
Developing Adapters

5.2.0

August 2014

This document applies to Apama 5.2.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its Subsidiaries and or/its Affiliates and/or
their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA Inc.
and/or its Subsidiaries and/or its Affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective
owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG′s licensing conditions and terms. These terms are located at http://documentation.softwareag.com/
legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products." This document is located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-Developing_Adapters-5.2.0-20140808@233876

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

Developing Adapters 5.2.0 3

Table of Contents

Preface.. 7
About this documentation...7
How this book is organized..7
Documentation roadmap.. 8
Contacting customer support... 10

Chapter 1: The Integration Adapter Framework.. 11
Overview... 11
Architecture... 12
The transport layer... 14
The codec layer..14
The Semantic Mapper layer...15
Contents of the IAF.. 16

Chapter 2: Using the IAF..17
The IAF runtime..17

IAF library paths.. 17
IAF command line options.. 18
IAF log file status messages...19
IAF log file rotation..19

IAF Management – Managing a running adapter I..21
IAF Management options.. 22
IAF Management exit status... 24

IAF Client – Managing a running adapter II.. 24
IAF Watch – Monitoring running adapter status.. 25
The IAF configuration file... 26

Including other files... 26
Transport and codec plug-in configuration..27
Event mappings configuration...29
Apama event correlator configuration... 39
Configuring adapters to use UM...41
Logging configuration (optional)..43
Java configuration (optional)... 44

IAF samples..45

Chapter 3: C/C++ Transport Plug-in Development.. 48
The C/C++ transport plug-in development specification.. 48

Transport functions to implement..49
Defining the transport function table... 52
The transport constructor, destructor and info functions...55
Other transport definitions...57
Transport utilities... 58
Communication with the codec layer.. 59

Transport Example..60
Getting started with transport layer plug-in development.. 60

Table of Contents

Developing Adapters 5.2.0 4

Chapter 4: C/C++ Codec Plug-in Development..62
The C/C++ codec Plug-in Development Specification... 62

Codec functions to implement...63
Codec encoder functions... 64
Codec decoder functions... 65

Defining the codec function tables..66
The codec function table..66
The codec encoder function table... 67
The codec decoder function table... 69
Registering the codec function tables..70

The codec constructor, destructor and info functions... 72
Other codec definitions... 73
Codec utilities.. 74
Communication with other layers..75
Working with normalized events... 77

The AP_NormalisedEvent structure...79
The AP_NormalisedEventIterator structure..80

Transport Example..81
Getting Started with codec layer plug-in development.. 81

Chapter 5: C/C++ Plug-in Support APIs..83
Logging from plug-ins in C/C++... 83
Using the latency framework..85

C/C++ timestamp...85
C/C++ timestamp set.. 85
C/C++ timestamp configuration object..85
C/C++ latency framework API...86

Chapter 6: Transport Plug-in Development in Java.. 89
The Transport Plug-in Development Specification for Java...89

Java transport functions to implement.. 90
Communication with the codec layer.. 93

Sending upstream messages received from a codec plug-in to a sink... 94
Sending downstream messages received from a source on to a codec plug-in................................94

Transport exceptions... 95
Logging.. 96

Example.. 96
Getting started with Java transport layer plug-in development..97

Chapter 7: Java Codec Plug-in Development.. 98
The Codec Plug-in Development Specification for Java..98

Java codec functions to implement...99
Communication with other layers..103

Sending upstream messages received from the Semantic Mapper to a transport plug-in...............103
Sending downstream messages received from a transport plug-in to the Semantic Mapper.......... 104

Java codec exceptions..104
Semantic Mapper exceptions..106
Logging.. 106

Table of Contents

Developing Adapters 5.2.0 5

Working with normalized events... 106
The NormalisedEvent class... 107
The NormalisedEventIterator class.. 108

Java Codec Example... 109
Getting started with Java codec layer plug-in development.. 109

Chapter 8: Plug-in Support APIs for Java.. 111
Logging from plug-ins in Java..111
Using the latency framework..112

Java timestamp... 112
Java timestamp set... 113
Java timestamp configuration object...113
Java latency framework API... 114

Chapter 9: Monitoring Adapter Status.. 116
IAFStatusManager.. 117
Application interface... 117

Input events...118
Output events.. 119

Returning information from the getStatus method... 120
Connections and other custom properties... 123
Asynchronously notifying IAFStatusManager of connection changes..124

Mapping AdapterConnectionClosed and AdapterConnectionOpened events...126
StatusSupport... 127

StatusSupport events.. 127

Chapter 10: Out of and Connection Notifications... 130
Mapping example... 130
Ordering of out of band notifications..132

Chapter 11: The Event Payload... 135
Creating a payload field... 135
Accessing the payload in the correlator...136

Chapter 12: Standard Plug-ins...137
The Null Codec plug-in.. 137

Null codec transport-related properties... 138
The File Transport plug-in.. 140
The String Codec plug-in... 141
The Filter Codec plug-in...142

Filter codec transport-related properties... 142
Specifying filters for the filter codec..144
Examples of filter specifications..145

The XML codec plug-in.. 145
Supported XML features... 146
Adding XML codec to adapter configuration...146
Setting up the classpath... 147
About the XML parser...147
Specifying XML codec properties... 148

Required XML codec properties.. 148

Table of Contents

Developing Adapters 5.2.0 6

XML codec transport-related properties...149
Message logging properties...151
Downstream node order suffix properties..151
Additional downstream properties..151
Sequence field properties.. 151
Upstream properties...152
Performance properties..152

Description of event fields that represent normalized XML.. 153
Examples of conversions.. 155
Sequence field example..157
XPath examples.. 158

The CSV codec plug-in.. 158
Multiple configurations and the CSV codec..159
Decoding CSV data from the sink to send to the correlator...159
Encoding CSV data from the correlator for the sink...160

The Fixed Width codec plug-in.. 160
Multiple configurations and the Fixed Width codec.. 161
Decoding fixed width data from the sink to send to the correlator... 162
Encoding fixed width data from the correlator for the sink... 162

Chapter 13: Apama File Adapter... 164
File Adapter plug-ins.. 165
File Adapter service monitor files...166
Adding the File adapter to an Apama Studio project...166
Configuring the File adapter...167
Overview of event protocol for communication with the File adapter.. 169
Opening files for reading..169

Opening files for reading with parallel processing applications.. 171
Specifying file names in OpenFileForReading events... 172
Opening comma separated values (CSV) files..173
Opening fixed width files.. 173
Sending the read request...174
Requesting data from the file...175
Receiving data..175
Opening files for writing... 176

Opening files for writing with parallel processing applications..178
LineWritten event..178
Monitoring the File adapter.. 179

About this documentation

Developing Adapters 5.2.0 7

Preface

n About this documentation .. 7

n How this book is organized ... 7

n Documentation roadmap ... 8

n Contacting customer support .. 10

About this documentation
This documentation describes how to use the Apama Integration Adapter Framework (IAF). The
IAF is a middleware-independent and protocol-neutral adapter tailoring framework designed to
provide for the easy and straightforward creation of software adapters to interface Apama with
middleware buses and other message sources. It provides facilities to generate adapters that can
communicate with third-party messaging systems, extract and decode self-describing or schema-
formatted messages, and flexibly transform them into Apama events. Vice-versa, Apama events can
be transformed into the proprietary representations required by third-party messaging systems.
It provides highly configurable and maintainable interfaces and semantic data transformations.
An adapter generated with the IAF can be re-configured and upgraded at will, and in many cases,
without having to restart it. Its dynamic plug-in loading mechanism allows a user to customize it to
communicate with proprietary middleware buses and decode message formats.

Preface

How this book is organized
The information in this book is organized as follows:

"The Integration Adapter Framework" on page 11 describes the architecture of the IAF.

"Using the IAF" on page 17 describes how to start, stop, and manage the IAF runtime. It also
describes the IAF sample applications.

"C/C++ Transport Plug-in Development" on page 48 presents the C/C++ Transport Plug-in
Development Specification and describes how to implement transport layer plug-ins in C and C+
+.

"C/C++ Codec Plug-in Development" on page 62 presents the C/C++ Codec Plug-in
Development Specification and describes how to implement codec layer plug-ins in C and C++.

"C/C++ Plug-in Support APIs" on page 83 describes programming interfaces provided with
the Apama software that may be useful in implementing transport layer and codec plug-ins for
the IAF.

"Transport Plug-in Development in Java" on page 89 presents the Transport Plug-in
Development Specification for Java and describes how to implement transport layer plug-ins in
Java.

Documentation roadmap

Developing Adapters 5.2.0 8

"Java Codec Plug-in Development" on page 98 presents the Codec Plug-in Development
Specification for Java and describes how to implement codec layer plug-ins in Java.

"Plug-in Support APIs for Java" on page 111 describes the Java interface for recording status
and error log messages from the IAF runtime and any plug-ins loaded within it.

"Monitoring Adapter Status" on page 116 describes how to provide status information about
IAF adapters.

"Out of and Connection Notifications" on page 130 describes the set of out of band events that
can be used to notify adapters when sender and receiver components connect to or disconnect
from the IAF.

"The Event Payload" on page 135 describes how to add a payload field to an Apama event
type. A payload field is used to accommodate data that does not comply with the rigid structure
of an Apama event.

"Standard Plug-ins" on page 137 describes the standard Apama plug-ins. These are the File
Transport, String Codec and Null Codec plug-ins and are available in both C and Java.

"Apama File Adapter" on page 164 describes the Apama File adapter and the Apama Database
Connector (ADBC) adapter.

Preface

Documentation roadmap
On Windows platforms, the specific set of documentation provided with Apama depends on
whether you choose the Developer, Server, or User installation option. On UNIX platforms, only the
Server option is available.

Apama provides documentation in three formats:

HTML viewable in a Web browser

PDF

Eclipse Help (if you select the Apama Developer installation option)

On Windows, to access the documentation, select Start > All Programs > Software AG > Apama 5.2 >
Apama Documentation . On UNIX, display the index.html file, which is in the doc directory of your
Apama installation directory.

The following table describes the PDF documents that are available when you install the Apama
Developer option. A subset of these documents is provided with the Server and User options.

Title Contents

What’s New in Apama Describes new features and changes since the previous release.

Installing Apama Instructions for installing the Developer, Server, or User
Apama installation options.

Documentation roadmap

Developing Adapters 5.2.0 9

Title Contents

Introduction to Apama Introduction to developing Apama applications, discussions of
Apama architecture and concepts, and pointers to sources of
information outside the documentation set.

Using Apama Studio Instructions for using Apama Studio to create and test Apama
projects; write, profile, and debug EPL programs; write JMon
programs; develop custom blocks; and store, retrieve and
playback data.

Developing Apama
Applications in Event
Modeler

Instructions for using Apama Studio’s Event Modeler editor
to develop scenarios. Includes information about using
standard functions, standard blocks, and blocks generated
from scenarios.

Developing Apama
Applications in EPL

Introduces Apama’s Event Processing Language (EPL) and
provides user guide type information for how to write EPL
programs. EPL is the native interface to the correlator. This
document also provides information for using the standard
correlator plug-ins.

Apama EPL Reference Reference information for EPL: lexical elements, syntax, types,
variables, event definitions, expressions, statements.

Developing Apama
Applications in Java

Introduces the Apama in-process API for Java, referred to
as JMon, and provides user guide type information for how
to write Java programs that run on the correlator. Reference
information in Javadoc format is also available.

Building Dashboards Describes how to create dashboards, which are the end-user
interfaces to running scenario instances and data view items.

Dashboard Property
Reference

Reference information on the properties of the visualization
objects that you can include in your dashboards.

Dashboard Function
Reference

Reference information on dashboard functions, which allow
you to operate on correlator data before you attach it to
visualization objects.

Developing Adapters Describes how to create adapters, which are components that
translate events from non-Apama format to Apama format.

Developing Clients Describes how to develop C, C++, Java, or .NET clients that can
communicate with and interact with the correlator.

Writing Correlator Plug-ins Describes how to develop formatted libraries of C, C++ or Java
functions that can be called from EPL.

Deploying and Managing
Apama Applications

Describes how to:

Contacting customer support

Developing Adapters 5.2.0 10

Title Contents

Use the Management & Monitoring console to configure,
start, stop, and monitor the correlator and adapters across
multiple hosts.

Deploy dashboards over wide area networks, including
the internet, and provide dashboards with effective
authorization and authentication.

Improve Apama application performance by using multiple
correlators, and saving and reusing a snapshot of a
correlator’s state.

Use the Apama ADBC adapter to store and retrieve data in
JDBC, ODBC, and Apama Sim databases.

Use the Apama Web Services Client adapter to invoke Web
Services.

Use correlator-integrated messaging for JMS to reliably send
and receive JMS messages in Apama applications.

Use Universal Messaging to connect correlators.

Using the Dashboard Viewer Describes how to view and interact with dashboards that are
receiving run-time data from the correlator.

Preface

Contacting customer support
You may open Apama Support Incidents online via the eService section of Empower at http://
empower.softwareag.com. If you are new to Empower, send an email to empower@softwareag.com with
your name, company, and company email address to request an account.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Directory at https://empower.softwareag.com/public_directory.asp and give us a call.

Preface

https://empower.softwareag.com/eservice
https://empower.softwareag.com/eservice
https://empower.softwareag.com/public_directory.asp

Overview

Developing Adapters 5.2.0 11

Chapter 1: The Integration Adapter Framework

n Overview ... 11

n Architecture ... 12

n The transport layer .. 14

n The codec layer .. 14

n The Semantic Mapper layer .. 15

n Contents of the IAF ... 16

There are two ways of integrating with Apama through software. The first is to use the low-
level Client Software Development Kits (SDKs) for C, C++ or Java to write your own custom
software interface. The second is to instantiate an adapter with the higher-level Integration Adapter
Framework (IAF). This document Developing Adapters describes how to use the IAF.

For information on using the Client Software Development Kits see "Working with projects" in
Developing Clients.

This section contains the following topics:

"Overview" on page 11

"Architecture" on page 12

"The transport layer" on page 14

"The codec layer" on page 14

"The Semantic Mapper layer" on page 15

"Contents of the IAF" on page 16

Overview
The IAF is a middleware-independent and protocol-neutral adapter tailoring framework. It is
designed to allow easy and straightforward creation of software adapters to interface Apama with
middleware buses and other message sources. It provides facilities to generate adapters that can
communicate with third-party messaging systems, extract and decode self-describing or schema-
formatted messages, and flexibly transform them into Apama events. In the opposite direction,
Apama events can be transformed into the proprietary representations required by third-party
messaging systems. It provides highly configurable and maintainable interfaces and semantic data
transformations. An adapter generated with the IAF can be re-configured and upgraded at will, and
in many cases, without having to restart it. Its dynamic plug-in loading mechanism allows a user to
customize it to communicate with proprietary middleware buses and decode message formats.

On the other hand, the SDKs provide lower-level client application programming interfaces that
allow one to directly connect to Apama and transfer Apama Event Processing Language (EPL) code
and events in and out. (The Apama Event Processing Language is the new name for MonitorScript.)
The SDKs provide none of the abstractions and functionality of the IAF, and hence their use is only

Architecture

Developing Adapters 5.2.0 12

recommended when a developer needs to write a highly customized and very high performance
software client, or wishes to integrate existing client code with Apama in process.

The IAF is available on all platforms supported by Apama, although not all adapters will work on
all platforms. For the most up-to-date information about supported platforms and compilers, see
Software AG's Knowledge Center in Empower at https://empower.softwareag.com.

Architecture
The first step in integrating Apama within a user environment is to connect the correlator to one or
more message/event sources and/or sinks. In the majority of cases the source or provider of messages
will be some form of middleware message bus although it could also be a database or other storage
based message source, as well as an alternative network-based communication mechanism, like a
trading system. The same applies for the sink or consumer of messages.

These message sources and/or sinks vary extensively. Typically each comes with its own proprietary
communications paradigm, communications protocol, message representation and programming
interfaces. Interfacing any software like Apama with a source/sink of messages like a message bus
therefore requires the writing of a specialized software adapter or connector, which needs to be
maintained should the messaging environment or the message representation change. The adapter
needs to interface with the messaging middleware or message source, receive messages from it and
decode them, and then transform them into events that Apama can understand and process. The
latter transformation is not always straightforward, as the message representation might vary from
message to message and require semantic understanding.

Conversely, the events generated by Apama need to be processed in the inverse direction and
eventually end up back on the message bus.

Note: In the Apama documentation, a message traveling from a message source through the IAF
and into Apama is described as traveling downstream, whereas a message output as an alert from
Apama and progressing back out through the IAF towards a message sink is described as traveling
upstream.

In order to facilitate development of software adapters, Apama provides the IAF. In contrast to
the SDKs, the IAF is not a programming library. The IAF is effectively a customizable, middleware
independent, generic adapter that can be adapted by a user to communicate with their middleware
and apply their specific semantic transformations to their messages.

https://empower.softwareag.com

Architecture

Developing Adapters 5.2.0 13

Figure 1. The architecture of an IAF adapter

As illustrated above, the IAF acts as the interface between the messaging middleware and the event
correlator. There are four primary components to the IAF:

The Transport Layer. This is the layer that communicates with the user’s message source/sink.
Its functionality is defined through one or more Apama or user-provided message source/sink
specific transport plug-ins, written in C, C++ or Java.

The Codec Layer. The codec layer translates messages from any custom representation into a
normalized form and vice-versa. The transformation is carried out by one of its codec plug-ins.
These can be provided by Apama or by the user, and may be written in C, C++ or Java. Note that
Java codec plug-ins may only communicate with Java transport plug-ins, and C/C++ codec plug-
ins with C/C++ transport plug-ins.

The Semantic Mapper. This layer provides functionality to transform the messages received from
the message source into Apama events. The Semantic Mapper is a standard component that is
configured for use with a particular adapter by means of a set of semantically rich translation
mapping rules. These rules define both how to generate Apama events from externally generated
messages and how user-custom messages for an external destination may be generated from
Apama events.

An adapter can be configured to bypass this kind of mapping in the Semantic Mapper. Used this
way, the Semantic Mapper converts the string form of an Apama event directly to a normalized
form and vice-versa.

The Apama Interface layer. This layer abstracts away communication with Apama’s event
correlator. It injects EPL definitions and event instances into the event correlator and
asynchronously receives back events from it.

Additionally, the engine_send and engine_receive tools can be run against the IAF simply by supplying
the port on which the IAF is running. For example, running

engine_receive -p 16903

The transport layer

Developing Adapters 5.2.0 14

connects to the IAF running on the default port and receives all event emitted by it.

The next sections explore the transport, codec and Semantic Mapper layers in more detail.

The transport layer
The transport layer is the front-end of the IAF. The transport layer’s purpose is to communicate with
an external message source and/or sink, extracting downstream messages from the message source
ready for delivery to the codec layer, and sending Apama events already encoded by the codec layer
on to the message sink.

This layer interfaces with the middleware message bus or message source/sink through the latter’s
custom programming interface. It receives and dispatches messages from and to it as well as
carrying out other proprietary operations. Depending on the nature of the message bus or message
source in use, these operations could include opening a database file and running SQL queries on it,
registering interest in specific message topics with a message bus, or providing security credentials
for authentication. Note that if the IAF is also being used to output messages back to a message sink,
then it must also carry out the operations required to enable this; for example, opening and writing
to a database file, or dispatching messages onto a message bus.

As this functionality depends entirely on the message source and/or sink the IAF needs to interface
with, the transport layer’s functionality is loaded dynamically through a custom transport plug-in.

Although Apama provides a set of standard transport plug-ins for popular messaging systems,
the user may develop new transport plug-ins. See "C/C++ Transport Plug-in Development" on
page 48 and "Transport Plug-in Development in Java" on page 89 for the Transport plug-in
Development Specifications for C/C++ and Java, which describe how custom transport plug-ins may
be developed in the C, C++ and Java programming languages.

The transport layer can contain one or more transport layer plug-ins. These are loaded when the
adapter starts, and the set of loaded plug-ins can be changed while the adapter is running. In
addition, a loaded plug-in may be re-configured at any time using the IAF Client tool. If a transport
plug-in requires startup or re-configuration parameters, these need to be supplied in the IAF
configuration file as documented in "The IAF configuration file" on page 26.

Because a transport layer plug-in effectively implements a custom message transport, this manual
uses the terms transport layer plug-in and event transport interchangeably.

The codec layer
While the transport layer communicates with the custom message sources and sinks and extracts
messages, such as stock trade data, from them, the responsibility of the codec layer is to correctly
interpret and decode each message into a ‘normalized’ format on which the semantic mapping rules
can be run; similarly in the upstream direction a codec may be responsible for encoding a normalized
message in an appropriate format for transmission by particular transport(s).

Message sources like middleware message buses typically use proprietary representation of
messages. Messages might appear as strings (possibly human readable or otherwise encoded) or
sequences of binary characters. Messages might also be self-describing (possibly in XML or through
some other proprietary descriptive format) or else be structured according to a schema available
elsewhere.

The Semantic Mapper layer

Developing Adapters 5.2.0 15

Producing a universal generic normalized format from these messages requires the codec layer to
understand the particular format of the messages. In the upstream direction the codec layer needs to
encode the messages correctly according to the destination message sink.

As with the transport layer, in order to enable this custom functionality, the IAF is designed to
dynamically load codec plug-ins that are capable of decoding and encoding the messages being
received, when supplied with any required configuration properties. Apama provides some generic
codec plug-ins, such as the StringCodec codec. This can decode most string based name-value
representations of messages once it is configured with the syntactic elements used to delimit the
elements in a message. In addition the user may develop proprietary codec plug-ins. See "C/C+
+ Codec Plug-in Development" on page 62 and "Java Codec Plug-in Development" on page
98 for the Codec plug-in Development Specifications for C/C++ and for Java, which describe how
custom codec plug-ins may be developed using the C, C++ and Java programming languages.

An adapter can load multiple codec plug-ins (to deal with different message types). These are loaded
at startup and the set of loaded codecs can be changed while the adapter is running. Individual
codec plug-ins may also be re-configured at any time. If a codec plug-in requires startup or re-
configuration parameters, these need to be supplied in the IAF configuration file as documented in
"The IAF configuration file" on page 26.

This manual uses the terms codec layer plug-in and event codec interchangeably.

The Semantic Mapper layer
The Semantic Mapper maps and transforms incoming messages into Apama events that can be
passed into the event correlator. Conversely, it can accept incoming Apama events and map them
into messages that can be sent upstream on the user’s message sink.

Apama events are rigidly defined. Every event must be structured according to a well-defined
type definition. Therefore all events are of a specific named type, where this defines the number of
fields (or parameters) in the event, their order, the name of each field, and its type. Furthermore it
is possible to define which fields are relevant for querying in EPL event expressions, and which are
not. See Developing Apama Applications in EPL for further information on event type definitions and
EPL event expressions. This rigorous format permits the event correlator to be highly optimized and
contributes towards Apama’s scalable performance.

The source messages that are to be passed into Apama as events (or the sink messages that Apama
needs to generate) might match this specification, in which case the mapping will be straightforward.
However, they might also differ in several ways, some of which are listed here:

The messages might be self-describing, and need to be parsed in order to deduce what fields they
contain.

The fields contained in every message might appear in varying order.

Some messages of different types and with differing sets of fields might reflect the same
information but in a different format (e.g. trade events from different markets or news headlines
from different sources).

The set of fields contained in messages might differ even if the messages are all of the same type.

The messages might not be of an obvious type, and their nature (e.g. a trade event or a news
headline) might need to be deduced from their contents.

The set of fields might be enhanced over time to capture additional information.

Contents of the IAF

Developing Adapters 5.2.0 16

Some messages might have fields that are completely irrelevant.

Some messages might have fields that are irrelevant for matching on but might be useful
otherwise.

In order to address these conditions and allow meaningful Apama events to be created from external
messages, the Semantic Mapper supports a semantically rich set of translation and transformation
rules. These need to be expressed in the IAF configuration file.

The rules available are described in "Event mappings configuration" on page 29.

You can configure an adapter so that some events bypass this kind of mapping in the Semantic
Mapper. Instead of mapping each field in an incoming event to a field in an Apama event or the
converse, the entire event is treated as a string in a single field.

Contents of the IAF
The Integration Adapter Framework is included when you select Developer or Server during the
Apama installation.

The Integration Adapter Framework contains the following components:

Core files – these include the IAF Runtime, the management tools and the libraries they require.

Example adapters written in C and Java – this includes the complete sources of the
FileTransport/JFileTransport transport layer plug-ins and the StringCodec/ JStringCodec plug-
ins, sample configuration files, a file with a set of input messages, an EPL file with a sample
application, and a set of reference result messages.

There is also a set of Market examples written in C and Java – these provide access to streaming
prices for Depth and Tick and a facility to place orders, on which executions are reported. The
adapter also reports its status (whether it is connected or not, or if the IAF process has been
stopped). This is used by the subscription and order management services. A sample server
implemented in Python is included. It requires Python 2.4 or later. Refer to the README file in
the samples\iaf_plugin\market directory for more information and instructions on how to build
and run the Market examples.

A suite of development materials – these include the C/C++ header files and Java API sources
required to develop transport and codec layer plug-ins for both languages. Also included is
a skeleton transport and codec plug-in in C, the IAF configuration file XML Document Type
Definition (DTD), a makefile for use with GNU Make on UNIX, and a ‘workspace’ file for use
with Microsoft’s Visual Studio.NET on Microsoft Windows.

The IAF runtime

Developing Adapters 5.2.0 17

Chapter 2: Using the IAF

n The IAF runtime .. 17

n IAF Management – Managing a running adapter I .. 21

n IAF Client – Managing a running adapter II .. 24

n IAF Watch – Monitoring running adapter status .. 25

n The IAF configuration file .. 26

n IAF samples .. 45

This section describes how to start and manage the Integration Adapter Framework and how to
specify an adapter’s configuration file. It contains the following topics:

"The IAF runtime" on page 17

"IAF Management – Managing a running adapter I" on page 21

"IAF Client – Managing a running adapter II" on page 24

"IAF Watch – Monitoring running adapter status" on page 25

"The IAF configuration file" on page 26

"IAF samples" on page 45

The IAF runtime
Once installed, running the IAF is straightforward. As already stated, the IAF is not a development
library but a generic adapter framework whose functionality can be tailored according to a user’s
requirements through loading of the appropriate plug-ins.

In order to create an adapter with the IAF, one must supply a configuration file. This file –
described in "The IAF configuration file" on page 26 – specifies which plug-ins to load and what
parameters to configure them with, defines the translation and transformation rules of the Semantic
Mapper, and configures communication with Apama.

The adapter can then be started as follows:
> iaf configuration.xml

IAF library paths
In order for the IAF to successfully locate and load C/C++ transport layer and codec plug-ins, the
location(s) of these must be added to the environment variable LD_LIBRARY_PATH on UNIX, or PATH on
Windows.

A transport or codec plug-in library may depend on other dynamic libraries, whose locations should
also be added to the LD_LIBRARY_PATH or PATH environment variable as appropriate for the platform.

The IAF runtime

Developing Adapters 5.2.0 18

The documentation for a packaged adapter will state which paths should be used for the adapter’s
plug-ins. Note that on the Windows platform, the IAF may generate an error message indicating that
it was unable to load a transport or codec plug-in library, when in fact it was a dependent library of
the plug-in that failed to load. On UNIX platforms the IAF will correctly report exactly which library
could not be loaded.

When using the IAF with a Java adapter the location of the Java Virtual Machine (JVM) library is
determined in the same way. On UNIX systems the LD_LIBRARY_PATH environment variable will be
searched for a library called libjvm.so, and on Windows the IAF will search for jvm.dll, first in the
third_party\jre\bin\server and third_party\jre\bin directories of the Apama installation referenced by
the APAMA_HOME environment variable, then in any other directories on the PATH environment variable.
Using a JVM other than the one shipped with Apama is not supported and Technical Support will
generally request that any Java-related problems with the IAF are reproduced with the supported
JVM. Apama requires JDK 6.0 and ships with Oracle JRE 7.0. See "Java configuration (optional)" on
page 44 for information about how the location of Java plug-in classes are determined.

IAF command line options
The complete usage information for the executable iaf (on UNIX) or iaf.exe (on Windows) is as
follows. This can be displayed at any time by launching the IAF with the --help option.
Usage: iaf [options] [config.xml]
Where config.xml is the name of a configuration file using the format
described in the Integration Adapter Framework documentation.
Options include:
 -V | --version Print program version info
 -h | --help This message
 -p | --port <port> Port to listen for commands on (default is 16903)
 -f | --logfile <file> Log to named file (default is stderr)
 -l | --loglevel <level> Set logging verbosity. Available levels
 are TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT and OFF.
 The default logging level is INFO.
 -t | --truncat Truncate the log file
 -N | --name <name> Set the component name
 -e | --events Dump event definitions to stdout then exit
 --logQueueSizePeriod <p> Send info to log every <p> seconds
 -Xconfig | --configFile <file> Use service configuration file <file>

Note that a configuration file must be provided unless the -h or -V
options are used.

Unless –e or --events are used, the above will generate and start a custom adapter, load and initialize
the plug-ins defined in the configuration file, connect to Apama, and start processing incoming
messages.

When the –e or --events command line switches are used, iaf generates event definitions that can
be saved to a file and injected during your application’s startup sequences as specified by Apama
Studio, the Enterprise Management and Monitoring console (EMM), or Apama command line tools.
If either of these switches is used, the IAF will load the IAF configuration file, process it, generate
the event definitions and print them out onto stdout (standard output) and promptly exit. A valid
configuration file must be supplied with either of these switches. The output definitions are grouped
by package, with interleaved comments between each set. If all the event types in the configuration
are in the same package, the output will be valid EPL code that can be injected directly into the
correlator. Otherwise, it will have to be split into separate files for each package. The IAF can be
configured to automatically inject event definitions into a connected correlator, but this is not the

The IAF runtime

Developing Adapters 5.2.0 19

default behavior. The event definitions generated by the -e or --events options are exactly what the
IAF would inject into the correlator, if configured to do so.

The –Xconfig and --configFile are reserved for usage under guidance by Apama support. For more
information about the service configuration file, see .

If the --logfile and --loglevel command line switches are provided, any logging settings set in the
IAF configuration file (<logging> and <plugin-logging>) will be ignored.

If the IAF cannot write to the log file specified either with the --logfile option or in the adapter’s
configuration file, the IAF will fail to start.

IAF log file status messages
The IAF sends status information to its log file every 5 seconds (the default behavior) or at time
intervals you specify with the --logQueueSizePeriod option when you start the IAF. IAF status
information contains the following elements:

Status line element Description

ApEvRx Number of Apama events received since the IAF started.
These events were received from the correlator that the IAF is
connected to.

ApEvTx Number of Apama events sent since the IAF started. These
events were sent to the correlator that the IAF is connected to.

TrEvRx Number of events received by all transports in the IAF since
the IAF started. These events were received from user-defined
sources outside the correlator.

TrEvTx Number of events sent from all transports in the IAF since the
IAF started. These events were sent to user-defined targets
outside the correlator.

vm Number of kilobytes of virtual memory being used by the IAF
process.

si The rate (pages per second) at which pages are being read from
swap space.

so The rate (pages per second) at which pages are being written to
swap space.

For example:
Status: ApEvRx=589 ApEvTx=2056000 TrEvRx=2056008 TrEvTx=587 vm=407200 si=0.0 so=0.0

IAF log file rotation

The IAF runtime

Developing Adapters 5.2.0 20

Rotating the IAF log file refers to closing the IAF log file while the IAF is running and opening a new
log file. This lets you archive log files and avoid log files that are too large to easily view.

Each site should decide on and implement its own IAF log rotation policy. You should consider

How often to rotate log files

How large an IAF log file can be

What IAF log file naming conventions to use to organize log files.

There is a lot of useful header information in the log file being used when the IAF starts. If you
need to provide log files to Apama technical support, you should be able to provide the log file
that was in use when the IAF started, as well as any other log files that were in use before and
when a problem occurred.

On Windows, to automate log file rotation, you can set up scheduled tasks that run the following
utilities:

The following command instructs the IAF to close the log file it is using and start using a log file
that has the name you specify. When you run this request to rotate the log file the IAF log file has
a new name each time you rotate it. This is because Windows does not let you change the name
of a file that is being used. Be sure to enclose the argument after -r in quotation marks.
iaf_management -r "setLogFile new-log-filename"

You can configure the IAF to log to two separate files. Each command instructs the IAF to start
using the specified log file for either the IAF core processes (generic IAF information such as
status messages) or the IAF plug-in processes (transports and codecs being used). Be sure to
enclose the argument after -r in quotation marks.
iaf_management -r "setCoreLogFile new-log-filename"
iaf_management -r "setPluginLogFile new-log-filename"

Consider using two IAF log files when you need to focus on diagnosing something specific to
your application, for example, you need to easily spot authentication messages. If you do use
separate log files you might want to rotate them at the same time so that they stay in sync with
each other.

On UNIX, to automate log file rotation, you can write a cron job that periodically does any of the
following:

Set log file name
iaf_management -r "setLogFile new-log-filename"

Set core log file and plugin log file
iaf_management -r "setCoreLogFile new-log-filename"
iaf_management -r "setPluginLogFile new-log-filename"

Reopen the log
iaf_management -r "reopenLog"

Move the IAF log file before you execute the reopenLog request. Since UNIX allows you to rename
a file that is in use, the IAF processes will log to the renamed log file. When you then request the
IAF to reopen its log file the IAF creates a new log file with the same name. For example, suppose
you move iaf_current.log to iaf_archive_2014_01_31.log and then send a reopenLog request. The IAF
creates iaf_current.log, opens it, and begins sending any log messages to it. Be sure to enclose the
argument after -r in quotation marks.

IAF Management – Managing a running adapter I

Developing Adapters 5.2.0 21

If you are using two IAF log files, the reopenLog request applies to both of them. Consequently,
you want to move both log files before you issue the reopenLog request.

Send a SIGHUP signal

You can write a cron job that sends a SIGHUP signal to IAF processes. The standard UNIX SIGHUP
mechanism causes IAF processes to re-open their log files.

The cron job should first rename log files. Since UNIX allows you to rename a file that is in
use, the IAF processes will log to the renamed log files until the cron job sends a SIGHUP to IAF
processes. The SIGHUP signal makes the processes re-open their log files and so they open files that
have the old names and begin using them. Of course, these files are initially empty because the
IAF must re-create them.

Sending a SIGHUP signal does the same thing as the reopenLog request. Also, a SIGHUP signal forces
the IAF configuration file to be reloaded and this reload stops and starts the transports and
codecs.

If you instruct the IAF to open a named log file and the IAF cannot open that log file or cannot write
to that log file, the IAF sends log messages to stderr but does not generate an error.

Apama does not support automatic log file rotation based on time of day or log file size.

IAF Management – Managing a running adapter I
The IAF Management tool is provided for performing generic component management operations
on a running adapter. It can be used to shut down a running adapter, request the process ID of a
running adapter, or check that an adapter process is running and acknowledging communications.
Any output information is displayed on stdout.

See also "IAF Client – Managing a running adapter II" on page 24 for IAF-specific management
information, as opposed to this generic component management tool.

The executable for interfacing with the IAF’s management interface status is iaf_management.exe (on
Windows) or iaf_management (on UNIX). When it is run with the –h command line option it displays
the following usage information:
Usage: iaf_management [options]
Where options include:
 -V | --version Print program version info
 -h | --help Display this message
 -v | --verbose Be more verbose
 -n | --hostname <host> Connect to a component on <host>
 -p | --port <port> Component is listening on <port>
 -w | --wait Wait forever for component to start
 -W | --waitFor <num> Wait <num> seconds for component to start
 -N | --getname Get the name of the component
 -T | --gettype Get the type of the component
 -Y | --getphysical Get the physical ID of the component
 -L | --getlogical Get the logical ID of the component
 -O | --getloglevel Get the log level of the component
 -C | --getversion Get the version of the component
 -R | --getproduct Get the product version of the component
 -B | --getbuild Get the build number of the component
 -F | --getplatform Get the build platform of the component
 -P | --getpid Get the process ID of the component
 -H | --gethostname Get the hostname of the component
 -U | --getusername Get the username of the component
 -D | --getdirectory Get the working (current) directory of the component
 -E | --getport Get the port of the component

IAF Management – Managing a running adapter I

Developing Adapters 5.2.0 22

 -c | --getconnections Get all the connections to the component
 -a | --getall Get all of the above values
 -xs| --disconnectsender <id> <reason> Disconnect sender with physical id <id>
 -xr| --disconnectreceiver <id> <reason> Disconnect receiver with physical id <id>
 -I | --getinfo <category> Get component-specific info for <category>
 Use empty string to get all available categories
 Multiple -I options may be specified
 -d | --deepping Deep-ping the component
 -l | --setloglevel <level> Set logging verbosity to <level>. Available levels
 are TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT and OFF
 -r | --dorequest <req> Send component-specific request <req>
 -s | --shutdown <why> Shutdown the component with reason <why>

IAF Management options
The tool iaf_management.exe (on Windows) or iaf_management (on UNIX) takes a number of command
line options. These are:

Table 1. IAF Management options

-V Displays version information for the iaf_management tool.

-h Displays usage information for running the iaf_management tool.

-v Displays information in a more verbose manner.

-n host Name of the host of the component that you want to connect to. The default is
localhost. You cannot use non-ASCII characters in the host name.

-p port Port on which the adapter is listening. The default is 16903.

-w Instructs the iaf_management tool to wait for the component to start. This option is
similar to the -W option, except that the -w option instructs the iaf_management tool
to wait forever. The -W option lets you specify how many seconds to wait. See the
information for the -W option for an example.

-W num Instructs the iaf_management tool to wait num seconds for the component to
start. If the component is not ready before the specified number of seconds has
elapsed, the iaf_management tool terminates with an exit code of 1.

-N Displays the name of the component.

-T Displays the type of the component that the iaf_management tool connects to.

-Y Displays the physical ID of the component. This can be useful if you are looking
at log information that identifies components by their physical IDs.

-L Displays the logical ID of the component. This can be useful if you are looking at
log information that identifies components by their logical IDs.

-O Displays the log level of the component. The returned value is one of the
following: TRACE, DEBUG, INFO, WARN, ERROR, CRIT, FATAL, or OFF.

IAF Management – Managing a running adapter I

Developing Adapters 5.2.0 23

-C Displays the version of the component.

-R Displays the product version of the component. For example, when the tool
connects to a correlator, it displays the version of the Apama software that is
running.

-B Displays the build number of the component. This information is helpful if
you need technical support. It indicates the exact software contained by the
component you connected to.

-F Displays the build platform of the component. This information is helpful if
you need technical support. It indicates the set of libraries required by the
component you connected to.

-P Displays the process ID of the correlator you are connecting to. This can be
useful if you are looking at log information that identifies components by their
process ID.

-H Displays the host name of the component. When debugging connectivity issues,
this option is helpful for obtaining the host name of a component that is running
behind a proxy or on a multihomed system.

-U Displays the user name of the component. On a multiuser machine, this is useful
for determining who owns a component.

-D Displays the working (current) directory of the component. This can be helpful if
a plug-in writes a file in a component’s working directory.

-E Displays the port of the component.

-c This option is for use by technical support. It displays all the connections to the
component.

-a Displays all information for the component.

-xs Disconnect sender with physical id <id>

-xr Disconnect receiver with physical id <id>

-I category This option is for use by technical support. It displays component-specific
information for the specified category.

-d Ping the component. This confirms that the component process is running and
acknowledging communications.

-l level Sets the amount of information that the component logs. In order of decreasing
verbosity, you can specify TRACE, DEBUG, INFO, WARN, ERROR, FATAL, CRIT, or OFF.

-r req This option is for use by technical support. It sends a component-specific
request.

IAF Client – Managing a running adapter II

Developing Adapters 5.2.0 24

-s why Instructs the component to shut down and specifies a message that indicates the
reason for termination. The component inserts the string you specify in its log
file with a CRIT flag, and then shuts down.

IAF Management exit status
The following exit values are returned:

Key Value

0 All status requests were processed successfully

1 No connection to the adapter was possible or the connection failed

2 Other error(s) occurred while requesting/processing status

3 Deep ping failed

IAF Client – Managing a running adapter II
The IAF Client tool is provided for performing IAF-specific management operations on a running
adapter. It can be used to stop a running adapter, to temporarily pause sending of events from an
adapter into the event correlator, and to request an adapter to dynamically reload its configuration.

The executable for this tool is iaf_client (on UNIX) or iaf_client.exe (on Windows). The complete
usage information (as displayed when it is run with the --help option) is as follows:
Usage: iaf_client [options]
Where options include:
 -h | --help This message
 -n | --hostname <host> Connect to an IAF on <host>
 -p | --port <port> IAF is listening on <port>
 -r | --reload Tell the IAF to reload its config
 -s | --suspend Tell the IAF to suspend event sending
 -t | --resume Tell the IAF to resume event sending
 -q | --quit Tell the IAF to shut down
 -v | --verbose Be more verbose
 -V | --version Print program version info
 One of --reload, --quit, --suspend, -q, -r or -s must be specified

Note that if the adapter is listening for control connections on a non-standard port (specified with the
-–port option to the iaf program), you must pass the same port number to iaf_client.

Also, can only use ASCII characters to specify the name of the host.

Suspend and resume

The --suspend and --resume options control the sending of events to the correlator, not to the external
transport.

IAF Watch – Monitoring running adapter status

Developing Adapters 5.2.0 25

Adapter reload

The --reload option is worthy of further explanation. Using --reload it is possible to dynamically
reconfigure a running adapter from a changed configuration file without restarting the IAF.

When the IAF is started, it loads all the transport and codec plug-ins defined in its configuration file,
and initializes them with any plug-in-specific properties provided.

When an adapter is reconfigured using --reload, the IAF will:

Pass the current set of <property> names and values in the configuration file to each loaded
transport and codec layer plug-in.

Note: Although plug-in authors will support dynamic reconfiguration of properties wherever
possible, it is important to be aware that there may be some properties that by the nature can not be
changed while the adapter is still running. These should be detailed in the documentation for the
transport or codec plug-in. Some transport and codec plug-ins may not support configuration file
reloading at all; this should be documented by the specific plug-ins.

Load and initialize any new transport and codec layer plug-ins that have been listed in the
<transports> and <codecs> sections of the configuration file.

Unload any transport and codec layer plug-ins that are no longer listed in the <transports> and
<codecs> sections of the configuration file.

Changing the name of a running plug-in and performing a reload is equivalent to unloading the plug-
in and then loading it again. It is important to realize that this will result in any runtime state stored
in memory by the plug-in being lost.

Note: It is not possible to dynamically change a loaded plug-in’s C/C++ library filename or Java
className, nor to change a C/C++ plug-in into a Java one (or vice-versa).

If an adapter is reconfigured to use a different log file and the IAF cannot write to the new log file
when reloaded, the IAF uses the log file the adapter was using before reconfiguring. If the IAF
cannot use the original log file, it writes to stderr.

IAF Watch – Monitoring running adapter status
The IAF Watch tool allows one to monitor the live status of a running adapter. This is available as
iaf_watch (on UNIX) or iaf_watch.exe (on Windows).

The usage information for this tool, when run with the --help option, is as follows:
Usage: iaf_watch [options]
Where options include:
 -h | --help This message
 -n | --hostname <host> Connect to an IAF on <host>
 -p | --port <port> IAF is listening on <port>
 -i | --interval <ms> Poll every <ms> milliseconds
 -f | --filename <file> Write to <file> instead of to standard out
 -r | --raw Raw (i.e. parser friendly) output
 -t | --title Add header to output (Raw mode only)
 -o | --once Poll once then exit
 -v | --verbose Be more verbose
 -u | --utf8 Write output in utf8
 -V | --version Print program version info

By default the tool will collect status from the adapter once per second and display this in a human-
readable form. Note that if the adapter is listening for control connections on a non-standard port

The IAF configuration file

Developing Adapters 5.2.0 26

(specified with the -–port option to the iaf program), you must pass the same port number to
iaf_watch.

Note: You should only use ASCII characters to specify the name of a host.

The IAF configuration file
An IAF configuration file is an essential part of any adapter generated with the IAF.

The configuration file must be formatted in XML, and the Document Type Definition (DTD) for it is
iaf_4_0.dtd, which is located in the etc directory of your installation. You may wish to use this DTD
in conjunction with your XML editor to assist you in writing a correctly formatted configuration file.

The configuration file is loaded and processed when the adapter process starts. A running adapter
can by signaled to reload and reprocess the configuration file at any time, by running the iaf_client
tool with the –r or --reload option.

On UNIX platforms a SIGHUP signal sent to the IAF process re-opens the log file.

The root element in the configuration file is <adapter-config>. This must always be defined. Within it a
single instance of the following elements must exist:

<transports> - This element defines the transport layer plug-in(s) to be loaded.

<codecs> - Defines the codec layer plug-in(s) to be loaded.

<mapping> - Defines the mapping rules for the Semantic Mapper layer, which are used in the
conversion between codec layer normalized messages and correlator events.

Following those elements, there must be at least one of the following elements. It is also possible to
specify one of each of these elements:

<apama> - Defines how the IAF connects to the Apama event correlator(s).

<universal-messaging> - Defines how the IAF connects to Software AG's Universal Messaging
message bus.

