

ARIS UML DESIGNER

INTRODUCTION

OCTOBER 2021

VERSION 10.0 - SERVICE RELEASE 16

Document content not changed since release 10.0.14. It applies to the current version without

changes.

This document applies to ARIS Version 10.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Copyright © 2010 - 2021 Software AG, Darmstadt, Germany and/or Software AG USA Inc.,
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or
registered trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries
and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its
subsidiaries is located at https://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms.
These terms are part of the product documentation, located at
https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products". For certain specific third-party license
restrictions, please refer to section E of the Legal Notices available under "License Terms and
Conditions for Use of Software AG Products / Copyright and Trademark Notices of Software
AG Products". These documents are part of the product documentation, located at
https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

INTRODUCTION

I

Contents

Contents ... I

1 Introduction .. 1

1.1 UML basics .. 2
1.2 What is UML? ... 2
1.3 UML diagram types ... 3

1.3.1 Class diagram .. 4
1.3.2 Component diagram .. 6
1.3.3 Composite structure diagram .. 7
1.3.4 Object diagram ... 8
1.3.5 Package diagram .. 9
1.3.6 Profile diagram ... 10
1.3.7 Deployment diagram ... 12
1.3.8 Activity diagram ... 13
1.3.9 Use case diagram ... 15
1.3.10 Communication diagram .. 17
1.3.11 Sequence diagram .. 19
1.3.12 Timing diagram .. 20
1.3.13 Interaction Overview diagram ... 21
1.3.14 State machine diagram .. 22
1.3.15 Protocol State machine diagram .. 24

1.4 Special features in ARIS UML Designer .. 26

1.4.1 Diagram content ... 27
1.4.2 Names of UML elements ... 28
1.4.3 Multilingual capability .. 28

1.5 The UML metamodel ... 29

1.5.1 Common structure .. 30

1.5.1.1 Root .. 30
1.5.1.2 Namespaces ... 33
1.5.1.3 Types and multiplicities .. 35

1.5.2 Classification .. 36

1.5.2.1 Classifiers .. 36
1.5.2.2 Features .. 38

1.5.3 Structured Classifiers .. 40

1.5.3.1 Classes .. 40
1.5.3.2 Associations ... 41
1.5.3.3 Simple Classifiers – DataTypes .. 42

2 ARIS UML Designer overview ... 43

2.1 Specifying the working environment .. 43
2.2 Explorer .. 45

2.2.1 Navigation bar .. 47

2.2.1.1 Explorer tree .. 47
2.2.1.2 Diagram tree .. 51

2.2.2 Properties pages ... 52

2.2.2.1 Information (elements, diagrams, groups) 52
2.2.2.2 General (elements, diagrams, groups).. 54
2.2.2.3 Relationships (elements) .. 59
2.2.2.4 Linked diagrams (elements) .. 60
2.2.2.5 Presentations in diagrams (elements) .. 61
2.2.2.6 Presentations (diagrams) ... 62

INTRODUCTION

II

2.2.2.7 Connected objects (diagrams) ... 62

2.2.3 Properties dialogs ... 63
2.2.4 Creating new elements in Explorer .. 65
2.2.5 Creating new diagrams in Explorer .. 72

2.3 Designer ... 73

2.3.1 Navigation bar .. 74

2.3.1.1 Diagram overview ... 74
2.3.1.2 Visualized elements ... 74

2.3.2 Properties bar .. 75
2.3.3 Format .. 75
2.3.4 Symbols bar ... 76
2.3.5 Implicit changes bar .. 83
2.3.6 Modeling .. 84

2.3.6.1 Creating new node presentations ... 85
2.3.6.2 Creating a new edge presentation .. 88
2.3.6.3 Deleting presentations and elements .. 91
2.3.6.4 Mini toolbar .. 91
2.3.6.5 Modeling and hierarchy in Explorer .. 93
2.3.6.6 Graphic nestings ... 95
2.3.6.7 Text nestings .. 99
2.3.6.8 Modeling in groupings .. 101
2.3.6.9 UML-specific modeling support .. 102

2.3.6.9.1 Specifying the navigability of an association end 103
2.3.6.9.2 Creating getter and setter operations 106

2.4 Options ... 108

2.4.1 General ... 109
2.4.2 Modeling .. 110
2.4.3 Designer > General ... 112
2.4.4 Explorer .. 113
2.4.5 Designer > For new diagrams > Appearance ... 114
2.4.6 Designer > For new diagram elements ... 114
2.4.7 Designer > Property tabs ... 117
2.4.8 Designer > UML2 modeling .. 118

2.5 Administration tab .. 119

2.5.1 Method filter .. 121
2.5.2 Link types .. 123
2.5.3 XMI resources .. 124
2.5.4 Data transfer from ARIS UML Designer 7.x ... 124

3 Mapping UML to the ARIS object model ... 125

3.1 Group and object properties of UML elements ... 126
3.2 Complexity of edge presentations ... 127
3.3 The most important mappings from UML to ARIS .. 129

4 Linking business process and UML modeling ... 130

4.1 Assignment of UML diagrams to business process objects 131

4.1.1 Creating an assignment in ARIS UML Designer 131
4.1.2 Creating an assignment in ARIS Architect/Designer 134

4.2 Reusing business process objects as UML elements 138

4.2.1 Specifying the mapping of ARIS to UML types 138
4.2.2 Reusing an ARIS object in a UML diagram .. 143
4.2.3 Managing the object link definitions ... 147

INTRODUCTION

III

4.3 Navigation between ARIS Architect/Designer and ARIS UML Designer 148

4.3.1 Navigation from ARIS Architect/Designer to ARIS UML Designer 148
4.3.2 Values – Literals ... 150
4.3.3 Navigation from ARIS UML Designer to ARIS Architect/Designer 152

5 UML profiles .. 155

5.1 Predefined profiles in ARIS UML Designer ... 155
5.2 Using profiles ... 156

5.2.1 Assignment of profiles to a package ... 156
5.2.2 Assignment of stereotypes to a UML element .. 159
5.2.3 Creating stereotyped elements in the Explorer 162
5.2.4 Stereotypes in the Symbols bar of diagrams ... 164

5.3 User-defined UML profiles .. 166

5.3.1 The UML metamodel generator ... 167
5.3.2 Creating a profile .. 173
5.3.3 Creating a stereotype .. 176
5.3.4 Defining new properties ... 179
5.3.5 ARIS-specific features of user-defined properties 185
5.3.6 Inheritance relationships between stereotypes 189
5.3.7 Creating a filter profile ... 191
5.3.8 Creating a diagram stereotype .. 193

6 Differences from ARIS Architect/Designer .. 197

6.1 Relevance of the model and its diagrams in terms of semantics 197
6.2 The Save and Undo/Redo functions ... 198
6.3 Opening diagrams .. 198
6.4 Element hierarchies .. 199
6.5 Graphical connections and edges in diagrams ... 199
6.6 Assignments .. 199
6.7 Creating ARIS scripts .. 199

7 Differences from ARIS UML Designer 7.x ... 200

7.1 UML version ... 200
7.2 Mapping of UML to ARIS .. 200
7.3 Reuse of business process objects in UML .. 201
7.4 Saving and undoing changes .. 201
7.5 Integration of UML into the Explorer tree ... 201
7.6 Separate window for ARIS UML Designer .. 202
7.7 XMI interface ... 202

8 Appendix... 203

8.1 Glossary .. 203
8.2 Additional documents and references ... 204

8.2.1 Documents .. 204
8.2.2 References ... 204

9 Legal information ... 205

9.1 Documentation scope .. 205
9.2 Support... 206

INTRODUCTION

1

1 Introduction

This document provides an overview of the key functionalities of ARIS UML Designer 9 and

higher and outlines the underlying concepts. It is aimed at all UML modelers, developers of

UML-specific reports and macros, and ARIS administrators. If you are not yet familiar with

ARIS, you should first read the document ARIS Architect Quick Start Guide, as basic

knowledge of ARIS is essential to understand this introduction.

This introduction is divided into the following sections:

UML basics (page 2): Contains a brief introduction to UML and introduces the diagram types

supported by ARIS UML Designer. This section also sets out the basics of the UML metal

model, which is an essential requirement for you to understand the subsequent topics of

Mapping UML to the ARIS object model and UML profiles.

ARIS UML Designer overview (page 43): Introduces the most important components of

ARIS UML Designer and their functionality.

Mapping UML to the ARIS object model (page 125): Shows how UML content is stored in

ARIS so that you can understand how ARIS standard functions, such as definition copy, merge

or access privileges affect UML content.

Linking business process and UML modeling (page 130): Outlines the relevant technical

principles.

UML profiles (page 155): Provides an overview of the extension and filter mechanisms in

UML, which differ fundamentally from the classic ARIS method configuration.

Differences from ARIS Architect/Designer (page 197): Shows the special features of ARIS

UML Designer and the resulting differences from classic ARIS modeling.

Differences from ARIS UML Designer 7.x (page 200): Deals with the new features of ARIS

UML Designer 9 and higher compared to the previous version 7.x.

As the terms model and object that are familiar from ARIS have a different meaning in UML,

the terms diagram and element are used to refer to them in this document. Thus, in this

document an EPC is not a model but a diagram, and an EPC function is not an object but an

element.

ARIS UML Designer 9 and higher supports UML version 2.5. For compatibility reasons, ARIS

Architect/Designer still supports the old UML version 1.4. However, this is not done using UML-

specific notation but in the form of classic ARIS diagrams. Where the term UML is used without

a version number in this document, it always refers to the version 2.5 supported by ARIS UML

Designer.

INTRODUCTION

2

1.1 UML basics

This section contains a brief introduction to UML and the underlying metamodel, where this is

necessary to understand the remaining sections of this document and to start using ARIS UML

Designer. For detailed information on UML and the individual UML element and diagram types,

refer to the UML specification itself and to relevant secondary literature. In addition, basic

knowledge of object-oriented principles is very useful in understanding UML.

1.2 What is UML?

UML stands for Unified Modeling Language and is a modeling language for object-oriented

(software) systems. The word software is in brackets here as the design and description of

software systems was definitely the focus in the development of UML; in theory UML is actually

suitable for modeling any systems using an object-oriented perspective. One example would

be describing the IT-related aspects of a business domain as part of an object-oriented

analysis, in order to derive requirements for a corresponding software system.

UML was presented in the mid-1990s by Grady Booch, Ivar Jacobson, and James Rumbaugh as

a joint development of their own object-oriented methods (Booch method, OOSE, and OMT).

Since 1997, UML has been published as a standard by the OMG and has been continuously

developed. The OMG (Object Management Group) is a non-profit organization that is

responsible for a range of important standards in the IT industry. In addition to UML, these

include BPMN.

The current UML version at the time of this document's creation is 2.5. This is also the version

supported by ARIS UML Designer 9 and higher. The corresponding UML specification is

available from the OMG at the following address: http://www.omg.org/spec/UML/

(http://www.omg.org/spec/UML/).

http://www.omg.org/spec/UML/

INTRODUCTION

3

1.3 UML diagram types

UML differentiates two categories of diagrams - structure diagrams and behavior diagrams. In

structure diagrams, the focus is on static structures. One example is the Component diagram,

which is used to model the relationships between individual (software) components. By

contrast, there are behavior diagrams, which focus on the dynamic behavior of a system. An

example of a behavior diagram would be the State machine diagram, which shows how the

instance of a class changes its internal state when particular events occur.

A typical feature of structure diagrams is that they show a selected section of a UML structure.

They represent a view of a freely definable subset of this structure. By contrast, behavior

diagrams (apart from the Use case diagram) describe the dynamic behavior of a particular

element, normally a state machine, an activity, or an interaction.

UML defines the following diagram types:

 Structure diagrams Behavior diagrams

Class diagram (page 4) Activity diagram (page 13)

Component diagram (page 6) Communication diagram (page 17)

Composite structure diagram (page 7) Interaction Overview diagram (page 21)

Deployment diagram (page 12) Protocol state machine diagram (page 24)

Object diagram (page 8) Sequence diagram (page 19)

Package diagram (page 9) State machine diagram (page 22)

Profile diagram (page 10) Timing diagram (page 20)

 Use case diagram (page 15)

The individual diagram types are briefly introduced below using simple examples relating to

the topic of order processing. These examples are not intended to provide a complete or

technically correct representation. They are merely intended to illustrate how particular

situations relating to the topic can be represented using the different UML diagram types.

INTRODUCTION

4

1.3.1 Class diagram

Class diagrams primarily show relationships between classes and their properties.

Figure 1: Class diagram

The image above shows a simple Class diagram with four classes Order, Key customer

order, Order item, and Item, two primitive data types String and Integer, and a comment.

The classes each contain one to two attributes (UML type Property). For example, the Order

class contains the Order number attribute, which is of the Integer type. This means that the

order number is a property whose value is a whole number.

UML itself does not stipulate which data types are to be used when modeling and how they

should be denoted1. In the example above, the two types String and Integer could also be

called Character string and Whole number.

Figure 2: Association between two classes

The Order and Order item classes are linked together by an association. This association has

an association end order with the multiplicity 1 and an association end itemline with the

multiplicity 1..*. The multiplicity 1..* at the itemline association end means that at least one

and up to any number of order items are assigned to an order. The property {ordered}

specifies that the order items are assigned to the order in a particular sequence. The

multiplicity 1 at the order association end means that an order item is always assigned to only

one order.

The black diamond on the association indicates that the order items are part of the order and if

an order is deleted its order items will also be deleted automatically.

1 One exception is the modeling of profiles in ARIS UML Designer, where the corresponding

types specified by UML have to be used for primitive data types.

INTRODUCTION

5

The two black dots at the end of the association edge mean that the corresponding association

ends are simultaneously attributes of the respective opposing class. Figure 3 therefore shows a

semantically equivalent alternative appearance of Figure Association between two classes2.

Figure 3: Association ends as attributes

An arrow head at an association end means that the association is navigable in the direction of

the arrow. The following image shows an association that is only navigable in one direction.

Figure 4: Unidirectional association

In this example, the order item knows which item it relates to. Conversely, the item has no

knowledge of the order items by which it is used.

An association end is classed as navigable if it is simultaneously an attribute of the opposite

class3. If both ends of an association are navigable, there is no need for you to display the two

arrows in the diagram (see figure Association between two classes).

Figure 5: Generalization between two classes

The image above shows a generalization relationship between the Key customer order and

Order classes. This means that the Key customer order class is a specialization of the Order

class and thus inherits all properties from it.

2 The order attribute for the Order item class is displayed within the class without specifying its
multiplicity 1 as the value 1 is the default value for multiplicities and it is not normally

displayed within classes.
3 There is another method of specifying the navigability of an association end. However, it will

not be discussed here.

INTRODUCTION

6

1.3.2 Component diagram

Component diagrams show relationships between components and their properties.

Figure 6: Component diagram

The image above shows the simplest form of a Component diagram. It shows three (software)

components and their dependencies. From it, we can determine that the components for client

and item management can work independently of other components, while the order

management component has dependencies on the other two components. This diagram

provides no information about the nature of these dependencies.

The component dependencies can be described in more detail by using ports and interfaces.

The following shows an example of this.

Figure 7: Components with ports and interfaces

The client management component uses a port to provide an interface called customer

data access, which can be used to retrieve customer data from the component. Likewise, the

item management component also provides a corresponding interface called item data

access. In turn, the order management component uses two ports to specify that it requires

access to the customer data access and item data access interfaces. Two dependency

relationships illustrate the access to the interfaces.

INTRODUCTION

7

1.3.3 Composite structure diagram

Composite structure diagrams show the internal structure of a class and the relationships of

the individual class components to one another.

Figure 8: Class diagram with order components

The image above extends the example from Figure 2 with an additional class involved in an

order, the invoice. Unlike the order item, the invoice is not a compositional component of an

order but is directly assigned to it. The invoice also refers to the individual order items.

Figure 9: Composite structure diagram for the Order class

The Composite structure diagram in Figure 9 provides an alternative representation to the

Class diagram in Figure 8. The two attributes invoice and itemline are represented

graphically in the Order class as symbols of the Property or Part type. The dotted border of

the invoice property symbol indicates that the invoice is not a compositional component of the

order, while the solid border of the itemline part symbol means that order items are included

in the composition of the order.

The two symbols are linked by a connector with the name p, which refers to the Invoice line

item association shown in Figure 8.

INTRODUCTION

8

1.3.4 Object diagram

Object diagrams show the relationships between instances of different classes.

Figure 10: Object diagram with order instance

Figure 10 shows a specific order with two order items.

The order, the two order items, and the two items are instances of the corresponding classes

from Figure 1. Their relationships represent instances of the associations between these

classes.

Instances of classes are also referred to as objects and instances of associations as links.

However, all instances are technically of the UML type InstanceSpecification4.

Instances can optionally show their own name and/or the name of their class, separated by a

colon. In this example, the order object and the two item objects show both their own names

and the name of their class, while the two order item objects only show their class names.

The attribute values for the objects are of the UML type Slot. A Slot shows the name of an

attribute of the class for the instance (for example, Order number) and the value that this

attribute has for the instance (for example, 42). The link ends (for example, position) are

also of the Slot type. However, as they are directly linked to their value, that is, the

corresponding object, in the diagram, only the relevant attribute name is displayed in the

diagram.

4 UML 2 defines only one InstanceSpecification type for instances of all classifier types,
whereas UML 1.4 defined a special instance type for each classifier type (e.g., Class -> Object,

Association -> Link, AssociationClass -> LinkObject, Component -> ComponentInstance etc.).

INTRODUCTION

9

1.3.5 Package diagram

Package diagrams show package hierarchies and dependencies between packages.

Figure 11: Package diagram

Figure 11 shows a Package diagram with two package hierarchies and dependency

relationships.

At the top level it contains the two models Analysis model and Design model. Unlike in

ARIS, in UML the term model does not refer to a diagram, but to a view of a physical system

in a defined context. A model normally contains a whole series of elements, relationships, and

diagrams, which all combine together to describe the model.

In line with this definition, in this example the analysis model represents an object-oriented

view of the business processes to be supported by a new piece of software to be developed.

This is used to derive a design model, which specifies the architecture and the individual

modules of the software in more detail. This derivation is represented by a Refine relationship

in the diagram. This relationship is an element of the UML type Abstraction with the

stereotype «Refine».

Within the design model, the dependency relationship between the Modules and Framework

packages indicates that the Framework defines structures that are required by the modules.

INTRODUCTION

10

1.3.6 Profile diagram

Profiles represent user-defined extensions or restrictions of the UML metamodel. They can be

created using Profile diagrams.

Figure 12: Profile diagram

Figure 12 shows a Profile diagram for defining a simple profile for object-oriented analysis.

On the left-hand side, the diagram contains the Analysis profile, which defines the two

stereotypes Technical class and Business use case. Both of these inherit from an abstract

stereotype Analysis element, which defines the Contact attribute. In addition to the

stereotypes, the profile also defines an enumeration called Priority, which is used as a type by

the attribute of the same name for the Business use case stereotype.

