§ software

Building Dashboards

5.2.0

August 2014

=" APAMA

This document applies to Apama 5.2.0 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its Subsidiaries and or/its Affiliates and/or
their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA Inc.
and/or its Subsidiaries and/or its Affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective
owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are located at http://documentation.softwareag.com
legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products." This document is located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-Building_Dashboards-5.2.0-20140808@233876

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

Table of Contents

=1 T 8
How This BOOK 1S Organized...........ccceuviiiiiieiisiiccce sttt 8
DocUMENLAtION FOAAMED.cvivivcvereiece ettt bbbttt bbb b bbbt e e e e e s s s s n s 8
Contacting CUSIOMET SUPPOIL..........cveieiririricieieisise ettt s st s st se st s s e 10

L0 T=T o3 (=Y o I 143 4o T 11T T o O 12
ADOUL AASHDOAIAS.........ceeiiiic st 12
Starting the Dashboard BUIIAETcciiiiccc et 13

Starting Builder from the WINdows Start MENU............cceiiiiiee e 13
Starting Builder from Apama StUGIO..........ccovveueieiiiccee e e 14
Specifying Dashboard BUilder OPtIONS..........c.cvcucuiveiiiicicie et 14

Starting Builder from the command liNE............coeiiiiini s 14
Scenario instance and DataView item OWNErshiP..........ccceiiicricicee e 15
Using the tutorial @pPlICAtION.........ccciiiiiiiiii st 15

Chapter 2: Using Dashboard Builder..............eecereerrrrrrrrr e 18

Dashboard BUIlAEr [AYOUL.............coueuriiiiiee bbb 18
THE MENUDA. ...ttt 19

LI L= 00101 - [PPSR 22
TRE CANVAS.....cocuiiriiceetere ettt s bbb e sttt et 24
The ObJECE PalEtl......c.vieciceeicieces bbbttt bt 24
The Object Properties PanEl.........cccccuciiiiiiiiiceeseceee ettt bbbt bbbt 24
SPECITYING AAIA SOUICES. ...t bbbt 26
SPECITYING COIMEIALONS.......vieiecrcteisiiccte ettt bbbt st es 26
SPECIfYING XML data SOUICES.......c.coiieivireiiicictcte ettt bbbt bbb bbb 28
Activating data Source SPECIfICAtIONS............cvuiuririreiriciece s 28
Saving data source SPECIfiCAtiONS.........cccciiiiciireiice e 28
Setting the background PrOPEILIES.........ccccviivcieteiiecce ettt bbb 28
ADOUL FESIZE MOGES. ... vttt s ettt e et b bbb b st t s s s 30
About resize modes and Display Server deploymentS.........ccccvviiceniiiicess e 32
About resize modes and COMPOSItE ODJECES........ccovvvviriiiii e 32
WOTKING WIth ODJECES........vuiueiiciicieict bbb 33
Adding objects t0 @ dashbOArd...........cccciiiiieiccs e 33
SElECHNG AN ODJECL........cuiviiccc bbb bbb bbbt 33
RESIZING ODJECES. ... 34
MOVING ODJECES.ouivcvcteiiicete ettt bbb bbb b s s st et s s 34
Copy and PaStiNg ODJECES.......c.cuiiuiiiieieccte ettt bbbt bbbt 35
DElEtiNg ODJECES.vuieveecei s 36
Setting BUIAEr OPLONS.........vieceeiiccce bbb bbb bbb 36
Setting Dashboard OPLIONS...........ccciuiiiiiiiciee ettt bbbt bbb bbbt 37
Setting options in the General tab GroUP..........cocviiiee e 38
Setting options in the General tab..........ccooicciicc s 39

Setting options in the SUbSHtUtIONS taD...........cccciieiccc e 40

Setting options in the Data SErver tab...........coiic s 40

Building Dashboards 5.2.0 - APAMA 3

Table of Contents

Setting options in the Custom ColOrs taD..........ccoiueiiriii s 41

Setting options in the Apama tab GroUD.........ccceiiiiicci e 44
Setting options in the SQL taD GroUP.......ccvueieierc e 45
Setting options in the XML tah GrOUP.........cv i 45
SAVING OPLIONS......cuviiiecectce ettt b bbb bbb bbb 46
COMMANG lINE OPLIONS. ..ottt sttt bbbt b bbbt b sttt bn s 46
Chapter 3: Attaching Dashboards to Correlator Data..............cccceeiiiiiiiiiiciiiciccieeaeeee 51
DashbOard data taDIES........ceriiieierrier ettt 51
SCENAIO INSTANCE TADIE.........eceeececicce e 53
SCENAIMO trEN tADIE.......ceieeiice e 54
SCENAMNO OHLC taDIE........coieeceeececee ettt 54
COorrelator StatUS taDIE..........coieeeecee s 55
Data Server Status tabIE...........coirrieesice e 55
Scenario CONSIAINT TADIE.......c.cuiiiceeee et 56
DataVIEW HEM HADIE. ... 56
DataVIeW trend tADIE. ... 57
DataVIEW OHLC HADIE.......cvoiieeeeeee et 57
SQL-based iNStANCE tADIE...........ceirrie s 57
Setting data OPLIONS. ..ot bbbt ane 58
Scenario instance and DataView item OWNEIShIP..........cocriiirerrrcee e 59
Creating a data atlaChmeNt...........coeiiiccce s 59
Using the Attach to Apama diglog.........cccciiiiiiiiiiiiiiss e 60
Selecting display variables Or fIEldS...........ccoiiii s 63
Displaying attached data..........c.cciiiiiceicce e 63

11 T Lo o =1 - PP 64
Attaching t0 CONSEraiNt data...........oceuiiiiiic e 64
ADOUL TIMESTAMPS........eecvvi bbb bbbttt bbb 64
Using dashboard variables in attaChments............cccevricccccee e 65
About NON-SUDSHLULION VaNADIES...........veierierciccee e 66

About drilldown and $INStANCEIT..........c.eveieiriiircee e 66
About other predefined substitution variables...............ccccerviiiiiieiicecce s 67
Using SQL-based inStance tablEs...........cocririiiriic s 67
Working with mUItiple Data SEIVEIS..........cceiiiccieeisee s 70
Builder with multiple Data SEIVETS..........ccciueieiiictee e 72

Viewer with mUltiple Data SEIVETS. ..o 73

Display Server deployments with multiple Data SErVers...........coccceeviiecceiseccessssecee s 75

Applet and WebStart deployments with multiple Data Servers.........ccccoecveevveccecescceee e 76

USING taDIE ODJECES. ...t 76
Creating a scenario SUMMArY taDIE.........cccviiiirie e 78
Filtering rows of a scenario summary table...........cccccueiiicriecicce e 80
Performing drilldowns 0N faDIES..........c.ciiiic 81
Specifying drill-down column SUDSHEULIONS..........cccviviiiiecercccc e 84
HIdING tabIE COIUMNS.......oiiiii bbb bbbt 87
Using pre-set substitution variables for drill dOWN..............cociiii s 88
Formatting table data..........cccviiciiiccc e 88
Colorizing table rOWS @Nd CEIIS..........ccceviiiiiiceceeee ettt bbb bbb 89
Setting COIUMN NBAUETS. ... 91

Building Dashboards 5.2.0 - APAMA 4

Table of Contents

USING 1OtatEd tADIES.cveiiceici e 92
USiNG pie @nd Dar CharS.........cccciiiiicicieccce et 92
Creating @ summary pi€ OF bar Chalt...........ccocuieiiiiicee et 93
Using series and NON-SEres Dar CharS. ..o 94
Performing drilldowns on pie and bar Charts.........cccccciicceiicces s 95
USING trENA ChaMS......cociic bbb bbbttt b s e e e e 96
Creating @ Scenario trend ChaM..........c.ocii s 97
Charting MUIIPIE VANADIES..........c.civeieiriiiciee st 100
AdAING TNrESNOIAS.vvcvcecicccee ettt nee 105
Configuring trend-data CaChING..........cuiuruiriirieiiee e 108
USING SLOCK CharS.....cvviiecicicicicce bbbttt bbbt et b b s 109
USING OHLC VAIUES.........oeeviveieieectciee ettt bbb bbb bbbttt st etee 110
Creating @ SCenario SLOCK CNAI............cceiiiiieiee i 115
AdAING OVEIIAYS......viiicicteieiseee st b bbbt s sttt n ettt b s s 118
Recreating the Stock Chart Overlay Sample...........cccccuieiiiceicccce e 120
Generating OHLC VAIUES.........c.ouiuiiiicictee bbb 124
Localizing Dashboard LabEIS...........ccccvcveuiiiiiiiciesceece sttt 125
Localizing DashbOard MESSAGES.cuiiiriiiiiiiiiiriiiitsestststst sttt r s sn s s naen 129
Chapter 4: Using Dashboard Functions............ccccciiiiiiiiiiniieceecceccceereeere e e 130
USING DUIIE-IN FUNCHIONS. ... 130
Creating CUSIOM fUNCHONS........c.ciiiecreiieccs sttt bbb 132
Developing @ custom-function IBrary...........ccccceiiiciecicccee e 133
Implementing getFUNCHONDESCHIPLONS..........cviiiriiirc s 133
Implementing evaluateFUNCHON...........cccciiicicee e 133
Installing @ cuStOM-FUNCHON DFArY........c.cocoiuiiiieiccce e 134
Sample IFunctionLibrary implementation...........c.coorerces e 135
Chapter 5: Defining Dashboard Commands............cccccmmmmiiiniiinemmnese e 141
SCENAMO TIIECYCIE......iiieceeie bbb bbb s bbb bbb n e 141
DEfiNING COMMEANGS.......c.oiuiiiteiiictcte ettt bbb bbb bt s bbb bbbt 142
Using dashboard variables in COMMENGS..........coceuriiriiiriiiieeee s 143
Defining commands for creating @ SCeNario iNSLANCE...........cccccvviiiiei s 146
Defining commands for editing a SCenario INStaNCE............ccoceviieiceeiccce e 148
Supporting deletion of @ SCENAMIO INSTANCE.........cvurriirreeee e 150
Supporting deletion of all iNstances of @ SCENAMO............ccccreiiiicee e 152
Using popup dialogs fOr COMMANGS..........cccciuiiiiiiiiicieeeeetcte ettt bbbttt 153
L070] 1T 4= 0o 001103 3PP 155
Associating @ command With KEYSITOKES........couvrviriririiriirsr s 155
Defining MUItple COMMEANGS........ccviiiicieici ettt bbb bbb bbb 157
Creating CUStOM COMMEANGS.........cuvuiireiieiieiricie ittt 158
Developing a custom-command lIDrary...........ccccciiienicceseee s 158
Installing @ Custom-Command LIDrary...........cccocceeiiiiceiicccce et 159
Sample ICommandLibrary implementation.............cccevrirernes e 159
Apama set substitution COMMANG...........ccoviiiiiiiicce s 160
Chapter 6: Reusing Dashboard Components...........ccccceiiiiiimimiiisecccccssss s ssssssssssssssssnns 162
USING ODJECE GHIAS.......cviiecreiice ettt et bbb b bbbt bbbt b bbb n e aee 162
Configuring ODJECE GIIAS.........cvvuiiiieicieiscr e 163

Building Dashboards 5.2.0 - APAMA 5

Table of Contents

Recreating the Object Grid SAMPIE...........coiiiiiicire 167
USING COMPOSItE ODJECES. ...ttt bbbt bbb 169
Creating files to display in COMPOSItE ODJECES..........ccccveviviiiciee e 170
Configuring COMPOSItE ODJECES.........cuvrieiiiciiciri s 171
Using substitutions with COmMPOSIte ODJECES.........ccoiviieiieiiccce s 173
Composite ObJECt INEEFACHVIEY........cceviiicicreteece bbb 175
CompOSite ODJECE SAMPIE.......cueviieerieieeceee e 176
Recreating the Composite 0bject SAMPIE.........cccviviiiiciercce e 177
USING COMPOSItE GHIAS.....ucvviiieireisiieccte ettt ettt bbb bbb b bbb a bbb s seneas 177
Configuring COMPOSItE GHITS.........v.euvieriiieiiiieei e 178
ComPOSItE Grid SAMPIE........ceviriiiictee et b bbbt b s 179
Recreating the Composite Grid SAMPIE..........c.cocueuiiiicieceece e 180
USING INCIUAR FIBS.... et 182
INCIUAE File SAMPIE......cocvciiiictcetc bbbttt b b 184
Recreating the Include File SAMPIE.........cccoeiciiiiiicce s 186
Working with multiple diSplay PANEIS.........ccciviiiiierreeee et 187
About the format of the panels-configuration file.............ccccoeirviicceii s 188
Using new tags to configure the panels in @ WINAOW...........cccovviiieiniieccicsece e 188
Configuring panels with accordion CONMIOIS............coveuriiiriiieiniee e 189
Configuring static tree navigation PanElS............ccocceiviiicceic e 190
Configuring tabbed Navigation PANEIS.............ccceieieiiiiciceecce e 190
Using tab definition fileS...........ciiiiccc 191
Examples of configuration files for multiple panels..........cccocoeeeiiiecceescce e, 191
Using tree controls in panel diSplays..........ccovvvviiiiiiiscce s 192
Creating tre8 CONMOIS.c.ivuiiiiieiii bbb 193
Creating row-leaf format CONtrol trE€S........cocvvvviieviiiicc e, 194
Creating row-node format tree CONMOIS.........c.ccoviucveveiiiicrere e 196
Configuring tree CONIOl ICONS..........ouiueiieciricic e 198
Attaching a tree control icon 10 data..........ccccevviccciicce e, 199
Configuring tree CoNtrol fYPe ICONS.........ccviiuiieiriicece e 199
Configuring tree CONtrol StAtUS ICONS........c.ou v 201
Specifying tree CoONtrol PrOPEILIES......cvcvvivceireiiitccie e 203
Specifying tree control background Properties...........cocvveeieniieiecreeseeeee e 203
Specifying tree control data display Properties........ocvvrrierersiieeee s 203
Specifying tree control interaction Properties..........occervicieeicicee s 205
Specifying tree control [abel Properties..........ccovvccvereiriiciceeseee e 207
Specifying tree control node structure Properties........c.coveeerricennrneeee s 207
Specifying tree control object layout Properties..........cocviiceeinicceessee e 208
Descriptions of unique tree control property behavior............cccoccceeeviiccciecccce e 210

Tree CONtrol IMItAHONS.cveriii e 211
Using old tags to configure the panels in @ WINAOW..........ccoccveerriieeceiscecee e 211
USING DOFAET PANEIS......cciiiiieiie st pes 212
USING CAIA PANEIS.......cviiiiiiiiiictee bbb 213
USING G0 PANEIS.......coeviiiiieiieieiceie ettt ettt nas 214
USING tADS PANEIS........oiiiiiiiicisice ettt bbbt e s 215
USING trEE PANEIS......ceeiiiieci bbb 216
Using the RTViewNavTreePanel tag.........ccccvviiieiiiicces et 218
Using the RTVIEWPANE! taQ......cccviiiiiiiiiii ittt s 218

Building Dashboards 5.2.0 - APAMA 6

Table of Contents

Chapter 7: Sending Events to Correlators............cccccoiiiiiiimemceeeeerrerrrrrr e 220
Using the Define Apama Command didlog..........couueuiururiiirinieiriieee s 220
COMMEANG fIBIA. ... 220
PACKAGE TIBIG.evieiecteteie ettt bbbt bbbttt b 222
EVENE FIBIG. ...t bbb bbbttt a e ettt bbb bbbt b bt 222
CRANNET FIBIG. ... 222
Other dialog fIEIAS.........ceviiiiieeete et ettt bbbt s bbb s 222
DEFAUIL VAIUES.veieceiee sttt 224
Specifying values for COMPIEX tYPES......cciiiirieriice e 225
Updating event definitions in BUIIAET............cccviiieieieiiccee ettt 225
= 0] 0] TP 225
Send event QUINOMZALION. ..o 227
Chapter 8: Using XML Data............ccoeiiiiiiiiiicccccssssssssssssssmsmnnnere s sss s s s s s s s s s s s ssssssssssssssnnnas 228
XML data fOMMAL.....ceeeeceeicee ettt 228
SCalAr data BIEMENTS.....c.cviicceee et 228
Tabular data EIEMENLS..........cvviirce e 229
Defining an XML daa SOUICE.......cccuiiiiceciceccectc ettt bbb bbb bbbt 230
Attaching objects t0 XML data...........ceuiiriiiiicice e 232
Chapter 9: Using SQL Data..........cccoiimmmmiiiiniiiirs s sssss s 234
SQL system requireMents @nd SEIUP. ..o s 234
Attaching visualization objects t0 SQL data..........ccoeeirriirecece e 234
K210 =0 T oT0) (o £ 3T 237
SUDSHIULIONS. ...ttt 238
Select table COIUMNS........c.ciiieic et 238
Defining SQL COMMANGS.........ouiuiiiiiieiriciie bbb 238
ValidAHION COIOTS......vvuriiiiice bbb es 240
SPECIAI VAIUES.......oviiiecite ettt et bbb bbbt b bbbttt nas 240
Specifying appliCation OPLIONS.........cceiriieee st 240
SQL D, ..ttt 241
AddING @ DAADASE.........cucueiiiiiiiiie ettt berererers 243
DataDASE TEPOSIHONY........cueeiriiiieiiei et 244
Excluding tables From the Attach To SQL Data dialog...........ccoeriierrireinienerniesessesceseenenas 244
Entering database information directory into OPTIONS.INI..........coceiiiiiiieeeee e 244
Generating encrypted passwords for SQL data SOUMCES.........ccvrvieerrirecirierecee s 245
Deploying applet and WebStart dashboards............ccocevieiiieiiicesscce s 245
Setting up SQL database CONNECHONS.........c.veiieiricecee s 246
Direct JDBC CONNECHON.coieeeeteiriicieieis sttt s snas 247
ODBC-JDBC bridge CONNECHON.........ccciveiiiiiiicietesi ettt bbb 247
Registering your database with ODBC...........ccccciiiiiicce et 248
Using a database repository file...........ccuie 248
Excluding tables From the Attach To SQL Data dialog...........ccoevierniieinienessiesesiesece e 249
Setting SQL data SOUMCE OPLIONS........cuvuiueiiieiriieirie ettt 250

Building Dashboards 5.2.0 - APAMA 7

How This Book Is Organized

Preface
B How This BOOK IS OrganiZeacccciuiieieieicicieeeceeeeee ettt 8
B DocumMENAtioN FOAUMEAD ...cciviiiiiiieieiee ettt ettt r e e e e ss bbb bbb bbbttt bbb ebebenis 8
B Contacting CUSIOMET SUPPOIcucuiuiiiriieieieisiisete ettt ettt 10

How This Book Is Organized

The information in this book is organized as follows:
®* "Introduction” on page 12 introduces the concepts underlying dashboards.

® "Using Dashboard Builder" on page 18 illustrates how to use the Dashboard Builder’s
interactive functionality.

® "Attaching Dashboards to Correlator Data" on page 51 describes the correlator data that is
available for attachment and it describes the most common objects that can be attached to the
data.

® "Using Dashboard Functions" on page 130 covers using builtin and user-defined dashboard
functions.

® "Reusing Dashboard Components" on page 162 describes the features of Dashboard Builder
that allow you to create reusable dashboard components and expand beyond the Table object for
the rich display of tabular data.

® "Defining Dashboard Commands" on page 141 details the how to integrate scenario
commands into a dashboard to create, edit, and delete scenario instances.

® '"Sending Events to Correlators" on page 220 details the how to integrate scenario commands
into a dashboard to send arbitrary events to correlators.

* "Using XML Data" on page 228 describes how to augment your dashboard by using XML data
files as a data source in addition to Apama scenarios and DataViews.

® "Using SOL Data" on page 234 provides information on accessing JDBC or ODBC enabled
databases.

Preface

Documentation roadmap

On Windows platforms, the specific set of documentation provided with Apama depends on
whether you choose the Developer, Server, or User installation option. On UNIX platforms, only the
Server option is available.

Apama provides documentation in three formats:

& HTML viewable in a Web browser

Building Dashboards 5.2.0 - APAMA 8

Documentation roadmap

* PDF
® Eclipse Help (if you select the Apama Developer installation option)

On Windows, to access the documentation, select Start > All Programs > Software AG > Apama 5.2 >
Apama Documentation . On UNIX, display the index.ntm1 file, which is in the doc directory of your
Apama installation directory.

The following table describes the PDF documents that are available when you install the Apama

Developer option. A subset of these documents is provided with the Server and User options.

Title Contents
What’s New in Apama Describes new features and changes since the previous release.
Installing Apama Instructions for installing the Developer, Server, or User

Apama installation options.

Introduction to Apama

Introduction to developing Apama applications, discussions of
Apama architecture and concepts, and pointers to sources of
information outside the documentation set.

Applications in Event
Modeler

Using Apama Studio Instructions for using Apama Studio to create and test Apama
projects; write, profile, and debug EPL programs; write J]Mon
programs; develop custom blocks; and store, retrieve and
playback data.

Developing Apama Instructions for using Apama Studio’s Event Modeler editor

to develop scenarios. Includes information about using
standard functions, standard blocks, and blocks generated
from scenarios.

Developing Apama
Applications in EPL

Introduces Apama’s Event Processing Language (EPL) and
provides user guide type information for how to write EPL
programs. EPL is the native interface to the correlator. This
document also provides information for using the standard
correlator plug-ins.

Applications in Java

Apama EPL Reference Reference information for EPL: lexical elements, syntax, types,
variables, event definitions, expressions, statements.
Developing Apama Introduces the Apama in-process API for Java, referred to

as JMon, and provides user guide type information for how
to write Java programs that run on the correlator. Reference
information in Javadoc format is also available.

Building Dashboards Describes how to create dashboards, which are the end-user

interfaces to running scenario instances and data view items.
Dashboard Property Reference information on the properties of the visualization
Reference objects that you can include in your dashboards.

Building Dashboards 5.2.0

s- APAMA

Contacting customer support

Title Contents
Dashboard Function Reference information on dashboard functions, which allow
Reference you to operate on correlator data before you attach it to

visualization objects.

Developing Adapters Describes how to create adapters, which are components that
translate events from non-Apama format to Apama format.

Developing Clients Describes how to develop C, C++, Java, or .NET clients that can
communicate with and interact with the correlator.

Writing Correlator Plug-ins Describes how to develop formatted libraries of C, C++ or Java
functions that can be called from EPL.

Deploying and Managing Describes how to:

Apama Applications * Use the Management & Monitoring console to configure,

start, stop, and monitor the correlator and adapters across
multiple hosts.

* Deploy dashboards over wide area networks, including
the internet, and provide dashboards with effective
authorization and authentication.

* Improve Apama application performance by using multiple
correlators, and saving and reusing a snapshot of a
correlator’s state.

* Use the Apama ADBC adapter to store and retrieve data in
JDBC, ODBC, and Apama Sim databases.

* Use the Apama Web Services Client adapter to invoke Web
Services.

* Use correlator-integrated messaging for JMS to reliably send
and receive JMS messages in Apama applications.

* Use Universal Messaging to connect correlators.

Using the Dashboard Viewer Describes how to view and interact with dashboards that are
receiving run-time data from the correlator.

Preface

Contacting customer support

You may open Apama Support Incidents online via the eService section of Empower at http://
empower.softwareag.com. If you are new to Empower, send an email to empoweresoftwareag.com with
your name, company, and company email address to request an account.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Directory at https://empower.softwareag.com/public_directory.asp and give us a call.

Building Dashboards 5.2.0 - APAMA 10

https://empower.softwareag.com/eservice
https://empower.softwareag.com/eservice
https://empower.softwareag.com/public_directory.asp

Contacting customer support

Preface

Building Dashboards 5.2.0 - APAMA 11

About dashboards

Chapter 1: Introduction

B ADOUL dASNDOAITAS ... 12
B Starting the Dashboard BUIIAETc.cucueiiieiiiciccee ettt bbbt bbb 13
B Scenario instance and DataView item OWNEISNIDcooriiceecce e 15
B Using the tutorial @pplICALIONcviiiiiiiieiee sttt e 15

Building Dashboards assumes that you have already installed a development version of Apama. You
should also read Introduction to Apama in the Apama documentation set.

This chapter introduces dashboards and the Dashboard Builder. It also describes how to run the
tutorial application that is a companion to Building Dashboards.