There are also three optional elements that can appear before these required elements (in order):

<logging> - Defines the log file and logging level used by the IAF.

<plugin-logging> - Defines the log file and logging level used by the transport and codec layer
plug-ins.

<java> - Defines the environment of the embedded Java Virtual Machine (JVM) in which any Java
codec and transport plug-ins will run.

Each of these elements is discussed in more detail in the following sections.

Including other files
The adapter configuration file supports the XML XInclude extension so you can reference other files
from the configuration file. This makes it possible, for example, to keep the transport properties in
one file and the mapping properties in another. For more information on XML Inclusions, see https://
www.w3.org/TR/xinclude/. The standard adapters packaged with the Apama installation use this

https://www.w3.org/TR/xinclude/
https://www.w3.org/TR/xinclude/

The IAF configuration file

Developing Adapters 5.2.0 27

scheme. For example, the Apama ODBC adapter specifies its transport properties in the adapters
\config\ODBC.xml.dist file and its mapping properties in the adapters\config\ODBC-static.xml. For more
information on the standard Apama adapters, see "Apama File Adapter" on page 164.

In order to match the DTD, the xmlns:xi attribute must be placed either on the <adapter-config>
element (as the name xmlns:xi) or on the <xi:include> element. Apama strongly recommends that you
use only relative filenames instead of URLs to remote servers.

For example:
<adapter-config xmlns:xi="http://www.w3.org/2001/XInclude">
 <transports>
 <transport name="testmarket1" library="protocol-transport">
 <property name="host" value="localhost"/>
 <property name="port" value="12000"/>
 </transport>
 </transports>
 <xi:include href="market-static.xml"
 xpointer="xpointer(/static/codecs)"/>
 <xi:include href="market-static.xml"
 xpointer="xpointer(/static/mapping)"/>

Transport and codec plug-in configuration
The adapter configuration file requires both a <transports> and a <codecs> element.

The <transports> element defines the transport layer plug-in(s) to be loaded, and contains one or
more nested <transport> elements, one for each plug-in.

The syntax of the <codecs> element mirrors the <transports> element precisely, and contains one or
more nested <codec> elements, each of which defines a codec layer plug-in to be loaded.

The <transport> and <codec> elements

The transport or codec layer plug-in that should be loaded is defined by the attributes of the
<transport> or <codec> elements:

To load a C or C++ plug-in, there must be a library attribute, whose value is the filename of
the library in which the plug-in is implemented. The extension and library name prefix will be
deduced automatically based on the platform the IAF is running on. For example, on Windows
library="FileTransport" would reference a file called FileTransport.dll; on a UNIX system the
library filename would be libFileTransport.so.

To load a Java plug-in, instead provide a className attribute, whose value is the fully qualified
name of the Java class that implements the plug-in.

If the optional jarName attribute is also provided, the plug-in class will be loaded from the Java
archive (.jar) that it specifies; otherwise the IAF will use the usual classpath searching mechanism to
locate the class. See "Java configuration (optional)" on page 44 for more information about setting
a classpath for use with the IAF.

All <transport> and <codec> elements must also have a name attribute. The name is an arbitrary
string used to reference the plug-in within the IAF, and must be unique within the configuration
file. Even if the same plug-in was to be loaded more than once inside the same IAF, the
corresponding <transport> or <codec> elements would still need to have different names.

The <transport> and <codec> elements can include an optional recordTimestamps attribute. This
attribute supports the latency framework feature. The value of the attribute determines the

The IAF configuration file

Developing Adapters 5.2.0 28

values of the recordUpstream and recordDownstream members of the IAF_TimestampConfig object (C/C
++ plug-ins) or TimestampConfig object (Java plug-ins) object passed to the semantic mapper. The
attribute takes one of the following values:

none — Do not record any timestamps

upstream —Record timestamps for upstream events only

downstream — Record timestamps for downstream events only

both — Record timestamps for both upstream and downstream events

The default, if the recordTimestamps attribute is not present, is none.

The <transport> and <codec> elements can include an optional logTimestamps attribute. This
attribute supports the latency framework feature. The attribute takes a space- or comma-
separated list of keywords for its value. Supported keywords are:

upstream — Log latency for upstream events

downstream — Log latency for downstream events

roundtrip — Log roundtrip latency for all events, in a plug-in-specific way

logLevel — Set the logging level for timestamp logging. Any of the standard Apama log levels
are accepted for this keyword.

The value of this attribute determines the values of the logUpstream, logDownstream, logRoundtrip and
logLevel members of the IAF_TimestampConfig object (C/C++ plug-ins) or TimestampConfig object (Java
plug-ins) passed to the semantic mapper. If the logTimestamps attribute is not present, the log level
defaults to INFO and the other timestamp logging parameters default to false.

Note: Although C/C++ and Java transport and codec layer plug-ins may coexist in the same IAF,
using a C/C++ codec plug-in with a Java transport plug-in or vice-versa is not permitted.

Plug-in <property> elements

<transport> and <codec> elements may also contain any number of <property> elements, which are the
mechanism by which plug-in-specific options are configured.

Each <property> element has two attributes: name and value. The syntax of the name and value is entirely
determined by the plug-in author. Typically the name, value pairs are not ordered, and there is no
constraint on the uniqueness of the names. Most plug-ins treat the name attribute in a case-sensitive
manner.

In most (though not all) cases, plug-in authors allow properties to be changed dynamically without
restarting the IAF, by using the IAF Client tool to request a reload of properties from the IAF
configuration file. See "IAF Management – Managing a running adapter I" on page 21 for more
information about using the IAF Client.

Example

The transport/codec definition section of an IAF configuration file might look as follows for a C/C++
transport plug-in implemented on Windows by FileTransport.dll with a codec in StringCodec.dll:
...
<transports>
 <transport name="File" library="FileTransport">
 <!-- Transport-specific configuration property -->
 <property name="input" value="simple-feed.evt"/>
 <property name="output" value="output.evt"/>

The IAF configuration file

Developing Adapters 5.2.0 29

 </transport>
</transports>
<codecs>
 <codec name="String" library="StringCodec">
 <!-- Codec-specific configuration property -->
 <property name="NameValueSeparator" value="="/>
 <property name="FieldSeparator" value=", "/>
 <property name="Terminator" value=";"/>
 </codec>
</codecs>
...

Similarly the configuration section for the equivalent Java plug-ins, both packaged inside
FileAdapter.jar, would be:
...
<transports>
 <transport
 name="File"
 jarName="JFileAdapter.jar"
 className="com.apama.iaf.transport.file.JFileTransport"
 >
 <!-- Transport-specific configuration property -->
 <property name="input" value="simple-feed.evt"/>
 <property name="output" value="output.evt"/>
 </transport>
</transports>
<codecs>
 <codec
 name="String"
 jarName="JFileAdapter.jar"
 className="com.apama.iaf.codec.string.JStringCodec"
 >
 <!-- Codec-specific configuration property -->
 <property name="NameValueSeparator" value="="/>
 <property name="FieldSeparator" value=", "/>
 <property name="Terminator" value=";"/>
 </codec>
</codecs>
...

You are advised to peruse the iaf_4_0.dtd file as it represents the complete syntactic reference to the
correct structure of the configuration file.

The topic "Event mappings configuration" on page 29 describes the semantic translation and
transformation rules. "IAF samples" on page 45 illustrates an example configuration file.

Event mappings configuration
The adapter configuration file requires a <mapping> element, which configures the adapter’s Semantic
Mapper layer.

The <mapping> element may contain the following optional attributes to support the latency
framework:

An optional recordTimestamps attribute. The value of the attribute determines the values of the
recordUpstream and recordDownstream members of the IAF_TimestampConfig object (C/C++ plug-ins) or
TimestampConfig object (Java plug-ins) object passed to the transport or codec. The attribute takes
one of the following values:

none — Do not record any timestamps

upstream — Record timestamps for upstream events only

The IAF configuration file

Developing Adapters 5.2.0 30

downstream — Record timestamps for downstream events only

both — Record timestamps for both upstream and downstream events

The default, if the recordTimestamps attribute is not present, is none.

An optional logTimestamps attribute. This attribute takes a space- or comma-separated list of
keywords for its value. Supported keywords are:

upstream — Log latency for upstream events

downstream — Log latency for downstream events

roundtrip — Log roundtrip latency for all events

log level — Set the logging level for timestamp logging. Any of the standard Apama log levels
are accepted for this keyword.

The value of this attribute determines the values of the logUpstream, logDownstream, logRoundtrip
and logLevel members of the IAF_TimestampConfig object (C/C++ plug-ins) or TimestampConfig object
(Java plug-ins) passed to the transport or codec. If the logTimestamps attribute is not present, the
log level defaults to INFO and the other timestamp logging parameters default to false.

The <mapping> element may contain the following (in order):

An optional <logUnmappedDownstream> element, which specifies a file to which unmapped
downstream messages should be logged.

An optional <logUnmappedUpstream> element, which specifies a file to which unmapped upstream
Apama events should be logged.

One or more <event> elements, specifying the mapping between Apama correlator events and
external messages. Setting up the correct <event> elements is the main part of configuring the
Semantic Mapper.

One or more <unmapped> elements, which specify events that will bypass the Semantic Mapper,
using a string representation of the entire Apama event.

Note: The order in which <event> and <unmapped> elements appear can be mixed.

Each of these will be discussed in more detail below, after a brief explanation of the operation of the
Semantic Mapper.

Semantic Mapper operation

The IAF Semantic Mapper takes as input a set of rules that specify when and how an Apama
event can be generated from an external message, and similarly how suitable messages of the
correct external format should be constructed from Apama events. These rules are termed an event
mapping.

All Apama events must belong to a named event type that defines their structure. On startup, the
IAF will parse each <event> element, derive the structure of the event being described, and optionally
inject an EPL event definition for it into the event correlator. The event mappings are therefore
organized by Apama event type, as <event> elements.

When an external message is received from a codec plug-in, the Semantic Mapper will run it past
each event mapping sequentially, in the order provided in the configuration file. First it checks
whether it matches a set of conditions specified within that mapping. If it does, it proceeds to
transform and translate it according to the mapping rules provided. If it does not match the

The IAF configuration file

Developing Adapters 5.2.0 31

conditions, the Semantic Mapper will move on to the next event mapping. If the message matches
against several <event> mappings, only the first mapping is executed unless the breakDownstream
attribute is set to false. When this attribute is set to false, all mappings that match are executed.

In the upstream direction, when the Semantic Mapper receives an Apama event, it will already
know the type of the event, because this information is part of each event sent out by the event
correlator. However, it is possible to specify multiple upstream mappings from the same Apama
event type; therefore, just as with downstream mappings, the Semantic Mapper will check the
incoming Apama event against the conditions defined in each of the mappings for that event type.
Just as for downstream mappings, the first matching mapping will be used, unless the breakUpstream
attribute is set to false. When this attribute is set to false, all mappings that match are executed.

In both directions it is possible for an incoming event not to match against any event mapping,
and in which case no mapping is executed. The <logUnmappedDownstream> and <logUnmappedUpstream>
elements allow such messages and events to be logged.

The <logUnmappedDownstream> and <logUnmappedUpstream> elements

These optional elements enable the logging of Apama events and codec messages that were not
matched by any of the configured mapping rules, before they are discarded by the adapter. This can
be useful for debugging and diagnostics.

The <logUnmappedDownstream> element turns on logging of messages from an external event source that
were not mapped onto an Apama correlator event, after being received from a codec plug-in; the
<logUnmappedUpstream> element enables logging of events from the correlator that did not match the
conditions necessary for mapping to an external message that could be passed on to a codec plug-in.

Both elements have a single attribute called file, which is used to specify the filename that the log
should be written to.

For example:
<mapping>
 ...
 <logUnmappedDownstream file="unmapped_from_adapter.log"/> <logUnmappedUpstream
 file="unmapped_from_Correlator.log"/> ...
</mapping>

Note: Due to buffering of files in the operating system, the contents of the log files on disk may not
be complete until the IAF is shutdown or reconfigured.

The <event> element

The <mapping> section contains one or more <event> elements, each of which specifies a mapping
between an Apama correlator event type and a kind of external message. Setting up the correct
<event> elements is the main part of configuring the Semantic Mapper.

Each <event> element can have the following attributes:

name – This is the name of this Apama correlator event type, and is required.

package – This optional attribute specifies the EPL package of the Apama event; if it is not
provided, the default package is used. See Developing Apama Applications in EPL for more
information about packages.

direction – This optional attribute defines whether this event mapping is to be used solely for
downstream mapping (from incoming external messages to Apama events), upstream mapping
(from Apama events to outgoing messages) or for mapping in both directions. The allowed

The IAF configuration file

Developing Adapters 5.2.0 32

values for the attribute are upstream, downstream and both. The default value if the attribute is
undefined is both.

encoder – Required for a mapping that can be used in the upstream direction (direction
="upstream" or "both"), but ignored when processing downstream messages. In the upstream
direction the attribute specifies the codec plug-in that should be used to process the message,
once the translation process is complete. The name supplied here must match the name provided
in the <codec> element.

copyUnmappedToDictionaryPayload – This optional Boolean attribute defines what the Semantic
Mapper should do with any fields in the incoming messages that do not match with any field
mapping. If copyUnmappedToDictionaryPayload is false (and copyUnmappedToPayload, below, is also false
or not present), then any unmapped fields are discarded. If it is set to true however, they will
be packaged into a special field called __payload, implicitly added as the last field of the Apama
event type. Fields in normalised events with a value of null will be included in the dictionary
with the value set to an empty string. If this attribute is undefined its value defaults to false.

Using copyUnmappedToDictionaryPayload puts all the payload fields in a standard EPL dictionary that
is efficient and easy to access. See "Creating a payload field" on page 135 for more information
about the payload field.

copyUnmappedToPayload – As of Release 4.1, this option is deprecated; use
copyUnmappedToDictionaryPayload instead. This optional Boolean attribute defines what the Semantic
Mapper should do with any fields in the incoming messages that do not match with any field
mapping. If copyUnmappedToPayload is false (and copyUnmappedToDictionaryPayload, above, is also false
or not present), then any unmapped fields are discarded. If it is set to true however, they will
be packaged into a special field called __payload, implicitly added as the last field of the Apama
event type. The default value if this attribute is undefined is false. See "Creating a payload field"
on page 135 for more information about the payload field.

breakUpstream – This optional Boolean attribute defines what the Semantic Mapper should do
when it matches an upstream Apama event to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next event. This is the default
behavior when the breakUpstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and then
keeps evaluating the same event against the other event mappings.

This attribute only affects upstream event processing.

breakDownstream – This optional Boolean attribute defines what the Semantic Mapper should do
when it matches an incoming downstream message to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next message. This is the
default behavior, when the breakDownstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and then
keeps evaluating the same message against the other event mappings.

This attribute only affects downstream event processing.

inject – Determines whether the IAF will automatically inject the event definitions that are
implicitly defined by this event mapping into the correlator. The default is false. Injecting events
from the configuration files is deprecated. Instead, you should use the -e or --events switches to
iaf to generate the EPL code for the event definitions and then inject the events (and monitors)

The IAF configuration file

Developing Adapters 5.2.0 33

during the application’s start-up sequence with the tool that you use to start the correlator, such
as Apama Studio, the Enterprise Management and Monitoring console (EMM) or the Apama
command line tools.

copyTimestamps – This is an optional attribute. If set to true (the default is false), the
semantic mapper will add an additional field to the generated event definition to hold
timestamp information. The new field will be called __timestamps and will be of type
dictionary<integer,float> where the dictionary keys are timestamp indexes and the values are the
corresponding timestamps. The timestamp field is inserted before the payload field, so it may be
the last or next to last field in the event definition. If timestamp copying is enabled for an event
type, all timestamps present in the __timestamps field of a matching upstream event will be copied
into a new AP_TimestampSet/TimestampSet object and passed to the upstream codec. Likewise, any
timestamps passed to the semantic mapper by the codec will be copied into the __timstamps field
of the outgoing downstream event and thus made available to the correlator.

transportChannel — optional. If present, then for upstream events (events leaving the correlator),
the channel is put in the NormalisedEvent using the value of the transportChannel attribute.

If present, then for downstream events (events going into the correlator), if the value of the
transportChannel attribute is in the NormalizedEvent, then that value from the NormalizedEvent is used
as the channel name. It is possible that a subsequent <map> element with an identical transport
attribute value could override it.

presetChannel - optional. If present, then for downstream events (events going into the correlator),
if no channel has been set by the transportChannel attribute, then the value of presetChannel is used
as the channel name.

If transportChannel is set, then that value in the NormalisedEvent can still be used for a normal <map>
rule, but it will not appear in the unmappedDictionary (if present).

Thus, it is possible to define either a default channel name per type, or a NormalisedEvent field that
the transport will send and receive, and this could be re-using a NormalisedEvent field used by a
<map> element.

A typical bidirectional <event> element might look like the following. For downstream, if "CHANNEL"
(from transportChannel) is in the NormalisedEvent, then the value of the "CHANNEL" entry is used as the
channel name, otherwise "channelB" from presetChannel is used. For upstream, the channel name is
placed in the "CHANNEL" entry in the NormalisedEvent.
<event name="Tick"
 direction="both"
 encoder="String"
 copyUnmappedToDictionaryPayload="true"
 inject="false"
 presetChannel="channelB"
 transportChannel="CHANNEL">
 <id-rules>
 ...
 </id-rules>
 <mapping-rules>
 ...
 </mapping-rules>
</event>

The <id-rules> and <mapping-rules> elements are described below.

The <event> mapping conditions

The <id-rules> element defines a set of conditions that must be satisfied by an incoming message for
it to trigger the mapping to an Apama event, or to decide how to map an incoming Apama event

The IAF configuration file

Developing Adapters 5.2.0 34

back to a normalized message. The <id-rules> element contains <upstream> and <downstream> sub-
elements, which in turn contain the mapping conditions to be used when the Semantic Mapper
is searching for a mapping to use in the upstream or downstream direction, respectively. Each
condition is encoded in an <id> element.

Note: Conditions are only required for the directions that the mapping can operate in. For example,
a mapping with direction="downstream" does not need any <upstream> id rules, while a mapping with
direction="both" must specify both <upstream> and <downstream> id rules. The <id-rules>, <upstream> and
<downstream> elements themselves must exist though.

<id> - Each <id> sets a condition on a set of fields contained in the normalized message or Apama
event. This element takes up to three attributes; fields, which defines the fields that the condition
must apply to; test, which specifies the condition; and value, which provides a value to compare the
field value with. The value attribute is only required for relational tests. For example:
<id fields="Stock, Exchange, Price" test="exists"/>

specifies that the Stock, Exchange and Price fields must exist if the condition is to be satisfied and the
mapping proceed. No value is needed to perform the test in this case.

However, the following example:
<id fields="Exchange" test="==" value="LSE"/>

specifies that the Exchange field must exist and have the value "LSE" for the condition to be satisfied.

Note: The value for the fields attribute is a list of fields, delimited by spaces or commas. This means,
for example that <id fields="Exchange EX,foo" test="==" value="LSE"/> will successfully match a field
called "Exchange", "EX" or "foo", but not a field called "Exchange EX,foo". You should keep this in
mind when you assign field names for normalized events. While fields with spaces or commas in
their names may be included in a payload dictionary in upstream or downstream directions, they
cannot be referenced directly in mapping or id rules.

The following test conditions may be specified. The first four tests are unary operators that do not
need a value attribute. These tests can be applied to multiple fields in the same <id> rule:

exists - The fields exist, but do not necessarily have a value

notExists - The fields do not exist

anyExists - One or more of the fields exist, not necessarily with values

hasValue - At least one of the fields exists and has a value. To test that multiple fields all exist and
all have values, use multiple hasValue conditions, one for each field, such as

 <id fields="symbol" test="hasValue"/>
 <id fields="newLimit" test="hasValue"/>

The remaining tests are binary relational operators that do require a value attribute. Furthermore,
these tests can only be applied to single fields:

== - Case-sensitive string equality

!= - Case-sensitive string inequality

~== - Case-insensitive string equality

~!= - Case-insensitive string inequality

While the equality tests will fail on fields with missing values, the inequality tests will pass.

The IAF configuration file

Developing Adapters 5.2.0 35

All <id> conditions in an <id-rules> element must be satisfied for the mapping to proceed.

Note: A mapping with no <id> elements will always match. This allows a catch-all mapping to be
specified. This should be the last definition.
The id rules that test transport field values function in isolation from each other, that is, as soon as a
test id rule fails, the mapper stops looking at subsequent rules. This means there is no way to group
together tests against the same field name with an OR condition to see if any of them match. Any
type of OR value testing needs to be implemented at the codec or EPL layers, or by creating copies of
the entire <event> element for each value to test.

The following is an example of a valid <id-rules> element for a bidirectional mapping. Note that the
upstream rules are empty, so this mapping will match any incoming Apama event of the appropriate
type:
<id-rules>
 <downstream>
 <id fields="Stock, Price" test="exists"/>
 <id fields="Exchange" test="==" value="LSE"/>
 </downstream>
 <upstream/>
</id-rules>

The <event> mapping rules

The <mapping-rules> element defines a set of mappings that describe how to create an Apama event
from an incoming message. Conversely they define the mapping from an Apama event to an
outgoing message. Each mapping must be defined in a <map> element, which has the following
attributes:

apama – This is the Apama event field name to copy the value into (downstream) or to take the
value from (upstream). This attribute is optional. In an upstream direction, if the apama attribute
is not specified or is provided empty, a field will be created within the external message and
set to the value specified by default. Not specifying the apama attribute has no significance in a
downstream direction — this line of the mapping will be ignored.

Note: The IAF does not know what types are injected into the correlator, and will drop events
with a Failed to parse warning if the types and order of the elements with an apama= attribute do
not match the event definition that was injected into the correlator. Mapping rules that do not
specify an apama= attribute are not affected by this.

transport – This defines the external message’s field name to copy the value from (downstream)
or to copy the value into (upstream). For a downstream mapping it is possible to define more
than one value here; in which case the first encountered is used. This attribute is optional. In a
downstream direction, if the transport attribute is not specified or is provided empty, a field will
be created within the Apama event and set to the value specified by default. Not specifying the
transport attribute has no significance in an upstream direction — this line of the mapping will
be ignored.

type – The type of the field in the Apama event type. Any simple correlator type is valid here
(string, integer, decimal, float, boolean and location); for complex correlator reference types such
as sequence<...> and dictionary<...,...>, specify reference instead. If a field is of reference type,
the referenceType attribute can be supplied if needed to define the type (see below). When a
field is of reference type, the Semantic Checker passes its string form to and from the codec
untouched, and performs no checking upon the validity of the value. Note that fields in the
external message are always un-typed character strings, regardless of any type they may have
had on the external transport that produced them. Furthermore, the Semantic Mapper does not

The IAF configuration file

Developing Adapters 5.2.0 36

perform any type "casting" or "coercion" when converting a character string in an external event
field to the appropriate Apama type, meaning that the Apama event produced might be invalid
and be rejected by the correlator. Conversions in the upstream direction, from the Apama field to
a string in the external event, will always succeed. Codec and transport plug-ins should be aware
of these rules when working with events that will be, or have been, processed by the Semantic
Mapper.

referenceType – This is an optional attribute, but it must be supplied if the attribute
type="reference" and the event of which this field is a member has the attribute inject="true"
(which is now deprecated) or if the IAF will be run with the -e option in order to generate
a EPL file with event definitions. This EPL file is then injected to the correlator (this is the
recommended method of injecting events). The value of this attribute must be a valid correlator
type. This attribute is only used for the process of constructing the event definitions that are to
be injected into a correlator. Note that since this is an XML attribute value, some characters such
as angle brackets or quotation marks must be correctly encoded using their XML entity name.
For example, a sequence<string> must be written as referenceType="sequence <string>". Note
also that when nesting sequences within sequences, a space must be present between the angle
brackets to prevent the correlator from parsing this as a bitwise shift.

default – The default value to set the Apama field to if the external field specified in transport is
missing. Note that the value provided must be of the type specified in type. For example, a valid
string is "test" or "", a valid integer is "0", a valid decimal is "0.0" or "0.0d", a valid float is "0.0", a
valid boolean is "true" or "false", and a valid location is "(0.0, 0.0, 0.0, 0.0)".

defaultIfEmpty – Optionally, sets the default value to assign to the field in the Apama event
if the external field specified in transport is present but has no value defined. The same type
considerations apply as for the default attribute. If this attribute is not defined the value specified
by the default attribute will apply for this condition as well. Bearing in mind angled brackets
and quotes have to be written as XML entities (see above), for a nested event you need to write
default="InnerEvent("")" if you want the default value to be InnerEvent("").

Note that at least one of apama and transport must be specified in a mapping.

The following is an example of a valid <mapping-rules> element:
<mapping-rules>
 <map apama="stockName" transport="Stock" type="string" default=""/>
 <map apama="stockPrice" transport="Price" type="float" default="0.0"/>
 <map apama="stockVolume" transport="Volume, TradingVolume,
 CombinedVolume" type="float" default="0.0"/>
</mapping-rules>

In a downstream direction, this specifies that the Stock field must be copied over into stockName, Price
must be copied into stockPrice, and the first encountered of Volume, TradingVolume or CombinedVolume
must be copied into stockVolume. First encountered means the first such instance when the event is
parsed left to right.

In an upstream direction, the Apama field values would be copied into external message fields of
the names specified. A given field in an upstream message can be generated from several different
sources. These are evaluated in the following order:

1. A <map> rule mapping from a named Apama event field to the transport field.

2. A value for the transport field in the event payload. See "The Event Payload" on page 135 for
more details on using the event payload.

3. Any default value available from a <map> rule with no corresponding Apama event field.

The IAF configuration file

Developing Adapters 5.2.0 37

You may have noticed that while an Apama event must always have its full complement of fields
defined and with type-valid values, the same is not assumed of external events.

Note: If multiple upstream mappings for the same Apama type exist, they must all specify all of the
fields in the type in the same order, with the same type values.

Note: Tips for writing a codec when using reference types:

A codec is responsible for constructing the string form of any value. This means that if your event
contains a sequence<string> then the codec must generate an entry in the normalized event whose
value is of the form:
["string value 1", "string value 2", "Value with a \" and backslash \\"]

If the codec generates an event that the correlator cannot parse, the correlator will drop the event
and the codec will have no way of knowing. Be careful constructing the event strings.

Similarly, events from the correlator will contain a normalized event entry whose value is the
string from of the field’s value, as in the example above. The codec is responsible for parsing
these strings.

When writing adapters in Java, Apama suggests you use the classes in the com.apama.event.parser
package to parse and construct the strings to send to the Semantic Mapper. If you are writing a
C/C++ adapter, the corresponding functions for parsing and constructing strings to send to the
Semantic Mapper are found in the AP_EventParser.h and AP_EventWriter.h header files.

For more information on the Java classes, see "Working with normalized events" on page 106 as
well as the Apama Javadoc. For more information on the C/C++ functions, see "Codec utilities" on
page 74.

If nesting other events in the fields of an event, caut

ion must be exercised regarding package namespaces. Always use the fully qualified event name
when referencing it in the string form. Also always ensure that the correlator has the enclosed
event type defined before the enclosing event type.

The <unmapped> element

The <mapping> section may contain one or more <unmapped> elements, each of which specifies a
mapping between the string representation of an Apama event type and a normalized event.

Each <unmapped> element can have the following attributes:

name – This optional attribute specifies the name of the Apama correlator event type to match. If
omitted, matches all Apama event types.

package – This optional attribute specifies the EPL package of the Apama event. This attribute can
be specified only if the name attribute is also supplied.

transport – This attribute is required; it specifies the field in the NormalisedEvent to map to.

direction – This optional attribute defines whether this event mapping is to be used solely for
downstream mapping (from incoming external messages to Apama events), upstream mapping
(from Apama events to outgoing messages) or for mapping in both directions. The allowed
values for the attribute are upstream, downstream and both. The default value if the attribute is
undefined is both.

The IAF configuration file

Developing Adapters 5.2.0 38

encoder – Required for a mapping that can be used in the upstream direction (direction
="upstream" or "both"), but ignored when processing downstream messages. In the upstream
direction the attribute specifies the codec plug-in that should be used to process the message,
once the translation process is complete. The name supplied here must match the name provided
in the <codec> element.

breakUpstream – This optional Boolean attribute defines what the Semantic Mapper should do
when it matches an upstream Apama event to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next event. This is the default
behavior when the breakUpstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and then
keeps evaluating the same event against the other event mappings.

This attribute only affects upstream event processing.

breakDownstream – This optional Boolean attribute defines what the Semantic Mapper should do
when it matches an incoming downstream message to an event mapping.

When set to true, the semantic mapper stops the evaluating process and begins executing the
actions specified by that mapping and then goes on to evaluate the next message. This is the
default behavior, when the breakDownstream attribute is not specified.

When set to false, the semantic mapper executes the actions specified in the mapping and then
keeps evaluating the same message against the other event mappings.

This attribute only affects downstream event processing.

transportChannel — optional. If present, then for upstream events (events leaving the correlator),
the channel is put in the NormalisedEvent using the value of the transportChannel attribute.

If present, then for downstream events (events going into the correlator), if the value of the
transportChannel attribute is in the NormalizedEvent, then that value from the NormalizedEvent is used
as the channel name. It is possible that a subsequent <map> element with an identical transport
attribute value could override it.

presetChannel - optional. If present, then for downstream events (events going into the correlator),
if no channel has been set by the transportChannel attribute, then the value of presetChannel is used
as the channel name.

If transportChannel is set, then that value in the NormalisedEvent can still be used for a normal <map>
rule, but it will not appear in the unmappedDictionary (if present).

Thus, it is possible to define either a default channel name per type, or a NormalisedEvent field that
the transport will send and receive, and this could be re-using a NormalisedEvent field used by a
<map> element.

In the following example, for downstream, if "CHANNEL" (from transportChannel) is in the
NormalisedEvent, then the value of the "CHANNEL" entry is used as the channel name, otherwise
"channelB" from presetChannel is used. For upstream, the channel name is placed in the "CHANNEL" entry
in the NormalisedEvent.
<unmapped
 name="Unmapped"
 direction="both"
 package="com.apama.sample"
 transport="Apama"
 encoder="$CODEC$"

The IAF configuration file

Developing Adapters 5.2.0 39

 presetChannel="channelB"
 transportChannel="CHANNEL">
 <id-rules>
 <downstream>
 <id fields="Apama" test="exists"/>
 </downstream>
 </id-rules>
</unmapped>

The <unmapped> mapping conditions

An <unmapped> element must have an <id-rules> element that defines a set of conditions an incoming
must satisfy in order to trigger the mapping to an Apama event. If the value of the direction
attribute of an <unmapped> element is "both" or "downstream," the <id-rules> element must contain
a <downstream> sub-element. The <downstream> sub-element contains conditions to be used by the
Semantic Mapper when the message is moving downstream direction. Each condition is encoded in
an <id> element.

Each <id> sets a condition on a set of fields contained in the normalized message or Apama event.
This element takes up to three attributes; fields, which defines the fields that the condition must
apply to; test, which specifies the condition; and value, which provides a value to compare the field
value with. The value attribute is only required for relational tests.

The <unmapped> entries behave in the same way as <event> entries — the IAF processes <event> and
<unmapped> entries in order, translating events with any that match, and ending at the first entry that
has breakUpstream or breakDownstream set to true or not specified (they both default to true).

Apama event correlator configuration
The adapter configuration file requires an <apama> element, which configures how the IAF connects
to the Apama event correlator(s). An <apama> element can contain the following elements in the
following order:

<sinks> — This element lists the Apama correlators that the IAF needs to connect with in order to
inject EPL event type definitions and events. You can specify the following attribute in a <sink>
element:

parallelConnectionsLimit — optional —The default behavior is that the IAF limits itself to an
internally set number of connections with each specified sink. This number scales according to
the number of CPUs that the IAF detects on the host that is running the IAF. While this number is
usually sufficient, there are some situations in which you might want to change it. For example,
if you are trying to conserve resources you might want to limit the number of connections to
1, or if you want to prevent multiple threads from sharing a connection you might allow a
higher number of connections than the default allows. See the information below about multiple
connections from IAF to correlator.

Each correlator is defined in its own <sink> element:

<sink> — This element defines an event correlator that the IAF must send events to. You can
define more than one <sink> element. All sinks specified will be injected with any EPL event
type definitions that are defined in <event> elements in the configuration file. The following
attributes are allowed in <sink> elements:

host —required — Defines the name or address of the host machine where the correlator is
running.

The IAF configuration file

Developing Adapters 5.2.0 40

port — required — Specifies the port that this correlator can be contacted on.

sendEvents — optional — The default behavior is that all sinks receive all events generated by
the Semantic Mapper. To prevent the Semantic Mapper from sending all events to a particular
correlator, add sendEvents="false" to the <sink> element that defines that correlator. No events
will be sent to that correlator regardless of any channel settings.

<sources> — This element lists the Apama components (usually event correlators) from which the
IAF can receive events. Each component is defined in its own <source> element:

<source> — This element defines an Apama component that the IAF needs to register with
as an event consumer. This enables the IAF to receive any alerts generated by the specified
component. The following attributes are allowed in <source> elements:

host —required — Defines the name or address of the host machine where the Apama
component is running.

port — required — Specifies the port that this Apama component can be contacted on.

channels — required — Specifies the channels that the IAF should listen on to receive events.
An empty string indicates that the IAF receives all generated events. To receive events on
only particular channels, specify a comma-separated list of channel names. Do not include
any spaces. For example, channels="UK,USA,GER".

disconnectable — Specifies whether or not the IAF can be disconnected if it is slow. If set to
yes or true (case insensitive), the IAF can be disconnected. Any other setting specifies that it
cannot be disconnected.

It is possible to define the IAF as having only sinks, or only sources, or both, or neither. If the IAF has
been started with no sinks and no sources, you would use the engine_connect tool to connect it to a
correlator or another IAF.

For complete information on engine_connect, see "Event correlator pipelining" in Deploying and
Managing Apama Applications.

Disabling Apama messaging and using UM instead

A deployed adapter can use Software AG's Universal Messaging (UM) message bus in place of
connections specified in the <apama> element. When you want to use UM instead of explicitly set
connections do the following:

Add a <universal-messaging> element in place of or after the <apama> element. See Configuring
adapters to use UM.

Add the enabled attribute to the <apama> element, if you have one, and set it to false. For example:
<apama enabled="false">.....</apama>

Alternatively, you can remove the <apama> element.

When the enabled attribute is set to "false" then the entire <apama> element is ignored. In other words,
the deployed adapter does not use any connections specified in the <apama> element. Instead, the
deployed adapter uses the UM configuration specified in the <universal-messaging> element.

The default is that the enabled attribute is set to true. If the enabled attribute is not specified or if it is
set to true then the connections specified in the <apama> element are used.

While specifying both an <apama> element and a <universal-messaging> element in an adapter
configuration file is permitted, it is not recommended.

The IAF configuration file

Developing Adapters 5.2.0 41

See also "Using Universal Messaging" in Deploying and Managing Apama Applications.

Multiple connections from IAF to correlator

To improve performance, an IAF transport might use multiple threads to send events to the codec
and thus to the Semantic Mapper. If more than one thread is sending events downstream (IAF to
correlator) then for each thread, the IAF creates a new connection to each <sink> defined in the
configuration file, up to the defined limit. Thus, multiple threads can deliver events in parallel to the
same sink. In combination with the channelTransport attribute on events (defined in <event> elements),
threads can deliver events to different channels to be received by different contexts. For optimal
parallel event delivery, each IAF transport thread should send events on a distinct set of channels.
There are no ordering guarantees when different threads deliver events to the same sink.

There is a limit on how many connections to each sink the IAF can create. The IAF logs the limit for
the number of connections in the startup stanza. If events are sent on more threads than the number
of allowed connections, then the IAF re-uses existing connections, which means that some threads
share connections. If a thread terminates, the connection it is using is not closed since it might be in
use by another thread. See the information above for the parallelConnectionsLimit attribute on the
<sink> element.

Example

Following is an example of an <apama> element:
<adapter-config>
 ...
 <apama>
 <sinks>
 <sink host="localhost" port="15903" parallelConnectionsLimit="1"/>
 </sinks>
 <sources>
 <source host="localhost" port="15903" channels="MY_ADAPTER"/>
 </sources>
 </apama>
</adapter-config/>

Configuring adapters to use UM
If you are configuring your Apama application to use Software AG's Universal Messaging, you
can configure an adapter to use the UM message bus to send and receive events. To do this, add a
<universal-messaging> element to your adapter configuration file. A <universal-messaging> element can
replace or follow the <apama> element.

A <universal-messaging> element contains:

Required specification of the realms attribute OR the um-properties attribute.

Optional specification of the defaultChannel attribute.

Optional specification of the enabled attribute, which indicates whether the deployed adapter uses
the configuration specified in this <universal-messaging> element.

Optional specification of a <subscriber> element.

The IAF configuration file

Developing Adapters 5.2.0 42

Specification of realms or um-properties attribute

Specification of the realms attribute OR the um-properties attribute is required.

The realms attribute can be set to a list of RNAMEs (UM realm names) to connect to. You can use commas
or semicolons as separators.

Commas indicate that you want the adapter to try to connect to the UM realms in the order in which
you specify them here. Semicolons indicate that the adapter can try to connect to the specified UM
realms in any order. See for more information.

If you specify more than one RNAME, each UM realm you specify must belong to the same UM
cluster. Specification of more than one UM realm lets you benefit from failover features. See
"Communication Protocols and RNAMEs" in the Universal Messaging documentation.

The um-properties attribute can be set to the name or path of a properties file that contains UM
configuration settings. See .

Specification of defaultChannel attribute

Specification of the defaultChannel attribute is optional. If specified, set the defaultChannel attribute
to the name of a UM channel. You cannot specify an empty string. In other words, the value of the
defaultChannel attribute cannot be the default Apama channel, which is the empty string.

An adapter that uses UM must send each event to a named channel. An adapter that is configured to
use UM identifies the named channel to use as follows:

1. If the transportChannel attribute is set for an event type (in an <event> or <unmapped> element) then
this is the channel the adapter uses for that event type.

2. If the transportChannel attribute is not set for an event type but the presetChannel attribute is set
then this is the channel the adapter uses for that event type.

3. If neither transportChannel nor presetChannel is set for an event type then the adapter uses the
channel set by the defaultChannel attribute in the <universal-messaging> element.

4. If neither transportChannel nor presetChannel is set and you did not explicitly set defaultChannel and
you used Apama Studio to create the adapter configuration file then the defaultChannel attribute
is set to "adapter_nameadapter_instance_id. For example: "File Adapter instance 3".

5. If none of transportChannel, presetChannel, or defaultChannel are set and if you did not use Apama
Studio to create the adapter configuration file then the adapter fails if it tries to use UM.

All events sent by the adapter on channels that are UM channels are delivered to those channels.

Specification of a value for the defaultChannel attribute affects events that are sent from this adapter
to Apama engine clients, and from this adapter to correlators when the adapter connects to that
correlator by means of the engine_connect correlator utility.

Specification of the enabled attribute

Optional specification of the enabled attribute, which indicates whether the deployed adapter uses the
configuration specified in this <universal-messaging> element. The default is that the enabled attribute
is set to "true". If the enabled attribute is not specified or if it is set to "true" then the configuration
specified in the <universal-messaging> element is used.

If enabled is set to "false" then the deployed adapter ignores the <universal-messaging> element and
does not use UM. The deployed adapter uses only its explicitly set connections.

http://um.terracotta.org

The IAF configuration file

Developing Adapters 5.2.0 43

Specification of subscriber element

Optional specification of a <subscriber> element. If specified, the <subscriber> element must specify
the channels attribute. Set the channels attribute to a string that specifies the names of the UM
channels this adapter receives events from. Use a comma to separate multiple channel names.

Subscribing to receive events from an adapter that is using UM

In each context, in any correlator, that is listening for events from an adapter that is using UM,
at least one monitor instance must subscribe to the channel or channels on which events are
sent from the adapter. For example, if you are using an ADBC adapter, you must include a
monitor.subscribe(channelName) command for the corresponding instance of the ADBC adapter. Note
that not all adapter service monitors support access from multiple correlators. If this is the case, then
only one correlator should run the service monitors for that adapter.

Adapter configuration examples

Following are some examples of <universal-messaging> elements:
<universal-messaging
 realms="nsp://localhost:5629"
 defaultChannel="orders"
 enabled="true">
 <subscriber channels="UK, US, GER"/>
</universal-messaging>
<universal-messaging um-properties="UM-config.properties">
 <subscriber channels="signal,forward"/>
</universal-messaging>

Logging configuration (optional)
The <logging> and <plugin-logging> optional elements define the logging configuration used by the
adapter. If present, they must appear as the first elements nested in the <adapter-config> element.

The <logging> element configures the logging for the IAF itself, whereas the <plugin-logging> element
configures logging for the transport and codec layer plug-ins in the adapter.

Both elements have two attributes:

The level attribute sets the logging verbosity level; it must be one of the strings TRACE, DEBUG, INFO,
WARN, ERROR, FATAL, CRIT, or OFF (with the same case).

The file attribute determines the file that logging messages will be written to. This should be a
file path relative to the directory that the adapter was started from, or one of the special values
stdout or stderr which to log to standard output or standard error, respectively.

If the IAF cannot write to the specified log file, the adapter will fail to start.

Note: If the --logfile and --loglevel command line switches are passed to the IAF executable when
this is run, the <logging> and <plugin-logging> elements are ignored.

An example of these elements is provided below:
<adapter-config>
 <logging level="INFO" file="iaf.log" /> <plugin-logging
level="DEBUG" file="plugins.log" /> ...
</adapter-config>

The IAF configuration file

Developing Adapters 5.2.0 44

If logging is not configured explicitly in the configuration file or with command line options, logging
defaults to the INFO level on the standard error stream.

The <logging> element accepts two optional sub-elements, <upstream-events> and <downstream-events>
that can be configured to log details of all events sent to and received from a connected correlator,
without needing to set the entire IAF to DEBUG level logging. These sub-elements each take a single
attribute (level) whose values specifies the logging level to be used to log upstream and downstream
events, respectively. If this log level is equal to or greater than the IAF logging level, details of the
events will appear in the IAF log file. For example:
<logging level="WARN">
 <upstream-events level="ERROR"/>
 <downstream-events level="INFO"/>
</logging>

In this configuration, upstream events will be logged (because ERROR is greater than WARN) but
downstream events will not (because INFO is less than WARN). If either of the upstream or downstream
event logging levels is not explicitly set, it will default to DEBUG (so events will not be logged by
default, unless the IAF is explicitly configured for DEBUG logging)

Java configuration (optional)
Transport and codec plug-ins written in Java are executed by the IAF inside an embedded Java
Virtual Machine (JVM). The optional <java> element allows the environment of this JVM to be
configured.

The <java> element may contain zero or more of the following nested elements:

<classpath> – This element adds a single entry onto the JVM classpath, which is the list of paths
used by Java to locate classes. Each <classpath> element has a single path attribute that specifies a
directory or Java Archive file (.jar) to add to the classpath.

The full classpath used by the IAF’s JVM is made up by concatenating (in order):

1. the contents of the APAMA_IAF_CLASSPATH environment variable if one is defined,

2. each of the path entries specified by <classpath> elements, in the order they appear in the
configuration file, OR if there are none, the contents of the CLASSPATH environment variable,

3. the path of the lib/JPlugin_internal.jar file used internally by the IAF.

Additionally, if a jarName attribute is used in the <codec> or <transport> element that defines a
plug-in (as in "Transport and codec plug-in configuration" on page 27), the plug-in will be
loaded using a new classloader with access to the specified Java Archive in addition to the JVM
classpath.

You should make sure that all shared classes are in a separate jar that is specified by a <classpath>
element. The shared classes are then loaded by the parent classloader. This ensures that when a
codec or transport references a shared class, they both agree it is the same class.

<jvm-option> - This element allows arbitrary JVM command line options to be specified. The JVM
option should be placed between the start and end jvm-option tags, e.g.

<jvm-option>-Xmx256m</jvm-option>

See the usage screen of the JVM’s Java executable for a full list of supported options.

IAF samples

Developing Adapters 5.2.0 45

<property> - This element specifies a Java system property that should be passed to the JVM. It has
name and value attributes, such that using:

<property name="propName" value="propValue"/>

is a shorthand equivalent to:

<jvm-option>-DpropName=propValue</jvm-option>

See "The IAF runtime" on page 17 for a description of how the IAF selects the JVM library to use.

The properties specified in the <java> element cannot be changed once the JVM has been loaded by
the IAF. This will occur when the IAF reads a configuration file that specifies a Java transport or
codec plug-in. If the same IAF process is later reconfigured to use only C/C++ transports, the JVM
will not be unloaded. The IAF will log a warning message if a reconfiguration of the IAF process
attempts to change the previously configured JVM properties.

IAF samples
Your distribution contains two complete examples that demonstrate how the IAF can be used in
practice – C and Java implementations of a text file adapter, including build scripts and complete
source code.

See "Standard Plug-ins" on page 137 for information about how the sample plug-ins could be used
in practice.

