = 1
""" ? Abstraction
Annotated element
£ Association
I Association class
>
E Class
[™ Comment
Constrained element
D Constraint
D Datatype
""" ? Dependency
""" ? Deployment
""" ? Element import i
© Ssoftware~

Figure 80: Designer component

The Designer component is divided into four areas — the modeling area, and the Navigation,
Properties, and Symbols bars. The bars can be hidden to create more space for the diagram
representation. In addition, you can rearrange the bars by dragging them with the mouse

button held down.

The following buttons are available on the far right of the window:

Shows and hides the Navigation bar
Shows and hides the Symbols bar

B shows and hides the Properties bar

® Shows and hides the Implicit changes bar

? Hides all bars

< Shows all bars

For the screenshots shown below, the individual bars have been arranged in such a way that
they provide a useful representation adapted to the page width available in this document.

2.3.1

Navigation bar

In addition to the two trees familiar from the Explorer tab, the Navigation bar contains the
diagram overview and the list of elements that appear in the diagram.

2.3.1.1

Navigation

Explorer tree Diagram tree

Diagram overview

-

4

Figure 81: Diagram overview

The Diagram overview provides a schematic view of the entire diagram and indicates the
section that is visible in the modeling area with a white rectangle. By moving the rectangle,
you can move sections of the diagram that are not visible in the modeling area into the visible

area.

2.3.1.2

MNavigation

Explorer tree Diagram tree

Element a
= A item_order item

= A itemline_order

™ A key customer erder is discountable,

7 Integer

E tem

El Key customer order
 Order

El Order item

Visualized elements

x

Diagram overview | Visualized elements

temline

Symbol

Association

Association ger

Comment
Primitive type
Class

Class

{nrdéred}

*

item

x
: z ; : item line
Diagram overview | Visualized elem.. order 1.*
tem_1 1 {ordered} | Order
order number:String numbel
Key customer order A key custom
1 | discountable.
discount:Iinteger

number:integer

Generalization
rder
Class

A key customer order is
discourtable.

]

Figure 82: Visualized elements

The Visualized elements page shows a list of all the UML elements that appear in the

diagram. Selecting an element in the list also selects the element in the diagram and moves

the section shown in the modeling area so that this element is visible.

Iterr
Lakn

2.3.2 Properties bar

The Properties bar essentially shows the same properties pages as the Explorer tab.
However, as the available space is smaller you can specify which properties pages are to be
displayed in the Designher component in the global options.

In each case, the properties of the element currently selected in the Navigation bar or in the
diagram are displayed.

2.3.3 Format

Properties X
General Format Relationships Presentations in diagrams
HE Ll n order rte;’rillne
¥ Symbol 7% Order 1 {ordered} Order item B
Symbol E Class Order number: Integer number:integer
¥ Graphical appearance
b Fill color []Diagonal gradient from top left
Line color B Black
Line weight 3
Shaded
3-D effect Key customerorder | | A_key customer orderis ﬁ
; discourtable.
Font format Standard Discount:Integer
Font <Use stylesheet>
Font size 0
Font color |:|

Resize symbol

¥ Position and size

Position (mm) 12,2:195
Size (mm) 417:151
Scaling (%) 166,0; 101,0
¥ Classifier
Feature View Implementation view
Hide association member ends L

Hide port attributes
¥ General

Show qualified name

Show properties o
F Sterectype
Show qualified name

Specifies whether the name of the element should be shown as qualified name (i.e. including
the names of the element's namespace hierarchy).

4

Figure 83: Format properties page for the element selected in the diagram

The Format properties page is displayed for elements in diagrams. It shows all representation
options for the selected element. If multiple elements are selected, it shows the combined
representation options for the selected elements. This enables the graphical representation of
multiple elements to be edited simultaneously.

Just as for the general properties (page 54), a brief description of the selected representation
option is displayed at the bottom and you can choose between thematic grouping and an
alphabetical display of the representation options.

These representation options include both general graphical properties such as colors, line
weight, or font format, and UML-specific options that specify which details the relevant
elements are to display in the diagram.

2.3.4 Symbols bar

x

Symbols
l-l.

¥ (Class diagram

g Class

D Comment

T ™

3

""" ? Dependency
""" ? Abstraction
> Association

1 Association class

E Enumeration

Figure 84: Symbols bar for a Class diagram

The Symbols bar is used to create elements and relationships in the diagram. In contrast to
ARIS Architect/ARIS Designer, it also contains edge symbols.

If you move the mouse pointer briefly over a symbol, a description of the symbol is displayed.

E Class
D Comment

3 [Comment
A Comment is a textual

3 annotation that can be attached
to a set of Elements.

> Aszociation

Figure 85: Symbol description

You can use the = Show symbols with names and == Show symbols without names
buttons to show and hide the symbol names in the Symbols bar.

Symbaols X
i
A =2l %

™ Class diagram

ED PR— y e
t=e B > > @
T Y7 %O

| Owning class
IZ References the Class that owns

Ii_lthe Classifier.
| c— - | | ——

" Package diagram

@ B

Figure 86: Symbols bar with symbol names hidden
Selecting the Remove symbol item in the pop-up menu enables a symbol to be removed

from the Symbols bar.

q; Cwning package

Add symbols

Remove symbol

Symbols

@ Symbols with names
Add to favaorite symbols
Figure 87: Pop-up menu in the Symbols bar

You can click the Add symbols & button or the Add symbols item in the pop-up menu to
open the dialog for configuration of the Symbols bar.

-
Customize 'Symbaols' bar

Available symbols:

Which symbols are to be available for direct access in the "Symbeols' bar?

Filter list

v v v ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ v ¥

UML2 Profile diagram

UML2 Activity diagram

UML2 Class diagram

UML2 Comrmunication diagram
UML2 Component diagram

UML2 Composite structure diagram
UML2 Deployment diagram

UML2 Interaction overview diagram
UML2 Object diagram

UML2 Package diagram

UML2 Protocel state machine diagram
UML2 Sequence diagram

UML2 State machine diagram
UML2 Timing diagram

UML2 Use case diagram

OMF Extension Profile

Tr 3

Available in 'Symbols' bar: Filter «

| Filter list |

b — UMLZ Profile diagram
= UMLZ Activity diagram
= UMLZ Class diagram
= UMLZ Communication diagram
2 UMLZ Compeonent diagram
2 UMLZ Composite structure diagram
2 UML2 Deployment diagram 1.
o UML2 Interaction overview diagram
o~ UML2 Object diagram l’
b 2 UMLZ Package diagram
2 UMLZ Protocol state machine diagram
2 UMLZ Sequence diagram
= UMLZ State machine diagram
= UMLZ Timing diagrarm
o UMLZ Use case diagram
b = OMF Extension Profile

[« Sort alphabetically

Figure 88: Dialog for configuration of the Symbols bar

The dialog contains a list of the available symbols and a list of the symbols contained in the
Symbols bar, in each case grouped by diagram type. In the case of structure diagrams such
as the Class diagram, you can add any UML diagram types to the Symbols bar.

A text input box above the list enables the list to be filtered by the symbols whose name
contains the text entered. The corresponding diagram nodes are automatically expanded in the
list, allowing fast access to the symbol you are looking for (see Figure 91).

i

Customize 'Symbols' bar

Which symbuols are to be available for direct access in the "Symbols' bar?

Available symbols:

Filter =

call

w o UML2 Activity diagram
I Accept call action
Call behavior action
@0 Call operation action
¥ = UML2 Sequence diagram
— Asynchronous call message
—* Synchronous call message
¥ = StandardProfile

"*" Call (Usage junction point)

Available in 'Symbols' bar:

| Filter list

UML2 Class diagram

UML2 Activity diagram

UML2 Comrmunication diagram
UML2 Component diagram

UML2 Composite structure diagram
UML2 Deployment diagram

UML2 Interaction overview diagram
UML2 Object diagram

UML2 Package diagram

UML2 Profile diagram

UML2 Protocol state machine diagram
UMLZ Sequence diagram

UML2 State machine diagram

UMLZ Timing diagram

UML2 Use case diagram
StandardProfile

[#] Sort alphabetically

m Cancel

Help

Figure 89: All available symbols whose name contains the text Call

In addition, the Symbols bar in ARIS UML Designer provides the option of grouping frequently

used symbols in the upper section of the Symbols bar for fast access, regardless of their
diagram type.

™ Package diagram
q; Owning package

Add symbols

Remove symbaol

Symbols

@ Symbaols with names bols

Add to favorite symbaols

Figure 90: Add to favorite symbols pop-up menu item

To do this, select the Add to favorite symbols pop-up menu item for the corresponding
symbol in the Symbols bar.

Symbols X
"l = an v

™ Favorite symbols

E Class
[A] Model

P Package diagram
P Diagram-specific symbols
Figure 91: Favorite symbols

The symbol is then also displayed in the top section of the Symbols bar under Favorite
symbols.

Clicking =** Create additional symbol presentation enables you to create an element in a
diagram whose symbol is not to be permanently contained in the Symbols bar for all diagrams
of the same type. The Create presentation dialog opens (see Figure 94).

F =

Create presentation @

For which of the following symbels do you want to create a presentation?

Filter =

¥ o UML2 Activity diagram
I Accept call action
I Accept event action
Z Accept time event action
@8 Action
B Action input pin
I:' Activity (class notation)
I:' Activity parameter node

E Activity partition (horizontal)
B s o - e - = = o el

Cancel Help

Figure 92: Dialog for selecting the symbol

The dialog lists all available symbols, once again grouped by diagram type, and provides the
same filtering by text input as the dialog for configuration of the Symbols bar.

If a diagram includes presentations of symbols that are not contained in the Symbols bar for
the diagram type, they are displayed in the Symbols bar for the relevant diagram in the
Diagram-specific symbols section of the Symbols bar.

Symbols X
il = an | |

¥ Package diagram
q; Owning package

""" » Dependency
A Model
¥ Diagram-specific symbols

El Package

Figure 93: Diagram-specific symbols

2.3.5 Implicit changes bar

Implicit changes x

Figure 94: Implicit changes bar

The Implicit changes bar logs changes to UML elements and diagrams that occur implicitly
due to changes elsewhere.

A typical example of this kind of implicit change is shown below.

Mavigation x
Explorertree | Diagramtree Diagram over. Visualized el..
D Classes [UML 2 Package] = [| [] Morder ne:r.].l“l"ne
b B0 Relationships Order L {ordered} 0
Class diagram example [UML 2 Class diagrarm] Order number:Integer numk
PN A key custorner order is discountable. [UML 2 Comment] .
p = A_itern_order itermn [UML 2 Association]
b A_itemline_order [UML 2 Aszociation]
b E item [UML 2 Class] ——
b E Key custormer order [UML 2 Class] QR Rmerorder | 0 | g.i}s(::e;ucrﬁz:]ﬁ
vg Order [UML 2 Class] DiscountInteger
b Relationships
[|:| iternline:Order item[1..*{ordered} [UML 2 Property] 7 T i
b :___] invoicedlnvoice(0.1] [UML 2 Property] Implicit changes *

b :__] Order numberInteger [UML 2 Property]

Figure 95: Binary associations whose ends are attributes of the classes involved

Figure 97 shows a Class diagram with a binary association between the Order and Order item
classes. The two ends of the association are navigable as attributes of the classes involved. For
this reason, the itemline association end is a child of the Order class in the Explorer tree. It is
displayed as text itemline:order item[1..*]{ordered} with its type, the Order item class.

b I:' iternline:Order item[1..*{ordered} EMN
b | invoicelnvoice[0.1] [UML 2 Property]

Figure 96: Renaming the association end and deleting the type specification

If we now rename this association end and delete the type specification, this means that the
itemline association end is no longer linked to the Order item class. This also removes the
association edge from the diagram, which represents an implicit change that is not always
directly identifiable for the user.

This implicit change is logged in the Implicit changes bar.

Mavigation x
Explorertree | Diagram tree Diagram over.. Visualized el..
‘VD Classes [UML 2 Package] |
b Relationships Order a

Class diagram example [UML 2 Class diagram] Order number:integer nurmk

b [™ A key customer order is discountable. [UML 2 Com
b A_item_order itern [UML 2 Aszociation)]

b A_itemline_order [UML 2 Association]

b] Item [UML 2 Class]
Key customer order A kKey custc
b E Key customer order [UML 2 Class] —— - _‘ R ol ~
w [Order [UML 2 Class] 1 3
b Relationships Implicit changes x
2 |:| itemline[l..*l{ordered} [UML 2 Property] Presentation deleted 14:01:13

_ Class di le [UML 2 Class di
» BT invoicelnvoice[0..1] [UML 2 Property] ass diagram example | ass diagram]

4 r_] Order numberInteger [UML 2 Property]

-

4 4

Figure 97: Logged implicit change

Logging of implicit changes can be enabled and disabled on the global options page Modeling.

2.3.6 Modeling

Essentially, graphic modeling in ARIS UML Designer is based on the same principles as in ARIS
Architect/ARIS Designer. For this reason, this section focuses on the modeling-specific special
features of ARIS UML Designer, with only a brief discussion of the principles of graphic
modeling in ARIS.

2.3.6.1 Creating new node presentations

New node presentation elements can be created in the diagram by first selecting the
corresponding symbol in the Symbols bar by clicking it.

Symbols X
il = 2n [%
W Class diagram

""" » Abstraction
Annotated elerment

€ Association

1 Asszociation class

g Class

D Comment

Figure 98: Selecting the Class node symbol

If you then move the mouse pointer to the modeling area, a preview of the new presentation
to be created is displayed at the mouse pointer.

Figure 99: Mouse pointer with preview of a class presentation

Clicking in the modeling area creates the presentation at that point and displays a text input
box for entering the name.

| Class (EM) .

Figure 100: New class placed with text input box for the name

This text input box initially contains the corresponding symbol names, possibly supplemented
by an underscore and a number (_1,_2, etc.) if elements of the same type with this name
already exist.

The content of the text input box is applied when you complete your entry by pressing the
Enter key or by clicking at any point in ARIS UML Designer outside the text input box.
Depending on your setting in the global options, text entry can also be completed by
simultaneously pressing Ctrl and Enter?3. If, on the other hand, you exit the entry by pressing
Esc, the original name is retained.

If you have entered the name of an existing element of the same type in the text input box,
the Select element dialog opens and asks whether you want to create a new presentation for
the existing element in the diagram, or whether you want to create a new element with this
name (see Figure 103).

arder (EM)

I

Select elerment @

An object with the same name and type already exists in the database.

Elernents found (marked with *' if unsaved]:

Element name Type Path

Order UML2 Class Main group/Example diagram...

Order UMLZ Class Main group/Example diagram...

Order UMLZ Class Main group/Example diagram...
Properties...

Use existing object Rename object Cancel Help

Figure 101: Create dialog after entering the name of existing elements

You can also create a new presentation for an existing element by dragging the element from
the Explorer tree to the modeling area or by copying it from the Explorer tree to the clipboard
and pasting it in the diagram. If several possible symbols exist that can represent the element
in the diagram, you are asked which of these symbols you want to use (see Figure 104). By
contrast, if you copy a presentation of the element from a diagram to the clipboard and then

23 See ARIS > Options > UML > Designer - General > Use Enter for line break

paste it into a diagram, there is no prompt as in this case all the presentation properties of the
original, such as symbol, color, and size are also copied.

- : B
Select symbal w

There are multiple symbols available for the presentations. Which symbol do you
want to use?

Symbol Assigned stereotype

Ise case

Usze casze (class notation)

Figure 102: Dialog asking which symbol is to be used

2.3.6.2 Creating a new edge presentation

To create a new edge presentation, first select the corresponding edge symbol in the Symbols
bar.

Symbols X

A =-HRCET ™

™ Class diagram

=¥ Abstraction
£ Association
1 Association class

g Class

Figure 103: Selecting the Association edge symbol

Moving the mouse pointer to the relevant source element in the diagram graphically displays
the anchor point closest to the mouse pointer.

temline
order 1%
Order 1 {ordered} Order item
o
Crder number: Integer number:integer

A ba

Figure 104: Displaying the edge anchor point on the source element

Clicking at this point specifies the starting point of the edge. Starting from this point, a preview
of the edge up to the current mouse pointer position is then displayed. If you move the mouse
pointer to the relevant target element, the nearest possible anchor point is once again
displayed graphically.

temline
order T
Order 1 {ordered} Order item
st o
Crder number: Integer number:integer
L)

B e Tore

Figure 105: Displaying the edge anchor point on the target element and edge preview

Clicking the target element creates the edge.

If a relationship of the same type already exists between the source and target element and
more than one relationship of this type is allowed between the two elements, a dialog appears

to ask whether you want to create a new edge presentation for the existing relationship or to
create a new relationship (see Figure 108).

i o

Select Abstraction

At least one 'Abstraction’ edge already exists between the two objects, Please select
an edge, or select '(Mew)' to create a new edge.

Abstraction
Abstraction
(MNew)

ﬁ Cancel Help

Figure 106: Dialog for creating an association between two classes between which an association already exists

As an alternative to selecting a particular edge symbol, you can also use the general edge
symbol from the Symbols bar to create an edge in the diagram.

Symbols X
Al = an o
v I%Iass diagrarn =

-~ Abstraction

Figure 107: General edge symbol

In this case, when creating the edge after clicking the target element a selection list is
displayed, in which you are prompted to select the specific edge type.

temline
arder 1.* arder item item
Order 1 {ordered} Order item " D
L
Crder number: Integer number:integer :iztrjn;;tr:l
| | . £<
———————— B Order _ = Order item
@ Abstraction
Association
Key customer order A Key customer order is ™ Association class
: o errraens discountable.
Discountinteger Binary constraint

Dependency
Element import
Generalization
Information flow
Qwning class
Realization
Substitution
Template binding
Usage

Figure 108: Selection list with edge types

Clicking s Connection mede in the Start tab bar enables and disables edge mode. If edge mode
is enabled, possible edge anchor points are automatically displayed in the diagram as soon as
the mouse pointer is close to them. It is not then necessary to select the general or a specific
edge symbol in the Symbols bar first.

2.3.6.3 Deleting presentations and elements

In ARIS UML Designer, the pop-up menu for a presentation contains two different items for
deleting:

| |]
tem

® item nt Mew model element b

Label:s
-—

&= Print...
< Cut

Em Copy
B Delete

Tz Delete element

Figure 109: Delete functionalities in the pop-up menu

¥ Delete only deletes the presentation in the diagram. The element or relationship it
represents remain in the model, that is, available in the database.

¥Z Delete element deletes not only the presentation but also the element itself or the
relationship represented in the model.