The right-hand side of the diagram contains the UML metamodel and two of its metaclasses.

The profile has a relationship of the Metamodel reference5 type to the metamodel. This

relationship is always necessary if all UML content is to be available within packages to which

the profile is assigned.

5 Strictly speaking, it is a relationship of the UML type PackageImport, which is referred to as a
metamodel reference in this context and is also displayed in the graphical view with the

keyword «reference» instead of «import».

INTRODUCTION

11

The two stereotypes Technical class and Business use case have a relationship of the UML

type Extension with the Class metaclass or the UseCase metaclass. This relationship

specifies the UML elements to which the stereotype can be assigned.

The attributes of a stereotype are available as additional properties for the UML elements to

which the stereotype is assigned. In this example, a use case with the «Business use case»

stereotype has the additional properties Contact and Priority in addition to the properties

defined by the UML specification.

UML profiles (page 155) contains more information about profiles and stereotypes.

INTRODUCTION

12

1.3.7 Deployment diagram

Deployment diagrams show the assignment of software components to physical IT systems

and the networking of these systems with one another.

Figure 13: Deployment diagram with components and artefacts

Figure 13 shows the physical manifestation of the components from Figure 7 as JAR files6. This

is done using UML elements of the Artefact type, which are linked to the corresponding

components by a relationship of the Manifestation type.

Figure 14: Deployment of software components on physical systems

Figure 14 shows how the artefacts or software components defined in Figure 13 are deployed

on physical systems and the relationships between these systems.

6 Java libraries

INTRODUCTION

13

1.3.8 Activity diagram

Activity diagrams show dynamic processes in the form of a graph of individual actions. They

can describe both a process with a high level of abstraction or details of an algorithm in a piece

of software.

Figure 15: Create order activity diagram

INTRODUCTION

14

Figure 15 shows the process for creating an order in the form of a UML Activity diagram. The

activity starts with an element of the InitialNode type and ends with an element of the

ActivityFinal type.

The first step is to check the customer data. This is done using an action of the

CallBehaviorAction type. This is an action that in turn invokes an activity Check customer

data. This is described in another Activity diagram (see Figure 16).

The other actions are all of the OpaqueAction type. They are characterized by the fact that

they are specified by a simple text and have no further UML semantics.

The individual purchase or order items are processed in an ExpansionRegion. This has the

customer's purchase items as its input elements and the corresponding order items as its

output elements. The ExpansionRegion is run through for each input element.

The relationships in the two Activity diagrams are all of the ControlFlow type. If a text in

square brackets is specified on one of these control flow edges, it describes the condition that

has to be met for the control flow to proceed along this edge.

Figure 16: Check customer data activity diagram

INTRODUCTION

15

1.3.9 Use case diagram

Use case diagrams are used as part of an object-oriented requirements analysis to describe

the use cases to be analyzed and the actors involved.

Figure 17: Use case diagram

Figure 17 shows a Use case diagram with one actor and three use cases. Actors are people,

roles, or systems that interact with the system to be analyzed. A use case represents a self-

contained functionality that can be invoked from outside the system and leads to a particular

result.

The relationships between the actor and the use cases are associations. In Use case diagrams,

these are normally shown without annotations such as names or multiplicities.

A relationship of the Include type runs between the Create order and Check customer

data use cases. This means that the Create order use case includes the Check customer

data use case, that is, when creating an order the customer data is checked.

The Create order use case defines an extension point called Rebate calculation. An

extension point indicates a particular point in the internal process of the use case at which

additional functionality can be added to the process. In this example, this is the calculation of a

rebate.

INTRODUCTION

16

The Extend relationship between the Create key customer order and Create order use

cases states that the Create key customer use case supplements the Create order use case

with this functionality at its Rebate calculation extension point, in this case by calculating a

special key customer rebate. In addition, the Extend relationship includes a specification of the

condition under which the extension is permitted, namely that the customer must be a key

customer.

Typically, the internal process of the use cases would be described using behavior diagrams,

for example the two Activity diagrams in Figure 15 and Figure 16.

INTRODUCTION

17

1.3.10 Communication diagram

Communication diagrams show how elements exchange messages with one another as part of

an interaction. In contrast to Sequence diagrams (page 19), in Communication diagrams the

focus is on the channels via which these messages are sent rather than on the chronological

sequence of exchanging messages.

Figure 18: Create order communication diagram

Figure 18 uses a Communication diagram to show how an order is created in the system. The

background object that contains all other elements is the interaction itself. The contained

elements are elements of the Lifeline type. The term Lifeline comes from its use in Sequence

diagrams, where it is represented by a rectangle with a vertical line attached to the bottom.

The lifelines do not show their own names in the diagram, they show the name of the element

represented and/or the type name of the element represented7. Depending on the context, the

element represented can be an attribute (property), a port, or a parameter. In the above

example a property has been created as an attribute for the interaction for the :Order

management lifeline and the Order management component from Figure 6 has been

assigned to it as the type. As the name of the attribute is irrelevant here, the lifeline only

shows the type name.

The relationships between the lifelines are the connectors familiar from Composite structure

diagrams. It is important to note that although they connect the lifelines with one another

graphically in the diagram, they are actually relationships between the elements represented.

This means that if no represented element is assigned to a lifeline, you cannot connect it to

another lifeline in the diagram using a connector.

The messages that the lifelines exchange with one another along the connectors are displayed

as text on the connector. An arrow specifies the direction of the message, and the order is

given by the sequence numbers of the messages. If the messages have arguments, they are

listed in brackets after the message.

7 The element represented is assigned to the lifeline through its represents property.

INTRODUCTION

18

This Communication diagram should be read as follows:

1: Order management creates a new order object.

2: Order management reserves 100 items with the item number 28.97.08.0040.

2.1: Item management confirms the reservation.

3: Order management instructs the order object to create a new order item for the item

number 28.97.08.0040 with the quantity 100.

3.1: The order object creates a new order item with the corresponding parameters.

4. – 5.1: This process is repeated for another item.

The sequence numbers are automatically calculated in ARIS UML Designer based on the

sequence of the messages on the source and target lifelines. If you want to change them, you

have to do this in the Properties dialog for the relevant lifelines. Alternatively, you can hide the

display of the calculated sequence numbers and assign your own numbers as part of the

message name.

INTRODUCTION

19

1.3.11 Sequence diagram

Sequence diagrams show how elements exchange messages with one another as part of an

interaction. In contrast to Communication diagrams (page 17), in Sequence diagrams the

focus is on the chronological sequence of exchanging messages rather than on the channels

via which these messages are sent.

Figure 19: Create order sequence diagram

Figure 19 shows the Create order interaction shown in Figure 18 in the form of a

Communication diagram (page 17) as a Sequence diagram. Both diagrams contain elements of

the Lifeline type. However, in the Sequence diagram they have an additional dotted vertical

line8. The messages are represented by graphical edges in the Sequence diagram.

While the chronological order of the messages is given by their sequence numbers in the

Communication diagram, in the Sequence diagram this is defined by their vertical

arrangement. The time axis, which is not explicitly visible, runs vertically from top to bottom in

the diagram, that is, messages closer to the top are transferred before messages located

further down.

The rectangles on the lifelines are elements of the ExecutionSpecification type. They

indicate when the object represented by the lifeline is active.

8 The name Lifeline can be traced back to this type of graphical representation.

INTRODUCTION

20

1.3.12 Timing diagram

Timing diagrams show how the state of the elements involved changes when exchanging

messages as part of an interaction. The notation is based on corresponding diagrams from

digital technology. This diagram type is primarily of interest for modeling of software systems

closely related to hardware and has only rudimentary support in ARIS UML Designer 9 and

higher.

Figure 20: Order states timing diagram

In Figure 20 a simple Timing diagram using compact notation9 shows the states an order can

have. The Order states element is an interaction, the :Order element is a lifeline, and the

different states are represented using state invariants. The DurationConstraint element also

specifies that the delivery state can only last for one to two days.

9 The detailed notation with which the states and their transitions are displayed using timelines

is not supported by ARIS UML Designer.

INTRODUCTION

21

1.3.13 Interaction Overview diagram

An Interaction Overview diagram is part of a larger scenario and shows the sequence of

individual interactions, which are normally modeled using Communication (page 17) or

Sequence diagrams (page 19).

These diagrams are Activity diagrams (page 13) in which only actions of the

CallBehaviorAction type are used, which invoke interactions.

Figure 21: Manage order interaction overview diagram

Figure 21 shows an Interaction overview diagram, which invokes interactions including the

Create order interaction modeled in Figure 18. The individual actions of the

CallBehaviorAction type each show the name of the interaction invoked.

INTRODUCTION

22

1.3.14 State machine diagram

State machine diagrams show which states a system can take on, the relationships between

them, and which events trigger the relevant state transitions. A State machine diagram

represents a state machine. The states and their transitions are parts of this state machine.

The state machine can describe the behavior of a class, the behavior of another classifier of

the UML type BehavioredClassifier, or the behavior of an operation. However, it can describe

a behavior very generally without relating to one of these elements.

Figure 22: Order states state machine diagram

Figure 22 shows the states of an order. While the Timing diagram from Figure 20 only shows a

sequence of state transitions, the State machine diagram includes the entire state machine

with all states and their possible transitions as graphical edges, which link the states to one

another.

INTRODUCTION

23

The first state that an order can have is the new state. When this state occurs, the order

items are recorded (entry property of the UML type State). An availability check for the items

in the order items completes the state (exit property of the UML type State).

If a text is displayed in square brackets on a state transition, it refers to the condition (guard

property of the UML type Transition) that has to be met for the state transition to occur. In

the example diagram, these are the two conditions [Items are available] and [Items are

not available].

The text that follows the / character at a state transition refers to a behavior that is triggered

by the state transition (effect property of the UML type Transition). In the example diagram,

this would be release, reject, and deliver.

If a text at a state transition is neither in square brackets nor after a slash, it is the trigger of

the state transition (trigger property of the UML type Transition). In the example diagram,

these are the two texts that start with the word when. The keyword when means that the

triggers are assigned events of the UML type ChangeEvent (event property of the UML type

Trigger).

INTRODUCTION

24

1.3.15 Protocol State machine diagram

Protocol state machines show the externally observable states and state transitions for a

classifier. They define a protocol that the implementations of the relevant classifier must

adhere to and show when, in what order, and on which conditions the publicly visible

operations for that classifier are invoked.

Figure 23: Order class with operations

Figure 23 shows the Order class with its public operations (UML elements of Operation type

with the property visibility = public, in each case identifiable by the + character at the

beginning of the name).

Figure 24: Order states protocol state machine diagram

The Protocol state machine diagram in Figure 24 shows how invocations of these operations

result in corresponding state changes. Instead of normal state transitions, protocol state

transitions are used in protocol state machines.

INTRODUCTION

25

Protocol state transitions have a different notation than normal state transitions. The notation

for a protocol state transition is: [Precondition] Event / [Postcondition]

The precondition is mapped to the preCondition property of the UML type

ProtocolTransition, and the postcondition to the postCondition property. As for normal

state transitions, the event is mapped to the trigger property, and the triggers are assigned

events of the UML type CallEvent, which in turn refer to the corresponding operations for the

class, which means that the corresponding operation is displayed as the event in the diagram.

INTRODUCTION

26

1.4 Special features in ARIS UML Designer

Protocol state machines show the externally observable states and state transitions for a

classifier. They define a protocol that the implementations of the relevant classifier must

adhere to and show when, in what order, and on which conditions the publicly visible

operations for that classifier are invoked.

INTRODUCTION

27

1.4.1 Diagram content

The UML specification states that product manufacturers can extend the typical content it

proposes for the different diagram types with content of other UML diagram types.

ARIS UML Designer supports any UML content for structure diagrams. In addition to the

elements provided for the corresponding diagram type, you have the option of modeling all

other UML constructs. This enables overview diagrams to be created, for example containing

both class hierarchies and complete state machines and interactions in Sequence diagram

notation. This also enables UML elements that are actually assigned to different diagram types

to be linked to one another graphically.

Figure 25: UML notation from different diagram types in a class diagram

Figure 25 shows elements from Class, Use case, Component and Activity diagrams together in

a single Class diagram.

INTRODUCTION

28

1.4.2 Names of UML elements

The UML specification describes a small number of element types whose elements cannot have

names. Examples of these types include Comment and Generalization. Because of the mapping

of UML elements to ARIS objects, these types also have a name in ARIS UML Designer.

1.4.3 Multilingual capability

The UML specification does not include a facility for specifying element names, comments, or

other text properties in different languages. The only exception is the UML type

OpaqueExpression, which allows the containing expression to have multiple values; you can

specify a language for each of these values. However the term Language has a broader

meaning than in ARIS and can also refer to a programming language.

ARIS UML Designer supports the familiar ARIS multilingual capability for UML content, but only

for element and diagram names, comments, and descriptions. All other text properties are not

multilingual.

INTRODUCTION

29

1.5 The UML metamodel

A special feature of the UML specification is that it defines UML using a subset of UML. It uses

Class diagrams to describe which UML element types exist, what properties they have, and

how they are related to one another. The entirety of what is shown in these Class diagrams is

referred to as the UML metamodel10. In this metamodel, the UML element types are defined in

the form of metaclasses. The various properties of the UML element types are described using

attributes and associations. Abstract metaclasses define properties that are shared by several

different UML element types and whose metaclasses inherit from these abstract metaclasses.

The architecture for description and implementation of metamodels is described in the MOF11

standard published by the OMG. An ARIS-specific MOF implementation called OMF12 represents

a central component of the architecture of ARIS UML Designer.

Basic knowledge of the UML meta model is useful to understand UML and is essential for

modeling UML profiles (see UML profiles (page 155)).

A short extract of the UML metamodel is introduced below, which defines those UML elements

that are used in the Class diagram from Figure 1. The metamodel diagrams shown largely

correspond to the relevant originals from the UML 2.5 specification. However, in some cases

they have been adapted to the needs of this section by omitting individual metaclasses that

are not dealt with further here, or by adding content from other diagrams in the UML

specification.

The section headings used below correspond to the headings of the sections from the UML

specification that contain the corresponding diagrams, so that you can easily find them in the

UML specification to extend your knowledge of the subject.

10 Apart from the Class diagrams, the UML specification also includes numerous OCL

expressions, which describe consistency conditions on the one hand and the implementation of
complex queries on the other. These are also part of the UML metamodel but will not be

discussed further in this UML introduction.
11 MOF stands for Meta Object Facility
12 OMF stands for Object Modeling Framework

INTRODUCTION

30

1.5.1 Common structure

1.5.1.1 Root

Figure 26: Root diagram from the UML specification with ARIS specific extensions

Figure 26 shows the Root diagram from the UML specification, supplemented with ARIS-

specific extensions. The metaclasses from the UML metamodel form an inheritance hierarchy

with the abstract metaclass Element at the top. In this context, "abstract" means that there

are no UML elements of the Element type, only that properties are defined here for other

element types that inherit from Element. Abstract classes in UML diagrams are indicated by the

name being written in italics.

INTRODUCTION

31

In ARIS UML Designer, the UML metaclass Element inherits from an abstract metaclass

ArisElement. This means that all UML elements are extended with ARIS-specific properties

such as creator, creationDate, name, description, and identifier13.

The non-abstract Comment metaclass inherits from the Element metaclass. Each UML

element can have any number of these comments through its ownedComment property. In

turn, a comment can refer to any number of UML elements through its annotatedElement

property.

Figure 27: Comment with class as annotated element

Comments are displayed in diagrams as a rectangle with a turned-down corner. The text within

the comment shows the value of the Comment::body property. The

Comment::annotatedElement property is shown as a dotted edge to the annotated element

in the diagram (see Figure 27).

The Element::/description property also represents an ARIS-specific extension of the UML

metamodel. It redefines the ARIS property ArisElement::description for UML elements by

deriving the description from the first comment that the Element has14. This means that UML

elements have the ARIS property description in ARIS UML Designer. However, its value is not

lost when exchanging data with other tools via XMI as it is saved as ownedComment for the

element. Conversely, it means that every UML element that is imported into ARIS UML

Designer via XMI and has a comment automatically has a value for its description property.

The Root diagram in Figure 26 also shows that in theory every UML element can have other

UML elements. For this purpose, Element defines two properties /owner and

/ownedElement. Both of these are so-called derived unions. This means that you can ask

an element for its owner or the elements it contains, but other properties of the Element type

and its specializations specify the way in which the element can contain other elements, or the

way in which it can be contained in another element. An initial example of this is included in

the same diagram. For the Element::ownedComment property there is subsets

ownedElement and for the Comment::owningElement property there is subsets owner.

This means that whenever an element is asked for the value of its ownedElement property,

the values it returns include the value of the ownedComment property, that is, the

comments that it has. The same applies to asking a comment for its owner property. In this

case the value of the owningElement is returned.

13 A slash / in front of an attribute name means that its value is derived from other properties
at runtime. This also applies to ARIS properties such as creator or GUID, as they are not

mapped internally to ARIS attributes but result directly from the ARIS object.
14 For this purpose, the isOrdered flag is set for the Element::ownedComment in ARIS UML

Designer, while the UML metamodel does not originally provide ordering here.

INTRODUCTION

32

In addition, the Root diagram contains the two abstract metaclasses Relationship and

DirectedRelationship. All metaclasses that primarily define semantics for relationships

between elements inherit from these classes. These relationship elements are frequently

shown as graphic edges in diagrams. This metamodel concept includes the two metaclasses

Generalization and Association as examples of these relationship types.

INTRODUCTION

33

1.5.1.2 Namespaces

Figure 28: Namespaces diagram from the UML specification

Figure 28 shows the Namespaces diagram from the UML specification. It defines the three

abstract types NamedElement, Namespace, and PackageableElement, and the non-

abstract type Package. NamedElement defines the name property, which means that only

UML elements whose type inherits from NamedElement can actually have a name. As all

objects can have a name in ARIS and Element inherits from ArisElement in the ARIS

implementation of the UML metamodel, the suffix {redefines name} for

NamedElement::name specifies that a second name property is not defined, but that this

definition of name replaces the ArisElement::name definition in the inheritance hierarchy for

NamedElement. Both properties – ArisElement::name and NamedElement::name – are

mapped to the ARIS attribute type Name in the ARIS object model.

Namespace is an abstract type for UML elements whose contained elements are differentiated

using their name. The non-abstract type Package, which can contain elements of the abstract

type PackageableElement, inherits from this.

The Namespaces diagram in Figure 28 also contains a further example of derived unions:

The Package::packagedElement property contributes to the Namespace::member

property, which in turn contributes to the Element::ownedElement property.

INTRODUCTION

34

Figure 29: Example of owningPackage edges

The Package::packagedElement or PackageableElement::owningPackage property can

be represented graphically as an edge in diagrams (see Figure 29).