The C example

The C example is available in samples\iaf_plugin\c\simple and contains the following:

The complete source code of the FileTransport transport layer plug-in and the StringCodec codec
plug-in, in the FileTransport.c and StringCodec.c files.

The FileTransport transport layer plug-in can read and write messages from and to a text file.
This makes it a useful tool in testing the IAF and the event correlator with files of sample
messages.

The StringCodec codec plug-in can decode messages represented as strings containing a list of
field names and values. The configuration properties for the plug-in allow customization of
the syntactic characters used as field, name, and message separators (e.g. “,”, “=”, “;”).

A Makefile for compiling the plug-in sources with GNU Make on UNIX. This builds
libFileTransport.so and libStringCodec.so, the plug-in binaries.

A ‘workspace’ file and dsp folder for compiling the plug-in sources with Microsoft’s Visual
Studio .NET on Microsoft Windows. The make.bat batch file can be used to build the Windows
plug-in binaries, FileTransport.dll and StringCodec.dll.

A sample configuration file, config.xml. This is an example of an IAF configuration that loads
C plug-ins, configures them with plug-in properties, injects a specific EPL file into the event
correlator, provides a simple event mapping, and configures the IAF for sending and receiving
events to and from the event correlator.

A simple EPL file, simple.mon. This defines a monitor that examines the incoming events and
selectively emits some back out to the IAF.

IAF samples

Developing Adapters 5.2.0 46

A text file, simple-feed.evt, with some test input messages that can be loaded by the File
Transport plug-in, parsed by the String Codec plug-in, translated into Apama events by the
Semantic Mapper, and then injected into the event correlator.

A reference file, simple-ref.evt, which shows the expected output file generated when the adapter
is run.

In order to run the example please follow the steps outlined in the README.txt file provided in the
samples\iaf_plugin\c\simple folder.

Note: Plug-ins need to be placed in a location where they can be picked up by the event correlator:

On Windows you either need to copy the .dll into the bin folder, or else place it somewhere
which is on your ‘path’, that is a location that is referenced by the PATH environment variable.

On UNIX you either need to copy the .so into the lib directory, or else place it somewhere which
is on your ‘library path’, that is a directory that is referenced by the LD_LIBRARY_PATH environment
variable.

The Java example

The Java example is in the samples\iaf_plugin\java\simple directory, which contains the files:

The complete source code of the JFileTransport transport layer plug-in and the JStringCodec codec
plug-in, in the src directory.

The JFileTransport transport layer plug-in can read and write messages from and to a text
file. This makes it a useful tool in testing the IAF and the event correlator with files of sample
messages.

In normal operation, JFileTransport sends String objects on to the codec for decoding;
however by setting the upstreamNormalised plug-in property it is possible to use the transport
plug-in in a different mode in which it also performs the functionality that the codec usually
performs (in this case by calling the JStringCodec class directly). In this mode the transport
passes IAF normalized event messages on to the codec plug-in, demonstrating the use of the
pass-through JNullCodec plug-in provided with the Apama distribution.

The JStringCodec codec plug-in can convert between normalized events and messages
represented as strings containing a list of field names and values. The configuration
properties for the plug-in allow customization of the syntactic characters used as field, name,
and message separators (e.g. “,”, “=”, “;”).

An Apache Ant build.xml file is included, for compiling the JFileAdapter.jar binary that contains
both plug-ins (and works on all platforms).

A sample configuration file, config.xml. This is an example of an IAF configuration that loads
Java transport and codec plug-ins, configures them with plug-in properties, provides an event
mapping, and configures the IAF for sending and receiving events to and from the event
correlator.

This configuration file also includes several optional configuration options for logging, custom
JVM options, logging of unmapped events/messages, and use of non-standard correlator event
batching.

A second configuration file, config-no-codec.xml that demonstrates how the standard JNullCodec
plug-in can be used with a transport plug-in that incorporates codec functionality itself and
produces normalized events directly.

IAF samples

Developing Adapters 5.2.0 47

A simple EPL file, simple.mon. This is identical to the file included with the C sample, and defines
a monitor that examines the incoming events and selectively emits some back out to the IAF.

A text file, simple-feed.evt. This is identical to the file included with the C sample, and contains
some test input messages that can be loaded by the File Transport plug-in, parsed by the String
Codec plug-in, translated into Apama events by the Semantic Mapper, and then injected into the
event correlator.

A reference file, simple-ref.evt, which shows the expected output file generated when the adapter
is run. Note that this file is (only trivially) different to the reference file for the C plug-ins.

In order to run the example please follow the steps outlined in the README.txt file provided in the
samples\iaf_plugin\java\simple folder.

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 48

Chapter 3: C/C++ Transport Plug-in Development

n The C/C++ transport plug-in development specification .. 48

n Transport Example .. 60

n Getting started with transport layer plug-in development .. 60

The transport layer is the front-end of the IAF. The transport layer’s purpose is to abstract away the
differences between the programming interfaces exposed by different middleware message sources
and sinks. It consists of one or more custom plug-in libraries that extract downstream messages from
external message sources ready for delivery to the codec layer, and send Apama events already
encoded by the codec layer upstream to the external message sink. See "The Integration Adapter
Framework" on page 11 for a full introduction to transport plug-ins and the IAF’s architecture.

An adapter should send events to the correlator only after its start function is called and before the
stop function returns.

This topic includes the C/C++ Transport Plug-in Development Specification and additional
information for developers of event transports using C/C++. "Transport Plug-in Development in Java"
on page 89 provides information about developing transport plug-ins in Java.

To configure the build for a transport plug-in:

On Linux, copying and customizing an Apama makefile from a sample application is the easiest
method.

On Windows, you might find it easiest to copy an Apama sample project. If you prefer to use a
project you already have, be sure to add $(APAMA_HOME)\include as an include directory. To do this
in Visual Studio, select your project and then select Project Properties > C/C++ > General > Additional
Include Directories.

Also, link against iafcore$(APAMA_LIBRARY_VERSION).lib. To do this in Visual Studio, select your
project and then select Project Properties > Linker > Input > Additional Dependencies and add:

iafcore$(APAMA_LIBRARY_VERSION).lib;apcommon$(APAMA_LIBRARY_VERSION).lib

Finally, select Project Properties > Linker > General > Additional Library Directories, and add
$(APAMA_HOME)\lib.

The C/C++ transport plug-in development specification
A C/C++ transport layer plug-in is implemented as a dynamic shared library. In order for the
IAF to be able to load and use it, it must comply with Apama’s Transport Plug-in Development
Specification. This Specification describes the structure of a transport layer plug-in, and the C/C++
functions it needs to implement so that it can be used with the IAF. The Specification also provides
a mechanism for startup and configuration parameters to be passed to the plug-in from the IAF’s
configuration file.

Property names and values used by transport plug-ins must be in UTF-8 format.

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 49

A transport layer plug-in implementation must include the C header file EventTransport.h. It also
needs to include EventCodec.h, to allow the event transport to pass messages to codecs within the IAF
codec layer.

C/C++ Transport Plug-in Development

Transport functions to implement
EventTransport.h provides the definition for a number of functions whose implementation needs to be
provided by the event transport author.

These functions are as follows:
updateProperties

/**
 * Update the configuration of the transport. The transport may assume
 * that stop(), flushUpstream() and flushDownstream() have all been called
 * before this function is invoked. The recommended procedure for
 * updating properties is to first compare the new property set with the
 * existing stored properties -- if there are no changes, no action should
 * be taken. Any pointer to the old property set becomes invalid as soon
 * as this function returns; any such pointers should therefore be
 * discarded in favour of the supplied new properties.
 *
 * @param transport The event transport instance
 * @param properties The new transport property set derived from the IAF
 * configuration file
 * @param timestampConfig Timestamp recording/logging settings
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*updateProperties)(
 struct AP_EventTransport* transport,
 AP_EventTransportProperties* properties,
 IAF_TimestampConfig* timestampConfig);

sendTransportEvent

/**
 * Called by an event encoder to send a message to the external transport.
 * Ownership of the message is transferred to the transport when this
 * function is called. It is assumed that the encoder and transport share
 * the same definition of the content of the event, so that the transport
 * can effectively interpret the event and free any dynamically-allocated
 * memory.
 *
 * @param transport The event transport instance
 * @param event The event to be sent on the external transport
 * @param timeStamp Timestamps associated with this event
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*sendTransportEvent)(
 struct AP_EventTransport* transport,
 AP_TransportEvent event,
 AP_TimestampSet* timeStamp);

addEventDecoder

/**
 * Add a named event decoder to the set of decoders known to the

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 50

 * transport. If the named decoder already exists, it should be
 * replaced.
 *
 * @param transport The event transport instance
 * @param name The name of the decoder to be added
 * @param decoder The decoder object itself
 */
 void (*addEventDecoder)(struct AP_EventTransport* transport,
 const AP_char8* name,
 struct AP_EventDecoder* decoder);

removeEventDecoder

/**
 * Remove a named event decoder from the set of decoders known to the
 * transport. If the named decoder does not exist, the function should do
 * nothing.
 *
 * @param transport The event transport instance
 * @param name The decoder to be removed
 */
 void (*removeEventDecoder)(struct AP_EventTransport* transport,
 const AP_char8* name);

flushUpstream

/**
 * Flush any pending normalized events onto the external transport. The
 * transport may assume that the stop() function has been called before
 * this function, so in many cases no action will be required to complete
 * the flushing operation.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*flushUpstream)(
 struct AP_EventTransport* transport);

flushDownstream

/**
 * Flush any pending transport events into the decoder. The transport may
 * assume that the stop() function has been called before this function,
 * so in many cases no action will be required to complete the flushing
 * operation. Under no circumstances should any events be sent to the
 * Correlator after flushDownstream() has returned.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*flushDownstream)(
 struct AP_EventTransport* transport);

start

/**
 * Establish a connection and start processing incoming data from the
 * external transport.
 *
 * An adapter should send events to the correlator only after its start()
 * method is called and before the stop() method returns. Therefore we
 * strongly recommend that a transport should not change to a state where
 * it is possible to receive events from any external transport until the
 * start() method has been called. In many cases, adapters will also need
 * to communicate with service monitors in the correlator to ensure that
 * the required monitors and event definitions are injected before they

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 51

 * begin to process messages from the external system. This is necessary in
 * order to avoid events from the adapter being lost if the correlator is
 * not yet ready to parse and process them.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*start)(struct AP_EventTransport* transport);

When the start function is invoked the event transport is effectively signaled to start accepting
incoming messages and pass them onto a codec. Events should not be sent to the correlator until the
start function is called.

It is up to the event transport to determine which codec to communicate with from the list of codecs
made available to it through addEventDecoder and removeEventDecoder. Typically a configuration
property would be used to specify the codec to be used. If a handle to the desired codec had been
stored in a variable called decoder (of type AP_EventDecoder*) when addEventDecoder was called, an event
could be passed on to the codec using:
decoder->functions->sendTransportEvent(decoder, event);

This codec function is described in "C/C++ Codec Plug-in Development" on page 62.
stop

/**
 * Stop processing incoming data from the external transport, typically
 * by pausing or closing down connections.
 *
 * Adapter authors must ensure that no events are sent to the Correlator
 * after stop() has returned (the only exception being rare cases where the
 * transport sends buffered events in the Correlator in the
 * flushDownstream() method, which is called by the IAF after stop()).
 * If necessary any messages that are unavoidably received from the
 * transport after stop() has returned should be blocked, queued or simply
 * dropped.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*stop)(struct AP_EventTransport* transport);

Events should not be sent to the correlator after the stop function has returned. The stop method
must wait for any other threads sending events to complete before the stop method returns.
getLastError

/**
 * getLastError
 *
 * Return the transport's stored error message, if any. The message
 * string is owned by the transport so should not be modified or freed by
 * the caller.
 *
 * @param transport The event transport instance
 * @return The last error message generated by the transport
 */
 const AP_char8* (*getLastError)(struct AP_EventTransport* transport);
getStatus/**
 * getStatus
 *
 * Fill in the supplied AP_EventTransportStatus structure with up-to-date
 * status information for the transport. Note that any data pointed to by
 * the returned structure (such as strings) remains owned by the
 * transport. The caller must copy this data if it wishes to modify it.

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 52

 *
 * @param codec The event transport instance
 * @param status The status structure to be filled in
 */
 void (*getStatus)(struct AP_EventTransport* transport,
 AP_EventTransportStatus* status);

The AP_EventTransportStatus structure contains four fields. The first field is a free-form text string that
the transport can use to report any custom status information it might have. The iaf_watch tool will
display the contents of this string. Note that the length of the status string is limited, currently to
1024 characters. Longer strings will be silently truncated. The next two fields report the total number
of events received and sent by the transport. The last field, a pointer to an AP_NormalisedEvent, can
contain custom information such as the state of the adapter.

The C/C++ transport plug-in development specification

Defining the transport function table
The EventTransport.h header file provides a definition for an AP_EventTransport_Functions structure.
This defines a function table whose elements must be set to point to the implementations of the
above functions. Its definition is as follows:
/**
 * AP_EventTransport_Functions
 *
 * Table of client visible functions exported by a transport library
 * instance. These functions declare the only operations that may be
 * performed by users of a transport.
 *
 * Note that all of these functions take an initial AP_EventTransport*
 * argument; this is analogous to the (hidden) 'this' pointer passed to
 * a C++ object when a member function is invoked on it.
 */
struct AP_EventTransport_Functions {
/**
 * updateProperties
 *
 * Update the configuration of the transport. The transport may assume
 * that stop(), flushUpstream() and flushDownstream() have all been called
 * before this function is invoked. The recommended procedure for
 * updating properties is to first compare the new property set with the
 * existing stored properties -- if there are no changes, no action should
 * be taken. Any pointer to the old property set becomes invalid as soon
 * as this function returns; any such pointers should therefore be
 * discarded in favour of the supplied new properties.
 *
 * @param transport The event transport instance
 * @param properties The new transport property set derived from the IAF
 * configuration file
 * @param timestampConfig Timestamp recording/logging settings
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*updateProperties)(
 struct AP_EventTransport* transport,
 AP_EventTransportProperties* properties,
 IAF_TimestampConfig* timestampConfig);
/**
 * sendTransportEvent
 *
 * Called by an event encoder to send a message to the external transport.
 * Ownership of the message is transferred to the transport when this
 * function is called. It is assumed that the encoder and transport share

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 53

 * the same definition of the content of the event, so that the transport
 * can effectively interpret the event and free any dynamically-allocated
 * memory.
 *
 * @param transport The event transport instance
 * @param event The event to be sent on the external transport
 * @param timeStamp Timestamps associated with this event
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*sendTransportEvent)(
 struct AP_EventTransport* transport,
 AP_TransportEvent event,
 AP_TimestampSet* timeStamp);
/**
 * addEventDecoder
 *
 * Add a named event decoder to the set of decoders known to the
 * transport. If the named decoder already exists, it should be
 * replaced.
 *
 * @param transport The event transport instance
 * @param name The name of the decoder to be added
 * @param decoder The decoder object itself
 */
 void (*addEventDecoder)(struct AP_EventTransport* transport,
 const AP_char8* name, struct AP_EventDecoder* decoder);
/**
 * removeEventDecoder
 *
 * Remove a named event decoder from the set of decoders known to the
 * transport. If the named decoder does not exist, the function should do
 * nothing.
 *
 * @param transport The event transport instance
 * @param name The decoder to be removed
 */
 void (*removeEventDecoder)(struct AP_EventTransport* transport,
 const AP_char8* name);
/**
 * flushUpstream
 *
 * Flush any pending normalized events onto the external transport. The
 * transport may assume that the stop() function has been called before
 * this function, so in many cases no action will be required to complete
 * the flushing operation.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*flushUpstream)(
 struct AP_EventTransport* transport);
/**
 * flushDownstream
 *
 * Flush any pending transport events into the decoder. The transport may
 * assume that the stop() function has been called before this function,
 * so in many cases no action will be required to complete the flushing
 * operation. Under no circumstances should any events be sent to the
 * Correlator after flushDownstream() has returned.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong
 */
 AP_EventTransportError (*flushDownstream)(

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 54

 struct AP_EventTransport* transport);
/**
 * start
 *
 * Establish a connection and start processing incoming data from the
 * external transport.
 *
 * An adapter should send events to the correlator only after its start()
 * method is called and before the stop() method returns. Therefore we
 * strongly recommend that a transport should not change to a state where
 * it is possible to receive events from any external transport until the
 * start() method has been called. In many cases, adapters will also need
 * to communicate with service monitors in the correlator to ensure that
 * the required monitors and event definitions are injected before they
 * begin to process messages from the external system. This is necessary in
 * order to avoid events from the adapter being lost if the correlator is
 * not yet ready to parse and process them.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*start)(struct AP_EventTransport* transport);
 /**
 * stop
 *
 * Stop processing incoming data from the external transport, typically
 * by pausing or closing down connections.
 *
 * Adapter authors must ensure that no events are sent to the Correlator
 * after stop() has returned (the only exception being rare cases where the
 * transport sends buffered events in the Correlator in the
 * flushDownstream() method, which is called by the IAF after stop()).
 * If necessary any messages that are unavoidably received from the
 * transport after stop() has returned should be blocked, queued or simply
 * dropped.
 *
 * @param transport The event transport instance
 * @return Event transport error code. If this is not
 * AP_EventTransport_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_EventTransportError (*stop)(struct AP_EventTransport* transport);
/**
 * getLastError
 *
 * Return the transport's stored error message, if any. The message
 * string is owned by the transport so should not be modified or freed by
 * the caller.
 *
 * @param transport The event transport instance
 * @return The last error message generated by the transport
 */
 const AP_char8* (*getLastError)(struct AP_EventTransport* transport);
/**
 * getStatus
 *
 * Fill in the supplied AP_EventTransportStatus structure with up-to-date
 * status information for the transport. Note that any data pointed to by
 * the returned structure (such as strings) remains owned by the
 * transport. The caller must copy this data if it wishes to modify it.
 *
 * @param codec The event transport instance
 * @param status The status structure to be filled in
 */
 void (*getStatus)(struct AP_EventTransport* transport,
 AP_EventTransportStatus* status);
};

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 55

Please note that the order of the function pointers within the function table is critical to the reliable
operation of the IAF. However, the order that the function definitions appear within the plug-in
source code, and indeed the names of the functions, are not important. Apama recommends that the
functions be declared static, so that they are not globally visible and can only be accessed via the
function table.

It is therefore not obligatory to implement the functions documented above with the same
names as per the definitions, as long as the mapping is performed correctly in an instantiation of
AP_EventTransport_Functions. A definition in an event transport implementation would look as follows:
/**
 * Function table for the AP_EventTransport interface. The address of this
 * structure must be placed in the 'functions' field of the AP_EventTransport
 * object.
 */
static struct AP_EventTransport_Functions EventTransport_Functions
 = {
 updateProperties,
 sendTransportEvent,
 addEventDecoder,
 removeEventDecoder,
 flushUpstream,
 flushDownstream,
 start,
 stop,
 getLastError,
 getStatus
};

The function table created above needs to be placed in an AP_EventTransport object. The definition of
this structure is as follows:
/**
 * External (client-visible) interface to an IAF TIL plugin library. The
 * AP_EventTransport struct contains a table of function pointers, declared in
 * the AP_EventTransport_Functions struct above. The implementation of these
 * functions is private. Users of the transport libary should invoke
 * functions on it as in the following example (transport is of type
 * AP_EventTransport*):
 *
 * i = transport->functions->sendTransportEvent(mapper, event, timestamp);
 */
struct AP_EventTransport {
 void* reserved;
 struct AP_EventTransport_Functions* functions;
};

and one such object needs to be created for every plug-in within its constructor function. Its first
element, reserved, is a placeholder for any private data that the transport layer requires.

The C/C++ transport plug-in development specification

The transport constructor, destructor and info functions
Every event transport needs to implement a constructor function, a destructor function and an ‘info’
function. These methods are called by the IAF to (respectively) instantiate the event transport, to
clean it up during unloading, and to provide information about the plug-in’s capabilities.

EventTransport.h provides the following definition for a pointer to the constructor function:
AP_EventTransportCtorPtr

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 56

/**
 * Pointer to the constructor function for the transport library. Each TIL
 * plugin library must export a function with this signature, named using the
 * AP_EVENTTRANSPORT_CTOR_FUNCTION_NAME macro.
 *
 * Constructs a new instance of the event transport. This function will be
 * called by the adapter main program when the adapter starts up. The
 * transport should be created in a 'stopped' state, such that it is not
 * actively processing data from the external transport. A call to the
 * start() function is required to begin processing.
 *
 * Note that the input parameters (name, properties, timestampConfig) are
 * owned by the caller. The IAF framework guarantees that propertes and
 * timestampConfig will remain valid until after a subsequent call to
 * updateProperties(), so it is safe to hold a pointer to this structure.
 * You should, however, copy the name string if you wish to keep it. The
 * contents of the output parameter errMsg belongs to the transport.
 *
 * @param name The name of this transport instance
 * @param properties Transport property set derived from the IAF config file
 * @param err 'Out' parameter for error code if constructor fails
 * @param errMsg 'Out' parameter for error message if constructor fails
 * @param timestampConfig Timestamp recording/logging settings
 * @return Pointer to a new transport instance or NULL if the constructor
 * fails for some reason. In the case of failure, err and errMsg should be
 * filled in with an appropriate error code and message describing the
 * failure.
 */
typedef AP_EVENTTRANSPORT_API AP_EventTransport* (
 AP_EVENTTRANSPORT_CALL* AP_EventTransportCtorPtr)(AP_char8* name,
 AP_EventTransportProperties* properties, AP_EventTransportError* err,
 AP_char8** errMsg, IAF_TimestampConfig* timestampConfig);

Typically part of the work of this constructor would be a call to updateProperties, in order to set up
the initial configuration of the plug-in.

The destructor function’s related definition is as follows:
AP_EventTransportDtorPtr

/**
 * Pointer to the destructor function for the transport library. Each TIL
 * plugin library must export a function with this signature, named using
 * the AP_EVENTTRANSPORT_DTOR_FUNCTION_NAME macro.
 *
 * Destroys an instance of the event transport that was previously created
 * by AP_EventTransport_ctor. The transport may assume that it has been
 * stopped and flushed before the destructor is called.
 *
 * @param transport The event transport object to be destroyed
 */
typedef AP_EVENTTRANSPORT_API void (
 AP_EVENTTRANSPORT_CALL* AP_EventTransportDtorPtr)(
 AP_EventTransport* obj);

while the info function is defined as:
AP_EventTransportInfoPtr

/**
 * Pointer to the info function for the tranport library. Each transport
 * plugin library must export a function with this signature, named using
 * the AP_EVENTTRANSPORT_INFO_FUNCTION_NAME macro.
 *
 * Returns basic information about the transports implemented by this
 * shared library, along with the transport API version it was built
 * against.
 *
 * @param version 'Out' parameter for version number of transport library.
 * This should be the value of AP_EVENTTRANSPORT_VERSION that was defined
 * in EventTransport.h when the transport was built. The IAF will check

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 57

 * the version number to ensure that it can support all the capabilities
 * offered by the transport
 * @param capabilities 'Out' parameter for the capabilities of the
 * transports provided by this library. Currently no such capabilities
 * are defined, so the value of this field will be ignored by the IAF.
 * However, all bits ofthe capabilities value are reserved for future use,
 * so current transports should ensure that they set this value to zero.
 */
typedef AP_EVENTTRANSPORT_API void (
 AP_EVENTTRANSPORT_CALL* AP_EventTransportInfoPtr)(AP_uint32* version,
 AP_uint32* capabilities);

The IAF will search for these functions by the names AP_EventTransport_ctor,AP_EventTransport_dtor
and AP_EventTransport_info when the library is loaded, so you must use these exact names when
implementing them in a transport layer plug-in.

The C/C++ transport plug-in development specification

Other transport definitions
EventTransport.h also provides some additional definitions that the event transport author needs to be
aware of.

First of these is the set of error codes that can be returned by the transport’s functions:
/**
 * AP_EventTransportError
 *
 * Error codes that can be returned by transport library functions. The
 * enumeration values follow the normal UNIX convention of zero == OK and
 * non-zero == error.
 */
typedef enum {
 AP_EventTransport_OK = 0, /* Everything is fine */
 AP_EventTransport_InternalError, /* Some unspecified internal error occurred */
 AP_EventTransport_TransportFailure, /* Trouble reading/writing the external transport */
 AP_EventTransport_DecodingFailure, /* Trouble sending transport event to decoder */
 AP_EventTransport_BadProperties, /* Transport was passed an invalid property set */
 AP_EventTransport_CantStart /* Transport could not start correctly */
} AP_EventTransportError;

Next is a definition for a configuration property. This corresponds to the properties that can be
passed in as initialization or re-configuration parameters from the configuration file of the IAF.
/**
 * AP_EventTransportProperty
 *
 * A single transport property, corresponding to a <property> element
 * in the adapter configuration file.
 */
typedef struct {
 AP_char8* name;
 AP_char8* value;
} AP_EventTransportProperty;

Properties are passed to the event transport within an AP_EventTransportProperties structure:
/**
 * AP_EventTransportProperties
 *
 * Properties for the transport, extracted from the <transport> element
 * in the adapter configuration file.
 */
typedef struct {
 AP_char8* name;
 AP_EventTransportProperty** properties;

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 58

} AP_EventTransportProperties;

Finally, the status of a transport is reported in an AP_EventTransportStatus structure:
/**
 * AP_EventTransportStatus
 *
 * Transport status information structure, filled in by the getStatus call.
 */
typedef struct {
 AP_char8* status;
 AP_uint64 totalReceived;
 AP_uint64 totalSent;
 AP_NormalisedEvent* statusDictionary;
} AP_EventTransportStatus;

The C/C++ transport plug-in development specification

Transport utilities
The header files AP_EventParser.h and AP_EventWriter.h provide definitions for the Event Parser and
Event Writer utilities. These utilities allow parsing and writing of the string form of reference types
that are used by any <map type="reference"> elements in the adapters configuration file. From the
header files:
AP_EventParser

/**
 * Event Parser - a utility to parse events from strings
 *
 * An EventParser struct is created from a C string (NULL terminated). The
 * type of event can then be interogated (the type member), though both
 * integers and floats are labelled as floats. The number of elements is
 * the number of fields in an event, entries in a sequence, or key,value
 * pairs in a dictionary.
 *
 * Individual fields can then be retrieved, either as a basic type, or as a
 * reference type - basic types retrieved as reference types have a single
 * element which must be retrieved using the relevant method. getRefValue
 * will return NULL if there are no more elements, and the basic type
 * methods will return 0/ false/ empty string.
 *
 * Dictionary entries must be obtained via the getDictPair function, which
 * sets two pointers to the key and value as reference types.
 *
 * No type checking is performed on the get methods; the behaviour when
 * there is a type mismatch is undefined.
 *
 * There are two variants of the get methods; the Next set maintain a
 * counterwhile those with an idx argument retrieve a specific element,
 * which does not affect the next counter. The next counter cannot be reset.
 *
 * Note that the implementation is lazy - it only parses stuff if requested
 * to. (though getNumberElements will parse all of that entity). Parsing is
 * cached, so calling getNumberElements repeatedly is cheap, and
 * getRefValue/ getString/ getDictPair will return the same objects if
 * called repeatedly with the same index.
 *
 * Where methods return an pointer (getString and getRefValue), that
 * pointer is valid until the top-level AP_EventParser is destroyed by
 * AP_EventParser_dtor (no need to destroy any of its sub- objects). A
 * well-formed program shouldhave a matching number of AP_EventParser_ctor
 * and AP_EventParser_dtor calls, and only use string or refValue pointers
 * before AP_EventParser_dtor is called.
 *
 */AP_EventWriter

The C/C++ transport plug-in development specification

Developing Adapters 5.2.0 59

/**
 * Event Writer - a utility to create string forms of events.
 *
 * A utility class that can build string forms of events, sequences and
 * dictionaries.
 * An AP_EventWriter object holds a number of fields, each of which may be a
 * basic type (string, int, float, boolean), or a reference type (event,
 * sequence, dictionary). Once the structure has been built up by adding
 * values, the toString method can be called. This returns a string that
 * the caller is responsible for freeing.
 * Calling the destructor on an object will destroy all AP_EventWriter
 * objects it refers to in a recursive manner - thus, only the top-level
 * object should be destroyed, and it is not possible to share
 * AP_EventWriter objects between two different containing events.
 *
 */

The C/C++ transport plug-in development specification

Communication with the codec layer
If a transport layer plug-in is to be able to receive messages and then pass them on to the codec layer
it must be able to communicate with appropriate decoding codecs. A decoding codec is one that can
accept messages from the transport layer and parse them (decode them) into the normalized event
format accepted by the Semantic Mapper.

When a codec is loaded into the IAF its details are passed to all transport layer plug-ins by calling
their addEventDecoder function. This tells the transport layer plug-in the name of the decoding codec
and provides a reference to its AP_EventDecoder structure.

The reference to AP_EventDecoder gives the transport layer plug-in access to the following functions:
sendTransportEvent

/**
 * Called by the event transport to decode an event and send it on to the
 * Semantic Mapper. Ownership of the message is transferred to the
 * decoder when this function is called. It is assumed that the encoder
 * and transport share the same definition of the content of the event, so
 * that the transport can effectively interpret the event and free any
 * dynamically-allocated memory.
 *
 * @param decoder The event decoder instance
 * @param event The event to be decoded
 * @param timeStamp Timestamps associated with this event
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the decoder should be called to get a more
 * detailed description of what went wrong.
 */
 AP_EventCodecError (*sendTransportEvent)(struct AP_EventDecoder* decoder,
 AP_TransportEvent event, AP_TimestampSet* timeStamp);

getLastError
/**
 * getLastError
 *
 * Return the decoder's stored error message, if any. The message string
 * is owned by the decoder so should not be modified or freed by the
 * caller.
 *
 * @param decoder The event decoder instance
 * @return The last error message generated by the decoder
 */
 const AP_char8* (*getLastError)(struct AP_EventDecoder* decoder);

Transport Example

Developing Adapters 5.2.0 60

Assuming the reference to the AP_EventDecoder structure has been stored in a variable called decoder,
the functions can be called as follows:
errorCode = decoder->functions->sendTransportEvent(decoder, event);
errorMessage = decoder->functions->getLastError(decoder);

The C/C++ transport plug-in development specification

Transport Example
As part of the IAF distribution Apama includes the FileTransport transport layer plug-in,
implemented in the samples\iaf_plugin\c\simple\FileTransport.c source file.

The FileTransport plug-in can read and write messages from and to a text file, and it is recommended
that developers examine this sample to see what a typical transport plug-in implementation looks
like.

See "IAF samples" on page 45 for more information about this sample. "The File Transport plug-in"
on page 140 describes how the FileTransport plug-in can be used in practice.

C/C++ Transport Plug-in Development

Getting started with transport layer plug-in development
In order to facilitate quick development of a transport layer plug-in your distribution includes a
transport plug-in skeleton.

This file, called skeleton-transport.c, implements a complete transport layer plug-in that complies
with the transport layer Plug-in Development Specification but where all the custom message source
specific functionality is missing. The file is located in the samples\iaf_plugin\c\skeleton directory of
your installation.

The skeleton starts a background thread to do the actual message reading. This is the only approach
suitable, unless the external transport is able to call back into the transport layer plug-in.

In order to turn the skeleton into a fully operational message source specific transport layer plug-
in, the plug-in author needs to fill in the gaps within the updateProperties, sendTransportEvent,
addEventDecoder, removeEventDecoder, flushUpstream, flushDownstream, start, stop, getLastError and
getStatus functions. These must implement their specified functionality in the context of the custom
message source. The constructor, destructor and info functions are also likely to require adaptation.

The skeleton defines a structure, called EventTransport_Internals, to store all its private data, and
this structure is placed within the reserved field of the AP_EventTransport object created within the
constructor method. It is likely that this structure will need to be modified to contain additional data
that the adapter might require.

Any custom initialization and communications code, such as code to connect and register with a
message bus, or opening a database, etc., can either be placed in the constructor or in the primary
worker thread’s run method. Alternatively, one might need to place such code in the updateProperties
method, which is called by the IAF at initialization time as well as whenever it is requested to reload
the configuration file and thus resend the plug-in’s properties.

The distribution also includes a Makefile (for use with GNU Make on UNIX) as well as a workspace
file and dsp folder, for use with Microsoft’s Visual Studio .NET on Microsoft Windows, for this

Getting started with transport layer plug-in development

Developing Adapters 5.2.0 61

skeleton, which can be adapted to compile your transport layer plug-in and link it against any
custom libraries required.

Once a plug-in is built, it needs to be placed in a location where it can be picked up by the IAF.

This means that on Windows you either need to copy the .dll into the bin folder, or else place it
somewhere which is on your ‘path’, that is a location that is referenced by the PATH environment
variable.

On UNIX you either need to copy the .so into the lib directory, or else place it somewhere which
is on your ‘library path’, that is a directory that is referenced by the LD_LIBRARY_PATH environment
variable.

C/C++ Transport Plug-in Development

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 62

Chapter 4: C/C++ Codec Plug-in Development

n The C/C++ codec Plug-in Development Specification ... 62

n Transport Example .. 81

n Getting Started with codec layer plug-in development .. 81

The codec layer is a layer of abstraction between the transport layer and the IAF’s Semantic Mapper.
It consists of one or more plug-in libraries that perform message encoding and/or decoding. Decoders
translate downstream messages retrieved by the transport layer into the standard ‘normalized event’
format on which the Semantic Mapper’s rules run. Encoders work in the opposite direction, encoding
upstream normalized events into an appropriate format for transport layer plug-ins to send on. See
"The Integration Adapter Framework" on page 11 for a full introduction to codec plug-ins and the
IAF’s architecture.

This topic includes the C/C++ Codec Plug-in Development Specification and additional information
for developers of C/C++ event codecs. "Java Codec Plug-in Development" on page 98 provides
analogous information about developing codec plug-ins in Java.

Before developing a new codec plug-in, it is worth considering whether one of the standard Apama
IAF plug-ins could be used instead. "Standard Plug-ins" on page 137 provides more information
on the standard IAF codec plug-ins: StringCodec and NullCodec. The StringCodec plug-in codes
normalized events as formatted text strings. The NullCodec plug-in is useful in situations where it
does not make sense to decouple the codec and transport layers, and allows transport plug-ins to
communicate with the Semantic Mapper directly using normalized events.

To configure the build for a codec plug-in:

On Linux, copying and customizing an Apama makefile from a sample application is the easiest
method.

On Windows, you might find it easiest to copy an Apama sample project. If you prefer to use a
project you already have, be sure to add $(APAMA_HOME)\include as an include directory. To do this
in Visual Studio, select your project and then select Project Properties > C/C++ > General > Additional
Include Directories.

Also, link against iafcore$(APAMA_LIBRARY_VERSION).lib. To do this in Visual Studio, select your
project and then select Project Properties > Linker > Input > Additional Dependencies and add:

iafcore$(APAMA_LIBRARY_VERSION).lib;apcommon$(APAMA_LIBRARY_VERSION).lib

Finally, select Project Properties > Linker > General > Additional Library Directories, and add
$(APAMA_HOME)\lib.

The C/C++ codec Plug-in Development Specification
A codec plug-in needs to be structured as a dynamic shared library. In order for the IAF to be able
to load and use it, it must comply with Apama’s Codec Plug-in Development Specification. This
describes the overall format of a codec plug-in and the C/C++ functions it needs to implement so that

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 63

its functionality is accessible by the IAF. The Specification also provides a mechanism for startup and
configuration parameters to be passed to the plug-in from the IAF’s configuration file.

Property names and values used by codec plug-ins must be in UTF-8 format.

A codec plug-in implementation must include the C header file EventCodec.h. This file can be found
in the include directory. As a codec also needs to communicate both with a transport layer plug-in (or
event transport) and with the Semantic Mapper, EventTransport.h and SemanticMapper.h also need to be
included.

C/C++ Codec Plug-in Development

Codec functions to implement
EventCodec.h provides the definition for a number of functions whose implementation needs to be
provided by the event transport author.

However, in contrast to the Transport Layer Plug-in Development Specification, the set of functions
that need to be implemented varies depending on whether the codec is to implement only a message
decoder, only a message encoder, or a bidirectional encoder/decoder.

In all cases implementations need to be provided for the following functions:
updateProperties

/**
 * Update the configuration of the codec. The codec may assume that
 * flushUpstream() and flushDownstream() have been called before this
 * function is invoked. The recommended procedure for updating properties
 * is to first compare the new property set with the existing stored
 * properties -- if there are no changes, no action should be taken. Any
 * pointer to the old property set becomes invalid as soon as this
 * function returns; any such pointers should therefore be discarded in
 * favour of the supplied new properties.
 *
 * @param codec The event codec instance
 * @param properties The new codec property set derived from the IAF
 * configuration file
 * @param timestampConfig Timestamp recording/logging settings
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the codec should be called to get a more
 * detailed description of what went wrong.
 */
AP_EventCodecError (*updateProperties)(struct AP_EventCodec* codec,
 AP_EventCodecProperties* properties,
 IAF_TimestampConfig* timestampConfig);

It is recommended that updateProperties is invoked by the codec constructor.
getLastError

/**
 * Return the codec's stored error message, if any. The message string is
 * owned by the codec so should not be modified or freed by the caller.
 *
 * @param codec The event codec instance
 * @return The last error message generated by the codec
 */
const AP_char8* (*getLastError)(struct AP_EventCodec* codec);

getStatus

/**

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 64

 * Fill in the supplied AP_EventCodecStatus structure with up-to-date
 * status information for the codec. Note that any data pointed to by the
 * returned structure (such as strings) remains owned by the codec. The
 * caller must copy this data if it wishes to modify it.
 *
 * @param codec The event codec instance
 * @param status The status structure to be filled in
 */
void (*getStatus)(struct AP_EventCodec* codec, AP_EventCodecStatus* status);

The AP_EventCodecStatus structure contains four fields. The first field is a free-form text string that
the transport can use to report any custom status information it might have. The iaf_watch tool will
display the contents of this string. Note that the length of the status string is limited, currently to
1024 characters. Longer strings will be silently truncated. The next two fields report the total number
of events encoded and decoded by the codec. The last field, a pointer to an AP_NormalisedEvent, can
contain custom information such as the state of the adapter.

The C/C++ codec Plug-in Development Specification

Codec encoder functions
If the codec is to implement an encoder, implementations need to be provided for the following
functions:
sendNormalisedEvent
/**
 * Called by the Semantic Mapper to encode an event and send it on to the
 * event transport. Ownership of the message is transferred to the
 * encoder when this function is called.
 *
 * @param encoder The event encoder instance
 * @param event The event to be encoded
 * @param timeStamp Timestamps associated with this event
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the encoder should be called to get a more
 * detailed description of what went wrong.
 */
AP_EventCodecError (*sendNormalisedEvent)(struct AP_EventEncoder* encoder,
 AP_NormalisedEvent* event, AP_TimestampSet* timeStamp);

flushUpstream

/**
 * Flush any pending normalized events into the attached event transport.
 * If event processing in the encoder is synchronous (as it usually will
 * be) this function need not do anything except return AP_EventCodec_OK.
 *
 * @param encoder The event encoder instance
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the encoder should be called to get a more
 * detailed description of what went wrong.
 */
AP_EventCodecError (*flushUpstream)(struct AP_EventEncoder* encoder);

getLastError

/**
 * Return the encoder's stored error message, if any. The message string
 * is owned by the encoder so should not be modified or freed by the
 * caller.
 *
 * @param encoder The event encoder instance
 * @return The last error message generated by the encoder
 */
const AP_char8* (*getLastError)(struct AP_EventEncoder* encoder);

addEventTransport

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 65

/**
 * Add a named event transport to the set of transports known to the
 * encoder.
 *
 * If the named transport already exists, it should be replaced.
 *
 * @param encoder The event encoder instance
 * @param name The name of the transport to be added.
 * @param transport The transport object itself
 */
void (*addEventTransport)(struct AP_EventEncoder* encoder,
 const AP_char8* name, struct AP_EventTransport* transport);

removeEventTransport

/**
 * Remove a named event transport from the set of transports known to the
 * encoder.
 *
 * If the named transport does not exist, the function should do nothing.
 *
 * @param encoder The event encoder instance
 * @param name The name of the transport to be removed
 */
void (*removeEventTransport)(struct AP_EventEncoder* encoder,
 const AP_char8* name);

Codec functions to implement

Codec decoder functions
If the codec is to provide a decoder, implementations need to be provided for the following
functions:
sendTransportEvent

/**
 * Called by the event transport to decode an event and send it on to the
 * Semantic Mapper. Ownership of the message is transferred to the
 * decoder when this function is called. It is assumed that the encoder
 * and transport share the same definition of the content of the event, so
 * that the transport can effectively interpret the event and free any
 * dynamically-allocated memory.
 *
 * @param decoder The event decoder instance
 * @param event The event to be decoded
 * @param timeStamp Timestamps associated with this event
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the decoder should be called to get a more
 * detailed description of what went wrong.
 */
AP_EventCodecError (*sendTransportEvent)(struct AP_EventDecoder* decoder,
 AP_TransportEvent event, AP_TimestampSet* timeStamp);

setSemanticMapper
/**
 * Set the Semantic Mapper object to be used by the decoder. Currently
 * only a single Semantic Mapper is supported in each adapter instance.
 *
 * @param decoder The event decoder instance
 * @param mapper The Semantic Mapper to be used
 */
void (*setSemanticMapper)(struct AP_EventDecoder* decoder,
 AP_SemanticMapper* mapper);

flushDownstream
/**
 * Flush any pending transport events into the attached Semantic Mapper.

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 66

 * If event processing in the decoder is synchronous (as it usually will
 * be) this function need not do anything except return AP_EventCodec_OK.
 *
 * @param decoder The event decoder instance
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the decoder should be called to get a more
 * detailed description of what went wrong.
 */
AP_EventCodecError (*flushDownstream)(struct AP_EventDecoder* decoder);

getLastError
/**
 * Return the decoder's stored error message, if any. The message string
 * is owned by the decoder so should not be modified or freed by the
 * caller.
 *
 * @param decoder The event decoder instance
 * @return The last error message generated by the decoder
 */
const AP_char8* (*getLastError)(struct AP_EventDecoder* decoder);

Codec functions to implement

Defining the codec function tables
In a transport layer plug-in, the plug-in author needs to provide a function table that tells the IAF
which functions to call to invoke specific functionality.

The Codec Development Specification follows this model but depending on whether the codec being
developed is an encoder, a decoder or an encoder/decoder, up to three function tables may need to
be defined.

Please note that the order of the function pointers within each function table is critical to the reliable
operation of the IAF. However, the order that the function definitions appear within the plug-in
source code, and indeed the names of the functions, are not important. Apama recommends that the
functions be declared static, so that they are not globally visible and can only be accessed via the
function table.

The C/C++ codec Plug-in Development Specification

The codec function table
Every codec needs to define a generic codec function table. The header file provides a definition for
this as an AP_EventCodec_Functions structure. Its definition is as follows:
/**
 * AP_EventCodec_Functions
 *
 * Table of client visible functions exported by a codec library instance.
 * These functions declare the only operations that may be performed by users
 * of a codec (but note that separate function tables exist for encoding-
 * and decoding-specific functions).
 *
 * Note that all of these functions take an initial AP_EventCodec*
 * argument; this is analogous to the (hidden) 'this' pointer passed to a
 * C++ object when a member function is invoked on it.
 */
struct AP_EventCodec_Functions {
 /**
 * updateProperties
 *
 * Update the configuration of the codec. The codec may assume that

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 67

 * flushUpstream() and flushDownstream() have been called before this
 * function is invoked. The recommended procedure for updating properties
 * is to first compare the new property set with the existing stored
 * properties -- if there are no changes, no action should be taken. Any
 * pointer to the old property set becomes invalid as soon as this
 * function returns; any such pointers should therefore be discarded in
 * favour of the supplied new properties.
 *
 * @param codec The event codec instance
 * @param properties The new codec property set derived from the IAF
 * configuration file
 * @param timestampConfig Timestamp recording/logging settings
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the codec should be called to get a more
 * detailed description of what went wrong.
 */
 AP_EventCodecError (*updateProperties)(struct AP_EventCodec* codec,
 AP_EventCodecProperties* properties,
 IAF_TimestampConfig* timestampConfig);
 /**
 * getLastError
 *
 * Return the codec's stored error message, if any. The message string is
 * owned by the codec so should not be modified or freed by the caller.
 *
 * @param codec The event codec instance
 * @return The last error message generated by the codec
 */
 const AP_char8* (*getLastError)(struct AP_EventCodec* codec);
 /**
 * getStatus
 *
 * Fill in the supplied AP_EventCodecStatus structure with up-to-date
 * status information for the codec. Note that any data pointed to by the
 * returned structure (such as strings) remains owned by the codec. The
 * caller must copy this data if it wishes to modify it.
 *
 * @param codec The event codec instance
 * @param status The status structure to be filled in
 */
 void (*getStatus)(struct AP_EventCodec* codec,
 AP_EventCodecStatus* status);
};

where the library functions updateProperties,getLastErrorCodec and getStatus are being defined as
being the implementations of the Codec Development Specification’s updateProperties,getLastError
and getStatus function definitions respectively.