2.3.6.4 Mini toolbar

Clicking a node presentation displays a small toolbar next to it. This toolbar can contain node
and edge symbols and you can adapt it individually for each symbol.

Key customer order A key customer order is
[ntable.
Discount:Integer e
u | |
|
i >
..... } H
te | O
— qa Interface
Interfaces declare coherent
-+ services that are implemented by

BehavioredClassifiers that
implement the Interfaces via
InterfaceRealizations.

Figure 110: Mini toolbar

If you select a node symbol from the mini toolbar, you can create a corresponding element in
the diagram, which is automatically linked to the selected node presentation by an edge. If
several edge types are allowed between the two elements, a selection list is shown. In this

case, first select the edge type and then click in the modeling are at the position where you
want to create the node presentation.

temline
order 1.k arder item
Order {ordered} Order item '
Order number:Integer number:lnteger
| L
Key customer order A key customer order is
- T discountable.

Discount: Integer

w
= A key custom... nn B Key customer...
® Annotated element

Binary constraint

Figure 111: Node and edge preview with edge type selection after clicking the Comment symbol in the mini toolbar

When you select an edge symbol from the mini toolbar, the node presentation for which the
mini toolbar is displayed is used as the source element for the edge and then you only need to
click the target element in the diagram to create the edge.

You can remove a symbol from the mini toolbar by selecting Remove symbol in the pop-up

menu. Selecting Add symbol or clicking + Add symbols opens the dialog for adding a
symbol.

h

Key customer order

Digcount:Integer

Add symbals

Remove symbaol

Figure 112: Pop-up menu in the mini toolbar

2.3.6.5 Modeling and hierarchy in Explorer

A series of edge types in ARIS UML Designer graphically represent the fact that an element is
contained in another element.

Mavigation X

Explorer tree | Diagram tree Diagram over. Visualized el..
Classes Use Cases

4 E Key customer order [UML 2 Class]
» [Order [UML 2 Class] i o,
[Order item [UML 2 Class]

4 Relationships
Crder

b] itemiltern [UML 2 Property]

Crder number: String

4 r_] numberInteger [UML 2 Property]
4 r_] orderItern_1 [UML 2 Property]
‘VD Use Cases [UML 2 Package]
4 Relationships

-
4 " 4 F

Figure 113: Owning package relationship between a class and the package in which it is contained

The diagram in Figure 115 shows this kind of relationship of the Owning package type
between the Order class and the Classes package. This shows that the class is contained in
the package, which you can also see from the hierarchy in the Explorer tree?+.

What happens if you create an additional edge of this type from the Order class to the Use
cases package is shown in Figure 116:

The original relationship between the Order class and the Classes package is deleted.

24 See also Figure 28 in the Namespaces.

The Order class is moved to the Use cases package in the Explorer tree.

Mavigation x
Explorer tree | Diagram tree Diagram ov.. Visualized e..
4 E Key customer order [UML 2 Class] =
[Order item [UML 2 Class]
F [Relationships
b item:ltem [UML 2 Property]
4 :__] nurmberInteger [UML 2 Property]
4 :__] orderltern_1 [UML 2 Property]
VD Use Cases™ [UML 2 Package]
I [Relationships
7 Use cases [UML 2 Use case diagram)
b T Sales representative [UML 2 Actor]
b A _customerdataCheck_salesrepresentative [
b A_keycustomercrderCreate_salesrepresenta
b = A_orderCreate_salesrepresentative [UML 2 2
» 5 Order* [UML 2 Class]
b @ Check customer data [UML 2 UseCase]

1 4 1

Classes

1

Use Cases

Crder number: String

Figure 114: After creating a second owning package relationship

2.3.6.6 Graphic nestings

In many cases, in ARIS UML Designer diagrams the ownership of one element by another can
also be indicated by a presentation of the element being graphically nested in the presentation
of the owning element. In some cases, graphic nesting can also represent a relationship that is
not ownership. However, a common feature of all graphic nestings in ARIS UML Designer is
that they always represent a relationship between the elements at definition level.

When creating or moving an element in the diagram, presentations in which the element can
be nested are indicated by a border when the mouse pointer is located within the potential
nesting container.

Comment

Constrained element

Figure 115: Graphic indication of a package as a potential nesting container when creating a new class

Once the class has been created as a nested presentation in the package, it is also contained
in the package in the Explorer tree.

Classes™ [UML 2 Class diagram] Classes

F = A_itemn line_order line [UML 2 Association]

b = A itermn_itern line_1 [UPL 2 Association]
w [Classes* [UML 2 Class]

F [Relationships
»] Invoice® [UML 2 Class]

Figure 116: Class nested in a package

The appearance of a class in a diagram as an element nested in a package represents an
alternative notation to the link using an Owning package edge shown in Figure 115.

A series of options exist that influence the behavior of ARIS UML Designer when modeling with
nestings.

The first options?> relate to how the relationships underlying the graphic nesting are handled.
Nestings
Remove node presentations from container: | Show nesting relationship -
%" Show dialeg when node presentations are removed from the container

% Remowve nesting edges when node presentations are added to the container

%" Show dialog when node presentations are added to the container

Figure 117: Options for nestings

If the two Show dialog when... options are enabled, a corresponding query is displayed when
modeling. In this case, if you move the class in Figure 118 out of the package to the diagram
background, the Unnest node dialog opens:

-

Unnest node @

How do you want to handle the relationships between
the unnested nodes and their former containers?

Keep but do not show nesting relaticnship o

Delete nesting relationship

Show nesting relaticnship

Keep but do not show nesting relaticnship

0K Cancel Help

Figure 118: Unnest node dialog

Selecting Delete nesting relationship moves the class into the package in which the
diagram is located. Selecting Show nesting relationship displays an Owning package
relationship between the class and the package. The Keep but do not show nesting
relationship option means that no relationship is displayed in the diagram; the class remains
contained in the package at definition level.

25 See ARIS > Options > Designer > General, Nestings area

A further option?® relates to the situation where one element can be nested in another in
different ways.

General
w!| | Automatically specify owner property when creating owned elemnents
Figure 119: Option for creating a nested element

In rare cases, a UML element can own another element of a particular type in more than one
way without the semantic difference between the different types of ownership being obvious
and really relevant to the user. One example of this is the UML type Constraint.

context ownedRule
0.1 *
«Metaclasss {subsets namespace} {subsets ownedMember} «Metaclasss
Namespace Constraint
awningPackage packagedElement -
0.1 * i
zMetaclasss {subsets namespace} {subsets ownedMember} zMetaclasss
Package - | PackageableElament

Figure 120: Extract from the UML metamodel with the Package and Constraint metaclasses

Every UML element whose type inherits from the Namespace metaclass can own constraints
through its ownedRule property. Every UML package can own elements whose type inherits
from the PackagedElement metaclass through its packedElement property. As the
Constraint metaclass inherits from PackagedElement, you can either insert a constraint in a
package as an ownedRule or as a packagedElement.

If the Automatically specify owner property when creating owned elements option is
enabled, when creating a constraint in a package there is no query as to whether the
constraint is to be contained in the package as an ownedRule or a packagedElement. In this
case, it is automatically created as an ownedRule in the package.

26 See ARIS > Options > Modeling, General area

You can also change the nesting type later by calling up the Change nesting kind item in the
pop-up menu for the nested element. The Select nesting type dialog opens to select the
corresponding nesting type.

I "

Select nesting type @

There are multiple nesting types available to nest the selected presentation in the
selected container of type 'Package’. Which type do you want to use for nesting the
presentation?

Nesting type Description
ownedRule Specifies a set of Constraints owned by t...
packagedElement Specifies the packageable elements that ...

Figure 121: Dialog for changing the nesting type for a constraint contained in a package

2.3.6.7 Text nestings

Item

[tem number:integer
Label:String

Figure 122: Class with two attributes

Figure 124 shows the UML notation for a class with two attributes. The special feature of UML
compared to the ARIS standard is that here a single presentation represents several elements
and their relationships - a class (Item), two attributes (Item number and Description), a data
type (String), two relationships of the Class::ownedAttribute type, and two relationships of
the TypedElement::type type.

The two attributes are nested in the class presentation using text and, as such, can also be
selected individually. The first click on the class selects the class itself (as shown in Figure
124). Clicking again on an attribute within the class selects the attribute. In this case the
Properties area no longer shows the properties of the class but those of the attribute.

Properties x
General Relationships Presentations in diagrams L ‘
; . tem number:integer }
B | & Bt BT A l |
| 2 woA Label String
Iower T e
Ttem
lowerValue 831 Type: UML 2 Class
upper 1 Symbol: Class
upperValue =1 Owned as: packagedElement

Mamespace: Main group/Example diagrams/2 UML basics/2.2

i,
Mcitameant Diagram types/01 Class diagram

b clientDependency

name (¥} Itern number -

name (* is required)
The name of the NamedElement.

Figure 123: Class with selected attribute

Many of the functionalities that ARIS UML Designer provides for presentations are also
available for textually nested elements. For example, you can move or copy them to another
element, call up the Properties dialog and, last but not least, edit the text by clicking it a third
time or pressing the F2 key.

visibility / gttribute-name :type [multiplicity] = initial-value {property-string}

ltem number:Integer (EM)

EL ST

—T

Figure 124: Text editing for an attribute in Designer

In Designer, you can also create new textually nested elements for an element using the pop-

up menu:
n n m
ftem

New model element P | - ownedAttribute [ExtensionEnd] Strg+Alt<E
Prar . 1 ownedAttribute [Port] Strg=Alt=P
22 - I ownedattribute [Property] Strg=Alt-R
7 © ownedOperation [Operation] Strg=Alt=0

Copy C =
© ownedReception [Reception] Strg+Alt=C

W Delete Entf

[ownedTemplateSignature [RedefinableTemplateSignature]
2 nNealate alamant —

Figure 125: Creating a new operation using the pop-up menu

2.3.6.8 Modeling in groupings

ARIS UML Designer enables you to edit elements within groupings without having to cancel the
grouping to do so.

[|] [|]]
Key customer order A key customer order is
; - T discountable.
Discount:Integer
o w = Print..
< Cut
Em Copy
W Delete
> Delete element
Show relationships b
Select 3

1=

Horizontal space

L
T

Vertical space

Align connection

IEI Group
Arrange »
Align »
Format »
Export »
Evaluate b
B rroperties...

Figure 126: Creating a grouping

Groupings are created by selecting Group in the pop-up menu.

Key eustamer order Akey customer order is Iﬁ

_____ discountable.

Diszount Irteger

Figure 127: Grouped elements

You can move this kind of grouping in the diagram in its entirety without first having to select
each element it contains.

However, you can still select individual elements within the grouping to edit their properties. If
an element is in a grouping and the grouping is not yet selected, the grouping is selected the
first time you click the element. Clicking the element again then selects the element itself, as
shown in Figure 130.

Properties X
General Farmat Relationships Presentations in dia..
|8 = =) R
¥ General LI | | L |
Type Comment Meycustomererder |) Akey customer order is
R i eaar discourtable.
Default symbol ™ Comment o it -
¥ Comment
¥ annotatedElement
E Key custorner order
body A key customer order is discoun...
owningElerent F7 01 Class diagram
Figure 128: Selecting an element within a grouping
It is also possible to move elements within a grouping.
| - - |
GroBkund enanftrag Ein Groflkundenautirag GroBkundenauftrag
Rabat integer o Rabaf Intoger ~ .
= Y — b u » 5
e :
| 3 *Em Grokundenaufirag Br
i ist rabattranig
i k L w L

Figure 129: Moving an element within a grouping

2.3.6.9 UML-specific modeling support

A range of ARIS UML Designer functionalities are used to perform typical use cases in UML
modeling, which normally require several manual editing steps, with just a few clicks. They
include everything from simple use cases such as setting the multiplicity of association ends to
default values using the pop-up menu through to more complex use cases such as creating
port interfaces for components. A common feature of all functionalities is that they are

available in the element's pop-up menu and under d Edit element in the Contents tab bar.

Two of these functionalities are introduced below by way of example.

2.3.6.9.1 Specifying the navigability of an association
end

As described in Associations (page 41), the navigability of an association end is not a simple
Boolean property, but depends on what the association end belongs to and, in some cases, the
way in which the association end is assigned to its owner.

order item ftem
Order item . 1 it

number:Integer =
order: Orer
tem:ltem

tem number:integer
Lakel: String

Figure 130: Unidirectional navigable association

Figure 132 shows two classes and an association. The item association end is navigable
(indicated by the arrow head), as it is an attribute of the opposite class Order item. You can
recognize this by the graphic representation with the dot at the arrow head, and also by the
fact that it is listed in the class as an attribute?”.
¥ Association
isDerived (*) False
¥ memberkEnd (%)
0 order item:Order item[*]
27 item:ltem
» navigableOwnedEnd
¥ ownedEnd

7 order item:Order item[*]
Figure 131: Association ends for the association

In the properties of the association, you can see that only one of the two association ends
belongs to the association - the order item association end. As it is only listed for the
ownedEnd property but not for the navigableOwnedEnd property, it is not navigable.

27 Attributes that are simultaneously association ends are not normally also displayed in the
attributes area of the class in the diagram. However, you can change this for the class by
disabling the Classifier > Hide association member ends display option, which has been done
here to illustrate the situation.

You can use the pop-up menu for the association end or the tab bar to easily change its
navigability without having to manually make changes to the ownership relationships.

Contents View Insert Format Evaluate
,‘ E# Inline edit
Edit
elements v

Set 'Navigable as Owned Association End'
Set to 'not navigable'

Set multiplicity [0..1]

Set multiplicity [0..*]

Set multiplicity [1..*]

D‘t (m]
order item bl o
i 1
Order item % o Torm e
numhber:integer — :
order:Order [tem r?unjber.lnteger
tem:item Label:String

Figure 132: Functions for changing the navigability and the multiplicity

Figure 134 shows the UML-specific functionalities for an association end. The current status of

the element is hidden in the list (Set 'Navigable as Owned Association End' and Set
multiplicity [1..1]).

Selecting Set 'Navigable as Owned Association End’ in the list displays the following
screen:

i arder item i 4
Order item * 1 ltem
number:integer Iterm number:Integer
arder:Order Lakel:String

Figure 133: Association end navigable but not an attribute of the opposite class

The item association end is still navigable, but is no longer an attribute of the Order item
class. This can also be seen from the changed properties of the association. The item

association end is now listed for both the ownedEnd property and the navigableOwnedEnd
property.
¥ Association
isDerived (*) Falze
* memberknd ()
7 order item: Order item[*]
0 itern:ltem
* navigableOwne...
7 itern:Item
* ownedEnd
7 order item: Order item[*]

L7 itern:Itemn
Figure 134: Association ends after changing the navigability

The functionalities for changing the navigability thus save the user having to manually edit the
ownedAttribute property for the class at the opposite association end and the ownedEnd
and navigableOwnedEnd properties for the association.

2.3.6.9.2

Creating getter and setter operations

The Generate getter and setter functionality provides an easy way to create corresponding
access methods for the attributes of a class.

e

.............
‘‘‘‘‘‘

Start Contents View Insert Format Evaluate

,‘ BE# Inline edit

Edit 0 Version

elements v Down

Generate constructor...
Generate getter and setter...
Override operations...

Implement interface...

Figure 135: Functionalities for creating operations for a class

temline
order 1.* m A order item item ttem
Order 1 {ordered} Order item * 1
; = Iltern number:Integer
Order number:Integer | number.ln'teger ! Label:String

The functionality opens the Generate getter and setter dialog for selecting the attributes
and setting some additional parameters for generating the access methods.

r

Generate getter and setter

(=]

Getter Setter
[« Generate getter Generate setter
Prefix | get | Prefix cet |
Visibility: | PUBLIC - | Visibility: | PROTECTED - |
Which attributes do you want to use for generating the getter/setter?
iterm:Item
nurnberInteger
order: Grder
m Cancel Help

-

Figure 136: Generate getter and setter dialog

Figure 138 shows the Generate getter and setter dialog for the Order item class. The
prefix get has been entered for the getters and set for the setters?®. The two attributes item
and number have been selected for generation. Clicking OK starts the generation process.

Figure 139 shows the class with the generated access methods.

order

temline Order item

1.*

order itidam
L

Order 1 {ordered} | N4M her:nteger
f +getitem() tem
Rl Mo integer Ezethtemiin tem:(tem)

+getMumber():Iinteger
#sethlumber(in number:integer)

tem

ltem numker: Integer
Labkel: String

Figure 137: Generated getters and setters

28 The two prefixes get and set appear by default when the dialog is opened.

2.4 Options

Selecting the Options menu item in the ARIS menu, you can open the dialog for editing the
general settings for ARIS UML Designer.

Mew 3

M Save

Ll save all
* Add to favorites...
Print... »

% Search
@ Explorer

Administration

Select perspective...
Options...

Help
About...

Exit
Figure 138: Menu item for editing the options

The dialog contains a series of options, the most important of which are outlined below. The
options for the Perspective, Print, and Versioning topics are not discussed here, as they are
ARIS standard options.

Changing some options, for example, language options or working environment, require you to
restart ARIS UML Designer.

2.4.1 General
r Cptions @1

Selection Help General
b Designer Languages
ALEmE Method language: | English (United States) | - |
General
Header and footer Interface language: ‘ English (United States) | - |
Modeling Changes will take effect only when the program is restarted.
Page layout
b Perspective
Attribute editing
Spell check : : .
Always show attributes in the following languages:
Versioning

[€ Afrikaans (South Africa) v
] €9 Albanian (Albania)

Configuration palette

Palette: | ARIS default palette | - |

Restore installation state

All settings you made after installation will be deleted.

Restare

m Cancel Help

Figure 139: General options page

The Method language specifies the language in which the names of diagram types, element
types, and properties that do not relate to UML are displayed. There is a separate language
setting for UML type names in the UML-specific options.

The Interface language specifies the language in which texts in the user interface are
displayed.

In ARIS UML Designer, the palette only affects the display of the symbols for non-UML
elements in the Explorer tree.

2.4.2 Modeling

Options S5
Selection Help Modeling
b Designer Languages
Explorer Metamodel language: | English (United States) | -
General

Changes will take effect only when the program is restarted.

Header and footer

General
Meodeling
Page layout w| Automatically specify owner property when creating owned elements
b Perspective | Show pop-up when data is implicitly changed
Spell check
o Inline edit
Versioning

4[p

Maxirnum number of elements provided for auto completion: | 24

Save changed objects

Save automatically before processing
Automatically remove cycle from namespace hierarchy when saving changes
[Refresh data after saving

%" Enable secure storage

4|k

Save interval (seconds): | 30

ﬁ Cancel Help

Figure 140: Modeling options page

The Metamodel language specifies the language in which the type names of UML elements,
UML properties, and UML diagrams are displayed. For example, this allows object types,
diagram types, and attribute names for non-UML content to be displayed in German, and UML
types in English.