INTRODUCTION

35

1.5.1.3 Types and multiplicities

Figure 30: Types and multiplicities diagram from the UML specification

Figure 30 shows the Types and multiplicities diagram from the UML specification. It defines

the abstract metaclasses Type, TypedElement, and MultiplicityElement.

Metaclasses whose elements can be assigned a type inherit from the abstract metaclass

TypedElement. Typical examples of these elements are attributes (UML metaclass Property)

and parameters (UML metaclass Parameter).

The abstract metaclass MultiplicityElement is the base class for all metaclasses whose

elements can have a multiplicity. Once again, attributes and parameters are typical examples

here. At this point, UML 2 is more complex than UML 1.x in the sense that the upper and lower

limit for a multiplicity is no longer a primitive data type (not a simple number) but is a UML

element whose metaclass inherits from the abstract type ValueSpecification. In addition to

the corresponding MultiplicityElement::lowerValue and MultiplicityElement::upperValue

properties, two further properties MultiplicityElement::/lower and

MultiplicityElement::/upper are defined with a primitive data type, but these are derived

from the assigned ValueSpecification elements.

INTRODUCTION

36

1.5.2 Classification

1.5.2.1 Classifiers

Figure 31: Classifiers diagram from the UML specification

Figure 33 shows the Classifiers diagram from the UML specification. It defines the two

abstract metaclasses RedefinableElement and Classifier, and the non-abstract metaclass

Generalization.

RedefinableElement is the basis for all UML element types for which it will be possible for a

UML element to replace another existing UML element in a particular context. The UML

specification itself uses this feature in its own diagrams. Figure 28 shows an example of this.

The PackageableElement::visibility attribute replaces the corresponding attribute from the

NamedElement base class, as unlike NamedElement::visibility it has a default value.

INTRODUCTION

37

Classifier is the basis for all UML element types for whose elements inheritance relationships

can exist. These inheritance relationships are based on the Generalization metaclass.

Figure 32: Generalization relationship between two classes

Figure 34: Generalization relationship between two classes

Figure 34 shows this kind of generalization relationship between the two classes Key

customer order and Order. This relationship itself is a UML element of the Generalization

type. In line with the compositional property Classifier::general this element is part of the

derived class Key customer order and its Generalization::general property refers to the

base class Order.

INTRODUCTION

38

1.5.2.2 Features

Figure 33: Features diagram from the UML specification

Figure 35 shows an extract from the Features diagram, supplemented with content from the

Properties diagram in the UML specification. At the center is the non-abstract metaclass

Property with its base classes. Attributes of classes and association ends are based on the

Property metaclass.

Figure 34: Class diagram with attributes and association ends

INTRODUCTION

39

The Class diagram in Figure 36 shows four UML elements of the Property type: the Order

number and Number attributes, and the order and itemline15 association ends. The

association edge shows a black diamond at the opposite end of order. This means that the

order items are part of the order and are existentially dependent on it, that is, deleting the

order includes deleting its order items. This kind of association is known as a composition. At

the order association end, the diamond is displayed if the Property::aggregation property of

the itemline association end has the value AggregationKind::composite.

15 These diagrams actually also include the two Attribute association ends for the respective

opposite class. This is dealt with in more detail in the section on the Association metaclass.

INTRODUCTION

40

1.5.3 Structured Classifiers

1.5.3.1 Classes

Figure 35: Classes diagram from the UML specification

Figure 37 shows an extract from the Classes diagram supplemented with content from the

Structured Classifiers and Encapsulated Classifiers diagrams in the UML specification. The

central metaclass in this diagram is Class. The three abstract base classes

BehavioredClassifier, StructuredClassifier, and EncapsulatedClassifier are only included

here to illustrate the inheritance relationship between Class and Classifier. They define

additional properties that will not be discussed further in this introduction.

The diagram also shows that attributes (UML type Property) can theoretically be assigned to

all classifiers using the derived property Classifier::/attribute. The type of the specific

assignment is defined by the corresponding specializations. For the Class metaclass it is the

compositional property ownedAttribute. An example of the representation of attributes in

classes is shown in Figure 36.

INTRODUCTION

41

1.5.3.2 Associations

Figure 36: Associations diagram from the UML specification

Figure 38 shows an extract from the Associations diagram from the UML specification. It

defines the Association relationship type as the central metaclass. Associations are used to

model structures made up of one or more classes or other UML types. The association is not

directly linked to the partners in the relationship, but uses an element of the UML type

Property, often referred to as association ends in this context. The

Association::memberEnd property is critical here, and its multiplicity limit of 2 means that

an association must have at least two association ends16.

These association ends can either be contained in the association itself using the

Association::ownedEnd property, or can be an attribute of the opposite relationship partner

(in the case of a class this would be the Class::ownedAttribute property). If the association

end is an attribute of the opposite relationship partner, the association is navigable towards

the association end. Alternatively, an association end that is not an attribute (that is, it belongs

to its association as ownedEnd) can also be navigable if it is also assigned to the association as

navigableOwnedEnd.

Figure 37: Class diagram with an association

16 Associations with two ends are also referred to as binary associations. These are normally

shown as a graphic edge in diagrams. If an association has more than two ends, we refer to a
multiple association. Multiple associations are shown in diagrams as diamonds with edges to

the relationship partners.

INTRODUCTION

42

The association in Figure 39 links two classes with one another. The item association end is an

attribute of the Order item class (Class::ownedAttribute property). You can identify this by

the black dot at the end of the edge. As an attribute of the class, the end of a binary

association is automatically navigable and is shown with an arrow head17. This means that an

order item recognizes the item assigned to it. By contrast, the order item association end is

part of the association (Association::ownedEnd property) and is not navigable.

1.5.3.3 Simple Classifiers – DataTypes

Figure 38: DataTypes diagram from the UML specification

Figure 40 shows an extract from the DataTypes diagram from the UML specification. It defines

the two non-abstract metaclasses DataType and PrimitiveType. These data types differ from

classes in the sense that there is no object identity for their instances. Instances of data types

are only differentiated from one another based on their value. Simple data types

(PrimitiveTypes metaclass) have no internal structure.

Figure 39: Class diagram with two primitive data types

Figure 41: Class diagram with two primitive data types

17 If both ends of a binary association are navigable, displaying the arrow heads in the

diagram is optional.

INTRODUCTION

43

2 ARIS UML Designer overview

This section provides a brief introduction to the individual components of ARIS UML Designer

and their key functionalities.

ARIS UML Designer provides different functional components depending on the selected

working environment in the perspective.

2.1 Specifying the working environment

You can specify the perspective and therefore the working environment by selecting the Select

perspective menu item.

Figure 40: Menu item for specifying the perspective

INTRODUCTION

44

This launches a wizard for specifying the perspective.

Figure 41: Topic selection in the Perspective Wizard

In contrast to ARIS Architect/ARIS Designer, apart from UML modeling no other license-

dependent topics are available for ARIS UML Designer.

Figure 42: Working environments in the Perspective Wizard

INTRODUCTION

45

By selecting the working environment, you adjust the range of functions in ARIS UML Designer

to the work you are involved in.

Review allows read-only access to the UML content. It is not possible to make any changes to

the data and diagrams.

Modeling allows you to edit the content.

Analysis & Management enables additional functionalities such as XML export and XML

import.

Configuration & Administration includes administrative activities in ARIS such as editing

method filters or configuration of reuse options for business process objects in UML, and

creation and editing of scripts.

2.2 Explorer

When you launch ARIS UML Designer, the Explorer tab is displayed.

Figure 43: Explorer tab

Figure 45 shows the Explorer tab in ARIS UML Designer. The Navigation bar on the left-hand

side contains two trees – the Explorer tree and the Diagram tree. The properties of the

element or diagram selected in the tree are displayed on the right-hand side. Alternatively,

you can display the properties in a separate dialog by clicking Properties in the pop-up menu

for an element or diagram.

INTRODUCTION

46

The Navigation bar can be hidden using the button at the right-hand edge of the window

to create more space for the properties pages.

You can use the button to show and hide the Implicit changes bar at the right-hand edge

of the window. This area logs when a change to a UML element results in implicit changes to

other UML elements. The Implicit changes bar is outlined in more detail in Implicit changes

bar (page 83).

You can use the button to hide all areas except for the properties pages. Clicking the button

again reverts to the previous state.

If you have closed the Explorer tab, you can re-open it by selecting Explorer in the ARIS

menu.

Figure 44: Menu item for displaying the Explorer tab

INTRODUCTION

47

2.2.1 Navigation bar

2.2.1.1 Explorer tree

The Explorer tree shows the familiar ARIS group hierarchy with diagrams and elements. The

tree includes both standard ARIS and UML content.

Figure 45: Groups, diagrams, and elements in the Explorer tree

INTRODUCTION

48

A fundamental difference between ARIS and UML is that, unlike ARIS items, UML elements can

form hierarchies, that is, a UML element can contain other UML elements, and this is visible in

the Explorer tree. The root of this kind of hierarchy of UML elements is always a UML element

of the Package, Model, or Profile type. Only these three types can be directly contained in a

group.

Essentially, only new groups, UML elements, and UML diagrams can be created in ARIS UML

Designer. ARIS items and ARIS diagrams are displayed in the Explorer tree in ARIS UML

Designer, but they cannot be created there.

You can filter the Explorer tree content. If you have activated the Explorer tree, top right a

Filter button is available. To focus on specific elements you can restrict the displayed content.

Figure 46: Explorer tree filter options

You can even define which UML object types should be visible.

INTRODUCTION

49

To show the content of the UML types Package, Model, and Profil, these superordinated

elements must be included in the Visible elements area. If you, for example, include

subordinated elements of Profil, but not Profil itself, the subordinated elements are not

shown.

Figure 47: Explorer tree filter dialog

If you have defined a metamodel filter you can toggle it using the Acitvate model filter menu

item.

INTRODUCTION

50

The filter symbol indicates, if a filter is set or not. A tooltip informs you about the filter

details, if you move the mouse pointer briefly over the filter icon.

Figure 48: Explorer tree filter details

INTRODUCTION

51

2.2.1.2 Diagram tree

The diagram tree provides a view of the database grouped by diagram types. Particularly with

small or medium-sized databases, it offers fast and uncomplicated access to diagrams.

Figure 49: Diagram tree

Figure 51 shows the Explorer tab with the diagram tree in the Navigation bar. Below the

database node are the two metamodel nodes ARIS and UML. These each contain the

corresponding diagrams grouped by diagram type.

INTRODUCTION

52

2.2.2 Properties pages

The properties of the element or diagram selected in the Navigation bar are displayed on

several properties pages on the right-hand side of the Explorer tab. The most important

properties pages are outlined below. Special properties pages relating to UML profiles (page

155) or links between business process and UML modeling (page 130) are explained in the

corresponding sections of this document.

Essentially, all properties pages on the Explorer tab are also displayed in the Properties dialog

for the element or diagram.

2.2.2.1 Information (elements, diagrams, groups)

Figure 50: Information properties page

INTRODUCTION

53

The Information properties page is displayed for groups, elements, and diagrams. If you click

on Configure information page you can determine the content of the Information properties

page.

Figure 51: Information properties page configuration

INTRODUCTION

54

2.2.2.2 General (elements, diagrams, groups)

Figure 52: General properties page

The General properties page shows all properties that are specified in the metamodel as

attributes of the metaclass for the selected element and as attributes of the meta diagram for

the selected diagram. The lower section of the page shows a description of the selected

property. Properties that the metamodel stipulates must have a value are indicated by an

asterisk (*).

The button Show/Hide description area is used to set whether or not the description

area is displayed.

The properties are grouped by the metaclasses and meta diagrams to which they are assigned

as attributes in the metamodel. Alternatively, you can sort the properties alphabetically

without displaying their metaclasses or meta diagrams (see Figure 55).

INTRODUCTION

55

The Categorized and Alphabetically buttons are used to toggle between the

properties being grouped by metaclasses and displayed alphabetically.

Figure 53: Alphabetical property display

Apart from a few exceptions18, properties that are based on derived meta attributes, that is,

whose values have to be calculated at runtime based on other properties and elements, are

not displayed by default. You have the option of also displaying derived properties.

18 These exceptions include Element::/description, MultiplicityElement::/lower, and

MultiplicityElement::/upper.

INTRODUCTION

56

The button Show derived properties enables or disables the display of derived

properties.

Figure 54: General properties page with display of derived properties

The example in Figure 56 shows that when displaying derived properties for the Element

metaclass, that is, for all UML elements, the /ownedElement and /owner properties are also

listed (see Figure 26: Root diagram from the UML specification with ARIS-specific extensions).

Their values are written in gray rather than black to indicate that these properties cannot be

changed.

INTRODUCTION

57

The button Show specified properties only hides or shows all properties that have no

value.

Figure 55: General properties page without properties for which no value is specified

Figure 57 shows the same example as Figure 55, with the difference that all properties for

which no value is specified are hidden here.

Clicking the value of a property allows you to edit it. The type of editing permitted depends on

the property type.

Properties of the String type can be edited directly in the text line:

Figure 56: Text entry

INTRODUCTION

58

If the property supports formatted text, this dialog provides the corresponding formatting

tools. ARIS UML Designer only supports this for descriptions and comments:

Figure 57: Editor for formattable text

If the value of the property is a UML element, direct editing in the text line is also possible:

Figure 58: Text editing for a UML element in the general properties

During editing, a corresponding UML syntax help is shown above the text line. This UML-

specific text editing option is available in ARIS UML Designer wherever the element is

displayed in this text form – in the Explorer tree, in the properties pages for the superior

element, and in diagrams. It is described in more detail in Creating new elements in

Explorer (page 65).

The button on the far right is used to open a pop-up menu, which provides additional

functionalities for the element:

Figure 59: Additional functionalities for a UML element in the general properties

A pop-up menu is also available in the row of the table containing the name of the property. It

is used to create corresponding new UML elements or to add existing elements to the property.

INTRODUCTION

59

The button for expanding the menu is available as soon as you click in the corresponding field

in the table.

Figure 60: Creating new UML elements in the general properties

2.2.2.3 Relationships (elements)

Figure 61: Relationships properties page

The Relationships properties page displays all of the selected element's relationships with

other elements. Alongside the direct relationships, those that appear as a direct graphic link

between two elements in the diagram but actually represent a chain of elements and

relationships are also displayed.

The binary association is an example of this kind of relationship. It links two classifiers using a

graphic edge in the diagram, for example a user case and an actor. However, this association

edge does not visualize a direct relationship but a chain of elements consisting of two

association ends (UML type Property) and an association.

The Relationships properties page for the use case shows both the direct relationship

between the use case and the association end as an incoming relationship of the

typedElement type, and the indirect relationship with the actor, which is of the Association

type.

INTRODUCTION

60

You can call up the following functionalities for every relationship:

 Remove relationship

 Go to occurrence of linked element in Explorer

 Show element properties for linked element

The other two functionalities are only available in the Designer component and are described in

the corresponding section.

2.2.2.4 Linked diagrams (elements)

Figure 62: Linked diagrams properties page

All diagrams that are linked to the selected element are displayed here. If the selected element

has a presentation in a diagram, it is displayed with an assignment symbol. This supports

navigation to the linked diagrams in that diagram.

This kind of link can take three forms:

OWNERSHIP

The diagram belongs to the selected element. It appears as a child node of the element in the

Explorer tree.

NAVIGATION

The diagram has been assigned to the element for the purpose of navigation. This kind of link

has no semantics. It is only used to provide a simple way of navigating from an element to a

diagram. Unlike diagram assignments in the ARIS standard, no restrictions exist here. Every

diagram type can be linked to every element type.

INTRODUCTION

61

IMPLICIT OWNERSHIP

In this case, the diagram does not directly belong to the selected element. It is a behavior

diagram19 whose owner belongs to the selected element. For example, if you want to model

the internal process of a use case in an Activity diagram, you create an activity as

ownedBehavior of the use case and a corresponding Activity diagram for the activity. This

Activity diagram is automatically linked to the use case through implicit ownership.

You can call up the following functionalities:

 Assign diagram

 Removed assigned diagram (only for assignments of Navigation type)

 Open diagram

 Go to occurrence of diagram in Explorer

 Show diagram properties

2.2.2.5 Presentations in diagrams (elements)

Figure 63: Presentations in diagrams properties page

The Presentations in diagrams properties page lists all diagrams that contain the selected

element.

You can call up the following functionalities for each diagram:

 Open diagram

 Go to occurrence of diagram in Explorer

 Show diagram properties

19 Implicit ownership is not supported for structure diagrams. For example, if a child package

of a package has Class diagrams, they are not linked to the package.

INTRODUCTION

62

2.2.2.6 Presentations (diagrams)

Figure 64: Presentations properties page

The Presentations properties page lists all elements that appear in the selected diagram.

You can call up the following functionalities for each element:

 Go to occurrence of element in Explorer

 Show element properties

2.2.2.7 Connected objects (diagrams)

Figure 65: Connected objects properties page

The Connected objects properties page for a diagram shows the element that owns the

diagram and optionally also the implicit owner in the case of a behavior diagram.

You can call up the following functionalities for each element:

 Go to occurrence of element in Explorer

 Show element properties

INTRODUCTION

63

2.2.3 Properties dialogs

Figure 66: Properties dialog for a UML element

INTRODUCTION

64

When you open the Properties dialog for an element or diagram, it essentially contains the

same properties pages that are displayed on the Explorer tab. In addition, there is a

properties page here for editing the description of the element or the diagram (see Figure 69).

Figure 67: Properties page for displaying and editing the element description

INTRODUCTION

65

2.2.4 Creating new elements in Explorer

New elements can be created in the Explorer tree by calling up the New element item in the

pop-up menu. This opens a submenu containing the element types that can be created within

the selected element. Figure 70 shows this pop-up menu for a group. The four types Group,

Model, Package, and Profile are available.

Figure 68: Pop-up menu for creating a new element in a group

If you call up this pop-up menu for a UML element, the number of possible element types that

you can create within the selected element may exceed the capacity of the submenu. In this

case, only the most important element types are provided directly in the submenu. As the

maximum number of pop-up menu items depends on the screen size and resolution, you can

INTRODUCTION

66

specify the maximum number of items that this kind of pop-up menu can contain in the global

options for ARIS UML Designer20.

Figure 69: Pop-up menu for creating a new element in a UML package

Figure 71 shows the pop-up menu for creating a new UML element in a UML package. In

addition to the element type, each menu item also contains the property under which the new

element is created in the superior element. In this example, most elements would be created

as packagedElement in the package (see also Figure 28: Namespaces diagram from the UML

specification).

20 ARIS > Options > UML > Explorer > Configure menu

INTRODUCTION

67

Clicking More... opens the Create element dialog, which lists all UML types that can be

created within a package but are not included in the pop-up menu (see Figure 71).

Figure 70: Dialog showing element types that are not included in the pop-up menu

The content of the New element submenu can be individually adapted for each UML element

type, allowing you to add the most important element types from a user perspective to the

INTRODUCTION

68

menu and to remove those that are not so important. Clicking the Configure menu item

shown in Figure 71 opens the corresponding menu configuration dialog.