Defining the codec function tables

The codec encoder function table
If the codec being implemented is to act as an encoder it needs to implement the encoder functions
listed previously and map them in an encoder function table. This structure is defined in EventCodec.h
as an AP_EventEncoder_Functions struct:
/**
 * AP_EventEncoder_Functions
 *
 * Table of client visible functions exported by the encoder part of a
 * codec library instance. These functions declare the only operations
 * that may be performed by users of an encoder.
 *
 * Note that all of these functions take an initial AP_EventEncoder*
 * argument; this is analogous to the (hidden) 'this' pointer passed to
 * a C++ object when a member function is invoked on it.
 */
struct AP_EventEncoder_Functions {

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 68

 /**
 * sendNormalisedEvent
 *
 * Called by the Semantic Mapper to encode an event and send it on to the
 * event transport. Ownership of the message is transferred to the
 * encoder when this function is called.
 *
 * @param encoder The event encoder instance
 * @param event The event to be encoded
 * @param timeStamp Timestamps associated with this event
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the encoder should be called to get a more
 * detailed description of what went wrong.
 */
 AP_EventCodecError (*sendNormalisedEvent)(struct AP_EventEncoder* encoder,
 AP_NormalisedEvent* event, AP_TimestampSet* timeStamp);
 /**
 * flushUpstream
 *
 * Flush any pending normalized events into the attached event transport.
 * If event processing in the encoder is synchronous (as it usually will
 * be) this function need not do anything except return AP_EventCodec_OK.
 *
 * @param encoder The event encoder instance
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the encoder should be called to get a more
 * detailed description of what went wrong.
 */
 AP_EventCodecError (*flushUpstream)(struct AP_EventEncoder* encoder);
 /**
 * getLastError
 *
 * Return the encoder's stored error message, if any. The message string
 * is owned by the encoder so should not be modified or freed by the
 * caller.
 *
 * @param encoder The event encoder instance
 * @return The last error message generated by the encoder
 */
 const AP_char8* (*getLastError)(struct AP_EventEncoder* encoder);
 /**
 * addEventTransport
 *
 * Add a named event transport to the set of transports known to the
 * encoder.
 *
 * If the named transport already exists, it should be replaced.
 *
 * @param encoder The event encoder instance
 * @param name The name of the transport to be added.
 * @param transport The transport object itself
 */
 */
 void (*addEventTransport)(struct AP_EventEncoder* encoder,
 const AP_char8* name, struct AP_EventTransport* transport);
 /**
 * removeEventTransport
 *
 * Remove a named event transport from the set of transports known to the
 * encoder.
 *
 * If the named transport does not exist, the function should do nothing.
 *
 * @param encoder The event encoder instance
 * @param name The name of the transport to be removed
 */
 void (*removeEventTransport)(struct AP_EventEncoder* encoder,
 const AP_char8* name);
};

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 69

In the implementation of an encoding codec, this function table could be implemented as follows:
/**
 * Function table for the AP_EventEncoder interface. The address of this
 * structure will be placed in the 'functions' field of the embedded
 * AP_EventEncoder object.
 */
static struct AP_EventEncoder_Functions EventEncoder_Functions = {
 sendNormalisedEvent,
 flushUpstream,
 getLastErrorEncoder,
 addEventTransport,
 removeEventTransport
};

This time, the library functions sendNormalisedEvent, flushUpstream,getLastErrorEncoder,
addEventTransport and removeEventTransport are being defined as the implementations of the Codec
Development Specification’s sendNormalisedEvent, flushUpstream,getLastError, addEventTransport and
removeEventTransport function definitions respectively.

Defining the codec function tables

The codec decoder function table
If the codec being implemented is to act as a decoder it needs to implement the decoder functions
listed previously and map them in a decoder function table. This structure is defined in EventCodec.h
as an AP_EventDecoder_Functions structure:
/**
 * AP_EventDecoder_Functions
 *
 * Table of client visible functions exported by the decoder part of a
 * codec library instance. These functions declare the only operations that
 * may be performed by users of a decoder.
 *
 * Note that all of these functions take an initial AP_EventDecoder*
 * argument; this is analogous to the (hidden) 'this' pointer passed to
 * a C++ object when a member function is invoked on it.
 */
struct AP_EventDecoder_Functions {
 /**
 * sendTransportEvent
 *
 * Called by the event transport to decode an event and send it on to the
 * Semantic Mapper. Ownership of the message is transferred to the
 * decoder when this function is called. It is assumed that the encoder
 * and transport share the same definition of the content of the event, so
 * that the transport can effectively interpret the event and free any
 * dynamically-allocated memory.
 *
 * @param decoder The event decoder instance
 * @param event The event to be decoded
 * @param timeStamp Timestamps associated with this event
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the decoder should be called to get a more
 * detailed description of what went wrong.
 */
 AP_EventCodecError (*sendTransportEvent)(struct AP_EventDecoder* decoder,
 AP_TransportEvent event, AP_TimestampSet* timeStamp);
 /**
 * setSemanticMapper
 *
 * Set the Semantic Mapper object to be used by the decoder. Currently
 * only a single Semantic Mapper is supported in each adapter instance.
 *
 * @param decoder The event decoder instance
 * @param mapper The Semantic Mapper to be used

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 70

 *
 */
 void (*setSemanticMapper)(struct AP_EventDecoder* decoder,
 AP_SemanticMapper* mapper);
 /**
 * flushDownstream
 *
 * Flush any pending transport events into the attached Semantic Mapper.
 * If event processing in the decoder is synchronous (as it usually will
 * be) this function need not do anything except return AP_EventCodec_OK.
 *
 * @param decoder The event decoder instance
 * @return Event codec error code. If this is not AP_EventCodec_OK, the
 * getLastError() function of the decoder should be called to get a more
 * detailed description of what went wrong.
 */
 AP_EventCodecError (*flushDownstream)(struct AP_EventDecoder* decoder);
 /**
 * getLastError
 *
 * Return the decoder's stored error message, if any. The message string
 * is owned by the decoder so should not be modified or freed by the
 * caller.
 *
 * @param decoder The event decoder instance
 * @return The last error message generated by the decoder
 */
 const AP_char8* (*getLastError)(struct AP_EventDecoder* decoder);
};

In the implementation of a decoding codec, this function table could be implemented as follows:
/**
 * EventDecoder_Functions
 *
 * Function table for the AP_EventDecoder interface. The address of this
 * structure will be placed in the 'functions' field of the embedded
 * AP_EventDecoder object.
 */
static struct AP_EventDecoder_Functions EventDecoder_Functions = {
 sendTransportEvent,
 setSemanticMapper,
 flushDownstream,
 getLastErrorDecoder
};

As before, this definition defines a number of library functions as the implementations of the
function definitions specified in the Codec Development Specification.

Defining the codec function tables

Registering the codec function tables
The encoding and decoding function tables created above need to be placed in the relevant object,
AP_EventEncoder and AP_EventDecoder. These, together with the generic function table, need to be placed
in an AP_EventCodec object. The definitions of these structures are as follows:
/**
 * AP_EventEncoder
 *
 * External (client-visible) interface to the encoder part of a codec
 * plugin library. The AP_EventEncoder struct contains a table of
 * function pointers, declared in the AP_EventEncoder_Functions struct
 * above. The implementation of these functions is private. Users of
 * the encoder should invokefunctions on it as in the following example
 * (encoder is of type AP_EventEncoder*):
 *
 * i = encoder->functions->sendNormalisedEvent(encoder, event, timestamps);
 */

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 71

struct AP_EventEncoder {
 /**
 * Pointer to private internal data.
 */
 void* reserved;
 /**
 * Function table of encoder operations. See documentation for
 * AP_EventEncoder_Functions for details.
 */
 struct AP_EventEncoder_Functions* functions;
};
/**
 * AP_EventDecoder
 *
 * External (client-visible) interface to the decoder part of a codec
 * plugin library. The AP_EventDecoder struct contains a table of
 * function pointers, declared in the AP_EventEDecoder_Functions struct
 * above. The implementation of these functions is private. Users of the
 * decoder should invoke functions on it as in the following example (
 * decoder is of type AP_EventDecoder*):
 *
 * i = decoder->functions->sendTransportEvent(decoder, event, timestamps);
 */
struct AP_EventDecoder {
 /**
 * Pointer to private internal data.
 */
 void* reserved;
 /**
 * Function table of decoder operations. See documentation for
 * AP_EventDecoder_Functions for details.
 */
 struct AP_EventDecoder_Functions* functions;
};
/**
 * AP_EventCodec
 *
 * External (client-visible) interface to an IAF codec plugin library. The
 * AP_EventCodec struct contains pointers to the encoder and decoder parts
 * of the codec (either of these may be NULL if the codec operates in one
 * direction only) and a table of function pointers, declared in the
 * AP_EventCodec_Functions struct above. The implementation of these
 * functions is private. Users of the codec should invoke functions on it
 * as in the following example (codec is of type AP_EventCodec*):
 *
 * i = codec->functions->updateProperties(codec, properties, timestampConfig);
 */
struct AP_EventCodec {
 /**
 * Pointer to private internal data.
 */
 void* reserved;
 /**
 * Function table of codec operations. See documentation for
 * AP_EventCodec_Functions for details.
 */
 struct AP_EventCodec_Functions* functions;
 /**
 * Pointer to embedded encoder.
 */
 AP_EventEncoder* encoder;
 /**
 * Pointer to embedded decoder.
 */
 AP_EventDecoder* decoder;
};

The first element of each structure, reserved, is a placeholder for any private data that the encoder,
decoder, or the generic codec code requires.

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 72

An AP_EventCodec object needs to be created for every plug-in within its constructor function. As
indicated in the descriptive text, the encoder and decoder fields in it may be set to NULL if the codec
does not implement the respective functionality, although clearly it is meaningless to have both set to
NULL.

Defining the codec function tables

The codec constructor, destructor and info functions
Every event codec needs to implement a constructor function, a destructor function and an ‘info’
function. These methods are called by the IAF to (respectively) to instantiate the event codec, to clean
it up during unloading, and to provide information about the plug-in’s capabilities.

EventCodec.h provides the following definition for a pointer to the constructor function:
AP_EventCodecCtorPtr

/**
 * Pointer to the constructor function for the codec library. Each codec
 * plugin library must export a function with this signature, named using
 * the AP_EVENTCODEC_CTOR_FUNCTION_NAME macro.
 *
 * Constructs a new instance of the event codec. This function will be
 * called by the adapter main program when the adapter starts up.
 *
 * Note that the input parameters (name, properties, timestampConfig) are
 * owned by the caller. The IAF framework guarantees that properties and
 * timestampConfig will remain valid until after a subsequent call to
 * updateProperties(), so it is safe to hold a pointer to this structure.
 * You should, however, copy the name string if you wish to keep it. The
 * contents of the output parameter errMsg belongs to the codec.
 *
 * @param name The name of this codec instance, also found in properties
 * @param properties Codec property set derived from the IAF config file
 * @param err 'Out' parameter for error code if constructor fails
 * @param errMsg 'Out' parameter for error message if constructor fails
 * @param timestampConfig Timestamp recording/logging settings
 * @return Pointer to a new codec instance or NULL if the constructor fails
 * for some reason. In the case of failure, err and errMsg should be filled
 * in with an appropriate error code and message describing the failure.
 */
typedef AP_EVENTCODEC_API AP_EventCodec* (
 AP_EVENTCODEC_CALL* AP_EventCodecCtorPtr)(
 AP_char8* name, AP_EventCodecProperties* properties,
 AP_EventCodecError* err, AP_char8** errMsg,
 IAF_TimestampConfig* timestampConfig);

while the destructor function definition is as follows:
AP_EventCodecDtorPtr
/**
 * Pointer to the destructor function for the codec library. Each codec
 * plugin library must export a function with this signature, named using
 * the AP_EVENTCODEC_DTOR_FUNCTION_NAME macro.
 *
 * Destroys an instance of the event codec that was previously created by
 * AP_EventCodec_ctor. The codec may assume that it has been flushed
 * before the destructor is called.
 *
 * @param codec The event codec object to be destroyed
 */
typedef AP_EVENTCODEC_API void
 (AP_EVENTCODEC_CALL* AP_EventCodecDtorPtr)(AP_EventCodec* codec);

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 73

The IAF will search for these functions by the names AP_EventCodec_ctor and AP_EventCodec_dtor when
the library is loaded, so you must use these exact names when implementing a codec plug-in.

In addition, every codec needs to implement an ‘information’ function. This is called by the IAF to
obtain information as to the capabilities (encoder/decoder) of the codec. The definition is:
AP_EventCodecInfoPtr

/**
 * Pointer to the info function for the codec library. Each codec plugin
 * library must export a function with this signature, named using the
 * AP_EVENTCODEC_INFO_FUNCTION_NAME macro.
 *
 * Returns basic information about the codecs implemented by this shared
 * library, specifically whether they are encoders, decoders or
 * bidirectional codecs.
 *
 * @param version 'Out' parameter for version number of codec library. This
 * should be the value of AP_EVENTCODEC_VERSION that was defined in
 * EventCodec.h when the codec was built. The IAF will check the version
 * number to ensure that it can support all the capabilities offered by the
 * codec.
 * @param capabilities 'Out' parameter for the capabilities of the codecs
 * provided by this library. This should be the sum of the appropriate
 * AP_EVENTCODEC_CAP_* constants found in EventCodec.h.
 */
typedef AP_EVENTCODEC_API void
 (AP_EVENTCODEC_CALL* AP_EventCodecInfoPtr)(AP_uint32* version,
 AP_uint32* capabilities);

The IAF will search for and call this function by the name AP_EventCodec_info.

The C/C++ codec Plug-in Development Specification

Other codec definitions
EventCodec.h also provides some additional definitions that the codec author needs to be aware of.

First of these are the codec capability bits. These are returned by the ‘information’ function
previously illustrated to define whether the codec can decode or encode messages.
#define AP_EVENTCODEC_CAP_ENCODER 0x0001
#define AP_EVENTCODEC_CAP_DECODER 0x0002

Next is the set of error codes that can be returned by the codec’s functions:
/**
 * AP_EventCodecError
 *
 * Error codes that can be returned by codec library functions. The
 * enumeration values follow the normal UNIX convention of zero == OK and
 * non-zero == error.
 */
typedef enum {
 AP_EventCodec_OK = 0, /* Everything is fine */
 AP_EventCodec_InternalError, /* Some unspecified internal error occurred */
 AP_EventCodec_EncodingFailure, /* Couldn't encode an incoming normalized event */
 AP_EventCodec_DecodingFailure, /* Couldn't decode an incoming customer event */
 AP_EventCodec_TransportFailure, /* Trouble sending encoded event to transport */
 AP_EventCodec_MappingFailure, /* Trouble sending decoded event to Semantic Mapper */
 AP_EventCodec_BadProperties /* Codec was passed an invalid property set */
} AP_EventCodecError;

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 74

Next is a definition for a configuration property. This corresponds to the properties that can be
passed in as initialization or re-configuration parameters from the configuration file of the IAF.
/**
 * AP_EventCodecProperty
 *
 * A single codec property, corresponding to a <property> element in the
 * adapter configuration file.
 */
typedef struct {
 AP_char8* name;
 AP_char8* value;
} AP_EventCodecProperty;

Properties are passed to the event transport within an AP_EventCodecProperties structure:
/**
 * AP_EventCodecProperties
 *
 * Properties for the codec, extracted from the <codec> element in the
 * adapter configuration file.
 */
typedef struct {
 AP_char8* name;
 AP_EventCodecProperty** properties;
} AP_EventCodecProperties;

Finally, the status of a codec is reported in an AP_EventCodecStatus structure:
/**
 * AP_EventCodecStatus
 *
 * Codec status information structure, filled in by the getStatus call.
 */
typedef struct {
 AP_char8* status;
 AP_uint64 totalDecoded;
 AP_uint64 totalEncoded;
 AP_NormalisedEvent* statusDictionary;
} AP_EventCodecStatus;

You are advised to peruse EventCodec.h for the complete definitions. EventTransport.h and
SemanticMapper.h are also relevant as they define the functions that a codec author can invoke within
the transport layer and the Semantic Mapper, respectively.

The C/C++ codec Plug-in Development Specification

Codec utilities
The header files AP_EventParser.h and AP_EventWriter.h provide definitions for the Event Parser and
Event Writer utilities. These utilities allow parsing and writing of the string form of reference types
that are used by any <map type="reference"> elements in the adapters configuration file. From the
header files:
AP_EventParser

/**
 * Event Parser - a utility to parse events from strings
 *
 * An EventParser struct is created from a C string (NULL terminated). The
 * type of event can then be interogated (the type member), though both
 * integers and floats are labelled as floats. The number of elements is
 * the number of fields in an event, entries in a sequence, or key,value
 * pairs in a dictionary.

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 75

 *
 * Individual fields can then be retrieved, either as a basic type, or as a
 * reference type - basic types retrieved as reference types have a single
 * element which must be retrieved using the relevant method. getRefValue
 * will return NULL if there are no more elements, and the basic type
 * methods will return 0/ false/ empty string.
 *
 * Dictionary entries must be obtained via the getDictPair function, which
 * sets two pointers to the key and value as reference types.
 *
 * No type checking is performed on the get methods; the behaviour when
 * there is a type mismatch is undefined.
 *
 * There are two variants of the get methods; the Next set maintain a
 * counter while those with an idx argument retrieve a specific element,
 * which does not affect the next counter. The next counter cannot be reset.
 *
 * Note that the implementation is lazy - it only parses stuff if requested
 * to. (though getNumberElements will parse all of that entity). Parsing is
 * cached, so calling getNumberElements repeatedly is cheap, and
 * getRefValue/ getString/ getDictPair will return the same objects if
 * called repeatedly with the same index.
 *
 * Where methods return an pointer (getString and getRefValue), that
 * pointer is valid until the top-level AP_EventParser is destroyed by
 * AP_EventParser_dtor (no need to destroy any of its sub- objects). A
 * well-formed program should have a matching number of AP_EventParser_ctor
 * and AP_EventParser_dtor calls, and only use string or refValue pointers
 * before AP_EventParser_dtor is called.
 *
 */AP_EventWriter

/**
 * Event Writer - a utility to create string forms of events.
 *
 * A utility class that can build string forms of events, sequences and
 * dictionaries.
 * An AP_EventWriter object holds a number of fields, each of which may be
 * a basic type (string, int, float, boolean), or a reference type (event,
 * sequence, dictionary). Once the structure has been built up by adding
 * values, the toString method can be called. This returns a string that
 * the caller is responsible for freeing.
 * Calling the destructor on an object will destroy all AP_EventWriter
 * objects it refers to in a recursive manner - thus, only the top-level
 * object should be destroyed, and it is not possible to share
 * AP_EventWriter objects between two different containing events.
 *
 */

The C/C++ codec Plug-in Development Specification

Communication with other layers
A decoding codec plug-in’s role is to decode messages from a transport layer plug-in into a
normalized format that can be processed by the Semantic Mapper. To achieve this it needs to be
able to communicate with the Semantic Mapper. The accessible Semantic Mapper functionality is
presented in SemanticMapper.h.

When a decoding codec starts it is passed a handle to an AP_SemanticMapper object through its
setSemanticMapper function. This object is defined in SemanticMapper.h as follows:
**
 * AP_SemanticMapper
 *
 * External (client-visible) interface to the Semantic Mapper component of

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 76

 * an IAF instance. The AP_SemanticMapper struct contains contains a table
 * of function pointers, declared in the AP_SemanticMapper_Functions struct
 * above. The implementation of these functions is private. Users of the
 * Semantic Mapper should invoke functions on it as in the following
 * example (mapper is of type AP_SemanticMapper*):
 *
 * i = mapper->functions->sendNormalisedEvent(mapper, event);
 */
struct AP_SemanticMapper{
 /**
 * Pointer to private internal data.
 */
 void* reserved;
 /**
 * Function table of Semantic Mapper operations. See documentation for
 * AP_SemanticMapper_Functions for details.
 */
 struct AP_SemanticMapper_Functions* functions;
};
typedef struct AP_SemanticMapper AP_SemanticMapper;

where functions, (of type AP_SemanticMapper_Functions*) points to the definitions for two functions:
sendNormalisedEvent and getLastError:
/**
 * AP_SemanticMapper_Functions
 *
 * Table of client visible functions exported by a Semantic Mapper
 * instance. These functions declare the only operations that may be
 * performed by users of a Semantic Mapper.
 *
 * Note that all of these functions take an initial AP_SemanticMapper*
 * argument; this is analogous to the (hidden) 'this' pointer passed to a
 * C++ object when a member function is invoked on it.
 */
struct AP_SemanticMapper_Functions {
 /**
 * sendNormalisedEvent
 *
 * Send a customer-specific event to the Semantic Mapper. The event will
 * be translated into a single Apama event that will be queued for
 * injection into the Engine.
 *
 * @param mapper The Semantic Mapper to send the event to.
 * @param event The event to send, represented as a set of name-value
 * pairs.
 * @param timeStamp Timestamps associated with this event
 * @return Semantic Mapper error code. If this is not
 * AP_SemanticMapper_OK, the getLastError() function should be called to
 * get a more detailed description of what went wrong.
 */
 AP_SemanticMapperError (*sendNormalisedEvent)(
 struct AP_SemanticMapper* mapper, AP_NormalisedEvent* event,
 AP_TimestampSet* timeStamp);
 /**
 * getLastError
 *
 * Return the Semantic Mapper's stored error message, if any. The message
 * string is owned by the mapper so should not be modified or freed by the
 * caller.
 *
 * @param mapper The Semantic Mapper instance
 * @return The last error message generated by the mapper
 */
 const AP_char8* (*getLastError)(struct AP_SemanticMapper* mapper);
};

Code inside a decoding codec that calls these functions on the Semantic Mapper looks as follows.
Assuming that mapper holds a reference to the AP_SemanticMapper object:

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 77

errorCode = mapper->functions->sendNormalisedEvent(mapper, NormalisedEvent);

and likewise for getLastError.

The error codes that may be returned by sendNormalisedEvent are as follows:
/**
 * AP_SemanticMapperError
 *
 * Error codes that can be returned by operations on the Semantic Mapper. The
 * enumeration values follow the normal UNIX convention of zero == OK and
 * non-zero == error.
 */
typedef enum {
 AP_SemanticMapper_OK = 0, /* Everything is fine */
 AP_SemanticMapper_InternalError, /* Some unspecified internal error occurred */
 AP_SemanticMapper_MappingFailure, /* Couldn't convert customer event to Apama event */
 AP_SemanticMapper_InjectionFailure /* Couldn't queue converted event for injection into Engine */
} AP_SemanticMapperError;

On the other hand, an encoding codec plug-in’s role is to encode messages in normalized format into
some specific format that can then be accepted by a transport layer plug-in for transmission to an
external message sink (like a message bus). To achieve this it needs to be able to communicate with a
transport layer plug-in loaded in the IAF.

When an encoding codec starts its addEventTransport function will be called once for each available
transport. For each, it is passed a handle to an AP_EventTransport object. This object is defined
in EventTransport.h and was described in detail in "C/C++ Transport Plug-in Development" on
page 48. As stated in "Defining the codec function tables" on page 66, it contains a pointer to
AP_EventTransport_Functions, which in turn references the functions available in the transport layer
plug-in. Of these, only two are relevant to the author of an encoding codec:

sendTransportEvent
AP_EventTransportError (*sendTransportEvent)(
 struct AP_EventTransport* transport, AP_TransportEvent event,
 AP_TimestampSet* timeStamp);

getLastError

const AP_char8* (*getLastError)(struct AP_EventTransport* transport);

Code inside an encoding codec that calls these functions on the transport layer plug-in looks as
follows. Assuming that transport holds a reference to the AP_EventTransport object:
errorCode = transport->functions->sendTransportEvent(transport, event);

and likewise for getLastError.

The C/C++ codec Plug-in Development Specification

Working with normalized events
The function of a decoding codec plug-in is to convert incoming messages into a standard
normalized event format that can be processed by the Semantic Mapper. Events sent upstream to an
encoding codec plug-in are provided to the plug-in in this same format.

Normalized events are essentially dictionaries of name-value pairs, where the names and values
are both character strings. Each name-value pair nominally represents the name and content of a
single field from an event, but users of the data structure are free to invent custom naming schemes

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 78

to represent more complex event structures. Names must be unique within a given event. Values
may be empty or NULL.

Some examples of normalized event field values for different types are:

string "a string"

integer "1"

float "2.0"

decimal "100.0d"

sequence<boolean> "[true,false]"

dictionary<float,integer> "{2.3:2,4.3:5}"

SomeEvent "SomeEvent(12)"

Note: When assigning names to fields in normalized events, keep in mind that the fields and
transport attributes for event mapping conditions and event mapping rules both use a list of fields
delimited by spaces or commas. This means, for example that <id fields="Exchange EX,foo" test="=="
value="LSE"/> will successfully match a field called "Exchange", "EX" or "foo", but not a field called
"Exchange EX,foo". While fields with spaces or commas in their names may be included in a payload
dictionary in upstream or downstream directions, they cannot be referenced directly in mapping or
id rules.

To construct strings for the normalized event fields representing container types (dictionaries,
sequences, or nested events), use the EventWriter utility found in the AP_EventWriter.h header file,
which is located in the include directory of the Apama installation. The following examples show
how to add a sequence and a dictionary to a normalized event (note the escape character “ \ “ used
in order to insert a quotation mark into a string).
#include <AP_EventWriter.h>
AP_EventWriter *map, *list;
AP_NormalisedEvent *event;
AP_EventWriterValue key, value;
list=AP_EventWriter_ctor(AP_SEQUENCE, NULL);
list->addString(list, "abc");
list->addString(list, "de\"f");
map=AP_EventWriter_ctor(AP_DICTIONARY, NULL);
 key.stringValue="key1"; value.stringValue="value";
map->addDictValue(map, AP_STRING, key, AP_STRING, value);
key.stringValue="key\"{}2";
value.stringValue="value\"{}2";
map->addDictValue(map, AP_STRING, key, AP_STRING, value);
event=AP_NormalisedEvent_ctor();
event->functions->addQuick(event, "mySequenceField",
event->functions->list->toString(list));
event->functions->event->functions->addQuick(event,
 "myDictionaryField", event->functions->map->toString(map));
AP_EventWriter_dtor(list);
AP_EventWriter_dtor(map);

Fields names and values of normalized events are in UTF-8 format. This means that the writer of the
codec needs to ensure that downstream events are correctly formed and the codec should expect to
handle UTF-8 coming upstream.

The NormalisedEvent.h header file defines objects and functions that make up a special programming
interface for constructing and examining normalized events.

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 79

NormalisedEvent.h contains two main structures: AP_NormalisedEvent which represents a single
normalized event, and AP_NormalisedEventIterator which can be used to step through the contents of a
normalized event structure.

The C/C++ codec Plug-in Development Specification

The AP_NormalisedEvent structure
The AP_NormalisedEvent structure has a pointer to a table of client-visible functions exported by the
object called AP_NormalisedEvent_Functions. This function table provides access to the operations that
may be performed on the event object:

size - Return the number of elements (name-value pairs) currently stored by the event.

empty - Check whether the event is empty or not.

add - Add a new name-value pair to the event. The given name and value will be copied into the
event. If an element with the same name already exists, it will not be overwritten. This returns an
iterator into the events at the point where the new element was added.

addQuick - Add a new name-value pair to the event. The given name and value will be copied into
the event. If an element with the same name already exists, it will not be overwritten.

remove - Remove the named element from the normalized event.

removeAll - Remove all elements from the normalized event. The empty function will return AP_TRUE
after this function has been called.

replace - Change the value of a named element in the normalized event. If an element with the
given name already exists, its value will be replaced with a copy of the given value. Otherwise, a
new element is created just as though addQuick had been called.

exists - Check whether a given element exists in the normalized event.

find - Search for a named element in the normalized event. Returns an iterator into the event at
the point where the element was located.

findValue - Search for a named element in the normalized event and return its value.

findValueAndRemove - Search for a named element in the normalized event and return its value. If
found, the element will also be removed from the event.

findValueAndRemove2 - Search for a named element in the normalized event and return its value.
If found, the element will also be removed from the event. Unlike findValueAndRemove it tells you
whether it was able to remove the value, or whether it did not exist.

first - Return an iterator pointing to the first element of the normalized event. Successive calls to
the next function of the returned iterator will allow you to visit all the elements of the event.

last - Return an iterator pointing to the last element of the normalized event. Successive calls to
the back function of the returned iterator will allow you to visit all the elements of the event.

toString - Return a printable string representation of the normalized event. The returned string is
owned by the caller and should be freed when it is no longer required.

char8free – Free a string returned by the toString function; should be called when the string is no
longer required.

The C/C++ codec Plug-in Development Specification

Developing Adapters 5.2.0 80

All of these functions take an initial AP_NormalisedEvent* argument; this is analogous to the implicit
‘this’ pointer passed to a C++ object when a member function is invoked on it.

In addition, the AP_NormalisedEvent_ctor constructor function is provided to create a new event
instance. AP_NormalisedEvent_dtor destroys a normalized event object, and should be when the event is
no longer required to free up resources.

The reader is invited to examine the header file for the full definitions of all these functions.

Working with normalized events

The AP_NormalisedEventIterator structure
Some of the functions above refer to a normalized event ‘iterator’. This object is for stepping through
the contents of a normalized event, in forwards or reverse order.

The AP_NormalisedEventIterator structure contains a function table defined by
AP_NormalisedEventIterator_Functions, which includes all of the functions exported by a normalized
event iterator:

valid - Check whether the iterator points to a valid element of the normalized event. Typically
used as part of the loop condition when iterating over the contents of an event.

key - Return the key (name) associated with the current event element pointed to by the iterator.
The returned value is owned by the underlying normalized event and should not be modified or
freed by the caller.

value - Return the value associated with the current event element pointed to by the iterator. The
returned value is owned by the underlying normalized event and should not be modified or
freed by the caller.

next - Move the iterator to the next element of the underlying normalized event instance. The
iterator must be in a valid state (such that the valid function would return AP_TRUE) before this
function is called. Note that the order in which elements is returned is not necessarily the same as
the order in which they were added. The order may change as elements are added to or removed
from the underlying event.

back - Move the iterator to the previous element of the underlying normalized event instance. The
iterator must be in a valid state (such that the valid function would return AP_TRUE) before this
function is called. Note that the order in which elements is returned is not necessarily the same as
the order in which they were added. The order may change as elements are added to or removed
from the underlying event.

Note that all of these functions take an initial AP_NormalisedEventIterator* argument; this is analogous
to the implicit ‘this’ pointer passed to a C++ object when a member function is invoked on it.

AP_NormalisedEventIterator_dtor destroys a normalized event iterator object, and should be called
when the iterator is no longer required to free up resources. There is no public constructor function;
iterators are created and returned only by AP_NormalisedEvent functions.

Please see the NormalisedEvent.h header file for more information about the structures and functions
introduced in this section.

Working with normalized events

Transport Example

Developing Adapters 5.2.0 81

Transport Example
As part of the IAF distribution Apama includes the FileTransport transport layer plug-in,
implemented in the samples\iaf_plugin\c\simple\FileTransport.c source file.

The FileTransport plug-in can read and write messages from and to a text file, and it is recommended
that developers examine this sample to see what a typical transport plug-in implementation looks
like.

See "IAF samples" on page 45 for more information about this sample. "The File Transport plug-in"
on page 140 describes how the FileTransport plug-in can be used in practice.

C/C++ Codec Plug-in Development

Getting Started with codec layer plug-in development

Note: Before developing a new codec plug-in, it is worth considering whether one of the standard
Apama IAF plug-ins could be used instead; see "Standard Plug-ins" on page 137 for more
information.

In order to facilitate quick development of new codec plug-ins your distribution includes a codec
plug-in skeleton.

This file, called skeleton-codec.c, implements a complete codec plug-in that complies with the Codec
Plug-in Development Specification but where the entire custom message format encoding/decoding
functionality is missing. The file is located in the samples\iaf_plugin\c\skeleton directory of your
installation.

In order to turn the skeleton into a fully operational message format specific codec plug-in, the
plug-in author needs to fill in the gaps within the codec generic, decoding and encoding functions;
updateProperties, getLastErrorCodec, getStatus, sendNormalisedEvent, flushUpstream, getLastErrorEncoder,
addEventTransport, removeEventTransport, sendTransportEvent, setSemanticMapper, flushDownstream, and
getLastErrorDecoder. These must implement their specified functionality in the context of the custom
message format. The information, constructor and destructor functions are also likely to require
adaptation.

The skeleton defines a structure, called EventCodec_Internals, to store all its private data, and this
structure is placed within the reserved field of the AP_EventCodec object created within the constructor
method. It is likely that this structure will need to be modified to contain additional data that the
adapter might require.

The distribution also contains a makefile (for use with GNU Make on UNIX), as well as a workspace
file and dsp folder, for use with Microsoft’s Visual Studio .NET on Microsoft Windows, for this
skeleton, which can be adapted to compile your codec plug-in and link it against any custom
libraries required.

Once a plug-in is built, it needs to be placed in a location where it can be picked up by the IAF.

This means that on Windows you either need to copy the .dll into the bin folder, or else place it
somewhere which is on your ‘path’, that is a location that is referenced by the PATH environment
variable.

Getting Started with codec layer plug-in development

Developing Adapters 5.2.0 82

On UNIX you either need to copy the .so into the lib directory, or else place it somewhere which
is on your ‘library path’, that is a directory that is referenced by the LD_LIBRARY_PATH environment
variable.

C/C++ Codec Plug-in Development

Logging from plug-ins in C/C++

Developing Adapters 5.2.0 83

Chapter 5: C/C++ Plug-in Support APIs

n Logging from plug-ins in C/C++ .. 83

n Using the latency framework ... 85

This section describes other programming interfaces provided with the Apama software that may be
useful in implementing transport layer and codec plug-ins for the IAF.

Logging from plug-ins in C/C++
This API provides a mechanism for recording status and error log messages from the IAF runtime
and any plug-ins loaded within it. Plug-in developers are encouraged to make use of the logging API
instead of custom logging solutions so that all the information may be logged together in the same
standard format and log file(s) used by other plug-ins and the IAF runtime.

The logging API also allows control of logging verbosity, so that any messages below the configured
logging level will not be written to the log. The logging level and file are initially set when an
adapter first starts up – see "Logging configuration (optional)" on page 43 for more information
about the logging configuration.

The C/C++ interface to the logging system is declared in the header file AP_Logger.h, which can be
found in the include directory of the Apama installation. All users of the logging system should
include this header file. The types and functions of interest to IAF plug-in writers are:
AP_LogLevel
/**
 * Enumeration of logging verbosity levels. In order of increasing verbosity,
 * the levels are: NULL < OFF < CRIT < FATAL < ERROR < WARN < INFO < DEBUG < TRACE.
 * Messages logged at level X will be sent to the log if the current
 * level is >= X.
 */
enum AP_LogLevel {
 AP_LogLevel_NULL,
 AP_LogLevel_OFF,
 AP_LogLevel_CRIT,
 AP_LogLevel_FATAL,
 AP_LogLevel_ERROR,
 AP_LogLevel_WARN,
 AP_LogLevel_INFO,
 AP_LogLevel_DEBUG,
 AP_LogLevel_TRACE
};

Note: AP_LogLevel_NULL means “no log level has been set” and should be interpreted by IAF and plug-
ins as “use the default logging level.”
AP_LogTrace

/**
 * Log a message at TRACE level. Note that the message will only appear
 * in the log file if the current logging level is AP_LogLevel_Trace.
 *
 * @param message The message to be logged. This is a standard printf()
 * format string; any values required by the formatting should be passed
 * as additional arguments to the AP_LogTrace() call.
 */

Logging from plug-ins in C/C++

Developing Adapters 5.2.0 84

AP_COMMON_API void AP_COMMON_CALL AP_LogTrace(const char* message, ...);

Along with the other logging functions described below, AP_LogTrace is based on the standard C
library printf function. The message parameter may contain printf formatting characters that will be
filled in from the remaining arguments.
AP_LogDebug

/**
 * Log a message at DEBUG level. Note that the message will only appear
 * in the log file if the current logging level is AP_LogLevel_DEBUG or
 * greater.
 *
 * @param message The message to be logged. This is a standard printf()
 * format string; any values required by the formatting should be passed
 * as additional arguments to the AP_LogDebug() call.
 */
AP_COMMON_API void AP_COMMON_CALL AP_LogDebug(const char* message, ...);
AP_LogInfo

/**
 * Log a message at INFO level. Note that the message will only appear
 * in the log file if the current logging level is AP_LogLevel_INFO or
 * greater.
 *
 * @param message The message to be logged. This is a standard printf()
 * format string; any values required by the formatting should be passed
 * as additional arguments to the AP_LogInfo() call.
 */
AP_COMMON_API void AP_COMMON_CALL AP_LogInfo(const char* message, ...);

AP_LogWarn

/**
 * Log a message at WARN level. Note that the message will only appear
 * in the log file if the current logging level is AP_LogLevel_WARN or
 * greater.
 *
 * @param message The message to be logged. This is a standard printf()
 * format string; any values required by the formatting should be passed
 * as additional arguments to the AP_LogWarn() call.
 */
AP_COMMON_API void AP_COMMON_CALL AP_LogWarn(const char* message, ...);

AP_LogError

/**
 * Log a message at ERROR level. Note that the message will only appear
 * in the log file if the current logging level is AP_LogLevel_ERROR or
 * greater.
 *
 * @param message The message to be logged. This is a standard printf()
 * format string; any values required by the formatting should be passed
 * as additional arguments to the AP_LogError() call.
 */
AP_COMMON_API void AP_COMMON_CALL AP_LogError(const char* message, ...);

AP_LogCrit

/**
 * Log a message at CRIT level. Note that the message will only appear
 * in the log file if the current logging level is AP_LogLevel_CRIT or
 * greater.
 *
 * @param message The message to be logged. This is a standard printf()
 * format string; any values required by the formatting should be passed
 * as additional arguments to the AP_LogCrit() call.
 */
AP_COMMON_API void AP_COMMON_CALL AP_LogCrit(const char* message, ...);

Using the latency framework

Developing Adapters 5.2.0 85

The logging API offers other functions to set and query the current logging level and output file.
While these functions are available to plug-in code, it is recommended that plug-ins do not use them.
The IAF core is responsible for updating the state of the logging system in response to adapter re-
configuration requests.

C/C++ Plug-in Support APIs

Using the latency framework
The latency framework API provides a way to measure adapter latency by attaching high-resolution
timing data to events as they stream into, through, and out of the adapter. Developers can then use
these events to compute upstream, downstream, and round-trip latency numbers, including latency
across multiple adapters.

The sendNormalisedEvent() and sendTransportEvent() functions contain an AP_TimestampSet parameter
that carries the microsecond-accurate timestamps that can be used to compute the desired statistics.

C/C++ Plug-in Support APIs

C/C++ timestamp
A timestamp is an index-value pair. The index represents the point in the event processing chain
at which the timestamp was recorded, for example “upstream entry to semantic mapper” and the
value is a floating point number representing the time. The header file AP_TimestampSet.h defines a
set of standard indexes but a custom plug-in can define additional indexes for even finer-grained
measurements. When you add a custom index definition, be sure to preserve the correct order, for
example, an index denoting an “entry” point should be less than an one denoting an “exit” point
from that component.

Timestamps are relative measurements and are meant to be compared only to other timestamps in
the same or similar processes on the same computer. Timestamps have no relationship to real-world
“wall time”.

Using the latency framework

C/C++ timestamp set
A timestamp set is the collection of timestamps that are associated with an event. The latency
framework API provides functions that developers can use to add, inspect, and remove timestamps
from an event’s timestamp set.

Using the latency framework

C/C++ timestamp configuration object

Using the latency framework

Developing Adapters 5.2.0 86

Constructors and updateProperties() methods for transport and codec plug-ins take the following
argument: IAF_TimestampConfig.

A timestamp configuration object contains a set of fields that a plug-in can use to decide whether to
record and/or log timestamp information. Although timestamp configuration objects are passed to
all transport and codec plug-ins, it is up to the authors of a plug-ins to write the code that makes use
of them.

The fields in the object are:

recordUpstream — If true, the plug-in should record timestamps for all upstream events it
processes, and pass these along to the upstream component, if any.

recordDownstream — If true, the plug-in should record timestamps for all downstream events it
processes, and pass these along to the downstream component, if any.

logUpstream — If true, the plug-in should log the latency for all upstream events it processes,
at the logging level given by the logLevel member. A plug-in may implicitly enable upstream
timestamp recording if upstream logging is enabled.

logDownstream — If true, the plug-in should log the latency for all downstream events it processes,
at the logging level given by the logLevel member. A plug-in may implicitly enable downstream
timestamp recording if downstream logging is enabled.

logRoundtrip — If true, the plug-in should log the “round trip” latency for all events it processes
in either direction, if possible. At its simplest, the round trip latency can just be the difference
between the largest and smallest timestamps passed to the plug-in, or an individual plug-in may
choose to present some more plug-in-specific latency number. As with the other logging options,
the logging level given by the logLevel member should be used.

logLevel — The logging verbosity level to use if any of the timestamp logging options are
enabled.

Using the latency framework

C/C++ latency framework API
The C/C++ interface for the latency framework is declared in the header file AP_TimestampSet.h. Plug-
ins using the latency framework should include this file and also include the IAF_TimestampConfig.h
header file, which declares the timestamp configuration object.

The functions of interest are the following.
addNow

/**
 * Add a new index-time pair to the timestamp. The given index and current
 * time will be copied into the timestamp. If an element with the same index
 * already exists, it will NOT be overwritten.
 *
 * @param timestamp The AP_TimestampSet instance
 * @param index The index of the new element
 */
 void (*addNow)(struct AP_TimestampSet* timestamp,
 AP_TimestampSetIndex index);

addTime

Using the latency framework

Developing Adapters 5.2.0 87

/**
 * Add a new index-time pair to the timestamp. The given index and time will
 * be copied into the timestamp. If an element with the same index already
 * exists, it will NOT be overwritten.
 *
 * @param timestamp The AP_TeimestampSet instance
 * @param index The index of the new element
 * @param time The time of the new element
 */
 void (*addTime)(struct AP_TimestampSet* timestamp,
 AP_TimestampSetIndex index, AP_TimestampSetTime time);

replace

/**
 * Change the time of an indexed element in the timestamp. If an
 * element with the given index already exists, its time will be replaced
 * with a copy of the given time. Otherwise, a new element is created
 * just as though addTime() had been called.
 *
 * @param timestamp The AP_TimestampSet instance
 * @param index The index of the element to be updated
 * @param time The new time for the indexed element
 */
 void (*replace)(struct AP_TimestampSet* timestamp,
 AP_TimestampSetIndex index, AP_TimestampSetTime newTime);

replaceWithNow

/**
 * Change the time of an indexed element in the timestamp. If an
 * element with the given index already exists, its time will be replaced
 * with a copy of the given time. Otherwise, a new element is created
 * just as though addNow() had been called.
 *
 * @param timestamp The AP_TimestampSet instance
 * @param index The index of the element to be updated
 * @param time The new time for the indexed element
 */
 void (*replaceWithNow)(struct AP_TimestampSet* timestamp,
 AP_TimestampSetIndex index);

findTime

/**
 * Search for an indexed element in the timestamp and return its
 * time.
 *
 * @param timestamp The AP_TimestampSet instance
 * @param index The element index to search for
 * @return The time associated with the given index, or NULL if no
 * matching element could be found.
 */
 AP_TimestampSetTime (*findTime)(struct AP_TimestampSet* timestamp,
 AP_TimestampSetIndex index);

findTimeAndRemove

/**
 * Search for an indexed element in the timestamp and return its
 * time. If found, the element will also be removed from the timestamp.
 *
 * @param timestamp The AP_TimestampSet instance
 * @param index The element index to search for
 * @return The time associated with the given index, or NULL if no
 * matching element could be found. If the element was found, it will be
 * deleted from the timestamp. Note that this function cannot distinguish
 * between an element with a missing time and an element that does not
 * exist - NULL will be returned in either case. The returned object
 * (if any) must be explicitly deleted by the caller after use.

Using the latency framework

Developing Adapters 5.2.0 88

 */
 AP_TimestampSetTime (*findTimeAndRemove)(
 struct AP_TimestampSet* timestamp, AP_TimestampSetIndex index);

getSize

/**
 * Return the number of elements in the AP_TimestampSet
 *
 * @param timestamp The AP_TimestampSet instance
 * @return The number of elements in the timestamp set
 */
 AP_uint32 (*getSize)(struct AP_TimestampSet* timestamp);

toString
 w
/**
 * Return a printable string representation of the timestamp. The
 * returned string is owned by the caller and should be freed when it is
 * no longer required using the char8free function.
 *
 * @param timestamp The AP_TimestampSet instance
 * @return Printable string representation of the timestamp
 */
 AP_char8* (*toString)(struct AP_TimestampSet* timestamp);

Using the latency framework

The Transport Plug-in Development Specification for Java

Developing Adapters 5.2.0 89

Chapter 6: Transport Plug-in Development in Java

n The Transport Plug-in Development Specification for Java ... 89

n Example .. 96

n Getting started with Java transport layer plug-in development .. 97

The transport layer is the front-end of the IAF. The transport layer’s purpose is to abstract away the
differences between the programming interfaces exposed by different middleware message sources
and sinks. It consists of one or more custom plug-in libraries that extract downstream messages from
external message sources ready for delivery to the codec layer, and send Apama events already
encoded by the codec layer upstream to the external message sink. See "The Integration Adapter
Framework" on page 11 for a full introduction to transport plug-ins and the IAF’s architecture.