About dashboards

Dashboards provide the ability to view and interact with scenarios and DataViews. They contain
charts and other objects that dynamically visualize the values of scenario variables and DataView
tields. Dashboards can also contain control objects for creating, editing, and deleting scenario
instances and DataView items.

An Apama project typically uses of one or more dashboards. Each dashboard defines a single
display, or view, of information. Dashboards are created in the Dashboard Builder (or with the
Dashboard Generation Wizard —see Using Apama Studio). Each dashboard is stored in a separate .rtv
file. All .rtv files for a given project are stored in a single directory. This directory also contains a
.dashboard file, which records various dashboard parameters, including the file that is to be used as
the dashboard project’s main dashboard.

The contents of a dashboard, the charts displayed and the data shown, is determined when the
dashboard is created in the Builder. The Dashboard Viewer provides the ability to use dashboards
created in the Builder. Dashboards can also be deployed as simple Web pages, applets, or WebStart
applications.

Deployed dashboards connect to one or more correlators via a Dashboard Data Server or Display
Server. As the scenarios in a correlator run and their variables change, or as a DataView item’s fields
are updated, update events are sent to all connected dashboards. When a dashboard receives an
update event, it updates its display in real time to show the behavior of the scenarios or DataViews.
User interactions with the dashboard, such as creating an instance of a scenario, result in control
events being sent via the Data Server or Display Server to the correlator.

Dashboard Builder communicates with running correlators so that you can see at design time what a
dashboard will look like when deployed. Unlike a deployed dashboard, the Builder connects directly
to the correlators it communicates with. The following diagram illustrates the design environment
for dashboards:

Building Dashboards 5.2.0 - APAMA 12

Starting the Dashboard Builder

Figure 1. Dashboard-correlator communication in the development environment

Design Ermmonment

Soenano Deplyment Emaronment

Bvent Comelalor

- Updste Events Scenano Definitiors

—— '1 1
== e Cortral Evarts e —
iyt HL - Searanoinsmnoas
LN i d I
i 1
- .
1
1
1
1
1 ¥
1 Aparna
s hibova Dras hbeard : Adaprars
Filas [1tw) Resources 1
[.gif,, et :
I
: < Mazssage Bus >
CPTIC ME. 1
L i
ini "
L & 1
1
1

In order to use Dashboard Builder to create a dashboard for a scenario or DataView, you need to start
a correlator and inject the scenario or DataView into it. You should use a development correlator to
initially develop dashboards, not a deployed correlator acting on live data.

Dashboard Builder does not support creating dashboards for scenarios or DataViews that have not
been injected into a correlator.

Introduction

Starting the Dashboard Builder

You can start the Dashboard Builder from the Windows Start menu, from Apama Studio, or from the
command line.

Introduction

Starting Builder from the Windows Start menu

The simplest way to start the Dashboard Builder is from the Windows Start menu.
1. Select All Programs > Software AG > Apama 5.2 > Development > Dashboard Builder .

When you start the Builder this way, the Builder’s current directory is the dashvoards directory in your
Apama installation’s work directory:.

Starting the Dashboard Builder

Building Dashboards 5.2.0 - APAMA 13

Starting the Dashboard Builder

Starting Builder from Apama Studio

You can use Apama Studio to open a specified file in the Builder.
1. Do one of the following:
m Double-click on a dashboard file in the navigation pane.

m Right-click on a dashboard file in the navigation pane, and select Open With > Apama
Dashboard Builder.

m Select File > Open File.... in the Open File dialog, navigate to a dashboard file or enter a
pathname, and then click OK.

When you start the Builder this way, the Builder’s current directory is the directory that contains the
opened file.

Starting the Dashboard Builder

Specifying Dashboard Builder options

You can specify the options that will be used when an Apama project opens Dashboard Builder.
The options correspond to the command line arguments available when you manually start the
Dashboard Builder executable. These options are described in "Command line options" on page
46.

1. Inthe Project Explorer, right-click on the project and select Properties from the pop-up menu. (Y ou can
also select Project > Properties from the Studio menu.)

The Properties dialog is displayed.
2. Intheleft panel, expand Apama and select Dashboard Properties.
3. Inthe Dashboard Properties panel on the right, select the Dashboard Builder Options tab.

4. On the Dashboard Builder Options tab, in the Dashboard command line arguments field, specify the
desired options. Multiple options should be entered on asingleline.

5. Click OK.
Starting Builder from Apama Studio

Starting Builder from the command line

Dashboard Builder can be started by running dashboard builder.exe located in the vin directory of
your Apama installation. This method of starting the Builder allows you to pass startup options
on the command line. The Builder startup options are detailed in "Command line options" on page
46.

To run the Builder from the command line:

1. Do one of the following:

Building Dashboards 5.2.0 - APAMA 14

Scenario instance and DataView item ownership

m Use an Apama command prompt (select Start > All Programs > Software AG > Apama 5.2 >
Apama Command Prompt)

m Set your current directory to the Apama vin directory.

Starting the Dashboard Builder

Scenario instance and DataView item ownership

Scenario instances and DataView items in a correlator include an attribute identifying the owner of
the instance. When a scenario instance is created through a dashboard, it provides the current user
ID as the owner of the instance.

By default, you are only allowed to see and operate on those scenario instances and DataView items
that you own, that is, the current user ID must match the owner attribute of the instance. There is

one exception to this default: if the owner is specified as "+", all users have access by default. See
Deploying and Managing Apama Applications for information on customizing access control.

Introduction

Using the tutorial application

This guide contains numerous examples that are bundled as a tutorial with your Apama installation.
Use this tutorial in the Dashboard Builder while you read this guide. Many sections in this guide
instruct you to create or modify dashboards. This “learning by doing” approach is the philosophy
behind this guide.

The Dashboard Builder connects to one or more correlators in order to discover the scenarios and
DataViews that the correlators have loaded. Information about these scenarios and DataViews is
then made available for use in the design of the dashboard.

Follow these steps to run the tutorial:
1. Inthe Apama Studio Workbench perspective, from the menu bar, select File > Import.
2. Inthe Import dialog, expand General, select Existing Projects into Workspace and click Next.

3. Next to the Select root directory field, click the Browse button, navigate to the sampies directory in your
Apamainstallation directory, select the dashboard_studio folder. Click OK.

Make sure the Dashboard Tutorial project is selected.

4

5. Select Copy projects into workspace and click Finish.

6. Inthe Workbench Project View, select and display the Dashboard Tutorial project.
7

Click the Start 6 button.

Apama Studio injects the necessary EPL and tutorial scenario into the correlator. In addition, it
creates instances of the scenario. The instances of the scenario running in the correlator provide
event data that is displayed in the dashboard. After a few moments, the Dashboard Builder appears.
The tutorial is configured to automatically open the tutorial main page, which is defined in the file
tutorial-main.rtv in samples\dashboard studio\tutorialldashboards under your Apama installation
directory.

Building Dashboards 5.2.0 - APAMA 15

Using the tutorial application

Figure 2. Tutorial main page in Dashboard Builder

File Edit View Tools Help

DEEABRERER X 2C BREAALSELA

=" APAMA

Host: localhost
Port: 15003

Status: connested Q

Dashboard Builder Tutorial

This tutorial is intended to be used in conjunction with the Dashboard Builder guide

Dauble-click on topics below to see examples. To return to this page double-click on the blue arrow. «
[Background Color | [Range Alam | [rrend Drillgown | [custom Function \
[Background image | [Summary Table | [stock Chan | [custom Security \
[ritdown | [Formatted Table | [Stock Chart Querlays | [Object Grid \
[command | [colored Table | [Stock Chart Diildown | [Object Grid Multiple |
[Property Substitution | [Rotated Table | [pata Functions | [composite Simple |
[command Substitution | [Table Drilldown | [creats Instance | [composite Diildown |
[Images | [Drilidawn Many | [createInstance Popup | [Compasite Subs \
[Instance Data | [BarChan | [Edit nstance | [compasite Grid \
[Trend Data | |Piechar | |Editinstance Popup | [Includs File \
[oHLC Data | [Trend Chan | [pelete Instance | [imclude File Subs \
[carelator Status | [Mutiple Trend Lines | [XMLData | [Localization \
[Fitering | [Trend Thresholds | [custom Command |

Object Palette [P |

Trends | Tables | Graphs | General | Labels | Meters | Scales | Indicators |, Controls | Links ', Compasite |

4500 Stock Chart Single Variable Trend
5. 60
Tue DI Dee 200 13:40:50
. +*+++‘ 20 44 Open B 00 T
O SRS LB L il (P :
. 28,09 Low
]
00— T 30 T T T !
09FMAMIJAS OND 13:30:50 13:40:59
Multiple Variable Trend
70 1T 1

®< tutorial-main - Dashboard Builder - [C*\Program Files\SoftwareAG\Apama 5.1\samples\dashboard_studio\tutorial\dashboards\tutorial-main.rtv] |

o= @]
Object Properties o R E
Object Class Name:
BE|f =
Substitutions:

Double clicking a topic displayed on the tutorial main page displays a page providing an example of

the topic.

The tutorial uses the tutorial scenario located in the nonitors folder in the tutorial directory. This is a
very simple scenario designed for with this guide.

Instances of the scenario are created by specifying values for the input variables Instrument and Clip
Size. The scenario uses a simulated market feed to drive changes in the price of the instrument. The
scenario tracks the Velocity of the Price and issues a simulated trade every second based on the Velocity
being positive or negative. On each trade the number of shares specified as the Clip Size are bought

or sold.

The scenario has six variables.

Price: The current price of the instrument

Instrument: The name of the instrument being traded

Clip Size: The number of shared to trade on each order

Velocity: The current velocity on the instrument’s price

Shares: The number of shares currently held of the instrument

Building Dashboards 5.2.0

16

APAMA

Using the tutorial application

® Position: The total position in the instrument.

Dashboard Builder provides a large set of objects with a wide range of configurable properties. This
variety enables you to create visually rich and flexible dashboards which best meet the needs of your
applications and users. This guide does not detail every object and every property. Rather, it presents
the most commonly used objects and how they are used.

The information presented in this guide enables you to create dashboards for your scenarios and
DataViews. You should experiment with the objects and properties not presented in this guide to
gain even greater flexibility in your dashboard design.

Do not save your changes to the tutorial as changes might make it impossible to use it as a tutorial
in subsequent sections of this guide. If you have saved it by mistake, you can restore it from your
distribution by re-running the installer.

You can run the tutorial application and view the tutorial examples with the Dashboard Viewer
instead of the Dashboard Builder by running the script viewbemo.bat instead of editpeno.bat. Follow
steps 1-3 above, and then enter the following: viewpeno.

Introduction

Building Dashboards 5.2.0 - APAMA 17

Dashboard Builder layout

Chapter 2: Using Dashboard Builder

B Dashboard BUIIAEr [YOULcceuiieecccece et 18
B SPECIYING dAtA SOUICES ..ottt 26
B Setting the background ProPErties ..o 28
B ADOUL MESIZE MOGES ...ttt bbbttt 30
B WOrKing With ODJECEScvcueuiicieicicicicccee e s s s s s et 33
B Setting BUIIAEr OPHONSeeicce ettt 36
B Setting DashbOArd OPLONSc.iiuiiiiiiire bbb 37
B ComMMEANG lINE OPONScvueiriieeiicieieie sttt 46

This chapter illustrates how to use the Dashboard Builder’s interactive functionality. Chapter 1

introduced the concepts underlying Apama dashboards. Subsequent chapters detail how to build
dashboards.

Dashboard Builder layout

The following illustration shows the normal working layout of the Dashboard Builder.

Building Dashboards 5.2.0 - APAMA 18

Dashboard Builder layout

Figure 3. Dashboard Builder layout

tonal\dashb

-
%7 tutorial-drilldown-trend - Dashboard Builder - [C:\Program Files\S

File Edit View

Tools Help

HEEHARBERER(X 920 Bl AR % ¥ 2

=

Table

Instrument\ Price \ Velocity | Shares | Position |
PRGS 3016 0 1000 30,160
MSFT 19.9-0.0100000 200/3,979.9999
PRGS 30,16 0 1000 30,160
ORCL 7.19 0 -4200 -30,198
ORCL 7.19 0 -4200 -30,198
MSFT 19.9-0.0100000... 200/3,979.9990...

Single Variable Trend

100

21:21:45
50 moo Trac|
0 T T | T 1
21:21:00 21:22:00

“| Qbject Properties

Object Palette

Trends \Tables ‘l‘ Graphs ‘l\ General \ Labels \ Meters \Scales ‘l‘ Indicators \Commls ‘l‘ Links \Composite‘l\

200 Stock Chart Single Variable Trend
3.l
Tue 01 Dec 200 : 21:22:58
47 F +*+++* 2044 Open mEDD Trae
27504_'_* PRy
‘ 28 94 Low
20.00 u

R R S T S S Y S R |
09FMAMISAS OND

Multiple Variable Trend

70 7

e |

22|80

B

Object Class Name: obj_table02 b

Hl Alert
filterProperies

I Background
bgVisFlag
borderPixels
tableBgColor

E cell
cellBgColor
cellBgStripeCon
cellBgStripedFlag
cellTextColor
cellTextFont
cellTextSize

El Column
autoResizeFlag
columnAlignment
columnFormat
columnProperiies
columnsToHide
indexColumns

=l Column Header

columnHeaderT.
columnHeaderT...
columnHeaderT...
El Data

insertNewRows...
inserthewRows...
maxNumberOfR...
rowLabelMode

columnHeaderB...

8

Medium
O

SansSerif
-1

apama.instanceld

SansSerif
-1

O

100
0

[=] Object Palette

[== Object Liat‘ [== Functions ‘ [E variables |

valueTable Apama <7xml versi... | =|
‘Substitutions

$apama_lang:en_US -

apama roles: hal

This section describes each of the panels available in the Dashboard Builder and how to use them

effectively.

Using Dashboard Builder

The menubar

There are five menus on the menu bar:

Table 1. Dashboard Builder menubar

Menu Command Description
File Operations for opening, saving, and closing dashboards.
New Create a new dashboard.
Open Open an existing dashboard file by browsing.

Building Dashboards 5.2.0

s- APAMA

19

Dashboard Builder layout

Menu Command Description

Save Save the dashboard file.

Save As Save the dashboard to a specific file, possibly different to
where it has been saved before.

Background Display the Background Properties dialog for setting the size

Properties and background color or image for the dashboard.

Print Print the current contents of the dashboard.

Exit Exit Dashboard Builder.

Edit Operations for editing and manipulating dashboard objects

Add Displays the Object Palette if not currently displayed.

Object Displays the Object Properties panel if not currently

Properties displayed.

Undo Un-does the last Builder operation (that has no been undone
already).

Redo Re-does the last undone operation (that has not yet been re-
done).

Copy Copy the currently selected object into the copy buffer.

Paste Paste the object in the copy buffer onto the dashboard.

Paste Data Paste the data attachments of the object in the copy buffer

Attachments onto the selected object. Only properties common to both

objects will be pasted onto the selected object.

Paste Static
Properties

Paste static properties only; do not include those properties
that are attached to data.

Paste All
Properties

Paste all properties, that is, those that are attached to data as
well as static properties.

Align

Align the specified feature of the currently selected objects.
For example, Align | Top aligns the tops of all currently
selected objects with one another. The object that was
selected first among all the currently selected objects does
not move; all other objects are aligned with the first-selected
object. Top, Bottom, and Center Horizontal arrange the objects
horizontally, one next to the other. Left, Right, and Center
Vertical arrange the objects vertically, one above the other.

Distribute

Distribute the currently selected objects so that they are
spaced evenly, either horizontally or vertically, between the

Building Dashboards 5.2.0

s- APAMA

20

Dashboard Builder layout

Menu

Command

Description

tirst-selected object and the last-selected one. The first and
last objects do not move.

Order

Move the selected object in back of or in front of all other
dashboard objects.

Select All

Select all objects on the current dashboard.

Delete

Delete the selected object.

View

Operations for zooming in and out on the dashboard.

Zoom In

Zoom in on a location in the dashboard. This will switch the
pointer to zoom mode as indicated by the pointer changing

to a crosshair 1. In this mode you can click on an area of the
dashboard to zoom in on it; displaying it in greater detail.
Right click to exit zoom mode.

Zoom Out

Zoom out on a location in the dashboard. This will switch the
pointer to zoom mode as indicated by the pointer changing

to a crosshair 1. In this mode you can click on an area of the
dashboard to zoom out on it; displaying it in lesser detail.
Right click to exit zoom mode.

Zoom Rect

Zoom in on an area in the dashboard. This will switch the
pointer to zoom mode as indicated by the pointer changing

to a crosshair 1. In this mode you can click and drag to select
an area of the dashboard to zoom in on. Right click to exit
zoom mode.

Pan

Pan the dashboard to show areas not currently displayed.
This will switch the pointer to zoom mode as indicated by

the pointer changing to the pan pointer'%. In this mode
you can click and drag the dashboard to reveal areas not
displayed. Right click to exit pan mode. It is not possible to
pan if 100% of the dashboard is visible.

100%

Make the entire dashboard visible.

Tools

Operations for defining dashboard options and changing
preferences.

Options...

Displays the Application Options dialog for defining data
sources and setting other runtime options for deployed
dashboards.

Builder
Options...

Displays the Builder Options dialog for setting Dashboard
Builder, such as grid characteristics. When snap-to-grid is

Building Dashboards 5.2.0

s- APAMA

21

Dashboard Builder layout

Menu Command Description
enabled, object can be positioned only along grid lines, which
facilitates object alignment and distribution.

Functions Displays the Functions panel for defining dashboard
functions.

Variables Displays the Variables panel for defining dashboard variables.

Include Files Displays the Include Files dialog for including dashboard files
in the current dashboard.

Object List Displays the Object List panel, which lists the name, class
name, and position of each object on the current dashboard.

Preview Preview the current dashboard, so you can test interactive

Window functionality such text entry. Save your changes to enable this
item.

Pause Display Pause the automatic update of the dashboard. When not
paused, the dashboard automatically updates as data
changes; when paused, the dashboard does not. When
paused, clicking on the dashboard causes it to update.

Reset Window Reset window size and panels to their default configuration.

Layout

Help Information about Apama and Dashboard Builder.

Help Contents

Opens the Apama documentation to the Introduction in
Building Dashboards.

Command Line
Options

Displays a list of the Builder options that you can supply at
the command line.

About

Displays information about this version of the Dashboard
Builder.

Dashboard Builder layout

The toolbar

The toolbar contains a number of icons that correspond to commonly used operations. Note that all
the operations accessible from the toolbar are also available on the menu bar. The operations are:

Building Dashboards 5.2.0

s- APAMA

22

Dashboard Builder layout

Table 2. Dashboard Builder toolbar

Button Description
B Create a new dashboard file.
= Open an existing dashboard file.
=] Save the current dashboard file.
Jo Preview the current dashboard. Save your changes to enable this tool.
Bh, Copy the selected object to the copy buffer.

Paste the object in the copy buffer onto the dashboard.

Paste the data attachment properties.

Paste the static properties.

Paste all properties.

Delete.

Undo.

Redo.

Show or hide grid.

S B AR 8 X 82| 2|2 &

Enable or disable snap to grid.

Select by extent.

Zoom in on the dashboard.

Zoom out on the dashboard.

& Db | p|H

Display the Object Palette.

Building Dashboards 5.2.0

s- APAMA

23

Dashboard Builder layout

Button Description
5 Display the Object Properties panel.
o Display the Application Options dialog.

Dashboard Builder layout

The canvas

The canvas is where you lay out the objects for a dashboard. Objects can be added to the canvas,
moved, and resized. As objects are attached to data sources, the objects will update in real time to
reflect changes in the data. This allows you to see how the objects will appear when the dashboard is
deployed.

Dashboard Builder layout

The Object Palette

The Object Palette presents all object types that may be added to a dashboard. It is organized into
separate tabs for different categories of objects.

Figure 4. Object Palette

Object Palette O & E
Trends\TabIes\ Graphs\ General \l\ Labels\ Meters\l\ Scales\lndicators\ Controls\ Links\ Composite\

2500 Stock Chart Single Variable Trend
- Tue 01 Dac 200 131537
d &t + th 20,44 Open ’

27 E0 A e) @E0.0 Trace
1.0 +* 31.01 High

* . 28.04 Low
20.00 17 1T 11 1T 1T 171

DOFMAMIJASOND 131537

Dashboard Builder layout

The Object Properties panel

The Object Properties panel displays the properties and their values for the selected object on the
canvas. If no object is selected, the properties panel is empty. The set of properties displayed depends
on the type of object selected.

Building Dashboards 5.2.0 - APAMA 24

Dashboard Builder layout

Figure 5. Object Properties panel

Object Properties I:ITI m E
Object Class Name: obj_text01

B8 = el

[=l Interaction
command
commandCloseWind...]
commandConfirm L]
commandConfirmText
drillDownTarget

= Label
label This tutcrial is intended t...
labelTextllignx Left
labelTextAlign' Center
labelTextColor
labelTextFont SansSerif
labelTextHeight 12.0
rotationAngle 0.0

=l Object
ancheor
chjMame Ma0
ohbjx 2.0
objY 425.0
styleClass
transparencyPercent 0
visFlag

The type of object is identified following the Object Class Name label at the top of the properties
panel; in this case the type is obj_text01.

To edit a property, left click on the property value. Some properties allow you to type in a value,
some provide a drop down list of choices, and some present a “...” button for displaying a dialog for
setting the property value.

Right click on a property name to display a menu for the property, for example:

drill dowwn target

label Copy <hpamalbaktax <y, .,
labelTe
labelTe

labelTe Detach from Data vif

labelTe
objkame 430

Building Dashboards 5.2.0 - APAMA 25

Specifying data sources

Property values can be copied and pasted onto other properties. Properties can also be attached to
data sources as detailed in subsequent chapters.

Properties are color coded as follows:

® Blue indicates a static property that cannot be attached to data.
®* Green indicates a property that has been attached to data.

* Black indicates a property that may be attached to data.
Dashboard Builder layout

Specifying data sources

Dashboard Builder supports building dashboards that display data for scenarios or DataViews in a
correlator as well as data from a properly formatted XML file.

To use a correlator or an XML file, you need to make it a known data source to the Dashboard
Builder. The following sections detail how to define data sources in the Builder.

See also "Using SQL Data" on page 234 for information on JDBC and ODBC data sources.
Using Dashboard Builder

Specifying correlators

To create a dashboard for a scenario or DataView in the Dashboard Builder, you first need to specify
the correlator in which the scenario or DataView is running.

1. From the Tools menu select Options.
2. Inthetab list on the left of Applications Options dialog select Apama.

The Applications Options dialog is shown below.

Building Dashboards 5.2.0 - APAMA 26

Specifying data sources

Application Options 2|

Apama |

rna ﬂ Correlator \l! ﬂ Data \l\
WML Logical name | Host Port | Raw channel
default localhost 15903 L]
Add

Connect to correlators at startup

["] Display warning message on disconnect

| OK | | Apply | | Cancel |

The Correlator subtab displays the correlators known to the Builder. Initially only the default
correlator for the localhost will be known. For each correlator the following fields are specified

m Logical name — The name that will be used to refer to the correlator. This name cannot be
changed once a correlator has been added.

m Host — The host of the correlator. (Note: Non-ascii characters are not allowed in host names.)
m Port—The port of the correlator.

®m Raw channel — Option to use the raw channel for communication with the correlator. By
default the data channel is used.

3. Select the entry for localhost and click on the Edit button.

The Correlator Properties dialog allows you to specify the properties of a correlator.

f
BOTrE] OO DETIES a’

Logical name: | default

Part: [15903

Use raw chanmel: [

| (] 4 || Reset || Zancel |

4. Click Cancel to close the Correlator Properties dialog.

If you are using the tutorial dashboard, do not change the properties of the default correlator
unless you have loaded the tutorial scenario in a correlator running on a different host or on a
different port.

5. Usethe Add button to add a new correlator and the Delete button to del ete the selected correlator.

Building Dashboards 5.2.0 - APAMA 27

Setting the background properties

Specifying data sources

Specifying XML data sources

Dashboard Builder enables you to augment your dashboard by using XML data files as a data source
in addition to Apama scenarios and DataViews. The properties of dashboard objects can be attached
to data elements in XML files. See "Using XML Data" on page 228, for details on using XML data
sources.