Figure 71: Dialog for configuring the New model element submenu

Figure 73 shows the dialog for configuring the New model element pop-up menu. The right-

hand column contains all element types that are directly included in the pop-up menu, the left-

hand column those that are available for selection in a dialog by selecting More.... If Sort

alphabetically is enabled, the elements in the pop-up menu are sorted alphabetically.

Otherwise, you can individually specify the order of the elements in the pop-up menu.

Regardless of this setting, the element types in the dialog are always sorted alphabetically.

INTRODUCTION

69

If you have a created a new element in Explorer, UML-specific text editing for the element is

automatically activated.

Figure 72: Text editing for a UML element in Explorer

The syntax help highlights the area to which the current cursor position in the text box relates.

If the current text relates to a different UML element, all UML elements already loaded from

the database whose name begins with the text entered and which are of the matching type are

shown in a selection list:

Figure 73: Selection list with matching elements in text editing

If a UML element is referenced that does not yet exist or has not yet been loaded from the

database, its name is underlined with a green wavy line:

Figure 74: Unknown UML element in text editing

INTRODUCTION

70

If you exit text editing in this situation, every unknown element is listed in the Assign

reference dialog and you are offered the option of creating new elements or searching the

database for matching elements.

Figure 75: Dialog with unknown references in text editing

With no further entries in the dialog shown in Figure 77, clicking OK creates a new class with

the name String as the type for the Item description attribute.

In the Type column you can specify the exact type if a new element is to be created.

Figure 76: Selecting the type for the new element to be created

INTRODUCTION

71

The Status column describes whether a new element is created or whether an existing

element from the database is assigned. Clicking the button on the far right allows you to select

from both options.

Figure 77: Selection options for creating or using a UML element

Selecting Use opens the Select elements dialog for searching for the element in the database.

Figure 78: Search dialog

INTRODUCTION

72

2.2.5 Creating new diagrams in Explorer

UML diagrams are always contained in a UML element. It is not possible to create a UML

diagram directly within an ARIS group. UML elements of the Package, Model, Profile, or

Class21 type can contain any structure diagrams. Behavior diagrams, on the other hand, are

always contained in the element represented, that is, state diagrams in state machines,

Interaction diagrams22 in interactions, and activity diagrams in activities.

New diagrams can be created in the Explorer tree by calling up the New diagram item in the

pop-up menu.

Figure 79: Pop-up menu for creating new UML diagrams

Figure 81 shows the pop-up menu for creating a new diagram in a UML package. The pop-up

menu provides the same configuration options as the pop-up menu for creating new elements.

21 This also applies to all elements whose metaclass is derived from Class, e.g., Component or
AssociationClass.
22 Communication, Sequence, and Timing diagrams are referred to as Interaction diagrams.

INTRODUCTION

73

2.3 Designer

When you open a UML diagram, it is displayed in the Designer component.

Figure 80: Designer component

The Designer component is divided into four areas – the modeling area, and the Navigation,

Properties, and Symbols bars. The bars can be hidden to create more space for the diagram

representation. In addition, you can rearrange the bars by dragging them with the mouse

button held down.

The following buttons are available on the far right of the window:

 Shows and hides the Navigation bar

 Shows and hides the Symbols bar

 Shows and hides the Properties bar

 Shows and hides the Implicit changes bar

 Hides all bars

 Shows all bars

For the screenshots shown below, the individual bars have been arranged in such a way that

they provide a useful representation adapted to the page width available in this document.

INTRODUCTION

74

2.3.1 Navigation bar

In addition to the two trees familiar from the Explorer tab, the Navigation bar contains the

diagram overview and the list of elements that appear in the diagram.

2.3.1.1 Diagram overview

Figure 81: Diagram overview

The Diagram overview provides a schematic view of the entire diagram and indicates the

section that is visible in the modeling area with a white rectangle. By moving the rectangle,

you can move sections of the diagram that are not visible in the modeling area into the visible

area.

2.3.1.2 Visualized elements

Figure 82: Visualized elements

The Visualized elements page shows a list of all the UML elements that appear in the

diagram. Selecting an element in the list also selects the element in the diagram and moves

the section shown in the modeling area so that this element is visible.

INTRODUCTION

75

2.3.2 Properties bar

The Properties bar essentially shows the same properties pages as the Explorer tab.

However, as the available space is smaller you can specify which properties pages are to be

displayed in the Designer component in the global options.

In each case, the properties of the element currently selected in the Navigation bar or in the

diagram are displayed.

2.3.3 Format

Figure 83: Format properties page for the element selected in the diagram

The Format properties page is displayed for elements in diagrams. It shows all representation

options for the selected element. If multiple elements are selected, it shows the combined

representation options for the selected elements. This enables the graphical representation of

multiple elements to be edited simultaneously.

Just as for the general properties (page 54), a brief description of the selected representation

option is displayed at the bottom and you can choose between thematic grouping and an

alphabetical display of the representation options.

INTRODUCTION

76

These representation options include both general graphical properties such as colors, line

weight, or font format, and UML-specific options that specify which details the relevant

elements are to display in the diagram.

2.3.4 Symbols bar

Figure 84: Symbols bar for a Class diagram

The Symbols bar is used to create elements and relationships in the diagram. In contrast to

ARIS Architect/ARIS Designer, it also contains edge symbols.

If you move the mouse pointer briefly over a symbol, a description of the symbol is displayed.

Figure 85: Symbol description

INTRODUCTION

77

You can use the Show symbols with names and Show symbols without names

buttons to show and hide the symbol names in the Symbols bar.

Figure 86: Symbols bar with symbol names hidden

Selecting the Remove symbol item in the pop-up menu enables a symbol to be removed

from the Symbols bar.

Figure 87: Pop-up menu in the Symbols bar

You can click the Add symbols button or the Add symbols item in the pop-up menu to

open the dialog for configuration of the Symbols bar.

INTRODUCTION

78

Figure 88: Dialog for configuration of the Symbols bar

The dialog contains a list of the available symbols and a list of the symbols contained in the

Symbols bar, in each case grouped by diagram type. In the case of structure diagrams such

as the Class diagram, you can add any UML diagram types to the Symbols bar.

INTRODUCTION

79

A text input box above the list enables the list to be filtered by the symbols whose name

contains the text entered. The corresponding diagram nodes are automatically expanded in the

list, allowing fast access to the symbol you are looking for (see Figure 91).

Figure 89: All available symbols whose name contains the text Call

INTRODUCTION

80

In addition, the Symbols bar in ARIS UML Designer provides the option of grouping frequently

used symbols in the upper section of the Symbols bar for fast access, regardless of their

diagram type.

Figure 90: Add to favorite symbols pop-up menu item

To do this, select the Add to favorite symbols pop-up menu item for the corresponding

symbol in the Symbols bar.

Figure 91: Favorite symbols

The symbol is then also displayed in the top section of the Symbols bar under Favorite

symbols.

INTRODUCTION

81

Clicking Create additional symbol presentation enables you to create an element in a

diagram whose symbol is not to be permanently contained in the Symbols bar for all diagrams

of the same type. The Create presentation dialog opens (see Figure 94).

Figure 92: Dialog for selecting the symbol

The dialog lists all available symbols, once again grouped by diagram type, and provides the

same filtering by text input as the dialog for configuration of the Symbols bar.

INTRODUCTION

82

If a diagram includes presentations of symbols that are not contained in the Symbols bar for

the diagram type, they are displayed in the Symbols bar for the relevant diagram in the

Diagram-specific symbols section of the Symbols bar.

Figure 93: Diagram-specific symbols

INTRODUCTION

83

2.3.5 Implicit changes bar

Figure 94: Implicit changes bar

The Implicit changes bar logs changes to UML elements and diagrams that occur implicitly

due to changes elsewhere.

A typical example of this kind of implicit change is shown below.

Figure 95: Binary associations whose ends are attributes of the classes involved

Figure 97 shows a Class diagram with a binary association between the Order and Order item

classes. The two ends of the association are navigable as attributes of the classes involved. For

this reason, the itemline association end is a child of the Order class in the Explorer tree. It is

displayed as text itemline:order item[1..*]{ordered} with its type, the Order item class.

Figure 96: Renaming the association end and deleting the type specification

INTRODUCTION

84

If we now rename this association end and delete the type specification, this means that the

itemline association end is no longer linked to the Order item class. This also removes the

association edge from the diagram, which represents an implicit change that is not always

directly identifiable for the user.

This implicit change is logged in the Implicit changes bar.

Figure 97: Logged implicit change

Logging of implicit changes can be enabled and disabled on the global options page Modeling.

2.3.6 Modeling

Essentially, graphic modeling in ARIS UML Designer is based on the same principles as in ARIS

Architect/ARIS Designer. For this reason, this section focuses on the modeling-specific special

features of ARIS UML Designer, with only a brief discussion of the principles of graphic

modeling in ARIS.

INTRODUCTION

85

2.3.6.1 Creating new node presentations

New node presentation elements can be created in the diagram by first selecting the

corresponding symbol in the Symbols bar by clicking it.

Figure 98: Selecting the Class node symbol

If you then move the mouse pointer to the modeling area, a preview of the new presentation

to be created is displayed at the mouse pointer.

Figure 99: Mouse pointer with preview of a class presentation

Clicking in the modeling area creates the presentation at that point and displays a text input

box for entering the name.

Figure 100: New class placed with text input box for the name

This text input box initially contains the corresponding symbol names, possibly supplemented

by an underscore and a number (_1,_2, etc.) if elements of the same type with this name

already exist.

INTRODUCTION

86

The content of the text input box is applied when you complete your entry by pressing the

Enter key or by clicking at any point in ARIS UML Designer outside the text input box.

Depending on your setting in the global options, text entry can also be completed by

simultaneously pressing Ctrl and Enter23. If, on the other hand, you exit the entry by pressing

Esc, the original name is retained.

If you have entered the name of an existing element of the same type in the text input box,

the Select element dialog opens and asks whether you want to create a new presentation for

the existing element in the diagram, or whether you want to create a new element with this

name (see Figure 103).

Figure 101: Create dialog after entering the name of existing elements

You can also create a new presentation for an existing element by dragging the element from

the Explorer tree to the modeling area or by copying it from the Explorer tree to the clipboard

and pasting it in the diagram. If several possible symbols exist that can represent the element

in the diagram, you are asked which of these symbols you want to use (see Figure 104). By

contrast, if you copy a presentation of the element from a diagram to the clipboard and then

23 See ARIS > Options > UML > Designer - General > Use Enter for line break

INTRODUCTION

87

paste it into a diagram, there is no prompt as in this case all the presentation properties of the

original, such as symbol, color, and size are also copied.

Figure 102: Dialog asking which symbol is to be used

INTRODUCTION

88

2.3.6.2 Creating a new edge presentation

To create a new edge presentation, first select the corresponding edge symbol in the Symbols

bar.

Figure 103: Selecting the Association edge symbol

Moving the mouse pointer to the relevant source element in the diagram graphically displays

the anchor point closest to the mouse pointer.

Figure 104: Displaying the edge anchor point on the source element

Clicking at this point specifies the starting point of the edge. Starting from this point, a preview

of the edge up to the current mouse pointer position is then displayed. If you move the mouse

pointer to the relevant target element, the nearest possible anchor point is once again

displayed graphically.

Figure 105: Displaying the edge anchor point on the target element and edge preview

Clicking the target element creates the edge.

If a relationship of the same type already exists between the source and target element and

more than one relationship of this type is allowed between the two elements, a dialog appears

INTRODUCTION

89

to ask whether you want to create a new edge presentation for the existing relationship or to

create a new relationship (see Figure 108).

Figure 106: Dialog for creating an association between two classes between which an association already exists

As an alternative to selecting a particular edge symbol, you can also use the general edge

symbol from the Symbols bar to create an edge in the diagram.

Figure 107: General edge symbol

INTRODUCTION

90

In this case, when creating the edge after clicking the target element a selection list is

displayed, in which you are prompted to select the specific edge type.

Figure 108: Selection list with edge types

Clicking in the Start tab bar enables and disables edge mode. If edge mode

is enabled, possible edge anchor points are automatically displayed in the diagram as soon as

the mouse pointer is close to them. It is not then necessary to select the general or a specific

edge symbol in the Symbols bar first.

INTRODUCTION

91

2.3.6.3 Deleting presentations and elements

In ARIS UML Designer, the pop-up menu for a presentation contains two different items for

deleting:

Figure 109: Delete functionalities in the pop-up menu

 Delete only deletes the presentation in the diagram. The element or relationship it

represents remain in the model, that is, available in the database.

 Delete element deletes not only the presentation but also the element itself or the

relationship represented in the model.

2.3.6.4 Mini toolbar

Clicking a node presentation displays a small toolbar next to it. This toolbar can contain node

and edge symbols and you can adapt it individually for each symbol.

Figure 110: Mini toolbar

If you select a node symbol from the mini toolbar, you can create a corresponding element in

the diagram, which is automatically linked to the selected node presentation by an edge. If

several edge types are allowed between the two elements, a selection list is shown. In this

INTRODUCTION

92

case, first select the edge type and then click in the modeling are at the position where you

want to create the node presentation.

Figure 111: Node and edge preview with edge type selection after clicking the Comment symbol in the mini toolbar

When you select an edge symbol from the mini toolbar, the node presentation for which the

mini toolbar is displayed is used as the source element for the edge and then you only need to

click the target element in the diagram to create the edge.

You can remove a symbol from the mini toolbar by selecting Remove symbol in the pop-up

menu. Selecting Add symbol or clicking Add symbols opens the dialog for adding a

symbol.

Figure 112: Pop-up menu in the mini toolbar

INTRODUCTION

93

2.3.6.5 Modeling and hierarchy in Explorer

A series of edge types in ARIS UML Designer graphically represent the fact that an element is

contained in another element.

Figure 113: Owning package relationship between a class and the package in which it is contained

The diagram in Figure 115 shows this kind of relationship of the Owning package type

between the Order class and the Classes package. This shows that the class is contained in

the package, which you can also see from the hierarchy in the Explorer tree24.

What happens if you create an additional edge of this type from the Order class to the Use

cases package is shown in Figure 116:

The original relationship between the Order class and the Classes package is deleted.

24 See also Figure 28 in the Namespaces.

INTRODUCTION

94

The Order class is moved to the Use cases package in the Explorer tree.

Figure 114: After creating a second owning package relationship

INTRODUCTION

95

2.3.6.6 Graphic nestings

In many cases, in ARIS UML Designer diagrams the ownership of one element by another can

also be indicated by a presentation of the element being graphically nested in the presentation

of the owning element. In some cases, graphic nesting can also represent a relationship that is

not ownership. However, a common feature of all graphic nestings in ARIS UML Designer is

that they always represent a relationship between the elements at definition level.

When creating or moving an element in the diagram, presentations in which the element can

be nested are indicated by a border when the mouse pointer is located within the potential

nesting container.

Figure 115: Graphic indication of a package as a potential nesting container when creating a new class

Once the class has been created as a nested presentation in the package, it is also contained

in the package in the Explorer tree.

Figure 116: Class nested in a package

The appearance of a class in a diagram as an element nested in a package represents an

alternative notation to the link using an Owning package edge shown in Figure 115.

A series of options exist that influence the behavior of ARIS UML Designer when modeling with

nestings.

INTRODUCTION

96

The first options25 relate to how the relationships underlying the graphic nesting are handled.

Figure 117: Options for nestings

If the two Show dialog when... options are enabled, a corresponding query is displayed when

modeling. In this case, if you move the class in Figure 118 out of the package to the diagram

background, the Unnest node dialog opens:

Figure 118: Unnest node dialog

Selecting Delete nesting relationship moves the class into the package in which the

diagram is located. Selecting Show nesting relationship displays an Owning package

relationship between the class and the package. The Keep but do not show nesting

relationship option means that no relationship is displayed in the diagram; the class remains

contained in the package at definition level.

25 See ARIS > Options > Designer > General, Nestings area

INTRODUCTION

97

A further option26 relates to the situation where one element can be nested in another in

different ways.

Figure 119: Option for creating a nested element

In rare cases, a UML element can own another element of a particular type in more than one

way without the semantic difference between the different types of ownership being obvious

and really relevant to the user. One example of this is the UML type Constraint.

Figure 120: Extract from the UML metamodel with the Package and Constraint metaclasses

Every UML element whose type inherits from the Namespace metaclass can own constraints

through its ownedRule property. Every UML package can own elements whose type inherits

from the PackagedElement metaclass through its packedElement property. As the

Constraint metaclass inherits from PackagedElement, you can either insert a constraint in a

package as an ownedRule or as a packagedElement.

If the Automatically specify owner property when creating owned elements option is

enabled, when creating a constraint in a package there is no query as to whether the

constraint is to be contained in the package as an ownedRule or a packagedElement. In this

case, it is automatically created as an ownedRule in the package.

26 See ARIS > Options > Modeling, General area

INTRODUCTION

98

You can also change the nesting type later by calling up the Change nesting kind item in the

pop-up menu for the nested element. The Select nesting type dialog opens to select the

corresponding nesting type.

Figure 121: Dialog for changing the nesting type for a constraint contained in a package

INTRODUCTION

99

2.3.6.7 Text nestings

Figure 122: Class with two attributes

Figure 124 shows the UML notation for a class with two attributes. The special feature of UML

compared to the ARIS standard is that here a single presentation represents several elements

and their relationships – a class (Item), two attributes (Item number and Description), a data

type (String), two relationships of the Class::ownedAttribute type, and two relationships of

the TypedElement::type type.

The two attributes are nested in the class presentation using text and, as such, can also be

selected individually. The first click on the class selects the class itself (as shown in Figure

124). Clicking again on an attribute within the class selects the attribute. In this case the

Properties area no longer shows the properties of the class but those of the attribute.

Figure 123: Class with selected attribute

Many of the functionalities that ARIS UML Designer provides for presentations are also

available for textually nested elements. For example, you can move or copy them to another

element, call up the Properties dialog and, last but not least, edit the text by clicking it a third

time or pressing the F2 key.

Figure 124: Text editing for an attribute in Designer

INTRODUCTION

100

In Designer, you can also create new textually nested elements for an element using the pop-

up menu:

Figure 125: Creating a new operation using the pop-up menu

INTRODUCTION

101

2.3.6.8 Modeling in groupings

ARIS UML Designer enables you to edit elements within groupings without having to cancel the

grouping to do so.

Figure 126: Creating a grouping

Groupings are created by selecting Group in the pop-up menu.

Figure 127: Grouped elements

You can move this kind of grouping in the diagram in its entirety without first having to select

each element it contains.

INTRODUCTION

102

However, you can still select individual elements within the grouping to edit their properties. If

an element is in a grouping and the grouping is not yet selected, the grouping is selected the

first time you click the element. Clicking the element again then selects the element itself, as

shown in Figure 130.