An adapter should send events to the correlator only after its start function is called and before the
stop function returns.

This topic includes the Transport Plug-in Development Specification for Java and additional
information for developers of Java event transports. "C/C++ Transport Plug-in Development" on page
48 provides analogous information about developing transport plug-ins using C/C++.

The Transport Plug-in Development Specification for
Java
A Java transport layer plug-in is implemented as a Java class extending AbstractEventTransport.
Typically this class would be packaged up, together with any supporting classes, as a Java Archive
(.jar) file.

To comply with Apama’s Transport Plug-in Development Specification, an event transport class must
satisfy two conditions:

1. It must have a constructor with the signature:
public AbstractEventTransport(
 String name,
 EventTransportProperty[] properties,
 TimestampConfig timestampConfig)
 throws TransportException

This will be used by the IAF to instantiate the plug-in.

2. It must extend the com.apama.iaf.plugin.AbstractEventTransport class, correctly implementing all of
its abstract methods.

(These methods are mostly directly equivalent to the functions with the same names in the C/C++
Transport Plug-in Development Specification.)

Note that all Java plug-ins are dependent on classes in jplugin_public5.2.jar, so this file must
always be on the classpath during plug-in development. It is located in the Apama installation’s lib
directory.

The Transport Plug-in Development Specification for Java

Developing Adapters 5.2.0 90

Unless otherwise stated, Java classes referred to in this topic are members of the com.apama.iaf.plugin
package, whose classes and interfaces are contained in this .jar.

Transport Plug-in Development in Java

Java transport functions to implement
HTML Javadoc documentation for AbstractEventTransport and related classes is provided as part
of the Apama documentation set. The Javadoc is located in the Apama installation’s doc\javadoc
directory.

This topic includes the text of the Javadoc documentation for the functions a transport plug-in author
needs to implement, in addition to some pointers on the idiomatic way in which such plug-ins are
usually written.
The Constructor

/**
 * Construct a new instance of AbstractEventTransport. All subclasses MUST
 * provide a constructor with the same signature, which will be used by the
 * IAF to create an instance of the transport class.
 *
 * The AbstractEventTransport implementation does nothing, but subclasses
 * should make use of the arguments to initialize the transport.
 *
 * @param name The transport name, as specified in the IAF config file
 * @param properties The transport property set specified in the IAF
 * configuration file
 * @param timestampConfig Timestamp recording/logging settings from the IAF
 * configuration file
 * @throws TransportException
 */
public AbstractEventTransport(String name,
 EventTransportProperty[] properties
 TimestampConfig timestampConfig)
 throws TransportException

A typical constructor would create a logger using the plug-in name provided (see "Logging from
plug-ins in Java" on page 111), make a call to the updateProperties method to deal with the initial
property set passed in, and perform any other initialization operations required for the particular
transport being developed.
updateProperties
/**
 * Update the configuration of the transport. The transport may assume
 * that stop(), flushUpstream() and flushDownstream() have all been called
 * before this function is invoked. The recommended procedure for
 * updating properties is to first compare the new property set with the
 * existing stored properties - if there are no changes, no action should
 * be taken.
 *
 * @param properties The new transport property set specified in the IAF
 * configuration file
 * @param TimestampConfig timestampConfig
 * @throws TransportException
 */
abstract public void updateProperties(EventTransportProperty[] properties,
 TimestampConfig timestampConfig)
 throws TransportException;

The Transport Plug-in Development Specification for Java

Developing Adapters 5.2.0 91

The properties array contains an EventTransportProperty object for each plug-in property specified in
the IAF configuration file (in order). The getName and getValue methods allow the plug-in to retrieve
the name and value of each property as String objects.

See the Javadoc documentation for more information about the EventTransportProperty class.
addEventDecoder

/**
 * Add a named event decoder to the set of decoders known to the
 * transport. If the named decoder already exists, it should be
 * replaced.
 *
 * @param name The name of the decoder to be added
 * @param decoder The decoder object instance
 * @throws TransportException
 */
abstract public void addEventDecoder(String name, EventDecoder decoder)
 throws TransportException;

In an adapter in which multiple event codecs could be present, this function would usually be
implemented by storing the <name, decoder> pair in a Java map, from which the EventDecoder could
later be retrieved using a plug-in property (e.g. “decoderName”) to determine which of the plug-ins in
the map should be used.

Alternatively, if this transport plug-in will only ever be used in an adapter with just one codec plug-
in, this method can be implemented simply by storing the provided EventDecoder object in an instance
field.

See "Communication with the codec layer" on page 93 for more information.
removeEventDecoder

/**
 * Remove a named event decoder from the set of decoders known to the
 * transport. If the named decoder does not exist, the function should do
 * nothing.
 *
 * @param name The decoder to be removed
 * @throws TransportException
 */
abstract public void removeEventDecoder(String name)
 throws TransportException;

This method is usually implemented by removing the named codec plug-in from a map, or nulling
out a field holding the previously added EventCodec.
flushUpstream

/**
 * Flush any pending transport events onto the transport. The transport may
 * assume that the stop() function has been called before this function,
 * so in many cases no action will be required to complete the flushing
 * operation.
 *
 * @throws TransportException
 */
abstract public void flushUpstream() throws TransportException;

Usually has a blank implementation, unless there is some kind of upstream buffering.
flushDownstream

/**
 * Flush any pending transport events into the decoder. The transport may
 * assume that the stop() function has been called before this function,
 * so in many cases no action will be required to complete the flushing
 * operation.

The Transport Plug-in Development Specification for Java

Developing Adapters 5.2.0 92

 *
 * @throws TransportException
 */
abstract public void flushDownstream() throws TransportException;

Usually has a blank implementation, unless there is some kind of downstream buffering.
start

/**
 * Start processing incoming data from the external transport.
 *
 * @throws TransportException
 */
abstract public void start() throws TransportException;

This is where a plug-in should establish a connection to its external message source/sink, often by
starting a new thread to process or poll for new downstream messages. Events should not be sent to
the correlator until the start method has been called.

"Communication with the codec layer" on page 93 explains how a transport plug-in can pass
downstream messages it receives from an external source on to a codec plug-in.
stop

/**
 * Stop processing incoming data from the external transport. New events
 * arriving may be blocked, queued or simply dropped, but under no
 * circumstances should any be sent into the adapter until the start()
 * function is called.
 *
 * @throws TransportException
 */
abstract public void stop() throws TransportException;

Here, a plug-in may close existing connections and interrupt running threads to ensure that no more
messages are passed to the event codec. Events should not be sent to the correlator after the stop
method has returned. The stop method must wait for any other threads sending events to complete
before the stop method returns.
cleanup/**
 * Frees any resources allocated by the transport (useful for resources
 * external to the JVM that were allocated in the constructor). The IAF
 * guarantees to call this method exactly once.
 *
 * @throws TransportException
 */
abstract public void cleanup() throws TransportException;

This is where any heavy-weight threads or data structures used for interfacing with the external
transport that do not get cleaned up when the plug-in is stopped should be destroyed.
getStatus

/**
 * Return a TransportStatus class containing up-to-date status information
 * for the transport.
 *
 * @return An immutable TransportStatus class containing status
 * information.
 */
abstract public TransportStatus getStatus();

This method provides the statistics and status message displayed by the IAF Watch tool. A typical
plug-in will continuously keep track of the number of messages sent upstream and downstream.
Then, when getStatus is called, these message counts can simply be packaged up in a new

The Transport Plug-in Development Specification for Java

Developing Adapters 5.2.0 93

TransportStatus object together with a String describing the current status of the plug-in (maximum
length 1024 characters), and returned.

For example:
public TransportStatus getStatus()
{ String status = (started) ? "Status: Running" : "Status: Not running";
 return new TransportStatus(status, totalReceived, totalSent);
}

See the Javadoc documentation for more information about the TransportStatus class.
getAPIVersion

/**
 * Return the transport API version that the transport was built against.
 * @return Must be EventTransport.API_VERSION.
 */
public abstract int getAPIVersion();

Always return EventTransport.API_VERSION.
sendTransportEvent (send upstream)

/**
 * Called by an event encoder to send an upstream message to the external
 * transport.
 *
 * It is assumed that the encoder and transport share
 * the same definition of the content of the event, so that the transport
 * can effectively interpret the event.
 *
 * @param event An object representing the event to be sent by the
 * transport, in a format shared by the encoder and transport.
 * @param timestamps A TimestampSet representing the timestamps attached to
 *
 * @throws TransportException Thrown by the transport if any error occurs
 * sending the message.
 */
public abstract void sendTransportEvent(Object event,
 TimestampSet timestamps)
 throws TransportException;

This is the method that a codec layer plug-in calls when it receives a translated upstream Apama
event that needs to be sent on to an event transport for transmission to an external message sink.

Note that there are no guarantees about which threads might be used to call this method, so plug-
in authors will need to consider any thread synchronization issues arising from use of shared data
structures here.

See "Communication with the codec layer" on page 93 for more information about processing
upstream events received from a codec plug-in.

The Transport Plug-in Development Specification for Java

Communication with the codec layer
This section discusses how the transport layer communicates with the codec layer in both the
upstream and downstream directions.

The Transport Plug-in Development Specification for Java

The Transport Plug-in Development Specification for Java

Developing Adapters 5.2.0 94

Sending upstream messages received from a codec plug-in to a sink
When a codec plug-in has encoded an event ready for transmission by a transport plug-in it will
pass it on calling the transport’s sendTransportEvent method (as defined above). It is then up to the
transport plug-in to process the message (which will be of some type agreed by the codec and
transport plug-in authors), and send it on to the external sink it provides access to.

Note that there are no guarantees about which threads might call this method, so plug-in authors
will need to consider thread synchronization issues carefully.

If there is a problem sending the event on, the transport plug-in should throw a TransportException.

Communication with the codec layer

Sending downstream messages received from a source on to a codec
plug-in
In order that messages can be easily sent on to a codec plug-in, an event transport will usually
have saved a reference to the event codec(s) it will be using before it establishes a connection to the
external source.

Typically an event transport will build up a list of registered codec plug-ins from the parameters
passed to the addEventDecoder and removeEventDecoder methods. If this is the case, the start method
of the plug-in can select one of these plug-ins on the basis of a plug-in property provided in the
configuration file (e.g. <property name="decoderName" value="MyCodec"/>), and saving it in an instance
field (e.g. currentDecoder).

Once the plug-in has a reference to the event codec (or codecs) it will use, whenever an external
message is received it should be passed on by calling the sendTransportEvent method on the codec
plug-in (from the EventDecoder interface):
/**
 * Called by the event transport to decode a downstream event using a Java
 * Codec, which will then send it on to the Semantic Mapper.
 *
 * It is assumed that the encoder and transport share the same definition
 * of the content of the event, so that the transport can effectively
 * interpret the event.
 *
 * @param event An object representing the event to be decoded, in a format
 * shared by the decoder and transport.
 * @param timestamps A TimestampSet representing the timestamps attached to
 * the event.
 *
 * @throws CodecException Thrown by the decoder if the event provided
 * has an invalid format.
 * @throws SemanticMapperException Thrown if an error occurred during
 * processing of the message by the Semantic Mapper.
 */
public void sendTransportEvent(Object event,
 TimestampSet timestamps)
 throws CodecException, SemanticMapperException;

For example, part of the event processing code for a transport plug-in might be:
MyCustomMessageType message = myCustomMessageSource.getNextMessage();
currentDecoder.sendTransportEvent(message, timestamps);

If an error occurs in the codec or Semantic Mapper layers preventing the message from being
converted into an Apama event, a CodecException or SemanticMapperException is thrown. Like all per-
message errors, these should be logged at Warning level, preferably with a full stack trace logged

The Transport Plug-in Development Specification for Java

Developing Adapters 5.2.0 95

at Debug level too. If necessary, transports may also send messages downstream to the correlator to
inform running monitors about the error.

When a transport sends a message to the codec via the sendTransportEvent method, it passes an
Object reference and this allows custom types to be passed between the two plug-ins. However, any
custom types should be loaded via the main (parent) classloader, as each plug-in specified in the
IAF configuration file is loaded with its own classloader. Consider, for example, the following three
classes all loaded into a single jar file, MyAdapter.jar, which is used in the IAF configuration file in the
jarName attribute of the <transport> element.:

MyTransport.class

MyCodec.class

MyContainer.class (the container class used in the call to sendTransportEvent)

When you load the transport and codec, a new classloader is used for each. This means both
have their own copy of the MyContainer class. When the transport creates an instance of MyContainer
and then passes it into the codec, the codec will recognize that the Object getClass().getName()
is MyContainer, but will not be able to cast it to this type as its MyContainer class is from a different
classloader.

To prevent this from happening, make sure that all shared classes are in a separate jar that is
specified by a <classpath> element. The shared classes are then loaded by the parent classloader. This
ensures that when a codec or transport references a shared class, they will both agree it is the same
class.

Note that any codec plug-in called by a Java transport plug-in must also be written in Java.

Communication with the codec layer

Transport exceptions
TransportException is the exception class that should be thrown by a transport plug-in whenever
the IAF calls one of its methods and an error prevents the method from successfully completing —
for example, a message that cannot be sent on to an external sink in sendTransportEvent, or a serious
problem that prevents the plug-in from initializing when start is called.

A TransportException object always has an associated message, which is a String explaining the problem
(this may include information about another exception that caused the TransportException to be
thrown). There is also a code field that specifies the kind of error that occurred; the possible codes are
defined as constants in the TransportException class:
/**
 * Some unspecified internal error occurred
 */
public static final int INTERNALERROR = 1;
/**
 * Trouble reading/writing the external transport
 */
public static final int TRANSPORTFAILURE = 2;
/**
 * Trouble sending transport event to decoder
 */
public static final int DECODINGFAILURE = 3;
/**
 * Transport was passed an invalid property set
 */

Example

Developing Adapters 5.2.0 96

public static final int BADPROPERTIES = 4;

TransportException defines a number of constructors, to make it easy to set up the exception’s
information quickly in different situations:
/**
 * Constructs a TransportException from a string message describing the
 * error, and assumes an error code of TRANSPORTFAILURE.
 *
 * @param message The cause of the error.
 */
public TransportException(String message) { ... }
/**
 * Constructs a TransportException from a string message describing the
 * error and a numeric code representing the class of error.
 *
 * @param message The cause of the error.
 * @param code One of the TransportException error codes.
 */
public TransportException(String message, int code) { ... }
/**
 * Constructs a TransportException from a string message describing the
 * error, and an exception object that is the cause of the error. It
 * assumes an error code of TRANSPORTFAILURE.
 *
 * @param message The cause of the error. This message will be suffixed
 * with the message of the 'cause' exception.
 * @param cause The exception object that caused the error.
 */
public TransportException(String message, Throwable cause) { ... }
/**
 * Constructs a TransportException from a string message describing the
 * error, a numeric code representing the class of error and an exception
 * object that is the cause of the error.
 *
 * @param message The cause of the error. This message will be suffixed
 * with the message of the 'cause' exception.
 * @param cause The exception object that caused the error.
 * @param code One of the TransportException error codes.
 */
public TransportException(String message, Throwable cause, int code) { ... }

The Transport Plug-in Development Specification for Java

Logging
Please see "Logging from plug-ins in Java" on page 111 for information about how transport plug-
ins should log error, status and debug information.

The Transport Plug-in Development Specification for Java

Example
As part of the IAF distribution, Apama includes the JFileTransport transport layer plug-in, in the
samples\iaf_plugin\java\simple\src directory.

The JFileTransport plug-in can read and write messages from and to a text file, and it is
recommended that developers examine this sample to see what a typical transport plug-in
implementation looks like.

Getting started with Java transport layer plug-in development

Developing Adapters 5.2.0 97

See "IAF samples" on page 45 for more information about this sample. The section "The File
Transport plug-in" on page 140 describes how the JFileTransport plug-in can be used in practice.

Transport Plug-in Development in Java

Getting started with Java transport layer plug-in
development
Your distribution includes a complete ‘skeleton’ implementation of a transport layer plug-in in order
to make development of new plug-ins faster.

This is located in the samples\iaf_plugin\java\skeleton\src directory of the installation, in a file
called SkeletonTransport.java. The SkeletonTransport class complies fully with the Transport Plug-in
Development Specification, but contains none of the custom message source/sink functionality that
would be present in a full transport plug-in.

The skeleton starts a background thread to do the actual message reading. This is required unless the
message source can asynchronously call back into the class that implements the plug-in.

The code contains TODO: comments indicating the main changes that need to be made to add support
for a specific message source/sink. These include:

Adding code to sendTransportEvent for sending an upstream event received from an event codec
on to the external message sink (if supported).

Adding code to the run method of the MessageProcessingThread for retrieving downstream
messages from the external source and forwarding them on to an event codec (if supported).

Alternatively, if the external message source works by making asynchronous calls using the
listener pattern, the processing thread should usually be removed, and much of the code can be
moved directly to the method called by the message source.

Adding code to start communications with the external messaging system in the start method,
and to ensure it is ceases in the stop method.

Adding code to validate and save any new plug-in properties that are to be supported, in
updateProperties.

Adding code to initialize and clean up resources associated with the plug-in’s operation. This
would usually be done in the start/stop methods, in the background processing thread, or in the
updateProperties and cleanup methods.

Depending on your requirements, it may also be necessary to make changes to the other methods –
addEventDecoder, removeEventDecoder, flushUpstream, flushDownstream, getStatus, and the constructor.

The skeleton directory includes an Apache Ant build file called build.xml that provides a convenient
way to build .jar files of compiled classes from plug-in source files, ready for use with the IAF.

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 98

Chapter 7: Java Codec Plug-in Development

n The Codec Plug-in Development Specification for Java ... 98

n Java Codec Example .. 109

n Getting started with Java codec layer plug-in development .. 109

The codec layer is a layer of abstraction between the transport layer and the IAF’s Semantic Mapper.
It consists of one or more plug-in libraries that perform message encodinganddecoding. Decoding
involves translating downstream messages retrieved by the transport layer into the standard
‘normalised event’ format on which the Semantic Mapper’s rules run; encoding works in the
opposite direction, converting upstream normalized events into an appropriate format for transport
layer plug-ins to send on. Note that unlike the situation with C/C++, in Java codec plug-ins are
always both encoders and decoders. See "The Integration Adapter Framework" on page 11 for a full
introduction to codec plug-ins and the IAF’s architecture.

This chapter includes the Codec Plug-in Development Specification for Java and additional
information for developers of Java event codecs. "C/C++ Codec Plug-in Development" on page 62
provides analogous information about developing codec plug-ins using C/C++.

Before developing a new codec plug-in, it is worth considering whether one of the standard Apama
plug-ins could be used instead. "Standard Plug-ins" on page 137 provides more information
on the standard IAF codec plug-ins: JStringCodec and JNullCodec. The JStringCodec plug-in codes
normalized events as formatted text strings. The JNullCodec plug-in is useful in situations where it
does not make sense to decouple the codec and transport layers, and allows transport plug-ins to
communicate with the Semantic Mapper directly using normalized events.

The Codec Plug-in Development Specification for Java
A Java codec layer plug-in is implemented as a Java class extending AbstractEventCodec. Typically this
class would be packaged up, together with any supporting classes, as a Java Archive (.jar) file.

To comply with Apama’s Codec Plug-in Development Specification, an event codec class must satisfy
two conditions:

1. It must have a constructor with the signature:
public AbstractEventCodec(
 String name,
 EventCodecProperty[] properties,
 TimestampConfig timestampConfig)
 throws CodecException

This will be used by the IAF to instantiate the plug-in.

2. It must extend the com.apama.iaf.plugin.AbstractEventCodec class, correctly implementing all of its
abstract methods.

(These methods are mostly directly equivalent to the functions with the same names in the C/C++
Codec Plug-in Development Specification.)

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 99

Note that all Java plug-ins are dependent on classes in jplugin_public5.2.jar, so this file must
always be on the classpath during plug-in development. It is located in the Apama installation’s lib
directory.

Unless otherwise stated, Java classes referred to in this chapter are members of the
com.apama.iaf.plugin package, whose classes and interfaces are contained in this .jar.

Java Codec Plug-in Development

Java codec functions to implement
HTML Javadoc documentation for AbstractEventCodec and related classes is provided as part of
the Apama documentation set. The Javadoc files are located in the Apama installation’s doc\javadoc
directory.

This topic includes the text of the Javadoc documentation for the functions that a codec plug-in
author needs to implement, in addition to some pointers on how such plug-ins are usually written.
The Constructor

/**
 * Construct a new instance of AbstractEventCodec. All subclasses MUST
 * provide a constructor with the same signature, which will be used by the
 * IAF to create an instance of the codec class. <P><P>
 *
 * The AbstractEventCodec implementation does nothing, but subclasses
 * should make use of the arguments to initialize the codec.
 *
 * @param name The codec name, as specified in the IAF config file
 * @param properties The codec property set specified in the IAF
 * configuration file
 * @parm timestampConfig The timestamp recording/logging settings from the
 * IAF configuration file

 * @throws CodecException
 */
public AbstractEventCodec(String name, EventCodecProperty[] properties,
 TimestampConfig timestampConfig)
 throws CodecException

A typical constructor would create a logger using the plug-in name provided (see "Logging from
plug-ins in Java" on page 111), make a call to the updateProperties method to deal with the initial
property set passed in, and perform any other initialization operations required for the particular
event codec being developed.

Note that unlike event transports, codec plug-ins do not have start and stop methods
updateProperties

/**
 * Update the configuration of the codec. The codec may assume
 * that flushUpstream() and flushDownstream() have been called
 * before this function is invoked. The recommended procedure for
 * updating properties is to first compare the new property set with the
 * existing stored properties - if there are no changes, no action should
 * be taken.
 *
 * @param properties The new codec property set specified in the IAF
 * configuration file
 * @param TimestampConfig timestampConfig
 * @throws CodecException
 */

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 100

abstract public void updateProperties(EventCodecProperty[] properties,
 TimestampConfig timestampConfig)
 throws CodecException;

The properties array contains an EventCodecProperty object for each plug-in property specified in the
IAF configuration file (in order). The getName and getValue methods allow the plug-in to retrieve the
name and value of each property as String objects.

See the Javadoc documentation for more information about the EventCodecProperty class.
addEventTransport

/**
 * Add a named event transport to the set of transports known to the
 * codec. If the named transport already exists, it should be
 * replaced.
 *
 * @param name The name of the transport to be added
 * @param transport The transport object instance
 * @throws CodecException
 */
abstract public void addEventTransport(String name, EventTransport transport)
 throws CodecException;

In an adapter in which multiple event transports could be present, this function would usually be
implemented by storing the <name, transport> pair in a Java map, from which the EventTransport object
could later be retrieved when required by the sendNormalisedEvent method, using a plug-in property
(e.g. “transportName” to determine which of the plug-ins in the map should be used.

Alternatively, if this codec plug-in will only ever be used in an adapter with just one transport plug-
in, this method can be implemented simply by storing the provided EventTransport object in an
instance field.

See "Communication with other layers" on page 103 for more information.
removeEventTransport

/**
 * Remove a named event transport from the set of transports known to the
 * codec. If the named transport does not exist, the function should do
 * nothing.
 *
 * @param name The transport to be removed
 * @throws CodecException
 */
abstract public void removeEventTransport(String name)
 throws CodecException;

This method is usually implemented by removing the named transport plug-in from a map, or
nulling out a field holding the previously added EventTransport.
setSemanticMapper

/**
 * Set the Semantic Mapper object to be used by the decoder. Currently
 * only a single Semantic Mapper is supported in each adapter instance.
 *
 * @param mapper The Semantic mapper object instance
 * @throws CodecException
 */
abstract public void setSemanticMapper(SemanticMapper mapper)
 throws CodecException;

This method is usually implemented by storing the provided SemanticMapper object in an instance
field, for use when sending on downstream messages.
flushUpstream

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 101

/**
 * Flush any pending codec events onto the codec. In many cases no action
 * will be required to complete the flushing operation.
 *
 * @throws CodecException
 */
abstract public void flushUpstream() throws CodecException;

Usually has a blank implementation, unless there is some kind of upstream buffering.
flushDownstream

/**
 * Flush any pending codec events into the decoder. In many cases no action
 * will be required to complete the flushing operation.
 *
 * @throws CodecException
 */
abstract public void flushDownstream() throws CodecException;

Usually has a blank implementation, unless there is some kind of downstream buffering.
cleanup

/**
 * Frees any resources allocated by the codec (useful for resources
 * external to the JVM that were allocated in the constructor). The IAF
 * guarantees to call this method exactly once.
 *
 * @throws CodecException
 */
abstract public void cleanup() throws CodecException;

This is where any external resources used by the event codec should be freed.
getStatus

/**
 * Return a CodecStatus class containing up-to-date status information
 * for the codec.
 *
 * @return An immutable CodecStatus class containing status
 * information.
 */
abstract public CodecStatus getStatus();

This method provides the statistics and status message displayed by the IAF Watch tool. A typical
plug-in will continuously keep track of the number of messages sent upstream and downstream.
Then, when getStatus is called, these message counts can simply be packaged up in a new CodecStatus
object together with a String describing the current status of the plug-in (maximum length 1024
characters), and returned.

For example:
public CodecStatus getStatus()
{ String status = "Status: OK";
 return new TransportStatus(status, totalReceived, totalSent);
}

See the Javadoc documentation for more information about the CodecStatus class.
getAPIVersion

/**
 * Return the codec API version that the codec was built against.
 * @return Must be EventCodec.API_VERSION.
 */
public abstract int getAPIVersion();

Always return EventCodec.API_VERSION.

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 102

sendTransportEvent

/**
 * Called by the event transport to decode a downstream event using a Java
 * Codec, which will then send it on to the Semantic Mapper. It is assumed
 * that the encoder and transport share the same definition
 * of the content of the event, so that the transport can effectively
 * interpret the event.
 *
 * @param event An object representing the event to be decoded, in a format
 * shared by the decoder and transport.
 * @param timestamps A TimestampSet representing the timestamps attached to
 * the event.
 *
 * @throws CodecException Thrown by the decoder if the event provided
 * has an invalid format.
 * @throws SemanticMapperException Thrown if an error occurred during
 * processing of the message by the Semantic Mapper.
 */
public void sendTransportEvent(Object event, TimestampSet timestamps)
 throws CodecException, SemanticMapperException;

This is the method that a transport layer plug-in calls when it receives a message that should be
decoded and then sent downstream towards the Apama event correlator.

Note that there are no guarantees about which threads might be used to call this method, so plug-
in authors will need to consider any thread synchronization issues arising from use of shared data
structures here.

See "Communication with other layers" on page 103 for more information about processing
downstream messages and passing them on to the Semantic Mapper.
sendNormalisedEvent (send upstream)

/**
 * Called by the Semantic Mapper to encode a normalized event and send
 * it directly through to the transport.
 *
 * @param event A NormalisedEvent representing the event to be encoded.
 * @params timestamps A TimestampSet representing the timestamps attached to
 * the event.
 *
 * @throws CodecException Thrown by the codec if the event provided
 * has an invalid format.
 * @throws TransportException Thrown if an error occurred in the Transport
 * when sending the message.
 */
public void sendNormalisedEvent(NormalisedEvent event,
 TimestampSet timestamps)
 throws CodecException, TransportException;

This is the method that the Semantic Mapper calls when it receives a message that should be
encoded and then sent upstream to an event transport.

Note that there are no guarantees about which threads might be used to call this method, so plug-
in authors will need to consider any thread synchronization issues arising from use of shared data
structures here.

See "Communication with other layers" on page 103 for more information about processing
upstream messages and passing them on to a transport plug-in. See "Working with normalized
events" on page 106 for help working with NormalisedEvent objects.

The Codec Plug-in Development Specification for Java

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 103

Communication with other layers
This section discusses how the codec layer communicates with the transport layer and Semantic
Mapper in upstream and downstream directions.

The Codec Plug-in Development Specification for Java

Sending upstream messages received from the Semantic Mapper to a
transport plug-in
When the Semantic Mapper produces normalized events, it sends them on to the codec layer by
calling the codec plug-ins’ sendNormalisedEvent methods (as defined above). The event codec must
then encode the normalized event for transmission by the transport layer.

In order to send messages upstream to an event transport, a codec plug-in must have a
reference to the transport plug-in object. Typically, an event codec does this by building up a
map of registered transport plug-ins from the parameters passed to the addEventTransport and
removeEventTransport methods. It might then use a property provided in the configuration file (e.g.
<property name="transportName" value="MyTransport"/>) to determine which event transport to use when
the sendNormalisedEvent method is called.

Alternatively, if this transport plug-in will only ever be used in an adapter with just one codec
plug-in, the EventTransport object could be stored in an instance field when it is provided to the
addEventTransport method.

Once the plug-in has a reference to the event transport (or transports) it will use, it can pass
on normalized events it has encoded into transport messages by calling the transport plug-in
sendTransportEvent method:
/**
 * Called by an event encoder to send an upstream message to the external
 * transport.
 *
 * Ownership of the message is transferred to the transport when this
 * function is called. It is assumed that the encoder and transport share
 * the same definition of the content of the event, so that the transport
 * can effectively interpret the event.
 *
 * @param event An object representing the event to be sent by the
 * transport, in a format shared by the encoder and transport.
 * @param timestamps A TimestampSet representing the timestamps attached to
 * the event.
 *
 * @throws TransportException Thrown by the transport if any error occurs
 * sending the message.
 */
public void sendTransportEvent(Object event, TimestampSet timestamps)
 throws TransportException;

For example, the implementation of the event codec’s sendNormalisedEvent could look something like
this:
// Select EventTransport using saved plugin property value
EventTransport transport = eventTransports.get(currentTransportName);
// Encode message
MyCustomMessageType message = myEncodeMessage(event);
// Send to Transport layer plugin
transport.sendTransportEvent(message, timestamps);

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 104

If an error occurs in the transport layer a TransportException is thrown. Typically such exceptions do
not need to be caught by the codec plug-in, unless the codec plug-in is able to somehow deal with
the problem.

A CodecException should be thrown if there is an error encoding the normalized event.

Note that there are no guarantees about which threads might call the sendNormalisedEvent method, so
plug-in authors will need to consider any thread synchronization issues arising from use of shared
data structures.

Any transport plug-in called by a Java codec plug-in must also be written in Java.

Communication with other layers

Sending downstream messages received from a transport plug-in to the
Semantic Mapper
When a transport plug-in configured to work with the event codec receives a messages from its
external message source, it will pass it on to the codec plug-in by calling the sendTransportEvent
method (as defined above). It is then up to the codec plug-in to decode the message from whatever
custom format is agreed between the transport and codec plug-ins into a standard normalized event
that can be passed on to the Semantic Mapper.

When the message has been decoded it should be sent to the Semantic Mapper using its
sendNormalisedEvent method:
/**
 * Called by the event codec to send a decoded event to the Semantic Mapper.
 *
 * @param event A normalized event to be sent to the semantic mapper
 * @param timestamps A TimestampSet representing the timestamps attached to
 * the event.
 *
 * @throws SemanticMapperException Thrown by the Semantic Mapper if there
 * is a problem mapping the event
 */
public void sendNormalisedEvent(NormalisedEvent event,
 TimestampSet timestamps)
 throws SemanticMapperException;

For example, the implementation of the event codec’s sendTranasportEvent could look something like
this:
// (Assume there’s an instance field: SemanticMapper semanticMapper)
// Decode message
NormalisedEvent normalisedEvent = myDecodeMessage(event);
// Send to Transport layer plugin
semanticMapper.sendNormalisedEvent(normalisedEvent, timestamps);

If an error occurs in the Semantic Mapper, a SemanticMapperException is thrown. Typically such
exceptions do not need to be caught by the codec plug-in, unless the codec plug-in is able to
somehow deal with the problem.

A CodecException should be thrown if there is an error decoding the normalized event.

Communication with other layers

Java codec exceptions

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 105

CodecException is the exception class that should be thrown by a codec plug-in whenever the one of its
methods is called and an error prevents the method from successfully completing — for example, a
message that cannot be encoded or decoded because it has an invalid format.

A CodecException object always has an associated message, which is a String explaining the problem
(this may include information about another exception that caused the CodecException to be thrown).
There is also a code field that specifies the kind of error that occurred; the possible codes are defined
as constants in the CodecException class:
/**
 * Some unspecified internal error occurred
 */
public static final int INTERNALERROR = 1;
/**
 * Couldn't encode an incoming normalized event
 */
public static final int ENCODINGFAILURE = 2;
/**
 * Couldn't decode an incoming customer event
 */
public static final int DECODINGFAILURE = 3;
/**
 * Trouble sending encoded event to transport
 */
public static final int TRANSPORTFAILURE = 4;
/**
 * Trouble sending decoded event to Semantic Mapper
 */
public static final int MAPPINGFAILURE = 5;
/**
 * Codec was passed an invalid property set
 */
public static final int BADPROPERTIES = 6;

Like the TransportException object, CodecException defines a number of constructors, to make it easy to
set up the exception’s information quickly in different situations:
/**
 * Constructs a CodecException from a string message describing the
 * error, and assumes an error code of TRANSPORTFAILURE.
 *
 * @param message The cause of the error.
 */
public CodecException(String message) { ... }
/**
 * Constructs a CodecException from a string message describing the
 * error and a numeric code representing the class of error.
 *
 * @param message The cause of the error.
 * @param code One of the CodecException error codes.
 */
public CodecException(String message, int code) { ... }
/**
 * Constructs a CodecException from a string message describing the
 * error, and an exception object that is the cause of the error. It
 * assumes an error code of TRANSPORTFAILURE.
 *
 * @param message The cause of the error. This message will be suffixed
 * with the message of the 'cause' exception.
 * @param cause The exception object that caused the error.
 */
public CodecException(String message, Throwable cause) { ... }
/**
 * Constructs a CodecException from a string message describing the
 * error, a numeric code representing the class of error and an exception
 * object that is the cause of the error.
 *
 * @param message The cause of the error. This message will be suffixed

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 106

 * with the message of the 'cause' exception.
 * @param cause The exception object that caused the error.
 * @param code One of the CodecException error codes.
 */
public CodecException(String message, Throwable cause, int code) { ... }

The Codec Plug-in Development Specification for Java

Semantic Mapper exceptions
Codec plug-ins should never need to construct or throw SemanticMapperException objects, but they
need to be able to catch them if they are thrown from the SemanticMapper.sendNormalisedEvent method
when it is called by the event codec.

SemanticMapperException has exactly the same set of constructors as the CodecException class described
above. The only significant different is the set of error codes, which for SemanticMapperException are as
follows:
/**
 * Some unspecified internal error occurred
 */
public static final int INTERNALERROR = 1;
/**
 * Couldn't convert customer event to an Apama event
 */
public static final int MAPPINGFAILURE = 2;
/**
 * Couldn't queue converted event for injection into the Engine
 */
public static final int INJECTIONFAILURE = 3;

The Codec Plug-in Development Specification for Java

Logging
Please see "Logging from plug-ins in Java" on page 111 for information about how codec plug-ins
should log error, status and debug information.

The Codec Plug-in Development Specification for Java

Working with normalized events
The function of a decoding codec plug-in is to convert incoming messages into a standard
normalized event format that can be processed by the Semantic Mapper. Events sent upstream to an
encoding codec plug-in are provided to the plug-in in this same format.

Normalized events are essentially dictionaries of name-value pairs, where the names and values
are both character strings. Each name-value pair nominally represents the name and content of a
single field from an event, but users of the data structure are free to invent custom naming schemes
to represent more complex event structures. Names must be unique within a given event. Values
may be empty or null.

Some examples of normalized event field values for different types are:

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 107

string "a string"

integer "1"

float "2.0"

decimal "100.0d"

sequence<boolean> "[true,false]"

dictionary<float,integer> "{2.3:2,4.3:5}"

SomeEvent "SomeEvent(12)"

Note: When assigning names to fields in normalized events, keep in mind that the fields and
transport attributes for event mapping conditions and event mapping rules both use a list of fields
delimited by spaces or commas. This means, for example that <id fields="Exchange EX,foo" test="=="
value="LSE"/> will successfully match a field called "Exchange", "EX" or "foo", but not a field called
"Exchange EX,foo". While fields with spaces or commas in their names may be included in a payload
dictionary in upstream or downstream directions, they cannot be referenced directly in mapping or
id rules.

To construct strings for the normalized event fields representing container types (dictionaries,
sequences, or nested events), use the event parser/builder found in the util5.2.jar file, which
is located in the Apama installation’s lib directory The following examples show how to add a
sequence and a dictionary to a normalized event (note the escape character “ \ “ used in order to
insert a quotation mark into a string).
List<String> list = new ArrayList<String>();
list.add("abc");
list.add("de\"f");
Map<String,String> map = new HashMap<String,String>();
map.put("key1", "value1");
map.put("key\"{}2", "value\"{}2");
final SequenceFieldType STRING_SEQUENCE_FIELD_TYPE =
 new SequenceFieldType(StringFieldType.TYPE);
final DictionaryFieldType STRING_DICT_FIELD_TYPE =
 new DictionaryFieldType(StringFieldType.TYPE, StringFieldType.TYPE);
NormalisedEvent event = new NormalisedEvent();
event.add("mySequenceField",
 STRING_SEQUENCE_FIELD_TYPE.format(list));
event.add("myDictionaryField", STRING_DICT_FIELD_TYPE.format(map));

The programming interface for constructing and using normalized events is made up of three Java
classes: NormalisedEvent, NormalisedEventIterator and NormalisedEventException. NormalisedEvent is the
most important part of the interface, and encapsulates the data and operations that can be performed
on a single normalized event. Some of these operations return NormalisedEventIterator objects, which
support the process of stepping through the name-value pairs in the normalized event. Any errors
encountered result in instances of NormalisedEventException being thrown.

This section provides an overview of the capabilities of the two main classes. Please see the Javadoc
documentation for full information on the normalized event interface.

The Codec Plug-in Development Specification for Java

The NormalisedEvent class
The NormalisedEvent class represents a single normalized event. The following methods are provided
for examining and modifying the name-value pairs making up the event:

The Codec Plug-in Development Specification for Java

Developing Adapters 5.2.0 108

size - Return the number of elements (name-value pairs) currently stored by the event.

empty - Check whether the event is empty or not.

add - Add a new name-value pair to the event. The given name and value will be copied into the
event. If an element with the same name already exists, it will not be overwritten. This returns an
iterator into the events at the point where the new element was added.

addQuick - Add a new name-value pair to the event. The given name and value will be copied into
the event. If an element with the same name already exists, it will not be overwritten.

remove - Remove the named element from the normalized event.

removeAll - Remove all elements from the normalized event. The empty function will return true
after this function has been called.

replace - Change the value of a named element in the normalized event. If an element with the
given name already exists, its value will be replaced with a copy of the given value. Otherwise, a
new element is created just as though addQuick had been called.

exists - Check whether a given element exists in the normalized event.

find - Search for a named element in the normalized event. Returns an iterator into the event at
the point where the element was located.

findValue - Search for a named element in the normalized event and return its value.

findValueAndRemove - Search for a named element in the normalized event and return its value. If
found, the element will also be removed from the event. Returns null if the specified element
does not exist or has value null.

findValueAndRemove2 - Search for a named element in the normalized event and return its value. If
found, the element will also be removed from the event. Unlike findValueAndRemove it throws an
exception if the value is not found.

first - Return an iterator pointing to the first element of the normalized event. Successive calls to
the next function of the returned iterator will allow you to visit all the elements of the event.

last - Return an iterator pointing to the last element of the normalized event. Successive calls to
the back function of the returned iterator will allow you to visit all the elements of the event.

toString - Return a printable string representation of the normalized event.

Threading note: Normalised events are not thread-safe. If your code will be accessing the same
normalized event object (or associated iterators) from multiple threads, you must implement your
own thread synchronization to prevent concurrent modification.

A public zero-argument constructor is provided for creation of new (initially empty) NormalisedEvent
objects.

Working with normalized events

The NormalisedEventIterator class
Several of the NormalisedEvent methods return an instance of the NormalisedEventIterator class, which
provides a way to step though the name-value pairs making up the normalized event, forwards or
backwards.

The following public methods are provided:

Java Codec Example

Developing Adapters 5.2.0 109

valid - Check whether the iterator points to a valid element of the normalized event. Typically
used as part of the loop condition when iterating over the contents of an event.

key - Return the key (name) associated with the current event element pointed to by the iterator.

value - Return the value associated with the current event element pointed to by the iterator.

next - Move the iterator to the next element of the underlying normalized event instance. The
iterator must be in a valid state (such that the valid function would return true) before this
function is called. Note that the order in which elements is returned is not necessarily the same as
the order in which they were added. The order may change as elements are added to or removed
from the underlying event.

back - Move the iterator to the previous element of the underlying normalized event instance.
The iterator must be in a valid state (such that the valid function would return true) before this
function is called. Note that the order in which elements is returned is not necessarily the same as
the order in which they were added. The order may change as elements are added to or removed
from the underlying event.

There is no public constructor; iterators are created and returned only by NormalisedEvent methods.

Please see the Javadoc documentationfor full information about the classes introduced in this section.

Working with normalized events

Java Codec Example
As part of the IAF distribution Apama includes the JStringCodec codec layer plug-in, in the samples
\iaf_plugin\java\simple\src directory.

The JStringCodec plug-in converts between normalized events and a text string representation that
can be customized using plug-in configuration properties.

Developers are encouraged to explore this sample to see what a typical codec plug-in
implementation looks like.

See "IAF samples" on page 45 for more information about this sample. The section "The String Codec
plug-in" on page 141 describes how the JStringCodec plug-in can be used in practice.

Java Codec Plug-in Development

Getting started with Java codec layer plug-in
development
Your distribution includes a complete ‘skeleton’ implementation of a codec layer plug-in in order to
make development of new plug-ins faster.

This is located in the samples\iaf_plugin\java\skeleton\src directory of the installation, in a file called
SkeletonCodec.java. The SkeletonCodec class complies fully with the Codec Plug-in Development
Specification, but contains none of the custom encoding and decoding functionality that would be
present in a full codec plug-in.

Getting started with Java codec layer plug-in development

Developing Adapters 5.2.0 110

The code contains TODO: comments indicating the main changes that need to be made to develop a
useful plug-in. These include:

Adding code to sendTransportEvent to decode a message received from the transport layer into a
normalized event (if supported).

Adding code to sendNormalisedEvent to encode a message received from the Semantic Mapper
transport into a message that can be sent on by the transport layer (if supported).

Adding code to validate and save any new plug-in properties that are to be supported, in
updateProperties.

Adding code to initialize and clean up resources associated with the plug-in’s operation. This
would usually be done in the updateProperties and cleanup methods.

Depending on your requirements, it may also be necessary to make changes to the other main
methods – addEventTransport, removeEventTransport, flushUpstream, flushDownstream, getStatus, and the
constructor.

The skeleton directory includes an Apache Ant build file called build.xml that provides a convenient
way to build .jar files of compiled classes from plug-in source files, ready for use with the IAF.

Java Codec Plug-in Development

Logging from plug-ins in Java

Developing Adapters 5.2.0 111

Chapter 8: Plug-in Support APIs for Java

n Logging from plug-ins in Java ... 111

n Using the latency framework ... 112

This section describes other programming interfaces provided with the Apama software that may be
useful in implementing transport layer and codec plug-ins for the IAF.

Logging from plug-ins in Java
This API provides a mechanism for recording status and error log messages from the IAF runtime
and any plug-ins loaded within it. Plug-in developers are encouraged to make use of the logging API
instead of custom logging solutions so that all the information may be logged together in the same
standard format and log file(s) used by other plug-ins and the IAF runtime.

The logging API also allows control of logging verbosity, so that any messages below the configured
logging level will not be written to the log. The logging level and file are initially set when an
adapter first starts up – see "Logging configuration (optional)" on page 43 for more information
about the logging configuration.

The Java logging API is based around the Logger class.

The recommended way of using the Logger class is to have a private final com.apama.util.Logger
variable, and then create an instance in the transport or codec’s constructor based on the plug-in
name, such as the following:
private final Logger logger;
public MyTransport(String name, ...)
{ super(...);
 logger = Logger.getLogger(name);
}

The Logger class supports the following logging levels:

FORCE

CRIT

FATAL

ERROR

WARN

INFO

DEBUG

TRACE

For each level, there are three main methods. For example, for logging at the DEBUG level, here are
the three main methods:

logger.debug(String) — Logs a message, if this log level is currently enabled.