The option for selecting the owner property has already been explained in Graphic nestings
(page 95).

The Show alert if data is implicitly changed option can be used to enable and disable the
logging of implicit changes described in Implicit changes bar (page 83).

Some changing functionalities of ARIS UML Designer are executed on the server as they
potentially involve large data volumes. They require all changes made in the client to be saved
first. If the Save automatically before processing check box is enabled, saving occurs with
no confirmation when the corresponding functionality is called. Otherwise, a dialog appears
asking whether you want to save or cancel the functionality.

When multiple users are working on the same structures in a database, it is theoretically
possible that two users could simultaneously change the structure in such a way that the two

changes would combine to cause a cycle in the element hierarchy. As soon as one user has
saved his changes, in this situation the second user's save will fail if the cycle is not fixed first.
If the Automatically remove cycle from namespace hierarchy when saving changes
check box is enabled, the fix is carried out when saving without confirmation. Otherwise a
corresponding dialog appears.

71 Namespace hierachy cycle E

<:;"°37 Unable to save data in database 'UML on server 'Hest'

)

h&-.‘; Modified objects are creating a cycle in the namespace hierarchy due to changes in the namespace hierarchy made by another user.
Do you want these cycles to be automatically removed?

Always remove cydes automatically

Figure 141: Dialog when saving with a cycle in the namespace hierarchy

If the Refresh data after saving check box is enabled, all data is reloaded from the server
after saving, so that changes made by other users are included.

The Enable secure storage check box is used to set ARIS UML Designer to back up all
changes locally at regular intervals. You use the Save interval (seconds) setting to specify
how often this is to be performed. If the connection to the server is lost due to network
problems, at the next login you will be asked whether you want to restore the changes that are
not saved in the database.

M Restore changes

g A The last changes on server ‘Host' in database 'ARIS UML Designer example' were not saved.
Do you want to restore your last changes?

Figure 142: Confirmation prompt for restoring unsaved changes

2.4.3 Designer > General
r Options ﬁw

Selection Help General

¥ Designer Edges
General Color of selected edges: @
Print settings

[] Offer relationships that already exist in the same diagram
b For new diagrams

For new diagram elements Direct editing

UML2 modeling [] UseEnter for line break (press 'Ctrl + Enter' for changes to take effect)

Property tabs

i Nestings
Explorer
G | Remove node presentations from container: | Keep but do not show nesting relationship ‘ - ‘
enera
Header and footer [« Show dialog when node presentations are removed from the container
Modeling
[+ Remove nesting edges when node presentations are added to the container
Page layout
b Perspective [#] Show dialog when node presentations are added to the container

Spell check
pell chec Tooltips
Versioning

[#] Show tooltips for presentations

Metaproperties dialog

Show dialog for required metaproperties

m Cancel Help

Figure 143: Designer > General options page

The Selected edges - Color option specifies the color in which edges selected in diagrams are
displayed.

Changes in text input boxes are normally applied using the Enter key, and line breaks are
entered using Ctrl + Enter. You can reverse this by enabling the Use Enter for line break
(press 'Ctrl + Enter’ for changes to take effect) check box.

The options for nestings have already been explained in Graphic nestings (page 95).

If the Show tooltips for presentations check box is enabled, a tooltip showing information
about UML elements in diagrams is displayed at the mouse position.

Create Order
Type: UML 2 UseCase
Symbol: Use case
Owned as: packagedElement
Namespace: Main group/Sales system/<Untitled>/<Untitled>

Figure 144: Tooltip for a UML element in a diagram

2.4.4 Explorer

I ™
Options ﬁ

Selection Help Explorer
» Designer Configure menu

Maximum number of items in pep-up menu: |35 }%{

General) .

[#] Sort pop-up menu items alphabetically
Header and footer

Muodeling

Page layout
b Perspective

Spell check

Wersioning

Figure 145: Explorer options page

Here, you can set how many items the Explorer pop-up menu for creating new elements
displays, and whether the items are to be sorted alphabetically (see Creating new elements in
Explorer (page 65)).

2.4.5

Designer > For new diagrams > Appearance

These option pages relate to general representation options for diagrams, which are also

supported in the ARIS standard. Only the following option here is specific to ARIS UML

Designer:

[+ Resize ohjects to fit content when diagrams are opened

Figure 146: : Layout option on the Designer > For new diagrams > Representation options page

Enabling the check box means that when a diagram is opened the size of the elements is

adjusted to their content.

The settings made on these options pages only affect new diagrams you create. Existing

diagrams are not changed.

2.4.6

Designer > For new diagram elements

-
Cptions

Selection Help

¥ Designer
General
Print settings
b For new diagrams
For new diagram elements
UMLZ modeling
Property tabs
Explorer
General
Header and footer
Modeling
Page layout
b Perspective
Spell check

Versioning

For new diagram elements

Diagram/Elements:

[| Symbals

b A A S A

Settings:

2|4 (=] =t =l
[] | Activity diagram

["] Bm Class diagram

[1 ®» communication diagram

[71 8 component diagram

[T 8w Composite structure diagrar
[Bm Deployment diagram

[] #m Diagram

[1 ™ Interaction overview diagram
[Bm Object diagram

[Bm Package diagram

[®m Profile diagram

[1 ®m Protocol state machine diagi
["] Bm Sequence diagram

[Bm State machine diagram

["] 8w structure diagram

[®® Timing diagram

["] Bm Use case diagram

b [] B® Graphic elements

(Name)
(Description)

Figure 147: Designer > For new diagram elements options page

On this options page you can specify the default settings for all UML symbols and graphic
elements. The symbols are grouped by diagram types. The options can be individually specified
for specific symbols by selecting just one symbol and editing its representation options.

Diagram,/Elements: Settings:

| & P
Ez#mf%z

¥ Graphical appearance

+ @ Bm Class diagram &
I= Association class
[] Association class class

— Association class connector = il color El Seae JlEriE e e e
[Datatype Style Diageonal gradient from top |eft
..... » Element import Color B 0. 152,153
| B Enumeration Second color [| 147, 251, 251
----- + Information flow Line color - Black
* |Information flow junction point Line weight 3
[Information itemn Shaded
----- * Infarmation source T
:.} Information target Font <Use stylesheet>
-+ M-ary association class :
) Font size]
— Owned collaboration use
‘B Owned comment Font calor |:| -
— Owned rule Fill color
¥ Owning behaviored classifier Specifies the fill color and further options for the background
¥ Owning class color of the object symbol.
F Owning classifier 2

Figure 148: Selecting the Enumeration symbol

You can also select multiple symbols or entire hierarchy levels. In the example below, the
Shaded and 3-D effect properties have been disabled for all UML symbols.

Diagrarm,/Elements: Settings:

A 4o
2t Ei Tl

b | Symbals

3 Graphic elements ¥ Graphical appearance i
* Fill color
Style
Color aais|
Second color |:|
Line color aais|
Line weight
Shaded
3-D effect
Font <Use stylesheet=
Font size 0
Font color |:| o
Shaded

Specifies whether the object symbeol or edge
is displayed with a shadow.
Figure 149: Selecting all symbols by selecting the top level

The changes made on this options page only affect new presentation elements you create.
Existing elements are not changed.

2.4.7 Designer > Property tabs
r Cptions Mﬂ‘

Help Property tabs

Selection

~ Designer Which tabs do you want to display in the properties area?

General O Applied profiles (element)

Print settings | Applied stereotypes (object, diagram)
b For new diagrams [# Connected objects (diagram)

For new diagram elements At

UML2 modeling) General (element, diagram)

| Information

Property tabs [Linked diagrams (element)
il [# Presentations (diagram)
General [## Presentations in diagrams (object)
Header and footer [+ Relationships (element)
Modeling [] Reused objects (element)
Page layout O Tagged values (object, diagram)

b Perspective
Spell check

Versioning

m Cancel Help

Figure 150: Designer > Property tabs options page
Here, you can select which property tabs are to be displayed in the Properties area of the
Designer component.

These options have no effects on the Explorer tab. It always shows all property tabs as
considerably more space is available there.

2.4.8 Designer > UML2 modeling
r OCptions M1

Help UMLZ modeling

Selection

+ Designer Specify UMLZ modeling support to be used

General Model UML2 Sequence diagram

Print settings [+ Automatically add execution specification

b For new diagrams i
[#] Set signature for new message edges

For new diagram elements
When wide execution specifications are created:

UML2 modeling
Property tabs | Create new opaque action or behavior | - ‘
Explorer
G | [+ Show dialog for newly placed message edges and wide execution specifications
enera

Header and footer
Modeling
Page layout
b Perspective
Spell check

Versioning

m Cancel Help

Figure 151: Designer > UML2 Modeling options page

Here, you can activate UML-specific modeling support functions. You can also quickly access
these options in the Contents tab bar in the open diagram during modeling.

2.5 Administration tab

The Administration tab provides various administrative functionalities. These include
configuration of the method filters, management of access privileges, and writing of reports.
There are also some functionalities specific to UML Designer, such as configuration of the link
between business process and UML modeling, and management of XMI resources.

The Administration tab is available only if you have selected the Configuration &
Administration working environment (see Specifying the working environment (page 43)). It
is opened by selecting the Administration menu item in the ARIS menu.

Mew 4

=

Save all

» &’

Add to favorites...
Print... »

Search

Explorer

OB ~

Administration I},

Select perspective...
Options...

Help
About...

Exit

Figure 152: Menu item for starting Administration

-
UML - ARIS UML Designer

/~ Administration X

Start
n Cut Delete n Properties e 'ﬂ'
S

) Copy Rename
New Open Edit Paste Refresh | Start Restore
B Duplicate macro | database

E Navigation " | T- Filter list
|~ 5 umL Name

» K} Configuration ﬂx. Configuration
g b B0 Link types 0 Link types

b B0 ¥MI resources BB XM resources

4 iil Evaluations iﬁ Evaluations

b B ARIS UML Designer Examyp &5 ARIS UML Designer Examples

4 4

Working envirenment: Configuration 8 Administration
[e e

Figure 153: Administration component

Only those aspects of the Administration tab that are specific to ARIS UML Designer are
discussed below.

2.5.1

introduction to the topic of UML profiles can be found in UML profiles (page 155).

Method filter

When you log into a database in ARIS UML Designer, only those method filters that include
UML 2 are available for selection. Unlike in the ARIS standard, UML 2 can only be contained in
the method filter in its entirety. A user-defined extension of the UML method is not possible.
This is because of the high complexity of the UML metamodel and the fact that the UML
specification for user-defined extensions and restrictions includes the use of UML profiles. An

Below, the default filter is used to demonstrate how you can add UML to the method filter.

Select the Default filter in the filter list and select Edit from the pop-up menu or the tab bar.

Mavigation

« B umL

v % Configuration

v §

Conventions
& Filter
& Font format

§ Languages

§ Templates
b i#i Method
b [Link types
b 08 XMl resources

Mame

= BPMN 2.0

* Default

" Entire method

Simulation 7]

Process-Diriven li

wh integratior ch

[

Figure 154:

Description

This method filter contains modeling const...

E TR

Edit...
Duplicate

Delete

Fename

Export filter...

Evaluate

Editing the filter

ilable.

znt modeling for t...
del types, chject t...

del, ochject, conne...

thod content requ...

Type

Method filter
Method filter
Method filter
Method filter
Method filter
Method filter

In the Filter Wizard, click the Next button to navigate to the third page Select metamodels
and enable the UML 2.5 option. Then click Finish to extend the filter with UML 2.

Filter Wizard =

3. Select metamodels

Specify which metamodels are to be allowed by the filter.

1. Create filter

[umL25

2. 5elect creation mode

3. Select metamodels

4, Select model types

5. Select object types

6. Select connection types

7. Select symbols

8. Assign connection types

9. Select object assignments
10. Select connection assignments
11. Select model attributes

12, Select object attributes

13, Select connection attributes

14, Select attribute order

15. Select symbol order

Back m Finish Cancel Help

Figure 155: Selecting the UML 2.5 metamodel in the Filter Wizard

2.5.2 Link types

F PR -
UML - ARIS UML Designer E=EER
m /~ Administration x (8 E=

Start o
n Cut Delete Properties c 'n' ’ E
) - \
) Copy Renarmne
Mew Open Edit Paste Refresh | Start Generate from Import
= Duplicate macre | database contents object link
Navigation * | Y- Filter list | e
i 5 UML Source o... | Source o... | Target o... | Target o.. | Source d... | Target d... | Source r.. |Target r...
» % Configuration Bl Func.. OTFUNC @ UML. OT_UML. ¥ x v x
w [l Link types B Tech.. OT.TEC.. EumL. oT_umL. X x v X
0 |Object links
b B0 XMI resources
» iil Evaluations
b B ARIS UML Designer Examg
4 k
Working envirenment: Configuration 8 Administration 5 software~
e

Here, you can define whi

Figure 156: Managing the link types

ch business process objects you want to map to UML and specify rules

for the mapping. This functionality is outlined in detail in Linking business process and UML

modeling (page 130).

2.5.3 XMI resources

F' — o
UML - ARIS UML Designer S=NRE X

m /~ Administration x (8 % B

Start L

X < T | C&| 8

Mew Open Edit Paste - - Refresh | Start Import
= Duplicate macre | stylesheet

|| Navigation x |1|:-v Filter list | ‘*‘

- B umL Name
» * Configuration [Import from UMLL4/XMIL1
b B Link types
- [l XM resources
¥ [Stylesheets
» B Export
s g
2 iil Evaluations

b =2 ARIS UML Designer Examg

4 k
Working envirenment: Configuration 8 Administration 5 software~

Figure 157: Managing XMI resources

XMI (XML Metadata Interchange) is a format for exchanging metamodel-based data between
different tools. Like UML, XMI is a standard defined by the OMG.

ARIS UML Designer exports and imports XMI files in UML 2.5 / XMI 2.1 format. You can use
XSLT files to make corresponding adjustments to XML formats from third-party manufacturers.
These XSLT files are managed in the XMI resources area and can be selected as options
during the XMI export and import.

2.5.4 Data transfer from ARIS UML Designer 7.x

If a database contains UML content from ARIS 7.x, which was created using ARIS UML
Designer 7.x, it must first be converted to UML 2 before it can be displayed or edited with ARIS
UML Designer 9 and higher.

A detailed description of UML conversion can be found in the document UML Migration
Guidelines.

3 Mapping UML to the ARIS object model

UML is completely mapped to the ARIS object model. However, two crucial aspects of UML
required an extension of the ARIS object model compared to ARIS 7:

= UML elements can contain other UML elements and UML diagrams, they can occur in
diagrams, and they can be linked to one another by relationships.

= A graphic edge in a UML diagram can represent an entire series of UML elements and
relationships.

These aspects are discussed in more detail below.

3.1 Group and object properties of UML elements

Navigation x

Explorer tree Diagram tree Diagram overview Visualized elements

! s aRefines) A

VD 05 Package diagram [UML2 Package] = Analysis model Design model

3 Relationships ?
Package diagram example [UML2 Package diagram
F ~? Abstraction [Refing]

b -3 Dependency [UML2 Dependency] ol i
4 @ Analysis model [UML2 Model]

3 IZ| Design model [UML2 Model]
4 D 06 Profile diagram [UML2 Package]
3 D 07 Deployment diagram [UML2 Package]

4 D 08 Activity diagram [UML2 Package] Usecases Technical class Sales module Production module
3 D 08 Use case diagram [UML2 Package]

4 D 10 Communication diagram [UML2 Package]
= . R [P

Production Sales Framework

- -

4 » 4 »

Figure 158: Package hierarchy and Package diagram

Figure 160 shows a hierarchy of packages with a diagram in the Explorer tree on the left, and
a package diagram with packages and their relationships with one another on the right.

Both sides show aspects typical of various ARIS types for packages.

The package hierarchy shows typical features of an ARIS group hierarchy. Just as ARIS groups
can contain other ARIS groups, ARIS objects, and ARIS models, UML packages can also
contain other UML packages and UML diagrams. Therefore, it would be obvious to map UML
packages to ARIS groups.

By contrast, the diagram shows typical features of ARIS objects. Just as ARIS objects can be
contained in ARIS models as object occurrences and can be linked to one another by
connections, UML packages are contained in the diagram as element presentations and are
linked to one another by edges. Looking at this aspect alone, it would be obvious to map UML
packages to ARIS objects.

This contradiction in the mapping of UML to ARIS has been resolved by assigning the ARIS
type Group all properties of the ARIS type Object. This means that groups have an object
type, they can have occurrences in diagrams, and they can be linked to one another by
connections.

As every UML element can ultimately contain other UML elements (every UML element can own
elements of the UML type Comment) and many elements can also own diagrams, UML
elements are mapped to groups of the relevant UML type in ARIS.

For example, this means that a use case is saved in ARIS as a group with the object type
OT_UML2_USE_CASE. This mapping applies to all UML elements, regardless of their
appearance in diagrams. A generalization, shown graphically as an edge in diagrams, is also
saved in ARIS as a group with the object type OT_UML2_GENERALIZATION.

The exceptions are certain elements that normally appear right at the bottom of the element
hierarchy and, at the same time, occur frequently. Examples of these elements are
LiteralInteger and LiteralUnlimitedNatural. They are normally used as the lower or upper limit
for multiplicities on association ends and attributes.

To ensure that management of user privileges does not become too fine granular, the
possibility of defining user privileges has been restricted to UML elements of the Package,
Model, and Profile types.

The behavior of conventional groups has not changed in ARIS. They have the object type
Group (OT_GROUP). For groups of this type, there is still no facility for them to occur in
diagrams or to be linked by connections.

3.2 Complexity of edge presentations

Figure 160 also shows the second aspect mentioned, namely the fact that graphic edges in
diagrams represent both direct relationships between the packages - the edges between
packages and their contained packages - and also other UML elements that are used to link
the packages to one another, for example, the Dependency relationship.

temline
order X order item item
Order 1 {ord 9"'3d}J Order item : L
Order number:Integer | number:inteaer

A_itemline_order

Type: UML 2 Association

Symbol: Association

Owned as: packagedElement

Namespace: Main group/Example diagrams/2 UML basics/2.2

Diagram types/01 Class diagram
Key customer order A key customer orderis =]
PR discountable.
Discount:Integer

Figure 159: Association as graphic edge in diagram

Figure 161 shows an association as a graphic edge in a Class diagram. It represents three UML
elements and their relationships with one another and with the two classes: the association
A_item_order item, the two association ends (UML type Property) order and itemline, the
relationships between the associations and their two association ends (UML property
Association::memberEnd), and the relationships between the association ends and the two
classes (UML property TypedElement::type).