Figure 128: Selecting an element within a grouping

It is also possible to move elements within a grouping.

Figure 129: Moving an element within a grouping

2.3.6.9 UML-specific modeling support

A range of ARIS UML Designer functionalities are used to perform typical use cases in UML

modeling, which normally require several manual editing steps, with just a few clicks. They

include everything from simple use cases such as setting the multiplicity of association ends to

default values using the pop-up menu through to more complex use cases such as creating

port interfaces for components. A common feature of all functionalities is that they are

available in the element's pop-up menu and under Edit element in the Contents tab bar.

Two of these functionalities are introduced below by way of example.

INTRODUCTION

103

2.3.6.9.1 Specifying the navigability of an association
end

As described in Associations (page 41), the navigability of an association end is not a simple

Boolean property, but depends on what the association end belongs to and, in some cases, the

way in which the association end is assigned to its owner.

Figure 130: Unidirectional navigable association

Figure 132 shows two classes and an association. The item association end is navigable

(indicated by the arrow head), as it is an attribute of the opposite class Order item. You can

recognize this by the graphic representation with the dot at the arrow head, and also by the

fact that it is listed in the class as an attribute27.

Figure 131: Association ends for the association

In the properties of the association, you can see that only one of the two association ends

belongs to the association – the order item association end. As it is only listed for the

ownedEnd property but not for the navigableOwnedEnd property, it is not navigable.

27 Attributes that are simultaneously association ends are not normally also displayed in the

attributes area of the class in the diagram. However, you can change this for the class by
disabling the Classifier > Hide association member ends display option, which has been done

here to illustrate the situation.

INTRODUCTION

104

You can use the pop-up menu for the association end or the tab bar to easily change its

navigability without having to manually make changes to the ownership relationships.

Figure 132: Functions for changing the navigability and the multiplicity

Figure 134 shows the UML-specific functionalities for an association end. The current status of

the element is hidden in the list (Set 'Navigable as Owned Association End' and Set

multiplicity [1..1]).

Selecting Set 'Navigable as Owned Association End' in the list displays the following

screen:

Figure 133: Association end navigable but not an attribute of the opposite class

The item association end is still navigable, but is no longer an attribute of the Order item

class. This can also be seen from the changed properties of the association. The item

INTRODUCTION

105

association end is now listed for both the ownedEnd property and the navigableOwnedEnd

property.

Figure 134: Association ends after changing the navigability

The functionalities for changing the navigability thus save the user having to manually edit the

ownedAttribute property for the class at the opposite association end and the ownedEnd

and navigableOwnedEnd properties for the association.

INTRODUCTION

106

2.3.6.9.2 Creating getter and setter operations

The Generate getter and setter functionality provides an easy way to create corresponding

access methods for the attributes of a class.

Figure 135: Functionalities for creating operations for a class

The functionality opens the Generate getter and setter dialog for selecting the attributes

and setting some additional parameters for generating the access methods.

Figure 136: Generate getter and setter dialog

INTRODUCTION

107

Figure 138 shows the Generate getter and setter dialog for the Order item class. The

prefix get has been entered for the getters and set for the setters28. The two attributes item

and number have been selected for generation. Clicking OK starts the generation process.

Figure 139 shows the class with the generated access methods.

Figure 137: Generated getters and setters

28 The two prefixes get and set appear by default when the dialog is opened.

INTRODUCTION

108

2.4 Options

Selecting the Options menu item in the ARIS menu, you can open the dialog for editing the

general settings for ARIS UML Designer.

Figure 138: Menu item for editing the options

The dialog contains a series of options, the most important of which are outlined below. The

options for the Perspective, Print, and Versioning topics are not discussed here, as they are

ARIS standard options.

Changing some options, for example, language options or working environment, require you to

restart ARIS UML Designer.

INTRODUCTION

109

2.4.1 General

Figure 139: General options page

The Method language specifies the language in which the names of diagram types, element

types, and properties that do not relate to UML are displayed. There is a separate language

setting for UML type names in the UML-specific options.

The Interface language specifies the language in which texts in the user interface are

displayed.

In ARIS UML Designer, the palette only affects the display of the symbols for non-UML

elements in the Explorer tree.

INTRODUCTION

110

2.4.2 Modeling

Figure 140: Modeling options page

The Metamodel language specifies the language in which the type names of UML elements,

UML properties, and UML diagrams are displayed. For example, this allows object types,

diagram types, and attribute names for non-UML content to be displayed in German, and UML

types in English.

The option for selecting the owner property has already been explained in Graphic nestings

(page 95).

The Show alert if data is implicitly changed option can be used to enable and disable the

logging of implicit changes described in Implicit changes bar (page 83).

Some changing functionalities of ARIS UML Designer are executed on the server as they

potentially involve large data volumes. They require all changes made in the client to be saved

first. If the Save automatically before processing check box is enabled, saving occurs with

no confirmation when the corresponding functionality is called. Otherwise, a dialog appears

asking whether you want to save or cancel the functionality.

When multiple users are working on the same structures in a database, it is theoretically

possible that two users could simultaneously change the structure in such a way that the two

INTRODUCTION

111

changes would combine to cause a cycle in the element hierarchy. As soon as one user has

saved his changes, in this situation the second user's save will fail if the cycle is not fixed first.

If the Automatically remove cycle from namespace hierarchy when saving changes

check box is enabled, the fix is carried out when saving without confirmation. Otherwise a

corresponding dialog appears.

Figure 141: Dialog when saving with a cycle in the namespace hierarchy

If the Refresh data after saving check box is enabled, all data is reloaded from the server

after saving, so that changes made by other users are included.

The Enable secure storage check box is used to set ARIS UML Designer to back up all

changes locally at regular intervals. You use the Save interval (seconds) setting to specify

how often this is to be performed. If the connection to the server is lost due to network

problems, at the next login you will be asked whether you want to restore the changes that are

not saved in the database.

Figure 142: Confirmation prompt for restoring unsaved changes

INTRODUCTION

112

2.4.3 Designer > General

Figure 143: Designer > General options page

The Selected edges - Color option specifies the color in which edges selected in diagrams are

displayed.

Changes in text input boxes are normally applied using the Enter key, and line breaks are

entered using Ctrl + Enter. You can reverse this by enabling the Use Enter for line break

(press 'Ctrl + Enter' for changes to take effect) check box.

The options for nestings have already been explained in Graphic nestings (page 95).

INTRODUCTION

113

If the Show tooltips for presentations check box is enabled, a tooltip showing information

about UML elements in diagrams is displayed at the mouse position.

Figure 144: Tooltip for a UML element in a diagram

2.4.4 Explorer

Figure 145: Explorer options page

Here, you can set how many items the Explorer pop-up menu for creating new elements

displays, and whether the items are to be sorted alphabetically (see Creating new elements in

Explorer (page 65)).

INTRODUCTION

114

2.4.5 Designer > For new diagrams > Appearance

These option pages relate to general representation options for diagrams, which are also

supported in the ARIS standard. Only the following option here is specific to ARIS UML

Designer:

Figure 146: : Layout option on the Designer > For new diagrams > Representation options page

Enabling the check box means that when a diagram is opened the size of the elements is

adjusted to their content.

The settings made on these options pages only affect new diagrams you create. Existing

diagrams are not changed.

2.4.6 Designer > For new diagram elements

Figure 147: Designer > For new diagram elements options page

INTRODUCTION

115

On this options page you can specify the default settings for all UML symbols and graphic

elements. The symbols are grouped by diagram types. The options can be individually specified

for specific symbols by selecting just one symbol and editing its representation options.

Figure 148: Selecting the Enumeration symbol

INTRODUCTION

116

You can also select multiple symbols or entire hierarchy levels. In the example below, the

Shaded and 3-D effect properties have been disabled for all UML symbols.

Figure 149: Selecting all symbols by selecting the top level

The changes made on this options page only affect new presentation elements you create.

Existing elements are not changed.

INTRODUCTION

117

2.4.7 Designer > Property tabs

Figure 150: Designer > Property tabs options page

Here, you can select which property tabs are to be displayed in the Properties area of the

Designer component.

These options have no effects on the Explorer tab. It always shows all property tabs as

considerably more space is available there.

INTRODUCTION

118

2.4.8 Designer > UML2 modeling

Figure 151: Designer > UML2 Modeling options page

Here, you can activate UML-specific modeling support functions. You can also quickly access

these options in the Contents tab bar in the open diagram during modeling.

INTRODUCTION

119

2.5 Administration tab

The Administration tab provides various administrative functionalities. These include

configuration of the method filters, management of access privileges, and writing of reports.

There are also some functionalities specific to UML Designer, such as configuration of the link

between business process and UML modeling, and management of XMI resources.

The Administration tab is available only if you have selected the Configuration &

Administration working environment (see Specifying the working environment (page 43)). It

is opened by selecting the Administration menu item in the ARIS menu.

Figure 152: Menu item for starting Administration

INTRODUCTION

120

Figure 153: Administration component

Only those aspects of the Administration tab that are specific to ARIS UML Designer are

discussed below.

INTRODUCTION

121

2.5.1 Method filter

When you log into a database in ARIS UML Designer, only those method filters that include

UML 2 are available for selection. Unlike in the ARIS standard, UML 2 can only be contained in

the method filter in its entirety. A user-defined extension of the UML method is not possible.

This is because of the high complexity of the UML metamodel and the fact that the UML

specification for user-defined extensions and restrictions includes the use of UML profiles. An

introduction to the topic of UML profiles can be found in UML profiles (page 155).

Below, the default filter is used to demonstrate how you can add UML to the method filter.

Select the Default filter in the filter list and select Edit from the pop-up menu or the tab bar.

Figure 154: Editing the filter

INTRODUCTION

122

In the Filter Wizard, click the Next button to navigate to the third page Select metamodels

and enable the UML 2.5 option. Then click Finish to extend the filter with UML 2.

Figure 155: Selecting the UML 2.5 metamodel in the Filter Wizard

INTRODUCTION

123

2.5.2 Link types

Figure 156: Managing the link types

Here, you can define which business process objects you want to map to UML and specify rules

for the mapping. This functionality is outlined in detail in Linking business process and UML

modeling (page 130).

INTRODUCTION

124

2.5.3 XMI resources

Figure 157: Managing XMI resources

XMI (XML Metadata Interchange) is a format for exchanging metamodel-based data between

different tools. Like UML, XMI is a standard defined by the OMG.

ARIS UML Designer exports and imports XMI files in UML 2.5 / XMI 2.1 format. You can use

XSLT files to make corresponding adjustments to XML formats from third-party manufacturers.

These XSLT files are managed in the XMI resources area and can be selected as options

during the XMI export and import.

2.5.4 Data transfer from ARIS UML Designer 7.x

If a database contains UML content from ARIS 7.x, which was created using ARIS UML

Designer 7.x, it must first be converted to UML 2 before it can be displayed or edited with ARIS

UML Designer 9 and higher.

A detailed description of UML conversion can be found in the document UML Migration

Guidelines.

INTRODUCTION

125

3 Mapping UML to the ARIS object model

UML is completely mapped to the ARIS object model. However, two crucial aspects of UML

required an extension of the ARIS object model compared to ARIS 7:

▪ UML elements can contain other UML elements and UML diagrams, they can occur in

diagrams, and they can be linked to one another by relationships.

▪ A graphic edge in a UML diagram can represent an entire series of UML elements and

relationships.

These aspects are discussed in more detail below.

INTRODUCTION

126

3.1 Group and object properties of UML elements

Figure 158: Package hierarchy and Package diagram

Figure 160 shows a hierarchy of packages with a diagram in the Explorer tree on the left, and

a package diagram with packages and their relationships with one another on the right.

Both sides show aspects typical of various ARIS types for packages.

The package hierarchy shows typical features of an ARIS group hierarchy. Just as ARIS groups

can contain other ARIS groups, ARIS objects, and ARIS models, UML packages can also

contain other UML packages and UML diagrams. Therefore, it would be obvious to map UML

packages to ARIS groups.

By contrast, the diagram shows typical features of ARIS objects. Just as ARIS objects can be

contained in ARIS models as object occurrences and can be linked to one another by

connections, UML packages are contained in the diagram as element presentations and are

linked to one another by edges. Looking at this aspect alone, it would be obvious to map UML

packages to ARIS objects.

This contradiction in the mapping of UML to ARIS has been resolved by assigning the ARIS

type Group all properties of the ARIS type Object. This means that groups have an object

type, they can have occurrences in diagrams, and they can be linked to one another by

connections.

As every UML element can ultimately contain other UML elements (every UML element can own

elements of the UML type Comment) and many elements can also own diagrams, UML

elements are mapped to groups of the relevant UML type in ARIS.

For example, this means that a use case is saved in ARIS as a group with the object type

OT_UML2_USE_CASE. This mapping applies to all UML elements, regardless of their

appearance in diagrams. A generalization, shown graphically as an edge in diagrams, is also

saved in ARIS as a group with the object type OT_UML2_GENERALIZATION.

The exceptions are certain elements that normally appear right at the bottom of the element

hierarchy and, at the same time, occur frequently. Examples of these elements are

LiteralInteger and LiteralUnlimitedNatural. They are normally used as the lower or upper limit

for multiplicities on association ends and attributes.

INTRODUCTION

127

To ensure that management of user privileges does not become too fine granular, the

possibility of defining user privileges has been restricted to UML elements of the Package,

Model, and Profile types.

The behavior of conventional groups has not changed in ARIS. They have the object type

Group (OT_GROUP). For groups of this type, there is still no facility for them to occur in

diagrams or to be linked by connections.

3.2 Complexity of edge presentations

Figure 160 also shows the second aspect mentioned, namely the fact that graphic edges in

diagrams represent both direct relationships between the packages – the edges between

packages and their contained packages – and also other UML elements that are used to link

the packages to one another, for example, the Dependency relationship.

Figure 159: Association as graphic edge in diagram

Figure 161 shows an association as a graphic edge in a Class diagram. It represents three UML

elements and their relationships with one another and with the two classes: the association

A_item_order item, the two association ends (UML type Property) order and itemline, the

relationships between the associations and their two association ends (UML property

Association::memberEnd), and the relationships between the association ends and the two

classes (UML property TypedElement::type).

The UML edges outlined thus represent totally different content.

The edges representing the package hierarchy in Figure 160 represent a hierarchy relationship

between two groups. This relationship is not mapped using connection definitions in ARIS, but

represents a direct reference from the subordinate group to the superior group.

The relationship between the comment and the class in Figure 161 represents the UML

property Comment::annotatedElement and is thus a single connection definition.

The generalization in Figure 161 is mapped to a group that is subordinate to the derived class.

The link to the base class is created using a connection definition. Thus the generalization edge

represents a hierarchy relationship, a group, and a connection definition.

INTRODUCTION

128

The association in Figure 161 represents a total of three groups and five connection definitions.

Classic connection occurrences in ARIS always represent a single connection definition.

Therefore, they are not suitable for representing all edge types in UML diagrams. To cope with

this, the ARIS object model has been extended with a new type of connection occurrence,

which is only used by ARIS UML Designer and is capable of representing any content. The new

type of edge presentations is also used in UML diagrams for edge presentations that actually

represent a single connection definition.

INTRODUCTION

129

3.3 The most important mappings from UML to ARIS

The table below shows the most important mappings from UML to ARIS.

UML Represented in

metamodel by
meta element

of type

Mapped to ARIS type Condition

UML elements Class Group The element's metaclass is not

OpaqueExpression and is not a

specialization of

LiteralSpecification.

Attribute The element's metaclass is

OpaqueExpression or a

specialization of

LiteralSpecification.

UML properties Property (Group hierarchy

relationship)

For the meta property:

isDerived=false

isComposite=true

type is a metaclass

Connection definition For the meta property:

isDerived=false

isComposite=false

type is a metaclass

Attribute For the meta property:

isDerived=false

type is a data type

(calculated at runtime) For the meta property:

isDerived=true

UML diagrams Diagram* Model

Node presentations NodeSymbol* Object occurrence

Edge presentations EdgeSymbol* New type of connection

occurrence

Lane presentations LaneSymbol* Object occurrence

* In the official UML metamodel, no constructs exist for formal description of the graphical

representation. These meta elements represent an ARIS-specific extension.

INTRODUCTION

130

4 Linking business process and UML modeling

If you want to develop an IT system that provides optimum support for your company's

business processes, it is useful to start with an analysis of the business processes, in order to

derive the corresponding requirements for the IT system. ARIS provides optimum tools for

doing this, as it provides integrated business process and UML modeling in a single repository

and enables you to link business process and UML content with each other.

You have two fundamental ways of linking business processes and UML:

Assignment of UML diagrams to business process objects

Reusing business process objects in UML as UML elements

For both linking methods, as the user you have a free choice of which specific business process

and UML types you want to link to one another. There are no rigid specifications for this in

ARIS Method.

You can navigate between the ARIS UML Designer and ARIS Architect/ Designer applications

with no problems. Double-clicking an ARIS model in the Explorer tree in ARIS UML Designer

automatically launches ARIS Architect or ARIS Designer (if not already running) and opens the

ARIS model. Conversely, an assigned UML diagram can be opened in ARIS UML Designer by

double-clicking the corresponding assignment symbol in an ARIS model in ARIS

Architect/Designer.

The two types of link and the various navigation options are described in more detail below.

INTRODUCTION

131

4.1 Assignment of UML diagrams to business process
objects

Business process objects are linked to UML diagrams using assignments of the Navigation

type, as outlined in Linked diagrams (elements) (page 60).

You can create this assignment either in ARIS UML Designer or in ARIS Architect/ARIS

Designer.

4.1.1 Creating an assignment in ARIS UML Designer

A diagram is assigned to an ARIS object in ARIS UML Designer in the same way as assigning a

diagram to a UML element.

First select the ARIS object in Explorer and then go to the Linked diagrams properties page.

If you have not opened the Explorer tab, which displays the property pages on the right-hand

side, but you are in the Designer component, first open the Properties dialog for the ARIS

object. On the Linked diagrams properties page, click Assign diagram.

Figure 160: Assign diagram button

INTRODUCTION

132

A dialog for selecting the diagram opens. You can assign the diagram either by searching the

database, or by selecting it directly in the Explorer tree (see Figure 163 and Figure 164).

Figure 161: Diagram selection by searching in the database

INTRODUCTION

133

Figure 162: Diagram selection in Explorer

INTRODUCTION

134

4.1.2 Creating an assignment in ARIS Architect/Designer

To assign a UML 2 diagram to an ARIS object in ARIS Architect or ARIS Designer, first select

the object in the ARIS model and then click Create assignment in the Start tab bar.

Figure 163: Launching the Properties dialog for a function in an ARIS model

INTRODUCTION

135

The Assignments properties page opens. Click New to create a new assignment.

Figure 164: Assignments properties page in ARIS Architect/ARIS Designer

You are asked whether you want to assign an ARIS model or a UML 2 diagram. Click UML -2

diagram.