Using the latency framework

Developing Adapters 5.2.0 112

logger.debug(String, Throwable) — Logs the stack trace and message of a caught exception
together with a high-level description of the problem. Apama strongly recommend logging
exceptions like this to assist with debugging in the event of problems.

logger.debugEnabled() — Determines whether messages at this log level are currently enabled
(this depends on the current IAF log level, which may be changed dynamically). Apama strongly
recommend checking this method’s result (particularly for DEBUG messages) before logging
messages where constructing the message string may be costly, for example:

 if (logger.debugEnabled())
 logger.debug("A huge message was received, and the string
 representation of it is: "+thing.toString()+
 " and here is some other useful info: "+foo+", "+bar);

Note that there is no point using the *Enabled() methods if the log message is a simple string (or
string plus exception), such as:
 logger.debug("The operation completed with an error: ", exception);

To make it easier to diagnose any errors that may occur, Apama recommends one of the following
methods to log the application's stack trace:

errorWithDebugStackTrace(java.lang.String msg, java.lang.Throwable ex) — Logs the specified
message at the ERROR level followed by the exception's message string, and then logs the
exception's stack trace at the DEBUG level.

warnWithDebugStackTrace(java.lang.String msg, java.lang.Throwable ex) — Logs the specified
message at the WARN level followed by the exception's message string, and then logs the
exception's stack trace at the DEBUG level.

See the Javadoc documentation for more information about the Logger class.

Plug-in Support APIs for Java

Using the latency framework
The latency framework API provides a way to measure adapter latency by attaching high-resolution
timing data to events as they stream into, through, and out of the adapter. Developers can then use
these events to compute upstream, downstream, and round-trip latency numbers, including latency
across multiple adapters.

The sendNormalisedEvent() and sendTransportEvent() methods contain a TimestampSet parameter that
carries the microsecond-accurate timestamps that can be used to compute the desired statistics.

HTML Javadoc documentation for com.apama.util.TimestampSet and com.apama.util.TimestampConfig
classes is provided as part of the Apama documentation set. The Javadoc is located in the Apama
installation’s doc\javadoc directory.

Plug-in Support APIs for Java

Java timestamp
A timestamp is an index-value pair. The index represents the point in the event processing chain at
which the timestamp was recorded, for example “upstream entry to semantic mapper” and the value
is a floating point number representing the time. The TimestampSet class defines a set of standard

Using the latency framework

Developing Adapters 5.2.0 113

indexes but a custom plug-in can define additional indexes for even finer-grained measurements.
When you add a custom index definition, be sure to preserve the correct order, for example, an index
denoting an “entry” point should be less than an one denoting an “exit” point from that component.

Timestamps are relative measurements and are meant to be compared only to other timestamps in
the same or similar processes on the same computer.

Using the latency framework

Java timestamp set
A timestamp set is the collection of timestamps that are associated with an event. The latency
framework API provides functions that developers can use to add, inspect, and remove timestamps
from an event’s timestamp set.

The timestamp set is represented as a dictionary of integer-float pairs, where the integer index refers
to the location at which the timestamp was added and the floating-point time gives the time at which
an event was there.

Using the latency framework

Java timestamp configuration object
The constructors and updateProperties() methods for transport and codec plugins take this additional
argument: TimestampConfig.

A timestamp configuration object contains a set of fields that a plug-in can use to decide whether to
record and/or log timestamp information. The fields in the object are:

recordUpstream — If true, the plug-in should record timestamps for all upstream events it
processes, and pass these along to the upstream component, if any.

recordDownstream — If true, the plug-in should record timestamps for all downstream events it
processes, and pass these along to the downstream component, if any.

logUpstream — If true, the plug-in should log the latency for all upstream events it processes,
at the logging level given by the logLevel member. A plug-in may implicitly enable upstream
timestamp recording if upstream logging is enabled.

logDownstream — If true, the plug-in should log the latency for all downstream events it processes,
at the logging level given by the logLevel member. A plug-in may implicitly enable downstream
timestamp recording if downstream logging is enabled.

logRoundtrip — If true, the plug-in should log the “round trip” latency for all events it processes
in either direction, if possible. At its simplest, the round trip latency can just be the difference
between the largest and smallest timestamps passed to the plug-in, or an individual plug-in may
choose to present some more plug-in-specific latency number. As with the other logging options,
the logging level given by the logLevel member should be used.

logLevel — The logging verbosity level to use if any of the timestamp logging options are
enabled.

Using the latency framework

Developing Adapters 5.2.0 114

Using the latency framework

Java latency framework API
The Java interface for the latency framework is declared in the header file com.apama.util.TimestampSet
class.

The functions of interest are the following.

Table 2. Java latency framework API

void addNow(java.lang.Integer index) Add a new name-time pair to the
event.

void addTime(java.lang.Integer index,

java.lang.Double theTime)

Add a new index-time pair to the
timestamp.

void clear() Removes all mappings from this
map.

boolean containsKey(java.lang.Object index) Returns true if this map contains
the specified key

boolean containsValue(java.lang.Object time) Returns true if this map maps one
or more names to the specified
time.

java.util.Set<java.util.Map.Entry<java.lang.Integer,

java.lang.Double>> entrySet()

java.lang.Double findTime(java.lang.Integer index) Search for a named element in the
timestamp set and return its time.

java.lang.Double findTimeAndRemove(java.lang.Integer

index)

Search for a named element in the
timestamp set and return its time.

java.lang.Double get(java.lang.Object index) Returns the time to which the
specified name is mapped, or null
if the map contains no mapping
for this index.

static double getMicroTime() Get the current microsecond-
accurate relative timestamp.

boolean isEmpty() Returns true if this map contains
no index-time mappings.

java.util.Iterator<java.util.Map.Entry Returns a standard Java
Iterator over the contents of the

Using the latency framework

Developing Adapters 5.2.0 115

 <java.lang.Integer,java.lang.Double>> iterator()
TimestampSet using Map.Entry
objects.

java.util.Set<java.lang.Integer> keySet()

java.lang.Double put(java.lang.Integer

index, java.lang.Double time)

Adds or replaces the specified
(index,time) pair in the
underlying map

void putAll(java.util.Map<? extends java.lang.Integer,?

extends java.lang.Double> m)

Copies all of the mappings from
the specified map to this map
These mappings will replace any
mappings that this map had for
any of the indices currently in the
specified map.

java.lang.Double remove(java.lang.Object index) Removes the mapping for this
index from this map if present.

void replace(java.lang.Integer index,

java.lang.Double newTime)

Change the time of a named
element in the timestamp set.

void replaceWithNow(java.lang.Integer index) Change the time of a named
element in the timestamp set.

int size() Get the number of elements
(name-time pairs) currently
stored by the event.

java.lang.String toString() Return a printable string
representation of the timestamp
set.

java.util.Collection<java.lang.Double> values() Returns a collection view of the
times contained in this map.

Using the latency framework

Developing Adapters 5.2.0 116

Chapter 9: Monitoring Adapter Status

n IAFStatusManager ... 117

n Application interface .. 117

n Returning information from the getStatus method ... 120

n Connections and other custom properties ... 123

n Asynchronously notifying IAFStatusManager of connection changes .. 124

n StatusSupport .. 127

Status information is available between the correlator and an adapter. When developing an IAF
adapter, the adapter author can provide the ability to make use of this status information. Basic
information, such as whether an adapter is up or down, is available using a standard Apama
monitor. Other information, such as the number of connections an adapter has, can be provided
by using the getStatus() method in an adapter’s transport and codec. Optionally, adapter authors
can also add code to the adapter’s service monitors to send and receive specific status information
that application developers can then use when they write Apama applications that connect to the
adapters.

Apama provides the following two mechanisms for handling IAF Adapter status information:

IAFStatusManager — The IAFStatusManager manages the connection status and other status
information from the adapter to the correlator. In order to retrieve adapter status information,
the IAFStatusManager needs to be injected into the correlator and the adapter author needs to
add a small amount of code to the adapter. Application authors can then make use of status
information available from the IAFStatusManager.

For information on using the IAFStatusManager, see "IAFStatusManager" on page 117

StatusSupport — StatusSupport is a generic interface (or contract) between an Apama application
and an adapter’s service monitors. This interface provides a way to provide an application with
a similar view of all the status information available from multiple adapters. In order to use
the StatusSupport interface, an adapter author writes code in the adapter’s service monitors
that send or receive specific StatusSupport events. In turn, the application author writes code to
implement the desired behavior for handling the StatusSupport events.

IAFStatusManager

Developing Adapters 5.2.0 117

Using the StatusSupport interface is optional. For more information on using this interface, see
"StatusSupport" on page 127.

IAFStatusManager
The IAFStatusManager translates events from the adapter into simple status events for applications
to consume. The monitor, IAFStatusManager.mon is found in the Apama installation’s adapters\monitors
directory. In order to use the monitor:

The adapter author is required to return information about the adapter's open connections in
the adapter’s getStatus method, which is called every few seconds when the IAFStatusManager
service monitor polls the IAF for status. Adapters written in Java must return an
ExtendedTransportStatus or ExtendedCodecStatus object from getStatus(); adapters written in C++
must return AP_EventTransportStatus or AP_ExtendedCodecStatus.

The adapter may optionally also send notifications about a connection as soon as it is opened
or closed, by sending a normalized event representation of the AdapterConnectionOpened or
AdapterConnectionClosedevents to the correlator. This simply allows the correlator to find out about
connectivity change more quickly than is the case if it needs to wait for the next status poll.

The IAFStatusManager has the following interfaces:

An application interface to communicate with the consumers of the adapter status information —
usually adapter service monitors.

An IAF adapter interface is optional and can be used by adapter authors to issue connection
notifications.

Application interface
The IAFStatusManager.mon file defines the event interface between it and a consumer of an adapter’s
status information, which is usually an adapter’s service monitor. The application interface can be
used to communicate status information to both the adapter's service monitors as well as Apama
applications. The application interface events are either input events or output events. Input events
are sent from a consumer of adapter status information to the IAFStatusManager. Output events are
sent from the IAFStatusManager to a consumer of adapter status information.

Application interface

Developing Adapters 5.2.0 118

Input events
The IAFStatusManager is a subscription based interface. This means that a consumer of adapter
status information, such as an application service monitor, needs to send the input events
AdapterStatusRegister and AdapterStatusDeregister events to register or deregister as a consumer
for adapter status information. Once a subscription is made to the IAFStatusManager, the
IAFStatusManager periodically receives information from the adapter and begins sending status
information to the registered consumer in the form of output events — see "Output events" on page
119.

The IAFStatusManager defines the following input events:

AdapterStatusRegister — An event sent by a client that is interested in receiving status events from
the specified codec and transports. The fields of this event uniquely identify a subscription.
 event AdapterStatusRegister {
 string adapterName;
 string codec;
 string transport;
 string codecVersion;
 string transportVersion;
 string configVersion;
 string channel;
 }

The fields of the AdapterStatusRegister event are:

adapterName — An identifier that will be used to refer to this transport and codec pair when
registering, deregistering or monitoring adapter status.

codec — The name of the adapter’s codec as it is specified in the adapter configuration file.

transport — The name of the adapter’s transport as it is specified in the adapter configuration
file.

codecVersion — The codec version that the client depends on, or an empty string ("") if the
client can use any version of the codec.

transportVersion — The transport version that the client depends on, or an empty string ("") if
the client can use any version of the transport.

configVersion — The value of this field can be empty, but if a value is specified it must agree
with the CONFIG_VERSION key returned in the ExtendedTransportStatus or ExtendedCodecStatus
object (for Java) or in the statusDictionary of an AP_EventTransportStatus or AP_EventCodecStatus
(for C++).

channel — The name of the channel the IAF adapter is receiving events from.

AdapterStatusDeregister — An event sent by a client to unregister its subsciption for status events.
 event AdapterStatusDeregister {
 string adapterName;
 }

The adapterName field is the identifier used to refer to this transport and codec pair when
deregistering

.

Application interface

Developing Adapters 5.2.0 119

Output events
Once a consumer of status information (such as an application service monitor) is registered with
the IAFStatusManager, it begins to receive status information in the form of IAFStatusManager
output events. Output events include connection information, adapter availability, and any custom
information put into the dictionary by the transport or codec. For more information about adding
custom information, see "Connections and other custom properties" on page 123.

The IAFStatusManager defines the following output events:

AdapterUp — An event routed from the IAF Signaling Service to notify that the adapter is up.
 event AdapterUp {
 string adapterName;
 float latency;
 dictionary<string, string> codecStatus;
 dictionary<string, string> transportStatus;
 }

The fields of the AdapterUp event are:

adapterName — This is the identifier used to refer to this transport and codec pair when
monitoring adapter status.

latency — This is the difference (in seconds) between the time a request for status is sent from
the IAFStatusManager to the IAF and the time the correlator receives the response.

codecStatus — Contains information about the adatper’s codec. Standard keys are VERSION,
CONFIG_VERSION, and CONNECTION (or in the case of multiple connections, keys of the form
CONNECTION_connectionName).

transportStatus — Contains information about the adatper’s transport. Standard keys are
VERSION, CONFIG_VERSION, and CONNECTION (or in the case of multiple connections, keys of the form
CONNECTION_connectionName).

AdapterError — An event routed from the IAF Signaling Service to tell that there was an error
getting the status of the adapter.
 event AdapterError {
 string adapterName;
 string description;
 }

The fields of the AdapterError event are:

adapterName — This is the identifier used to refer to this transport and codec pair when
monitoring adapter status.

description — A free form string describing the problem.

ConnectionClosed — An event routed when the IAF Signaling Service discovers that the adapter’s
connection to an external service is closed.
 event ConnectionClosed {
 string adapterName;
 string connectionName;
 string connectionGeneration;
 }

The fields of the ConnectionClosed event are:

Returning information from the getStatus method

Developing Adapters 5.2.0 120

adapterName — This is the identifier used to refer to this transport and codec pair when
monitoring adapter status.

connectionName — This is a unique identifier for the connection. If the adapter manages
more than one connection, this will be the connection name returned by the adapter as a
CONNECTION_connectionNamegetStatus key (but without the CONNECTION_ prefix), or "" if the adapter
only manages one connection. The connectionName is often a number but could be a string. One
event will be sent for each connection the adapter manages.

connectionGeneration — This identifies a successful connection attempt. If the connection fails,
and then is successfully connected again, this will change. The connectionGeneration is often
a number that is initialized with a timestamp when the adapter is created, then incremented
every time it reconnects.

ConnectionOpened — An event routed when the IAF Signaling Service discovers that the adapter’s
connection to an external service is established.
 event ConnectionOpened {
 string adapterName;
 string connectionName;
 string connectionGeneration;
 }

The fields of the ConnectionOpened event are:

adapterName — This is the identifier used to refer to this transport and codec pair when
monitoring adapter status.

connectionName — This is a unique identifier for the connection. If the adapter manages
more than one connection, this will be the connection name returned by the adapter as a
CONNECTION_connectionNamegetStatus key (but without the CONNECTION_ prefix), or "" if the adapter
only manages one connection. The connectionName is often a number but could be a string. One
event will be sent for each connection the adapter manages.

connectionGeneration — This identifies a successful connection attempt. If the connection fails,
and then is successfully connected again, this will change. The connectionGeneration is often
a number that is initialized with a timestamp when the adapter is created, then incremented
every time it reconnects.

Returning information from the getStatus method
The adapter’s transport and codec getStatus methods periodically update status information. The
transport and codec send this information to the IAFStatusManager. To take advantage of the
IAFStatusManager for an adapter written in Java, the adapter author should implement the getStatus
method so that it returns an ExtendedTransportStatus or ExtendedCodecStatus object. These objects
include a Properties parameter, statusInfo, which contains custom information about the adapter.

For adapters written in C or C++, the adapter author should implement the getStatus function to
include the statusDictionary in an AP_EventTransportStatus or AP_EventCodecStatus structure.

The IAFStatusManager then forwards the information to registered consumers of that transport or
codec's status information in the form of a dictionary added to the AdapterUp event.

ExtendedTransportStatus

The ExtendedTransportStatus object is defined as follows:

Returning information from the getStatus method

Developing Adapters 5.2.0 121

public ExtendedTransportStatus(java.lang.String status,
 long totalReceived,
 long totalSent),
 java.util.Properties statusInfo)

The object’s parameters are:

status - A string containing a transport-specific status message. Strings longer than 1024
characters will be truncated.

totalReceived - The total number of downstream events received since the IAF was run.

totalSent - The total number of upstream events sent since the IAF was run.

statusInfo - Any additional status information about this transport. The standard statusInfo keys
are:

VERSION=transport_version_string

CONFIG_VERSION=config_version_string

CONNECTION=connectionGeneration (if the adapter manages only one connection)

or

CONNECTION_connectionId=connectionGeneration (if the adapter manages multiple connections)

For more information on specifying the CONNECTION or CONNECTION_connectionId key, see
"Asynchronously notifying IAFStatusManager of connection changes" on page 124.

ExtendedCodecStatus

The ExtendedCodecStatus object is defined as follows:
public CodecStatus(java.lang.String status,
 long totalDecoded,
 long totalEncoded),
 java.util.Properties statusInfo

The object’s parameters are:

status - A string containing a codec-specific status message. Strings longer than 1024 characters
will be truncated.

totalDecoded - The number of events decoded

totalEncoded - The number of events encoded

statusInfo - Any additional status information bout this codec. Standard statusInfo keys are:

VERSION=codec_version_string

CONFIG_VERSION=config_version_string

CONNECTION=connectionGeneration (if the adapter manages only one connection),

or

CONNECTION_connectionId=connectionGeneration (if the adapter manages multiple connections

AP_EventTransportStatus

The AP_EventTransportStatus object is defined as:
 typedef struct {
 AP_char8* status;

Returning information from the getStatus method

Developing Adapters 5.2.0 122

 AP_uint64 totalReceived;
 AP_uint64 totalSent;
 AP_NormalisedEvent* statusDictionary;
 } AP_EventTransportStatus;

The object’s parameters are:

status - A free-form text string containing a transport-specific status message. Strings longer than
1024 characters will be truncated.

totalReceived - The total number of downstream events received since the IAF was run.

totalSent - The total number of upstream events sent since the IAF was run.

statusDictionary - Any additional status information about this transport. The standard
statusDictionary keys are:

VERSION=transport_version_string

CONFIG_VERSION=config_version_string

CONNECTION=connectionGeneration (if the adapter manages only one connection)

or

CONNECTION_connectionId=connectionGeneration (if the adapter manages multiple connections)

AP_EventCodecStatus

The AP_EventCodecStatus object s defined as:
 typedef struct {
 AP_char8* status;
 AP_uint64 totalDecoded;
 AP_uint64 totalEncoded;
 AP_NormalisedEvent* statusDictionary;
 } AP_EventCodecStatus;

The object’s parameters are:

status - A free-form text string containing a codec-specific status message. Strings longer than
1024 characters will be truncated.

totalDecoded - The number of events decoded.

totalEncoded - The number of events encoded.

statusDictionary - Any additional status information about this codec. Standard statusDictionary
keys are:

VERSION=codec_version_string

CONFIG_VERSION=config_version_string

CONNECTION=connectionGeneration (if the adapter manages only one connection),

or

CONNECTION_connectionId=connectionGeneration (if the adapter manages multiple connections)

Example

In the following example, the custom status information for VERSION and CONNECTION is included in the
information returned by the getStatus method:
 public static final String TRANSPORT_VERSION="1";

Connections and other custom properties

Developing Adapters 5.2.0 123

 protected long connGeneration;
 ...
 public TransportStatus getStatus()
 {
 Properties properties=new Properties();
 properties.setProperty("VERSION", TRANSPORT_VERSION);
 if(market!=null)
 {
 properties.setProperty("CONNECTION",
 String.valueOf(connGeneration));
 }
 return new ExtendedTransportStatus("OK", numReceived, numSent, properties);
 }

For more information on specifying the CONNECTION property, see "Asynchronously notifying
IAFStatusManager of connection changes" on page 124.

Monitoring Adapter Status

Connections and other custom properties
An adapter may deal with no connections, a single connection, or an arbitrary number of connections
(for example, if it is a server socket that accepts clients connecting to it); an adapter may also deal
with a set number of connections. In any case, an identifier needs to be assigned to each connection.
A connection may be broken and then reconnected, with either the same or different identifier. It is
useful to be able to detect a connection that has been dropped and then reconnected even if it has
the same identifier. To facilitate this, a “generation” identifier can be associated with each connection
identifier. While typically this generation identifier will be a number that is incremented, extra
information may be contained in it.

Monitors can therefore detect when a connection has been reconnected; at this point any logon
procedure needs to be repeated as the generation identifier has changed.

The state of all connections should be supplied in the statusDictionary field of the status struct in C/C
++, or the statusInfo field of the ExtendedCodecStatus or ExtendedTransportStatus in Java.

Along with any other custom information, the adapter author can include connection information
here. This will be passed to the correlator in event form and the IAFStatusManager will
automatically attempt to pull out connection information from this data structure. If there is a single
connection, a key should be supplied called CONNECTION. The value will be the generation identifier,
typically a number. If the generation identifier changes, the IAFStatusManager will assume the
connection has been dropped and reestablished, and will send appropriate events to the consumer of
the status events.

If there are multiple connections, a key for each one should be supplied in the form CONNECTION_<id>
to distinguish the different connections. Each one will also have a generation identifier associated
with it. The same rules apply with the generation identifier as with a single connection.

In either case, if the connection is up, the property should be included, and if the connection is down,
the property should not be included. This allows monitors to recover the state of what connections
are made after losing connection to the IAF, and to determine when connections are opened or closed
by polling.

The following Java example shows a simple adapter that reports the status of a single connection.
private long connectionGeneration = System.currentTimeMillis();
public TransportStatus getStatus()
{ Properties properties = new Properties();
 properties.setProperty("VERSION", "MyTransport_v1.0");

Asynchronously notifying IAFStatusManager of connection changes

Developing Adapters 5.2.0 124

 properties.put("CONFIG_VERSION", "1");

 if (connected)
 {
 properties.setProperty("CONNECTION",
 String.valueOf(connectionGeneration));
 }
 return new ExtendedTransportStatus("OK", totalReceived,
 totalSent, properties);
}

The following Java example demonstrates usage with multiple connections, iterating through a
collection of MyConnection objects.
public TransportStatus getStatus()
{ Properties properties = new Properties();
 properties.put("VERSION", "MyTransport_v1.0");
 properties.put("CONFIG_VERSION", "1");
 for (MyConnection con : connections.values())
 {
 if (!con.isClosed())
 {
 properties.put("CONNECTION_" + con.getId(), con.getGeneration());
 }
 }
 return new ExtendedTransportStatus(statusMessage, totalReceived,
 totalSent, properties);
}

Asynchronously notifying IAFStatusManager of
connection changes
In addition to returning status information in response to a poll from the IAFStatusManager, an
adapter may also send out events asynchronously when a connection is opened or closed.

This is done by creating and sending a NormalisedEvent object from the transport or codec to
the semantic mapper. The NormalisedEvent object has special fields that allow for automatic
mapping to an Apama event type— either AdapterConnectionOpened or AdapterConnectionClosed. The
AdapterConnectionOpened and AdapterConnectionClosed events are then sent through the correlator to the
IAFStatusManager.

The NormalisedEvent must have the following fields:

Table 3. NormalizedEvent fields

Field name Field value

AdapterConnectionOpenEvent or
AdapterConnectionClosedEvent

No value (empty string). This will either represent
a connection opened or connection closed and
be translated into AdapterConnectionOpened or
AdapterConnectionClosed events respectively for the
IAFStatusManager to consume.

codecName Name of codec

transportName Name of transport

Asynchronously notifying IAFStatusManager of connection changes

Developing Adapters 5.2.0 125

Field name Field value

connectionName No value (empty string) if there is only one
connection. If there is more than one connection, this
should contain CONNECTION_<id> and one event should
be sent for every connection the adapter is concerned
with.

connectionGeneration Connection generation identifier. This identifies
a successful connection attempt with a
connectionName. If the connection fails, then is
successfully connected again, this should change. This
is usually a number that is incremented.

This connection information should have a direct correlation to the connection information sent
in the getStatus implementation. Note that if the transport deals with only a single connection at
a time, the connectionName will be "" (the empty string) instead of CONNECTION, as it is in the getStatus
implementation.

The following is an example in Java of sending a NormalisedEvent that provides status information.
protected void sendAdapterConnectionStatusChangeNotification(boolean open,
 String reason, TimestampSet tss)
{
 if(decoder==null) return;
 NormalisedEvent ne=new NormalisedEvent();
 ne.add("codecName", codecName);
 ne.add("transportName", transportName);
 if(reason==null)
 {
 reason="";
 }
 if(open)
 {
 ne.add("AdapterConnectionOpenEvent", reason);
 }
 else
 {
 ne.add("AdapterConnectionClosedEvent", reason);
 }
 ne.add("connectionGeneration", String.valueOf(connGeneration));
 ne.add("connectionName", "");
 try
 {
 decoder.sendTransportEvent(ne, tss);
 }
 catch (CodecException e)
 {
 logger.error("Could not send message due to Codec error: ", e);
 }
 catch (SemanticMapperException e)
 {
 logger.error("Could not send message due to Semantic Mapper
 error: ", e);
 }
}

Note: When using these events, the (J)NullCodec must be used, unless you write a codec that
handles these and passes them on to the correlator. For example, the XMLCodec by default will not
forward these events to the semantic mapper. If you want to use the XMLCodec, you need to use the
(J)NullCodec as the codec to send these particular events.

Asynchronously notifying IAFStatusManager of connection changes

Developing Adapters 5.2.0 126

For more information on the implicit rules that the semantic mapper uses to automatically
map the objects to AdapterConnectionOpened and AdapterConnectionClosed events, see "Mapping
AdapterConnectionClosed and AdapterConnectionOpened events" on page 126.

Monitoring Adapter Status

Mapping AdapterConnectionClosed and
AdapterConnectionOpened events
As described in "Asynchronously notifying IAFStatusManager of connection changes" on page
124, the semantic mapper contains implicit rules to map NormalisedEvent objects that contain
special fields to AdapterConnectionClosed and AdapterConnectionOpened events. This means you do not
need to add mapping rules to your adapter’s configuration file. These implicit rules are:
<event name="AdapterConnectionClosed"
 package="com.apama.adapters"
 direction="downstream"
 breakDownstream="false">
 <id-rules>
 <downstream>
 <id fields="codecName,
 transportName,
 connectionName,
 connectionGeneration"
 test="exists"/>
 <id fields="AdapterConnectionClosedEvent"
 test="exists"/>
 </downstream>
 </id-rules>
 <mapping-rules>
 <map apama="codecName"
 transport="codecName"
 type="string" default=""/>
 <map apama="transportName"
 transport="transportName"
 type="string" default=""/>
 <map apama="connectionName"
 transport="connectionName"
 type="string" default=""/>
 <map apama="connectionGeneration"
 transport="connectionGeneration"
 type="string" default=""/>
 </mapping-rules>
</event>
<event name="AdapterConnectionOpened"
 package="com.apama.adapters"
 direction="downstream"
 breakDownstream="false">
 <id-rules>
 <downstream>
 <id fields="codecName,
 transportName,
 connectionName,
 connectionGeneration"
 test="exists"/>
 <id fields="AdapterConnectionOpenEvent"
 test="exists"/>
 </downstream>
 </id-rules>
 <mapping-rules>
 <map apama="codecName"
 transport="codecName"
 type="string" default=""/>

StatusSupport

Developing Adapters 5.2.0 127

 <map apama="transportName"
 transport="transportName"
 type="string" default=""/>
 <map apama="connectionName"
 transport="connectionName"
 type="string" default=""/>
 <map apama="connectionGeneration"
 transport="connectionGeneration"
 type="string" default=""/>
 </mapping-rules>
</event>

StatusSupport
Consumers of the IAFStatusManager events are typically the adapter service monitors. In some cases
it may desirable for an Apama application to have a more generic view of components and their
status information so that getting status information will look the same across all components in
a system, regardless of component type. For example, in addition to the information provided by
the IAFStatusManager such as whether the adapter is up or connected, it may be useful to provide
confirmation that the adapter has successfully logged in to an external system or a message that the
external system is down.

Apama provides an interface called the StatusSupport event interface to help define this. It allows
applications (EPL code or scenarios and blocks) to see state from service monitors such as the
adapter service monitors. In order to implement this behavior, adapter authors add code to the
adapter service monitors to handle the various StatusSupport events. Developers of Apama
applications can then add code to take appropriate actions for the StatusSupport events to their
applications that use the adapters. In this way, an application can act as a “health monitor” and be
notified when a component is down or what its status is at any given time.

The StatusSupport events are described "StatusSupport events" on page 127.

The StatusSupport event interface is a subscription based interface, so consumers of this information
will need to subscribe before receiving status information. The adapter service monitors need to
reference count the status subscribers, so they do not stop sending status information if there are any
interested consumers left. A subscription will only be removed when the call to remove the last one
is made.

StatusSupport events
The StatusSupport event interface is defined in the StatusSupport.mon file, which is found in the
monitors directory of the Apama installation (note, this is not the same directory as adapters\monitors).

All of the StatusSupport events contain the following fields:

serviceID — The serviceID to subscribe to, a blank in this field targets all services

object — The object to request status of - this may include:

“Connection" - whether connected or not

"MarketState" - a market may be "Open", "Closed", or other states

subServiceID — The subService ID to subscribe to. Some services may expose several services. The
interpretation of this string is adapter-specific.

StatusSupport

Developing Adapters 5.2.0 128

connection — The connection to subscribe to.Some services may expose several services. The
interpretation of this string is adapter-specific.

The StatusSupport interface defines the following events:

SubscribeStatus — This event is sent to the service monitor to subscribe to status.
 event SubscribeStatus {
 string serviceID;
 string object;
 string subServiceID;
 string connection;
 }

UnsubscribeStatus —
 event UnsubscribeStatus {
 string serviceID;
 string object;
 string subServiceID;
 string connection;
 }

Status —
 event Status {
 string serviceID;
 string object;
 string subServiceID;
 string connection;
 string description;
 sequence<string> summaries;
 boolean available;
 wildcard dictionary <string, string> extraParams;
 }

The additional fields for the Status event type are:

description — A free-form text string giving a description of the status.

summaries — The status of the object requested. This will be a well recognized sequence of words
- for example, a financial market's "MarketState" may be "Open", "Closed", "PreOpen", etc. A
Connection may be "Connected", "Disconnected", "Disconnected LoginFailed", "Disconnected
TimedOut", etc. There should be at least one entry in the sequence.

available — True if the object is "available" - the exact meaning is adapter specific; for example,
connected, open for general orders, etc.

extraParams — Extra parameters that do not map into any of the above. Convention is that keys
are in TitleCase. e.g. "Username", "CloseTime", etc.

A Status event does not denote a change of state, merely what the current state is — in particular,
one will be sent out after every SubscribeStatus request.

Any adapter specific information that the application needs to supply or be supplied can be passed
in the extraParams dictionary — these are free-form (though there are conventions on the keys, see
below).

StatusError —
 event StatusError {
 string serviceID;
 string object;
 string subServiceID;
 string connection;
 string description;
 boolean failed;

StatusSupport

Developing Adapters 5.2.0 129

 }

The additional field for this event type is:

failed — Whether the subscription has been terminated. Any subscribers will need to send a new
SubscribeStatus request after this.

Note that the purpose of the StatusError event is to report a problem in the delivery of status
information, not to report an “error” status. A StatusError should be sent when the service is unable
to deliver status for some reason. For example, reports on the status of an adapter transport's
connection to a downstream server cannot be sent if the correlator has lost its connection to
the adapter — in this case the service would be justified in sending a StatusError event for the
downstream connection status. However, in the same situation the service should continue to
send normal Status events for the correlator-adapter connection status, as this status is known. The
available flag in these Status events would of course be set to false to indicate that the connection is
down.

If the failed flag in a StatusError event is true, this indicates that the failure in status reporting is
permanent and any active status subscriptions will have been cancelled and receivers will need to
re-subscribe if they wish to receive further status updates from the service. If the failed flag is false,
the failure is temporary and receivers should assume that the flow of Status events will resume
automatically at some point.

Mapping example

Developing Adapters 5.2.0 130

Chapter 10: Out of and Connection Notifications

n Mapping example .. 130

n Ordering of out of band notifications ... 132

When a sender and receiver component, such as a correlator, connects to or disconnects from the
Integration Adapter Framework (IAF), the IAF automatically sends out of band notification events
to adapter transports. Out of band notifications are events that are automatically sent to all public
contexts in a correlator whenever any component (an IAF adapter, dashboard, another correlator, or
a client built using the Apama SDKs) connects or disconnects from the correlator. These out of band
events, which are defined in the com.apama.oob package, are:

ReceiverConnected

SenderConnected

ReceiverDisconnected

SenderDisconnected

The ReceiverConnected and SenderConnected events contain the name of the component that is
connecting. When correlators and IAF adapters send a notification event, the format of the string that
contains the component name is as follows:

"name (on port port_number)"

The name is the name that was specified when the component was started. For correlators and IAF
adapters, you can specify a name with the --name option when you start the component. The name
defaults to correlator or iaf according to the type of component. The port_number is the port that the
connecting receiver or sender is running on.

Out of band events make it possible for a developer of an adapter to add appropriate actions for
the adapter to take when it receives notice that a component has connected or disconnected. For
example, an adapter can cancel outstanding orders or send a notification to an external system.
In order to make use of the out of band events, adapters need to provide suitable mapping in the
adapter configuration file. Adapters are also free to ignore these events.

For general information about using out of band notifications, see "Out of band connection
notifications" in Developing Apama Applications in EPL.

Mapping example
Out of band events will only be received by codecs and transports if the semantic mapper is
configured to allow them through. The semantic mapper should be configured as for any other set of
events which it may wish to pass down. For more information on creating semantic mapping rules,
see "The <event> mapping rules" on page 35.

For example:
<event package="com.apama.oob" name="ReceiverDisconnected"
 direction="upstream" encoder="$CODEC$" inject="false">
 <id-rules>

Mapping example

Developing Adapters 5.2.0 131

 <upstream />
 </id-rules>
 <mapping-rules>
 <map type="string" default="OutOfBandReceiverDisconnected" transport="_name" />
 <map apama="physicalId" transport="physicalId" default="" type="string" />
 <map apama="logicalId" transport="logicalId" default="" type="string" />
 </mapping-rules>
</event>
<event package="com.apama.oob" name="ReceiverConnected"
 direction="upstream" encoder="$CODEC$" inject="false">
 <id-rules>
 <upstream />
 </id-rules>
 <mapping-rules>
 <map type="string" default="OutOfBandReceiverConnected" transport="_name" />
 <map apama="name" transport="appname" default="" type="string" />
 <map apama="host" transport="address" default="" type="string" />
 <map apama="physicalId" transport="physicalId" default="" type="string" />
 <map apama="logicalId" transport="logicalId" default="" type="string" />
 </mapping-rules>
</event>
<event package="com.apama.oob" name="SenderDisconnected"
 direction="upstream" encoder="$CODEC$" inject="false">
 <id-rules>
 <upstream />
 </id-rules>
 <mapping-rules>
 <map type="string" default="OutOfBandSenderDisconnected" transport="_name" />
 <map apama="physicalId" transport="physicalId" default="" type="string" />
 <map apama="logicalId" transport="logicalId" default="" type="string" />
 </mapping-rules>
</event>
<event package="com.apama.oob" name="SenderConnected" direction="upstream"
 encoder="$CODEC$" inject="false">
 <id-rules>
 <upstream />
 </id-rules>
 <mapping-rules>
 <map type="string" default="OutOfBandSenderConnected" transport="_name" />
 <map apama="name" transport="appname" default="" type="string" />
 <map apama="host" transport="address" default="" type="string" />
 <map apama="physicalId" transport="physicalId" default="" type="string" />
 <map apama="logicalId" transport="logicalId" default="" type="string" />
 </mapping-rules>
</event>

The events are transmitted to signify the following events:

ReceiverConnected — an external receiver has connected; the IAF can now send events to it.

ReceiverDisconnected — an external receiver has disconnected; events will not be sent to this
external receiver until it reconnects.

SenderConnected — an external sender has connected. This external sender may send events
following this event.

SenderDisconnected — an external sender has disconnected. No more events will be received from
this sender until a new SenderConnected message event is received.

However, adapters can make use of a disconnect message to not transmit events until such time as a
connect occurs. For example, an adapter can coalesce events or tell external system to stop sending.
Note that if multiple senders and receivers are connected and disconnected, the adapter will need to
keep track of which one is connected.

Out of and Connection Notifications

Ordering of out of band notifications

Developing Adapters 5.2.0 132

Ordering of out of band notifications
The following guidelines describe when out of band connection and disconnection messages are
received, and how this interacts with the framework provided to IAF adapters:

Transports and codecs will not be sent events until after their start function has been called and
completed. Transports should not start generating events until their start function has been
called. The first event that is delivered after the start function is called will be a SenderConnected or
ReceiverConnected event, if the semantic mapper is configured to pass them through. An adapter will
always receive the SenderConnected before it begins to receive any other events, but the ordering of the
ReceiverConnected and SenderConnected events is not guaranteed.

If a correlator (or other component) disconnects or terminates while the adapter is running, the
adapter will receive both ReceiverDisconnected and SenderDisconnected events. Again, the ordering of
these events is not guaranteed. Once a SenderDisconnected event is received, no further events from
that correlator will be received until a SenderConnected event is received. When a ReceiverDisconnected
event is received, no more events will be sent to that correlator until a ReceiverConnected event is
received. Note that in this situation, some previously sent events may not yet have reached that
correlator. The events will be discarded (or sent to other receivers, if other receivers are connected).

On a reload of an adapter, the adapter will be stopped, new configuration loaded, and the adapter
restarted. During this period, the IAF will not drop its connection unless the configuration of which
components to connect to has changed. As such, if prior to stopping for a reload the correlator was
connected, it is safe to assume that it remains connected unless, on reload, the adapters receive
SenderDisconnected or ReceiverDisconnected events.

During a reload, the IAF can also load new adapters. In this event, as the IAF may already have
a connection open, no ReceiverConnected or ReceiverDisconnected event may be received by the new
adapters. It is thus recommended to not change transports and codecs when reconfiguring the IAF
if the adapters depend on receiving the out of band events. In practice, it is unusual to change the
loaded transports or codecs.

Once an adapter has entered a stopped state, it will not receive any further events (unless it later re-
enters a started state). Since the shutdown order of the IAF is to move all adapters to their 'stopped'
state, then disconnect from downstream processes, adapters will not receive a final 'disconnected'
event. Therefore, the adapter may need to notify external systems on the stop function being called,
as well as on disconnected events.

The following topics describe the ordering the transport will see of calls to start, stop and the
transport receiving out of band and normal events.

When starting the IAF

IAF Begins Initialization

Adapters Initialize

IAF connects to Correlator

[IAF Receives SenderConnected and ReceiverConnected - these are queued]

Adapter changes state to Started

Ordering of out of band notifications

Developing Adapters 5.2.0 133

Prior to receiving any other events, the semantic mapper (and then codec and adapter) receive
the now unqueued out of band SenderConnected and ReceiverConnected events.

The SenderConnected event will arrive before any other events from said sender are delivered

IAF shutdown requested

Adapters state changes from started to stopped

IAF disconnects from correlator

Because transport is in state 'stopped', no events are received

IAF terminates

IAF Configuration Reload

Transport is in state 'started'

IAF transitions transport to state 'stopped'

IAF keeps its connection to the correlator up

IAF transitions transport to state started

Transport checks state, notices that it believes a connection is up, and continues to work without
any changes

IAF Configuration reload changes correlator connection

Transport is in state 'started'

IAF transitions transport to state 'stopped'

IAF breaks its connection to the correlator

IAF receives ReceiverDisconnected and SenderDisconnected

Since the transports are stopped, these events are queued

IAF opens a new connection to a new correlator

IAF receives ReceiverConnected and SenderConnected

Since the transports are stopped, these events are queued

IAF transitions transport to state started

Transport checks state, notices that it believes a connection is up, and continues to work without
any changes

Prior to receiving any other events, the ReceiverDisconnected and SenderDisconnected events are
received

Following these, but prior to receiving any other events, the ReceiverConnected and SenderConnected
events are received

The transport can then behave as if a new connection has been made

Correlator dies (and a new one is started) while the IAF is running

Transport is in state 'started'

Ordering of out of band notifications

Developing Adapters 5.2.0 134

Correlator breaks its connection to the IAF

IAF receives ReceiverDisconnected and SenderDisconnected

Transport receives ReceiverDisconnected and SenderDisconnected

Following SenderDisconnected no more events should arrive from the correlator

Time Passes

A new correlator makes a connection to the IAF

IAF receives ReceiverConnected and SenderConnected

Transport receives ReceiverConnected and SenderConnected

The transport can now behave as if a new connection has been made

Out of and Connection Notifications

Creating a payload field

Developing Adapters 5.2.0 135

Chapter 11: The Event Payload

n Creating a payload field .. 135

n Accessing the payload in the correlator .. 136

As already described, Apama events are rigidly structured and need to comply with a precise event
type definition. This describes the structure of a particular event: in particular its name, as well as the
order, name, type and number of its constituent fields.

By contrast, external events, even when they are of the same ‘type’ or nature (e.g. all Trade events or
News headlines) might vary in format and structure, even when originating from the same source or
feed.

In order to accommodate this, Apama provides an optional payload field in Apama events. The
payload field, typically the last field in an event type definition, can embed any number of additional
optional fields in addition to the always-present primary fields.

For example, consider an external message that can appear in several guises, but where each always
consists of a particular subset of critical fields together with a variable number of additional optional
fields.

If it is desired that these varying guises are mapped to a single Apama event type, then this needs to
be defined so that its fields correspond to the subset of critical (and always present) fields, followed
by a payload field into which the additional (and optional) fields are embedded.

Creating a payload field
When so configured, the Semantic Mapper will transparently create a payload field in an event.

As described in "Event mappings configuration" on page 29, one of the attributes of the event-
mapping element <event> is copyUnmappedToDictionaryPayload.

Note: As of Release 4.1, the copyUnmappedToPayload attribute is deprecated.

The copyUnmappedToDictionaryPayload attribute defines what the Semantic Mapper should do with any
fields in the incoming messages that do not match with any field mapping, i.e. if there are no rules
that specifically copy their contents into a field within the Apama event being generated.

If both these attributes are set to false (or if one is false and the other is not present), any unmapped
fields are discarded. If the value of either copyUnmappedToDictionaryPayload or copyUnmappedToPayload
is set to true, unmapped fields will be packaged into a payload field, called __payload, set to be
the last field of the Apama event type generated by the Semantic Mapper. If the values of both
copyUnmappedToDictionaryPayload and copyUnmappedToPayload are set to true, copyUnmappedToPayload is
ignored.

The Event Payload

Accessing the payload in the correlator

Developing Adapters 5.2.0 136

Accessing the payload in the correlator
Apama recommends that you use copyUnmappedToDictionaryPayload instead of the deprecated
copyUnmappedToPayload. Using copyUnmappedToDictionaryPayload puts all the payload fields in a
standard EPL dictionary, it is more easily accessed, more efficient, and easier to use. In contrast,
copyUnmappedToPayload uses a custom format that requires the use of the PayloadPlugin to decode and
access.

The contents of the payload field used by copyUnmappedToPayload are structured as a list of field
name and value pairs. Although this may be directly accessed as a string within EPL code, Apama
provides the Payload Correlator plug-in to make extraction and manipulation of specific fields more
straightforward. This plug-in is included with Apama.

The Payload Extraction plug-in is available as libPayloadPlugin.so in the Apama installation’s
lib directory on UNIX. On Microsoft Windows it is available as PayloadPlugin.dll in the Apama
installation’s bin folder.

For information on how to use the Payload Extraction plug-in, and on the suite of EPL functions it
provides, please refer to "Using the payload extraction plug-in" in Developing Apama Applications in
EPL.

The Event Payload

The Null Codec plug-in

Developing Adapters 5.2.0 137

Chapter 12: Standard Plug-ins

n The Null Codec plug-in ... 137

n The File Transport plug-in ... 140

n The String Codec plug-in .. 141

n The Filter Codec plug-in .. 142

n The XML codec plug-in ... 145

n The CSV codec plug-in ... 158

n The Fixed Width codec plug-in ... 160

Apama includes the following standard codec plug-ins:

"The Null Codec plug-in" on page 137

"The File Transport plug-in" on page 140

"The String Codec plug-in" on page 141

"The Filter Codec plug-in" on page 142

"The XML codec plug-in" on page 145

"The CSV codec plug-in" on page 158

"The Fixed Width codec plug-in" on page 160

As well as being useful examples of how event transports and codecs can be written, these plug-ins
are provided for your convenience as an aid to testing and the development of custom adapters that
make use of them ‘as is’.

The compiled binaries for all the standard plug-ins are copied to the \bin and \lib directories (for the
C and Java versions respectively) automatically if you chose Developer during the Apama installation.

Information on where to find the source code and how to build those plug-ins for which source code
is available can be found in "IAF samples" on page 45.

The Null Codec plug-in
The NullCodec/JNullCodec codec layer plug-ins are very useful in situations where it does not make
sense to decouple the transport and codec layers. The transport layer plug-in might be best placed
to perform all the necessary encoding and/or decoding of events, and to supply and receive Apama
normalized events, rather than custom transport-specific messages.

The Null Codec plug-in is provided to make it easy to develop such transport plug-ins. This is a
trivial codec layer plug-in that passes downstream normalized events from the transport layer to the
Semantic Mapper, and upstream normalized events from the Semantic Mapper to the transport layer
with no modification.