The UML edges outlined thus represent totally different content.
The edges representing the package hierarchy in Figure 160 represent a hierarchy relationship

between two groups. This relationship is not mapped using connection definitions in ARIS, but
represents a direct reference from the subordinate group to the superior group.

The relationship between the comment and the class in Figure 161 represents the UML
property Comment::annotatedElement and is thus a single connection definition.

The generalization in Figure 161 is mapped to a group that is subordinate to the derived class.
The link to the base class is created using a connection definition. Thus the generalization edge
represents a hierarchy relationship, a group, and a connection definition.

The association in Figure 161 represents a total of three groups and five connection definitions.

Classic connection occurrences in ARIS always represent a single connection definition.
Therefore, they are not suitable for representing all edge types in UML diagrams. To cope with
this, the ARIS object model has been extended with a new type of connection occurrence,
which is only used by ARIS UML Designer and is capable of representing any content. The new
type of edge presentations is also used in UML diagrams for edge presentations that actually
represent a single connection definition.

3.3

The most important mappings from UML to ARIS

The table below shows the most important mappings from UML to ARIS.

UML

UML elements

UML properties

UML diagrams
Node presentations

Edge presentations

Lane presentations

Represented in Mapped to ARIS type Condition

metamodel by
meta element
of type

Class

Property

Diagram*
NodeSymbol*
EdgeSymbol*

LaneSymbol*

Group

Attribute

(Group hierarchy
relationship)

Connection definition

Attribute

(calculated at runtime)

Model
Object occurrence

New type of connection
occurrence

Object occurrence

The element's metaclass is not
OpaqueExpression and is not a

specialization of
LiteralSpecification.

The element's metaclass is

OpaqueExpression or a
specialization of
LiteralSpecification.
For the meta property:
isDerived=false
isComposite=true

type is a metaclass

For the meta property:
isDerived=false
isComposite=false

type is a metaclass

For the meta property:
isDerived=false

type is a data type

For the meta property:

isDerived=true

* In the official UML metamodel, no constructs exist for formal description of the graphical
representation. These meta elements represent an ARIS-specific extension.

2 Linking business process and UML modeling

If you want to develop an IT system that provides optimum support for your company's
business processes, it is useful to start with an analysis of the business processes, in order to
derive the corresponding requirements for the IT system. ARIS provides optimum tools for
doing this, as it provides integrated business process and UML modeling in a single repository
and enables you to link business process and UML content with each other.

You have two fundamental ways of linking business processes and UML.:
Assignment of UML diagrams to business process objects
Reusing business process objects in UML as UML elements

For both linking methods, as the user you have a free choice of which specific business process
and UML types you want to link to one another. There are no rigid specifications for this in
ARIS Method.

You can navigate between the ARIS UML Designer and ARIS Architect/ Designer applications
with no problems. Double-clicking an ARIS model in the Explorer tree in ARIS UML Designer
automatically launches ARIS Architect or ARIS Designer (if not already running) and opens the
ARIS model. Conversely, an assigned UML diagram can be opened in ARIS UML Designer by
double-clicking the corresponding assignment symbol in an ARIS model in ARIS
Architect/Designer.

The two types of link and the various navigation options are described in more detail below.

4.1 Assignment of UML diagrams to business process
objects

Business process objects are linked to UML diagrams using assignments of the Navigation
type, as outlined in Linked diagrams (elements) (page 60).

You can create this assignment either in ARIS UML Designer or in ARIS Architect/ARIS
Designer.

4.1.1 Creating an assignment in ARIS UML Designer

A diagram is assigned to an ARIS object in ARIS UML Designer in the same way as assigning a
diagram to a UML element.

First select the ARIS object in Explorer and then go to the Linked diagrams properties page.
If you have not opened the Explorer tab, which displays the property pages on the right-hand
side, but you are in the Designer component, first open the Properties dialog for the ARIS

object. On the Linked diagrams properties page, click % Assign diagram.

Start Contents Evaluate

Navigation b4 Relationships Reused objects Linked diagrams
Explorer tree Diagram tree RS o
whrahee [EE %% (% (& (@
v 5% ARIS UML Designer = NS
v I Main group Diagrz Assign diagram Kind
» B0 Example diagrams -~ Create order UML 2 Activity diagram Navigation

» B0 Meta model
» B Organization
w [Processes
= Sales process [ARIS EPC]
| 4 Order can be created [ARIS Event]
14 Order cannot be created [ARIS Eveni
» Order data received [ARIS Event]
» Order is created [ARIS Event]
» Order is rejected [ARIS Event]
» Order is released [ARIS Event]
b m Check customer data [ARIS Functior
| 4 m Create order [ARIS Function]

Figure 160: Assign diagram button

A dialog for selecting the diagram opens. You can assign the diagram either by searching the
database, or by selecting it directly in the Explorer tree (see Figure 163 and Figure 164).

Select diagram @
Search database Browse Explore
Enter the sequence of characters the name of Diagrams found (marked with ' if unsaved):
the diagrams you are searching for is to begin -
with. Without input, the search may take a long Element... & |Type Path

time depending on the database.
Check custo.. UML2 Activit... Main group/...

Find what:
- UML2 Activit.. Main groupy...

- Start search Create order UML2 Activit... Main group/...

Requested diagram types:

UML 1.4 Use case diagram i
w| UML2 Activity diagram
UML2 Class diagram o
4 4

Properties...

ﬂ Cancel Help

Figure 161: Diagram selection by searching in the database

I

Select diagram

Search database Browse Explorer

Diagrarm:

¥ B e L L L T s LY |

4 D 02 Component diagram [UMLZ Package]
4 D 03 Composite structure diagram [UML2 Package]
4 D 04 Object diagram [UML2 Package]
4 D 05 Package diagram [UMLZ2 Package]
4 D 0& Profile diagram [UML2 Package]
4 D 07 Deployment diagram [UML2 Package]
VD 08 Activity diagram [UMLZ Package]

r BB Relationships

b &% Check customer data [UML2 Activity]

¥ &% Create order [UML2 Activity]

r BB Relationships
T |Create order [UML2 Activity diagram]| -

Figure 162: Diagram selection in Explorer

4.1.2

Creating an assignment in ARIS Architect/Designer

To assign a UML 2 diagram to an ARIS object in ARIS Architect or ARIS Designer, first select
the object in the ARIS model and then click % Create assignment in the Start tab bar.

' ™
UML - ARIS Architect]) [
] Start Contents View Insert Format Evaluate BPM L
E ¥ Cut B Delete ~ ‘ Attributes > y Goto~ I Connection mode Align -
Em Copy) Rename [i | Properties 2 Find == Grid Grouping
Paste _ 7 - BIUS A
w ‘ Format painter | '-w' Select™ = Assignments E#® SmartDesign ~ O, Arrange™ - -
MNavigation x Symbols x -*-
Explorertree Objects Model ove. Crder data "l = 2= =+
E |:| received wl
Filter: Models Objects T
! g Event
- B umL ¥
u Function |
¥ =% ARIS UML Designer Exarnple L
data |
¥ I Main group Process interface [|
» B0 Example diagrams + 'AND i
» B0 Meta model ° |
¥] Organization l u Ll s >
-
- == Order can be Order cannct be OR rule
“. Gales process [EPC] created created
» B Sales system i Organizational unit
b B0 UML Profiles Position
‘Create order, u Reject order
Rele
|] |]
ﬁ a*— Cluster
7 5 T Order ks ereated Order i rejected 7 E Entity type Y
Database: ARIS UML Designer Examples Find: + t mwx @ —@—— © bsoftware~
|

Figure 163: Launching the Properties dialog for a function in an ARIS model

The Assignments properties page opens. Click New to create a new assignment.

Properties - Object: Create order M

Selection

Help Assignments

Assignments Maodel name
Attributes

Type Link type

¥ Format

Object appearance

Attribute placement (objects)
Information

Ocecurrences

Relationships
Reused objects

Variants

New...

m Cancel Help J

Figure 164: Assignments properties page in ARIS Architect/ARIS Designer

You are asked whether you want to assign an ARIS model or a UML 2 diagram. Click UML -2
diagram.

p
Create assignment ﬁ

o Do you want to assign an ARIS model or a UML 2 diagram?

ARIS model UML 2 diagram Cancel

N

Figure 165: Query for diagram type to be assigned

In the subsequent dialog, you can select a UML diagram to assign.

-
Assign UML 2 diagram

ez

UML 2 diagram type: | All UML 2 diagram types

v |

Diagram name: |

Diagrams found:

MName Type & Path

Create order UML2 Activity diagram /Main group/Example dia...
Create order UML2 Activity diagram /Main group/Sales system...
Create order UML2 Communication dia... /Main group/Example dia...
Create order UML2 Sequence diagram /Main group/Example dia...

Figure 166: Dialog for selecting a UML diagram in ARIS Architect/ARIS Designer

The diagram selected here is added to the table of assigned diagrams (see Figure 169).

Help Assignments

Selection

Assignments Meodel name Type Link type
Attributes =7 Create order UML2 Activity diagram Navigation
¥ Format
Object appearance

Attribute placerment (objects)
Information
Occurrences
Relationships
Reused objects

Variants

m Cancel Help

f ™y
Properties - Object: Create order u

Figure 167: Assigned UML diagram in the Properties dialog for the ARIS object

In the ARIS model, an assignment symbol is displayed (see Figure 170).

Order canbe
created

+

Create order

<

Crder is created

Figure 168: Assignment symbol on the function

4.2 Reusing business process objects as UML elements

Before you can use business process objects in UML diagrams, you must specify which ARIS
object types are to be mapped to which UML element types. You can then insert these ARIS
objects in UML diagrams as UML elements.

The ARIS object has no direct presentation in the UML diagram. Instead, a new UML element is
created and is linked to the ARIS object using a special reuse relationship.

The individual aspects of this reuse are described in more detail below.

4.2.1 Specifying the mapping of ARIS to UML types

The mapping of ARIS to UML types is defined in the Link types area of the Administration
tab, which has been briefly outlined in Link types (page 123). Note that this functionality is
only available to you on the Administration tab in ARIS UML Designer, but not in ARIS
Architect.

To define a mapping, select Object links under Link types in the Explorer tree on the
Administration tab and then click New > Object link definition in the pop-up menu.

UML - ARIS UML Designer | B
m }" Administration X + .
Start »
Cut Delete Properties * ’ * *
B Ci# & 3 B
New Open Edit Paste o R Refresh | Start Generate from Import Export
e Duplicate macro | database contents object link object link
Navigation x ‘ T- Filter list ‘ .m_
v !’ UML Source o... |Source o... | Target o... | Target o... |Source d... | Target d... |Source r... |Target re...|
[4 "S:(- Configuration
¥ [0 Link types
fn Object lirt=
N A .
» BB XMI resourc: MNew Object link definition
¥ s Evaluations @, Generate from database contents...
» & ARIS Conne =] Import object link...
’ I ARIS UML D) [® Export object link...
1 4
Working environment: Configuration & Administration rJ software*

Figure 169: Creating a new object link definition

The Create object link dialog opens.

r Create cbject link g ﬁ-‘
Select source type: Filter* Select target type: Filter* Creation rule:
= Action = £ Action “ [| Source renames target
— Activity graph = Activity graph [] Target renames source
Dhctnr |:|Act|:|r [| Source deletes target
Answer option Answer option [] Target deletes source
E Application system E Application system
i E Application system class E Application system class
Ehpplicatiun systern type Ehpplicatiun systemn type
Architecture element Architecture element
— Argurmnent 1 Argument
1 Artifact . Artifact
E Assessment E Assessment
<> Association <> Aszociation
Eﬁtssaciatian class Eﬁksmciatian class
- Association instance -2 Association instance t
<> Association role X <> Association role X
4 4 4 4
Cancel Help

Figure 170: Dialog for creating a new object link definition

Select an ARIS object type in the Select source type column, and the relevant UML 2
element type in the Select target type column. It is theoretically possible to define mappings
between any types, even between classic ARIS object types. However, ARIS Architect only
supports mapping of classic ARIS object types to UML 2 element types, which means that you
should always select a classic ARIS object type as the source type and a UML 2 element type
as the target type.

You also have the option of enabling one or more of the following rules:

Source renames target

This rule means that when the ARIS object is renamed the UML element is also renamed
so that it has the same name as the ARIS object.

Target renames source

This rule means that when the UML element is renamed the ARIS object is also renamed
so that it has the same name as the UML element.

Source deletes target

This rule means that the UML element is deleted as soon as the underlying ARIS object is
deleted.

Target deletes source

This rule means that the ARIS object is deleted as soon as the corresponding UML element
is deleted.

Entering the initial letters of the type you are looking for in the input fields above the object
lists filters the object list accordingly.

F -
Create object link ﬁ
Select source type: Filtera Select target type: Filter~ Creation rule:
fu umiZ u % Source renames target |
= Target renames source
Function @D UML2Z UnmarshallAction
o Source deletes target
. -
El’l’functmn ¥ UMLZ Usage Target deletes source
E IT function class @ UML2 UseCase
El’l’function type

() UML2 FunctionBehavior

ﬂ Cancel Help

Figure 171: Definition of a mapping of the ARIS object type Function to the UML 2 element type UseCase

Figure 173 shows the definition of the mapping of the ARIS object type Function to the UML
type UseCase with the rule that when the function is renamed the use case is given the same
name. Clicking OK creates the definition and it is then displayed in the table.

4 Source object name | Source object type | Target object name | Target object type Source deletes target | Target deletes source | Source renames target | Target renames source

Function OT_FUNC @ UML2 UseCase OT_UML2_USE_CASE X x v x

Figure 172: A new object link definition created

This mapping enables you to view a function in a business process to be realized by an IT
system as a use case for the purpose of object-oriented analysis and to reuse it as a UML
element of the UseCase type.

You can use this method to map an ARIS object type to various UML element types, and
multiple ARIS object types to a single UML element type.

For example, you could map the Function type not only to UML2 UseCase but also to UML2
Operation, enabling the function to also be reused in UML as an operation for a technical
class.

Conversely, it may be useful to map various ARIS types such as Organizational unit,
Person, or Application system - that is, all types that are linked to execution or monitoring
of a function in some way - to the UML type Actor, so that you can reuse these ARIS objects
as actors in UML use case diagrams.

Source object name Source object type | « Target object na... | Target object type Source deletes target | Target deletes source | Source renames target | Target renames source
Function OT_FUNC UML2 Action OT_UMLZ_ACTION »x x v x
Organizational unit OT_ORG_UNIT E UMLZ Actor OT_UMLZ_ACTOR x x v x
E Application system .. OT_APPL_5YS TYPE E UML2 Actor OT_UMLZ_ACTOR x x v x
Person OT_PERS [umLz Actor OT_UML2_ACTOR X X v X
EJ entity type OT_ENT_TYPE [umML2 Class OT_UMLZ_CLASS x x v x
= Technical term OT_TECH_TRM E UML2 Class OT_UMLZ_CLASS x x L4 x
Function OT_FUNC © UML2 Operation OT_UML2_OPERATL.. X x L 4 x
[ERM attribute OT_ERM_ATTR [T UML2 Property OT_UML2_PROPERTY X x L 4 x
Function OT_FUNC @ UML2 UseCase OT_UML2_USE CASE 3¢ b 4 v x

Figure 173: Different object link definitions

When selecting the target type, you are not restricted to specific UML 2 types, that is, those
for which you can also create a directly corresponding UML element. The above example
contains an object link definition in which the ARIS type Function is mapped to the abstract

UML 2 type Action. In a case like this, when you insert a function in an Activity diagram, you
are asked which specific action is to be created.

Select symbeol =

There are multiple symbaols available for the presentations. Which symbol do you
want to use?

Symbaol Assigned stereotype
Accept call action

Accept event action

Accept ime event action

Add structural feature value action

Add vanable value action

Broadcast signal action

Call behavior action

Call operation action

Clear association action

Clear structural feature achion

m Cancel Help

Figure 174: Symbol selection for abstract type

4.2.2 Reusing an ARIS object in a UML diagram

In the ARIS model, first select the ARIS object you want to reuse as a UML element. Copy it to
the clipboard by clicking Copy in the pop-up menu.

W -
Mew »
Helease ardey &= Print... Strg+P
l = Cut Strg+X
Em Copy Strg+C
Order is released .
IE Paste Strg+V
Paste as »

Figure 175: Copying the ARIS object to the clipboard

Alternatively, you can also select and copy the ARIS object in the Explorer tree in ARIS
Architect, ARIS Designer, or ARIS UML Designer.

In ARIS UML Designer, open the pop-up menu by right-clicking the diagram background and
then click either Paste or Paste as > Place here as reused objects.

cextend»

condition:
{ Customer is key customer }

extension points:
Rebate calculation

= Erint... Strg<P
ré Paste Strg=V
Paste as b Place here as reused objects

Figure 176: Pasting the ARIS object in the UML diagram

The Reuse objects dialog opens for selecting the underlying object link definition.

Reuse ohjects ==

You can reuse the selected objects for new presentations. Which type of re-use do
you want to use?

Type of re-use
Use object type Function” as ebject type 'UML2 Action”

n Cancel Help

Figure 177: Selecting the object link definition

If there are several symbols that can be used for presentations of elements of the UML type in
the diagram, you are asked which of the symbols is to be used.

Select symbol @

There are multiple symbols available for the presentations. Which symbol do you
want to use?

-

Symbaol
se case

Uze caze (class notation)

m Cancel Help

Figure 178: Dialog for selecting the symbol to be used

This creates a new use case in the diagram.

i,

Figure 179: New use case created

The use case has the same name as the underlying function and displays it on its Reused
objects properties page.

(S

-
Properties: Release order

Help Reused objects

Selection

Information =)
%= 5 @
General
Description Object ~ Type Renames object |Is renamed by object | Deletes object |Is deleted by object

Relationships [0 Release order ARIS Function [+ |] |

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

m Cancel | Help

Figure 180: Reused objects properties page in ARIS UML Designer

After saving in ARIS UML Designer, this information is also available in ARIS Architect/ARIS
Designer.

r Properties - Object: Release order : ﬂ
Selection

Assignments Object

Type Group
Attributes | Release order | UML2 UseCase

¥ Format

/Main group/Sales system/Analysis diagrams/Use...