Figure 165: Query for diagram type to be assigned

INTRODUCTION

136

In the subsequent dialog, you can select a UML diagram to assign.

Figure 166: Dialog for selecting a UML diagram in ARIS Architect/ARIS Designer

INTRODUCTION

137

The diagram selected here is added to the table of assigned diagrams (see Figure 169).

Figure 167: Assigned UML diagram in the Properties dialog for the ARIS object

In the ARIS model, an assignment symbol is displayed (see Figure 170).

Figure 168: Assignment symbol on the function

INTRODUCTION

138

4.2 Reusing business process objects as UML elements

Before you can use business process objects in UML diagrams, you must specify which ARIS

object types are to be mapped to which UML element types. You can then insert these ARIS

objects in UML diagrams as UML elements.

The ARIS object has no direct presentation in the UML diagram. Instead, a new UML element is

created and is linked to the ARIS object using a special reuse relationship.

The individual aspects of this reuse are described in more detail below.

4.2.1 Specifying the mapping of ARIS to UML types

The mapping of ARIS to UML types is defined in the Link types area of the Administration

tab, which has been briefly outlined in Link types (page 123). Note that this functionality is

only available to you on the Administration tab in ARIS UML Designer, but not in ARIS

Architect.

To define a mapping, select Object links under Link types in the Explorer tree on the

Administration tab and then click New > Object link definition in the pop-up menu.

Figure 169: Creating a new object link definition

INTRODUCTION

139

The Create object link dialog opens.

Figure 170: Dialog for creating a new object link definition

Select an ARIS object type in the Select source type column, and the relevant UML 2

element type in the Select target type column. It is theoretically possible to define mappings

between any types, even between classic ARIS object types. However, ARIS Architect only

supports mapping of classic ARIS object types to UML 2 element types, which means that you

should always select a classic ARIS object type as the source type and a UML 2 element type

as the target type.

INTRODUCTION

140

You also have the option of enabling one or more of the following rules:

▪ Source renames target

This rule means that when the ARIS object is renamed the UML element is also renamed

so that it has the same name as the ARIS object.

▪ Target renames source

This rule means that when the UML element is renamed the ARIS object is also renamed

so that it has the same name as the UML element.

▪ Source deletes target

This rule means that the UML element is deleted as soon as the underlying ARIS object is

deleted.

▪ Target deletes source

This rule means that the ARIS object is deleted as soon as the corresponding UML element

is deleted.

Entering the initial letters of the type you are looking for in the input fields above the object

lists filters the object list accordingly.

Figure 171: Definition of a mapping of the ARIS object type Function to the UML 2 element type UseCase

INTRODUCTION

141

Figure 173 shows the definition of the mapping of the ARIS object type Function to the UML

type UseCase with the rule that when the function is renamed the use case is given the same

name. Clicking OK creates the definition and it is then displayed in the table.

Figure 172: A new object link definition created

This mapping enables you to view a function in a business process to be realized by an IT

system as a use case for the purpose of object-oriented analysis and to reuse it as a UML

element of the UseCase type.

You can use this method to map an ARIS object type to various UML element types, and

multiple ARIS object types to a single UML element type.

For example, you could map the Function type not only to UML2 UseCase but also to UML2

Operation, enabling the function to also be reused in UML as an operation for a technical

class.

Conversely, it may be useful to map various ARIS types such as Organizational unit,

Person, or Application system – that is, all types that are linked to execution or monitoring

of a function in some way – to the UML type Actor, so that you can reuse these ARIS objects

as actors in UML use case diagrams.

Figure 173: Different object link definitions

When selecting the target type, you are not restricted to specific UML 2 types, that is, those

for which you can also create a directly corresponding UML element. The above example

contains an object link definition in which the ARIS type Function is mapped to the abstract

INTRODUCTION

142

UML 2 type Action. In a case like this, when you insert a function in an Activity diagram, you

are asked which specific action is to be created.

Figure 174: Symbol selection for abstract type

INTRODUCTION

143

4.2.2 Reusing an ARIS object in a UML diagram

In the ARIS model, first select the ARIS object you want to reuse as a UML element. Copy it to

the clipboard by clicking Copy in the pop-up menu.

Figure 175: Copying the ARIS object to the clipboard

Alternatively, you can also select and copy the ARIS object in the Explorer tree in ARIS

Architect, ARIS Designer, or ARIS UML Designer.

In ARIS UML Designer, open the pop-up menu by right-clicking the diagram background and

then click either Paste or Paste as > Place here as reused objects.

Figure 176: Pasting the ARIS object in the UML diagram

INTRODUCTION

144

The Reuse objects dialog opens for selecting the underlying object link definition.

Figure 177: Selecting the object link definition

If there are several symbols that can be used for presentations of elements of the UML type in

the diagram, you are asked which of the symbols is to be used.

Figure 178: Dialog for selecting the symbol to be used

INTRODUCTION

145

This creates a new use case in the diagram.

Figure 179: New use case created

The use case has the same name as the underlying function and displays it on its Reused

objects properties page.

Figure 180: Reused objects properties page in ARIS UML Designer

INTRODUCTION

146

After saving in ARIS UML Designer, this information is also available in ARIS Architect/ARIS

Designer.

Figure 181: Reused objects properties page in ARIS Architect/ARIS Designer

INTRODUCTION

147

4.2.3 Managing the object link definitions

The pop-up menu for an object link definition provides you with various options for editing.

Figure 182: Pop-up menu items for editing object link definitions

You can create a new object link definition, edit the selected definition, or delete the selected

definition. Clicking Edit opens the Create object link dialog, as when creating a new

object link definition (see Figure 172).

The options for editing the selected object link definition can also be found in the tab bar.

Figure 183: Buttons in Start tab bar for managing object link definitions

The object link definitions are saved in the system database on the ARIS server. Selecting

Object links in the Link types area in the Explorer tree on the Administration tab, you can

export the object link definitions to a file to transfer them to a different ARIS server by clicking

 Export object link. To import, click Import object link on the other server.

Clicking Generate from database contents starts the analysis for all existing reuse

relationships within an ARIS database and creates object link definitions for them in the

system database.

This is helpful if you are importing a database with reuse relationships and you then want to

create these reuse relationships yourself but you have not yet created the corresponding

object link definitions. Merely to view or evaluate the reuse relationships in an ARIS database,

it is not necessary to create the object link definitions in the system database.

INTRODUCTION

148

4.3 Navigation between ARIS Architect/Designer and
ARIS UML Designer

Although ARIS Architect/Designer and ARIS UML Designer are different programs, they provide

easy options for navigating to elements and diagrams in the respective other program.

4.3.1 Navigation from ARIS Architect/Designer to ARIS
UML Designer

In ARIS Architect/ARIS Designer, you can click the pop-up menu item Go to > Occurrence in

UML Explorer for all groups, ARIS objects, ARIS models, and UML elements contained in the

Explorer tree. Note that ARIS Architect/ARIS Designer only display the UML packages, models,

and profiles that are located directly in an ARIS standard group, but not their content.

Figure 184: Pop-up menu item in ARIS Architect for navigation to ARIS UML Designer

After clicking the pop-up menu item, a check is made as to whether an ARIS UML Designer

instance with the same server connection is running. If not, it is started. This is followed by a

login to the same database in ARIS UML Designer, and the item selected in ARIS Architect or

ARIS Designer is selected in the Explorer in ARIS UML Designer.

INTRODUCTION

149

On the Reused objects properties page, it is also possible to click Occurrence in UML

Explorer to navigate to the corresponding UML element in the Explorer in ARIS UML Designer

(see Figure 183). This navigation option is also available in the pop-up menu.

Figure 185: Pop-up menu item for navigation to the linked UML element

You can open assigned UML diagrams in ARIS Architect/ARIS Designer by double-clicking the

assignment symbol in the ARIS model. You can also use the Assignments properties page

and click the Open entry in the pop-up menu, or the Open button (see Figure 169), to open

UML diagrams in ARIS UML Designer.

Figure 186: Pop-up menu item in ARIS Architect / ARIS Designer for opening a UML diagram

Figure 188: Pop-up menu item in ARIS Architect / ARIS Designer for opening a UML diagram

INTRODUCTION

150

4.3.2 Values – Literals

Figure 187: Literals diagram from the UML specification

Figure 31: Literals diagram from the UML specification

Figure 31 shows the Literals diagram from the UML specification. It defines some

specializations of the ValuesSpecification metaclass29. Typically, for the

MultiplicityElement::lowerValue property you will use an element of the LiteralInteger

type and for the MultiplicityElement::upperValue property an element of the

LiteralUnlimitedNatural type.

29 In addition to the specializations of ValueSpecification shown in the Literals diagram, there

are others but these will not be discussed in more detail here.

INTRODUCTION

151

Figure 188: Class diagram with attributes, association ends, and multiplicities

Figure 32: Class diagram with attributes, association ends, and multiplicities

The Class diagram in Figure 32 shows two examples of multiplicities:

The order association end has a multiplicity of 1, which is a shortened form of 1..1, that is,

the properties /lower and /upper each have the value 1. The specific elements of the

ValueSpecification type on which the two values are based are not shown by the graphic

notation in the diagram.

The itemline association end has a multiplicity of 1..*, that is, the lower property has the

value 1 and the upper property has the value *, where * stands for unlimited.

INTRODUCTION

152

4.3.3 Navigation from ARIS UML Designer to ARIS
Architect/Designer

In addition to the group hierarchy and the UML content, ARIS UML Designer displays all ARIS

models and ARIS objects with their properties in the Explorer. To display and edit the ARIS

models, it is necessary to switch to ARIS Architect or ARIS Designer.

For this purpose, for all groups, ARIS models, ARIS objects, and UML packages, models, and

profiles that are directly located in a group, ARIS UML Designer provides you with a pop-up

menu item for navigation to ARIS Architect or ARIS Designer.

Figure 189: Pop-up menu item for navigation to ARIS Architect/Designer

The same functionality is available for a selected element in the Start tab bar.

Figure 190: Tab bar item for navigation to ARIS Architect/Designer

After clicking the menu item, a check is made as to whether an ARIS Architect/ARIS Designer

instance with the same server connection is running. If not, it is started. This is followed by a

login to the same database in ARIS Architect or ARIS Designer, and the item selected in ARIS

UML Designer is selected in the Explorer in ARIS Architect/ARIS Designer.

Just as for UML diagrams, the functionality for opening the diagram is provided in ARIS UML

Designer for ARIS models.

Figure 191: Opening an ARIS model in ARIS UML Designer

If required, an ARIS Architect/ARIS Designer instance is started and the ARIS model is opened

in it.

INTRODUCTION

153

The navigation is available not only in the Explorer but in all UML Designer components that

display elements that are also visible in the Explorer in ARIS Architect/ARIS Designer.

Figure 192: Navigation from UML element to underlying business process object

INTRODUCTION

154

You can also open assigned ARIS models using the Linked diagrams properties page for the

UML element or from a diagram by double-clicking the assignment symbol on the presentation

of the UML element.

Figure 193: Menu items for navigation and opening an ARIS model assigned to a UML element

Figure 194: Assignment symbol for an ARIS model on a UML element

INTRODUCTION

155

5 UML profiles

You can use UML profiles in ARIS UML Designer to extend the UML metamodel with user-

defined types and properties and, at the same time, to reduce the number of UML types

available in diagrams. Thus, UML profiles have a similar effect for UML modeling as ARIS

method filters for ARIS standard modeling.

While an ARIS method filter is individually selected by the user when logging in to a database

and applies to the entire database and the period of the login, UML profiles have fixed

assignments to individual UML packages in the database. Therefore, they only apply to the

packages (models and profiles) to which they are assigned, and to their content. This enables

you to use different UML profiles in different areas of the database. In addition, UML profiles

apply to all users in the same way, regardless of the method filter they have selected at login.

5.1 Predefined profiles in ARIS UML Designer

ARIS UML Designer contains several predefined UML profiles:

▪ StandardProfile

This is the standard profile from the UML specification. It contains all stereotypes defined

in the UML standard.

▪ OMF Meta Profile

This profile is used by the UML metamodel generator (see The UML metamodel generator

(page 167)) to map the meta elements to UML.

▪ OMF Extension Profile

This profile extends the profile modeling in ARIS UML Designer with options that are not

available in the UML standard, for example, with ARIS-specific properties such as

multilingual text attributes and stereotypes for diagrams.

▪ UML 1.4 Compatibility Profile

UML 1.4 is not completely forward compatible with UML 2. Some constructs and default

stereotypes from UML 1.4 are no longer supported in UML 2. This profile is used in UML

migration to ensure that these constructs are not lost during migration to UML 2.

INTRODUCTION

156

5.2 Using profiles

5.2.1 Assignment of profiles to a package

Before you can use stereotypes of a profile, you must assign the profile to the package30

within whose hierarchy the stereotypes are required.

The assignment is made on the Applied profiles properties page by clicking Apply

profiles.

Figure 195: Applied profiles properties page

30 The term package here also includes the two UML types Model and Profile, which are special

types of packages.

INTRODUCTION

157

The Apply profiles dialog opens and contains the profiles to be assigned to the package.

Figure 196: Profile selection dialog

Figure 196: Profile selection dialog

The dialog lists all profiles that can be assigned. Enable the corresponding check box to

indicate that the profile is to be assigned to the package.

If a profile is already assigned to the package, its check box is enabled automatically. In this

case, you can disable the check box to indicate that the assignment of the profile to the

package is to be removed.

When you select the profile in the dialog by clicking the text, a description of the profile is

shown in the lower section of the dialog. The same description is also displayed as a tooltip if

you move the mouse pointer over a profile name for a short time.

INTRODUCTION

158

Clicking OK assigns the selected profiles to the package.

Figure 197: Package with assigned profile

Figure 197: Package with assigned profile

By enabling the Is strict check box in Figure 197 you can specify that restrictions defined by

the profile cannot be canceled by other assigned profiles31.

As soon as a profile has been assigned to a package, its stereotypes are available in the

package hierarchy.

31 The predefined profiles contain no restrictions.

INTRODUCTION

159

5.2.2 Assignment of stereotypes to a UML element

Stereotypes are assigned to an element on its Applied stereotypes properties page by

clicking Apply stereotypes.

Figure 198: Applied stereotypes properties page

Figure 198: Applied stereotypes properties page

INTRODUCTION

160

The Apply stereotypes dialog opens and contains the stereotypes to be assigned to the

element.

Figure 199: Dialog for stereotype selection

The dialog lists all stereotypes that can be assigned. Enable the corresponding check box to

indicate that the stereotype is to be assigned to the element.

If a stereotype is already assigned to the element, its check box is enabled automatically. In

this case, you can disable the check box to indicate that the assignment of the stereotype to

the element is to be removed.

When you select the stereotype in the dialog by clicking the text, a description of the

stereotype is shown in the lower section of the dialog. The same description is also displayed

as a tooltip if you move the mouse pointer over a stereotype name for a short time.

INTRODUCTION

161

Clicking OK assigns the selected stereotypes to the element.

Figure 200: UML class with assigned stereotype

Stereotypes can also be assigned for multiple elements at the same time. To do this, select the

corresponding elements in the Explorer tree or in the diagram and display their properties.

Figure 201: Applied stereotypes properties page for two selected classes

All stereotypes assigned to the selected elements are displayed. If a stereotype is not assigned

to all selected elements, the entry is displayed in gray instead of black text in the table. You

can click Apply stereotypes to simultaneously add stereotypes to all selected classes.

The stereotypes of the standard profile do not define any new properties. The subsequent

section on user-defined profiles explains how to display and edit the corresponding tagged

values.

INTRODUCTION

162

5.2.3 Creating stereotyped elements in the Explorer

A corresponding configuration of the New element (see Creating new elements in Explorer

(page 65)) enables you to create stereotyped elements in Explorer.

Figure 202: Configuration dialog for creating new elements in a package to which the standard profile is assigned

Figure 202 shows the configuration dialog for a model to which the UML standard profile is

assigned. In addition to the UML category, which contains all element types that can be

created in a model, a second category StandardProfile is displayed. It contains all stereotypes

of the standard profile that extend the element types contained in the UML category. In this

example, the stereotypes «Document» and «Executable» were added to the pop-up menu. The

name of the stereotype is followed by square brackets containing the name of the profile in

INTRODUCTION

163

which the stereotype is defined, the name of the metaclass being extended by the stereotype,

and the metaproperty used when creating the element.

Figure 203: New element pop-up menu with stereotypes

Figure 203 shows the New element pop-up menu of the model. It now contains the two

stereotypes. Selecting Document [StandardProfile, Artifact, packagedElement] creates a new

element of the UML type Artifact for the packagedElement property of the model. The element

is assigned the «Document» stereotype.

INTRODUCTION

164

5.2.4 Stereotypes in the Symbols bar of diagrams

Assigning a profile to a package affects the Symbols bar in the diagrams contained in the

package. For each symbol for whose metaclass the profile defines a stereotype, an additional

symbol with the name of the stereotype is provided.

Figure 204: Configuration dialog for the Symbols bar with stereotype symbols

Figure 204 shows the configuration dialog for the Symbols bar for a Class diagram, whose

package has been assigned the standard profile. In addition to the categories for the individual

diagram types, another category is displayed for the standard profile. It contains symbols for

the corresponding stereotypes. The name of the underlying default symbol is displayed in

brackets after each stereotype name.

The Symbols bar also shows the stereotype symbols of a profile in a separate category, which

is headed by the name of the profile enclosed in a pair of guillemets (see Figure 205).

INTRODUCTION

165

For example, if you add the Auxiliary (Class) symbol to the Symbols bar for this kind of

Class diagram and create an element in the diagram for this symbol, a new class is created in

the diagram and this class is automatically assigned the «Auxiliary» stereotype.

Figure 205: Symbols bar with stereotype symbols and creation of a stereotyped class using a corresponding symbol

INTRODUCTION

166

5.3 User-defined UML profiles

ARIS UML Designer supports creation of user-defined UML profiles using UML Profile diagrams

The profiles are available immediately after creation in the database in which they are

modeled. If you want to use this kind of user-defined profile in a different database, you can

transfer it to other databases using standard ARIS functionalities such as Merge or XML export

and import.

INTRODUCTION

167

5.3.1 The UML metamodel generator

Profile modeling in ARIS UML Designer is carried out in line with the UML specification, that is,

both the metamodel and its metaclasses are represented graphically in the Profile diagram and

related to the elements from the profile using edges.

In order to create a profile yourself, you first require the UML metamodel with its metaclasses.

You can create the UML metamodel in the database using the metamodel generator.

Figure 206: Launching the UML metamodel generator in the pop-up menu for a group

INTRODUCTION

168

You can launch the metamodel generator in the pop-up menu for an ARIS group by clicking

Generate UML metamodels. Alternatively, you can click the button of the same name in the

Content tab bar.