The Null Codec plug-in

Developing Adapters 5.2.0 138

In order to load this plug-in, the <codec> element in the adapter’s configuration file needs to load the
NullCodec or JNullCodec library (this represents the filename of the library that implements the plug-
in). Note that for the Java version, the full path to the plug-in’s .jar file needs to be specified.

A configuration file for C/C++ uses this:
<codec name="NullCodec" library="NullCodec">

In a configuration file for Java:
<codec name="JNullCodec"
 jarName="Apama_install_dir\lib\JNullCodec.jar" className="com.apama.iaf.codec.nullcodec.JNullCodec">

Note: The NullCodec and JNullCodec plug-ins can only be used with transport plug-ins that
understand NormalisedEvent objects. The Null Codec plug-ins expect downstream NormalisedEvent
objects from the transport and pass upstream NormalisedEvent objects it receives directly to the
transport plug-in. Using the Null Codec plug-ins with a transport that expects any other kind of
object does not work and can possibly crash the adapter.

Null codec transport-related properties
This codec plug-in supports standard Apama properties that are used to specify the name of the
transport that will send upstream measages.

Transport-related properties

transportName - This property specifies the transport that the codec should send upstream events
to. The property can be used multiple times. The codec maintains a list of all transport names
specified in the IAF configuration file. A transportName property with an empty value is ignored
by the codec.

If no transports are provided in the configuration file then the codec saves the last added
EventTransport as the default transport. An upstream event is sent to the default transport if no
transport information is provided in the normalized event or in the IAF configuration file.

transportFieldName - This property specifies the name of the normalized event field whose value
gives the name of the transport that the codec should send the upstream event to. You can also
provide a transport name by specifying a value in the __transport field. Empty values of these
fields are ignored and treated as if not present.

removeTransportField - The value of this property specifies whether the transport related fields
should be removed from the upstream event before sending it to transport. The default value is
true. If the property is set then the field specified by the transportFieldName property and the field
named __transport are removed from the upstream event if they are present. Values 'yes', 'y', 'true',
't', '1' ignore cases and are treated as true for this property; any other value is treated as false.

Upstream behavior

The plug-in's behavior when an upstream event is received proceeds in this order:

1. The codec gets the name of the field that contains the transport name from the value of
transportFieldName property. From the specified field, the codec then gets the transport name and
sends the event to that transport. If the transportFieldName property is not specified, if the value

The Null Codec plug-in

Developing Adapters 5.2.0 139

of the property is empty, if the field is not present in the event, or if the transport name is empty
then then codec tries [2].

For example, the following configuration specifies two transports and the filter codec specifies a
transport field named TRANSPORT:
<transports>
 <transport name="MARKET_DATA" library="transport-lib">
 <property name="Host" value="datahost.com" />
 <property name="Port" value="444" />
 </transport>
 <transport name="ORDER_MANAGEMENT" library="transport-lib">
 <property name="Host" value="orderhost.com" />
 <property name="Port" value="1234" />
 </transport>
</transports>
<codecs>
 <codec name="NullCodec" library="NullCodec">
 <property name="transportFieldName" value="TRANSPORT"/>
 ...
 </codec>
</codecs>

The IAF can now route any upstream event that defines a TRANSPORT field to one of these two
transports. The value of the TRANSPORT field, either MARKET_DATA or ORDER_MANAGEMENT, determines the
transport. Note: If the removeTransportField property is set true or not defined, then the TRANSPORT
field and __transport will be removed (if present) from the upstream event before sending it to
transport.

2. The codec gets the transport name from the _transport field of the normalized event and sends
the event to specified transport. If the _transport field is not present or if the transport name
specified is empty, the codec then tries [3].

For example, in the above configuration, consider an upstream event that does not have a
TRANSPORT field or the value of the field is empty. If this event has a value in the __transport field of
either MARKET_DATA or ORDER_MANAGEMENT, then that value determines the transport.

3. The codec loops through all transports specified in the transportName property and sends the event
to the transport. If no transport is specified then the codec tries [4]. Note that the codec ignores all
transport names that are empty.

If an exception occurs while sending the event to any transport, then the codec logs the exception
and continues sending events to the remaining transports. If the codec was able to send the
event to at least one transport, then it does not throws an exception; otherwise, it throws the last
captured exception.

For example, the following configuration specifies two transports:
<transports>
 <transport name="MARKET_DATA" library="transport-lib">
 <property name="Host" value="datahost.com" />
 <property name="Port" value="444" />
 </transport>
 <transport name="ORDER_MANAGEMENT" library="transport-lib">
 <property name="Host" value="orderhost.com" />
 <property name="Port" value="1234" />
 </transport>
</transports>
<codecs>
 <codec name="NullCodec" library="NullCodec">
 <property name="transportName" value="ORDER_MANAGEMENT"/>
 ...
 </codec>
</codecs>

The File Transport plug-in

Developing Adapters 5.2.0 140

In this example, the codec has not defined the transportFieldName property. The IAF will route any
upstream event that does not contain a __transport field or has empty value in that field to the
ORDER_MANAGEMENT transport.

4. If a default transport name is present, then the codec sends the event to that transport. The
default transport is the last-added transport. If a default transport is also not found then, it
throws an exception.

The File Transport plug-in
The FileTransport/JFileTransport transport layer plug-ins can read and write messages both from
and to a text file. This makes it very convenient for testing string encoding and decoding, semantic
mappings, and EPL code, because a text file with some sample messages can be put together quickly
and then run through the IAF. Similarly in the upstream direction it allows messages to be written to
a file instead of an external message sink such as a middleware message bus.

Messages (or events) are read from and written to named files. Each line of the input file is taken to
be a single input event. Each output event is written to a new line of the output file.

In order to load this plug-in, the <transport> element in the adapter’s configuration file must load the
FileTransport library (this represents the filename of the library that implements the plug-in). Note
that for the Java version, the full path to the plug-in’s .jar file must be specified.

A configuration file for C/C++ would use this:
<transport name="FileTransport" library="FileTransport">

In a configuration file for Java:
<transport name="JFileTransport"
 jarName="Apama_install_dir\lib\JFileAdapter.jar"
 className="com.apama.iaf.transport.file.JFileTransport">

The File Transport plug-in takes the following properties:

input — Specifies the name of the input file.

output — Specifies the name of the output file.

cycle — Specifies the number of times that the plug-in should cycle through the input file. Any
value less than zero causes the plug-in to cycle endlessly, until the adapter is either shut down or
re-configured. A zero value (the default if the property is missing) means ‘no cycling’ and results
in the same behavior as if the value of this property was ‘1’.

For more information on specifying plug-ins in an adapter’s configuration file, see "Transport and
codec plug-in configuration" on page 27.

The plug-in automatically stops after reading the entire input file the requested number of times. If
the adapter is subsequently asked to reload its configuration, the plug-in starts running again, using
the current property values in the configuration file. If the adapter configuration is reloaded while
the plug-in is running, the new configuration will not take effect until the plug-in reaches the end of
the current input file. In this case, a second reload request is required before the plug-in will actually
start reading the new file.

By default, the File Transport plug-in always communicates with the event codec using Java String
objects. Therefore, the String Codec plug-in is a suitable companion as it provides a mechanism for
converting between String objects and normalized events.

The String Codec plug-in

Developing Adapters 5.2.0 141

There are some minor differences between the C and Java implementations:

In the C version, if no input filename is specified, the standard input stream is used; similarly if
no output filename is specified the standard output stream is used.

In the Java version, there is an extra property called upstreamNormalised. If this is specified and
set to true, the File Transport communicates with its codec using NormalisedEvent objects rather
than String objects. In this configuration it should be used with the JNullCodec, which does not
perform any encoding or decoding but simply passes the unchanged NormalisedEvent objects
between the codec and transport layers. If upstreamNormalised is set to true, the File Transport
uses the functionality of the JStringCodec class to perform encoding/decoding, and all the
properties available for use with the JStringCodec plug-in class can be specified as properties to
the JFileTransport.

This is one of the sample plug-ins for which source code is available – see "IAF samples" on page 45
for more information.

The String Codec plug-in
The StringCodec/JStringCodec codec plug-ins read transport events as simple text strings and breaks
them into fields, names and values, using delimiter strings supplied by configuration properties.

Events are assumed to have the following general format:
<name1><sepA><value1><sepB><name2><sepA><value2><sepB>…<namen><sepA><valuen><terminator>

where <name> corresponds to the field name, followed by a delimiter character or string <sepA>,
followed by the field’s value, <value>. The complete <name> and <value> pair is then separated from
another such sequence by a <sepB> delimiter. This pattern is assumed to repeat itself.

Fields with empty values are permitted. Because the terminator is optional, the codec will consume
names and values up to the end of the input string if no terminator is found.

In order to load this plug-in, the <codecs> element in the adapter’s configuration file must load the
StringCodec library (this represents the filename of the library that implements the plug-in). Note that
for the Java version, the full path to the plug-in’s .jar file must be specified.

A configuration file for C/C++ would use this:
<codec name="StringCodec" library="StringCodec">

In a configuration file for Java:
<codec name="JStringCodec"
 jarName="Apama_install_dir\lib\JFileAdapter.jar"
 className="com.apama.iaf.codec.string.JStringCodec">

The String Codec plug-in takes the following properties:

NameValueSeparator — The string used to separate names and values (<sepA> above).

FieldSeparator — The string used to separate fields (<sepB> above).

Terminator — The string used to mark the end of the event string.

All properties must be specified in the adapter configuration file.

For more information on specifying plug-ins in an adapter’s configuration file, see "Transport and
codec plug-in configuration" on page 27.

The Filter Codec plug-in

Developing Adapters 5.2.0 142

This is one of the sample plug-ins for which source code is available – see the "IAF samples" on page
45 for more information.

The Filter Codec plug-in
The Apama filter codec plug-ins filter normalized event fields. You can use the filter codec to:

Route upstream events to particular transports

Remove particular fields from upstream and/or downstream events

To use the filter codec, the FilterCodec or JFilterCodec library must be available to the IAF at runtime.
These are the filenames of the C++ and Java libraries that implements the plug-in.

In order to load this plug-in, the <codec> element in the adapter’s configuration file needs to load
either the FilterCodec or JFilterCodec library. Note that for the Java version, the full path to the plug-
in’s .jar file needs to be specified.

A configuration file for C/C++ uses this:
<codec name="FilterCodec" library="FilterCodec">

In a configuration file for Java:
<codec name="JFilterCodec"
 jarName="Apama_install_dir\lib\JFilterCodec.jar"
 className="com.apama.iaf.codec.filtercodec.JFilterCodec">

To configure the filter codec, add the following to the <codecs> section of the IAF configuration file:
<codec name="FilterCodec" library="FilterCodec">
 <property name="transportFieldName" value="transport_field_name"/>
 <property name="filter_spec_1" value="filter_condition_1"/>
 <property name="filter_spec_2" value="filter_condition_2"/>
...
 <property name="filter_spec_n" value="filter_condition_n"/>
</codec>

Details for replacing the variables in the above codec section are in the following topics:

"Filter codec transport-related properties" on page 142

"Specifying filters for the filter codec" on page 144

"Examples of filter specifications" on page 145.

Filter codec transport-related properties
This codec plug-in supports standard Apama properties that are used to specify the name of the
transport that will send upstream measages.

Transport-related properties

transportName - This property specifies the transport that the codec should send upstream events
to. The property can be used multiple times. The codec maintains a list of all transport names
specified in the IAF configuration file. A transportName property with an empty value is ignored
by the codec.

The Filter Codec plug-in

Developing Adapters 5.2.0 143

If no transports are provided in the configuration file then the codec saves the last added
EventTransport as the default transport. An upstream event is sent to the default transport if no
transport information is provided in the normalized event or in the IAF configuration file.

transportFieldName - This property specifies the name of the normalized event field whose value
gives the name of the transport that the codec should send the upstream event to. You can also
provide a transport name by specifying a value in the __transport field. Empty values of these
fields are ignored and treated as if not present.

removeTransportField - The value of this property specifies whether the transport related fields
should be removed from the upstream event before sending it to transport. The default value is
true. If the property is set then the field specified by the transportFieldName property and the field
named __transport are removed from the upstream event if they are present. Values 'yes', 'y', 'true',
't', '1' ignore cases and are treated as true for this property; any other value is treated as false.

Upstream behavior

The plug-in's behavior when an upstream event is received proceeds in this order:

1. The codec gets the name of the field that contains the transport name from the value of
transportFieldName property. From the specified field, the codec then gets the transport name and
sends the event to that transport. If the transportFieldName property is not specified, if the value
of the property is empty, if the field is not present in the event, or if the transport name is empty
then then codec tries [2].

For example, the following configuration specifies two transports and the filter codec specifies a
transport field named TRANSPORT:
<transports>
 <transport name="MARKET_DATA" library="transport-lib">
 <property name="Host" value="datahost.com" />
 <property name="Port" value="444" />
 </transport>
 <transport name="ORDER_MANAGEMENT" library="transport-lib">
 <property name="Host" value="orderhost.com" />
 <property name="Port" value="1234" />
 </transport>
</transports>
<codecs>
 <codec name="FilterCodec" library="FilterCodec">
 <property name="transportFieldName" value="TRANSPORT"/>
 ...
 </codec>
</codecs>

The IAF can now route any upstream event that defines a TRANSPORT field to one of these two
transports. The value of the TRANSPORT field, either MARKET_DATA or ORDER_MANAGEMENT, determines the
transport. Note: If the removeTransportField property is set true or not defined, then the TRANSPORT
field and __transport will be removed (if present) from the upstream event before sending it to
transport.

2. The codec gets the transport name from the _transport field of the normalized event and sends
the event to specified transport. If the _transport field is not present or if the transport name
specified is empty, the codec then tries [3].

For example, in the above configuration, consider an upstream event that does not have a
TRANSPORT field or the value of the field is empty. If this event has a value in the __transport field of
either MARKET_DATA or ORDER_MANAGEMENT, then that value determines the transport.

The Filter Codec plug-in

Developing Adapters 5.2.0 144

3. The codec loops through all transports specified in the transportName property and sends the event
to the transport. If no transport is specified then the codec tries [4]. Note that the codec ignores all
transport names that are empty.

If an exception occurs while sending the event to any transport, then the codec logs the exception
and continues sending events to the remaining transports. If the codec was able to send the
event to at least one transport, then it does not throws an exception; otherwise, it throws the last
captured exception.

For example, the following configuration specifies two transports:
<transports>
 <transport name="MARKET_DATA" library="transport-lib">
 <property name="Host" value="datahost.com" />
 <property name="Port" value="444" />
 </transport>
 <transport name="ORDER_MANAGEMENT" library="transport-lib">
 <property name="Host" value="orderhost.com" />
 <property name="Port" value="1234" />
 </transport>
</transports>
<codecs>
 <codec name="FilterCodec" library="FilterCodec">
 <property name="transportName" value="ORDER_MANAGEMENT"/>
 ...
 </codec>
</codecs>

In this example, the codec has not defined the transportFieldName property. The IAF will route any
upstream event that does not contain a __transport field or has empty value in that field to the
ORDER_MANAGEMENT transport.

4. If a default transport name is present, then the codec sends the event to that transport. The
default transport is the last-added transport. If a default transport is also not found then, it
throws an exception.

Specifying filters for the filter codec
You specify each filter as a codec property. The filter codec plug-in applies each filter you specify
to incoming and outgoing events as they pass through the codec. The property name identifies the
field(s) that the filter applies to and the property value specifies the condition that must be true for
the filter to operate.

The general syntax of a filter specification is:
<property name="filter[.direction][.field_name]" value="condition" />

direction Indicates the direction of the events that the filter applies to. Specify
downstream, upstream, or both. The default is both.

field_name Identifies the field that the filter applies to. The default is that the
filter applies to all fields in the event.

condition Specifies the value that the field must have that causes it to be
removed from the event.

The XML codec plug-in

Developing Adapters 5.2.0 145

Examples of filter specifications
The following filter removes the price field from upstream events when the value of the price field is
0.0:
<property name="filter.upstream.price" value="0.0"/>

The following filter removes the name field from upstream and downstream events when the value of
the name field is NULL:
<property name="filter.both.name" value="NULL"/>

In upstream events, the following filter removes each field in which the value is 55:
<property name="filter.upstream" value="55"/>

In upstream and downstream events, the following filter removes each field in which the value is
<remove>:
<property name="filter" value="<remove>"/>

The XML codec plug-in
The Apama XML codec converts messages between the following two formats:

IAF normalized event whose field values are strings that contain XML data.

Normalized event in which each field is a name/value pair. These unordered fields contain
elements, attributes, CDATA, and text.

Figure 2. XML codec plug-in

To use the XML codec, you must add some information to the IAF configuration file and then set up
the classpath. After you do this, you can launch the adapter by running the IAF executable.

For an example configuration file, see adapters\config\XMLCodec-example.xml.dist in the Apama
installation directory. This file can be changed as required for the purposes of your data and the
content added to the adapter configuration file in which the codec is to be used.

The XML codec plug-in

Developing Adapters 5.2.0 146

Use the information in the following topics to help you configure the XML codec:

"Supported XML features" on page 146

"Adding XML codec to adapter configuration" on page 146

"Setting up the classpath" on page 147

"About the XML parser" on page 147

"Specifying XML codec properties" on page 148

"Description of event fields that represent normalized XML" on page 153

"Examples of conversions" on page 155

Supported XML features
The XML codec can convert messages that contain the following:

Elements

Attributes

Text nodes

CDATA nodes, including CDATA nodes that contain an XML document to be parsed

CDATA nodes are supported only in the downstream direction.

Namespace prefixes and definitions (only basic support)

XPath expressions, including functions

Result types of XPath expressions must be simple. For example,

string contains();

The XML codec cannot convert XML data that contains the following XML features:

Document type specifiers

Processing instructions

Notations and entities

XML with more than one top-level (root) element

Node or nodeset XPath expressions

For Node or nodeset XPath expressions, only the first match is returned.

Adding XML codec to adapter configuration
To include the XML codec in the adapter configuration, add the following to the <codecs> section of
the IAF configuration file:
<codec name="XMLCodec"

The XML codec plug-in

Developing Adapters 5.2.0 147

 className="com.apama.iaf.codec.xml.XMLCodec"
 jarName="@ADAPTERS_JARDIR@\XMLCodec.jar"
 >
 <!-- Properties go here -->
</codec>

Typically, @ADAPTERS_JARDIR@ is the APAMA_HOME\adapters\lib directory.

For details about the properties that you can specify, see "Specifying XML codec properties" on page
148.

Setting up the classpath
To use the XML codec, ensure the following JAR files in the APAMA_HOME\lib directory are in the
adapter classpath when you run the IAF.
jplugin_public@LIBRARY_VERSION@.jar
util@LIBRARY_VERSION@.jar
jdom.1.0.jar

If the XML codec JAR file is in the APAMA_HOME\adapters\lib directory, you are all set. The IAF finds
these dependencies automatically. Otherwise, set the classpath either as an environment variable or
in the <java> section of the IAF configuration file.

About the XML parser
On startup, the XML codec logs the names of the classes it is using for XML parsing and XML
generation. For example:
INFO [11808] - XMLCodec: Encoder initialized: using XML Document builder
 'org.apache.xerces.jaxp.DocumentBuilderImpl'
INFO [11808] - XMLCodec: Decoder initialized: using Streaming API for XML (StAX)
 'com.ctc.wstx.stax.WstxInputFactory'

Apama uses Xerces for encoding (creating XML docs) and Woodstox StAX for decoding (parsing).

XML namespace support

If your application relies on the standard XML parsing/generation behavior (that is, not XPath)
there is no concept of "declaring namespaces" in the XML codec nor is it required as long as the
XML document is valid (that is, it declares any namespace prefixes it uses) then you can just use
namespaceprefix:elementName when referring to elements in your mapping rules. If there is any doubt,
you can run your sample message through the XMLCodec property logFlattenedXML=true and it
will show you what to specify in your mapping rules, for example, consider the following sample
message:
<h:table xmlns:h="http://www.myco.com/apama/test/testnamespace_h/"
 xmlns="http://www.myco.com/apama/test/testnamespace_default">
 <h:tr>
 <h:td>Apples</h:td>
 <td>Bananas</td>
 </h:tr>
 </h:table>

With the above sample message you could use mapping rules such as:
<map type="string" default="" apama="default_namespace"
 transport="Body.h:table/@xmlns"/>

The XML codec plug-in

Developing Adapters 5.2.0 148

<map type="string" default="" apama="prefix_namespace"
 transport="Body.h:table/@xmlns:h"/>
<map type="string" default="" apama="prefixed_element_text"
 transport="Body.h:table/h:tr/h:td/text()"/>
<map type="string" default="" apama="non_prefixed_element_text"
 transport="Body.h:table/h:tr/td/text()"/>

If you use XPath in your application, XPath itself contains operators to access the local (non-
namespace) name and namespace URI of any XML content. However it is often convenient to define
some global prefixes to make it easier to refer to namespaced elements. Apama supports this by
allowing any number of XPathNamespace:myprefix codec properties, whose value is the URN that the
specified prefix should point to. For example,
<property name="XPathNamespace:b" value="urn:xmlns:mynamespace"/>

would allow XPath expressions to use "b" to refer to elements in the "mynamespace" namespace:
<property name="XPath:Test.root/b:elementname/text()"/>

Specifying XML codec properties
In the XML codec section of the IAF configuration file, you can set a number of XML properties. For
details about setting properties in the IAF configuration file, see "Plug-in <property> elements" on
page 28.

When you reload the IAF, any changes to these configuration properties take effect in the codec. In
addition to specifying these properties, you must also set up event mappings for XML messages. See
"Event mappings configuration" on page 29.

Properties are described in the following topics:

"Required XML codec properties" on page 148

"Message logging properties" on page 151

"Downstream node order suffix properties" on page 151

"Additional downstream properties" on page 151

"Sequence field properties" on page 151

"Upstream properties" on page 152

"Performance properties" on page 152

Required XML codec properties
The XML codec requires you to set the XMLField and transportName properties. All other properties are
optional.

XMLField — This property identifies the field name that XML will be read from when decoding, and
will be written to when encoding. The flattened XML representation is stored in fields with names
prefixed with the value you specify for the XMLField property.

When you are familiar with how the XML codec behaves, you can specify the XMLField property
multiple times to parse/generate multiple XML documents per event. Parsing follows the order in
which XMLField properties appear, and generating XML follows the reverse order.

The XML codec plug-in

Developing Adapters 5.2.0 149

It is possible to use this mechanism to parse an XML string embedded as CDATA in another XML
string. To do this, specify the flattened field name of the CDATA node as an XMLField. However, note
that sequence fields across separate CDATA nodes are not supported.

transportName — The XML codec sends upstream events to the transport that this property identifies.
This transport must be defined in the same IAF configuration file.

XML codec transport-related properties
This codec plug-in supports standard Apama properties that are used to specify the name of the
transport that will send upstream measages.

Transport-related properties

transportName - This property specifies the transport that the codec should send upstream events
to. The property can be used multiple times. The codec maintains a list of all transport names
specified in the IAF configuration file. A transportName property with an empty value is ignored
by the codec.

If no transports are provided in the configuration file then the codec saves the last added
EventTransport as the default transport. An upstream event is sent to the default transport if no
transport information is provided in the normalized event or in the IAF configuration file.

transportFieldName - This property specifies the name of the normalized event field whose value
gives the name of the transport that the codec should send the upstream event to. You can also
provide a transport name by specifying a value in the __transport field. Empty values of these
fields are ignored and treated as if not present.

removeTransportField - The value of this property specifies whether the transport related fields
should be removed from the upstream event before sending it to transport. The default value is
true. If the property is set then the field specified by the transportFieldName property and the field
named __transport are removed from the upstream event if they are present. Values 'yes', 'y', 'true',
't', '1' ignore cases and are treated as true for this property; any other value is treated as false.

Upstream behavior

The plug-in's behavior when an upstream event is received proceeds in this order:

1. The codec gets the name of the field that contains the transport name from the value of
transportFieldName property. From the specified field, the codec then gets the transport name and
sends the event to that transport. If the transportFieldName property is not specified, if the value
of the property is empty, if the field is not present in the event, or if the transport name is empty
then then codec tries [2].

For example, the following configuration specifies two transports and the filter codec specifies a
transport field named TRANSPORT:
<transports>
 <transport name="MARKET_DATA" library="transport-lib">
 <property name="Host" value="datahost.com" />
 <property name="Port" value="444" />
 </transport>
 <transport name="ORDER_MANAGEMENT" library="transport-lib">
 <property name="Host" value="orderhost.com" />
 <property name="Port" value="1234" />
 </transport>
</transports>
<codecs>
 <codec name="XMLCodec"

The XML codec plug-in

Developing Adapters 5.2.0 150

 className="com.apama.iaf.codec.xml.XMLCode"
 jarName=""@ADAPTERS_JARDIR@\XMLCodec.jar">
 <property name="transportFieldName" value="TRANSPORT"/>
 ...
 </codec>
</codecs>

The IAF can now route any upstream event that defines a TRANSPORT field to one of these two
transports. The value of the TRANSPORT field, either MARKET_DATA or ORDER_MANAGEMENT, determines the
transport. Note: If the removeTransportField property is set true or not defined, then the TRANSPORT
field and __transport will be removed (if present) from the upstream event before sending it to
transport.

2. The codec gets the transport name from the _transport field of the normalized event and sends
the event to specified transport. If the _transport field is not present or if the transport name
specified is empty, the codec then tries [3].

For example, in the above configuration, consider an upstream event that does not have a
TRANSPORT field or the value of the field is empty. If this event has a value in the __transport field of
either MARKET_DATA or ORDER_MANAGEMENT, then that value determines the transport.

3. The codec loops through all transports specified in the transportName property and sends the event
to the transport. If no transport is specified then the codec tries [4]. Note that the codec ignores all
transport names that are empty.

If an exception occurs while sending the event to any transport, then the codec logs the exception
and continues sending events to the remaining transports. If the codec was able to send the
event to at least one transport, then it does not throws an exception; otherwise, it throws the last
captured exception.

For example, the following configuration specifies two transports:
<transports>
 <transport name="MARKET_DATA" library="transport-lib">
 <property name="Host" value="datahost.com" />
 <property name="Port" value="444" />
 </transport>
 <transport name="ORDER_MANAGEMENT" library="transport-lib">
 <property name="Host" value="orderhost.com" />
 <property name="Port" value="1234" />
 </transport>
</transports>
<codecs>
 <codec name="XMLCodec"
 className="com.apama.iaf.codec.xml.XMLCodec"
 jarName="@ADAPTERS_JARDIR@\XMLCodec/jar">
 <property name="transportName" value="ORDER_MANAGEMENT"/>
 ...
 </codec>
</codecs>

In this example, the codec has not defined the transportFieldName property. The IAF will route any
upstream event that does not contain a __transport field or has empty value in that field to the
ORDER_MANAGEMENT transport.

4. If a default transport name is present, then the codec sends the event to that transport. The
default transport is the last-added transport. If a default transport is also not found then, it
throws an exception.

The XML codec plug-in

Developing Adapters 5.2.0 151

Message logging properties
logFlattenedXML — If true, the IAF log contains a list of the name/value pairs generated by the XML
codec when flattening XML received from the transport, at CRIT level. Each field is on a different line,
which makes it easy to see what fields are being generated and what the mapping's transport field
names should be set to. Turning this on in production impacts performance. The default is false.

logAllMessages — If true, the IAF log contains the full contents of every message sent upstream or
downstream, before and after encoding, and before and after decoding, all at CRIT level. Turning this
on in production impacts performance. The default is false.

Downstream node order suffix properties
generateTwinOrderSuffix — If true, all field names for text, CDATA and element nodes are appended
with "", "[2]", "[3]", and so on. The number specifies the position of this node relative to 'twins', that
is, nodes of the same type and name. These order suffixes provide a partial order for the XML nodes.
Note that the first child node with a given name is defined to have no suffix (rather than an explicit
"[1]"), to improve readability. The default is false.

Use this property when you need to map fields without sensitivity to the precise order in which
differently named nodes appear in the XML. This is probably a more useful option than setting the
generateSiblingOrderSuffix property for most users of the XML codec.

generateSiblingOrderSuffix — If true, all field names for text, CDATA and element nodes (except the
root element) are appended with "#1", "#2", and so on. The number specifies the position of this node
relative to all its siblings (of any type, such as element or CDATA.). These order suffixes provide a
total order for the XML nodes. The default is true.

Use this property when you need to map fields using the precise order in which differently named
nodes appear in the XML, or for total control over node ordering when generating XML upstream.

Examples of both suffixes are in "Description of event fields that represent normalized XML" on page
153 and "Examples of conversions" on page 155.

You can set both node order properties to true. For sample output when both are set to true, see
"Examples of conversions" on page 155. The default values of these two properties may change
in a future release, so the recommendation is to explicitly specify both properties according to the
behavior required.

Additional downstream properties
XPath: XMLField -> ResultField — The value of this property specifies an XPath expression that should
be evaluated for the specified XMLField, with the result put into the ResultField in the normalized
event. Only simple data types (boolean/float/string) can be returned at present, so XPath expressions
that match multiple nodes only return the first matching node. See "XPath examples" on page 158.

trimXMLText — If true, the XML codec removes any leading or trailing whitespace characters from
XML text data in downstream messages before adding the text to the normalized event. The default
is true.

Sequence field properties
sequenceField — The value of this property is a field that is treated as a sequence. This means that all
XML nodes that match this name are translated to a single entry in the normalized event, in the form

The XML codec plug-in

Developing Adapters 5.2.0 152

of an EPL sequence of type string. The element name should be a plain name, without a node order
suffix. In other words, the value of this property and the field in the outgoing event should be in the
form: elementA/elementB/@attrib. You can specify this property multiple times.

ensurePresent — This property specifies an attribute, text string or CDATA node of an element
that will be added to the output event as a blank string even if it is not present in the XML. This is
mostly useful for fields identified with the sequenceField property, as empty strings get added to the
sequence for optional attributes. You can specify this property multiple times.

separator: elementName — Whenever the specified element occurs in the XML message, the value of
this property is prepended to any sequences in nodes below the specified element. See "Sequence
field example" on page 157.

Upstream properties
indentGeneratedXML — If true, the generated XML is indented to make it easier to read. The default is
false.

omitGeneratedXMLDeclaration — If true, the <?xml ... ?> declaration at the start of the generated XML is
not included. The default is false.

Performance properties
skipNullFields — A boolean that indicates whether you want the XML codec to omit nodes with null
values from downstream, flattened, normalized events. Specify true to omit nodes with null values.
The default is false.

The skipNullFields property applies to the name/value pairs for XML elements themselves. These
have no associated data, so generating normalized event fields for them is not necessary unless they
are required for ID rules. The skipNullFields property does not apply to a node whose value is an
empty string.

Setting skipNullFields to true has no effect on the ordering suffixes that the codec adds to nodes. For
example, consider an XML element that is deep within an XML hierarchy such as the following:
<root>
 <a>

 <c>
 I want this string
 </c>

</root>

In the downstream direction, the XML codec creates a normalized event that contains a dictionary of
name/value pairs that includes an entry for each element. If you specify sibling suffixes and Test as
the XML field name, the dictionary contains the following:
{ "Test.root/":null ,
 "Test.root/a#1/":null ,
 "Test.root/a#1/b#1/":null ,
 "Test.root/a#1/b#1/c#1/":null ,
 "Test.root/a#1/b#1/c#1/text()#1:"I want this string" }

Unless you require one of the null value fields for an ID rule, you do not need the null value fields. If
you set skipNullFields to true, the XML codec drops the null value fields from the normalized event.
In this example, the result is a dictionary with one entry:
{ "Test.root/a#1/b#1/c#1/text()#1:"I want this string" }

The XML codec plug-in

Developing Adapters 5.2.0 153

As you can see, this is much more lightweight. Turning this feature on can sometimes improve
throughput by up to 1.5 times.

parseNode — Specify this property one or more times to identify only those nodes that you want
parsed, flattened, and added to the normalized event.

By default, the XML codec parses, flattens, and adds all nodes to the normalized event. If you specify
one or more parseNode property entries, the XML codec processes only the node or nodes specified by
a parseNode property.

The value of a parseNode property can be any node path. The codec ignores order suffixes (#n or [n]) if
you specify them in node paths. In other words, the codec parses all elements of the type specified in
the parseNode property.

For example, suppose the value of the XML field property is Test and you have the following XML:
<root>
 <a>ignore me
 look at me
 <c>look at me</c>
 look at me again
<root>

You can specify the following parseNode properties:
<property name="parseNode" value="Test.root/b/text()" />
<property name="parseNode" value="Test.root/c[99999999999]/text()" />

The XML codec produces the following dictionary entries:
"Test.root/b#1/text()#1" = "look at me"
"Test.root/c#2/text()#1" = "look at me"
"Test.root/b#3/text()#1" = "look at me again"

As you can see, the XML codec ignores the [99999999999] suffix.

Typically, you would specify the following parseNode properties:

For each mapping rule, specify a parseNode property whose value is the transport field for that
rule.

For each ID rule in the adapter configuration file, specify a parseNode property whose value is the
field name.

It is not necessary to specify parseNode properties for nodes identified by sequenceField or
separator:elementName properties.

Setting the parseNode property prevents some nodes from being parsed. Consequently, the order
of subsequent nodes might change, and therefore they would have different node order suffixes.
For this reason, you probably want to set the logFlattenedXML property to true to see in what order
suffixes are being generated before you add parseNode properties. Then add the parseNode properties
and update the node paths used in mapping and ID rules as needed.

Specifying parseNode properties instead of parsing the entire document can result in very substantial
throughput improvements. This is especially true for documents in which only a small proportion of
the XML is actually going to be mapped.

Description of event fields that represent normalized XML

The XML codec plug-in

Developing Adapters 5.2.0 154

As mentioned before, a single XML field on the transport side is represented on the correlator side
as a series of name/value fields, all prefixed by the value you specified for the XMLField property. This
section describes how the XML codec names fields, based on the XML data.

Note, any field not specified as an XMLField for the XMLCodec will pass through the system as
normal. These fields are not dropped/ignored.

If there is any uncertainty about the correct transport field names to use in the IAF mapping rules,
try setting the logFlattenedXML codec property to true.

To preserve XML node ordering information, the codec adds ordering information to node names by
appending a suffix according to the suffix generation mode enabled — either "", "#2", "#3", and so on
or "[1]", "[2]", "[3]", and so on.

The "#n" sibling format provides a total ordering across all child nodes under a given parent,
specifying each node's position relative to all of its sibling nodes. This suffix mode is the default. To
turn it off, set the generateSiblingOrderSuffix codec property to false. Note that the root node never
has a sibling order suffix because only one root exists. Sample field names:
Field1.message/element#1/
Field1.message/other_element#2/
Field1.message/other_element#3/

The twin "[n]" format is insensitive to the order in which nodes appear as long as they have different
names, and it specifies a node’s position relative to its twin nodes. (Twins are siblings with the same
node name.) This suffix mode is disabled by default (for backwards compatability). To turn it on, set
the generateTwinOrderSuffix codec property to true. To improve readability the first sibling node with
a given name has no suffix. That is, the [1] suffix is implicit. Sample field names:
Field1.message/element/
Field1.message/element[2]/
Field1.message/other_element/
Field1.message/other_element[2]/
Field1.message/other_element[3]/
Field1.message/yet_another_element/
Field1.message/yet_another_element[2]/

Note that for a message to be correctly translated in the upstream direction (from the correlator),
there do not have to be enough suffixes in the event to form a total order, but any suffixes that are
provided will be used. In the absence of sibling order suffixes to determine ordering of different
node types, the XML codec generates the XML nodes in the following order:

1. Text data

2. CDATA

3. Elements

The XML codec maps XML elements, attributes, CDATA and text data as described in the following
sections. In the following topics, assume that the value of the XMLField property is Test.

Elements

An XML element maps to a field with the following characteristics:

The name is separated and terminated with the '/' character.

The value is an empty string ("").

For example, an element B nested inside an element A is represented in the normalized event as
follows:

The XML codec plug-in

Developing Adapters 5.2.0 155

"Test.A/B#1/" = ""

When the XML codec generates XML for upstream events, it is not a requirement to have an
associated field for every element. The XML codec automatically creates ancestor XML elements
when they do not have associated fields. For example, consider the following field:
"Test.A/B#1/@att" = ""

If necessary, the codec creates the A and B element nodes.

Element attributes

XML element attributes map to fields with names equal to the parent element's field name, followed
by '@att' where att is the name of the attribute, and the field's value is the attribute value. For
example, an attribute B of an element A with the value Hello is represented as follows:
"Test.A/@B" = "Hello"

CDATA

XML CDATA in an element maps to a field with a name equal to the parent element's field name
followed by CDATA() and a value that contains the text data. For example, an element A with CDATA
" Hello " followed by sub-element B followed by CDATA " World " is represented as follows:
"Test.A/CDATA()#1" = " Hello "
"Test.A/B#2/" = ""
"Test.A/CDATA()#3" = " World "

Text data

Text data in an XML element maps to a field with a name equal to the parent element's field name
followed by text(). The value of the field is the text data. Unless the trimXMLText is false (the default
is that it is true), the codec strips leading and trailing whitespace from text data. For example, an
element A that contains the text " Hello World " followed by sub-element B followed by text " ! " is
represented as follows:
"Test.A/text()#1" = "Hello World"
"Test.A/B#2/" = ""
"Test.A/text()#3" = "!"

In the event of errors during XML parsing, the parser

Logs the errors in the IAF log file

Tries to send to the semantic mapper a flattened, normalized event that contains the remaining
fields

Examples of conversions
Suppose that the value of the XMLField property is Test, and the value of the trimXMLText property is
true. Consider the following XML:
<?xml version="1.0" encoding="UTF-8"?>
 <Message>
 <ElementA>
 Hello there
 <ElementB/>
 !
 <ElementC/>
 <![CDATA[Sample CDATA (with < and > comparison operators).]]>
 <ElementB att1="X" att2="Y">

The XML codec plug-in

Developing Adapters 5.2.0 156

 <![CDATA[More CDATA in the same element.]]>
 </ElementB>
 </ElementA>
 </Message>

With sibling order suffixing, this XML maps to the following normalized event fields:
"Test.Message/" =
"Test.Message/ElementA#1/" =
"Test.Message/ElementA#1/text()#1" = "Hello there"
"Test.Message/ElementA#1/ElementB#2/" =
"Test.Message/ElementA#1/text()#3" = "!"
"Test.Message/ElementA#1/ElementC#4/" =
"Test.Message/ElementA#1/CDATA()#5" =
 "Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA#1/ElementB#6/" =
"Test.Message/ElementA#1/ElementB#6/@att1" = "X"
"Test.Message/ElementA#1/ElementB#6/@att2" = "Y"
"Test.Message/ElementA#1/ElementB#6/CDATA()#1" =
 "More CDATA in the same element."

With twin order suffixing, the same XML maps to the following normalized event fields:
"Test.Message/" =
"Test.Message/ElementA/" =
"Test.Message/ElementA/text()" = "Hello there"
"Test.Message/ElementA/ElementB/" =
"Test.Message/ElementA/text()[2]" = "!"
"Test.Message/ElementA/ElementC/" =
"Test.Message/ElementA/CDATA()" =
 "Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA/ElementB[2]/" =
"Test.Message/ElementA/ElementB[2]/@att1" = "X"
"Test.Message/ElementA/ElementB[2]/@att2" = "Y"
"Test.Message/ElementA/ElementB[2]/CDATA()" = "More CDATA in the same element."

To construct the XML above (assuming element ordering matters, but allowing for text()
concatenation), the following name/value pairs are all that is required:
"Test.Message/ElementA#1/text()#1" = "Hello there"
"Test.Message/ElementA#1/ElementB#2/" =
"Test.Message/ElementA#1/text()#3" = "!"
"Test.Message/ElementA#1/ElementC#4/" =
"Test.Message/ElementA#1/CDATA()#5" =
 "Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA#1/ElementB#6/@att1" = "X"
"Test.Message/ElementA#1/ElementB#6/@att2" = "Y"
"Test.Message/ElementA#1/ElementB#6/CDATA()#1" = "More CDATA in the same element."

With both sibling order suffixing and twin order suffixing set to true, the XML codec generates two
field/value pairs for each node. For example, the same XML used in the previous two examples maps
to the following:
"Test.Message/" =
"Test.Message/ElementA/" =
"Test.Message/ElementA#1/" =
"Test.Message/ElementA/text()" = "Hello there"
"Test.Message/ElementA#1/text()#1" = "Hello there"
"Test.Message/ElementA/ElementB/" =
"Test.Message/ElementA#1/ElementB#2/" =
"Test.Message/ElementA/text()[2]" = "!"
"Test.Message/ElementA#1/text()#3" = "!"
"Test.Message/ElementA/ElementC/" =
"Test.Message/ElementA#1/ElementC#4/" =
"Test.Message/ElementA/CDATA()" =
 "Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA#1/CDATA()#5" =
 "Sample CDATA (with < and > comparison operators). "
"Test.Message/ElementA/ElementB[2]/" =
"Test.Message/ElementA#1/ElementB#6/" =
"Test.Message/ElementA/ElementB[2]/@att1" = "X"

The XML codec plug-in

Developing Adapters 5.2.0 157

"Test.Message/ElementA#1/ElementB#6/@att1" = "X"
"Test.Message/ElementA/ElementB[2]/@att2" = "Y"
"Test.Message/ElementA#1/ElementB#6/@att2" = "Y"
"Test.Message/ElementA/ElementB[2]/CDATA()" = "More CDATA in the same element."
"Test.Message/ElementA#1/ElementB#6/CDATA()#1" = "More CDATA in the same element."

Since the suffix properties are orthogonal, you can set both to true, and the XML codec generates
normalized fields with each kind of suffix. This allows you to use the same instance of the XML
codec for XML elements that need sibling suffixing and XML elements that need twin suffixing.
While this impacts memory usage according to the amount of XML data being normalized, you can
specify mapping rules to filter for the fields of interest.

Sequence field example
Consider the following XML fragment:
<root>
 <prices instr="MSFT">
 <info>1.04</info>
 <info type="SELL">1.03</info>
 </prices>
 <prices instr="IBM">
 <info type="BUY"></info>
 <info type="SELL">1.06</info>
 </prices>
</root>

Suppose that the following properties are set in the XML codec section of the IAF configuration file:
<property name="XMLField" value="Test"/>
<property name="sequenceField" value="Test.root/prices/@instr"/>
<property name="sequenceField" value="Test.root/prices/info/@type"/>
<property name="sequenceField" value="Test.root/prices/info/text()"/>
<property name="ensurePresent" value="Test.root/prices/info/@type"/>
<property name="ensurePresent" value="Test.root/prices/info/text()"/>
<property name="separator:Test.root/prices" value="(prices)"/>

With these property values, the XML fragment maps to the following normalized event fields:
"Test.root/" =
"Test.root/prices#1/" =
"Test.root/prices#1/info#1/" =
"Test.root/prices#1/info#2/" =
"Test.root/prices#2/" =
"Test.root/prices#2/info#1/" =
"Test.root/prices#2/info#2/" =
"Test.root/prices/@instr" = ["(prices)", "MSFT", "(prices)", "IBM"]
"Test.root/prices/info/@type" = ["(prices)", "", "SELL", "(prices)", "BUY", "SELL"]
"Test.root/prices/info/text()"= ["(prices)", "1.04", "1.03", "(prices)", "", "1.06"]

If you define the following mapping rules in the IAF configuration file, you can map these
normalized event fields to and from string fields in a sequence field of an Apama event.
<mapping-rules>
 <map transport="Test.root/prices/@instr"
 apama="instruments" type="reference"
 referencetype="sequence <string>" default="[]"/>
 <map transport="Test.root/prices/info/@type"
 apama="types" type="reference"
 referencetype="sequence <string>" default="[]"/>
 <map transport="Test.root/prices/info/text()"
 apama="prices" type="reference"
 referencetype="sequence <string>" default="[]"/>
</mapping-rules>

The CSV codec plug-in

Developing Adapters 5.2.0 158

XPath examples
Consider the following XML:
<root>
 text1
 A text 1
 <a>A text 2
 <b att="300.0">

 This is an interesting text string
</root>

Suppose that the following properties are set in the XML codec section of the IAF configuration file:
<property name="XMLField" value="Test"/>
<property name="XPath:Test->MyXPathResult.last-a" value="*/a[last()]"/>
<property name="XPath:Test->MyXPathResult.first-att" value="//@att"/>
<property name="XPath:Test->MyXPathResult.first-a-text" value="/root/a[1]/text()"/>
<property name="XPath:Test->MyXPathResult.att>200" value="//@att>200"/>
<property name="XPath:Test->MyXPathResult.att-count" value="count(//@att)"/>
<property name="XPath:Test->MyXPathResult.text-contains"
 value="contains(/cdata-root/text()[last()], "interesting")"/>

With these property values, the XML fragment maps to the following normalized event fields:
"MyXPathResult.last-a" = "A text 2"
"MyXPathResult.first-att" = "100.1"
"MyXPathResult.first-a-text" = "A text 1"
"MyXPathResult.att>200" = "true"
"MyXPathResult.att-count" = "3"
"MyXPathResult.text-contains" = "true"

The CSV codec plug-in
The CSV codec plug-in (JCSVCodec) translates between comma separated value (CSV) data and
a sequence of string values. This codec (or the Fixed Width codec plug-in) can be used with the
standard Apama File adapter to read data from files and to write data to files. (For more information
on the Fixed Width codec, see "The Fixed Width codec plug-in" on page 160; for more information
on the standard Apama File adapter, see .)