Object appearance
Attribute placement (objects)
Information
Occurrences
Relationships
Reused objects

Variants

New... Delete Go to occurrence in UML Explorer

m Cancel Help

Figure 181: Reused objects properties page in ARIS Architect/ARIS Designer

4.2.3 Managing the object link definitions

The pop-up menu for an object link definition provides you with various options for editing.

Source object name Source object type | & Target object na... | Target object type Source deletes target | Target deletes source | Source renames target | Target renames source

FE Functi o OT_UML2_USE CASE % x v x
£ Function | New ¥ Object link definition - e —

Edit..

W Delete
Figure 182: Pop-up menu items for editing object link definitions

You can create a new object link definition, edit the selected definition, or delete the selected
definition. Clicking & Edit opens the Create object link dialog, as when creating a new
object link definition (see Figure 172).

The options for editing the selected object link definition can also be found in the tab bar.

« A B

Generate from Import Export
database contents objectlink object link

Figure 183: Buttons in Start tab bar for managing object link definitions

The object link definitions are saved in the system database on the ARIS server. Selecting
Object links in the Link types area in the Explorer tree on the Administration tab, you can
export the object link definitions to a file to transfer them to a different ARIS server by clicking

[= Export object link. To import, click =] Import object link on the other server.

Clicking ?. Generate from database contents starts the analysis for all existing reuse
relationships within an ARIS database and creates object link definitions for them in the
system database.

This is helpful if you are importing a database with reuse relationships and you then want to
create these reuse relationships yourself but you have not yet created the corresponding
object link definitions. Merely to view or evaluate the reuse relationships in an ARIS database,
it is not necessary to create the object link definitions in the system database.

4.3 Navigation between ARIS Architect/Designer and
ARIS UML Designer

Although ARIS Architect/Designer and ARIS UML Designer are different programs, they provide
easy options for navigating to elements and diagrams in the respective other program.

4.3.1 Navigation from ARIS Architect/Designer to ARIS
UML Designer

In ARIS Architect/ARIS Designer, you can click the pop-up menu item Go to > Occurrence in
UML Explorer for all groups, ARIS objects, ARIS models, and UML elements contained in the
Explorer tree. Note that ARIS Architect/ARIS Designer only display the UML packages, models,
and profiles that are located directly in an ARIS standard group, but not their content.
¥ [Main group

» [Example diagrams

» [0 Meta model

» B8 Organizat New 4

¥ [Processes 3¢ Cut

- Sales p

Em Copy
v B Sales syst

@ Analys

. C] Rename
@Desngn

W Delete

» B8 UML Prof Go to » Link F7
- @) Find.. Strg=F Occurrence in UML Explorer

Figure 184: Pop-up menu item in ARIS Architect for navigation to ARIS UML Designer

After clicking the pop-up menu item, a check is made as to whether an ARIS UML Designer
instance with the same server connection is running. If not, it is started. This is followed by a
login to the same database in ARIS UML Designer, and the item selected in ARIS Architect or
ARIS Designer is selected in the Explorer in ARIS UML Designer.

On the Reused objects properties page, it is also possible to click = Occurrence in UML
Explorer to navigate to the corresponding UML element in the Explorer in ARIS UML Designer
(see Figure 183). This navigation option is also available in the pop-up menu.

Reused objects

Object Type Group
@D Release order UMLZ UseCasze /Main group/Sales system/Analyzis diagrams/Use Cazes
Mew »
Go to g Link =
T Find.. Strg=F Oceurrence in UML Explorer

Figure 185: Pop-up menu item for navigation to the linked UML element

You can open assigned UML diagrams in ARIS Architect/ARIS Designer by double-clicking the
assignment symbol in the ARIS model. You can also use the Assignments properties page
and click the Open entry in the pop-up menu, or the Open button (see Figure 169), to open
UML diagrams in ARIS UML Designer.

Model name Type | Link type
~— Create order UML2 Activity di=~r=m S
New A
S Open...

Open (re%d-only)

Figure 186: Pop-up menu item in ARIS Architect / ARIS Designer for opening a UML diagram

Figure 188: Pop-up menu item in ARIS Architect / ARIS Designer for opening a UML diagram

4.3.2 Values - Literals

chetaclasss cMetaclasso
Typed Bement FachageableElement
chMetaclass»

Valuespecification

|ﬁ|

:

chMetaclass»
LiteralSpecification
chetaclasss cMetaclass o
R == Literal Integer Literal Unli mit d Natural
Literal Mull
wvalue:lnteger=0 walue :Unlimited M atural=0
chMetaclasss chletaclass o cMetaclass o
Litera String Literal Boolean Literal Real
wvalue:String[0..1] value:Boolear~false value:Real

Figure 187: Literals diagram from the UML specification

Figure 31: Literals diagram from the UML specification

Figure 31 shows the Literals diagram from the UML specification. It defines some
specializations of the ValuesSpecification metaclass?®. Typically, for the
MultiplicityElement::lowerValue property you will use an element of the LiteralInteger
type and for the MultiplicityElement::upperValue property an element of the

LiteralUnlimitedNatural type.

2% In addition to the specializations of ValueSpecification shown in the Literals diagram, there
are others but these will not be discussed in more detail here.

temline
order 1.*
Order 1 {ordered} Order item

Qrder number: Integer number:integer

Figure 188: Class diagram with attributes, association ends, and multiplicities

Figure 32: Class diagram with attributes, association ends, and multiplicities

The Class diagram in Figure 32 shows two examples of multiplicities:

The order association end has a multiplicity of 1, which is a shortened form of 1..1, that is,
the properties /lower and /upper each have the value 1. The specific elements of the
ValueSpecification type on which the two values are based are not shown by the graphic
notation in the diagram.

The itemline association end has a multiplicity of 1..*, that is, the lower property has the
value 1 and the upper property has the value *, where * stands for unlimited.

4.3.3 Navigation from ARIS UML Designer to ARIS
Architect/Designer

In addition to the group hierarchy and the UML content, ARIS UML Designer displays all ARIS
models and ARIS objects with their properties in the Explorer. To display and edit the ARIS
models, it is necessary to switch to ARIS Architect or ARIS Designer.

For this purpose, for all groups, ARIS models, ARIS objects, and UML packages, models, and
profiles that are directly located in a group, ARIS UML Designer provides you with a pop-up
menu item for navigation to ARIS Architect or ARIS Designer.

W 38 Processes
= Sales process [ARIS EPC]
; Sdctconhg h.l.e;/v—.r;l;del .element »
4 Order cannot
4 Order data re ¥< Cut
» Ea Orderis creat EBY Copy
4 Orderisrejec g Delete Entf
4 Order is relea cp Rename
4 m Check custor

4 m Create order
» 3 Reject order [Go to 4 Occurrence in ARIS Architect/Designer

¥. Delete incomplete relationships...

Figure 189: Pop-up menu item for navigation to ARIS Architect/Designer

The same functionality is available for a selected element in the Start tab bar.

y Goto~

Related element in the Explorer navigation

Occurrence in ARIS Architect/Designer
Figure 190: Tab bar item for navigation to ARIS Architect/Designer

After clicking the menu item, a check is made as to whether an ARIS Architect/ARIS Designer
instance with the same server connection is running. If not, it is started. This is followed by a
login to the same database in ARIS Architect or ARIS Designer, and the item selected in ARIS
UML Designer is selected in the Explorer in ARIS Architect/ARIS Designer.

Just as for UML diagrams, the functionality for opening the diagram is provided in ARIS UML
Designer for ARIS models.

w0 Processes

Sales proces 2
'E Open...
b kgl Order can b

Figure 191: Opening an ARIS model in ARIS UML Designer

If required, an ARIS Architect/ARIS Designer instance is started and the ARIS model is opened
in it.

The navigation is available not only in the Explorer but in all UML Designer components that
display elements that are also visible in the Explorer in ARIS Architect/ARIS Designer.

Properties: Release order

Selection Help Reused objects
Information =
% % a a2
General
Description Object a Type Renames ... |Is rename... | Deletes ob...|Is deleted ...
Relaticnships [Release order ARIS Funct... [+#] [1 [] []
Reused objects Bz Copy b .
Linked diagrams Go to 4 Related element in the Explorer navigation
Presentations in diagrams Export » Link =
Applied stereotypes Lock/Unlock » Occurrence in ARIS Architect/Designer
Tagged values T
Evaluate L

B rProperties.. Aft-Enter

m Cancel Help

Figure 192: Navigation from UML element to underlying business process object

You can also open assigned ARIS models using the Linked diagrams properties page for the
UML element or from a diagram by double-clicking the assignment symbol on the presentation
of the UML element.

Properties: Release order

Selection Help Linked diagrams
Inf ti
nformation .>+ .)=_ f, = []
General
Description Diagram Type Kind
Relationships ~— Sales process ; iRIS EPC Mavioation
Reused cbjects B Dpen..
Linked diagrams Em Copy Ctrl+C
Presentations in diagrams Go to 4 Related element in the Explorer navigation

Applied stereotypes Occurrence in ARIS Architect/Designer

T

* Add to favorites...
Tagged values it

Export »

Lock/Unlock »

Evaluate 4
B rroperties... Alt=Enter

m Cancel Help

Figure 193: Menu items for navigation and opening an ARIS model assigned to a UML element

.

Figure 194: Assignment symbol for an ARIS model on a UML element

5 UML profiles

You can use UML profiles in ARIS UML Designer to extend the UML metamodel with user-
defined types and properties and, at the same time, to reduce the nhumber of UML types
available in diagrams. Thus, UML profiles have a similar effect for UML modeling as ARIS
method filters for ARIS standard modeling.

While an ARIS method filter is individually selected by the user when logging in to a database
and applies to the entire database and the period of the login, UML profiles have fixed
assignments to individual UML packages in the database. Therefore, they only apply to the
packages (models and profiles) to which they are assigned, and to their content. This enables
you to use different UML profiles in different areas of the database. In addition, UML profiles
apply to all users in the same way, regardless of the method filter they have selected at login.

5.1 Predefined profiles in ARIS UML Designer

ARIS UML Designer contains several predefined UML profiles:

» StandardProfile
This is the standard profile from the UML specification. It contains all stereotypes defined
in the UML standard.

= OMF Meta Profile
This profile is used by the UML metamodel generator (see The UML metamodel generator
(page 167)) to map the meta elements to UML.

» OMF Extension Profile
This profile extends the profile modeling in ARIS UML Designer with options that are not

available in the UML standard, for example, with ARIS-specific properties such as
multilingual text attributes and stereotypes for diagrams.

= UML 1.4 Compatibility Profile
UML 1.4 is not completely forward compatible with UML 2. Some constructs and default

stereotypes from UML 1.4 are no longer supported in UML 2. This profile is used in UML
migration to ensure that these constructs are not lost during migration to UML 2.

5.2 Using profiles

5.2.1

Before you can use stereotypes of a profile, you must assign the profile to the package3°
within whose hierarchy the stereotypes are required.

Assignment of profiles to a package

The assignment is made on the Applied profiles properties page by clicking % Apply

profiles.

-
UML - ARIS UML Designer

IR = Explorer % Search +

Evaluate

< Cut
Em Copy

Start

T

r
=
HLE

Contents

i Delete
C[Rename

“ Properties

Mew Paste

diagram ~

MNew
element

Open

Mavigation ¥ | Applied profiles

Explorer tree Diagram tree

+ B umL ||| Profilt apply profiles

w =2 ARIS UML Designer Examples

* [0 Main group
I » B Example diagrams
| » B0 Meta model
I » [0 Organization
» B Processes
* [0 Sales system
i VELAnalysis diagrams [UML2 Model]l
» [0 Relationships

4 D Classes [UML2 Package] g
4 3

Working envirenment: Configuration 8 Administration

y Go to ™~
B up

Applied stereotypes

c Refresh

Database

[B e |
? =

-

Tagged values 1

5 software~

Figure 195: Applied profiles properties page

30 The term package here also includes the two UML types Model and Profile, which are special

types of packages.

The Apply profiles dialog opens and contains the profiles to be assigned to the package.

Apply profiles [é]

Analysis profile
OMF Extension Profile
OMF Meta Profile
& StandardProfile
UML 1.4 Compatibility Profile

StandardProfile
The Standard Profile specifies a set of predefined standard sterectypes. -

ﬂ Cancel Help

Figure 196: Profile selection dialog

Figure 196: Profile selection dialog

The dialog lists all profiles that can be assigned. Enable the corresponding check box to
indicate that the profile is to be assigned to the package.

If a profile is already assigned to the package, its check box is enabled automatically. In this
case, you can disable the check box to indicate that the assignment of the profile to the
package is to be removed.

When you select the profile in the dialog by clicking the text, a description of the profile is
shown in the lower section of the dialog. The same description is also displayed as a tooltip if
you move the mouse pointer over a profile name for a short time.

Clicking OK assigns the selected profiles to the package.

Mavigation » Applied profiles ApE
Explorer tree Diagram tree
g ? % %= = B
Y
a | | Profile Is strict
v o UML StandardPro...

w = ARIS UML Designer BExarmples
» [0 Main group®

Exarnple diagrams

Meta model

Organization

Processes

{4 v v v

Sales system®
2 E| Analysis diagrams® [UML2 Model]
2 E| Design diagrams [UML2 Model]

Figure 197: Package with assigned profile

Figure 197: Package with assigned profile

By enabling the Is strict check box in Figure 197 you can specify that restrictions defined by
the profile cannot be canceled by other assigned profiles3!.

As soon as a profile has been assigned to a package, its stereotypes are available in the
package hierarchy.

31 The predefined profiles contain no restrictions.

5.2.2 Assignment of stereotypes to a UML element

Stereotypes are assigned to an element on its Applied stereotypes properties page by

clicking % Apply stereotypes.
F B
UML - ARIS UML Designer =))
IR 5 Explorer X Search 4 ? =
M e Start Contents Evaluate i
Cut Delete Goto c Refresh
Copy Rename Up Database
MNew Mew Open | Paste
element diagram Properties
Mavigation X | Hdiagrams Applied stereotypes Tagged values 1 = *
Explorer tree Diagram tree b 1
i i [(8] [
T ®
- [0 Sales systern® « || |Stere| Apply stereotypes
V@ Analysis diagrams® [UML2 Model]
» B8 Relationships ?

"’D Classes [UML2 Package]

» B0 Relationships

= Classes [UML2 Class diagran

b = A_itern line_order line [UML:
] b= A_itern_item line_1 [UML2 A
b] rem [UML2 Class]
b o e 1 [UML2 Class]
14 E Key customer order [UML2 (

b] Orderitem [UML2 Class] .,
1 3
Working envirenment: Configuration & Administration rJ software*~

e - _ —

e R e e

Figure 198: Applied stereotypes properties page

Figure 198: Applied stereotypes properties page

The Apply stereotypes dialog opens and contains the stereotypes to be assigned to the

element.
Apply stereotypes @
Auxiliary
Focus

ImplementationClass
Metaclass
Realization

#* Specification
Type
Utility

Specification

A classifier that specifies a domain of chjects without defining the physical o
implementation of those chjects. For example, a Component stereotyped by
«Specifications will only have provided and required interfaces, and is not intended to ~

ﬂ Cancel Help

Figure 199: Dialog for stereotype selection

The dialog lists all stereotypes that can be assigned. Enable the corresponding check box to
indicate that the stereotype is to be assigned to the element.

If a stereotype is already assigned to the element, its check box is enabled automatically. In
this case, you can disable the check box to indicate that the assignment of the stereotype to
the element is to be removed.

When you select the stereotype in the dialog by clicking the text, a description of the
stereotype is shown in the lower section of the dialog. The same description is also displayed
as a tooltip if you move the mouse pointer over a stereotype name for a short time.

Clicking OK assigns the selected stereotypes to the element.

Mavigation x

Explorer tree Diagram tree

T

¥ [Sales system™ e
b E Analysis diagrarns™ [UML2 Model]
[3 Relationships
"D Classes™ [UML2 Package]
[3 Relationships
Classes [UML2 Class diagran
ko A_itemn line_order line [UML
b= A_itern_itern line_1 [UML2 A
»] Htem™ [UML2 Class]

Applied stereotypes

% %= B B
Stereotype Profile
Specification StandardPr...

Figure 200: UML class with assigned stereotype

Stereotypes can also be assigned for multiple elements at the same time. To do this, select the
corresponding elements in the Explorer tree or in the diagram and display their properties.

Mavigation x

Explorer tree Diagram tree

h
»] lem® [UMLZ2 Class] o
» [Order item™ [UML2 Class]

Applied stereotypes

%= =" B
Stereotype & Profile

Specification StandardProfile

Figure 201: Applied stereotypes properties page for two selected classes

All stereotypes assigned to the selected elements are displayed. If a stereotype is not assigned
to all selected elements, the entry is displayed in gray instead of black text in the table. You

can click . Apply stereotypes to simultaneously add stereotypes to all selected classes.

The stereotypes of the standard profile do not define any new properties. The subsequent
section on user-defined profiles explains how to display and edit the corresponding tagged

values.

5.2.3 Creating stereotyped elements in the Explorer

A corresponding configuration of the New element (see Creating new elements in Explorer
(page 65)) enables you to create stereotyped elements in Explorer.

-
Configure menu - New elements " ﬁ
Specify the element types to be provided by the pop-up menu (metaclass ‘Model')
Accessible from dialog: Eilter & Accessible from pop-up menu: Eilter &
> | umL2 » i umL2
w [0 StandardProfile v [I [StandardProfile
E Auxiliary [StandardProfile, Class, ownedType] E] Document [StandardProfile, Artifact, packagedElement]
E Auxiliary [StandardProfile, Class, packagedElement] E] Executable [StandardProfile, Artifact, packagedElement]
E BuildComponent [StandardProfile, Component, owned

E BuildComponent [StandardProfile, Component, packac
g ~~% Call [StandardProfile, Usage, packagedElement] =) '
~~¥ Create [StandardProfile, Usage, packagedElement]

~~% Derive [StandardProfile, Abstraction, packagedElement
|:1 Document [StandardProfile, Artifact, ownedType]

$:| Entity [StandardProfile, Component, ownedType]

$:| Entity [StandardProfile, Component, packagedElement
|:1 Executable [StandardProfile, Artifact, ownedType]

|:1 File [StandardProfile, Artifact, ownedType]

rj File [StandardProfile, Artifact, packagedElement]

E Focus [StandardProfile, Class, ownedType]

E Focus [StandardProfile, Class, packagedElement]

[#] Sort alphabetically
m Cancel Help

Figure 202: Configuration dialog for creating new elements in a package to which the standard profile is assigned

h 3 “—

Figure 202 shows the configuration dialog for a model to which the UML standard profile is
assigned. In addition to the UML category, which contains all element types that can be
created in a model, a second category StandardProfile is displayed. It contains all stereotypes
of the standard profile that extend the element types contained in the UML category. In this
example, the stereotypes «Document» and «Executable» were added to the pop-up menu. The
name of the stereotype is followed by square brackets containing the name of the profile in

which the stereotype is defined, the name of the metaclass being extended by the stereotype,
and the metaproperty used when creating the element.
* [l Sales system

» @ Analysis diagrams [UML2 Model]
V@ Design diagrams [UMLZ Mod=!1

, Relationships New element ¥ [] primitiveType [packagedElement]
» UML Profiles New diagram » [signal [packagedElement]
3 Ccut StateMachine [packagedElement]
Em Copy @ UseCase [packagedElement]
T I—_] Document [StandardProfile, Artifact, packagedElement]
B Delete
|—_] Executable [StandardProfile, Artifact, packagedElement]
Cp Rename
: : More...
Hide all elements of this type

¥ Delete incomplete relationships... % Configure menu..