Figure 207: Launching the UML metamodel generator in the Contents tab bar for a selected group

INTRODUCTION

169

The dialog for generating the UML metamodel enables you to specify the language in which the

metamodel is generated in the database.

Figure 208: UML metamodel generator

INTRODUCTION

170

The following options are available:

▪ Use original metamodel names (recommended)

In this case, the original names from the UML metamodel are used. This is recommended

because the UML specification only exists in English. While some metaclasses are relatively

easy to identify if their names are in other languages, with other metaclasses it is much

more difficult.

With this option, the names are created only in the alternative language in the database,

which means that you will always see the original metamodel names regardless of the

database language you select at login.

▪ Use current metamodel language

This option creates the names in the language you have selected as the metamodel

language in the general options (see Designer > General (page 112)). Once again, the

names are created only in the alternative language in the database. For example, if you

have selected German as the metamodel language and English as the alternative

language in the database, the German metamodel names are saved in the database

language English.

▪ Use database languages

Generation is carried out for each database language in the corresponding language, that

is, if you are logged in with the database language German, the metamodel names are

displayed in German, and if you are logged in in English, the original names are displayed.

INTRODUCTION

171

The metamodel generator generates three metamodels and the UML standard profile in the

database.

Figure 209: Generated metamodels

The PrimitiveTypes metamodel defines the primitive data types used by the UML metamodel.

It is also part of the official UML standard from the OMG.

Figure 210: PrimitiveTypes metamodel

The Base metamodel is an ARIS-specific extension, which supplements the UML elements and

diagrams with some ARIS-specific properties (see also Root (page 30)). Furthermore, it

defines data types that are not provided by the PrimitiveTypes metamodel, but are supported

by ARIS UML Designer.

Figure 211: Base metamodel

INTRODUCTION

172

The UML metamodel contains all UML metaclasses, associations, and properties and – as an

ARIS-specific extension – the corresponding symbol and diagram types that are also relevant

for modeling of profiles.

Figure 212: Small extract from the generated UML metamodel

The profile StandardProfile includes all stereotypes that are already defined by the UML

specification. It is generated together with the metamodels in order for you to be able to

import the profile or the stereotypes it contains into your own user-defined profiles.

Figure 213: Two extracts from the generated UML standard profile

Note that you can only use metamodels generated in this way for profile modeling. ARIS UML

Designer identifies the relevant meta elements based on their GUID and not using their name,

which can differ considerably depending on the generator settings.

The fact that each meta element is created with a specific GUID and a GUID in an ARIS

database can only be used by one element results in certain consequences for generation.

Each generated meta element can only exist once in a database. Therefore, the metamodel

generator always searches the database for an existing element with the corresponding GUID

first, before it creates a new one. If it finds one, this element is used.

This means that if a generated metamodel already exists in a different group in the database,

it is moved into the group in which the generator has been started.

INTRODUCTION

173

If you move a meta element from the metamodel to another UML package, rename it, or edit it

in some other way – which is explicitly not recommended – this meta element is restored to

its original state the next time the metamodel generator is run.

5.3.2 Creating a profile

First create a new profile in an ARIS group in the Explorer tree and give it the name of your

choice.

Figure 214: Creating a new profile in the Explorer tree

Then create a Profile diagram in the profile.

Figure 215: Creating a new profile diagram

It is important that you first create the profile and then the Profile diagram in the profile, and

not vice versa. If you create new elements in a diagram, they are created in the element in

which the diagram is contained. The fact that the profile diagram is contained in the profile

ensures that all stereotypes, Extension relationships, and enumerations that you create in the

diagram as part of profile modeling are actually contained in the profile and not in another

package.

Next drag the profile from the Explorer tree into the diagram.

Figure 216: Presentation of the profile in the profile diagram

INTRODUCTION

174

Finally, you have to drag the UML metamodel created by the metamodel generator into the

Profile diagram and create a relationship of the Metamodel reference type from the profile to

the metamodel.

Figure 217: Definition of a pure extension profile

You have thus indicated that the profile fully supports UML. Creating a filter profile (page 191)

outlines how to define profiles that support only a subset of UML.

If you enter a description in the properties of the profile, it is displayed later when assigning

the profile to a package in the profile selection dialog.

Figure 218: Description of the profile

INTRODUCTION

175

Figure 219: User-defined profile with description in the profile selection dialog

INTRODUCTION

176

5.3.3 Creating a stereotype

Stereotypes are used to express particular semantics that are not provided in the UML

standard, for example, the «Technical class» and «Design class» stereotypes for

illustrating the meaning of the corresponding classes, or to define new properties. The

stereotypes of the UML standard profile fall into the first category. They do not define any new

properties.

If you want to define a new stereotype, you must first create it in the Profile diagram32.

Figure 220: Definition of a new stereotype

The next step is to place the metaclass to be extended from the generated UML metamodel in

the diagram and to link the stereotype with the metaclass using an Extension relationship.

Figure 221: Linking the stereotype with the corresponding metaclass

In the example diagram, the representation options for the Extension relationship have been

adjusted so that no multiplicities and names are displayed (Extension is a special form of the

association), and for the metaclass the feature view of details has been suppressed so that no

attributes are displayed.

32 Of course, you could also create and edit the stereotype in the Explorer tree. However, the
link with the corresponding metaclass in particular will then involve considerably more work

than with graphical modeling.

INTRODUCTION

177

For user-defined stereotypes, their description texts are displayed in the stereotype

assignment dialog.

Figure 222: Description of the stereotype

Figure 223: User-defined stereotype with description in the stereotype selection dialog

Figure 223: User-defined stereotype with description in the stereotype selection dialog

If you only want to allow use cases with the «Business use case» stereotype in packages to

which you have assigned the Analysis profile, you can indicate this on the Extension

relationship in the Profile diagram by selecting Specify as 'required' in the pop-up menu or

clicking the corresponding button in the Content tab bar:

Figure 224: Flagging an Extension relationship as required in the Content tab bar

INTRODUCTION

178

In the Profile diagram, the keyword {required} is displayed on the Extension relationship33:

Figure 225: Extension relationship with required property

This change means that when you create a use case in a package to which the profile is

assigned, it is automatically given the «Business use case» stereotype. However, setting

this property only makes sense if you have not defined more than one stereotype in your

profile for the corresponding metaclass.

33 Flagging an Extension relationship as required changes the multiplicity of the association

end linked to the stereotype from [0..1] to [1]. As the multiplicities of Extension relationships
are not normally displayed in diagrams, the keyword {required} is displayed on the edge

instead.

INTRODUCTION

179

5.3.4 Defining new properties

You can use stereotypes to define new properties that are not provided in the UML metamodel.

In exactly the same way as the predefined properties, the user-defined properties can

represent simple data values or relationships with other elements.

To define the new property Requirements for a stereotype, first create a new attribute of the

UML type Property and give it the corresponding name.

Figure 226: Creating a new attribute for a stereotype

INTRODUCTION

180

In the next step you have to specify the type of the property. The type can be a primitive data

type, an enumeration type, a metaclass, or another stereotype.

Figure 227: Specifying the attribute type

Note that only the primitive data types created by the UML metamodel generator can be used.

You will find these in the PrimitiveTypes (Boolean, Integer, Real, String, and

UnlimitedNatural) and Base (TimeStamp) metamodels. User-defined primitive data types are

not supported, even if they have the same name as those from the generated metamodels.

INTRODUCTION

181

The values of the Requirements property are entered as text. Therefore, you should select

the primitive data type String from the PrimitiveTypes metamodel as the type of the

attribute.

Figure 228: Selecting the primitive data type String from the PrimitiveTypes metamodel

The stereotype thus looks like this:

Figure 229: Stereotype with text attribute

INTRODUCTION

182

If you enter a description for the property in addition to the name and the type, this is

displayed in the Properties dialog for elements to which this stereotype is assigned.

Figure 230: Description of the stereotype attribute

In all use cases to which the «Business use case» stereotype is assigned, the new property

Requirements is now available to you on the Tagged values properties page.

Figure 231: Tagged value with free text input

INTRODUCTION

183

If you want to use an enumeration type as the type for a stereotype attribute, it must either

be contained in the same profile or be imported into the profile for the stereotype from another

profile using an ElementImport relationship34.

Figure 232: Definition of the Priority property of the Priority type

Figure 232 shows a UML enumeration type Priority with the three enumeration values high,

normal, and low and a stereotype attribute of the same name, which uses this enumeration

type as its type.

34 To import an enumeration type from another profile into the profile for the stereotype,
create a presentation of the enumeration type in the Profile Diagram for the stereotype and

create an edge of the Element import type from the profile to the enumeration type.

INTRODUCTION

184

In all use cases to which the «Business use case» stereotype is assigned, the new property

Priority is thus available to you on the Tagged values properties page.

Figure 233: Tagged value with selection list

Properties with metaclasses as the type enable you to use elements from the corresponding

metaclass as values. If you want to use a metaclass as the type for a stereotype attribute, the

same applies as for primitive data types – only metaclasses that have been created by the UML

metamodel generator are supported.

If you are using a stereotype as the type, you can use elements to which this stereotype is

assigned as values. The stereotype must either be defined in the same profile or imported into

the profile.

INTRODUCTION

185

5.3.5 ARIS-specific features of user-defined properties

If you want to specify the values of a user-defined property in multiple languages, that is,

depending on the database language selected at login, you must define this in the

corresponding stereotype attribute. Stereotype attributes are of the UML type Property. As

the UML specification does not recognize multilingual elements, there is no property for the

UML type Property that you can use to specify whether or not the UML property defines a

multilingual property.

ARIS-specific properties such as multiple languages are provided for definition of profiles by

the OMF Extension Profile. This is a predefined profile in ARIS UML Designer, which you can

use directly in exactly the same way as the standard profile.

In order to be able to define multilingual properties in your profile, you must first apply the

OMF Extension Profile on your profile.

Figure 234: Assigning the predefined OMF Extension Profile to the user-defined Analysis profile

INTRODUCTION

186

Then open the Properties dialog for the stereotype attribute whose values you want to specify

in multiple languages, and assign it the ExtendedProperty stereotype.

Figure 235: Assigning the «ExtendedProperty» stereotype to the stereotype attribute Requirements

INTRODUCTION

187

The two ARIS-specific properties isLanguageDependent and isStyledDocument are then

available on the Tagged values properties page for the stereotype attribute.

Figure 236: ARIS-specific properties of a stereotype attribute

You can use isLanguageDependent to specify whether property values based on this

stereotype attribute are saved according to the relevant database language. You can use

INTRODUCTION

188

isStyledDocument to specify whether text formatting is available when editing these tagged

values.

Figure 237: Editing a tagged value with text formatting

INTRODUCTION

189

5.3.6 Inheritance relationships between stereotypes

If different stereotypes each define identical properties, we recommend defining a stereotype

for the shared properties and having the others inherit from it.

Figure 238: Inheritance relationships between stereotypes

Figure 238 extends the example from Figure 232 with the two stereotypes «Technical class»

and Analysis element. The «Analysis element» stereotype is abstract35 and defines the

Contact person property of the String type. The other two stereotypes inherit from «Analysis

element».

35 The fact that the stereotype is abstract is indicated by the fact that its name is displayed in

italics in the diagram.

INTRODUCTION

190

This means that all use cases with the «Business use case» stereotype and all classes with

the «Technical class» stereotype show the Contact property on their Tagged values

properties page.

Figure 239: Tagged values with inherited property

The fact that the «Analysis element» stereotype is abstract and does not itself extend a

metaclass means that it cannot be assigned to a UML element. It is merely used to define a

property that is to be common to several stereotypes.

Of course, you can also create inheritance relationships between non-abstract stereotypes.

INTRODUCTION

191

5.3.7 Creating a filter profile

In Creating a profile (page 173) you have seen how to create a profile that completely

supports UML by creating a relationship of the Meta model reference type between the

profile and the UML metamodel. Within a package to which this kind of profile is assigned, all

UML symbols are still available in diagrams in addition to the stereotype-based symbols.

If you delete36 the Meta model reference relationship in the profile in Figure 221, the

Symbols bar for a Use case diagram only displays two symbols for the «Business use case»

stereotype.

Figure 240: Symbols bar in the Use case diagram

In addition to the symbols whose metaclasses are permitted by the profile, the Symbols bar

also displays all edge symbols that represent a metaassociation37 and whose two end types

are also permitted by the profile. In Figure 242 this applies to the Owning classifier symbol.

It does not represent a metaclass, but the metaassociation A_ownedUseCase_classifier, by

which a classifier can own use cases. The metaclass UseCase permitted by the stereotype in

the profile inherits from the Classifier metaclass, which means that relationships of this type

are also possible when using the profile.

The toolbars for other diagram types in which use cases are not allowed are completely empty.

36 Here, delete means deleting the element and not just its graphic presentation in the
diagram.
37 You can use these symbols to create a direct relationship between two UMLelements.

INTRODUCTION

192

You can selectively add individual metaclass to the profile by placing them in the Profile

diagram and linking them to the profile using the Meta class reference relationship.

Figure 241: Profile that supports only a few metaclasses

This profile specifies that all elements of the Actor, Association, and Property types can be

used in diagrams, along with elements of the UseCase type, if the «Business use case»

stereotype is assigned to them.

Figure 242: Symbols bar in a Use case diagram when using the profile

This type of profile definition requires some prior knowledge of the UML metamodel and its

graphical representation in diagrams. In the above example, if the Property metaclass were

not assigned to the profile, the Association symbol would not be available in diagrams, as an

INTRODUCTION

193

edge presentation for an association can only be created in conjunction with its two association

ends, which are of the Property type.

Note that a profile only has an effect on the new things you can create in a diagram. Existing

diagram content not supported by the profile is retained in the superior package even after

assigning the profile to the diagram.

5.3.8 Creating a diagram stereotype

In ARIS UML Designer, you can define stereotypes for diagrams, so that they can be extended

with user-defined properties, or to specify which content is to be permitted in the diagrams.

Stereotypes for diagrams are created in exactly the same way as stereotypes for elements,

except that the Extension relationship is created from the stereotype to a meta diagram rather

than to a metaclass. Meta diagrams are created by the metamodel generator as UML

components with the «MetaDiagram» stereotype.

Figure 243: Definition of a stereotype for class diagrams

New properties are defined in exactly the same way as that described in Defining new

properties (page 179).

In addition, you can specify which symbols can be included in the Symbols bar for a diagram

to which the stereotype is assigned. For this purpose, you must assign the profile the OMF

INTRODUCTION

194

Extension Profile introduced in ARIS-specific features of user-defined properties (page 185)

and assign the stereotype the «DiagramStereotype» stereotype.

Figure 244: Assigning the predefined «DiagramStereotype» stereotype to the user-defined stereotype «Analysis class

diagram»

The «DiagramStereotype» stereotype defines three new properties for stereotypes, which

you can use to specify which symbols are permitted in the corresponding diagram:

SUPPORTEDMETACLASS

Here, you can add all metaclasses whose symbols are to be supported by the diagram without

having to set any restrictions in terms of the symbol or stereotype to be used.

SUPPORTEDSTEREOTYPE

Here, you can add all stereotypes whose symbols are to be supported by the diagram. This is

useful if the corresponding elements are not to be permitted in the diagram without a

stereotype.

INTRODUCTION

195

SUPPORTEDSYMBOL

Here, you can add all symbols to be permitted in the diagram. This is useful if you want to

permit only certain symbols in the diagram for a metaclass or a stereotype. As long as you do

not specify any symbol in this property (as described in Creating a filter profile (page 191)),

all edge symbols based on metaassociations whose end types are supported by the profile and

the other two properties are also permitted in the diagram. However, as soon as you specify a

symbol here, you must add to this property all edge symbols based on metaassociations that

are to be permitted in the diagram.

If you do not enter a value for any of the three properties, all symbols are permitted in the

diagram.

You can use the following configuration to specify that the Symbols bar for Class diagrams

with the «Analysis class diagram» stereotype contains all symbols for the UML types Comment

and Constraint, all symbols for the UML type Class with the «Technical class» stereotype, and

the Association, Constrained element, and Annotated element symbols.

Figure 245: Configuration of a diagram stereotype

INTRODUCTION

196

In the Profile diagram, the stereotype with this configuration is displayed as follows:

Figure 246: Configured diagram stereotype in profile diagram

With this configuration, the Symbols bar for a Class diagram with the «Analysis class

diagram» stereotype can contain the following symbols:

Figure 247: Symbols bar for an Analysis class diagram

If you have defined a single stereotype for a meta diagram in your profile and, in packages to

which the profile is assigned, diagrams of this type are only to be created in conjunction with

this stereotype, by flagging the Extension relationship as required you can specify that the

stereotype is automatically assigned when creating the diagram (see also Creating a

stereotype (page 176)).

INTRODUCTION

197

6 Differences from ARIS Architect/Designer

This section shows you the differences in operation between ARIS UML Designer and ARIS

Architect/Designer and the reasons for them.

6.1 Relevance of the model and its diagrams in terms
of semantics

There is a fundamental difference between the classic ARIS Method and UML that has major

effects on how you use ARIS Architect/ARIS Designer and ARIS UML Designer.

In UML, the semantics of a model (not a diagram) are completely contained in its elements

and their properties and relationships. Diagrams merely represent a graphical view of the

model. If you were to delete all UML 2 diagrams in an ARIS database, the semantics of the

UML model would be fully retained. In addition, many UML elements are not represented

graphically in diagrams and appear there in text form at most within the graphical presentation

of a superior element.

In ARIS Method, diagrams have a much greater significance. For some ARIS objects, the

symbol by which they are represented graphically in a diagram actually determines their

semantics38. As a consequence, the diagrams in ARIS Method make a significant contribution

to the semantics of the model. Conversely, objects and relationships that are not represented

graphically in a diagram are irrelevant in ARIS Method.

During database reorganization39 all ARIS objects and ARIS relationships with no occurrence in

a diagram are therefore deleted. By contrast, UML 2 elements are retained after database

reorganization, as merely the fact that a UML element is not represented in any diagram does

not reveal whether or not it is still required.

38 One example is the Rule object. It is the graphical representation in a diagram with a XOR,

AND, XOR/AND, OR/XOR symbol etc. that specifies the exact meaning.
39 Administrative functionality in ARIS Architect for deleting objects and connections that is no

longer required.

INTRODUCTION

198

6.2 The Save and Undo/Redo functions

Unlike in the ARIS standard, in ARIS UML Designer many elements and relationships are not

created and edited graphically in diagrams, but in the Explorer tree and in Properties dialogs.

Therefore, the Explorer tree is far more important as a modeling component than is the case in

the ARIS standard. There, the tree is primarily used for editing the group hierarchy, creating

diagrams, and for navigation.

In ARIS UML Designer, changes made in Explorer are not saved until current changes are

saved in the database. In addition, changes can be undone provided they have not yet been

saved. Only functionalities that are processed on the ARIS server require the changes to be

saved immediately, for example, copying structures in Explorer.