Specifying data sources

Activating data source specifications

To activate data source specifications:

1. Inthe Application Options dialog, click the OK or Apply button to make any changes active for the
current invocation of the Builder. This does not save the them for future invocations.

Specifying data sources

Saving data source specifications

To save data source specifications:

1. Click the Save button to save options settings including data source definitions as detailed in section
"Saving options" on page 46.

Specifying data sources

Setting the background properties

Background properties control the size, color, and an optional background image for a dashboard.
To set background properties:
1. Select Background Properties from the File menu in the menu bar.

The Background Properties dialog appears.

Building Dashboards 5.2.0 - APAMA 28

Setting the background properties

Background Properties |

Maodel Mame: |u:u:um.sI.gmsjrtview.m_l:uasemu:udel

Model Height: |544

|
Model Width: |736 |
|
|

| Model Properties

IUse Background Image: []

Image Mame: | |v|

Resize Mode: |DeFauII: v|

Dock Fill Rows: | 1 |

Dok Fill Calumns: |EI |

Model Properties are applied immediately and cannot be canceled or reverted to
defaults. Model Properties are not accessible if the Model Mame does nok match
the model in the display.,

I Ik I | apply | | Use Defaults | | Zancel |

2. Set the fields Model Width and Model Height to specify the size of the dashboard. If the dashboard is made
smaller than its current size, and the resize mode is crop (see below), one or more objects may no longer be
visible.

3. Click on Model Properties.

The Object Properties panel displays additional properties for the dashboard background.

o & ME

Model Class Mame: com.sl. gmsjrtview. m_basemodel

Model Properties ;

Property Name Properky Walle
bg3dFlag
boCalor
boiradientFlag

Use resizeHeightMin and resizeWidthMin to set the minimum display size. For Web-based
dashboards, scrollbars are present when the size is below the minimum. In Viewer, dashboards
cannot be resized below the minimum.

4. To use an image as the background for a dashboard, check the Use Background Image check box, and
either typein the relative path nameto a .qi£, .9pg, O .png image file or select an image file from the
Image Name drop down list.

The drop down list includes Image files that are located either in the same directory as the
dashboard or in a subdirectory of the dashboard’s directory.

If an image is used as the background for a dashboard, the dashboard is resized to the
dimensions of the image, and the Model Width and Model Height fields are disabled.

5. To set anon-default resize mode, select an item from the Resize Mode drop down list. Resize modes are
explained in "About resize modes" on page 30.

Building Dashboards 5.2.0 - APAMA 29

About resize modes

6. To set anon-default number of grid rows (which is used in Layout resize mode when an object’s dock
property is set to Fill), enter avalue greater than 1 in the Dock Fill Rows field. See "About resize modes"
on page 30 for detailed information.

7. To set anon-default number of grid columns (which is used in Layout mode when an object’s aock property
is set to Fill), enter avalue greater than 0 in the Dock Fill Columns field. See "About resize modes" on
page 30 for detailed information.

Using Dashboard Builder

About resize modes

The Dashboard facility supports three window resize modes:

®* Layout: When a window in this mode is resized, the display is resized to fit the available space.
The objects in the display are laid out according to their anchor and dock properties (see below).
The window is not forced to maintain its aspect ratio. Objects that are not docked or anchored
move relative to their offset from the top left corner of the display. For example, if the object is
centered on the display, the object moves 50% of the resize amount. If the object is centered at 3/4
of the display, it moves 75% of the resize amount. Use this mode for dashboards targeted for the
Apple iPad.

® Scale: This is the default for the Dashboard Builder and Dashboard Viewer, as well as for all Web
deployed dashboards. When a window in this mode is resized, the display and all of the objects
in it are scaled to fit the available space. The window is forced to maintain its aspect ratio.

® Crop: This is the default for Display Server deployments. When a window in this mode is resized,
the display stays the same size. If the window is bigger than the display, empty space appears
around the display. If the window is smaller than the display, scrollbars appear. The window is
not forced to maintain its aspect ratio.

All three resize modes support zooming the display (right click and select Zoom In, Zoom Out, or Zoom
Rect). In both Layout and Scale modes, if the window is resized while the display is zoomed, the
resize further zooms the display.

In the Dashboard Builder, the window resize modes are only applied to drill down windows. The
main window of the Dashboard Builder is always in crop mode.

You can set the window resize mode for each dashboard in the Background Properties dialog. If set to
Default, the application level resize mode (see below) is used. Otherwise, the specified resize mode is
used for that display. It is recommended that you set the resize mode on a per-dashboard basis, by
using the Background Properties dialog.

The application level window resize mode can be set in the General tab of the Application Options
dialog or on the command line with the option -apama.resizemodemode, where mode is 1ayout, scale, Or

crop.

If Default is selected, the default window resize mode is used. The default is Crop for Display
Server (thin client) deployments, and Scale for applet, WebStart, and local (Dashboard Viewer)
deployments, as well as for Dashboard Builder.

If the window resize mode is changed in the Application Options dialog in the Dashboard Builder, the
new value is only applied to new windows that are opened. Windows that are already open do not
change modes.

Building Dashboards 5.2.0 - APAMA 30

About resize modes

Two new properties have been added to the Object group of all objects in order to support Layout
mode:

dock: Select None (default), Top, Left, Bottom, Right, or Fill.

When the dock property on an object is set to one of the sides (Top, Bottom, Left, or Right), it is
moved to the specified side of the display and stretched to fill that side of the display. If the size
of the display changes, the docked objects stretch to fill the available space. For example, if the
dock property is set to Top, the object is moved to the top of the display and the width of the object
changes to fill the width of the display. If the display is then made wider, either by changing the
Background Properties on the display or by resizing the window in Layout mode, the width of the
object changes to match the new width of the display.

Multiple objects can be docked to the same side of the display. In this case, the first object is
docked against the side of the display, the next object is docked against the edge of the first
object, and so on.

When a display has multiple side-docked objects, the object order controls how the dock layout is
applied. The layout is applied to the object list from back to front. For example, if the first object
in a display is docked to the top, and the second object is docked to the left, the first object fills
the entire width of the display, and the second object fills the left side of the display from the
bottom of the first object to the bottom of the display.

When the dock property on an object is set to Fill, it fills the available space left in the display after
all of the side-docked objects have been positioned. When multiple objects in a display have the
dock property set to Fill, those objects are laid out in a grid in the available space. By default, the
grid has one row and as many columns as objects. You can change the grid rows and columns

in the Background Properties dialog. If both are set to 0, the default is used. If both the rows and
columns are specified, the row value is used and the number of columns is calculated based on
the number of objects. If the row value is 0 and the column value is specified, the number of rows
is calculated based on the number of objects. The objects are laid out left to right, top to bottom
according to the order of the objects in the display. The objects with the dock property set to Fill
are always laid out after all of the other docked objects.

Once an object is docked, there are some limitations on how you can modify that object in the
Dashboard Builder. You cannot move a docked object by dragging or changing obix and obiy in
the property sheet. Side-docked objects can only be resized toward the center of the display (for
example, if the object is docked to the top of the display, it can only be resized to be taller). Fill-
docked objects cannot be resized at all. You cannot resize any docked objects using the objwidth or
objHeight properties in the property sheet. You must drag on the valid resize handle to resize it. It
is not moved by Align or Distribute. Objects can be aligned against a docked object, but the docked
object is not moved to align against another object. Docked objects are ignored by Distribute.

Note that when an object is docked, the properties obix, objv, objwidth, and objreight may change.
For example, suppose that you instantiate a General object from the palette, and the properties
of the object are as follows: ob3x:250, objv:250, objwidtnh:64, and objreignt:48. When you set the
dock property to Top, the properties are modified as follows: obix:368, objv:520, objwidtn:736, and
objHeight:48 (no change). If you then change the dock property to Left, the objwidtn isn't changed,
but the objreight changes so that the object fills the entire height and width of the display. When
you change the dock setting to None, these properties stay the same.

Only objects that support the objwidth and objreight properties have the dock property.

anchor: Select zero or more of Top, Left, Bottom, and Right.

Building Dashboards 5.2.0 - APAMA 31

About resize modes

The anchor property is only applied when the display is resized either by changing the Background
Properties on the display or by resizing the window in Layout mode. The anchor property anchors
the specified side of the object to the same side of the display. When the display resizes, the
number of pixels between the specified side of the object and that side of the display remains
constant. If an object is anchored on opposite sides (that is, both Top and Bottom or both Left and
Right), the object is stretched to fill the available space.

Only objects that support the objwidth and objreight properties support anchoring on opposite
sides. If an object has the dock property set, the anchor property is ignored.

The composite object supports both dock and opposing anchor sides, but does not behave like other
objects if the property resizemode is set to Size to Display. In this case, the composite size is controlled
by the size of the display that it contains, so any changes to the width or height of the object result in
the composite moving, not resizing. The composite object should not be docked if resizemode is set to
Layout.

Using Dashboard Builder

About resize modes and Display Server deployments

The behavior of thin client, Display Server deployments differs from the description above in the
following cases:

When the initial display is opened in the thin client, the browser frame is not resized to match the
display size as it is, for example, in the Dashboard Viewer.

In crop mode, the display appears in its full size, and if the browser frame is larger than the display,
unused space appears below and to the right of the display. In addition, if the browser frame is
smaller than the display, scrollbars appear.

In layout and scale modes, the display briefly appears in its default size, and then resizes to fit the
browser frame size. This may also occur if another tab is opened in the browser, the browser is
resized, and then the browser tab that contains the thin client is re-opened.

In layout and scale modes, after the browser frame is resized, table objects revert to their original
states. For example, if the user clicks on a column header in a table in order to sort the column, after
a resize the table reverts to its default sort. Similarly, if the user scrolls in a table or resizes the legend,
after a resize the scrollbars and legends revert to their initial position and size.

In scale mode, there is unused space in the browser frame. This is because the display uses the
largest four-by-three rectangular area of the frame, to ensure equal scaling in both dimensions. The
unused area has the same color as the display background, but does not have a gradient fill.

About resize modes

About resize modes and composite objects

A new property, resizeMode, has been added to the Composite category of the composite object. When
set to Size to Display (the default), the size of the composite is determined by the size of the display
that it contains, and the composite cannot be resized. If set to Layout, the composite can be resized
and the objects in the composite display are laid out according to their anchor and dock properties.

Building Dashboards 5.2.0 - APAMA 32

Working with objects

If resizeMode is set to Layout, the dock and anchor properties may be set on the composite so that it
resizes during a window resize if the window resize mode is also set to Layout. If the window resize
mode for the display containing the composite is set to Scale, the composite object does a scale
instead of a layout.

Note that the dock and anchor properties should not be setup to stretch the composite object if the
resizeMode is Size to Display. This causes the object to toggle back and forth between stretched and not
stretched when the window is resized in Layout mode.

About resize modes

Working with objects

This section details how to lay out a dashboard by adding objects to the canvas and setting their
position and size.

Using Dashboard Builder

Adding objects to a dashboard

Add an object to a dashboard as follows:
1. Select the object type that you want to add by clicking on it in the Object Pal ette.
2. Click on the canvas to add the object.

You can add more objects of the same type by clicking again on the canvas—you don’t need to select
the same object type again. When you select an object from the Object Palette and then position the
cursor over the canvas, the cursor changes to a crosshairs pointer.

s

The appearance of the crosshairs pointer indicates that Builder is in add mode, and clicking will add
an object to the canvas.

You can adjust the position and size of the object after you have added it.

Working with objects

Selecting an object

Left click on an object on the canvas to select it. The selected object is indicated by a rectangle with
handles

Building Dashboards 5.2.0 - APAMA 33

Working with objects

[|
[|
i Thu 01 Dec 2007 i
: + = + + -l- * 20,44 Open :

? 2?5'] +* % 2101 ngh ?
| = |
: l
[|
[|

2.94 Law

The properties of the selected object are displayed in the Object Properties panel. Actions such as
delete operate on the selected object.

To select multiple objects hold down the Shift key while clicking on the objects.
Note: The Object Properties panel will display the properties of the last selected object.

Working with objects

Resizing objects

To resize a selected object, drag a handle of the selection rectangle.

| |
| |
| |
| |
[Thu 01 Dec 2009 |
: + =] + + T * 2044 Open | |
? E?ED +* 3191 High ?
: 28 .94 Low :
: :
| |
| |

You can also set the size of an object by editing the objwidth and objreight properties.

Working with objects

Moving objects

To move a selected object, drag the interior of the selection rectangle.

Building Dashboards 5.2.0 - APAMA 34

Working with objects

) 0 |
Stock Chart

Thu 01 Diec 2004

* + + T 1=1p]
Nl | . +*+ * i?:;‘a;h il

28.94 Low

You can also set the position of an object by editing the ob3x and objv properties.

The dashboard canvas uses a Cartesian coordinate system, with the origin (0, 0) in the bottom left
corner of the dashboard. The objx and objy properties are relative to the origin.

The ob3x and objv properties identify the position of the center of an object. An object positioned at (0,
0) will extend off the left and bottom of the canvas.

Working with objects

Copy and pasting objects

To copy an object, right click on it to display the object popup menu.

Stock Chart

N ZEA . + * L SRR Object Properties

Delete

When you select Copy, Dashboard Builder places the object into the copy buffer. If the object is
already selected, you can also press Ctrl-C or select Copy from the Edit menu in the menu bar.

Once Dashboard Builder has placed an object into the copy buffer, you can add a copy of the object
to the canvas by selecting Paste from the popup menu (or the Edit menu in the menu bar) or by
pressing Ctrl-V, and then clicking on the canvas. Note that when you select Paste or press Ctrl-V, the
cursor to changes to the + pointer.

Building Dashboards 5.2.0 - APAMA 35

Setting Builder options

s

To copy multiple objects, select each while holding down the Shift key and then select Copy from a
menu or press Ctrl-C. When you perform a paste, Dashboard Builder adds a copy of each object to
the canvas.

Working with objects

Deleting objects

To delete an object, right click on it and then select Delete from the popup menu. You can also click
on it to select it, and then press the Delete key or select the Delete option from the Edit menu in the
menu bar. If multiple objects are selected, each will be deleted.

Working with objects

Setting Builder options

To specify Builder options, select Builder Options from the Tools menu.

[Builder Options @
(General | Gria |

History List Size: |20
Recently Used File List Size: |4

Keyboard Arrow Movement Amount. |1.0

Custom Image Library Path:

| Ok | | Apply | | Default | | Cancel

The Grid tab allows you to specify properties of the grid that aids layout of visualization objects on
the Builder canvas.

Building Dashboards 5.2.0 - APAMA 36

Setting Dashboard options

Builder Options
General 'Grid‘lR

g

Grid Visible: ¥ Grid Color
Snap To Grid: v Grid Style:

Harizontal Vertical

Grid Spacing: |64.0 64.0
Grid Subdivisions: |8 8
Grid Offset. (0.0 0.0
OK | | Apply | | Default | | Cancel

The values set in this dialog are automatically restored on application startup and saved on
application exit.

Using Dashboard Builder

Setting Dashboard options

You can specify dashboard options (user preferences as well as data source definitions) with the

Applications Options dialog, described in this section, or with options to the Dashboard Viewer
executable (see the Dashboard Viewer guide).

To display the Application Options dialog, select Options from the Tools menu. The Applications
Options dialog box appears.

Building Dashboards 5.2.0

«"APAMA

Setting Dashboard options

Application Options

General \ Sul:]stituti:)-ns‘\,I Data Serl.l'er‘\,I Custom Colors\

Apama
sQL Update Period: |500
AML Enable Data:

Redraw After Data Update: v Max Data Redraw Rate:

Confirm Commands: |Use Object Confirm flag.

Drill Down Windows Always on Top:
Enable Antialiasing:
Single-Click for Drill Down and Commands: [v| (Viewer Only)

Maxirnum Displays in Composite Object Cache: |5

Window Resize Mode: | Default

Custom Window Title: |

| oK | | Apply | | Cancel

The dialog organizes options into tab groups, which are described in the following sections:

® "Setting options in the General tab group" on page 38
® '"Setting options in the Apama tab group" on page 44
® "Setting options in the SQL tab group" on page 45

® "Setting options in the XML tab group" on page 45
See also "Saving options" on page 46.

Using Dashboard Builder

Setting options in the General tab group

To set options in the General tab group:
1. Select General in the tab group pane (on the left of the dialog).
The General tab group is displayed.

Building Dashboards 5.2.0

s- APAMA

38

Setting Dashboard options

Application Options @
General \ Sul:]stituti:)-ns‘\,I Data Serl.rer‘\l Custom Colors\
Apama
sl Update Period: |500 |
AML Enable Data:
Redraw After Data Update: v Max Data Redraw Rate:
Confirm Commands: |Use Object Confirm flag. "'|

Drill Down Windows Always on Top:
Enable Antialiasing:
Single-Click for Drill Down and Commands: [v| (Viewer Only)

Maxirnum Displays in Composite Object Cache: |5 |

Window Resize Mode: | Default "'|

Custom Window Title: | |

| oK | | Apply | | Cancel |

This tab group has four tabs, which are described in the following sections:

"Setting options in the General tab" on page 39
"Setting options in the Substitutions tab" on page 40
"Setting options in the Data Server tab" on page 40

"Setting options in the Custom Colors tab" on page 41

Setting Dashboard options

Setting options in the General tab

1.

In the Update Period field, enter the rate, in milliseconds, at which the dashboard will refresh. Setting this
option to alarger number will reduce the CPU use by the dashboard but at the expense of reducing the
frequency with which the dashboard updates.

In the Enable Data field, check to enable data updates. When data is not enabled, incoming dataisignored.
Check the Redraw After Data Update check box to specify data-driven redraws.

Data from an asynchronous data source can arrive at any time between update periods. This
means there could be a delay between the time an asynchronous data source receives a data
update and when the display showing this data is updated. If selected, displays containing data
from asynchronous data sources that have changed since the last update will be redrawn at the
rate specified in the Max Data Redraw Rate field. Displays where no data has changed will only be
redrawn on the update. If not selected, displays are only redrawn based on the update period.

In the Max Data Redraw Rate field, enter the maximum data redraw rate when data is updated. The default
is 500 milliseconds.

In the Confirm Commands field, set the confirm policy for all command strings. Overrides confirm policies
set on individual objects.

Building Dashboards 5.2.0 - APAMA 39

Setting Dashboard options

6. Check the Drill Down Windows Always on Top check box if you want windows displayed as the result of
drilldownsto always be on top of their parent window.

7. Check the Enable Antialiasing check box to smooth graphics displayed in the dashboard.

8. Check the Single-Click for Drill Down Commands to perform drill downs with a single click; not adouble
click. In the Dashboard Builder adouble click is aways required.

9. Inthe Maximum Displays in Composite Object Cache field, enter the display caching for composite
objects.

Setting options in the General tab group

Setting options in the Substitutions tab

The Substitutions tab specifies settings that allows substitutions to be added, changed, or deleted.

Application Options @
General Sul:]stituticrns\,I Data Server‘\l Custom Colors\
Apama
5qL String: Substitutions:
KWL | Srtvrole:apama
Srtvuserjgoldie
Value:
I,\\s | Add || Remove |

| OK | | Apply | | Cancel

Setting options in the General tab group

Setting options in the Data Server tab

If you are an advanced user, the Data Server tab allows you to associate a logical name with the Data
Server at a given host and port. Advanced users can then use the logical names to specify the Data
Server to use for a given attachment or command. (The Attach to Apama and Define Apama Command
dialogs include a Data Server field that can be set to a server's logical name.)

The logical names defined in this tab are used by default for live dashboards viewed with Builder
as well as for deplolyed dashboards. They can be overriden with the --namedpataserver option to the
builder, viewer, or server executables. See "Working with multiple Data Servers" on page 70 for
more information.

Follow these steps to define Data Server logical names:

1. Select Options from the Tools menu.

Building Dashboards 5.2.0 - APAMA 40

Setting Dashboard options

The Applications Options dialog box displays.
2. Select the Data Server tab in the General tab group.

Application Options |§|
General ‘\ Substitutions ~ Data S'F.F'-"EI""I Custom Colors‘\

Apama Mame | Host | Port

sQL Server 1 localhost 27456
ML Server 2 localhost 58328

Add
Edit

| oK | | Apply | | Cancel

3. Click the Add button to add a definition to the list.

The Named Server Configuration dialog appears:

L)

Mamed Server Configuration @

Mame: || |

Host: | |

Port: 3278 |

| oK I| Reset || Cancel |

4. Fill inthediaog fields:
m Name: Logical name of your choosing
m Host: Host of the Data Server whose logical name you are defining
m Port: Port of the Data Server whose logical name you are defining

To edit or delete a logical-name definition, select the definition in the Application Options dialog
and click the Edit or Delete button.

Setting options in the General tab group

Setting options in the Custom Colors tab

The Custom Colors tab allows you to specify custom colors that you can use to set object property
values. (You set color-valued object properties with the Color Chooser window, which has a Standard

Building Dashboards 5.2.0 - APAMA 41

Setting Dashboard options

Colors tab and a Custom Colors tab.) Both standard and custom colors are pre-populated when Apama
is installed, but you can supplement or modify the custom colors with the Custom Colors tab of the
Application Options dialog.

1. Select Options from the Tools menu.
The Applications Options dialog box is displayed.
2. Select the Custom Colors tab.
[Application Options <=

General ‘\ Sul:]sti‘l:u‘l:icrns‘\.I Data Server Custom Colors‘l\

Apama

SQL Color Index | Color
WL 5124 -

5125 |
5126
5127
5128
5129
5130 P

5131
5132
5133
5134
5135
5136
5137
5138

| Add || Delete |

4]

| oK | | Apply | | Cancel |

3. Click the Add button to add a custom color to the list.

The Select Color dialog appears:

Building Dashboards 5.2.0 - APAMA 42

Setting Dashboard options

=< Select Color % @
Svatches | v | L | RG | Chvc |

Recent:

Preview

D Sample Text Sample Tex

I QK || Cancel || Reset |

4. To specify acolor, select one of the following tabs:

m Swatches: Standard Java color palette. Mouse over any swatch to view the RGB values for that
color

m HSV: Select color choce by hue, saturation, value, and transparency

m HSL: Select color choce by hue, saturation, lightness, and transparency

m HSB: Color selection by hue, saturation and brightness

m RGB: Color selection by red, green and blue intensity

m CMYK: Select color by cyan, magenta, yellow, and black intensity well as alpha level
To delete a color, click the Delete button.

Note: If an object property is defined by a custom color and you delete that color, the color setting
for that object property will revert to white.

Apama stores custom colors according to Color Index numbers, not RGB values. Therefore if an object
property is defined by a custom color and you change the Color Index number, the color setting for
that object property will revert to white. Color Index numbers must be greater than 5000.

To edit a color defition, in the Color fields click on the ... button of a selected color to edit that color
definition with the Select Color dialog.

Object limitations: Some objects (for example, the bar graph legend, pie wedges and legend, and
some control objects) cache their colors and therefore do not update when a custom color definition
changes. To see the color change for these objects, restart Builder or reload the display.

Deployment limitation: Multiple applets running in the same VM share a single Custom Color tab.

Setting options in the General tab group

Building Dashboards 5.2.0 - APAMA 43

Setting Dashboard options

Setting options in the Apama tab group

The Apama tab allows you to define correlators and specify data management options. For
information on the Correlators sub tab, see "Specifying correlators” on page 26.

Application Options [==]
Apama |
ma ﬁ Correlator\l!ﬂ Data\l\
ML Logical name | Host Port | Raw channel
default localhost 15903 [l
Connect to correlators at startup
[Display warning message on disconnect
| oK | | Apply | | Cancel
Application Options [==]
Apama |
Apama 5
Correlator Data
— a @ pata |
HML
Purge instance data on edit
Purge scenario data on remove
Maximurmn decimal precision =
Maximurm rows per trend table 10000
| oK | | Apply | | Cancel |

For information on the Data sub tab, see "Specifying data sources" on page 26.

Setting Dashboard options

Building Dashboards 5.2.0 - APAM A 44

Setting Dashboard options

Setting options in the SQL tab group

The SQL tab group has a single tab, SQL, which allows you to add or remove databases for use in

Dashboard Builder and set a default database .

j

Aogiesiroff o

ai

General SQL "'.
Apama
Default Database: Databases:
AML |RT‘u’I—|ISTGR‘f' v| RTWHISTORY
| Add Database |
| Remove Database |
[]Suppress Permission Errors from Database
[w]Get Tables and Columns From Database
| Save Database Repository
| QK | | Apply | | Cancel

For more information on setting SQL options, see "Specifying application options" on page 240.