CSV format is a simple way to store data on a value by value basis. Consider an example CSV file
that contains stock tick data. The lines in the file are ordered by Symbol, Exchange, Current Price,
Day High, and Day Low, as follows:
TSCO, L, 395.50, 401.5, 386.25
MKS, L, 225.25, 240.75, 210.25

In this example, each field is separated from the next by a comma. You can use other characters as
separators as long as you identify the separator character for the CSV codec.

To specify a separator character other than a comma, do one of the following:

Send a configuration event from the transport that is communicating with the CSV codec using
the method described in the topic, "Multiple configurations and the CSV codec" on page 159.

Set the separator property in the IAF configuration file that you use to start the File adapter. For
example:

The CSV codec plug-in

Developing Adapters 5.2.0 159

<property name="separator" value=" " />

If you set the separator property, the codec uses the separator you specify by default. If you do
not specify the separator property, and the codec does not receive any configuration events before
receiving messages to encode or decode, the codec refuses to process messages. The codec throws
an exception back to the module that called it, which is either the transport or the semantic mapper
depending on whether the data is flowing downstream or upstream.

For an example configuration file, see adapters\config\JCSVCodec-example.xml.dist in the Apama
installation directory. The JCSVCodec-example.xml.dist file itself should not be modified, but you can
copy relevant sections of the XML code, modify the code as required for the purposes of your data,
and then add the modified content to the adapter configuration file in which the codec is to be used.

Multiple configurations and the CSV codec
The CSV codec supports multiple configurations for interpreting separated data from different
sources. A transport that is using the CSV codec can use the com.apama.iaf.plugin.ConfigurableCodec
interface to set up different configurations for interpreting data from multiple sources that use
different formats.

The transport can set a configuration by calling the following method on the codec:
public void addConfiguration(int sessionId,
 NormalisedEvent configuration)
 throws java.io.IOException

The sessionId represents the ID value for this configuration.

The normalized event should contain the following key/value pair stored as strings that will be
parsed in the codec:

Key Value

separator A string that contains the character to be used as the separator value, for
example, "," or ";".

The transport can remove a configuration by calling the following method:
void removeConfiguration(int sessionId) throws java.io.IOException

The sessionId represents the ID value initially used to add the configuration with the
addConfiguration() method.

Decoding CSV data from the sink to send to the correlator
To decode an event into a sequence of fields, the transport can then call:
public void sendTransportEvent(Object event, TimestampSet timestamps)
 throws CodecException, SemanticMapperException

The event object is assumed to be a NormalisedEvent instance. It must contain a key of data, which has
a value of string type that contains the data to decode. That is, the string contains the line containing

The Fixed Width codec plug-in

Developing Adapters 5.2.0 160

the separated data. The codec then decodes the data, and stores the value from each field in a string
sequence. This value from each field replaces the value for the data key.

If the event object also contains a sessionId key with an integer value associated with it, the value of
the key identifies the configuration the codec uses to interpret the data. If the event does not contain
a sessionId, the codec uses the default configuration as specified in the adapter configuration file.

Encoding CSV data from the correlator for the sink
Encoding CSV data works in the exact opposite way as decoding. The semantic mapper calls:
public void sendNormalisedEvent(NormalisedEvent event,
 TimestampSet timestamps)
 throws CodecException, TransportException

The sendNormalisedEvent()method retrieves the data associated with the data key. The retrieved data
is a sequence of strings, each of which contains the value of a field. The method then encodes the
sequence into a single line to send to the transport so the transport can write the data to the sink.
The CSV codec stores the result of the encoding in the data field. If the event contains a sessionId
value, this is the configuration that the codec uses to encode the data. If the event does not contain a
sessionId, the codec uses the default adapter configuration as specified in the adapter’s configuration
file initially used to start the adapter.

For a given event mapping in the IAF configuration file, it is not possible to dynamically specify
the event decoder property, which identifies the codec that sends this event to the transport.
Consequently, an adapter that is using several different codecs is unable to receive the same type
of event from each codec. If it is necessary for your adapter to receive the same type of event from
multiple codecs, set the event decoder property to the Null codec. This lets the transport receive the
event and subsequently reroute the event back to the CSV codec by calling the following method:
sendNormalisedEvent(NormalisedEvent event, TimestampSet timestamps)

The CSV codec then returns the encoded data to the transport.

The Fixed Width codec plug-in
The Fixed Width codec plug-in (JFixedWidthCodec) translates between fixed width data and a sequence
of string values. This codec (or the CSV codec plug-in) can be used with the standard Apama File
adapter to read data from files and write data to files. (For more information on the CSV codec, see
"The CSV codec plug-in" on page 158; for more information on the Apama File adapter, see .)

Fixed width data is a method of storing data fields in a packet or a line that is a fixed number of
characters in size. Data stored in a fixed width format can be expressed by the following three
parameters:

The field widths used (that is, the number of characters used for storing each field)

The padding character used if the data for a given field can be stored in less than the number of
characters allocated for it

Whether or not the data is left or right aligned within the field.

For example, consider the following, which describes a tick with ordered properties:

The Fixed Width codec plug-in

Developing Adapters 5.2.0 161

symbol
6 characters

exchange
4 characters

current price
9 characters

day high
9 characters

day low
9 characters

If the pad character is '-', an example of a left-aligned line is as follows:
TSCO--L---392.25---400.25---382.25---

The following is an example of a right-aligned line:
--TSCO---L---392.25---400.25---382.25

To specify fixed width data properties, do one of the following:

Send a configuration event from the transport that is communicating with the Fixed Width codec
using the method described in the topic, "Multiple configurations and the Fixed Width codec" on
page 161.

Set the fixed width properties in the IAF configuration file you use to start the adapter. For
example, to obtain the left-aligned fixed width data above:

 <property name="fieldLengths" value="[6,4,9,9,9]"/>
 <property name="padCharacter" value="-"/>
 <property name="isLeftAligned" value="true"/>

If you set all these properties, the codec uses them by default when decoding or encoding events.

If you do not set any of these properties, the codec expects to receive configuration events (as
described in "Multiple configurations and the Fixed Width codec" on page 161), prior to receiving
messages to encode or decode. Otherwise, the codec refuses to process these messages. The codec
throws an exception back to the module that called it, which is either the transport or the semantic
mapper depending on whether the data is flowing downstream or upstream.

If you require a default configuration, be sure to set all of these properties in the configuration file. If
you set some of the properties, but not all of them, the codec cannot start.

For an example configuration file, see adapters\config\JFixedWidthCodec-example.xml.dist in the Apama
installation directory. The JFixedWidthCodec-example.xml.dist file itself should not be modified, but you
can copy relevant sections of the XML code, modify the code as required for the purposes of your
data, and then add the modified content to the adapter configuration file in which the codec is to be
used.

Multiple configurations and the Fixed Width codec
The Fixed Width codec supports multiple configurations for interpreting fixed width
data from different sources. A transport that is using the Fixed Width codec can use the
com.apama.iaf.plugin.ConfigurableCodec interface to set the configuration that you want the adapter to
use.

The transport can set a configuration by calling the following method on the codec:

The Fixed Width codec plug-in

Developing Adapters 5.2.0 162

public void addConfiguration(int sessionId,
 NormalisedEvent configuration)
 throws java.io.IOException

The sessionId represents the ID value for this configuration.

The normalized event should contain key/value pairs that are stored as strings the Fixed Width codec
can parse.

Key Value
fieldLengths

A string sequence that contains the number of characters each field
value is stored in. For example, "[5,6,5,9"] where the first value is
stored in the first 5 characters, the second value is stored in the next 6
characters, and so on.

isLeftAligned
"true" or "false", depending on whether data is left or right aligned in
a field.

padCharacter
"_" where '_' is the pad character used when the data requires
padding to fill the field.

The transport can remove a configuration by calling the following method:
void removeConfiguration(int sessionId) throws java.io.IOException

The sessionId represents the ID value initially used to add the configuration using the
addConfiguration() method.

Decoding fixed width data from the sink to send to the correlator
To decode an event into a sequence of fields, the transport calls the sendTransportEvent() method as
follows:
public void sendTransportEvent(Object event, TimestampSet timestamps)
 throws CodecException, SemanticMapperException

The event object is assumed to be a NormalisedEvent. It must contain the key 'data', which has a
value of string type containing the data to decode. That is, the line that contains the fixed width
data. The Fixed Width codec then decodes the data and stores the value from each field in a string
sequence.This value from each field replaces the value for the data key.

If the event also contains a sessionId key with an integer value associated with it, this is the
configuration that the codec uses to interpret the data. If the event does not contain a sessionId the
codec uses the default configuration as specified in the configuration file.

Encoding fixed width data from the correlator for the sink
Encoding fixed width data works in the exact opposite way to decoding. The semantic mapper calls:
public void sendNormalisedEvent(NormalisedEvent event,
 TimestampSet timestamps)
 throws CodecException, TransportException

The Fixed Width codec plug-in

Developing Adapters 5.2.0 163

This method retrieves the data associated with the data key. The data is in a string sequence where
each member contains the value of a field. The method encodes the sequence members into a single
line to send to the transport so the transport can write the data to the sink. Finally, the method stores
the result of the encoding in the data field again.

If the event contains a sessionId value, this is the configuration that the codec uses to encode the data.
If the event does not contain a sessionId, the codec uses the default File adapter configuration as
specified in the File adapter configuration file initially used to start the file adapter.

For a given event mapping in the IAF configuration file, it is not possible to dynamically specify
the event decoder property, which identifies the codec that sends the event to the transport.
Consequently, an adapter that is using several different codecs is unable to receive the same type
of event from each codec. If it is necessary for your adapter to receive the same type of event from
multiple codecs, set the event decoder property to the Null codec. This lets the transport receive the
event and subsequently reroute the event back to the Fixed Width codec by calling the following
method:
sendNormalisedEvent(NormalisedEvent event, TimestampSet timestamps)

The Fixed Width codec then returns the encoded data to the transport.

Developing Adapters 5.2.0 164

Chapter 13: Apama File Adapter

n File Adapter plug-ins ... 165

n File Adapter service monitor files .. 166

n Adding the File adapter to an Apama Studio project ... 166

n Configuring the File adapter .. 167

n Overview of event protocol for communication with the File adapter ... 169

n Opening files for reading ... 169

n Specifying file names in OpenFileForReading events ... 172

n Opening comma separated values (CSV) files ... 173

n Opening fixed width files ... 173

n Sending the read request .. 174

n Requesting data from the file .. 175

n Receiving data .. 175

n Opening files for writing .. 176

n LineWritten event .. 178

n Monitoring the File adapter ... 179

This chapter provides a description of the Apama File adapter that is included when you install the
Apama software. Apama is distributed with several other standard adapters. See the deployment
guide for information about the following standard adapters:

Apama Database Connector

Apama Web Services Client

Each Apama standard adapter includes the transport and codec plug-ins it requires, along with any
required EPL service monitor files. The C++ plug-ins are located in the Apama installation’s adapters
\bin directory (Windows) or adapters/lib directory (UNIX); the Java plug-ins are located in adapters
\lib. The EPL files are located in the adapters\monitors directory.

If you develop an application in Apama Studio, when you add a standard adapter to the project,
Apama Studio automatically creates a configuration file for it. In addition, the standard Apama
adapters include bundle files that automatically add the adapter’s plug-ins and associated service
monitor files to the Apama Studio project.

If you are not using Apama Studio, you need to create a configuration file that will be used by
the IAF to run the adapter. Each adapter includes a template file that can be used as the basis for
the configuration file. The template files are located in the installation’s adapters\config directory
and have the forms adapter_name.xml.dist and adapter_name.static.xml. These template files are not
meant to be used as the adapters’ actual configuration files — you should always make copies of the
template files before making any changes to them.

File Adapter plug-ins

Developing Adapters 5.2.0 165

The Apama File adapter uses the Apama Integration Adapter Framework (IAF) to read information
from text files and write information to text files by means of Apama events. This lets you read files
line-by-line from external applications or write formatted data as required by external applications.

With some caveats, which are mentioned later in this section, the File adapter supports reading and
writing to multiple files at the same time. Information about using the File adapter can be found in
the following topics:

"File Adapter plug-ins" on page 165

"File Adapter service monitor files" on page 166

"Adding the File adapter to an Apama Studio project" on page 166

"Configuring the File adapter" on page 167

"Overview of event protocol for communication with the File adapter" on page 169

"Opening files for reading" on page 169

"Specifying file names in OpenFileForReading events" on page 172

"Opening comma separated values (CSV) files" on page 173

"Opening fixed width files" on page 173

"Sending the read request" on page 174

"Requesting data from the file" on page 175

"Receiving data" on page 175

"Opening files for writing" on page 176

"LineWritten event" on page 178

"Monitoring the File adapter" on page 179

File Adapter plug-ins
The Apama File adapter uses the following plug-ins:

JMultiFileTransport.jar — The JMultiFileTransport plug-in manages the connections to the files
opened for reading and writing.

JFixedWidthCodec.jar or JCSVCodec.jar — These plug-ins parse lines of data in fixed-width format
or comma separated value format (CSV) into fields>

For details about using these codec plug-ins, see "The CSV codec plug-in" on page 158 and "The
Fixed Width codec plug-in" on page 160.

JNullCodec.jar

These plug-ins need to be specified in the IAF configuration file used to start the adapter. If you add
this adapter to an Apama Studio project, Apama Studio automatically adds these plug-ins to the
configuration file. If you are not using Apama Studio, you can use the File.xml.dist template file
as the basis for the configuration file. See "Configuring the File adapter" on page 167 for more
information about adding the necessary settings to the adapter’s configuration file.

File Adapter service monitor files

Developing Adapters 5.2.0 166

Apama File Adapter

File Adapter service monitor files
The File adapter requires the event definitions in the following monitors which are in your Apama
installation directory. If you are using Apama Studio, the project’s default run configuration
automatically injects them. If you are not using Apama Studio, you need to make sure they are
injected to the correlator in the order shown before running the IAF.

1. monitors\StatusSupport.mon

2. adapters\monitors\IAFStatusManager.mon

3. adapters\monitors\FileEvents.mon

4. adapters\monitors\FileStatusManager.mon

Apama File Adapter

Adding the File adapter to an Apama Studio project
If you are developing an application in Apama Studio, add the File adapter as follows:

1. In the Project Explorer, right-click name of the project and select Apama > Add Adapter. The Add
Adapter Instance dialog is displayed.

2. Select File Adapter (File adapter for reading and writing to ASCII files). Apama Studio adds a default name
to the Adapter instance name field that ensures this instance of this adapter will be uniquely identified.
You can change the default name, for example, to indicate what type of external system the adapter will
connect to. Apama Studio prevents you from using a name already in use.

3. Click OK.

Apama Studio adds a File adapter entry that contains the new instance to the project’s Adapters
node and opens the instance’s configuration file in the Apama Studio adapter editor as shown in
the following illustration.

Configuring the File adapter

Developing Adapters 5.2.0 167

For the File adapter, the adapter editor’s Settings tab displays a listing of General Variables.
When first created it lists variables that are used in the Apama Studio project’s default launch
configuration. You can add variables by clicking the Add button and filling in the variable’s name
and value.

For editing other configuration properties for the File adapter, display the adapter editor’s XML
Source tab and add the appropriate information.

Apama File Adapter

Configuring the File adapter
Before using the File adapter, you need to add information to the IAF configuration file used to start
the adapter. When you add an adapter to an Apama Studio project, a configuration file for each
instance of the adapter is automatically created. In Apama Studio, double-click the name of the
adapter instance to open the configuration file in the adapter editor.

If you are using Apama Studio’s adapter editor, you can edit or add variables to the General Variables
section as displayed on the Settings tab. For other properties, you need to edit the XML code directly;
to do this, select the adapter editor’s XML Source tab.

If you are not using Apama Studio, the configuration file can be derived from the template adapters
\config\File.xml.dist configuration file shipped with the Apama installation. Caution: before
changing any values, be sure to make a copy of the File.xml.dist file and give it a unique name,
typically with an .xml extension instead of .xml.dist.

The template configuration file references the adapters\config\File-static.xml file using the XML
XInclude extension. The File-static.xml file specifies the adapter’s codec and its mapping rules.

Configuring the File adapter

Developing Adapters 5.2.0 168

Normally you do not need to change any information in this file. See "The IAF configuration file" on
page 26 for more information on the contents on an adapter’s configuration file.

In Apama Studio, adapters are configured using the adapter editor. To open an adapter instance, in
the Project Explorer, right-click on <project name>\Adapters\File Adapter\<instance name> and select
Open Instance from the pop-up menu.

You can set the variables used by the File adapter in the main Settings tab. Values of the form ${...},
such as ${Default Correlator:port} are set to the correct value automatically by the Apama Studio
project’s default launch configuration and do not need to be modified. To configure other properties
used by the adapter, edit the XML code directly by selecting the XML Source tab.

If you are not using Apama Studio, all adapter properties are configured by editing the adapter .xml
file in an XML or text editor.

Customize the following properties:

<logging level="INFO" file="logs/FileAdapter.log"/>

If you start the IAF from the Management and Monitoring console, specify an absolute path for
the log filename.
<classpath path="@ADAPTERS_JARDIR@/JNullCodec.jar" />
<classpath path="@ADAPTERS_JARDIR@/JFixedWidthCodec.jar" />
<classpath path="@ADAPTERS_JARDIR@/JCSVCodec.jar" />
<classpath path="@ADAPTERS_JARDIR@/JMultiFileTransport.jar" />

Replace @ADAPTERS_JARDIR@ with the actual path to the .jar files. Typically, this is the
apama_install_dir\adapters\lib directory.

If you are using Apama Studio, these jar files are automatically added to the classpath in the
configuration file and you do not need to replace the @ADAPTERS_JARDIR@ token.

In the <sink> and <source> elements, replace @CORRELATOR_HOST@ and @CORRELATOR_PORT@ with valid
attribute values:
 <apama>
 <sinks>
 <sink host="@CORRELATOR_HOST@" port="@CORRELATOR_PORT@" />
 </sinks>
 <sources>
 <source host="@CORRELATOR_HOST@" port="@CORRELATOR_PORT@"
 channels="FILE" />
 </sources>
 </apama>

If you are using the adapter in an Apama Studio project, the default launch configuration
uses the default correlator host and port settings and you do not need to replace the
@CORRELATOR_HOST@ and @CORRELATOR_PORT@ tokens.

<property name="simpleMode" value="false" />

Indicate whether or not to start the File adapter in simple mode. In simple mode, the File adapter
reads lines from a single file or writes lines to a single file. In non-simple mode, you can use the
fixed width or CSV codecs to decode/encode field data. Also, the File adapter can read/write to
multiple files and additional controls are available for communication between the adapter and
the correlator. Non-simple mode is recommended for most situations. Details about simple mode
and non-simple mode are in the File.xml.dist file. If you are using Apama Studio, switch to the
adapter editor’s XML Source tab if you want to view these details or to edit the settings.

Apama File Adapter

Overview of event protocol for communication with the File adapter

Developing Adapters 5.2.0 169

Overview of event protocol for communication with the
File adapter
The adapters\monitors\FileEvents.mon file defines the event types for communication with the File
adapter. The following event types in the com.apama.file package are defined in the FileEvents.mon file.
These events enable I/O operations on files. See FileEvents.mon for details about the events that are not
described in the subsequent topics.

OpenFileForReading

OpenFileForWriting

FileHandle

FileLine

ReadLines

NewFileOpened

EndOfFile

CloseFile

FileClosed

FileError

LineWritten

Apama File Adapter

Opening files for reading
The File adapter can read from multiple files at the same time. Send an OpenFileForReading event for
each file you want the File adapter to read. This involves emitting an event to the channel specified in
the adapter’s configuration file, typically FILE, for example:
emit OpenFileForReading(...) to "FILE"

The OpenFileForReading event definition is as follows:
event OpenFileForReading
{ string transportName;
 integer requestId;
 string codec;
 string filename;
 integer linesInHeader;
 string acceptedLinePattern;
 dictionary<string, string> payload;
}

Parameter Description

transportName Name of the transport being used within the File adapter. This
must match the transport name specified in the IAF configuration
file so that the transport can recognize events intended for it.

Opening files for reading

Developing Adapters 5.2.0 170

requestId Request identifier for this open file event. The response, which
is either a FileHandle event or a FileError event, contains this
identifier.

codec Name of the codec to use with the file. This must match one of
the codecs specified in the adapter-static.xml IAF configuration
file. When you want the File adapter to read and write entire
lines of data just as they are, specify the null codec (JNullCodec).
When you want the File adapter to interpret file lines in some
way, you can specify either the CSV codec (JCSVCodec) or the Fixed
Width codec (JFixedWidthCodec) according to how the data in the
file is formatted. To open fixed width or CSV files, you must add
some information to the payload field of the OpenFileForReading
event. The codecs needs this information to correctly interpret the
data. For details about adding to the payload field, see "Opening
comma separated values (CSV) files" on page 173 or "Opening
fixed width files" on page 173.

filename Absolute path, or file pattern (for example, *.txt, *.csv) within
absolute directory path if intending to read all files matching
a pattern in order of last time modified.While a relative path
might work, an absolute path is recommended. A relative path
must be relative to where the IAF has been started, which can be
unpredictable. For example:
c:\logfiles*.log
/user/local/jcasablancas/logfiles/*.log

For more information, see "Specifying file names in
OpenFileForReading events" on page 172.

linesInHeader The number of lines in the header, or 0 if there is no header.Text
files sometimes contain a number of lines at the beginning of
the file that explain the format. As these are usually of some
specific format, the Apama File adapter cannot interpret them.
By skipping these lines, the File adapter can process just the data
contained in the file.

acceptedLinePattern Regular expression pattern (in the same format supported by
Java) to use to match lines to read. The File adapter reads only
those lines that match this pattern. To read all lines, specify an
empty string.

payload String dictionary for storing extra fields for use with codecs. For
fixed width files the following fields make up the payload; for
other types of files, they will be ignored.

sequence<integer> fieldLengths

The length (number of characters) in each field, in order, where
the number of fields is given by fieldLengths.size()

boolean isLeftAligned

Opening files for reading

Developing Adapters 5.2.0 171

Whether the data in the field is aligned to the left or not (that is,
right aligned)

string padCharacter

The pad character used when the data is less than the width of
the field

For CSV files, the following field makes up the payload; for other
types of files it will be ignored.

string separator

The separator character

Apama File Adapter

Opening files for reading with parallel processing applications
If your Apama application implements parallel processing, you may want to increase parallelism
by processing the incoming events from the File adapter in a separate, private, context, rather
than doing everything in the correlator’s main context. To request that events from the File
adapter are sent to the private context your monitor is running in, the monitor should open the
file using the com.apama.file.OpenFileForReadingToContext event instead of OpenFileForReading. The
OpenFileForReadingToContext event has a field that contains a standard OpenFileForReading event
(see "Opening files for reading" on page 169), in addition to a field specifying the context that
file adapter events should go to for processing, (which is usually the context the monitor itself is
running in, context.current()), and the name of the channel the File adapter is using. When using
the OpenFileForReadingToContext event, the OpenFileForReadingToContext event and all other file adapter
events must not be emitted directly to the adapter, but rather enqueued to the correlator’s main
context, where the adapter service monitor runs. The File adapter’s service monitor is responsible for
emitting the events that are enqueued from other contexts to the File adapter, and for enqueuing the
events received from the File adapter to whichever context should process them (as specified in the
OpenFileForReadingToContext event).

The OpenFileForReadingToContext event is defined as follows:
event OpenFileForReadingToContext
{
 context instanceContext;
 string fileChannel;
 OpenFileForReading fileEvent;
}

Here is an example of how the OpenFileForReadingToContext event is used:
com.apama.file.OpenFileForReading openFileForReading :=
 new com.apama.file.OpenFileForReading;
 ... // populate the fields of the openFileForReading event as needed
 // Instead of emitting openFileForReading to "FILE", wrap it in
 // the OpenFileForReadingToContext event and enqueue it to the service
 // monitor in the main context.
enqueue com.apama.file.OpenFileForReadingToContext(context.current(),
 "FILE", openFileForReading) to mainContext;
com.apama.file.FileHandle readHandle;
on com.apama.file.FileHandle(
 transportName=openFileForReading.transportName,
 requestId=openFileForReading.requestId):readHandle
{

Specifying file names in OpenFileForReading events

Developing Adapters 5.2.0 172

 // instead of emitting to the "FILE" channel, enqueue it to the main
 // context
 enqueue com.apama.file.ReadLines(openFileForReading.transportName, -1,
 readHandle.sessionId, 20) to mainContext;
 ...
}

Opening files for reading

Specifying file names in OpenFileForReading events
In an OpenFileForReading event, the value of the filename field can be a specific file name or a wildcard
pattern. However, the filename cannot have multiple wildcards.

Specific filename

When you specify a specific filename in an OpenFileForReading event, when the adapter receives
requests to read lines from the file, the adapter reads till the end of the file and waits until more data
is available. An external process, or the adapter itself, might write more data to the file if it is open
for write at the same time that it is being read. If more data becomes available, the File adapter sends
it. If the File adapter receives a CloseFile event, the File adapter closes the file against further reading.

Each time the File adapter reaches the end of the file it is reading, the File adapter sends an EndOfFile
event to the correlator. If, during this process, more data was appended to the file, the file operations
will continue as normal — that is, the File adapter will send more lines if they were requested. Thus,
when reading specific files, file appends are acceptable and have a well defined behavior. However,
any other modifications, such as changing the lines that have already been read, may have undefined
results. An application can ignore or react to an EndOfFile event. The definition of an EndOfFile event
is as follows:
event EndOfFile
{
 /* The name of the transport being used within the file adapter */
 string transportName;

 /* The session ID this File is associated with */
 integer sessionId;

 /* The name of the file*/
 string filename;
}

Wildcard filenames

Now suppose that in an OpenFileForReading event, the value of the filename field is a wildcard pattern.
In this case, the adapter does the following:

1. Opens a new file that matches the pattern

2. Reads that file in its entirety

3. Sends back an EndOfFile event

4. Opens the next file that matches the pattern if one is available

For the application's information, the File adapter sends back an event when it opens each new file.
The NewFileOpened event contains the name of the file that was opened:
event NewFileOpened
{
 /* The name of the transport being used within the file adapter */

Opening comma separated values (CSV) files

Developing Adapters 5.2.0 173

 string transportName;

 /* The session Id this File is associated with */
 integer sessionId;

 /* The filename opened */
 string filename;

The order of opening the files that match the wildcard pattern is not specified. Currently, the files are
ordered by the modification date and then alphabetically by filename.

If a file that has been previously read is externally modified (while in the meantime, the File adapter
is reading from other files that match the wildcard pattern), the file is read again in its entirety. That
is, any files that are modified after reading from them will be read again (until the CloseFile is sent).
Please note that this includes file appends.

Apama File Adapter

Opening comma separated values (CSV) files
An example of defining an OpenFileForReading event that opens a CSV file so that each field is
automatically parsed appears below. The additional data required by the CSV codec is stored in the
payload dictionary.
com.apama.file.OpenFileForReading openCSVFileRead :=
 new com.apama.file.OpenFileForReading;

 //matches transport in IAF config
 openCSVFileRead.transportName := JMultiFileTransport;

 //the request id to use
 openCSVFileRead.requestId := integer.getUnique();

 //read using JCSVCodec
 openCSVFileRead.codec := "JCSVCodec";

 //file to read
 openCSVFileRead.filename := "/usr/home/formby/stocktick.csv";

 //separator char is a ","
 openCSVFileRead.payload["separator"] := ",";

 //emit event to channel in config.
 emit openCSVFileRead to "FILE";

Subsequently, when the File adapter receives FileLine events, the adapter stores each field in the data
sequence in order. You can access the ones you are interested in.

For details about using the CSV codec, see "The CSV codec plug-in" on page 158.

Apama File Adapter

Opening fixed width files
An example of defining an OpenFileForReading event that opens a fixed width file so that each field is
automatically parsed appears below. The additional data required by the Fixed Width codec is stored
in the payload dictionary.
com.apama.file.OpenFileForReading openFixedFileRead :=
 new com.apama.file.OpenFileForReading;

Sending the read request

Developing Adapters 5.2.0 174

 //matches transport in IAF instance
 openFixedFileRead.transportName := JMultiFileTransport;

 //the request id to use
 openFixedFileRead.requestId := integer.getUnique();

 //read using CSV Codec
 openFixedFileRead.codec := "JFixedWidthCodec";

 //file to read
 openFixedFileRead.filename := "/usr/home/formby/stocktick.txt";
 //additional data required to interpret fixed width data

 //sequence of field lengths
 openFixedFileRead.payload["fieldLengths"] := "[6,4,9,9,9]";

 //it is left aligned
 openFixedFileRead.payload["isLeftAligned"] := "true";

 //the pad character
 openFixedFileRead.payload["padCharacter"] := "_";

 //emit event to channel in config.
 emit openFixedFileRead to "FILE";

Subsequently, when the File adapter receives FileLine events, the adapter stores each field in the data
sequence in order. You can access the ones you are interested in.

For details about using the Fixed Width codec, see "The Fixed Width codec plug-in" on page 160.

Apama File Adapter

Sending the read request
After you construct an OpenFileForReading event, emit it to the "FILE" channel. For example:
com.apama.file.OpenFileForReading openFileWeWantToRead :=
 new com.apama.file.OpenFileForReading;

 //populate the openFileWeWantToRead event
 //..
 //..
 emit openFileWeWantToRead to "FILE";

Emitting an OpenFileForReading event from EPL code signals the File adapter to open the file. If the
open operation is successful, the File adapter returns a FileHandle event, whose definition is as
follows:
event FileHandle
{
 /* The name of the transport being used within the file adapter */
 string transportName;

 /* Request ID this file handle is in response to. */
 integer requestId;

 /* Session ID to use for further communication with the
 File adapter */
 integer sessionId;
}

The sessionId is the most important field; all communication related to this file references this value.

If the open operation is unsuccessful, the File adapter returns a FileError event, whose definition is as
follows:
event FileError

Requesting data from the file

Developing Adapters 5.2.0 175

{
 /* The name of the transport being used within the file adapter */
 string transportName;

 /* Request ID this file error is in response to. */
 integer requestId;

 /* This should contain relevant information as to why the
 error occurred */
 string message;
}

Apama File Adapter

Requesting data from the file
After your application receives a FileHandle event, it can emit a ReadLines event, which signals the
adapter to start reading lines from the file. The definition of the ReadLines event is as follows:
event ReadLines
{
 /* The name of the transport being used within the file adapter */
 string transportName;

 /* request Id */
 integer requestId;

 /* The session Id this read line event is coming from */
 integer sessionId;

 /* The number of lines to read. As each line is read, a FileLine
 event will be sent from the Adapter in response to this request.
 When opening a single file, the adapter will continue to probe
 the file until lines are available.

 If a wildcard pattern was specified and the end of file is
 reached before the specified number of lines have been read,
 the file will be closed, an EndOfFile event will be sent, and
 if a new file is available, it will send a NewFileOpened event
 and read the remaining number of lines from this. If a new file
 is not available, the adapter will wait until one is available.
 */
 integer numberOfLines;
}

The sessionId in the ReadLines event must be the same as the sessionId stored in the FileHandle event
that the application received when the file was opened.

The adapter tries to read as many lines as specified in the ReadLines event. If the file does not contain
that many lines, what the adapter does depends on whether the original OpenFileToRead event
specified a specific file or a wildcard pattern. According to that setting, the adapter either waits until
the file contains more data, or tries to open a new file to deliver the balance from.

Apama File Adapter

Receiving data
As the File adapter reads the file, it returns FileLine events to your application. Each line is associated
with a specific sessionId, and the data is stored within a sequence of strings. The definition of FileLine
events is as follows:
event FileLine

Opening files for writing

Developing Adapters 5.2.0 176

{
 /* The name of the transport being used within the file adapter */
 string transportName;

 /* When receiving these events in response to read line events,
 this field can be ignored, as the protocol does not
 distinguish between ReadLine requests for the same session.*/
 integer requestId;

 /* The session Id this FileLine event is for or from */
 integer sessionId;

 /* The data as a sequence of strings. */
 sequence<string> data;
}

Notice that the data field is a sequence of strings, rather than a string. However, when you use the
null codec for reading, the sequence contains only one element, which contains the entire line read:
//the whole line is stored in the first element, we used null codec
string line := fileLine.data[0];

For specialized codecs, each field is in a discrete element in the sequence:
//The app knows which field contains the data we are interested in:
string symbol := fileLine.data[0];
string exchange := fileLine.data[1];
string currentprice := fileLine.data[2];
//and so on

After the File adapter opens a file for reading, the file remains open as long as the adapter is running.
If you want to close a file, you must send a CloseFile event that specifies the sessionId of the file you
want to close. For example, if you want to replace the contents of a file, you must close the file before
you send an OpenFileForWriting event. The definition of the CloseFile event is as follows:
event CloseFile
{
 /* The name of the transport being used within the file adapter */
 string transportName;
 /* Request ID for this CloseFile event. If an error occurs,
 the response will contain this ID */
 integer requestId;

 /* The session ID the file to close is associated with */
 integer sessionId;
}

If there is an error, the File adapter sends a FileError event. Otherwise, the File adapter closes the file
and sends a FileClosed event, and then it is available to be opened again for writing or for reading.

Apama File Adapter

Opening files for writing
To open a file for writing, emit an OpenFileForWriting event. The definition of the OpenFileForWriting
event is similar to the definition of the OpenFileForReading event:
event OpenFileForWriting
{
 /* The name of the transport being used within the file adapter.
 This should match the transport name used in the IAF config
 file so the transport can recognize events intended for it */
 string transportName;

 /* Request ID for this open file event. The response, either a
 FileHandle or a FileError event, will contain this ID */

Opening files for writing

Developing Adapters 5.2.0 177

 integer requestId;

 /* The name of the codec to use with the file. This should match
 one of the codecs specified in the (static) config file. Use
 the null codec (by default this is called JNullCodec) to write
 entire lines */
 string codec;

 /* Full filename to write to */
 string filename;

 /* Boolean representing whether the file is to be overwritten or
 appended */
 boolean appendData;

 /* This field is used to specify extra parameters to the codecs,
 such as the CSVCodec and the FixedWidthCodec */
 dictionary<string, string> payload;
}

The procedure for opening a file for writing CSV or fixed width files is effectively the same as for
reading. Specify the relevant fields in the payload to describe the format of the file you want to write.
When subsequently sending FileLine events, populate the data sequence field with the data for each
field.

Again, once constructed, emit the OpenFileForWriting event to the "FILE" channel, for example:
emit new com.apama.file.OpenFileForWriting("FileTransport",
 integer.getUnique(), "JNullCodec","/home/writeFile.txt",false);

For fixed width files, you can construct a more complex OpenFileForWriting event in a similar way to
that described in "Opening fixed width files" on page 173.

Again, as with reading a file, the File adapter sends a FileHandle or FileError event (see "Sending the
read request" on page 174), which your application should listen for, filtering on the requestId for
the FileHandle event you are interested in.

Once a FileHandle event has been received, the file has successfully opened and the application can
begin to send FileLine events to be written:
event FileLine
{
 /* The name of the transport being used within the file adapter */
 string transportName;

 /* When sending these upstream (i.e. writing):
 1) If this value is negative, the adapter will send no
 acknowledgement.
 A FileError may be sent back in response if this request
 generates an error. If the user is always using the same
 requestId e.g. -1, then they will not be able to work out
 which line generated the error. The application writer is
 free to ignore listening for these errors should they wish.

 2) If this value is 0 or greater then the adapter will send an
 acknowledgement LineWritten event back to the application.
 */
 integer requestId;

 /* The session Id this FileLine event is for or from */
 integer sessionId;

 /* The data as a sequence of strings. */
 sequence<string> data;
}

Notice that the data field is a sequence of strings, rather than a string. This allows you to have
the fields you want to write as separate entries in the sequence, and it lets the File adapter format

LineWritten event

Developing Adapters 5.2.0 178

the sequence for writing according to the chosen codec. For the fixed width codec, the number of
elements in the sequence should match the number of fields originally specified when opening the
file. For the null codec, if the sequence contains more than one element, each field will be written out
using a separator defined in the IAF configuration file. This separator can be blank, in which case
each element will be written out immediately after the previous one, with a newline after the last
element.

The FileLine event is exactly the same as the one received when reading; however, the requestId
takes on a more important role. If you specify a positive requestId, your application receives an
acknowledgement

When a file is already open for reading, you can write to that file only by appending new data. Of
course, you must send an OpenFileForWriting event, and then the File adapter can process FileLine
events for writing to that file. You receive a FileError event if the file is open for reading and for
writing and you try to write data into the file but not by appending the new data.

Apama File Adapter

Opening files for writing with parallel processing applications
If your Apama application implements parallel processing, you may want to increase parallelism
by processing the incoming events from the File adapter in a separate, private, context, rather
than doing everything in the correlator’s main context. To request that events from the File
adapter are sent to the private context your monitor is running in, the monitor should open the
file using the com.apama.file.OpenFileForWritingToContext event instead of OpenFileForWriting. The
OpenFileForWritingToContext event has a field that contains a standard OpenFileForWriting event
(see "Opening files for writing" on page 176), in addition to a field specifying the context that
file adapter events should go to for processing, (which is usually the context the monitor itself is
running in, context.current()), and the name of the channel the File adapter is using. When using
the OpenFileForWritingToContext event, the OpenFileForWritingToContext event and all other File adapter
events must not be emitted directly to the adapter, but rather enqueued to the correlator’s main
context, where the adapter service monitor runs. The File adapter’s service monitor is responsible for
emitting the events that are enqueued from other contexts to the File adapter, and for enqueuing the
events received from the File adapter to whichever context should process them (as specified in the
OpenFileForWritingToContext event).

The OpenFileForWritingToContext event is defined as follows
event OpenFileForWritingToContext
{
 context instanceContext;
 string fileChannel;
 OpenFileForWriting fileEvent;
}

Using the OpenFileForWritingToContext event is similar to using the OpenFileForReadingToContext event.
See "Opening files for reading with parallel processing applications" on page 171 for an example
use of the OpenFileForReadingToContext event.

Opening files for writing

LineWritten event

Monitoring the File adapter

Developing Adapters 5.2.0 179

After the File adapter writes a line to a file, the adapter sends a LineWritten event. The event
definition is as follows:
event LineWritten
{
 /* The name of the transport being used within the File adapter */
 string transportName;

 /* Request ID this event is in response to. */
 integer requestId;

 /* The sessionId the FileLine was sent for */
 integer sessionId;
}

This is useful when you want your application to send FileLine events in a batch to control flow. If
you need to do flow control, you would typically set all the requestIds to positive values and emit the
next FileLine events only after receiving the LineWritten notification for the previous FileLine event
you sent. If you do not need to do flow control, you could set requestId=-1 for all but the last FileLine
event, but set it to a positive value for the very last FileLine event so you get a single LineWritten
notification when everything has been written.

The file remains open for the lifetime of the adapter unless you emit a CloseFile event. See "Opening
files for reading" on page 169 for the CloseFile event definition.

Apama File Adapter

Monitoring the File adapter
You can use the File adapter status manager (FileStatusManager.mon in the adapters\monitors directory)
to monitor the state of the File adapter.

The File adapter sends status events to the correlator, some of which are asynchronous (not
requested) status messages. This occurs as a result of connection status changes, which happen in
response to a file being closed or opened.

For single files, the File adapter sends an AdapterConnectionOpenedEvent when it opens a new file
for reading or writing, and an AdapterConnectionClosedEvent when it closes a file. When the File
adapter uses a wildcard pattern to open a series of files, in addition to those events, the File
adapter sends an AdapterConnectionClosedEvent event after it has read everything in a file, and an
AdapterConnectionOpenedEvent event when it opens the next file. This is an analogous pattern to the
EndOfFile and NewFileOpened events sent by the adapter itself.

Apama File Adapter

	Table of Contents
	Preface
	About this documentation
	How this book is organized
	Documentation roadmap
	Contacting customer support

	Chapter 1: The Integration Adapter Framework
	Overview
	Architecture
	The transport layer
	The codec layer
	The Semantic Mapper layer
	Contents of the IAF

	Chapter 2: Using the IAF
	The IAF runtime
	IAF library paths
	IAF command line options
	IAF log file status messages
	IAF log file rotation

	IAF Management – Managing a running adapter I
	IAF Management options
	IAF Management exit status

	IAF Client – Managing a running adapter II
	IAF Watch – Monitoring running adapter status
	The IAF configuration file
	Including other files
	Transport and codec plug-in configuration
	Event mappings configuration
	Apama event correlator configuration
	Configuring adapters to use UM
	Logging configuration (optional)
	Java configuration (optional)

	IAF samples

	Chapter 3: C/C++ Transport Plug-in Development
	The C/C++ transport plug-in development specification
	Transport functions to implement
	Defining the transport function table
	The transport constructor, destructor and info functions
	Other transport definitions
	Transport utilities
	Communication with the codec layer

	Transport Example
	Getting started with transport layer plug-in development

	Chapter 4: C/C++ Codec Plug-in Development
	The C/C++ codec Plug-in Development Specification
	Codec functions to implement
	Codec encoder functions
	Codec decoder functions

	Defining the codec function tables
	The codec function table
	The codec encoder function table
	The codec decoder function table
	Registering the codec function tables

	The codec constructor, destructor and info functions
	Other codec definitions
	Codec utilities
	Communication with other layers
	Working with normalized events
	The AP_NormalisedEvent structure
	The AP_NormalisedEventIterator structure

	Transport Example
	Getting Started with codec layer plug-in development

	Chapter 5: C/C++ Plug-in Support APIs
	Logging from plug-ins in C/C++
	Using the latency framework
	C/C++ timestamp
	C/C++ timestamp set
	C/C++ timestamp configuration object
	C/C++ latency framework API

	Chapter 6: Transport Plug-in Development in Java
	The Transport Plug-in Development Specification for Java
	Java transport functions to implement
	Communication with the codec layer
	Sending upstream messages received from a codec plug-in to a sink
	Sending downstream messages received from a source on to a codec plug-in

	Transport exceptions
	Logging

	Example
	Getting started with Java transport layer plug-in development

	Chapter 7: Java Codec Plug-in Development
	The Codec Plug-in Development Specification for Java
	Java codec functions to implement
	Communication with other layers
	Sending upstream messages received from the Semantic Mapper to a transport plug-in
	Sending downstream messages received from a transport plug-in to the Semantic Mapper

	Java codec exceptions
	Semantic Mapper exceptions
	Logging
	Working with normalized events
	The NormalisedEvent class
	The NormalisedEventIterator class

	Java Codec Example
	Getting started with Java codec layer plug-in development

	Chapter 8: Plug-in Support APIs for Java
	Logging from plug-ins in Java
	Using the latency framework
	Java timestamp
	Java timestamp set
	Java timestamp configuration object
	Java latency framework API

	Chapter 9: Monitoring Adapter Status
	IAFStatusManager
	Application interface
	Input events
	Output events

	Returning information from the getStatus method
	Connections and other custom properties
	Asynchronously notifying IAFStatusManager of connection changes
	Mapping AdapterConnectionClosed and AdapterConnectionOpened events

	StatusSupport
	StatusSupport events

	Chapter 10: Out of and Connection Notifications
	Mapping example
	Ordering of out of band notifications

	Chapter 11: The Event Payload
	Creating a payload field
	Accessing the payload in the correlator

	Chapter 12: Standard Plug-ins
	The Null Codec plug-in
	Null codec transport-related properties

	The File Transport plug-in
	The String Codec plug-in
	The Filter Codec plug-in
	Filter codec transport-related properties
	Specifying filters for the filter codec
	Examples of filter specifications

	The XML codec plug-in
	Supported XML features
	Adding XML codec to adapter configuration
	Setting up the classpath
	About the XML parser
	Specifying XML codec properties
	Required XML codec properties
	XML codec transport-related properties
	Message logging properties
	Downstream node order suffix properties
	Additional downstream properties
	Sequence field properties
	Upstream properties
	Performance properties

	Description of event fields that represent normalized XML
	Examples of conversions
	Sequence field example
	XPath examples

	The CSV codec plug-in
	Multiple configurations and the CSV codec
	Decoding CSV data from the sink to send to the correlator
	Encoding CSV data from the correlator for the sink

	The Fixed Width codec plug-in
	Multiple configurations and the Fixed Width codec
	Decoding fixed width data from the sink to send to the correlator
	Encoding fixed width data from the correlator for the sink

	Chapter 13: Apama File Adapter
	File Adapter plug-ins
	File Adapter service monitor files
	Adding the File adapter to an Apama Studio project
	Configuring the File adapter
	Overview of event protocol for communication with the File adapter
	Opening files for reading
	Opening files for reading with parallel processing applications

	Specifying file names in OpenFileForReading events
	Opening comma separated values (CSV) files
	Opening fixed width files
	Sending the read request
	Requesting data from the file
	Receiving data
	Opening files for writing
	Opening files for writing with parallel processing applications

	LineWritten event
	Monitoring the File adapter