Figure 203: New element pop-up menu with stereotypes

Figure 203 shows the New element pop-up menu of the model. It now contains the two
stereotypes. Selecting Document [StandardProfile, Artifact, packagedElement] creates a new
element of the UML type Artifact for the packagedElement property of the model. The element
is assigned the «Document» stereotype.

5.2.4 Stereotypes in the Symbols bar of diagrams

Assigning a profile to a package affects the Symbols bar in the diagrams contained in the
package. For each symbol for whose metaclass the profile defines a stereotype, an additional
symbol with the name of the stereotype is provided.

r Customize "Symbols' bar - —— s ﬁw
Which symbaols are to be available for direct access in the "Symbols' bar?
Available symbols: Filter =~ Available in 'Symbols' bar: Filter =~
| Filter list ‘ | Filter list ‘
s W - StandardProfile 5

w —— StandardProfile

& BuildCompanent (Component) B Auwsiliary (Class)

“*" Call (Usage junction point) ¥ Call (Usage)

" Create (Usage junction point) ¥ Create (Usage)

"*" Derive (Abstraction junction point) % Derive (Abstraction)

3 Document (Artifact) B Focus (Class)
] Entity (Companent) - [Framework (Package) 1
E| Executable (Artifact) E ImplermentationClass (Class)

1T

- Instantiate (Usage) J’
E Metaclass (Class)
] Metamodel (Model)

B File (Artifact)

$:| Implerment (Component)

"#" Instantiate (Usage junction point)
l:‘l Library (Artifact) El MaodelLibrary (Package)
27 Process (Component) ¥ Refine (Abstraction)
~¥ Responsibility (Usage)

=¥ Send (Usage)

“#" Refine (Abstraction junction point)
"#" Responsibility (Usage junction point)
B script (Artifact) [systemModel (Model)

"#" Send (Usage junction point) % Trace (Abstraction)

B Comiicn framnnnnn £ 7 E'T\.rnelfl:lass'_l -

m Cancel Help

Figure 204: Configuration dialog for the Symbols bar with stereotype symbols

[#] Sort alphabetically

Figure 204 shows the configuration dialog for the Symbols bar for a Class diagram, whose
package has been assigned the standard profile. In addition to the categories for the individual
diagram types, another category is displayed for the standard profile. It contains symbols for
the corresponding stereotypes. The name of the underlying default symbol is displayed in
brackets after each stereotype name.

The Symbols bar also shows the stereotype symbols of a profile in a separate category, which
is headed by the name of the profile enclosed in a pair of guillemets (see Figure 205).

For example, if you add the Auxiliary (Class) symbol to the Symbols bar for this kind of
Class diagram and create an element in the diagram for this symbol, a new class is created in
the diagram and this class is automatically assigned the «Auxiliary» stereotype.

Symbaols x
"l = an
name : "
BT B Class diagram

Class (EM) P Package diagram

¥ «StandardProfiles
g Auxiliary (Class)

Figure 205: Symbols bar with stereotype symbols and creation of a stereotyped class using a corresponding symbol

5.3 User-defined UML profiles

ARIS UML Designer supports creation of user-defined UML profiles using UML Profile diagrams
The profiles are available immediately after creation in the database in which they are
modeled. If you want to use this kind of user-defined profile in a different database, you can
transfer it to other databases using standard ARIS functionalities such as Merge or XML export

and import.

5.3.1 The UML metamodel generator

Profile modeling in ARIS UML Designer is carried out in line with the UML specification, that is,
both the metamodel and its metaclasses are represented graphically in the Profile diagram and
related to the elements from the profile using edges.

In order to create a profile yourself, you first require the UML metamodel with its metaclasses.
You can create the UML metamodel in the database using the metamodel generator.

feta mo--'

) Mew element 3
Crganizal

Processes @~ Cut Ctrl=
Salessyst ERy Copy Chrl+C

UML Prot W Delete Delete

v v v v v

Cp Rename F2

sk Generate UML metamodels...

Delete incomplete relationships...
Goto »

* Add to favorites...

Import r
Export ’
Lock/Unlock b
Evaluate b
B rroperties... Alt=Ente

Figure 206: Launching the UML metamodel generator in the pop-up menu for a group

You can launch the metamodel generator in the pop-up menu for an ARIS group by clicking
Generate UML metamodels. Alternatively, you can click the button of the same name in the
Content tab bar.

T

UML - ARIS UML Designer

M e

Start Contents Evaluate

*:l I #: stk Generate UML metamodels

!'.-_ Delete incornplete relation sr%s

Import Export Vers
~ v Edit elements
Navigation Generate UML metamodels
Explorer tree Generates a UML metamodel whose
elements you can use when

« B umL
» I ARIS Connect Governance Models
- !, ARIS UML Designer Examples
w @@ Main group®
b B8 Example diagrams
» s]
b B8 Organization

Working environment: Configuration & Administration

Figure 207: Launching the UML metamodel generator in the Contents tab bar for a selected group

The dialog for generating the UML metamodel enables you to specify the language in which the
metamodel is generated in the database.

Generate UML metamodels ﬁ

Specify the language you want to use for naming the metamodel elements to ..

C) |U5v.=_- original metamodel names {recummended]|

) Use current metamodel language

() Use database languages

Generating the metarmodel may require some time.
Please note:

Multiple instances of metamodels are not allowed in one database. If the metamodels
have been created in another group of the database, they will be moved to the selected

group.

To aveid simultaneous generation of metamodels, please make sure that no other user is
currently running metamodel generation in the database containing the selected group.

Figure 208: UML metamodel generator

The following options are available:

Use original metamodel names (recommended)

In this case, the original names from the UML metamodel are used. This is recommended
because the UML specification only exists in English. While some metaclasses are relatively
easy to identify if their names are in other languages, with other metaclasses it is much
more difficult.

With this option, the names are created only in the alternative language in the database,
which means that you will always see the original metamodel names regardless of the
database language you select at login.

Use current metamodel language

This option creates the names in the language you have selected as the metamodel
language in the general options (see Designer > General (page 112)). Once again, the
names are created only in the alternative language in the database. For example, if you
have selected German as the metamodel language and English as the alternative
language in the database, the German metamodel names are saved in the database
language English.

Use database languages

Generation is carried out for each database language in the corresponding language, that
is, if you are logged in with the database language German, the metamodel names are
displayed in German, and if you are logged in in English, the original names are displayed.

The metamodel generator generates three metamodels and the UML standard profile in the
database.

v Meta model
3 @ Base [Metamodel]
4 El PrimitiveTypes [Metamodel]
b 2] UML [Metamodel]
[3 D StandardProfile [UML2 Profile]

Figure 209: Generated metamodels

The PrimitiveTypes metamodel defines the primitive data types used by the UML metamodel.
It is also part of the official UML standard from the OMG.

"V@ PrimitiveTypes [Metamodel]
3 Relationships
b [Provides a set of common primitive data types used by other meta models. [UML2 Comment]
» I:‘ Boolean [UMLZ2 PrimitiveType]
3 |:| Integer [UMLZ PrimitiveType]
b I:‘ Real [UML2 PrimitiveType]
» I:‘ String [UML2 PrimitiveType]
4 |:| UnlimitedMatural [UMLZ2 PrimitiveType]

Figure 210: PrimitiveTypes metamodel

The Base metamodel is an ARIS-specific extension, which supplements the UML elements and
diagrams with some ARIS-specific properties (see also Root (page 30)). Furthermore, it
defines data types that are not provided by the PrimitiveTypes metamodel, but are supported
by ARIS UML Designer.

V@ Base [Metarmodel]
[Relaticnships
b [™ The "Base" metamodel provides elements, properties, and datatypes for all metamodels. [UML2 Comment]
4 E ArnsElement [Metaclass]
¥ $] ArisDiagram [MetaDiagram]
[D ArisMetafile [UML2 DataType]
[E LabelTaggedValuesViewKind [UML2 Enumeration]
4 E SterectypelmageViewKind [UMLZ Enumeration]
4 E TaggedValuesViewKind [UML2 Enumeration]
¥ D TimeStamp [UML2 PrimitiveType]
k D URL [UMLZ PrimitiveType]
k7 PrimitiveTypes [UML2 Packagelmport]

Figure 211: Base metamodel

The UML metamodel contains all UML metaclasses, associations, and properties and - as an
ARIS-specific extension - the corresponding symbol and diagram types that are also relevant
for modeling of profiles.

w [UML [Metamodel]
4 Relationships
b [™ UML 2.5 meta model [UML2 Comment]
[E Abstraction [Metaclass]
3 E AcceptCallAction [Metaclass]
3 E AcceptEventAction [Metaclass]
3 E Action [Metaclass]
3 E ActionExecutionSpecification [Metaclass]
3 E ActionlnputPin [Metaclass]
b [Activity [Metaclass]
b [ActivityEdge [Metaclass]
3 E ActivityFinalMode [Metaclass]

Figure 212: Small extract from the generated UML metamodel

The profile StandardProfile includes all stereotypes that are already defined by the UML
specification. It is generated together with the metamodels in order for you to be able to
import the profile or the stereotypes it contains into your own user-defined profiles.

VE StandardProfile [UMLZ Profile]
13 Relaticnships
b UML [UMLZ Packagelmport]
b [The Standard Profile specifies a set of predefined standard stereotypes. [UML2 Comment]
b —# Abstraction_Derive [UML2 Extension]
b —# Abstraction_Refine [UML2 Extension]

b] Awsiiliary [UML2 Stereotype]

3 E BuildComponent [UML2 Sterectype]
»] Call [UML2 Stereotype]

b E Create [UMLZ Stereotype]

Figure 213: Two extracts from the generated UML standard profile

Note that you can only use metamodels generated in this way for profile modeling. ARIS UML
Designer identifies the relevant meta elements based on their GUID and not using their name,
which can differ considerably depending on the generator settings.

The fact that each meta element is created with a specific GUID and a GUID in an ARIS
database can only be used by one element results in certain consequences for generation.

Each generated meta element can only exist once in a database. Therefore, the metamodel
generator always searches the database for an existing element with the corresponding GUID
first, before it creates a new one. If it finds one, this element is used.

This means that if a generated metamodel already exists in a different group in the database,
it is moved into the group in which the generator has been started.

If you move a meta element from the metamodel to another UML package, rename it, or edit it
in some other way — which is explicitly not recommended - this meta element is restored to
its original state the next time the metamodel generator is run.

5.3.2 Creating a profile

First create a new profile in an ARIS group in the Explorer tree and give it the name of your
choice.

[UML Profile

Mew element L Group
3 Cut 1 Model
Em Copy] package
& Delete 7 profile
Cp Rename

Figure 214: Creating a new profile in the Explorer tree

Then create a Profile diagram in the profile.

b LML Profiles

Mew element 3
g D Analysis profile [UML2 Prof Mew diagram 4 Profile diagram
#< Cut More...
Em Copy

% Configure menu...

Figure 215: Creating a new profile diagram

It is important that you first create the profile and then the Profile diagram in the profile, and
not vice versa. If you create new elements in a diagram, they are created in the element in
which the diagram is contained. The fact that the profile diagram is contained in the profile
ensures that all stereotypes, Extension relationships, and enumerations that you create in the
diagram as part of profile modeling are actually contained in the profile and not in another
package.

Next drag the profile from the Explorer tree into the diagram.

Mavigation

Explorer..| Diagra.. Diagra.. Vi

S

8 UML Proefile* —
[Analysis profile* [UP prafiles
Analysis profile
k W Relationships T

Analysis profile®

Figure 216: Presentation of the profile in the profile diagram

Finally, you have to drag the UML metamodel created by the metamodel generator into the
Profile diagram and create a relationship of the Metamodel reference type from the profile to

the metamodel.

Mavigation ® = Symbols b
Explorer. Diagra.. Diagra.. Visuali. Ak = ug | %
B Example diagrams H8 Meta class reference
el afaran g Fal
* Il Meta model —n_o _o_ _=
= sMetamodels i B
v [Base [Metamodel] L M Mets model reference
] :a PrimitreeTypes [Mel ? COwening class
+ Il Organization ? Owning classifier
B Processes ? QOwening interface
BB Sales system
w [UML Profile” 9 Owning package
- El Analysis profile® [UP ﬁ Package

» BB Relationships

) ¥ Package import
Anahysis profile”

Figure 217: Definition of a pure extension profile

You have thus indicated that the profile fully supports UML. Creating a filter profile (page 191)
outlines how to define profiles that support only a subset of UML.

If you enter a description in the properties of the profile, it is displayed later when assigning
the profile to a package in the profile selection dialog.
* Element
description Profile for object-oriented analysis.

F ownedComment
¥ NamedElement
k clientDependency
name (*) Analysis profile

nameExpression

Figure 218: Description of the profile

INTRODUCTION

[] OMF Extension Profile

[OMF Meta Profile

[standardProfile

[] UML 14 Compatibility Profile

Analysis profile
Profiles for object-oriented analysis.

Figure 219: User-defined profile with description in the profile selection dialog

175

5.3.3 Creating a stereotype

Stereotypes are used to express particular semantics that are not provided in the UML
standard, for example, the «Technical class» and «Design class> stereotypes for
illustrating the meaning of the corresponding classes, or to define new properties. The
stereotypes of the UML standard profile fall into the first category. They do not define any new
properties.

If you want to define a new stereotype, you must first create it in the Profile diagram32.

Symbaols x
.ll E :: I m
- Provided interface .
ofil areferences Ay
gprofile | _-)
RRRE nrofile KMEEFTEdElE 'e" Realization
n F — Required interface
zsteraotypes :
Business use case E @ Stereotype
]
¥ Usage

Figure 220: Definition of a new stereotype

The next step is to place the metaclass to be extended from the generated UML metamodel in
the diagram and to link the stereotype with the metaclass using an Extension relationship.

Symbaols x

3/ = B e |
P areferanc es e e :___JI ExtendedProperty (P... =
nnatlyiriiﬂ:f:nﬁle ________ = xMeha::Edem e

? Generalization

Metaclass B o
TSTETEDWDEE ' i =1 Instance specification
Business use case UseCase
|:| Interface

Figure 221: Linking the stereotype with the corresponding metaclass

In the example diagram, the representation options for the Extension relationship have been
adjusted so that no multiplicities and names are displayed (Extension is a special form of the
association), and for the metaclass the feature view of details has been suppressed so that no
attributes are displayed.

32 Of course, you could also create and edit the stereotype in the Explorer tree. However, the
link with the corresponding metaclass in particular will then involve considerably more work
than with graphical modeling.

For user-defined stereotypes, their description texts are displayed in the stereotype
assignment dialog.

* Hement

description Marks an economically relevant use case.
F ownedComment

¥ NamedElement
k clientDependency

name (*) Business use case

Figure 222: Description of the stereotype

* Hement

description Marks an economically relevant use case.
F ownedComment

¥ NamedElement
k clientDependency

name (*) Business use case
Figure 223: User-defined stereotype with description in the stereotype selection dialog

Figure 223: User-defined stereotype with description in the stereotype selection dialog

If you only want to allow use cases with the «Business use case» stereotype in packages to
which you have assigned the Analysis profile, you can indicate this on the Extension
relationship in the Profile diagram by selecting Specify as 'required’ in the pop-up menu or
clicking the corresponding button in the Content tab bar:

4
Edit

elements

Set to 'required’

zMetaclasss
UseC ase

zStereotypes
Business use case

Figure 224: Flagging an Extension relationship as required in the Content tab bar

In the Profile diagram, the keyword {required?} is displayed on the Extension relationship33:

zsiereotypes {required} zMetaclasss:
; R
Business Lse case UseCase

Figure 225: Extension relationship with required property

This change means that when you create a use case in a package to which the profile is
assigned, it is automatically given the «Business use case» stereotype. However, setting
this property only makes sense if you have not defined more than one stereotype in your
profile for the corresponding metaclass.

33 Flagging an Extension relationship as required changes the multiplicity of the association
end linked to the stereotype from [0..1] to [1]. As the multiplicities of Extension relationships
are not normally displayed in diagrams, the keyword {required} is displayed on the edge
instead.

5.3.4 Defining new properties

You can use stereotypes to define new properties that are not provided in the UML metamodel.
In exactly the same way as the predefined properties, the user-defined properties can
represent simple data values or relationships with other elements.

To define the new property Requirements for a stereotype, first create a new attribute of the
UML type Property and give it the corresponding name.

Properties - Element: 'Business use case' [UML2 Sterectype] @
Selection Help General
Information 5 %‘ E‘_e %I “w O
General P General 3%
Description ¥ Stereotype
Relationships b icon
Reused objects - ﬁrisHementl
b externallink
Linked diagrams identifier
Presentations in diagrams wmild
Format ¥ BehavioredClassifier

Applied sterectypes classifierBehavior

b interfaceRealization

Tagged values -

b ownedBehavior
¥ Class

isAbstract (*) False

ishctive (*) False

b nestedClassifier

w ownedAttribute | = |

T/ B create element b | -0 ExtensionEnd

b ownedOperation
: Use element... Aft+U o Port
b ownedReception

b Classifier "1 Property
} Hement % Configure menu...

ownedAttribute
The attributes (i.e. the Properties) owned by the Class,

m Cancel Reset Help

Figure 226: Creating a new attribute for a stereotype

In the next step you have to specify the type of the property. The type can be a primitive data
type, an enumeration type, a metaclass, or another stereotype.