Setting Dashboard options

Setting options in the XML tab group

The XML tab group has a single tab, The XML tab, which allows XML data files to be defined as data
sources for use in Dashboard Builder.

Building Dashboards 5.2.0

s- APAMA

45

Command line options

'Application Options @
General XML\I!
Apama
SgL XML Source Prefie XML Sources:
| | localized-labels (static)
Default XML Source: i data
|Ioca|ized-|abels v| %
| Add || Remove |
| OK | | Apply | | Cancel |

These options are detailed in "Using XML Data" on page 228.
Setting Dashboard options

Saving options
Clicking the OK or Apply button saves options for future use.

Dashboard Builder saves options to the file orrrons. ini. If Builder was started with a --optionsrile
argument, the options are saved to the specified location. Otherwise, if the Builder current directory
is your project’s dashboards directory or the dashooards directory in your Apama installation’s work
directory, the options and are saved there. Otherwise, clicking OK brings up a dialog that allows you
to specify the location to which to save the options.

Dashboard Builder saves custom colors to the file corors. ini. If the Builder current directory is your
project’s dashboards directory or the dashboards directory in your Apama installation’s work directory,
the colors (if modified) are saved there. Otherwise, clicking OK brings up a dialog that allows you to
specify the location to which to save the custom colors.

If Builder was started without a --optionsrile argument, it uses the options file in its current
directory, if present. Otherwise, it uses the options file in the dashpoards directory in your Apama
installation’s work directory. In addition, Builder uses the colors file in its current directory, if
present. Otherwise, it uses the colors file in the dashboards directory in your Apama installation’s
work directory, if present. Otherwise it uses the colors file in the 1i» directory of your Apama
instalation (which contains your Apama installation’s initial set of custom colors).

Setting Dashboard options

Command line options

Building Dashboards 5.2.0 - APAMA 46

Command line options

The Dashboard Builder executable supports options that can be specified on the start-up command

line to override the default values used by the Builder. This section documents these options.

Synopsis

The executable for the Dashboard Builder is dashboard_builder.exe. It has the following syntax:

dashboard builder.exe [options]

[.rtv-file-path]

If you specify the full pathname of an rtv file, the Builder will open it.

Options

Following are the command line options for this executable:

Table 3. Dashboard Builder command line options

Option

Description

-B | --namedServer
logical-name:host:port

Sets the host and port for a specified logical Data Server
name. This overrides the host and port specified by the
dashboard builder for the given server logical name. This
option can occur multiple times in a single command. See
"Working with multiple Data Servers" on page 70 for
more information.

-c | —--correlator
logical-name:host:port:bool

Sets the correlator host and port for a specified logical
correlator name. bool is one of true and raise, and specifies
whether to use the raw channel for communication. This
overrides the host, port, and raw-channel setting specified by
the Dashboard Builder for the given correlator logical name
—see Changing Correlator Definitions for Deployment on
page 834 in Using Studio.This option can occur multiple times
in a single command. For example:

-c default:localhost:15903:false
-c workl:somehost:19999:true

These options set the host and port for the logical names
default and workl.

-D | --dashboard directory
Start with the dashboard found in the specified directory.

-E | --purgeOnEdit bool o
Specifies whether to purge all trend data when a scenario
instance or DataView item is edited. bool is one of true and
false. If this option is not specified, all trend data is purged
when an instance is edited. In most cases this is the desired
mode of operation.

-F | --filterInstance arg . L. L.
Filter scenario instances. This is ignored for Dashboard
Server Viewer. Values can be true Or faise.

-f | --logfile file

Full pathname of the file in which to record logging. If this
option is not specified, the options in the log4j properties file
will be used.

Building Dashboards 5.2.0

s- APAMA

47

Command line options

Option Description

-G | --trendConfigFile file . i i . .
Trend configuration file for controlling trend-data caching.

-h | —-help
Emit usage information and then exit.

-J | --jaasFile file

Full pathname of the JAAS initialization file to be used by
the Data Server. If not specified, the Data Server uses the file
gaas.ini in the 1ip directory of your Apama installation.

-L | --xmlSource file

XML data source file. If file contains static data, append :o to
the file name. This signals Apama to read the file only once.

-m | —--connectMode mode .
Correlator-connect mode. mode is one of always and asNeeded.

If a1ways is specified all correlators are connected to at
startup. If asneeded is specified, the Data Server connects to
correlators as needed. If this option is not specified, the Data
Server connects to correlators as needed.

-N | --name name . o . .
Set the component name for identification in the correlator.

The default name is pashboard Builder: username.

-n | —--noSplash X .
Do not display splash screen in startup.

-0 | --optionsFile file L .
Use the specified oprrons. ini file at startup.

-P | ——-maxPrecision n
Maximum number of decimal places to use in numerical

values displayed by dashboards. Specify values between
0 and 10, or -1 to disable truncation of decimal places. A
typical value for n is 2 or 4, which eliminates long floating
point values (for example, 2.2584435234). Truncation is
disabled by default.

-q | --sgql options .
Configures SQL Data Source access. options has the following

form:

[retry:ms | fail:n | db:name | noinfo | nopererr | quote]

retry: Specify the interval (in milliseconds) to retry
connecting to a database after an attempt to connect fails.
Default is -1, which disables this feature.fai1: Specify the
number of consecutive failed SQL queries after which to
close this database connection and attempt to reconnect.
Default is -1, which disables this feature.ab: Name of SQL
database. Only databases using ODBC drivers can be

added on the command linenoinfo: Query database for
available tables and columns in your database. If a Database
Repository file is found, it is used to populate drop down
menus in the Attach to SQL Data dialog.nopererr: SQL errors
with the word permission in them will not be printed to the
console. This is helpful if you have selected the Use Client
Credentials option for a database. In this case, if your login
does not allow access for some data in their display, you

Building Dashboards 5.2.0 - APAMA 48

Command line options

Option

Description

will not see any errors.quote: Encloses all table and column
names specified in the Attach to SQL Data dialog in quotes
when an SQL query is run. This is useful when attaching

to databases that support quoted case-sensitive table and
column names. Note: If a case-sensitive table or column name
is used in the Filter field, or you are entering an advanced
query in the SQL Query field, they must be entered in quotes,
even if the -sqlquote Option is specified.

-R | —--purgeOnRemove bool

Specifies whether to purge all scenario or DataView data
when an instance or item is removed. bool is one of true
and raise. If this option is not specified, all scenario and
DataView data is purged when an instance or item is
removed.

-S | --sub variable:value

Specifies a value to substitute for a given dashboard variable.
This can be used to parameterize a dashboard at startup.
This option can occur multiple times in a single command.
For example:

-S $foo:hello -S $bar:can't -S S$tom:"my oh my"
-S $jerry:"\"yikes\""

If the value contains a space, enclose the value in double
quotes. If the value contains a double quote, you must escape
it by using a backslash character, \.

-T | --maxTrend depth

Maximum depth for trend data, that is, the maximum
number of events in trend tables. If this option is not
specified, the maximum trend depth is 1000. Note that the
higher you set this value, the more memory the Data Server
requires, and the more time it requires in order to display
trend and stock charts.

-t | --title value

Text for the title bar of the Dashboard Builder main window.

-u | —--updateRate rate

Data update rate in milliseconds. This is the rate at which
the Data Server pushes new data to deployed dashboards

in order to inform them of new events received from the
correlator. rate should be no lower than 250. If the Dashboard
Viewer is utilizing too much CPU you can lower the update
rate by specifying a higher value. If this option is not
specified, an update rate of 500 milliseconds is used.

-V | —--version

Emit program name and version number and then exit.

-v | —--loglevel level

Logging verbosity. level is one of raTaL, ERROR, WARN, INFO, DEBUG,
and rrace. If this option is not specified, the options in the
log4j properties file will be used.

Building Dashboards 5.2.0

s- APAMA

49

Command line options

Option Description

-w | --disconnectWarning bool

By default, the Dashboard Builder will display a warning
dialog when the connection to a correlator is lost. Specify
false to disable the display of this dialog.

-X | ——extensionFile file

Full pathname of the JAAS initialization file to be used by
the Data Server. If not specified, the Data Server uses the file
EXTENSIONS.ini in the 1ib directory of your Apama installation.

-x | —-—queryIndex . . pe .
table-name:key-list Add an index for the specified SQL-based instance table

with the specified compound key. table-name is the name
of a scenario or DataView. key-list is a comma-separated
list of variable names or field names. If the specified
scenario or DataView exists in multiple correlators that are
connected to the dashboard server, the index is added to
each corresponding data table.Example:

--querylIndex
Products_Table:prod _id,vend id

You can only add one index per table, but you can specify
this option multiple times in a single command line in order
to index multiple tables.

-Y | --enhancedQuery

Make SQL-based instance tables available as data tables
for visualization attachments. See Attaching Dashboards to
Correlator Data in Building Dashboards.

-z | ——-timezone zone
Default time zone for interpreting and displaying dates. zone

is either a Java timezone ID or a custom ID such as cur-3:00.

Unrecognized IDs are treated as GMT. See Appendix A
of the Dashboard Viewer guide for the complete listing of
permissible values for zone.

--exclusionFilter val
Set scenario exclusion filters. This option can occur multiple

times in a single command.

--inclusionFilter val L.
Set scenario inclusion filters. This option can occur multiple

times in a single command.

Using Dashboard Builder

Building Dashboards 5.2.0 - APAMA 50

Dashboard data tables

Chapter 3: Attaching Dashboards to Correlator Data

B Dashboard data faDIES ..o 51
B Scenario instance and DataView item OWNErShIiDccccvcvcvccieccec s 59
B Creating @ data atlaChmEeNTcciiicce et 59
B USING tADIE ODJECLS ...t 76
B USiNg PiE @Nd DA ChAMScvcviiiiiici ettt 92
B USING rENG ChAMS .ottt bbbt bbb bbb bbb e e e 96
B USING STOCK CNAIMS ..ottt erenas 109
B Localizing Dashboard LADEIScoiiiiicc s 125
B Localizing Dashboard MESSAQESccccccuiiriiiiiiiiiieiee ittt sn s s s 129

A key feature of Dashboard Builder is the ability to attach visualization objects such as tables and
charts to live correlator data. This feature enables dashboards to display correlator activity in real
time.

You can attach visualization objects to two kinds of correlator data: scenario data and DataView data.
Scenarios and DataViews are described in Introduction to Apama.

This chapter describes the data that is available for attachment, and it describes the most common
objects that can be attached to the data. The examples focus on a sample trading scenario (see "Using
the tutorial application” on page 15). Dashboard Builder provides many objects that can be included
in a dashboard. This chapter does not detail each one for both scenario and DataView data, but upon
completion of this chapter you should be comfortable with using any Dashboard Builder object with
a scenario or DataView.

Dashboard data tables

To create dashboards, you should have an understanding of how Apama manages correlator data
and makes it available for attachment to object properties.

Apama makes scenario and DataView data available to dashboards as tabular data. Multiple data
tables may be necessary for a dashboard. Any data table may have multiple objects in the dashboard
attached to it. The relationship between dashboard objects and data tables is illustrated in the
following diagram.

Building Dashboards 5.2.0 - APAMA 51

Dashboard data tables

Dashboard
objects Data tables

I I .

When a scenario variable or DataView field changes, the correlator generates an update event with
details of the change. When this event is received by a dashboard, the dashboard updates one or
more data tables and the changes are reflected in all attached objects.

Different data tables are used for each scenario or DataView. Data tables are not created until the
first attachment requiring the data table is made. In the Dashboard Builder this happens when the
attachment is defined. For a deployed dashboard, this happens when the dashboard is launched or
loaded.

Once created, a data table exists for the life of the Builder process or deployed-dashboard session,
although it may be purged of data if the corresponding scenario or DataView definition is deleted
from the correlator or if the scenario instance or DataView item is deleted.

Apama filters the scenario instances or DataView items a user can see. Only those instances that
the user is authorized for will be added to the user’s data tables. By default, these are the scenario
instances or DataView items that the user created. See Administering Dashboard Security in
Deploying Apama Applications for more information on dashboard authorization.

The following sections describe the different types of data tables:
"Scenario instance table" on page 53

"Scenario trend table" on page 54

"Scenario OHLC table" on page 54

"Correlator status table" on page 55

"Data Server status table" on page 55

"Scenario constraint table" on page 56

"DataView item table" on page 56

"DataView trend table" on page 57

"DataView OHLC table" on page 57

"SQL-based instance table" on page 57

"Setting data options" on page 58 provides information on managing data tables.

Attaching Dashboards to Correlator Data

Building Dashboards 5.2.0 - APAMA 52

Dashboard data tables

Scenario instance table

A scenario instance data table contains the current values of all variables for all instances of a single

scenario definition. A separate instance table exists for each scenario. Within a scenario instance data
table, a row exists for each instance of the scenario. The columns of the table correspond to the input
and output variables of the scenario.

The following diagram illustrates the contents of a scenario instance table.

Instrument Price Velocity Shares Position
APMA 28.5 0.0125 10000 285000
ORCL 12.3 -0.0173 12500 153750
MSFT 26.4 0.0 8000 211200

Here there are three instances of the scenario; each row corresponds to one instance. The scenario has
five variables; each column corresponds to one scenario variable.

Apama adds several additional columns to each scenario instance table that contain information not
available as scenario variables. These additional columns include the following:

® opama.instanceld: The value is an id string which can be used to uniquely identify the scenario
instances. This id string is used when performing drilldowns or operations on a scenario instance

® apana.instancestatus: The value is a string which identifies the status of the scenario instance.
Possible values are:

m ronning: The instance is running
= =xpeD: The instance terminated normally
m rarcen: The instance terminated abnormally

® apama.owner: The value is the owner of the scenario instance, typically the ID of the user that
created it.

® .pama.substitutions — Do not use this column. It will be removed in a future release.

® pama.timestamp: The value is a UTC timestamp which indicates the time the last Update event was
received for the scenario instance.

The actual scenario instance table would be as follows.

Instrument | Price | Velocity |Shares |Position |apama. apama. apama.
instanceld |instanceStatus |timestamp
APMA 28.5]0.0125 10000 | 285000 |ID RUNNING Timestamp
ORCL 123 |-0.0173 |12500 |153750 |ID ENDED Timestamp
MSFT 264 (0.0 8000 211200 |ID RUNNING Timestamp

Building Dashboards 5.2.0

s- APAMA

53

Dashboard data tables

Scenario instance tables will likely be used by any dashboard you create. They are the only data table
which contains the values of the scenario input variables.

Dashboard data tables

Scenario trend table

A scenario trend table contains the values of variables of a single scenario instance. A separate data
table is used for each instance of a scenario. Each row in the table contains the value of the variables
as reported in an Update event. Each row also contains a timestamp indicating when the Update
occurred.

The following diagram illustrates the contents of a scenario trend table.

apama.timestamp | Price Velocity Shares Position
TO 28.5 0.0125 10000 285000
T1 28.5 0.0 9900 282150
T2 28.4 -0.125 9900 281160

Here the table contains the values of three Update events occurring at times TO, T1, and T2.

Trend tables are limited in size; by default they will hold 1000 rows. The maximum row count is a
configurable option. When a data table is full each new Update event will result in the oldest row
being removed and a new row being added.

Trend tables are for use with trend and stock charts where you want to graph the changes of a
variable value over time.

Dashboard data tables

Scenario OHLC table

A scenario OHLC table contains Open, High, Low, and Close values for a scenario variable as
calculated for a specified time interval. As a dashboard or dashboard server receives update events
for a scenario instance it will calculate the Open, High, Low, and Close values for the variable and
add a row to an OHLC table at each time interval. The calculated values added will be for the
preceding time interval.

OHLC tables allow dashboards to automatically create data suitable for display in a Candlestick
or OHLC chart for any scenario variable and time interval. When you create an attachment to an
OHLC table you specify the variable and time interval desired. An example would be selecting a
Price variable and a time interval of 5 seconds.

A separate OHLC table is used for each scenario instance and each variable and interval pair. If for
the price variable you wanted OHLC data at both 5 and 30 second intervals; two OHLC tables would
be created for each instance of the scenario.

Building Dashboards 5.2.0 - APAMA 54

Dashboard data tables

The following table illustrates the contents of a scenario OHLC table.

apama. timestamp Open High Low Close
TO 28.5 29.1 28.3 28.4
TO + interval 28.4 28.6 28.4 28.5
TO + (interval* 2) 28.5 29.0 28.3 28.7

Each row in an OHLC table contains a timestamp indicating when the row was added to the table.
This is the end time of each interval.

OHLC tables are limited in size; by default they will hold 1000 rows. The maximum row count is a
configurable option. When a data table is full each new Update event will result in the oldest row
being removed and a new row being added.

OHLC tables are for use with stock charts to display candlestick or OHLC graphs of a scenario
variable over time. The benefit of OHLC tables is that they allow you to use the stock chart without
modifying your scenario to generate OHLC values; Apama can do it for you.

Dashboard data tables

Correlator status table

A single correlator status table contains status information about each correlator being used by a
dashboard. It is useful when you want to display status information about correlator connections in a
dashboard.

The following table illustrates the contents of the correlator status table.

logical name host port status
default localhost 15903 connected
production linux23 15903 connected

Here two correlators are in use and each is connected.

Dashboard data tables

Data Server status table

A single data server status table contains status information for the Data Server being used by
a dashboard. It is useful when you want to display status information about the Data Server
connection in a dashboard.

The following table illustrates the contents of the Data Server status table.

Building Dashboards 5.2.0 - APAMA 55

Dashboard data tables

Name Status ConnectionStringReceiveCount | ReceiveTime Config
__default no localhost:3278 |0 Dec 31, 1969 <Data Server
connection 6:00... version>

(This type of table differs from the others in that it cannot be attached to a property with the Attach
to Apama dialog —see "Creating a data attachment” on page 59. To attach a property to a Data
Server status table, attach the property to function data—see "Using Dashboard Functions" on page
130—and specify a function of type Get Data Server Connection Status.)

Dashboard data tables

Scenario constraint table

A scenario constraint data table contains the metadata for all the variables of a specified scenario. A
separate constraint table exists for each scenario. The table has a row for each variable and a column
for each kind of metadata.

The following diagram illustrates the contents of a scenario constraint table.

ParametgiCase | Choices | Contant Defaulf MaximumMinimumVlutable Trim | Type | Unique
Instrumerhixed | null 0 null null 1 1 string |0
Price null | null 0 null null 1 1 float |0
Velocity [null | null 0 null null 1 1 float |0
Shares |null |null 0 null null 1 1 integer| 0
Position [null | null 0 null null 1 1 integern 0

See "Attaching to constraint data" on page 64 for more information on using constraint tables.

Dashboard data tables

DataView item table

A DataView item data table is similar to a scenario instance table (see "Scenario instance table" on
page 53). It contains the current values of all fields for all items of a single DataView definition.

A separate item table exists for each DataView definition. Within a DataView item table, a row exists
for each item associated with a specified DataView definition. The columns of the table correspond
to the fields of the DataView.

Dashboard data tables

Building Dashboards 5.2.0 - APAMA 56

Dashboard data tables

DataView trend table

A DataView trend data table is similar to a scenario trend table (see "Scenario trend table" on page
54). It contains the values of the fields of a single DataView item. A separate data table is used

for each item associated with a DataView definition. Each row in the table contains the value of the
fields as reported in a DataView-item update event. Each row also contains a timestamp indicating
when the update occurred.

Dashboard data tables

DataView OHLC table

A DataView OHLC table is similar to a scenario OHLC table (see "Scenario OHLC table" on page
54). It contains Open, High, Low, and Close values for a DataView item field as calculated for a
specified time interval. As a dashboard or dashboard server receives update events for a DataView
item it will calculate the Open, High, Low, and Close values for the field and add a row to an OHLC
table at each time interval. The calculated values added will be for the preceding time interval.

OHLC tables allow dashboards to automatically create data suitable for display in a Candlestick or
OHLC chart for any DataView-item field and time interval. When you create an attachment to an
OHLC table you specify the field and time interval desired. An example would be selecting a Price
field and a time interval of 5 seconds.

A separate OHLC table is used for each DataView item and each field and interval pair. If for the
price field you wanted OHLC data at both 5 and 30 second intervals; two OHLC tables would be
created for each DataView item.

Dashboard data tables

SQL-based instance table

An SQL-based data table is a special data table designed to ease implementation of complex filtering
and improve performance for dashboards that must handle a large number of scenario instances

or DataView items. It is similar to a scenario instance table (see "Scenario instance table" on page

53) and a DataView item table (see "DataView item table" on page 56). It contains the current

values of all input and output variables for all instances of a single scenario, or the current values of
all fields for all items of a single DataView definition.

A separate table exists for each scenario or DataView definition. Within a table, a row exists for each
instance of the scenario or item of the DataView definition. The columns of the table correspond to
the variables of the scenario or fields of the DataView.

See "Using SQL-based instance tables" on page 67 for more information on using SQL-based
instance tables.

When you specify a data attachment, this kind of table is available only if you started Builder with
the -y or --enhancedouery command line option.

Building Dashboards 5.2.0 - APAMA 57

Dashboard data tables

Important: When SQL-based data tables are in use for deployed dashboards, authorization for
scenario instances and DataView items does not use scenario authorities (see Administering
authorization in Administering dashboard security in Deploying and Managing Apama Applications).
By default, all users have access to all instances or items. Authorization must be built into
attachment queries. See "Using SQL-based instance tables" on page 67 for more information.

Dashboard data tables

Setting data options

Dashboard Builder provides several options for managing the data stored in data tables. To set data
options:

1. Select Options item in the Tools menu.

The Application Options dialog appears.

Application Options &3

Apama |

r'r'la ﬁ Correlator ﬁ Data\'!

XML
Purge instance data on edit

Purge scenario data on remove

Maximurm decimal precision =

Maximurm rows per trend table 10000

| oK | | Apply | | Cancel |

2. Select the Apama tab and the Data sub tab to see the data options.

3. Check the Purge instance on edit check box to purge all trend and OHL C data for a scenario instance or
DataView item whenever an input variable or field is modified. When an input variable of a scenario or
field of a DataView item is modified, it may invalidate all previoustrend and OHL C data.

4. Check the Purge scenario data on remove to purge all datafor a scenario or DataView when it is removed
from a correlator.

5. Check the Maximum decimal precision and specify a maximum number of decimal places to be displayed
for any numeric datain a dashboard.

Building Dashboards 5.2.0 - APAMA 58

Scenario instance and DataView item ownership

6. Check the Maximum rows per trend table to set the maximum number of rows for each trend and OHLC
table. The higher the value, the more data that will be available for charting and the greater the memory
utilization.

Dashboard data tables

Scenario instance and DataView item ownership

Scenario instances and DataView items in a correlator include an attribute identifying the owner of
the instance. When a scenario instance is created through a dashboard, it provides the current user
ID as the owner of the instance.

By default, you are only allowed to see and operate on those scenario instances and DataView items
that you own, that is, the current user ID must match the apama.ouner attribute of the instance or item.
There are two exceptions to this default:

n,n

® If the owner is specified as "+", all users have access by default.

* SQL query attachments provide access for all users to all instances and items. See "Using SOL-
based instance tables" on page 67 form more information on SQL query attachments.

See Deploying and Managing Apama Applications for information on customizing access control.

Attaching Dashboards to Correlator Data

Creating a data attachment

Attachments can be used to provide data for a chart or table. They can also be used to set other
properties of objects such as labels, colors, and thresholds. Any non static object property can be
attached to Apama data.

The value of a property, for a given visualization object, can be a single numeric or string value,
a sequence of values, or a table of values. The value of an object property can specify a set of
characteristics of the object, such as the following:

* Numerical contents of all the cells in a table
®* Height and label of all the bars in a bar graph
* X coordinate and Y coordinate of all the plotted points in an XY Graph

For example, the value of the valueTable property for a basic bar graph is a table that has one row for
each bar in the graph. The first column in each row provides the label for the corresponding bar, and
the second column in the row provides the height of the corresponding bar.