Apart from editing the graphic properties of an element presentation, UML elements can be

edited in various components in ARIS UML Designer. For example, it is totally irrelevant

whether you select a class in the Explorer tree or in one of the diagrams to edit attributes,

operations, or other properties on the General properties page.

All changes made to an element in a component of ARIS UML Designer are immediately

displayed in all other components. In particular, the Explorer tree displays elements created or

renamed in diagrams immediately and not only after saving, as is the case in ARIS

Architect/ARIS Designer.

In addition, a change to an element in the Explorer tree or in a diagram can result in changes

in other diagrams if edges or nesting relationships that appear there are rendered invalid by

the change.

Because of the facts outlined, in terms of the Save and Undo/Redo functions ARIS UML

Designer has very different behavior than ARIS Architect/ARIS Designer:

The Save function always saves all changes you have made. Changes in the Explorer tree are

also not saved until this time.

The Undo/Redo functions operate globally across Explorer and diagram boundaries.

6.3 Opening diagrams

If you open a diagram in ARIS Architect/ARIS Designer, it is locked for write access by other

users when opened, or a message is displayed stating that it can only be opened in read-only

mode if another user has already opened the diagram.

To prevent a diagram being automatically locked for changes by other users when you only

want to view it, in ARIS UML Designer diagrams are always opened in read-only mode. The

corresponding lock is only requested from the server and the diagram is updated when you

attempt to change the diagram, so that you are editing the diagram in its current state. If it is

already being edited by another user, you will see a corresponding message.

When saving, in ARIS UML Designer all locks are canceled.

INTRODUCTION

199

6.4 Element hierarchies

While hierarchies of objects can only be represented in ARIS Architect/ARIS Designer

graphically using corresponding connection types in diagrams or by assigning a diagram with

subordinate objects to a superior object, in ARIS UML Designer element hierarchies can be

represented directly in the Explorer tree, where the superior element owns the subordinate

elements.

6.5 Graphical connections and edges in diagrams

In ARIS Architect/Designer, a graphical connection in a diagram always displays a single

connection definition. In ARIS UML Designer, a graphical edge can represent a whole series of

elements and relationships. You will find more detailed information about this issue in

Complexity of edge presentations (page 127).

6.6 Assignments

ARIS Method specifies which and how many diagram types can be assigned for each object

type. ARIS UML Designer uses a different approach for diagram assignments, which is outlined

in more detail in Linked diagrams (elements) (page 60).

6.7 Creating ARIS scripts

ARIS UML Designer provides special functionalities for editing of UML content in ARIS reports

and macros. These are outlined using some example scripts in the report and macro categories

under UML example scripts.

INTRODUCTION

200

7 Differences from ARIS UML Designer 7.x

With ARIS UML Designer 9 and higher, both a new approach to mapping from UML to ARIS and

a new approach to integration of UML with classic ARIS modeling has been introduced. This

result in several changes compared to ARIS UML Designer 7.x, which are explained below.

7.1 UML version

The most obvious difference relates to the supported UML version. ARIS UML Designer 7.x

supports UML 1.4, and ARIS UML Designer 9 and higher supports UML version 2.5.

ARIS UML Designer 9 and higher supports all element types and properties included in the UML

2.5 specification. Apart from Timing diagrams, for which there is only rudimentary support, all

UML 2.5 diagram types are supported.

Thus, the UML support in ARIS UML Designer 9 and higher is significantly more comprehensive

than that in ARIS UML Designer 7.x.

7.2 Mapping of UML to ARIS

Mapping of UML 1.4 to ARIS Method represented a mixture of UML and business process types.

In some cases, the decision on whether a UML element type was mapped to an ARIS object

type or ARIS connection type was based on how it was to be displayed graphically in diagrams.

Thus, the reusability of business process objects as UML elements was specified in ARIS

Method.

Element hierarchies were realized using ARIS connections between the corresponding objects.

For example, the nesting of a class in a package was mapped using a connection of the

CT_IS_NESTED type. This could mean that a class was contained in various packages due to

multiple connections of this type, which is not allowed in UML.

As some UML elements themselves were mapped to connections, for example, Dependency,

ARIS UML Designer 7.x internally supported edges as the source or target of connections.

Mapping UML 2.5 to ARIS Method involved a new approach, which is outlined in Mapping UML

to the ARIS object model (page 125). For each UML element type, a single corresponding UML

2 object type exists in ARIS Method. All UML elements are mapped to ARIS groups with the

corresponding object type number.

These changes also mean that databases with UML 1.4 content created using ARIS UML

Designer 7.x have to be converted to UML 2 before this content can be displayed and edited by

ARIS UML 9 and higher. Further information can be found in Data transfer from ARIS UML

Designer 7.x (page 124).

INTRODUCTION

201

7.3 Reuse of business process objects in UML

The concept of direct reuse of some specifically defined ARIS object types in UML that is

familiar from ARIS UML Designer 7.x has been replaced with a flexible new concept in ARIS

UML Designer 9 and higher, which means that as a user you can now decide which business

process objects you want to map to which UML elements. Direct reuse has been replaced by a

new reuse relationship for this purpose.

This concept is outlined in detail in Linking business process and UML modeling (page 130).

7.4 Saving and undoing changes

In ARIS UML Designer 7.x, diagrams were individually saved but all changed UML elements

were always saved when saving an individual diagram, that is, including the elements that

were changed from other diagrams. Changes in the UML package tree were always saved

directly, which meant that they could not be undone.

ARIS UML Designer 9 and higher always saves all changes. The Undo/Redo functionality

operates globally across all components and diagrams.

The Save and Undo/Redo functions (page 198) describes the motivation behind this changed

behavior in ARIS UML Designer 9 and higher.

7.5 Integration of UML into the Explorer tree

In addition to the Explorer tree, ARIS UML Designer 7.x contained a second tree – the UML

package tree – for UML-compliant display and management of UML content and hierarchies.

For each UML package, UML model, and UML profile both an ARIS group and an ARIS object

were created to represent the UML package hierarchy in the Explorer tree in the form of an

ARIS group hierarchy and to enable all UML elements contained in the package to be stored in

the corresponding group for the package.

Particularly when working in the Explorer tree, it was possible that the UML structure of the

two trees was no longer synchronized and they were showing different UML hierarchies.

In ARIS UML Designer 9 and higher, UML has been fully integrated into the Explorer tree. In

addition, UML elements are mapped to groups with the corresponding object type number,

which means that there are no longer two different ARIS items (group + object) for a UML

package.

INTRODUCTION

202

7.6 Separate window for ARIS UML Designer

The functionalities and components of ARIS UML Designer 7.x were completely integrated into

the ARIS Architect or ARIS Designer window.

Because of the different concepts, particularly in terms of the Explorer tree, the Save and Undo

behavior of ARIS UML Designer 9 and higher and ARIS Architect/ARIS Designer, separation of

the two applications using two different windows is now necessary.

However, the two are closely integrated on a functional level, which means that easy

navigation from one application to the other is possible. You can find more detailed information

about this topic in Navigation between ARIS Architect/Designer and (page 148)ARIS UML

Designer.

7.7 XMI interface

ARIS UML Designer 7.x supports the XMI format UML 1.4/XMI 1.1, while ARIS UML Designer 9

and higher supports UML 2.5/XMI 2.1.

In contrast to ARIS UML Designer 7.x, the XMI import in ARIS UML Designer 9 and higher

identifies content of the XMI file to be imported that already exists in ARIS and does not

duplicate it.

In addition, the XMI interface in ARIS UML Designer 9 and higher also supports export and

import of diagram information based on the UML Diagram Interchange Standard.

You can use XSL transformations, which you manage in the Administration component on the

ARIS server, you can make individual adjustments to external formats both for XMI export and

for XMI import. Further information can be found in XMI resources (page 124).

INTRODUCTION

203

8 Appendix

8.1 Glossary

BOOCH METHOD

Object-oriented modeling language developed by Grady Booch, a forerunner of UML

BPMN (BUSINESS PROCESS MODEL AND NOTATION)

Modeling language for business processes, standardized by the OMG

MOF (META OBJECT FACILITY)

Architecture for metamodels and their implementation, standardized by the OMG

OMF (OBJECT MODELING FRAMEWORK)

ARIS implementation of MOF, part of the ARIS UML Designer architecture

OMG (OBJECT MANAGEMENT GROUP)

Non-profit organization, publishes standards for the IT industry

OMT (OBJECT MODELING TECHNIQUE)

Object-oriented modeling language developed by Grady Booch, a forerunner of UML

OOSE (OBJECT-ORIENTED SOFTWARE ENGINEERING)

Object-oriented modeling language developed by Ivar Jacobson, a forerunner of UML

UML (UNIFIED MODELING LANGUAGE)

Object-oriented modeling language, standardized by the OMG

W3C (WORLD WIDE WEB CONSORTIUM)

Committee for standardization of technologies in the World Wide Web

XMI (XML METADATA INTERCHANGE)

XML format for metamodels and models based on them, standardized by the OMG

XML (EXTENSIBLE MARKUP LANGUAGE)

Language for mapping of hierarchical structures in text form, standardized by W3C

XSL (EXTENSIBLE STYLESHEET LANGUAGE)

Language family for definition of the layout of XML documents, standardized by W3C

INTRODUCTION

204

XSLT (XSL TRANSFORMATION)

Transformation language for transferring documents from one XML format to another,

standardized by W3C

8.2 Additional documents and references

8.2.1 Documents

UML Migration Guidelines – Guidelines for migration of an ARIS 7.x database with UML 1.4

content to UML 2.5

8.2.2 References

OMG (Object Management Group): www.omg.org (http://www.omg.org)

OMG specifications (BPMN, MOF, UML, XMI etc.): www.omg.org/spec

(http://www.omg.org/spec)

W3C (World Wide Web Consortium): www.w3.org (http://www.w3.org)

W3C specifications (XML, XSLT etc): www.w3.org/standards (http://www.w3.org/standards)

http://www.omg.org/
http://www.omg.org/spec
http://www.w3.org/
http://www.w3.org/standards

MIGRATION GUIDELINES

205

9 Legal information

9.1 Documentation scope
The information provided describes the settings and features as they were at the time of
publishing. Since documentation and software are subject to different production cycles, the
description of settings and features may differ from actual settings and features. Information
about discrepancies is provided in the Release Notes that accompany the product. Please read
the Release Notes and take the information into account when installing, setting up, and using
the product.

If you want to install technical and/or business system functions without using the consulting
services provided by Software AG, you require extensive knowledge of the system to be
installed, its intended purpose, the target systems, and their various dependencies. Due to the
number of platforms and interdependent hardware and software configurations, we can
describe only specific installations. It is not possible to document all settings and
dependencies.

When you combine various technologies, please observe the manufacturers' instructions,
particularly announcements concerning releases on their Internet pages. We cannot guarantee
proper functioning and installation of approved third-party systems and do not support them.
Always follow the instructions provided in the installation manuals of the relevant
manufacturers. If you experience difficulties, please contact the relevant manufacturer.

If you need help installing third-party systems, contact your local Software AG sales
organization. Please note that this type of manufacturer-specific or customer-specific
customization is not covered by the standard Software AG software maintenance agreement
and can be performed only on special request and agreement.

MIGRATION GUIDELINES

206

9.2 Support
If you have any questions on specific installations that you cannot perform yourself, contact
your local Software AG sales organization
(https://www.softwareag.com/corporate/company/global/offices/default.html). To get detailed
information and support, use our websites.

If you have a valid support contract, you can contact Global Support ARIS at: +800
ARISHELP. If this number is not supported by your telephone provider, please refer to our
Global Support Contact Directory.

ARIS COMMUNITY

Find information, expert articles, issue resolution, videos, and communication with other ARIS
users. If you do not yet have an account, register at ARIS Community.

SOFTWARE AG EMPOWER PORTAL

You can find documentation on the Software AG Documentation website
(https://empower.softwareag.com/). The site requires credentials for Software AG's Product
Support site Empower. If you do not yet have an account for Empower, send an e-mail to
empower@softwareag.com (mailto:empower@softwareag.com) with your name, company,
and company e-mail address and request an account.

If you have no account, you can use many links on the TECHcommunity website. For any
questions, you can find a local or toll-free number for your country in our Global Support
Contact Directory and give us a call.

TECHCOMMUNITY

On the TECHcommunity website, you can find documentation and other technical
information:

 Use the online discussion forums, moderated by Software AG professionals, to ask
questions, discuss best practices, and learn how other customers are using Software AG
technology.

 Access articles, code samples, demos, and tutorials.

 Find links to external websites that discuss open standards and web technology.

 Access product documentation, if you have TECHcommunity credentials. If you do not,
you will need to register and specify Documentation as an area of interest.

MIGRATION GUIDELINES

207

EMPOWER (LOGIN REQUIRED)

If you have an account for Empower, use the following sites to find detailed information or
get support:

 You can find product information on the Software AG Empower Product Support website.

 To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

 Once you have an account, you can open Support Incidents online via the eService section
of Empower.

 To submit feature/enhancement requests, get information about product availability, and
download products, go to Products.

SOFTWARE AG MANAGED LEARNINGS

Get more information and trainings to learn from your laptop computer, tablet or smartphone.
Get the knowledge you need to succeed and make each and every project a success with
expert training from Software AG.

If you do not have an account, register as a customer or as a partner.

	Title page
	Contents
	1 Introduction
	1.1 UML basics
	1.2 What is UML?
	1.3 UML diagram types
	1.3.1 Class diagram
	1.3.2 Component diagram
	1.3.3 Composite structure diagram
	1.3.4 Object diagram
	1.3.5 Package diagram
	1.3.6 Profile diagram
	1.3.7 Deployment diagram
	1.3.8 Activity diagram
	1.3.9 Use case diagram
	1.3.10 Communication diagram
	1.3.11 Sequence diagram
	1.3.12 Timing diagram
	1.3.13 Interaction Overview diagram
	1.3.14 State machine diagram
	1.3.15 Protocol State machine diagram

	1.4 Special features in ARIS UML Designer
	1.4.1 Diagram content
	1.4.2 Names of UML elements
	1.4.3 Multilingual capability

	1.5 The UML metamodel
	1.5.1 Common structure
	1.5.1.1 Root
	1.5.1.2 Namespaces
	1.5.1.3 Types and multiplicities

	1.5.2 Classification
	1.5.2.1 Classifiers
	1.5.2.2 Features

	1.5.3 Structured Classifiers
	1.5.3.1 Classes
	1.5.3.2 Associations
	1.5.3.3 Simple Classifiers – DataTypes

	2 ARIS UML Designer overview
	2.1 Specifying the working environment
	2.2 Explorer
	2.2.1 Navigation bar
	2.2.1.1 Explorer tree
	2.2.1.2 Diagram tree

	2.2.2 Properties pages
	2.2.2.1 Information (elements, diagrams, groups)
	2.2.2.2 General (elements, diagrams, groups)
	2.2.2.3 Relationships (elements)
	2.2.2.4 Linked diagrams (elements)
	2.2.2.5 Presentations in diagrams (elements)
	2.2.2.6 Presentations (diagrams)
	2.2.2.7 Connected objects (diagrams)

	2.2.3 Properties dialogs
	2.2.4 Creating new elements in Explorer
	2.2.5 Creating new diagrams in Explorer

	2.3 Designer
	2.3.1 Navigation bar
	2.3.1.1 Diagram overview
	2.3.1.2 Visualized elements

	2.3.2 Properties bar
	2.3.3 Format
	2.3.4 Symbols bar
	2.3.5 Implicit changes bar
	2.3.6 Modeling
	2.3.6.1 Creating new node presentations
	2.3.6.2 Creating a new edge presentation
	2.3.6.3 Deleting presentations and elements
	2.3.6.4 Mini toolbar
	2.3.6.5 Modeling and hierarchy in Explorer
	2.3.6.6 Graphic nestings
	2.3.6.7 Text nestings
	2.3.6.8 Modeling in groupings
	2.3.6.9 UML-specific modeling support
	2.3.6.9.1 Specifying the navigability of an association end
	2.3.6.9.2 Creating getter and setter operations

	2.4 Options
	2.4.1 General
	2.4.2 Modeling
	2.4.3 Designer > General
	2.4.4 Explorer
	2.4.5 Designer > For new diagrams > Appearance
	2.4.6 Designer > For new diagram elements
	2.4.7 Designer > Property tabs
	2.4.8 Designer > UML2 modeling

	2.5 Administration tab
	2.5.1 Method filter
	2.5.2 Link types
	2.5.3 XMI resources
	2.5.4 Data transfer from ARIS UML Designer 7.x

	3 Mapping UML to the ARIS object model
	3.1 Group and object properties of UML elements
	3.2 Complexity of edge presentations
	3.3 The most important mappings from UML to ARIS

	4 Linking business process and UML modeling
	4.1 Assignment of UML diagrams to business process objects
	4.1.1 Creating an assignment in ARIS UML Designer
	4.1.2 Creating an assignment in ARIS Architect/Designer

	4.2 Reusing business process objects as UML elements
	4.2.1 Specifying the mapping of ARIS to UML types
	4.2.2 Reusing an ARIS object in a UML diagram
	4.2.3 Managing the object link definitions

	4.3 Navigation between ARIS Architect/Designer and ARIS UML Designer
	4.3.1 Navigation from ARIS Architect/Designer to ARIS UML Designer
	4.3.2 Values – Literals
	4.3.3 Navigation from ARIS UML Designer to ARIS Architect/Designer

	5 UML profiles
	5.1 Predefined profiles in ARIS UML Designer
	5.2 Using profiles
	5.2.1 Assignment of profiles to a package
	5.2.2 Assignment of stereotypes to a UML element
	5.2.3 Creating stereotyped elements in the Explorer
	5.2.4 Stereotypes in the Symbols bar of diagrams

	5.3 User-defined UML profiles
	5.3.1 The UML metamodel generator
	5.3.2 Creating a profile
	5.3.3 Creating a stereotype
	5.3.4 Defining new properties
	5.3.5 ARIS-specific features of user-defined properties
	5.3.6 Inheritance relationships between stereotypes
	5.3.7 Creating a filter profile
	5.3.8 Creating a diagram stereotype

	6 Differences from ARIS Architect/Designer
	6.1 Relevance of the model and its diagrams in terms of semantics
	6.2 The Save and Undo/Redo functions
	6.3 Opening diagrams
	6.4 Element hierarchies
	6.5 Graphical connections and edges in diagrams
	6.6 Assignments
	6.7 Creating ARIS scripts

	7 Differences from ARIS UML Designer 7.x
	7.1 UML version
	7.2 Mapping of UML to ARIS
	7.3 Reuse of business process objects in UML
	7.4 Saving and undoing changes
	7.5 Integration of UML into the Explorer tree
	7.6 Separate window for ARIS UML Designer
	7.7 XMI interface

	8 Appendix
	8.1 Glossary
	8.2 Additional documents and references
	8.2.1 Documents
	8.2.2 References

	9 Legal information
	9.1 Documentation scope
	9.2 Support