1

Properties: 'Property’ [UML2 Property]

Selection Help

Information

General

Description

Relaticnships

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

General

4 [=|=tel w O
¥ MultiplicityElement
isOrdered (%)
isUnigue (*)

lower

lowerValue
upper
upperyalue
¥ NamedElement
b clientDependency
name (*)
nameExpression
wisibility
¥ ParameterableElement
owningTemplateParameter
¥ RedefinableElement
isLeaf (*)
¥ StructuralFeature
isReadOnly (*)
¥ TypedElement
type

type
The type of the TypedElement.

=

Falze

True

Requirements

False

Falze

|< Mot specified > b
Create element 4

Use element...

Figure 227: Specifying the attribute type

Note that only the primitive data types created by the UML metamodel generator can be used.
You will find these in the PrimitiveTypes (Boolean, Integer, Real, String, and
UnlimitedNatural) and Base (TimeStamp) metamodels. User-defined primitive data types are
not supported, even if they have the same name as those from the generated metamodels.

The values of the Requirements property are entered as text. Therefore, you should select
the primitive data type String from the PrimitiveTypes metamodel as the type of the
attribute.

o o

Select elements @

Browse Explaorer

Elernent:

* [0 Meta model
[3 Base [Metamodel]
V PrirnitiveTypes [Metamodel]
k Relationships
b [Provides a set of common primitive data types used by other meta models. [L
k I:' Boolean [UML2 PrimitiveType]
k I:' Integer [UML2 PrimitiveType]
k I:' Real [UML2 PrimitiveType]
k I:' String [UML2 PrimitiveType]
k I:' UnlimitedMatural [UML2 PrimitiveType]
b [0] UML [Metamodel]

ﬁ Cancel Help

Figure 228: Selecting the primitive data type String from the PrimitiveTypes metamodel

The stereotype thus looks like this:

zstereotypes

Business use case >
Reqguirements: 5tring

zMetaclasss
UseCase

Figure 229: Stereotype with text attribute

If you enter a description for the property in addition to the name and the type, this is
displayed in the Properties dialog for elements to which this stereotype is assigned.

¥ Hement
description Technical requirements which have to be observed to realize the use case.

F ownedComment

* Feature
isStatic () Falze

F MultiplicityElement
¥ NamedElement
F clientDependency
narme () Requirements
narneExpression
visibility
Figure 230: Description of the stereotype attribute

In all use cases to which the «Business use case» stereotype is assigned, the new property
Requirements is now available to you on the Tagged values properties page.

Properties: Create key custorner order @
Selection Help Tagged values

Informaticn

General ¥ Business use case
Description Requirements (%) |This use case may be only executed for custorners with status "Key customer”, |
Relationships | This use case may be only executed for customers with status "Key customer”. |

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

Requirements (* is required)
Technical requirements which have to be observed to realize the use case.

m Cancel Reset Help

Figure 231: Tagged value with free text input

If you want to use an enumeration type as the type for a stereotype attribute, it must either
be contained in the same profile or be imported into the profile for the stereotype from another
profile using an ElementImport relationship34.

zstereotypes
Business use case

Requirements: String ——=
Priarity: Priarity
Association end:UseCase

zMetaclasss
UseCase

Figure 232: Definition of the Priority property of the Priority type

Figure 232 shows a UML enumeration type Priority with the three enumeration values high,
normal, and low and a stereotype attribute of the same name, which uses this enumeration
type as its type.

34 To import an enumeration type from another profile into the profile for the stereotype,
create a presentation of the enumeration type in the Profile Diagram for the stereotype and
create an edge of the Element import type from the profile to the enumeration type.

In all use cases to which the «Business use case» stereotype is assigned, the new property
Priority is thus available to you on the Tagged values properties page.

Properties: Create key custorer order @I
Selection Help Tagged values

Information =4 =B O
General ¥ Business use case
Description Requirements ()
Relaticnships Priority (%) [high | vJ

. high
Reused objects .

mediurm

Linked diagrams low

Presentations in diagrams
Applied stereotypes
Tagged values

Priority (* is required)
The use case should be realized with this priority.

m Cancel Help

Figure 233: Tagged value with selection list

Properties with metaclasses as the type enable you to use elements from the corresponding
metaclass as values. If you want to use a metaclass as the type for a stereotype attribute, the
same applies as for primitive data types - only metaclasses that have been created by the UML

metamodel generator are supported.

If you are using a stereotype as the type, you can use elements to which this stereotype is
assigned as values. The stereotype must either be defined in the same profile or imported into

the profile.

5.3.5 ARIS-specific features of user-defined properties

If you want to specify the values of a user-defined property in multiple languages, that is,
depending on the database language selected at login, you must define this in the
corresponding stereotype attribute. Stereotype attributes are of the UML type Property. As
the UML specification does not recognize multilingual elements, there is no property for the
UML type Property that you can use to specify whether or not the UML property defines a
multilingual property.

ARIS-specific properties such as multiple languages are provided for definition of profiles by
the OMF Extension Profile. This is a predefined profile in ARIS UML Designer, which you can
use directly in exactly the same way as the standard profile.

In order to be able to define multilingual properties in your profile, you must first apply the
OMF Extension Profile on your profile.

Properties: Analysis profile

[==]
Selection Help Applied profiles
Information - | [Fo] (i |
+ | - =
General
Description Profile & Is strict
Relationships
Apply profiles ==

Reused objects

O

Analysis profile

[##] OMF Extension Profile
[OMF Meta Profile
O
O

Linked diagrams
Presentations in diagrams

Applied profil
PRUECRINE StandardProfile

S\pplieiiStEEDtypEs UML 1.4 Compatibility Profile

Tagged values
Access privileges (user groups)

Access privileges (users)

m Cancel Help

m Cancel Help

Figure 234: Assigning the predefined OMF Extension Profile to the user-defined Analysis profile

Then open the Properties dialog for the stereotype attribute whose values you want to specify
in multiple languages, and assign it the ExtendedProperty stereotype.

-

Properties: Requirements @

Selection Help Applied sterectypes

Inf ti ;
nfermation - | = = B
General |
Description Stereotype ¥ Profile
Relationships
g Apply stereotypes @
Reused objects
Linked diagrams [+#/] ExtendedProperty

Presentations in diagrams
Applied stereotypes
Tagged values

m Cancel Help

m Cancel Help

Figure 235: Assigning the «ExtendedProperty» stereotype to the stereotype attribute Requirements

The two ARIS-specific properties isLanguageDependent and isStyledDocument are then
available on the Tagged values properties page for the stereotype attribute.

P

Properties: Requirements

Selection Help

Information

General

Description

Relaticnships

Reused objects

Linked diagrams
Presentations in diagrams
Applied stereotypes
Tagged values

Tagged values

8 (==} el O

¥ ExtendedProperty

|isLanguageDependentf"]

isStyledDocument (*)

isLanguageDependent (* is required)

=3

True

True

Specifies whether the values of this property are stored separately for each ARIS database

language.

m Cancel Help

Figure 236: ARIS-specific properties of a stereotype attribute

You can use isLanguageDependent to specify whether property values based on this
stereotype attribute are saved according to the relevant database language. You can use

isStyledDocument to specify whether text formatting is available when editing these tagged

values.
o
Properties: Create key customer order @
Selection Help Tagged values
Information 4l E: '%: O
General ¥ Business use case
Description Contact person (*] |John Doe
Relationships Requirements (¥} [ﬂly be executed for custorners with status "Key custamer"._[Z]
Pricri high
Reused objects riority () '9
Linked diag Enter property 'Requirements’
Presentatio|
Applied stef |5EgerI |v|12 |,‘ B |1 U g EIEI Ay
Tagged val =
93 This use case may only be executed for customers with status "Key customer”.

et | |

m Cancel Help

Figure 237: Editing a tagged value with text formatting

5.3.6 Inheritance relationships between stereotypes

If different stereotypes each define identical properties, we recommend defining a stereotype
for the shared properties and having the others inherit from it.

z5tereotypes
Analysis efement

Contact person:string

i)
z5teretypes zMetaclasss
Technical class —— Class
z5tereotypes
Business use case sMetaclasss
-
«ExtendedProperty = Requirements:String UseCase

Priority: Priarity

Figure 238: Inheritance relationships between stereotypes

Figure 238 extends the example from Figure 232 with the two stereotypes «Technical class»
and Analysis element. The «Analysis element>» stereotype is abstract®> and defines the
Contact person property of the String type. The other two stereotypes inherit from «Analysis

element>».

35 The fact that the stereotype is abstract is indicated by the fact that its name is displayed in
italics in the diagram.

This means that all use cases with the «Business use case» stereotype and all classes with
the «Technical class>» stereotype show the Contact property on their Tagged values
properties page.

Properties: Create key customer order @
Selection Help Tagged values
Infermation a1 BB O
General ¥ Business use case John D
Description Contact person (%)
Relationships Requirements ()
Priority ()

Reused objects

Linked diagrams
Presentations in diagrams
Applied sterectypes
Tagged values

Contact person (* is required)
Contact person for technical relevant information.

m Cancel Help

Figure 239: Tagged values with inherited property

The fact that the «Analysis element» stereotype is abstract and does not itself extend a
metaclass means that it cannot be assigned to a UML element. It is merely used to define a
property that is to be common to several stereotypes.

Of course, you can also create inheritance relationships between non-abstract stereotypes.

5.3.7 Creating a filter profile

In Creating a profile (page 173) you have seen how to create a profile that completely
supports UML by creating a relationship of the Meta model reference type between the
profile and the UML metamodel. Within a package to which this kind of profile is assigned, all
UML symbols are still available in diagrams in addition to the stereotype-based symbols.

If you delete3® the Meta model reference relationship in the profile in Figure 221, the
Symbols bar for a Use case diagram only displays two symbols for the «Business use case»

stereotype.

Symbols x
"l = an v YR
¥ Use case diagram

q; Owning classifier

¥ «Analysis profiles

@ Business use casze (Use case (class nota...

@ Business use case (Use case)

Figure 240: Symbols bar in the Use case diagram

In addition to the symbols whose metaclasses are permitted by the profile, the Symbols bar
also displays all edge symbols that represent a metaassociation3” and whose two end types
are also permitted by the profile. In Figure 242 this applies to the Owning classifier symbol.
It does not represent a metaclass, but the metaassociation A_ownedUseCase_ classifier, by
which a classifier can own use cases. The metaclass UseCase permitted by the stereotype in
the profile inherits from the Classifier metaclass, which means that relationships of this type
are also possible when using the profile.

The toolbars for other diagram types in which use cases are not allowed are completely empty.

36 Here, delete means deleting the element and not just its graphic presentation in the

diagram.
37 You can use these symbols to create a direct relationship between two UMLelements.

You can selectively add individual metaclass to the profile by placing them in the Profile
diagram and linking them to the profile using the Meta class reference relationship.

fi
zreferences
eprofiles | . - aMetaclasss
Analysis profile | Actor
| zreferences
Metaclasss:
- ;,_ €
{ Association
| zreferences
— — — —= Property
zsterectypes zMetaclasss
i E—
Business use case UseC ase

Figure 241: Profile that supports only a few metaclasses

This profile specifies that all elements of the Actor, Association, and Property types can be
used in diagrams, along with elements of the UseCase type, if the «Business use case>»
stereotype is assigned to them.

Symbaols x
"l = un v R
™ Use case diagram

=3 Abstraction

T Actor

Association

Owning classifier

g Actor (class notation)
>

¥ «fAnalysis profiles

E Business use case (Use case (class n...

@ Business use case (Use case)

Figure 242: Symbols bar in a Use case diagram when using the profile

This type of profile definition requires some prior knowledge of the UML metamodel and its
graphical representation in diagrams. In the above example, if the Property metaclass were
not assigned to the profile, the Association symbol would not be available in diagrams, as an

edge presentation for an association can only be created in conjunction with its two association
ends, which are of the Property type.

Note that a profile only has an effect on the new things you can create in a diagram. Existing
diagram content not supported by the profile is retained in the superior package even after
assigning the profile to the diagram.

5.3.8 Creating a diagram stereotype

In ARIS UML Designer, you can define stereotypes for diagrams, so that they can be extended
with user-defined properties, or to specify which content is to be permitted in the diagrams.

Stereotypes for diagrams are created in exactly the same way as stereotypes for elements,
except that the Extension relationship is created from the stereotype to a meta diagram rather
than to a metaclass. Meta diagrams are created by the metamodel generator as UML
components with the «MetaDiagram» stereotype.

=]
. zMetaliagrame=

Class diagram

zDiagramStereotypes
Analysis class diagram

Figure 243: Definition of a stereotype for class diagrams

New properties are defined in exactly the same way as that described in Defining new
properties (page 179).

In addition, you can specify which symbols can be included in the Symbols bar for a diagram
to which the stereotype is assigned. For this purpose, you must assign the profile the OMF

Extension Profile introduced in ARIS-specific features of user-defined properties (page 185)
and assign the stereotype the «DiagramStereotype» stereotype.

-

Properties: Analysis class diagram

<

Selection

Help Applied sterectypes

Informaticn])
ik = B

General
Description Stereotype ¥ Profile
Relationships

-p Apply stereotypes @
Reused ohjects
Linked diagrams [# DiagramStereotype

Presentations in diagrams
Applied stereotypes
Tagged values

m Cancel Help
m Cancel Help

Figure 244: Assigning the predefined «DiagramStereotype» stereotype to the user-defined stereotype «Analysis class
diagram»

The «DiagramStereotype>» stereotype defines three new properties for stereotypes, which
you can use to specify which symbols are permitted in the corresponding diagram:
SUPPORTEDMETACLASS

Here, you can add all metaclasses whose symbols are to be supported by the diagram without
having to set any restrictions in terms of the symbol or stereotype to be used.
SUPPORTEDSTEREOTYPE

Here, you can add all stereotypes whose symbols are to be supported by the diagram. This is
useful if the corresponding elements are not to be permitted in the diagram without a
stereotype.

SUPPORTEDSYMBOL

Here, you can add all symbols to be permitted in the diagram. This is useful if you want to
permit only certain symbols in the diagram for a metaclass or a stereotype. As long as you do
not specify any symbol in this property (as described in Creating a filter profile (page 191)),
all edge symbols based on metaassociations whose end types are supported by the profile and
the other two properties are also permitted in the diagram. However, as soon as you specify a
symbol here, you must add to this property all edge symbols based on metaassociations that
are to be permitted in the diagram.

If you do not enter a value for any of the three properties, all symbols are permitted in the
diagram.

You can use the following configuration to specify that the Symbols bar for Class diagrams
with the «Analysis class diagram» stereotype contains all symbols for the UML types Comment
and Constraint, all symbols for the UML type Class with the «Technical class» stereotype, and
the Association, Constrained element, and Annotated element symbols.

Properties: Analysis class diagram @
Selection Help Tagged values

Information

=4 ==t el O
General ¥ DiagramStereotype
Description supportedMetaClass

Relationships E Constraint

C t
Reused objects
_] ¥ supportedStereotype
Linked diagrams [Technical class
Presentations in diagrams ¥ supportedSymbaol
Applied stereotypes B Constrained element

B Annotated element

Tagged values
B Association

{(Name)
{Description)

m Cancel Help

Figure 245: Configuration of a diagram stereotype

In the Profile diagram, the stereotype with this configuration is displayed as follows:

zDiagramsterectypes

Analysis class diagram H]
supportedi etaClass = { Constraint, Comment } > xMEtEDI_EQFEFI"Ix
supportedStereatype = { Technical class } Class diagram

suppornedSymbol = { Constrained element, Annotated element, Association }

Figure 246: Configured diagram stereotype in profile diagram

With this configuration, the Symbols bar for a Class diagram with the «Analysis class
diagram» stereotype can contain the following symbols:

Symbols x
T = a2

™ Class diagram

¥ Abstraction
Annotated element

1 I Binary constraint

)

Assaociation
4 Comment

Constraint

¥ <Analysis profiles

g Technical class (Class)

Figure 247: Symbols bar for an Analysis class diagram

If you have defined a single stereotype for a meta diagram in your profile and, in packages to
which the profile is assigned, diagrams of this type are only to be created in conjunction with
this stereotype, by flagging the Extension relationship as required you can specify that the
stereotype is automatically assigned when creating the diagram (see also Creating a
stereotype (page 176)).

6 Differences from ARIS Architect/Designer

This section shows you the differences in operation between ARIS UML Designer and ARIS
Architect/Designer and the reasons for them.

6.1 Relevance of the model and its diagrams in terms
of semantics

There is a fundamental difference between the classic ARIS Method and UML that has major
effects on how you use ARIS Architect/ARIS Designer and ARIS UML Designer.

In UML, the semantics of a model (not a diagram) are completely contained in its elements
and their properties and relationships. Diagrams merely represent a graphical view of the
model. If you were to delete all UML 2 diagrams in an ARIS database, the semantics of the
UML model would be fully retained. In addition, many UML elements are not represented
graphically in diagrams and appear there in text form at most within the graphical presentation
of a superior element.

In ARIS Method, diagrams have a much greater significance. For some ARIS objects, the
symbol by which they are represented graphically in a diagram actually determines their
semantics3®. As a consequence, the diagrams in ARIS Method make a significant contribution
to the semantics of the model. Conversely, objects and relationships that are not represented
graphically in a diagram are irrelevant in ARIS Method.

During database reorganization3® all ARIS objects and ARIS relationships with no occurrence in
a diagram are therefore deleted. By contrast, UML 2 elements are retained after database
reorganization, as merely the fact that a UML element is not represented in any diagram does
not reveal whether or not it is still required.

38 One example is the Rule object. It is the graphical representation in a diagram with a XOR,
AND, XOR/AND, OR/XOR symbol etc. that specifies the exact meaning.

3% Administrative functionality in ARIS Architect for deleting objects and connections that is no
longer required.

6.2 The Save and Undo/Redo functions

Unlike in the ARIS standard, in ARIS UML Designer many elements and relationships are not
created and edited graphically in diagrams, but in the Explorer tree and in Properties dialogs.
Therefore, the Explorer tree is far more important as a modeling component than is the case in
the ARIS standard. There, the tree is primarily used for editing the group hierarchy, creating
diagrams, and for navigation.

In ARIS UML Designer, changes made in Explorer are not saved until current changes are
saved in the database. In addition, changes can be undone provided they have not yet been
saved. Only functionalities that are processed on the ARIS server require the changes to be
saved immediately, for example, copying structures in Explorer.

Apart from editing the graphic properties of an element presentation, UML elements can be
edited in various components in ARIS UML Designer. For example, it is totally irrelevant
whether you select a class in the Explorer tree or in one of the diagrams to edit attributes,
operations, or other properties on the General properties page.