The following sections cover fundamental tasks and concepts related to creating a data attachment:
"Using the Attach to Apama dialog" on page 60

"Selecting display variables or fields" on page 63

"Displaying attached data" on page 63

"Filtering data" on page 64

"Attaching to constraint data" on page 64

Building Dashboards 5.2.0 - APAMA 59

Creating a data attachment

"About timestamps" on page 64

"Using dashboard variables in attachments” on page 65
"About drilldown and $instanceld" on page 66

"About other predefined substitution variables" on page 67
"Using SQL-based instance tables" on page 67

"Working with multiple Data Servers" on page 70
Attaching Dashboards to Correlator Data

Using the Attach to Apama dialog

To attach an object property to Apama data:
1. Select the property in the property panel and right click it.

A popup menu appears.

conr ‘EE
Attach to Data m
WML
sqL
FUNCTION
VARTABLE
remarnand

2. Inthedisplayed popup menu pick Attach to Data | Apama.
This displays the Attach to Apama dialog.

Building Dashboards 5.2.0

s- APAMA

60

Creating a data attachment

F

=7 Attach to Apama

Property: label

Attach to: [Scenario instance table ~

| 7

Correlator: | default -|

Scenario: | tutorial -|

Timestamp variable: | -|

Display variables: | Price -
Filter.

By variable: | apama.instanceld -|

| member of -|

Value: |Sinstanceld ~|

Using time interval: |50 | =] sece... +|

Data Server: | <default> ~|

| ok || aApply || Reset || Clear || Cancel |

This dialog allows you to specify the portion of a data table that is to be used as the object
property’s value. This portion is itself a table consisting of some or all of the rows and columns of
the original data table. The dialog, in effect, allows you to specify a query against a specified data

table. At any given time, the result of this query serves as the value of the object property being

attached.

To attach a property to an SQL-based data table, see "Using SOL-based instance tables" on page

6

scenario instance

scenario trend

scenario OHLC

scenario constraint

correlator status

DataView item

DataView trend

DataView OHLC

DataView constraint.

7.

In the Attach to field select the type of Apama data table needed:

Building Dashboards 5.2.0

s- APAMA

61

Creating a data attachment

10.

11.

To attach a property to a Data Server status table, attach the property to function data—see
"Using Dashboard Functions" on page 130 —and specify a function of type Get Data Server
Connection Status.

In the For field, if the Attach to field specifies a scenario or Data View trend or OHLC table, select History
and new events, New events only, or History only. This specifies whether to attach new or historical datato
this property.

In the Correlator field enter the correlator where the scenario or DataView isloaded. Thisfield is disabled
if the Attach to field specifies a correlator statustable.

In the Scenario or DataView field, enter the scenario or DataView definition to attach to. Thisfield is
disabled if the Attach to field specifies a correlator status table.

In the Timestamp variable field, for trend table and OHL C table attachments, identify a scenario variable,
DataView field, or apama. timestamp tO USe as the timestamp for rows in the data table.

In the Display variables field enter the data table columns (which are scenario variables or DataView
fields) to include in the portion of the table to be used as object property value.

Check the Filter check box to enable the filter fields (listed below). Filters allow you to specify the data
table rows to include in the value of the attached property. Y ou do this by specifying a condition that must
be satisfied by a data table row in order for it to be included. The condition specifies a data table column, a
value, and a comparison relation (for example, equals, less than, or member of). The condition is satisfied
by agiven row if and only if the value of the specified column for the row bears the specified relation to
the specified value. Enter the filter field values:

a. By variable — Specifies the data table column (which is a scenario variable or DataView field) to filter
against.

b. Comparison operator field — Specifies one of the following comparisons. To compare humeric or text
values, use equals, not equals, greater than, greater than or equals, less than, or less than or equals.
Use member of to compare a column value with alist of numeric or text values. Use starts with, ends
with, or contains to compare text values only.

c. Value — Specifiesthe value to compare with values of the specified column. For Member of
comparisons, specify a single value or a semi-colon-separated list of values. Do not use spaces. A
single value is considered to be alist with a single member. Escape quotes in values (that use *
instead of).

See "Filtering data" on page 64 for more information.

Using time interval — For OHL C table attachments specifies the time interval to be used in calculating
OHLC values.

Data Server — For advanced users, specifies the logical name of the Data Server that you want to serve the
data associated with this attachment. Y ou define Data Server logical names with the Application Options
dialog (select Tools > Options). See "Working with multiple Data Servers" on page 70 for more
information.

In this documentation, some of the Attach to Apama dialogs are shown without the Data Server
field, which has been added in a later release.

Creating a data attachment

Building Dashboards 5.2.0 - APAMA 62

Creating a data attachment

Selecting display variables or fields

Individual display variables or fields can be selected directly in the Attach to Apama dialog. If you
need to select multiple display variables or fields:

1. Click onthe"...” button next to the Display variables field.
This displays the Select Columns dialog.

Szlen Buliglils a’

A ailable Colurins: Selected Columns:
lip Size Inskrument
apama.inskancesStakus Price
apama. kimeskarnp Remove | Welociky
$clipSize Shares
$instanceld sl osition
$instanceState Remaove 4l
$instrument
$imestamp Move Lip

Mowve Down

Enketr Colurmn Mame:

| (4 || Cancel |

2. Select and order multiple display variables or fields using the buttons provided.

Creating a data attachment

Displaying attached data

Builder provides a convenient way for you to view the data that is currently attached to a given
property.
1. Right-click on the property name.

A popup menu appears.
3 Copy
ik
i
Aktach ko Data r

Detach from Data

W

Building Dashboards 5.2.0 - APAMA 63

Creating a data attachment

2. Select Display Data from the popup menu.
A dialog appears that contains a table and the following checkboxes:
m Show Column Types: Provides the option of displaying data-table column types.

m Insert New Rows: Controls whether new data is added to the table as new rows instead of
replacing the old rows.

m Scroll Columns: Controls whether a scrollbar is provided when needed to prevent truncation
of column contents.

Creating a data attachment

Filtering data

The Attach to Apama dialog allows you to define a filter, which specifies a condition on rows of a data
table. Only rows that satisfy the condition are included in the table that serves as the value of the
attached property. See "Using the Attach to Apama dialog" on page 60 for details on specifying

filter conditions.

Filters are used frequently in dashboards. Most frequently they are used to select a single scenario
instance or DataView item for which dashboard objects are to display

Note: When you create an attachment to an instance or item table, constraint table, or correlator
status table, the filter identifies the rows in the table you want to use. When you create an
attachment to a trend or OHLC table, the filter identifies the table to use.

Creating a data attachment

Attaching to constraint data

When you attach a property to data from a constraint table, you use the Attach to Apama dialog to
specify a single cell of the constraint table (the dialog requires you to specify a single column for
Display Variables and to filter on the value of the Parameter column). The contents of this cell is used as
the property’s value. Use this kind of attachment to set constraints on controls, such as the maximum
value on a slider.

Creating a data attachment

About timestamps

When creating a stock or trend chart data attachment, you must identify the variable or field to

use as the timestamp. You can use either a scenario variable, DataView field, or apama. timestamp.
When a variable or field changes, the correlator generates an Update event with the new value. The
timestamp in the Update event will be used by the dashboard as the time that the change occurred
and used to chart the value.

Building Dashboards 5.2.0 - APAMA 64

Creating a data attachment

The default timestamp is apama. timestanp. It corresponds to the timestamp the correlator adds to an
Update event when the event is generated. This timestamp is suitable in most cases and is always
available.

Timestamp variable: | apama.timestamp - |

If you want greater control over the value of timestamps, specify a scenario variable or DataView
field as the timestamp. Within your scenario or DataView you will need to set the value of the
timestamp variable or field when changing the value of any other variable or field. Do this if you
want use timestamps from an external event feed such as market data.

Timestamp variable: | kimeskamp - |

Here the scenario variable named timestamp is being used.

Only number variables can be used as timestamps. Timestamps need to be in UTC format where
the value represents the number of seconds since the epoch, January 1, 1970. The MonitorScript
TimeFormatPlugin can be used to convert string values to UTC format.

Creating a data attachment

Using dashboard variables in attachments

The value of all fields in the Attach to Apama dialog, other than Attach to and For, can be set to
dashboard substitution variables. This allows you to dynamically configure an attachment when

a dashboard is displayed. For example you could set the Display variables field to the substitution
variable sdisplayvariables (Where sdisplayvariables value equals a semicolon separated list of scenario
variables).

To create a substitution variable:
1. Select Tools | Variables to display the Variables panel (if the panel is not showing).

2. Inthe Name field enter a name that starts with "s". Names of substitution variables start with "s" by
convention. Names of variables that are not substitution variables (see below) do not start with "s".

3. IntheInitial Value, optionally supply aninitial value.
4. Check the Use as substitution checkbox.
5. Inthe Data Type field, ensure that this set to Scalar, the default.

The Initial Value field allows static specification of substitution values at development time. You
can also allow dashboard users to set the value of a given substitution at runtime by attaching the
varToset property of a control object (such as a text field) to the given substitution.

Dashboard Builder provides a number of predefined substitutions—see "About drilldown and
$instanceld" on page 66 and "About other predefined substitution variables" on page 67.

Dashboard variables in attachments only take effect when the dashboard is displayed. Subsequent
changes to the variable will not change the attachment unless the dashboard is redisplayed.

Creating a data attachment

Building Dashboards 5.2.0 - APAMA 65

Creating a data attachment

About non-substitution variables

In addition to using dashboard variables as field values in the Attach to Apama dialog, you can specify
a dashboard variable as the value of an object property. If you use a variable in this way, you can
increase dashboard efficiency by unchecking the Use as substitution field for the variable in the
Variables panel, provided you do not use the variable in any of the following:

® Attach to Apama field
®* Define Apama Command field (see "Defining commands" on page 142)
®* _scommand line option

Substitution variables must have a scalar value, but non-substitution variables can have tabular
values if you set the Data Type to Table.

Uncheck the Public checkbox only if you do not want to expose the variable as a property in a
Composite object—see "Using Composite objects” on page 169.

Using dashboard variables in attachments

About drilldown and $instanceld

When you create a dashboard with Dashboard Builder, you will frequently need to pass context
information that identifies a scenario instance or DataView item to display or operate on. Consider,
for example, a dashboard with a table containing one row for each instance of a given scenario.

In order to display detailed information about a scenario instance when the end user selects

its corresponding row in the table, you need to pass the identity of the selected instance to the
visualization objects that will display the details.

You can pass such information from one object to another by doing both the following;:

® Specify that a substitution variable be set to a specified value in response to a specified end-user
action on one object.

® Use that substitution variable in the data attachment for the other object.

In many cases you can simplify this procedure by using the pre-defined substitution variable
sinstanceld. This variable is automatically set to the value of apama.instance1d (see "Scenario instance
table" on page 53) for the table row that is currently selected (for tables attached to a scenario
instance table). If multiple rows are selected, sinstance1d is set to multiple values.

For more information and examples, see "Performing drilldowns on tables" on page 81 and
"Specifying drill-down column substitutions" on page 84.

Note: In cases where the end user can select rows of multiple tables at once, you must use user-
defined variables instead of sinstance1d to pass the required information. If rows from multiple
tables are selected, sinstance1d is set according to only one of the tables.

You will find yourself using sinstance1d frequently in attachment filters and scenario operations. You
will see many uses of sinstance1d in subsequent sections of this guide.

Creating a data attachment

Building Dashboards 5.2.0 - APAMA 66

Creating a data attachment

About other predefined substitution variables

In addition to sinstancerd (see "About drilldown and $instanceld" on page 66), Dashboard
Builder defines the following substitution variables:

® sapama_lang: by default, this variable is set to what Java reports as the locale in the rocale object as
derived from the host system's locale. You can allow end users to set this to their required locale,
and use it to localize dashboard labels. See "Localizing Dashboard Labels" on page 125.

® Ssapama_roles: Principles: returned by the login module.

® Ssapama_server_ host: hosthame of the machine running the Data Server or Display Server; empty
for Builder and Viewer with a direct connection to a Correlator.

® sapama_server_port: port used by the Data Server or Display Server on the host machine; empty for
Builder and Viewer with a direct connection to a Correlator.

® Ssapanma_timestamp: by default, this variable is set to the value of apana. timestamp of the scenario
instance that is currently selected. See "About timestamps" on page 64.

® sapama_user: current user, set at login.
® scelldata: by default, this variable is set to the value of the cell that is currently selected.
®* scolvame: by default, this variable is set to the name of the column of the currently-selected cell.

Creating a data attachment

Using SQL-based instance tables

SQL-based instance tables support the use of an SQL query for the specification of a data attachment.
(See "SQL-based instance table" on page 57 for a description of the contents of this type of table.)

By using these tables, you can simplify your implementation of complex filtering, and improve
performance for dashboards that must handle a large number of scenario instances or DataView
items. In particular, SQL-based instance tables have the following potential advantages over other
types of data tables (which require you to use the standard fields of the Attach to Apama dialog):

® Filtering is optimizable. You can specify indexes which Apama can use to join data tables and
filter data attachments more efficiently. This can dramatically improve performance, particularly
for large data tables (that is, tables with thousands of rows or more).

* A single attachment specification can refer to multiple tables, including tables from multiple
correlators. This can simplify implementation, which would otherwise require attaching
properties to dashboard functions whose arguments are attached to data tables.

® Arbitrarily complex filtering and data aggregation is supported, since any read-only SQL select
statement can be used. This can simplify implementation, which would otherwise require
complex chains of dashboard functions.

Important: When SQL-based data tables are in use for deployed dashboards, authorization for
scenario instances and DataView items does not use scenario authorities (see Administering
authorization in Administering dashboard security in Deploying and Managing Apama Applications).

Building Dashboards 5.2.0 - APAMA 67

Creating a data attachment

By default, all users have access to all instances or items. Authorization must be built into
attachment queries.

To attach an object property to Apama data by using an SQL-based instance table:

1.
2.

Ensure that Builder has been started with the -Y or --enhancedouery cOmmand line option.

Select the property in the property panel and right click it.

A popup menu appears.

Copy

Aktach

i'i'll'l'll'l'lFlnl'I

In the displayed popup menu pick Attach to Data | Apama.

ML

s0L
FLMCTION
YARIABLE

This displays the Attach to Apama dialog.

i

=7 Attachto Apama

Property: label

Attach to: ||Scenari|:| instance table

For: |

Correlator: | default -|
Scenario: | tutorial -|
Timestamp variable: | -|
Display variables: | Price - |

Filter.
By variable: | apama.instanceld -|
' member of -|
Value: |Sinstanceld ~|
Using time interval: |50 |*|seco... |
Data Server: |<default> ~|

| ok || apply || Reset || Clear || Cancel

In the Attach to field select Instance table query.

This changes the Attach to Apama dialog, so that there is a single remaining field, SQL Statement.

Building Dashboards 5.2.0

s- APAMA

68

Creating a data attachment

Property: walueTable

Attach to; | Inskance table query -

S0L Statement: |SELECT FROM "defaulk.kukarial”

I K I | apply | | Resek | | Clear | | Zancel |

5. Enter an SQL query into the text box.
Any read-only select statement is allowed, with the following restrictions and modifications:

® You must designate tables with table names of the form correlator-name.scenario-or-data-
view-ID.

® You can designate values with predefined or user-defined dashboard substitution variables
(fOI‘ example, Sapama_user OF $instanceld).

® You must enclose table names and column names in quotes.
® You must enclose strings in single quotes.

As you construct your query, you can right click to get suggestions for table names, column
names, or substitution variables.

Note: Errors in the SQL query are logged in the dashboard log file.

Following is an example of a query that you can use to specify a data attachment. It specifies a three-
way join, that is, a join involving three different data tables:

SELECT "prod name", "vend name", "prod price", "quantity"
FROM "Correlator2.DV_OrderItems Table", "Correlatorl.DV_Products_Table",
"Correlatorl.Scenario Vendors Table"
WHERE "Correlatorl.DV Products Table"."vend id" =
"Correlatorl.Scenario Vendors Table"."vend id"
AND "Correlator2.DV OrderItems Table"."prod id" =
"Correlatorl.DV Products Table"."prod id"
AND "Correlator2.DV OrderItems Table"."order num" = 20007

Below is a query that filters out instances that are not owned by the current dashboard user. The
example assumes that there is a scenario variable or DataView field, owner, whose value is the
instance owner.

SELECT "prod id", "prod price"
FROM "Correlatorl.Scenario Vendors Table"

Building Dashboards 5.2.0 - APAMA 69

Creating a data attachment

WHERE "Correlatorl.Scenario Vendors Table"."owner" = 'Sapama user'

To specify indexes into an SQL-based data table, use the --queryrndex option on the command line
when you do any of the following:

® Start the Data Server or Display Server
® Start the Dashboard Builder with a direct connection to the correlator
®* Start the Dashboard Viewer with a direct connection to the correlator

This option has the form

--querylIndex table-name:key-list

table-name is the name of a scenario or DataView. key-1ist is a comma-separated list of varaible names
or field names. Here is an example:

--queryIndex DV_Products Table:prod id,vend id

You can only add one index per table, but you can specify this option multiple times in a single
command line in order to index multiple tables. Deployed dashboards that use SQL-based instance
tables must be connected to a Data Server or Display Server that is started with the -v or --
enhancedouery command line option. For deployed dashboards that use Viewer connected directly to a
correlator, Viewer must be started with the -v or --enhancedouery command line option.

Creating a data attachment

Working with multiple Data Servers

Deployed dashboards have a unique associated default Data Server or Display Server. For Web-
based deployments, this default is specified in the Startup and Server section of the Deployment
Configuration Editor. For Viewer deployments, it is specified upon Viewer startup. By default,

the data-handling involved in attachments and commands is handled by the default server, but
advanced users can associate non-default Data Servers with specific attachments and commands.
This provides additional scalability by allowing loads to be distributed among multiple servers. This
is particularly useful for Display Server deployments. By deploying one or more Data Servers behind
a Display Server, the labor of display building can be separated from the labor of data handling.

The Display Server can be dedicated to building displays, while the overhead of data handling is
offloaded to Data Servers.

Apama supports the following multiserver configurations:
® Builder with multiple Data Servers. See "Builder with multiple Data Servers" on page 72.
* Viewer with multiple Data Servers. See "Viewer with multiple Data Servers" on page 73.

* Display Server (thin client) deployment with multiple Data Servers. See "Display Server
deployments with multiple Data Servers" on page 75.

* Applet or WebStart deployment with multiple Data Servers. See "Applet and WebStart
deployments with multiple Data Servers" on page 76.

The Attach to Apama and Define ... Command dialogs (except Define System Command) include a Data
Server field that can be set to a Data Server's logical name. To associate a logical name with the Data
Server at a given host and port, use the Data Server tab in the General tab group of the Application
Options dialog (select ToolsOptions in Builder).

Building Dashboards 5.2.0 - APAMA 70

Creating a data attachment

The following attachment specifies Server 2 in the Data Server field at the bottom of the dialog:

.'—F_T-]I
= Attach to Apama |

Property: valueTahle

Attach to: [Scenarin instance table

Far: |

Correlator: [mrrelator?_

Scenario: [EEpama_Iang

Timestamp varia. .. |

Display variables: ’ *

Filter:

By variable: | tapama_lang

|Equah

Value; | Sinstanceld

IJsing time interval: |6I:I

Data Server: |
QK Apply Reset Clear | | Cancel

The following command specifies Server 1 in the Data Server field at the bottom of the dialog;:

Building Dashboards 5.2.0 .l APAM A 71

Creating a data attachment

Command; :Create scenario instance v:

Correlator: :default v:

Scenario: :E.apama_lang v:

Data Server: m -
| oK Apply Reset Clear Cancel

For Display Server (thin client) deployments, you must use the option --namedservermode whenever
you start named Data Servers. See "Display Server deployments with multiple Data Servers" on page
75.

The logical Data Server names specified in the Builder's Application Options dialog are recorded in
the file oprrons.ini, and the deployment wizard incorporates this information into deployments.
You can override these logical name definitions with the --nanedserver name:host:port option to the
Builder, Viewer, Data Server or Display Server executable. Below is an example. This is a sequence
of command line options which should appear on a single line as part of the command to start the
executable:

--namedServer Serverl:ProductionHost A:3278 --namedServer Server2:ProductionHost B:4278 --namedServer

Server3:ProductionHost C:5278
Here serveri, server2 and servers are the server logical names.

Creating a data attachment

Builder with multiple Data Servers

Builder maintains connections with the Data Servers named in attachments and commands. Note
that it connects directly to the correlator (dotted lines in the figure below) in order to populate
dialogs with metadata. In this illustration, correlator event data is handled by the Data Servers.

Building Dashboards 5.2.0 - APAMA 72

Creating a data attachment

¥
Tablel
Dashboard Builder
Table2
Iy

Dashboard Server:

D53278

Dashboard Server:

D5S4278

Correlator:

corl

Correlator:

cor?

You can override the logical server names specified in the Application Options dialog with the --
namedServer name:host:port Option to the Builder executable. Below is an example. This is a sequence
of command line options which should appear on a single line as part of the command to start the

executable:

--namedServer Serverl:ProductionHost A:3278 --namedServer Server2:ProductionHost B:4278 --namedServer

Server3:ProductionHost C:5278

Here server1, server2 and servers are the server logical names.

Working with multiple Data Servers

Viewer with multiple Data Servers

Viewer maintains connections with the Data Servers named in attachments and commands of
opened dashboards.

Building Dashboards

52.0

«"APAMA °”

Creating a data attachment

Correlator:
Dashboard Server: corl
D53278
Tablel
Dashboard Viewer
e Dashboard Server:
psazrs Correlator:
cor2

In the Data Server Login dialog (which appears upon Viewer startup), end users enter the host and
port of the default Data Server (or accept the default field values). If all attachments and commands
use named Data Servers, end users can check the Only using named data server connections check box
and omit specification of a default server.

Data Server Login

=" APAMA

Select Apama Data Server to login to or connect
directly to an Apama correlator

g

User: | |

Passwaord: | |

Data Server: |In|:alhnst |v|

Port |3278 ~|

[| Only using named data server connections
[| Connect directly to correlator

| OK || Reset || Cancel |

The logical data server names specified in the Builder's Application Options dialog are recorded in

the deployment package. You can override these logical name definitions with the --namedserver
name: host: port Option to the Viewer executable. Below is an example. This is a sequence of command
line options which should appear on a single line as part of the command to start the executable:

Building Dashboards 5.2.0 - APAMA 74

Creating a data attachment

--namedServer Serverl:ProductionHost A:3278 --namedServer Server2:ProductionHost B:4278 --namedServer

Server3:ProductionHost C:5278

Here serveri, server2 and servers are the server logical names.

Working with multiple Data Servers

Display Server deployments with multiple Data Servers

The Display Server maintains connections with the Data Servers named in attachments and
commands of its client dashboards.

Correlator:
Dashboard corl
Server:
D53278
=
o Web % » Display
¢ Server g Server
| Dashboard
— Server:
DS4278 Correlator:

cor2

Note: In a Display Server deployment, each named Data Server must be started with the --
namedServerMode OFﬁiOTL

The logical data server names specified in the Builder's Application Options dialog are recorded in

the file oprrons.ini, which is used by the Deployment Wizard to define deployment logical names.
You can override these logical name definitions with the --nanedserver name:host:port option to the
Display Server executable. Below is an example. This is a sequence of command line options which
should appear on a single line as part of the command to start the executable:

--namedServer Serverl:ProductionHost A:3278 --namedServer Server2:ProductionHost B:4278 --namedServer

Server3:ProductionHost C:5278

Here server1, server2 and server3 are the server logical names.

Working with multiple Data Servers

Building Dashboards 5.2.0 - APAMA 75

Using table objects

Applet and WebStart deployments with multiple Data Servers

Applet and WebStart dashboards maintain connections with the Data Servers named in their
attachments and commands.

Correlator:
Dashboard corl
Server:
WebServer DS2278
a
B
o
ol
o P
Dashboard
sServer: |
OPTIONS. ini D54278 Correlator:

" A cor2

In this diagram, the dotted line indicates the connection to the default Data Server, which is specified
in the Startup and Server section of the Deployment Configuration Editor. The default must be
running only if some attachments or commands don't specify a named Data Server.

The logical data server names specified in the Builder's Application Options dialog are recorded in the
file opr1ons. ini, which is used by the Deployment Wizard to define deployment logical names. You

can override these logical name definitions with the --namedserver name:host:port option to the Data

Server executables. Below is an example. This is a sequence of command line options which should
appear on a single line as part of the command to start the executable:

--namedServer Serverl:ProductionHost A:3278 --namedServer Server2:ProductionHost B:4278 --namedServer

Server3:ProductionHost C:5278
Here server1, serverz and servers are the server logical names.

Working with multiple Data Servers

Using table objects

Table visualizations provide a way to present the contents of data tables in a direct manner. You can
present summary information be attaching a table’s valuerable property to an entire data table, or you
can present a specified subset of data table rows and columns by using the filter fields of the Attach to
Apama dialog.

Building Dashboards 5.2.0 - APAMA 76

Using table objects

® Attach the valueraple property to a DataView or scenario instance table in order to create an
instance summary table.

® Attach the property to a correlator status table in order to display information about each of the
correlators that a scenario or DataView connects to.

® Attach the property to a trend or OHLC tables in order to create a tabular display of all the
changes to a variable or OHLC values over time.

Double-click Summary Table on the tutorial main page to see a typical table object:

Table
Inskrument | Price | Welocity | Shares | Position
PRGS 59,93 0,01 &0 359,952
ORCL 10,06 0.0143 -1000 -10,060
MSFT 26,95] -200 -5,396

In this sample several variables are shown for three instances of a trading scenario. If an end user
were to create a new instance of the scenario, it would automatically be added to the table. Each row
in the table corresponds to an instance of the scenario.

Table objects support typical table operations such as sorting and column ordering:

®* Double click the header of a column to sort by the column’s values. In the table shown above,
users can double click the Price column to sort the entries by price.

®* (Click a column header and drag it to reorder columns.

Sorting large tables can impact dashboard performance, particularly for Display Server deployments.
You can disable sorting by unchecking the property showsorticonrlag.

Common tasks related to tables are covered in the following sections:
"Creating a scenario summary table" on page 78

"Filtering rows of a scenario summary table" on page 80
"Performing drilldowns on tables" on page 81

"Specifying drill-down column substitutions" on page 84
"Hiding table columns" on page 87

"Using pre-set substitution variables for drill down" on page 88
"Formatting table data" on page 88

"Colorizing table rows and cells" on page 89

"Setting column headers" on page 91

"Using rotated tables" on page 92

Detailed reference information on tables is provided in "Table Objects" in the Apama Dashboard
Property Reference.

Building Dashboards 5.2.0 - APAMA 77

Using table objects

Attaching Dashboards to Correlator Data

Creating a scenario summary table

Table objects are often attached to a scenario instance table in order to provide a summary view of

the instances.

To create a summary table for a scenario, you add a table object to a dashboard and attach its
valueTable property to a scenario instance table. When you define the attachment, you can select the
scenario variables to be displayed; these will be the columns of the table. You can also specify a filter

to show only a subset of scenario instances.

Note that, by default, users are authorized to view only those dashboards that they created.

Regardless of filter settings, users will not be able to see instances they did not create.

To create a typical scenario summary table, create a new dashboard and perform the following steps.

1. From the Tables tab in the Object Palette, select the Table object and add it to the dashboard canvas.

2. Inthe Object Properties panel, double click the vaiuerabie property.

This displays the Attach to Apama dialog. Attach the table object’s valuerabie property to a scenario

instance table, for example as follows:

F

= Attach to Apama

Property: walueTable

=

Attach to: ||Scenari|:u instance table

o :

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Display variables: | Instrument:PriceVelocity:Shares;Position ¥/ .. |
Filter: []

By variable: [apamainstancel -]

[mermber o -]

alue: | -]

sing time interval: |60 |+|[seco.. |

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

3. Select the autoresizeriag property and enable it by clicking the check box in the Property Value column.

Building Dashboards 5.2.0

«"APAMA °”

Using table objects

4.

Resize the table such that al columns are visible. (Y ou resize the table by selecting it and dragging the
handles.)

The table now displays all the input and output variables of all instances of the specified
scenario, as well as the special fields Dashboard Builder adds, including apana. timestamp which
indicates the time the instance last changed.

Table
Price | Welogiky | Shares | Position | Instrument | Clip Size | apama.ki... | apama.in...
a5 -0.0125 200 11,900 PRGS 100 11406174, ., RUMMIMNG
.51 0 2200 20,922 ORCL 100 11406174, ., RUMMIMNG
26,85 0.o111 3600 Q6,660 MSFT 100 11406174, ., RUMMIMNG

Often, you will not want to display all scenario variables or the special fields in a summary table.

The steps that follow show how to specify the variables to be displayed.

5. Double click onthe vaiuerabie property to display the Attach to Apama dialog.

By default the display variables field is set to the wildcard “*” indicating that all the variables
are to be displayed. Next to the field is a button labeled “...” that provides access to the Select

Columns dialog.

Display wariables: | *

6. Clickonthe*...” button to display the Select Columns dialog.

7. Inthe Select Columns dialog select and order the columns as follows.

e

= Select Columns

Available Columns:

(]

Selected Columns:

Clip Size
apama.instanceStatus
Bpama.cwner
apama.substitutions
apama.timestamp
Sapama_lang
Sapama_roles
Sapama_server_host
Sapama_server_port

Sapama_theme

-~ Ll [|

Enter Column Mame:

Instrument
Price
Velocity
Shares

| QK || Cancel

8. Click OK in the Select Columns dialog and OK in the Attach to Apama dialog.

The table object will now display only those columns you selected.

Building Dashboards 5.2.0

«"APAMA °”

Using table objects

Table
Insktrument Price | Welocity | shares Position
PRIZS 50,54 u] -3300 -226,290
ORCL 0,34 -0.0125 4600 43,010
MSFT 26,93 00111 -3400 -91, 562

By default a table will display a maximum of 100 rows. If a dashboard needs to show more than
100 instances of a scenario, change the value of the maxNumberofrows property. The maximum value
for this property is 131072.

By default a table is unsorted. If you want a table to have a default sort order, set the
sortColumnName property to the name of the scenario variable to sort by, such as erice.

Using table objects

Filtering rows of a scenario summary table

You can limit the set of instances displayed in a scenario summary by specifying a filter when you
define the attachment. This is useful when you only want to display those instances with a shared
characteristic, such as the exchange they are trading on.

Follow these steps to modify a data attachment with filter information:

1. Select the table that you want to modify. For example, double-click Summary Table on the tutorial main
page, and then select the table object.

2. Inthe Object Properties panel, double click the vaiueTab1e property.

3. Inthe Attach to Apama diaog, do the following:

Check the Filter checkbox.

b. Specify ascenario variablein the By variable field.

c. Specify avaue or valuesin the Value field. Specify multiple values as a semi-colon-separated list. Do

not use spaces.

d. If you specify multiple values, select Member of in the field above the Value field. (Thisfield specifies
acomparison relation. It default to Equals.)

This selects instances whose value for the specified variable bears the specified comparison

relation to the specified value. Here is an example:

Building Dashboards 5.2.0

«"APAMA °

Using table objects

F

=7 Attach to Apama @

Property: valueTable

Attach to: |Scenari|:| instance table "’|

For: | "’|

Correlator: |defau|t "’|
Scenario: |5cenariu:u_tutu:-ria| "’|
Timestamp variable: | "’|

Display variables: |Instrument;Price;Uelu:ucit_r,r;Shares;PDsitiDn "’” |

Filter.
By variable: |Instrument -|
BT 7
Value: |PRGY] ~|
Using time interval: |50 | *|[seco... |
Data Server: | <default> ~|
| ok || aApply || Reset || Clear || Cancel |

This example filters the table’s contents to display only the instance for which the value of the
scenario variable Instrument equals apva.

Using table objects

Performing drilldowns on tables

Frequently you will want to display scenario or DataView summary information in a table and
provide the ability to drill down on a single instance or item in order to display detailed information
about it. Table objects support drilldowns on a selected row and the passing of substitutions
containing the values of one or more variables or fields of the selected instance.

Double-click on Table Drilldown in the tutorial main page to see the following summary table:

Building Dashboards 5.2.0 - APAMA 81

Using table objects

Table
Inskrument Price | welodty | Shares | Position
PRIGS 59,77 0 -Fza0 -430,344
CRCL 9,51 0 Foon a6, 570
MaFT 26.66 -0.01 -2400 64,005

A drilldown has been specified for this table in such a way that the label object updates to show the
value of the Price variable of the selected scenario instance. As rrice changes, both the table and label
update.

To specify a drilldown as in the example above, perform these steps:
1. Addatableto adashboard and attach itsvaiuerabie property to an instance table asin the previous sample.
2. From the Labels tab in the Object Palette, select the second label object and add it to the dashboard canvas.

valueString g

3. Select the label object on the dashboard and in the Object Properties panel double click on the valuestring
property to display the Attach to Apama dialog.

Define the attachment by specifying the Display variables and Filter fields, for example as follows.

Building Dashboards 5.2.0 - APAMA 82

Using table objects

’ =7 Attach to Apama ==
Property: label
Attach to: | Scenario instance table -|
For: | -]
Correlator: | default -|
Scenario: | Scenario_tutorial -|
Timestarmp variable | v|
Display variables: | Price -
Filter.
By variable: | apama.instanceld -|
s 7
Value: |Sinstanceld ~|
Jsing time interval: |5t [eco <]
Data Server: | <default> ~|
| ok || aApply || Reset || Clear || Cancel |

Click OK in the Attach to Apama dialog.

Double click on arow in the table. The label object will update to show the value of price for the selected
instance.

The drilldown properties on the table, bar chart, and pie chart objects are preset for the most
common usage paradigm where a drilldown on one will redisplay the current dashboard but
with new substitution values. This paradigm fits the case where both the scenario summary
and instance detail data are displayed in a single dashboard window. You can modify the
drillbownTarget property on these objects to use a non-default drill-down paradigm, such as
displaying detailed information about the selected instance in a separate window. For more
information, see the appendix Drilldown Specification in the Dashboard Property Reference.

In the example above, the label object’s data attachment selects the row in the instance table
where apana. instance1d equals sinstancerd. This is the most common filter used when performing
drilldowns. The drilldown on the table object is defined by default to set the dashboard
substitution variable $instance1d to the value of apama.instancerd for the selected scenario instance.
This allows the dashboard that is displayed in response to the drilldown to know which scenario
instance it should display data for.

"Specifying drill-down column substitutions" on page 84 describes how to override this
default setting.

Using table objects

Building Dashboards 5.2.0 - APAMA 83

Using table objects

Specifying drill-down column substitutions

The substitutions set when performing a drilldown on a table object are defined by the
drillDownColumnsubs property. Here is an example that sets a table column to a dashboard substitution

variable, and then attaches a label to the variable.

1. Select the table object and double click on the ari11powncolunnsubs property.

The Drill Down Column Substitutions dialog displays.

DS DowhGo M ISUBE I LDNE a‘
Column Mame | Substitution String

Instrument

Price

Welocity

Shares

Position

apama.instanceld $instanceld

apama.instancestate finskancestate

apama.timestamp $timestamp

| Add Column: | | |

I Ik | | apply | | Clear | | Cancel |

This dialog allows you to set a substitution variable to the value of a column in the table. By
default, table objects are defined to set several substitutions, including sinstancerd and stimestamp.
These are set to the values apama.instanceId and apama.timestamp. In addition, substitutions are
inherited by drilldown targets. That is, if a parent object sets a substitution variable for a child
(the drilldown target of the parent), then that variable is set the same way for any grandchildren
(drilldown targets of the child). You can override these or add additional substitutions with the

DrillDown Column Substitutions dialog.

2. For the Velocity column, set the substitution string field as follows.

Building Dashboards 5.2.0

«"APAMA *

Using table objects

lﬂ [N oS L L onE m—i
Column Marme | Substitution String

Instrument

Yelociky |$ve|n:n:it':.f

Shares

Position

apama.instanceld finskanceld

aparna.instancestate finskancestate

aparma.timestamp $himestamp

| Add Column: | | |

I QK | | Apply | | Clear | | Cancel |

3. Click the OK button to close the dialog.

The substitution variable svelocity will now be set when performing a drilldown on the table.
4. Select Variables from the Tools menu to display the Variables dialog.

Add the substitution variable svelocity.

Building Dashboards 5.2.0 - APAMA 85

Using table objects

Yariable Mame: Harme: Scope | Daka Typel Source |
fapama_raoles Local Scalar
$apama_server_host Local Scalar
$apama_server_port Local Scalar
fapama_user Local Scalar
$clipgize Local acalar

|$velncit\,f $instanceld Local Scalar
$instancestate Local Scalar
Finstrurnent Local Scalar
$timestamp Local Scalar

Initial Walue:

IUse &s Substitution [+ Public

Daka Type:

| Add || Remaove |

You must add the sve1locity substitution variable to the list of local variables, because the
drilldown on the table is defined to redisplay the current dashboard. Defining the variable makes
it available within the dashboard. If the drilldown displays a different dashboard, the variable
must be in that dashboard’s list of local variables.

5. Select the label object previously added to the dashboard.

6. Inthe Object Properties panel, right click on the vaiuestring property and select Attach to Data |
VARIABLE.

This will display the Attach to Local Variable Data dialog.
7. Select svelocity inthedialog and click OK.

Building Dashboards 5.2.0 - APAMA 86

Using table objects

5 Attach o VariableData Lzll
Property Mame: label
Yariable Mame: |$ve|u:n:it3-' v|
Colurnn(s); | |v| EI
Filker: []
Filter Colurmn;
Filker Yalue:
I 04 | | Apply | | Reset | | Clear | | Cancel |

The label is now attached to sveiocity. When you double click on a row in the table, the
dashboard performs the drilldown and sets svelocity to the current value of velocity of the
selected scenario instance. The dashboard updates the label object to show this value.

Note that when a visualization object is attached directly to Apama, it updates whenever the
corresponding scenario variable or DataView field changes; but when it is attached to a dashboard
substitution variable, it does not.

If you want a dashboard’s visualization objects to update as scenario variables or DataView fields
change, attach them directly to Apama using sinstance1d in the filter.

If you do not want the objects to update, that is, if you want only the values at the time drilldown was
performed, define a drill down substitution to set a substitution variable to the current value, and then
use that substitution in the dashboard drilled down to.

Using table objects

Hiding table columns

When you define drilldown substitutions on a table object, only those variables selected as the
display variables in the table’s data attachment are available for setting substitution values. In the
previous example, if the velocity variable was not selected as a display variable for the table, then it
would not have been available as a column in the Drill Down Column Substitutions dialog.

If you have a scenario variable or DataView field that you want to use to set a substitution when
performing a drilldown on a table but do not want to appear as a column in the table, include it as a
display variable when defining the attachment and set the colunnsToride property to prevent it from
being displayed. To hide multiple variables specify them as a semicolon-separated list.

The columnsTonide property is preset to hide the apama.instancerd column. Apama transparently forces
apama. instanceId to be included as a display variable on all table objects. This is so that you perform
a drilldown, sinstancezd can be set to the ID of the selected instance. You should always hide the
apama.instanceld column.

Using table objects

Building Dashboards 5.2.0 - APAMA 87

Using table objects

Using pre-set substitution variables for drill down

There are some hidden variables that are always set when you perform a drilldown. These are useful
if you want to know which column or cell was selected to perform the drilldown:

® scelldata: Set to the value of the cell selected.
® s5co1Name: Set to the name of the column of the cell.

You can use these variables, for example, as parameters to functions or commands whose action you
want to vary based on the column or cell value selected.

Using table objects

Formatting table data

The table object allows formatting attributes to be specified for each column in a table. Double-click
on Formatted Table in the tutorial main page to see the following table:

Table
Instrument | Price | welocty | Shares | Position
PRGS $59.77 0 -2,000 ($119,540,00)
ORCL 9,43 -0.0167 19,600 $185,024.00
MSFT $27.05 0 -17,800 ($481,665.00)

Here formatting has been specified for the shares, price, and position columns. The price and position
columns include a currency indicator and the rosition column is presenting negative positions
inside parenthesis. Apama dashboards provide wide variety of formats, and you can specify custom
formats as well.

To specify formatting information, double click the columnrormat property and use the Column Format
Properties dialog:

Building Dashboards 5.2.0 - APAMA 88

Using table objects

_— . wa *
S O T O PET I ES a

Caolurn Mame | Colurnn Farrmat

Instrument

Price $#, ##0.00

Welocity

Shares #,20

Position S, # 30,0005, ##0,000

apama.instanceld

| Add Columns: || |

I Ik | | apply | | Clear | | Zancel |

To format a column, select the column in the Column Name field and either select, or type, a format
string in the Column Format field.

Specify column formats using a format string appropriate for use with the Java class
java.text.DecimalFormat, Or With the following shorthand: $ for US dollar money values, $$ for US
dollar money values with additional formatting, () for non-money values, formatted similar to
money, or # for positive or negative whole values.

Using table objects

Colorizing table rows and cells

The table object allows the color attributes of rows and cells to be set based on the value of a scenario
variable or DataView field. Double-click Colored Table on the tutorial main page to see the following
table, which shows a typical use for setting color attributes.

Table
Instrument | Price | vwelocty | Shares | Posiion
PRIZS $50.76 0 3,200 $189,600.00
ORCL £9.07 -0.0143 30,600 $277,542.00
MSFT $26.87 0 75,400 (4763, 108,00

Here the Position cell is shown with green text if the position is positive and red text if it is negative.
Colorizing a table can make it much easier to identify values of interest. Colorizing attributes are
specified by setting the filterrroperties property.:

1. Doubleclick onthe filterproperties property.

The Filter Properties dialog displays.

Building Dashboards 5.2.0 - APAMA 89

Using table objects

- . |
S L ETREO P ETIES

if Position = 0 then cell fontColor 2
if Position = 0 then cell fonbZolor 1

| add | | Remoyve | | Move Lp | | Maove Down |

I O, I | Clear | | Cancel |

2. Doubleclick on afilter to edit it or click on the Add button to add a new filter.
S Editlien ﬂ"

Condition: Walue of 'u:usitiu:un |v| |=: v| |EI |v|

Ackion; |Set Faont Calor Ta v| IEI
Target:

| Ik I | Cancel

Here the filter specifies that the font color of the rosition cell should be red if the value of Position
is less than 0. The Condition fields allow you to specify the condition which must be matched for
the action to take affect. The Action field allows you to set the font or background color or hide a
row. Hiding a row is useful if you do not want the row to appear based on some attribute of the
scenario instance. The Target field allows you to apply the action to single cell, row, or column.

A common use of table colorization is to provide a visual indication of the scenario instances which
have ended or failed. For example you may want to set the font color to gray for those which have
ended and red for those which have failed.

To do this you must include apana. instancestatus as a display variable in the table’s data attachment
and, typically, in the list of colunnstonide. The filter properties for the table can then be used to set
the font color based on the value of apana. instancestatus with the following two filters. The following
illustrations show how the Edit Filter dialog can be used for this purpose.

Building Dashboards 5.2.0 - APAMA 90

Using table objects

Condition: Walue of |apama.instanceStatus|v| |= v| |ENDED |v|

Ackion; |Set Faont Caolor To v| | |

Targek:

Condition; Walue of |apama.instanc35tatus|v| |= v| |F.ﬁ.ILED |v|

action: |SEI: Faont Colar To "’|
Target:

Using table objects

Setting column headers

By default the header for each column is the name of the scenario variable or DataView field it
shows. You can change column headers by setting the colunnpisplayNames property.

1. Select atable object in the Object Properties panel.
2. Doubleclick thé co1umnbpi splayNames property.

The Column Display Name Properties dialog appears.

e : .
= Ol DS BV pEni=s Moy il=s a-‘

Column Mame Display Mame
kock Symbaol

Price

Welocity
shares
Position

apama.instanceld

| add Column: || |

I Ik | | apply | | Clear | | Cancel |

In this example, the header for the rnstrument column is set to “stock sympo1”.

3. Enter the desired column names in the dialog. If you want the header to span multiple linesinclude a\nin
the display name such as “stock\nsymbo1”.

Building Dashboards 5.2.0

«"APAMA °

Using pie and bar charts

Shaock,

Symbol ‘ Price ‘
PRIGS 60,35
ZIRCL 10,37
MSFT 27.32

Using table objects

Using rotated tables

Rotated tables rotate the data in the data table they are attached to such that rows become columns
and columns become rows.

To create a rotated table, perform the following steps:

1. From the Tables tab in the Object Palette, select the Rotated Table object and add it to the dashboard
canvas.

2. Attach the table object’ s valuerable property to scenario datajust as you would for other kinds of tables
(see, for example,"Creating a scenario summary table" on page 78).

Rotated Table

Price 59,26

Welocity 00111

Shares 2200

Position 455932.0
Inskrurment PRGS

Clip Size 100
apama.timestamp 1140633220200
apama.instanceld default, bukorial 21
apama.instancestatus RLIMMNIMG

Here the rotated table is attached to a scenario instance table, and the filter is set to select only the
instance where Instrument equals APMA. Without a filter, all instances of the scenario appear as
columns.

Using table objects

Using pie and bar charts

Pie and bar charts can be used in dashboards as an alternative to table objects for showing scenario
or DataView summary data. The charts are similar in their configuration and behavior. The following
illustration shows a typical bar chart:

Building Dashboards 5.2.0 - APAMA 92

Using pie and bar charts

Bar Graph
40000 — e
O aRCcL
B PRGS
10000 —
-20000 -

The following illustration shows a typical pie graph.

Pie Graph
. B MSFT

O oRCL
B FRGS

Both the bar and pie charts shown above display the value of rosition for each scenario instance. The
bar chart provides an indication of negative values but the pie chart does not. Each chart supports
drilldowns similar to those supported by table objects.

Common tasks related to pie and bar charts are covered in the following sections:
"Creating a summary pie or bar chart" on page 93

"Using series and non-series bar charts" on page 94

"Performing drilldowns on pie and bar charts" on page 95

Detailed reference information on graphs, including pie and bar charts, is provided in "Graph
Objects" in the Apama Dashboard Property Reference.

Attaching Dashboards to Correlator Data

Creating a summary pie or bar chart

To create a summary pie or bar chart for a scenario or DataView, you add an instance of the object to
a dashboard and attach its vaiueranle property to a DataView or scenario instance table. When you
define the attachment, you can select the variable to be charted as well as the label to be used for the
data in the chart legend. As with table objects, when you define the data attachment, you can also
supply a filter that specifies the subset of the instances that are charted.

Note that users can view only those scenario and DataView instances that they created. Regardless of
filter settings, users will not be able to see instances they did not create.

Building Dashboards 5.2.0 - APAMA 93

Using pie and bar charts

To see a sample bar chart, double click Bar Chart on the tutorial main page.
To create a summary bar chart, create a new dashboard and perform the following steps.
1. From the Graphs tab in the object palette, select the Bar Graph object and add it to the dashboard canvas.

2. With the graph object selected, double click the vaiueTanie property in the Object Properties panel, and
attach the graph to a scenario.

=7 Attach to Aparna @

Property: valueTable

Attach to ||Scenari|:| instance table '"

For | "’|

Correlator: ||:|efault "’|

Scenario: |Scenariu:u_tutu:-ria| "’|

Timestamp variable | "’|

Display variables: |In5trur'r'|ent;F'n:|5itin:|n "’” |
Filter: [%

By variable: | apama.instanceld "’|

member of v|

Value | |"’|

Using time interval: &0 |'||£E-:|:... v|

Drata Server: |<|:Iefau|t:~ |v|

| OFK | | Apply | | Reset | | Clear | | Cancel |

3. Click OK.
The bar chart will now chart the value of rosition for each instance of the scenario.

In this example the display variables were set to rnstrument and position. Instrument is a string variable
and was included to provide a meaningful label for each bar in the chart legend.

For both bar and pie charts, you can pick a scenario string variable to use as the label in the legend.
Do not pick a number variable as it will be interpreted as the value to chart.

If multiple number variables are selected for display the behavior is controlled by the rowseriesriag
property as detailed in the following section.

Using pie and bar charts

Using series and non-series bar charts

Building Dashboards 5.2.0 - APAMA 94

Using pie and bar charts

Data in bar charts can be displayed as both series and non-series data. This is determined by the
rowSeriesFlag property.

If the rowseriesrlag property is enabled, one group of bars will be shown for each numeric column

in the data attachment. Within the group for each numeric column, there will be a bar for each row
in that column. Column names will be used for the x-axis labels. If your data attachment has a label
column and the rowravelvisriag is selected, data from this column will be used in the legend. If your
data attachment does not have a label column, select the rowNamevisriag checkbox to use row names in
the legend. By default, the label column is the first non-numeric text column in your data. Specify a
column name in the 1abelcolumnName property to set the label column to a specific column.