All changes made to an element in a component of ARIS UML Designer are immediately
displayed in all other components. In particular, the Explorer tree displays elements created or
renamed in diagrams immediately and not only after saving, as is the case in ARIS
Architect/ARIS Designer.

In addition, a change to an element in the Explorer tree or in a diagram can result in changes
in other diagrams if edges or nesting relationships that appear there are rendered invalid by
the change.

Because of the facts outlined, in terms of the Save and Undo/Redo functions ARIS UML
Designer has very different behavior than ARIS Architect/ARIS Designer:

The Save function always saves all changes you have made. Changes in the Explorer tree are
also not saved until this time.

The Undo/Redo functions operate globally across Explorer and diagram boundaries.

6.3 Opening diagrams

If you open a diagram in ARIS Architect/ARIS Designer, it is locked for write access by other
users when opened, or a message is displayed stating that it can only be opened in read-only
mode if another user has already opened the diagram.

To prevent a diagram being automatically locked for changes by other users when you only
want to view it, in ARIS UML Designer diagrams are always opened in read-only mode. The
corresponding lock is only requested from the server and the diagram is updated when you
attempt to change the diagram, so that you are editing the diagram in its current state. If it is
already being edited by another user, you will see a corresponding message.

When saving, in ARIS UML Designer all locks are canceled.

6.4 Element hierarchies

While hierarchies of objects can only be represented in ARIS Architect/ARIS Designer
graphically using corresponding connection types in diagrams or by assigning a diagram with
subordinate objects to a superior object, in ARIS UML Designer element hierarchies can be
represented directly in the Explorer tree, where the superior element owns the subordinate
elements.

6.5 Graphical connections and edges in diagrams

In ARIS Architect/Designer, a graphical connection in a diagram always displays a single
connection definition. In ARIS UML Designer, a graphical edge can represent a whole series of
elements and relationships. You will find more detailed information about this issue in
Complexity of edge presentations (page 127).

6.6 Assignments

ARIS Method specifies which and how many diagram types can be assigned for each object
type. ARIS UML Designer uses a different approach for diagram assignments, which is outlined
in more detail in Linked diagrams (elements) (page 60).

6.7 Creating ARIS scripts

ARIS UML Designer provides special functionalities for editing of UML content in ARIS reports
and macros. These are outlined using some example scripts in the report and macro categories
under UML example scripts.

7 Differences from ARIS UML Designer 7.x

With ARIS UML Designer 9 and higher, both a new approach to mapping from UML to ARIS and
a new approach to integration of UML with classic ARIS modeling has been introduced. This
result in several changes compared to ARIS UML Designer 7.x, which are explained below.

7.1 UML version

The most obvious difference relates to the supported UML version. ARIS UML Designer 7.x
supports UML 1.4, and ARIS UML Designer 9 and higher supports UML version 2.5.

ARIS UML Designer 9 and higher supports all element types and properties included in the UML
2.5 specification. Apart from Timing diagrams, for which there is only rudimentary support, all
UML 2.5 diagram types are supported.

Thus, the UML support in ARIS UML Designer 9 and higher is significantly more comprehensive
than that in ARIS UML Designer 7.x.

7.2 Mapping of UML to ARIS

Mapping of UML 1.4 to ARIS Method represented a mixture of UML and business process types.
In some cases, the decision on whether a UML element type was mapped to an ARIS object
type or ARIS connection type was based on how it was to be displayed graphically in diagrams.
Thus, the reusability of business process objects as UML elements was specified in ARIS
Method.

Element hierarchies were realized using ARIS connections between the corresponding objects.
For example, the nesting of a class in a package was mapped using a connection of the
CT_IS_NESTED type. This could mean that a class was contained in various packages due to
multiple connections of this type, which is not allowed in UML.

As some UML elements themselves were mapped to connections, for example, Dependency,
ARIS UML Designer 7.x internally supported edges as the source or target of connections.

Mapping UML 2.5 to ARIS Method involved a new approach, which is outlined in Mapping UML
to the ARIS object model (page 125). For each UML element type, a single corresponding UML
2 object type exists in ARIS Method. All UML elements are mapped to ARIS groups with the
corresponding object type number.

These changes also mean that databases with UML 1.4 content created using ARIS UML
Designer 7.x have to be converted to UML 2 before this content can be displayed and edited by
ARIS UML 9 and higher. Further information can be found in Data transfer from ARIS UML
Designer 7.x (page 124).

7.3 Reuse of business process objects in UML

The concept of direct reuse of some specifically defined ARIS object types in UML that is
familiar from ARIS UML Designer 7.x has been replaced with a flexible new concept in ARIS
UML Designer 9 and higher, which means that as a user you can now decide which business
process objects you want to map to which UML elements. Direct reuse has been replaced by a
new reuse relationship for this purpose.

This concept is outlined in detail in Linking business process and UML modeling (page 130).

7.4 Saving and undoing changes

In ARIS UML Designer 7.x, diagrams were individually saved but all changed UML elements
were always saved when saving an individual diagram, that is, including the elements that
were changed from other diagrams. Changes in the UML package tree were always saved
directly, which meant that they could not be undone.

ARIS UML Designer 9 and higher always saves all changes. The Undo/Redo functionality
operates globally across all components and diagrams.

The Save and Undo/Redo functions (page 198) describes the motivation behind this changed
behavior in ARIS UML Designer 9 and higher.

7.5 Integration of UML into the Explorer tree

In addition to the Explorer tree, ARIS UML Designer 7.x contained a second tree - the UML
package tree - for UML-compliant display and management of UML content and hierarchies.
For each UML package, UML model, and UML profile both an ARIS group and an ARIS object
were created to represent the UML package hierarchy in the Explorer tree in the form of an
ARIS group hierarchy and to enable all UML elements contained in the package to be stored in
the corresponding group for the package.

Particularly when working in the Explorer tree, it was possible that the UML structure of the
two trees was no longer synchronized and they were showing different UML hierarchies.

In ARIS UML Designer 9 and higher, UML has been fully integrated into the Explorer tree. In
addition, UML elements are mapped to groups with the corresponding object type number,
which means that there are no longer two different ARIS items (group + object) for a UML
package.

7.6 Separate window for ARIS UML Designer

The functionalities and components of ARIS UML Designer 7.x were completely integrated into
the ARIS Architect or ARIS Designer window.

Because of the different concepts, particularly in terms of the Explorer tree, the Save and Undo
behavior of ARIS UML Designer 9 and higher and ARIS Architect/ARIS Designer, separation of
the two applications using two different windows is nhow necessary.

However, the two are closely integrated on a functional level, which means that easy
navigation from one application to the other is possible. You can find more detailed information
about this topic in Navigation between ARIS Architect/Designer and (page 148)ARIS UML
Designer.

7.7 XMI interface

ARIS UML Designer 7.x supports the XMI format UML 1.4/XMI 1.1, while ARIS UML Designer 9
and higher supports UML 2.5/XMI 2.1.

In contrast to ARIS UML Designer 7.x, the XMI import in ARIS UML Designer 9 and higher
identifies content of the XMI file to be imported that already exists in ARIS and does not
duplicate it.

In addition, the XMI interface in ARIS UML Designer 9 and higher also supports export and
import of diagram information based on the UML Diagram Interchange Standard.

You can use XSL transformations, which you manage in the Administration component on the
ARIS server, you can make individual adjustments to external formats both for XMI export and
for XMI import. Further information can be found in XMI resources (page 124).

8 Appendix

8.1 Glossary

BOOCH METHOD

Object-oriented modeling language developed by Grady Booch, a forerunner of UML

BPMN (BUSINESS PROCESS MODEL AND NOTATION)

Modeling language for business processes, standardized by the OMG

MOF (META OBJECT FACILITY)

Architecture for metamodels and their implementation, standardized by the OMG

OMF (OBJECT MODELING FRAMEWORK)
ARIS implementation of MOF, part of the ARIS UML Designer architecture

OMG (OBJECT MANAGEMENT GROUP)

Non-profit organization, publishes standards for the IT industry

OMT (OBJECT MODELING TECHNIQUE)

Object-oriented modeling language developed by Grady Booch, a forerunner of UML

OOSE (OBJECT-ORIENTED SOFTWARE ENGINEERING)

Object-oriented modeling language developed by Ivar Jacobson, a forerunner of UML

UML (UNIFIED MODELING LANGUAGE)

Object-oriented modeling language, standardized by the OMG

W3C (WORLD WIDE WEB CONSORTIUM)

Committee for standardization of technologies in the World Wide Web

XMI (XML METADATA INTERCHANGE)

XML format for metamodels and models based on them, standardized by the OMG

XML (EXTENSIBLE MARKUP LANGUAGE)

Language for mapping of hierarchical structures in text form, standardized by W3C

XSL (EXTENSIBLE STYLESHEET LANGUAGE)

Language family for definition of the layout of XML documents, standardized by W3C

XSLT (XSL TRANSFORMATION)

Transformation language for transferring documents from one XML format to another,
standardized by W3C

8.2 Additional documents and references

8.2.1 Documents

UML Migration Guidelines - Guidelines for migration of an ARIS 7.x database with UML 1.4
content to UML 2.5

8.2.2 References

OMG (Object Management Group): www.omg.org (http://www.omg.org)

OMG specifications (BPMN, MOF, UML, XMI etc.): www.omg.org/spec
(http://www.omg.org/spec)

W3C (World Wide Web Consortium): www.w3.org (http://www.w3.0rg)
W3C specifications (XML, XSLT etc): www.w3.org/standards (http://www.w3.org/standards)

http://www.omg.org/
http://www.omg.org/spec
http://www.w3.org/
http://www.w3.org/standards

9 Legal information

9.1 Documentation scope

The information provided describes the settings and features as they were at the time of
publishing. Since documentation and software are subject to different production cycles, the
description of settings and features may differ from actual settings and features. Information
about discrepancies is provided in the Release Notes that accompany the product. Please read
the Release Notes and take the information into account when installing, setting up, and using
the product.

If you want to install technical and/or business system functions without using the consulting
services provided by Software AG, you require extensive knowledge of the system to be
installed, its intended purpose, the target systems, and their various dependencies. Due to the
number of platforms and interdependent hardware and software configurations, we can
describe only specific installations. It is not possible to document all settings and
dependencies.

When you combine various technologies, please observe the manufacturers' instructions,
particularly announcements concerning releases on their Internet pages. We cannot guarantee
proper functioning and installation of approved third-party systems and do not support them.
Always follow the instructions provided in the installation manuals of the relevant
manufacturers. If you experience difficulties, please contact the relevant manufacturer.

If you need help installing third-party systems, contact your local Software AG sales
organization. Please note that this type of manufacturer-specific or customer-specific
customization is not covered by the standard Software AG software maintenance agreement
and can be performed only on special request and agreement.

9.2 Support

If you have any questions on specific installations that you cannot perform yourself, contact
your local Software AG sales organization
(https://www.softwareag.com/corporate/company/global/offices/default.html). To get detailed
information and support, use our websites.

If you have a valid support contract, you can contact Global Support ARIS at: +800
ARISHELP. If this number is not supported by your telephone provider, please refer to our
Global Support Contact Directory.

ARIS COMMUNITY

Find information, expert articles, issue resolution, videos, and communication with other ARIS
users. If you do not yet have an account, register at ARIS Community.

SOFTWARE AG EMPOWER PORTAL

You can find documentation on the Software AG Documentation website
(https://empower.softwareag.com/). The site requires credentials for Software AG's Product
Support site Empower. If you do not yet have an account for Empower, send an e-mail to
empower@softwareag.com (mailto:empower@softwareag.com) with your name, company,
and company e-mail address and request an account.

If you have no account, you can use many links on the TECHcommunity website. For any
questions, you can find a local or toll-free humber for your country in our Global Support
Contact Directory and give us a call.

TECHCOMMUNITY

On the TECHcommunity website, you can find documentation and other technical
information:

= Use the online discussion forums, moderated by Software AG professionals, to ask
questions, discuss best practices, and learn how other customers are using Software AG
technology.

» Access articles, code samples, demos, and tutorials.
= Find links to external websites that discuss open standards and web technology.

= Access product documentation, if you have TECHcommunity credentials. If you do not,
you will need to register and specify Documentation as an area of interest.

EMPOWER (LOGIN REQUIRED)

If you have an account for Empower, use the following sites to find detailed information or
get support:

* You can find product information on the Software AG Empower Product Support website.

= To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

= Once you have an account, you can open Support Incidents online via the eService section
of Empower.

= To submit feature/enhancement requests, get information about product availability, and
download products, go to Products.

SOFTWARE AG MANAGED LEARNINGS

Get more information and trainings to learn from your laptop computer, tablet or smartphone.
Get the knowledge you need to succeed and make each and every project a success with
expert training from Software AG.

If you do not have an account, register as a customer or as a partner.

	Title page
	Contents
	1 Introduction
	1.1 UML basics
	1.2 What is UML?
	1.3 UML diagram types
	1.3.1 Class diagram
	1.3.2 Component diagram
	1.3.3 Composite structure diagram
	1.3.4 Object diagram
	1.3.5 Package diagram
	1.3.6 Profile diagram
	1.3.7 Deployment diagram
	1.3.8 Activity diagram
	1.3.9 Use case diagram
	1.3.10 Communication diagram
	1.3.11 Sequence diagram
	1.3.12 Timing diagram
	1.3.13 Interaction Overview diagram
	1.3.14 State machine diagram
	1.3.15 Protocol State machine diagram

	1.4 Special features in ARIS UML Designer
	1.4.1 Diagram content
	1.4.2 Names of UML elements
	1.4.3 Multilingual capability

	1.5 The UML metamodel
	1.5.1 Common structure
	1.5.1.1 Root
	1.5.1.2 Namespaces
	1.5.1.3 Types and multiplicities

	1.5.2 Classification
	1.5.2.1 Classifiers
	1.5.2.2 Features

	1.5.3 Structured Classifiers
	1.5.3.1 Classes
	1.5.3.2 Associations
	1.5.3.3 Simple Classifiers – DataTypes

	2 ARIS UML Designer overview
	2.1 Specifying the working environment
	2.2 Explorer
	2.2.1 Navigation bar
	2.2.1.1 Explorer tree
	2.2.1.2 Diagram tree

	2.2.2 Properties pages
	2.2.2.1 Information (elements, diagrams, groups)
	2.2.2.2 General (elements, diagrams, groups)
	2.2.2.3 Relationships (elements)
	2.2.2.4 Linked diagrams (elements)
	2.2.2.5 Presentations in diagrams (elements)
	2.2.2.6 Presentations (diagrams)
	2.2.2.7 Connected objects (diagrams)

	2.2.3 Properties dialogs
	2.2.4 Creating new elements in Explorer
	2.2.5 Creating new diagrams in Explorer

	2.3 Designer
	2.3.1 Navigation bar
	2.3.1.1 Diagram overview
	2.3.1.2 Visualized elements

	2.3.2 Properties bar
	2.3.3 Format
	2.3.4 Symbols bar
	2.3.5 Implicit changes bar
	2.3.6 Modeling
	2.3.6.1 Creating new node presentations
	2.3.6.2 Creating a new edge presentation
	2.3.6.3 Deleting presentations and elements
	2.3.6.4 Mini toolbar
	2.3.6.5 Modeling and hierarchy in Explorer
	2.3.6.6 Graphic nestings
	2.3.6.7 Text nestings
	2.3.6.8 Modeling in groupings
	2.3.6.9 UML-specific modeling support
	2.3.6.9.1 Specifying the navigability of an association end
	2.3.6.9.2 Creating getter and setter operations

	2.4 Options
	2.4.1 General
	2.4.2 Modeling
	2.4.3 Designer > General
	2.4.4 Explorer
	2.4.5 Designer > For new diagrams > Appearance
	2.4.6 Designer > For new diagram elements
	2.4.7 Designer > Property tabs
	2.4.8 Designer > UML2 modeling

	2.5 Administration tab
	2.5.1 Method filter
	2.5.2 Link types
	2.5.3 XMI resources
	2.5.4 Data transfer from ARIS UML Designer 7.x

	3 Mapping UML to the ARIS object model
	3.1 Group and object properties of UML elements
	3.2 Complexity of edge presentations
	3.3 The most important mappings from UML to ARIS

	4 Linking business process and UML modeling
	4.1 Assignment of UML diagrams to business process objects
	4.1.1 Creating an assignment in ARIS UML Designer
	4.1.2 Creating an assignment in ARIS Architect/Designer

	4.2 Reusing business process objects as UML elements
	4.2.1 Specifying the mapping of ARIS to UML types
	4.2.2 Reusing an ARIS object in a UML diagram
	4.2.3 Managing the object link definitions

	4.3 Navigation between ARIS Architect/Designer and ARIS UML Designer
	4.3.1 Navigation from ARIS Architect/Designer to ARIS UML Designer
	4.3.2 Values – Literals
	4.3.3 Navigation from ARIS UML Designer to ARIS Architect/Designer

	5 UML profiles
	5.1 Predefined profiles in ARIS UML Designer
	5.2 Using profiles
	5.2.1 Assignment of profiles to a package
	5.2.2 Assignment of stereotypes to a UML element
	5.2.3 Creating stereotyped elements in the Explorer
	5.2.4 Stereotypes in the Symbols bar of diagrams

	5.3 User-defined UML profiles
	5.3.1 The UML metamodel generator
	5.3.2 Creating a profile
	5.3.3 Creating a stereotype
	5.3.4 Defining new properties
	5.3.5 ARIS-specific features of user-defined properties
	5.3.6 Inheritance relationships between stereotypes
	5.3.7 Creating a filter profile
	5.3.8 Creating a diagram stereotype

	6 Differences from ARIS Architect/Designer
	6.1 Relevance of the model and its diagrams in terms of semantics
	6.2 The Save and Undo/Redo functions
	6.3 Opening diagrams
	6.4 Element hierarchies
	6.5 Graphical connections and edges in diagrams
	6.6 Assignments
	6.7 Creating ARIS scripts

	7 Differences from ARIS UML Designer 7.x
	7.1 UML version
	7.2 Mapping of UML to ARIS
	7.3 Reuse of business process objects in UML
	7.4 Saving and undoing changes
	7.5 Integration of UML into the Explorer tree
	7.6 Separate window for ARIS UML Designer
	7.7 XMI interface

	8 Appendix
	8.1 Glossary
	8.2 Additional documents and references
	8.2.1 Documents
	8.2.2 References

	9 Legal information
	9.1 Documentation scope
	9.2 Support