If the rowseriesrlag property is not enabled, one group of bars will be shown for each row in your
data attachment. Within the group for each row, there will be a bar for each column in that row.
Column names will appear in the legend. If your data attachment has a label column and the
rowLabelVisFlag is selected, data from this column will appear on the x-axis. If your data attachment
does not have a label column, select the rownamevisriag checkbox to use row names on the x-axis. By
default, the label column is the first non-numeric text column in your data. Specify a column name in
the 1abelcolumnname property to set the label column to a specific column.

1. Create anew dashboard, select the Graphs tab in the Object Palette, and add a Bar Graph object to the
dashboard canvas.

By default the rowseriesriag property is enabled and the chart appears as follows.

Bar Graph
100

B San Francisc
O San Jose
B [allas
B Chicago
50 O Mew ok
B Detroit

D |_| Hl_ll’ |_I|:|_ O Baltimore

2. With the graph object selected, in the Object Properties panel, select the rowseriesriag property and
disableit.

3. Select the xaxisriag property and enableit.

The chart will now appear as follows.

Bar Graph
100 B Units Complg
O Units in Frod
. W
o U e LD T N
wat 5.1:\:'-*"'%‘;;:'- Lo '.:n""'n:_,%-""f\:f-w A Yo g1 e
Using pie and bar charts

Performing drilldowns on pie and bar charts

Building Dashboards 5.2.0 - APAMA 95

Using trend charts

Drilldowns on pie charts are defined by setting the same properties you set on table objects in order
to perform a drilldown: dri1l down target and drillpownColumnSubs.

Using pie and bar charts

Using trend charts

Trend charts provide the ability to view changes in a scenario variable or DataView field over time.
The following illustration shows a typical trend chart:

Single VYariable Trend

B0.1 .
P F205 4
e Vi : mE0.07 Tracel
5995
59.8 : ; : |
22:05:00 22:06:00

In this sample, a single trend line is displayed to show the value of the rrice variable of an instance of
the tutorial scenario.

A trend chart can display up to ten trace lines allowing you to compare changes in up to ten scenario
variables. Useful examples of trend charts might show the changes in price for two stocks or the
movement of a single stock price relative to a market average.

The traces in a trend chart can be shown as lines or as individual data points.
1. Openthefile tutorial-trend.rtv by Selecting Trend Chart on the tutorial main page.

2. Select thetrend chart and in the Object Properties panel select the property traceimarkstyie and changeits
valueto 1.

3. Select the property traceininestyle and changeitsvaueto o.

The trace line in the trend chart will now be displayed as a series of points.

Single VYariable Trend
B0.2 :

e 220624
po=T 2N .-.-_-i-:l"'--l""- = BE012 Tacel
ED
593 ; = I = |
22:05:30 22:06:30

The data values displayed are the same; only the presentation has changed.
Common tasks related to trend charts are covered in the following sections:
"Creating a scenario trend chart" on page 97

"Charting multiple variables" on page 100

"Adding thresholds" on page 105

Building Dashboards 5.2.0 - APAMA 96

Using trend charts

"Configuring trend-data caching" on page 108

Detailed reference information on trend charts is provided in "Trend Objects" in the Apama Dashboard
Property Reference.

Attaching Dashboards to Correlator Data

Creating a scenario trend chart

To create a trend chart for a scenario, you add it to a dashboard and set its tracecount property to
the number of trace lines you want to display. This will cause a set of properties to be added to the
property panel for each trace; trace1 through traceN. Following are the properties for trace.

kracellabel Tracel

tracellineColor _
kracellineStyle 1

tracellineThickness 2

krace1MarkColor _
krace1Markstyle i}

kracelvalue 0.0
kracelvaluedlarmstatus -1

kracelvalusdlarmskatusTa, .

trace1valueDivisor 0.0

krace1YalueHistaryFlag O
tracelvalueTable tracedemodata
kracelVisFlag

Each trace will have a traceNvalue and traceNvaluerable property. These define the data attachment
for the traces. The traceNvalue property is used to attach the trace to new data (data received after the
time of attachment). The traceNvaluerable property is used to attach the trace to historical data (data
received before the time of attachment).

When attaching a trace to a scenario variable, you must specify a filter that identifies the scenario
instance the trace will show data for. The filter to identify the instance will typically match on
sinstanceId although other filters can also be used.

The Trend Drilldown tutorial sample demonstrates how to use a trend chart where the scenario
instance charted is determined by the selection in a scenario summary table. The following
illustration is from the Trend Drilldown sample.

Building Dashboards 5.2.0 - APAMA 97

Using trend charts

Table
Instrurnent Price | welacty | Shares | Position
PR 60,1 0 Faa0 =
CRCL 10,15 0 -ga00 87,290
M3FT 26.61 0.0143 2000 133,000

Single VYariable Trend

2674 .
: 533801
D ER G| L BI6E Ta
26.6 IIU-\-I/\\’IL/‘\AL\I, |
2232714 222814

To recreate this sample, create a new dashboard and perform the following steps.

1. From the Tables tab in the Object Palette, select the Table object and add it to the dashboard canvas.
2. With the table object selected, in the Object Properties panel, double click the vaiueranie property and

attach it to Apamaby specifying the information shown below in the Scenario and Display variables fields.

Do not apply afilter.

=7 Attach to Apama

Property: walueTable

==

Attach to ||Scenari|:| instance table

| 7

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | -|

Display variables: | Instrument:PriceVelocity:Shares;Position ¥/ .. |
Filter: []

By variable: | apama.instanceld -|

| member of -|

voe | 5

Using time interval: |50 |+ seco... |

Data Server: | <default> -

| ok || Apply || Reset || Clear || Cancel |

3. From the Trends tab in the Object Palette, select the Single Variable Trend object and add it to the

dashboard canvas.

Building Dashboards 5.2.0

s- APAMA

98

Using trend charts

4. With the trend object selected, in the Object Properties panel, double click the trend chart object’s
tracelvalueTable Property and attach it to the trend table for the tutorial scenario by specifying valuesin
the fields as shown below.

Here the rrice variable is selected for the trace. The scenario instance charted will be the selected
instance as indicated by the variable $instancerd.

i

= Attach to Apama @

Property: tracelValueTable

Attach to: [Scenario trend table ~

For: | History only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: | Price - .
Filter:

By variable: | apama.instanceld -|

' member of -|

Value: |Sinstanceld 1 ~|

Using time interval: |50 |*|seco... |

Data Server: |<default> ~|

| ok || Apply || Reset || Clear || Cancel |

5. With the trend object selected, in the Object Properties panel, double click the trend chart object’s
tracelvalue property and attach it to the trend table for the tutorial scenario by specifying valuesin the
fields as shown below.

Here the rprice variable is selected for the trace. The scenario instance charted will be the selected
instance as indicated by the variable sinstanceza.

Building Dashboards 5.2.0 - APAMA 99

Using trend charts

’ =7 Attach to Apama ==
Property: tracelValue
Attach to: | Scenario trend table -|
For: | New events only -|
Correlator: | default -|
Scenario: | Scenario_tutorial -|
Timestamp variable: | apama.timestamp -|
Display variables: | Price - .
Filter

By variable: | apama.instanceld -|
[member of |
Value: |Sinstanceld ~|
Using time intervak: 60 | *|[seco... |
Data Server: | <default> ~|

| ok || aApply || Reset Clear || Cancel |

6. Select thetrend object’s scrol1barmode property and change its value to as needed. Thiswill add a scrollbar
to the chart allowing you to scroll back in time to view earlier values.

7. Select ascenario instance in the table by double clicking onit. The chart will now begin charting the price
variable of the selected scenario instance.

If you have not previously displayed a sample containing a trend chart, no previous values
for price will be displayed. Apama does not collect data in a scenario trend table until the first
attachment to an instance of the table is made.

Using trend charts

Charting multiple variables

Trend charts are able to show up to 10 trace lines. This is useful for comparing changes in the values
of multiple variables or fields. The following illustration shows the multiple variable trend chart
from the Multiple Trend Lines tutorial sample.

Building Dashboards 5.2.0 - APAMA 100

Using trend charts

Multiple Variable Trend

0.02 —

11 | I 1 { 22:40:03
1 | | . 1 1l ' mO0 ORCL
a1l B 1 11 « Nt |
I 111 ¥ 1" o-0.01 MSFT
T L] (NN RS M| AL BN
I\ NILENIFEAEE
[y \ TR T ERY 18|
41 Ur '-“ ~ nl'u i | |8
I .' : ‘
L :
-0.02 i | | | :
22:39:15 2240145

Here the trend chart displays the veiocity of the stock price of two instances of the tutorial scenario;
one where the Instrument is ORCL and the second where the Instrument is MSFT.

To recreate this sample, create a new dashboard and perform the following steps.

1. From the Trends tab in the object palette, select the Multiple Variable Trend object and add it to the

dashboard canvas.

The multiple and single variable trend objects are virtually the same. The only difference is that
in the multiple variable trend object the tracecount property is set to 2. If you need to display
more than two trace lines you can select either object and set the tracecount property to the
number of traces needed.

2. With the trend object selected, in the Object Properties panel, double click the trend object’s
tracelvalueTable Property and attach it to Apama by specifying the following information:

Building Dashboards 5.2.0

«"APAMA "

Using trend charts

=% Attach to Apama
Property: tracelValueTable

Attach to: | Scenario trend table -|

For: | History only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: | Velocity -]

Filter.

By variable: | Instrument -|

| member of -|

Value: |ORCL vl

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

3. With the trend object selected, in the Object Properties panel, double click the trend object’s traceivaiue
property and attach it to Apama by specifying the following information:

Building Dashboards 5.2.0 - APAMA 102

Using trend charts

=% Attach to Apama
Property: tracelValue

Attach to: | Scenario trend table -|

For: | New events only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: | Velocity -]

Filter.

By variable: | Instrument -|

| member of -|

Value: |ORCL vl

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

4. Attach the trace2valuerable property to Apamaby specifying the following information:

Building Dashboards 5.2.0 .- APAMA 103

Using trend charts

=% Attach to Apama
Property: trace2ValueTable

Attach to: | Scenario trend table -|

For: | History only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: | Velocity -]

Filter.

By variable: | Instrument -|

| member of -|

Value: |MSFT vl

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The trend chart will now chart the velocity variable of the instances of the tutorial scenario which
match the filters where 1nstrument equals orct and wser.

5. Attach the trace2value property to Apama by specifying the following information:

Building Dashboards 5.2.0 - APAMA 104

Using trend charts

=7 Attach to Apama ==
Property: trace2Value

Attach to: | Scenario trend table -|

For: | New events only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: | Velocity -]

Filter.

By variable: | Instrument -|

| member of -|

Value: |MSFT vl

Using time interval: |50 |=|[seco..]|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The trend chart will now chart the velocity variable of the instances of the tutorial scenario which
match the filters where 1nstrument equals orct and wser.

When displaying multiple traces, it is often useful to display them as filled regions. To specify
this, select the tracerilistyle property and change its value to Transparent Gradient. The following
illustration shows an example of a trend chart with filled regions.

Multiple VYariable Trend

0.02 —
, 5600
! | [: T m00 ORCL
T l ' I ooo0 WSFT
£
|:|) g i d PR P b i 0
e I T I |
225415 R)

Using trend charts

Adding thresholds

Building Dashboards 5.2.0 - APAMA 105

Using trend charts

Often you will want to know when the value of a scenario variable or DataView field is outside a
specified range. For example you may want to know when the price of a stock is above or below
some threshold. Trend charts enable you to display thresholds and show when variables cross them.
The following illustration from the Trend Thresholds tutorial sample shows a typical example.

Multiple Variable Trend

0.02
00:06:22

lh—[——.l—l—— __AA__I_-E._.L_L____._#L___- @001 ORCL
1 | rna 1 b 1 N .i ! |
|:| — i'-l;;L—I.“‘l ::.1!:p:l;
-0.02 0 T T 1
00:04:30 00:06:30

[i
il

,,T_.,,],UTWJ _____

Here the velocity of an instance of the tutorial is being charted and high and low thresholds of .01
and -.01 are being displayed.

Trend charts support four thresholds that are specified with the properties; valuenighalarm,
valueLowAlarm, valueHighWarning, and valueLowwarning. These properties can be set to fixed values or
attached to scenario variables. Each threshold has a set of properties for configuring it. Following are
the properties for the valuenighalarm property.

walueHighalarm 0.01

valueHighalarmEnabledFlag

valueHighalarmLineVisFlag

valueHighalarmmarkCalar _

valueHighalarmMarkStyle]

valueHighalarmTraceCaolor _
1

valueHighalarmTraceStyle

To recreate this sample create a new dashboard and perform the following steps.

1. From the Table tab in the Object Palette, select the Threshold Trend object and add it to the dashboard
canvas.

2. With the threshold trend object selected, in the Object Properties panel, select the traceivaluerabie
property and attach it to Apama by specifying the following information:

Building Dashboards 5.2.0 - APAMA 106

Using trend charts

=% Attach to Apama
Property: tracelValueTable

Attach to: | Scenario trend table -|

For: | History only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: | Velocity -]

Filter.

By variable: | Instrument -|

| member of -|

Value: |ORCL vl

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

3. With the threshold trend object selected, in the Object Properties panel, select the traceivaluevalue
property and attach it to Apama by specifying the following information:

Building Dashboards 5.2.0 - APAMA 107

Using trend charts

=7 Attach to Apama ==
Property: tracelValue

Attach to: | Scenario trend table -|

For: | New events only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display vaniables | Velocity -]

Filter

By variable: | Instrument -|

| member of -|

Value: |ORCL vl

sing time interval: [6C [+[seco... ~]

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The trace line will now show the veiocity of the instance of the tutorial scenario where
Instrument equals ORCL.

4. Selectthevaluenighalarn property and changeitsvaluetoo.os.
5. Select the valuerowalarn property and changeitsvalueto -o.o1.
Thresholds will now be displayed.

Using trend charts

Configuring trend-data caching

By default, dashboard servers (Data Servers and Display Servers) collect trend data for all numeric
output variables of scenarios and data views running in their associated correlators. This data is
cached in preparation for the possibility that it will be displayed as historical data in a trend chart
when a dashboard starts up. Without the cache, trend charts would initially be empty, with new data
points displaying as time elapses.

Advanced users can override the default caching behavior on a given server, and control caching
in order to reduce memory consumption on that server, or in order to cache variables that are not
cached by default, such as non-numeric variables.

For more information, see Controlling Trend-Data Caching in Deploying and Managing Apama
Applications for more information.

Building Dashboards 5.2.0 - APAMA 108

Using stock charts

Using trend charts

Using stock charts

Stock charts provide the ability to view the Open, High, Low, and Close values (OHLC) for a
scenario variable or DataView field such as stock price over set time intervals. The intervals may be
small such as 5 seconds if being used for intra-day trading or larger for longer time periods such as
hours, days, or weeks. The following illustration is from the Stock Chart tutorial sample.

Stock Chart
B0.20 —
' B I ; 10:42:35.0 hon 20 Fab
- = G015 Open
T . g - T §0.15 High
ED-H] L e o L oo s b i R 6014 Law
: 6. 14 Close
e [[»]
[T T T 1
10:41:245 10:42:245

In this example, the OHLC values are shown as a candlestick chart where each “stick” represents a 5
second interval. The stock chart supports others display formats such as OHLC, line, and bar.

1. Openthefile tutorial-stock-chart.rtv by double-clicking Stock Chart on the tutorial main page.

2. Select the stock chart object and in the Object Properties panel, select the pricerracerype property and
change its value to onrc.

Stock Chart
a9.50 —
: 19:0¢:57 10 hdon 20 Feb
E : 5934 Open
= : 50,25 High
5g_35_h...f 'l.;..l._l__l._l,;-----l_J 53 3¢ Low
. A9 34 Close
el [» |
I T | T 1
19:03:487 19:04:57

The data displayed is the same as that displayed in the previous illustration where pricerraceType
was set to Candlestick. Only the presentation has changed.

Although named “stock chart” you are not limited to using it for stock data. You can chart Open,
High, Low, and Close values for any scenario variable or DataView field. Other financial and non
financial data can often benefit from being visualized as a stock chart.

Common tasks related to stock charts are covered in the following sections:
"Using OHLC values" on page 110
"Creating a scenario stock chart" on page 115

"Adding overlays" on page 118

Building Dashboards 5.2.0 - APAMA 109

Using stock charts

"Generating OHLC values" on page 124

Detailed reference information on stock charts is provided in "Trend Graphs" in the Apama Dashboard
Property Reference.

Attaching Dashboards to Correlator Data

Using OHLC values

The OHLC values for a stock chart can be provided by attaching the stock chart to one of the
following:

* (OHLC table
®* Scenario trend table (requires that the scenario have open, high, low, and close variables)
® Scenario instance table (requires that the scenario have open, high, low, and close variables)

The simplest is to attach the chart to a scenario OHLC table. This is specified when creating the
attachment in the Attach to Apama dialog.

When attaching to a scenario OHLC table, you need only specify the scenario variable you want
to chart OHLC values for and a time interval. Apama will then automatically calculate the OHLC
values. No modifications to your scenario are required. The following section uses the Stock Chart
tutorial sample.

1. Select the stock chart ObjeCt inthe tutorial-stock-chart.rtv file.

2. Inthe Object Properties panel, double click the pricerracenistoryrable property to display the attachment
settings for the stock chart

Building Dashboards 5.2.0 - APAMA 110

Using stock charts

=% Attach to Apama
Property: priceTraceHistoryTable

Attach to: | Scenario OHLC table -|

For: | History only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: [[Price -

Filter.

By variable: | Instrument -|

| member of -|

Value: |PRGS vl

Using time interval: |5 || seco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

3. Inthe Object Properties panel, double click the pricerracecurrentranie property to display the attachment
settings for the stock chart.

Building Dashboards 5.2.0 - APAMA 111

Using stock charts

=7 Attach to Apama ==
Property: priceTraceCurrentTable

Attach to: | Scenario OHLC table -|

For: | New events only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: [[Price - |

Filter

By variable: | Instrument -|

| member of -|

Value: |PRGS vl

Using time interval: |5 || seco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

Here the attachment is made to the scenario OHLC table of the tutorial scenario and the price
variable is being displayed. This is the variable for which OHLC values will be calculated and
displayed. The event timestamp, apana. timestamp, is the timestamp used to determine the time
of events. The time interval is set to 5 seconds resulting in an OHLC value being charted every
5 seconds where each represents the preceding 5 seconds. The filter is set to match the scenario
instance where the variable Instrument equals apva.

When attaching to a scenario OHLC table, you must specify the time interval so that Apama knows
what interval to use to calculate OHLC values. The time interval field is only enabled when attaching
to a scenario OHLC table.

You must also specify a filter. As with trend charts a stock chart displays the value of one variable
of a single scenario instance over time. If a filter matches more than one scenario instance the first
found will be displayed.

The second way to provide OHLC data for a stock chart is to attach it to a scenario trend table. Do
this when you want control of the calculation of OHLC values in a scenario. This requires that the
scenario have variables for open, high, low, and close. When attaching a stock chart to scenario trend
data you must specify for the display variables the individual open, high, low, and close variables of
the scenario.

Building Dashboards 5.2.0 - APAMA 112

Using stock charts

’ =7 Attach to Apama ﬁ
Property. priceTraceHistoryTable
Attach to: |Scenarintrendtable "|
Far: |Histnr].f anly v|
Correlator: |default "|
Scenario: |Scenarin_tutnrial v|
Timestamp variab... |apama.timestamp "|
Display variables: |Pnsitinn;lnstrument;clip Size:Price '” |
Filter:
By variable: |apama.instanceld "|
|membernf '|
Value: |$instanceld |v|
Ising time interval: |I |v||5-3|::-:|... T|
Data Server |¢default={ |v|
Ok | | Apply | | Reset | | Clear | | Cancel |

Building Dashboards 5.2.0 .- APAMA 113

Using stock charts

P "

=7 Attach to Apama ==
Property: priceTraceHistoryTable

Attach to: |Scenarintrendtahle "|

Far: |New events anly v|

Correlator: |default "|

Scenario: |Scenarin_tutnrial v|

Timestamp variab... |apama.timestamp "|

Display variables: |Pnsitinn;lnstrument;[}lip Size:Price '” |
Filter:

By variable: |apama.instanceld "|

|memhernf '|

Value: |$instanceld |v|

Ising time interval: |-EZ |'|| SeCo... T|

Data Server |~:default:~| |v|

| Ok | | Apply | | Reset | | Clear | | Cancel |

In this illustration, the attachment is made to the scenario trend table of the OHLC scenario. The
scenario variables open, high, low, and close are used to provide the OHLC values. Notice that the
Using time interval field is disabled. This is because the scenario is calculating the OHLC values; not
the dashboard or dashboard server.

The names of the scenario variables do not matter. However they must be specified in the order
open, high, low, and close. Only number variables can be used. String variables must be converted to
numbers for use in stock charts.

The third way to provide OHLC data for a stock chart is to attach it to a scenario instance table. This
is similar to attaching to a scenario trend table in that the scenario has control over the calculation
of the OHLC values. It differs in that OHLC data for only one instance of the scenario is maintained
in memory. This is valuable when you want to minimize memory use. However, it results in the
chart being reset, cleared of all data, whenever OHLC values for a different scenario instance are
displayed.

Use the priceTracenistoryranle when attaching a stock chart to a scenario instance table. Attaching
the pricerracecurrentrable property to a scenario instance table will result in only the latest data value
being displayed.

Building Dashboards 5.2.0 - APAMA 114

Using stock charts

P)

=7 Attach to Apama ==
Property: priceTraceHistoryTable

Attach to: |Scenarininstance table '|

For: | '|

Correlator: |default '|

Scenario: |Scenarin_tutnrial '|

Timestamp variab... | '|

Display variables: |apama.timestamp;F'rin::e;F'nsitinn '" |
Filter:

By variable: |apama.instanceld '|

|memhernf "|

Value: |$instanceld |v|

Ising time interval: |-EZ |'|| SECO.. v|

Data Server |~:default:~| |'|

| Ok I | Apply | | Reset | | Clear | | Cancel |

In this illustration, the attachment is made to the scenario instance table of the OHLC scenario. The
scenario variables open, high, low, and close are used to provide the OHLC values. If you do not
enable the Timestamp variable field for scenario instance table attachments, you need to specify the
timestamp as the first entry in the pisplay variables field; here apama.timestamp is being used.

Note: Unless you have severe memory constraints or are displaying OHLC values for only a single
scenario instance, you should attach the pricerracenistoryrable property to either a scenario OHLC
table or a scenario trend table, as this provides the best usage experience for the dashboard user.

Using stock charts

Creating a scenario stock chart

To create a stock chart for a scenario, you add it to a dashboard and attach its pricerraceristoryrable
property to OHLC data for a scenario instance. The filter to identify the instance will typically match
on sinstanceId although other filters could also be used.

The Stock Chart Drilldown tutorial sample demonstrates how to use a stock chart where the
scenario instance charted is determined by the selection in a scenario summary table. The following
illustration shows the stock chart from the Stock Chart Drilldown sample.

Building Dashboards 5.2.0 - APAMA 115

Using stock charts

Table
Instrument | Price | Yelocity | Shares | Pasition
PRIGS 55.63 0.oi11 11400 B6EE, 3582
CRCL .62 0]]
MaFT 2758 -0.0143 10400 284,752
Stock Chart
5880 :
; 15:59:57 .0 hion
hl'l"'.-ll"':.. 5% 66 Open
EE?D S8 R H|gh
: T 58 62 Low
58.60 ; : ; |
15:88:487 1538957

To recreate this sample create a new dashboard and perform the following steps.
1. From the Table tab in the Object Palette, select the Table object and add it to the dashboard canvas.

2. With the table object selected, in the Object Properties panel double click the table object’ Svailuerabie
property and attach it to Apama and select the tutorial scenario. Select the display variables shown in the
example and do not apply afilter. The information should be specified as follows:

=7 Attach to Apama ==
Property: valueTable

Attach to: [Scenario instance table ~

| 7

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | -|

Display variables: | Instrument:Price:Velocity:Shares;Position ¥/ .. |

Filter: [

By variable: |apama.instanceld -|

| member of -|

voe | g

Using time interval: |50 | *|[seco... |

Data Server: | <default> ~|

| ok || aApply || Reset || Clear || Cancel |

3. From the Trends tab in the Object Palette, select the Stock Chart object and add it to the dashboard Canv

as.

Building Dashboards 5.2.0 =" APAMA

116

Using stock charts

4. With the stock chart selected, in the Object Properties panel, double click the priceTracenistoryTable
property. Attach it to the OHL C table for the tutorial scenario and specify the rest of the information as
shown in the following illustration. Here the price variable will be charted over 5 second intervals. The
scenario instance charted will be the selected instance as indicated by the variable $instanceld

=7 Attach to Apama ==
Property: priceTraceHistoryTable
Attach to: | Scenario OHLC table -|
For: | History only -|
Correlator: | default -|
Scenario: | Scenario_tutorial -|
Timestamp variable: | apama.timestamp -|
Display variables: [[Price -
Filter
By variable: | apama.instanceld -|
' member of -|
Value: |Sinstanceld ~|
Using time interval: |5 || seco... |
Data Server: |<default> ~T]
| ok || Apply || Reset || Clear || Cancel |

5. With the stock chart selected, in the Object Properties panel, double click the pricerracecurrentTabile
property. Attach it to the OHL C table for the tutorial scenario and specify the rest of the information as
shown in the following illustration. Here the rr: ce variable will be charted over 5 second intervals. The
scenario instance charted will be the selected instance as indicated by the variable $instancel d.

Building Dashboards 5.2.0 - APAMA 117

Using stock charts

=7 Attach to Apama ==
Property: priceTraceCurrentTable

Attach to: | Scenario OHLC table -|

For: | New events only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display variables: [[Price - |

Filter

By variable: | apama.instanceld -|

| member of -|

Value: |Sinstanceld vl

Using time interval: |5 || seco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

6. Select the timerange property and set itsvalueto so.o. Thiswill set the chart’s time axis such that 60
seconds of datawill be visible. If you set the value too high you may encounter problems where the
“sticks” of the chart are close and overlap.

7. Select the scrol1barmode property and change its value to as needea. Thiswill add a scrollbar to the chart
alowing you to scroll back in time to view earlier values.

8. Select ascenario instancein the table by double clicking on it. The chart will now begin charting OHLC
valuesfor the rrice vVariable of the selected scenario instance.

If you have not previously displayed a sample containing a stock chart, values in the chart will
not appear for ten seconds. Apama does not collect data in a scenario OHLC table until the first
attachment to an instance of the table is made.

Using stock charts

Adding overlays

Stock charts support up to nine overlays. An overlay is much like a trace in a trend chart. Overlays
can be used to compare the displayed OHLC values against other variables or fields such as other
stock prices, overall activity on the stock index, or to show periodic events such as stock splits and
earnings announcements. The following illustration is from the Stock Chart Overlays tutorial sample.

Building Dashboards 5.2.0 - APAMA 118

Using stock charts

Stock Chart
B0.05 —
0 13:32:17.0 ban 20 Feb
A1 NN I."' ,a ' * A | H £0.00 Open
N | .' L/ firl =] 0.02 High
59.98 —|oa L-'- ‘J ---|-jr|||I G000 Lo
* || | 60.01 Close
3 i l' .00
002 ;
AH)
4 | | S | 4 |
I T T T]
T ST e

Here the overlay is showing the velocity of the stock price. Notice that multiple scales are shown on
the Y axis; the outer scale corresponds to the stock price and the inner scale the velocity.

1. Openthefile tutorial-stock-overlay.rtv by Selecting Stock Chart Overlays on the tutorial main page.

2. Select the stock chart and in the Object Properties panel, select the property overiayiType and changeits

valueto sar.
Stock Chart
G010
0.0z 23:37:37 0 Mhon 20 Feh
E 59,85 Open
: 54 25 High
a0 95 —kovageH: R nlocre b rdee b e et e R £0.83 Low
ﬂ I‘ 5083 Cloze
7 0.0
A0 40 — it D£ | | || | I I II |
L | kRN,]
I I | ! |
A El T ST

The overlay values are now displayed as discrete bars and not as a single line.

If you set overlayiType to Event, event markers will be placed on the chart at the occurrence of each
event. This allows you to easily identify when key events occurred. The following illustration

demonstrates this.

Stock Chart
G020 —
23:50:47.0 han 20 Feb
o : 2 G0.01 Open
h o= o oo B ¢ B om om B f0.02 High
599':' i e e | L e ED':” |J:IU.|
. G003 Close
g 6001
59.60 — |- | [2] o]
| ' | ; '
23:49:47 23:50:47

The character displayed in event markers is the first letter of the corresponding overiaynrabel

property.

When using overlays to display event markers, the event markers should be relatively sparse.
Displaying high numbers of event markers will cause them to overlap and limit their usefulness.

Building Dashboards 5.2.0

«"APAMA ™

Using stock charts

To add overlays to a stock chart, set the overiaycount property to the number of overlays to be
displayed. This will cause a set of properties to be added to the property panel for each overlay;
overlayl through overlayN. Following are the properties for overlay 1.

overlay 1Current Table

overlay 1Hiskory Table

overlay1Label

overlay 1LineCaolar _
overlay 1LineSkyle 1

overlay 1LineThickness 1

overlay 1 Twpe Line

averlay 1visFlag

When you attach an overlay to a scenario OHLC table or a scenario trend table, use the properties
OverlayllCurrentTable and OverlaylNHistoryTable.

Use only the overiayncurrentranle property when attaching the overlay to a scenario instance table.
Attaching to a scenario instance table requires less memory but the resulting overlay may be missing
one or more data points. This can occur if the dashboard is running on a heavily loaded system.
Unless you have severe memory restrictions, you should not attach overlays to a scenario instance
table. Better results can be achieved by attaching to a scenario trend table. This will guarantee that
the overlay contains all data points.

Using stock charts

Recreating the Stock Chart Overlay sample
To recreate the Stock Chart Overlay sample:
1. Openthefile tutorial-stock-chart.rtv by selecting Stock Chart on the tutorial main page.

2. Select the stock chart and in the Object Properties panel, select the property overiaycount and changeits
valueto 1. Thiswill cause the overiay1 properties to be added to the property panel.

3. Doubleclick onthe overiayinistoryrable property and attach it to a scenario OHLC table by specifying
the following information.

Building Dashboards 5.2.0 - APAMA 120

Using stock charts

=% Attach to Apama ==
Property: overlaylHistoryTable

Attach to: | Scenario trend table -|

For: | History only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display vaniables: |[Velocity - .

Filter.

By variable: | Instrument -|

| member of -|

Value: |PRGS vl

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The overlay is now attached to velocity property of the scenario instance where the rnstrument
equals apvz; this is the same filter used for the pricerraceristoryrable attachment.

4. Doubleclick onthe overiayicurrentrable property and attach it to a scenario OHL C table by specifying
the following information.

Building Dashboards 5.2.0 - APAMA 121

Using stock charts

=7 Attach to Apama ==
Property: overlaylHistoryTable

Attach to: | Scenario trend table -|

For: | New events only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display vaniables: |[Velocity - .

Filter.

By variable: | Instrument -|

| member of -|

Value: |PRGS vl

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The overlay is now attached to velocity property of the scenario instance where the rnstrument
equals apvz; this is the same filter used for the pricerraceristoryrable attachment.

5. Select the overiaycount property in the property panel and change itsvalueto 2. Thiswill cause the
overlay2 properties to be added to the property panel.

6. Doubleclick onthe overiayzuistoryrable property and attach it to a scenario trend table by specifying the
following information:

Building Dashboards 5.2.0 - APAMA 122

Using stock charts

=% Attach to Apama
Property: overlay2HistoryTable

Attach to: | Scenario trend table -|

For: | History only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display vanables | [P osition - .

Filter.

By variable: | Instrument -|

| member of -|

Value: |PRGS vl

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

7. Doubleclick onthe overiay2currentrable property and attach it to a scenario trend table by specifying the
following information:

Building Dashboards 5.2.0 .- APAMA 123

Using stock charts

= Attach to Apama @

Property: owverlay2CurrentTable

Attach to: | Scenario trend table -|

For: | New events only -|

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | apama.timestamp -|

Display vanables | [P osition - .
Filter.

By variable: | Instrument -|

| member of -|

Value: |PRGS vl

Using time interval: |50 |=|[seco..]|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The stock chart now contains two overlays; one showing the velocity of the stock price and the
second showing the current position in that instrument. The following illustration shows how this
looks in the sample.

Stock Chart
51.00 1 re0.00 | 11:40:57.0 Tue 21 Feb
- i G045 Open
e I”":I:“"“:l:' fill.40 High
GO.00 —]-S0.20- B f0.61 Ly
| | 5963 Close
e 460
200,00 : IPESI2.00
e (2]
[T | T 1
11:39:57 11:40:57

Overlays can be hidden by tuning off the overilaynvisriag property. This is for use when building
dashboards where you will have input controls such as checkboxes which will allow the user to hide
or show different overlays.

Adding overlays

Generating OHLC values

Building Dashboards 5.2.0 - APAMA 124

Localizing Dashboard Labels

If you generate OHLC values, you should also use a scenario variable or DataView field as the
timestamp. If you use apana. timestamp, you need to design the scenario or DataView to generate
update events only when the OHLC values change. Your dashboard will add an OHLC data point to
a Stock Chart for every Update event it receives. If a scenario, for example, generates Update events
in response to other variables changing and apama. timestamp is being used as the timestamp then
spurious OHLC data points will be added to the chart. If the chart were displaying a candlestick this
would manifest itself as extra “sticks” appearing in the chart.

If you use a scenario variable or DataView field as the timestamp, data points will only be added to
the chart when timestamp and/or OHLC values have changed.

Furthermore, the update of the OHLC values must occur as a whole; that is each Update event must
contain the updated value of each of the Open, High, Low, and Close variables. If the update of each
variable were to generate a separate Update event, you would also have spurious data points in the
chart. This is because your dashboard has no way of knowing if the unchanged values are correct or
not.

To update the OHLC variables in a single update event your scenario or DataView needs to set the
value of each in the scope of a single rule. Following is an example of this in an Event Modeler rule.

Here local variables open, high, 1ow, and _cilose are used throughout the scenario to calculate the
OHLC values. Within this rule the output variables open, high, 10w, and close are being set to these
values such that a single Update event contains the updated value of each.

If you use a scenario variable or DataView field as the timestamp, data points will only be added to
the chart when timestamp and/or OHLC values have changed.

Furthermore, the update of the OHLC values must occur as a whole; that is each Update event must
contain the updated value of each of the Open, High, Low, and Close variables. If the update of each
variable were to generate a separate Update event, you would also have spurious data points in the
chart. This is because your dashboard has no way of knowing if the unchanged values are correct or
not.

To update the OHLC variables in a single update event your scenario or DataView needs to set the
value of each in the scope of a single rule. Following is an example of this in an Event Modeler rule.

Set OHLC variables] aw

i ||
Wihern | true (evaluated once)
® gpen = _open
@® high = _high
Ther | ® low = _low

® glose = _close
@ move to state [Get Open]

Here local variables open, high, 1ow, and _close are used throughout the scenario to calculate the
OHLC values. Within this rule the output variables open, high, 10w, and close are being set to these
values such that a single Update event contains the updated value of each.

Using stock charts

Localizing Dashboard Labels

Building Dashboards 5.2.0 - APAMA 125

Localizing Dashboard Labels

You can localize dashboard labels by attaching XML data (filtered based on the end-user-specified

value of a dashboard variable) to the object properties that specify the labels. For a complete

localization example, select Localization on the Dashboard Builder Tutorial main page:

[board_studiohtutorial\dashboards\tutorial-localization.rtv] { = ﬂ_hj
File Edit View Tools Help
DEEARERER X9 EREAR S E S
Object Properties ﬁ']F- E
« Object Class Name: obj_clcombobox
= | Aj A o
. =4 =tel
Localization inputs ’
E Background
localizedlabels.xml bgColor Default
Locale en_US fr FR es ES zh TW = = Data
Confirmation message Confirmation message: M de confirmation: Mensaje de confirmacién: H listValues sl localized-labels labels...
Press button Press button Bo ssoir ot by selectedValue local _Sapama_lang
Are you sure Are you sure? Et s 5 ;Estis seguro? TR 7 ToSet local S |
Numerie input Numeric input Entrée numérique: Entrada mmérica: BFEI vere ocsl —sspama_ang
E Data Format
T valueTextFont SansSerif
$apama_lang: gen US o
. valueTextSize 12
E Foreground
S el lizati fgColor Default
ample localizations Interaction
- Labels from XML file fittered by $apama_lang "
-Numeric and dateftime formats controlled by system locale sctionCommand
commandCleseWinde... O
commandConfirm O
commandConfirmText
Numeric input: Date time input; | | 1,201 [
P ! P | o ! I—| enabledFlag
mouseOverText
Numeric display: | 1234.56 Date time display: | Jan 01,2011 120000AM | tablndex 0
b
textEntryEnabledFlag O
S
Confirmation message: ‘ Press button ‘ Substitutions:
Sapama_lang:en_US
Sapama_roles:
e ———— —

1. Create an XML dataset with atabular data element. (See "Using XML Data" on page 228.) Create a
column for supported locales, aswell as a column for each label. Create arow for each locale. In each row,
put a specific locale and the text for each label localized for that specific locale. Here is an example from
the Builder tutorial:

<?xml version="1.0" encoding="UTF-8"?>
<dataset xmlns="www.sl.com" version="1.0">
<table key="labels">
<tc name="Locale"/>
<tc name="Confirmation message"/>
<tc name="Press button"/>
<tc name="Are you sure"/>
<tc name="Numeric input"/>
<tc name="Datetime input"/>
<tc name="Numeric display"/>
<tc name="Datetime display"/>
<tr name="English">
<td>en US</td>
<td>Confirmation message:</td>
<td>Press button</td>
<td>Are you sure?</td>
<td>Numeric input:</td>
<td>Date time input:</td>
<td>Numeric display:</td>
<td>Date time display:</td>
</tr>
<tr name="French">
<td>fr FR</td>
<td>Message de confirmation:</td>
<td>Bouton-poussoir</td>
<td>Etes-vous slr?</td>
<td>Entrée numérique:</td>
<td>Entrée date-heure:</td>
<td>Affichage numérique:</td>
<td>Affichage date-heure:</td>
</tr>

Building Dashboards 5.2.0 126

s- APAMA

Localizing Dashboard Labels

<tr name="Spanish">
<td>es ES</td>
<td>Mensaje de confirmacién:</td>
<td>Botén</td>
<td>:;Estds seguro?</td>
<td>Entrada numérica:</td>
<td>Entrada de la fecha y hora:</td>
<td>Exhibicidén numérica:</td>
<td>Exhibicién de la fecha y hora:</td>
</tr>
<tr name="Chinese">
<td>zh TW</td>
<td>#### :</td>
<td>##</td>
<td>#####</td>
<td>####:</td>
<td>##-#####:</td>
<td>####:</td>
<td>##-#####:</td>
</tr>
</table>
</dataset>

This file defines labels Press button, Are you sure?, and so forth, for the languages English,
French, Spanish, and Chinese. The first column rocale defines the locale, or language, of the
corresponding row.

2. For each object property that specifies alabel, attach the property to the column that corresponds to that
label, filtered to select the row for which the value in the locale column is the value of a dashboard variable
that specifiesthe locale desired for the end user. Y ou can use the predefined variable sapama_1ang for this
purpose. Here is an example:

=7 Attach To XML Data ==

Property Mame: commandConfirmText

XML Source: |localized-labels ~|
DataKey: |labels |
Column(s): | Confirmation message [~|[=]

Filter:
Filter Column: | Locale ~|

Filter Value: Sapamajanj

Dﬂaﬁewen|<déauhb |v|

| oK || Apply || Reset || Clear || Cancel

3. Provide away for end usersto set the relevant variable (for example, the predefined dashboard variable
sapama_lang) 10 their desired locale. One way to do thisisto include, on your top-level dashboards, a
combo box (from the Controls tab). Attach the se1ectedvalue and vartoset properties of the combo box to
sapama_lang, and attach the 1istvaiues property to the locale column of your XML data element. Hereisan
example:

Building Dashboards 5.2.0 - APAMA 127

Localizing Dashboard Labels

“ Attach To XML Data

Property Mame: listValues

XML Source: |I|:|calizeu:|-lal::lels |v|

Data Key: ||a|::|e|5

|v|

Column(s): |L-:u:a|e|

M|

Filter [|

Filter Calumn:

Filter Value;

Drata Server: |<default:- |v|

Lok || Apply ||

Reset || Clear || Cancel |

The dashboard substitution sapama_1ang is automatically defined for dashboards. Use ISO 639
language codes as values of this variable. This is the same locale string used within Java. See the
Java documentation for more information on locales within Java. Here are some sample locale

values:

Locale Name Locale
Locale.CHINA zh CN
Locale.CHINESE zh
Locale.SIMPLIFIED_CHINESE zh_CN
Locale. TRADITIONAL_CHINESE zh_TW
Locale.PRC zh CN
Locale. TAIWAN zh_TW
Locale. ENGLISH en
Locale.UK en_GB
Locale.US en_US
Locale. FRANCE fr FR
Locale. FRENCH fr

For dashboards in Builder and Viewer connected directly to the Correlator, the default value for
sapama_lang is what Java reports as the locale in the roca1e object as derived from the host system's

locale.

For deployed dashboards, the value of sapana_1ang is set based on the locale of the host on which
the dashboard Display Server or Data Server is running. A single dashboard server cannot serve

Building Dashboards 5.2.0

«"APAMA ™

http://www.oracle.com/technetwork/articles/javase/index-137015.html
http://www.oracle.com/technetwork/articles/javase/index-137015.html

Localizing Dashboard Messages

dashboards to users in different languages. Note that number and date formatting performed by
the dashboard server are always controlled by the system locale.

Note: Numeric formats (1,000.00 versus 1.000,00) are controlled by the system locale. You cannot
change this by setting sapama_1ang. The only way to override it, other than changing your system
locale, is through Java system properties. Date/time formats are also controlled by the system
locale.

Attaching Dashboards to Correlator Data

Localizing Dashboard Messages

For thin-client (Display Server) deployments, you can localize the text displayed in popup menus,
login windows, status windows, and various error messages. Follow these steps:

1.

Extract thefile rtvdisplay strings.properties from the WEB-INF/classes/gmsjsp directory of the
rtvdisplay.war file in your deployment package. Copy it to anew file with the desired local e suffix (for
exampl €, rtvdisplay strings ja.properties for Japanese)

Edit the new file so that it contains the localized text.
Pack the edited file into rtvdisplay.war, in WEB-INF/classes/gmsjsp.

The locale setting of your application server is used to determine which properties file to load. If
the application server does not have the desired locale setting for the thin client, edit the original
file (rtvdisplay_strings .properties) and pack it into the .war file.

Attaching Dashboards to Correlator Data

Building Dashboards 5.2.0 - APAMA 129

Using built-in functions

Chapter 4: Using Dashboard Functions

B USiNG DUIIEIN UNCHIONS ...ttt n s 130

B Creating CUSIOM fUNCHONSooviiiiiece ettt bbbt bbb b b ebenas 132

You can use Dashboard functions in order to perform calculations, filtering, formatting and other
operations on correlator data. Scalar functions can be used when operating on a single variable of a
single scenario instance. Tabular functions can be used when operating on a table of correlator data.
Where all correlator data is stored in dashboards or dashboard servers as tables, they are compatible
with all tabular functions.

Using built-in functions

Following is an example of using a built-in function:

1. Openthefile tutorial-function-sum.rtv Dy selecting Data Functions on the tutorial main page.

Table
Inskrumenk | Price | Welocity: | Shares | Position | Clip Size
PRIGS 29,93 -0.0167 -300 -47,952 100
ORCL 10,09 0.0143 200 2,016 100
MSFT 2712 0.0143 -300 -21,6838 100
-B7E24.0

Here the value in the label at the bottom of the dashboard is the sum of the rosition variables of
each scenario instance. To recreate this sample follow the following steps.

2. Openthefile tutorial-summary-table.rtv Dy selecting Summary Table on the tutorial main page.

3. From the Tools menu select the Functions item to display the Functions panel.

Functions E
Mame | |ses | Local | Public | Source | Description |
| add | | Copy | | Edit | | Remove | | Result | | References
(w21 ©bject Paletke | 2] Functions

4. Click onthe Add button to display the Edit Function dialog.

Building Dashboards 5.2.0 - APAMA 130

Using built-in functions

5. Set the Function Name field t0 positionTotal and the Function Type field t0 add a11 Rows or columns.

For information on all builtin functions, see the Dashboard Function Reference in Developing
Apama Applications

II:"-_"; Bl Fipie el a*
Function Mame: |F'|:|siti|:|nT|:|taI | Public
Function Type: |F'.|:I|:I &ll Rows Or Columns v|

Table: | |

6. Right click on the Table field in the Edit Function dialog and attach it to Apama by specifying the
information shown in the dialog shown below.

=7 Attach to Apama ==
Property: t_argl

Attach to: | Scenario instance table -|

For: | -]

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | -|

Display vanables | [P osition - .

Filter: (]

By variable: | apama.instanceld -|

Value: | Sinstanceld |~

Using time interval: |50 |*|seco... |

Data Server: |<default> ~|

| ok || apply || Reset || Clear || Cancel |

Here the attachment specifies that the rosition column for the tutorial scenario is to be used. The
Sum function will produce the sum of the values in all the cells of a given column; in this case the
sum of the cells in the Position column for all instances of the scenario.

7. Click OK in the Edit Function dialog and close the Functions dialog.
The function rositionTotal has now been defined and object properties can be attached to it.

8. From the Labels tab in the Object Palette, select the second label object and add it to the dashboard canvas.

valueString I

Building Dashboards 5.2.0 - APAMA 131

Creating custom functions

9. Select the label object and in the Object Property panel right click the vaiuestring property and select
Attach to Data | Function to display the Attach to Function Data diaog.

10. Inthe Attach to Function Data dialog select the rositionTotal function asfollows

= Attach To Function Data @

Property Marne: label

Function Narme: |F'|:|5iti|:|nT|:|taI |v|
Column(s): |F'|:|5.iti|:|n |v||1|
Fitter: [
Filter Column:
Filter Value:
Description:

To create or edit a function, select Functions from the Tools menu.

| oK Il Apply || Reset || Clear || Cancel

The label object is now attached to the positiontotal function and will display the sum of the position
variable for all instances of the scenario.

For more information on the Functions panel and the Edit Function dialog, see "Introduction to
Dashboard Functions" in the Dashboard Function Reference.

Dashboard Builder provides many functions for operating on data. These can be used to operate
on scenario data to produce scalar results such as a sum. They can also be used to produce tabular
results which can be displayed as tables or charts. It is also possible to chain functions where one
function takes as its input value the output of another function. For more information, see the
Dashboard Function Reference in Developing Apama Applications.

Apama also gives you the ability to define custom dashboard functions, as described in the next
section.

Using Dashboard Functions

Creating custom functions

To provide a library of functions, do both the following:

1. Develop animplementation of com.apama.dashboard. function.TFunctionLibrary. S€€ ”Developing a
custom-function library" on page 133.

2. Install your implementation. See "Installing a custom-function library" on page 134.

Using Dashboard Functions

Building Dashboards 5.2.0 - APAMA 132

Creating custom functions

Developing a custom-function library

A sample implementation of 1runctiontibrary is included below in "Sample [FunctionLibrary
implementation” on page 135.

®* Your implementation of 1runctionLibrary must implement the following methods:

® getFunctionbDescriptors: Creates a function descriptor for each function that the library supports;
returns a list of com. apama.dashboard. function.IFunctionDescriptorsS. This method is called once
at Data Server or Display Server startup. See "Implementing getFunctionDescriptors" on page
133.

® cvaluateFunction: Returns the result of executing a specified function with specified arguments.
See "Implementing evaluateFunction" on page 133.

When you compile your implementation, ensure that dashboard_client5.2.5ar is on your class path.
This jar file is in the 1ib directory of your Apama installation.

Creating custom functions

Implementing getFunctionDescriptors

To create a function descriptor, use the factory class
com.apama.dashboard. function.FunctionDescritporFactory. Call createFunctionDescriptor, passing
arguments that specify the following:

® The function name that will be used by the Dashboard Builder and by the implementation of

evaluateFunction
®* The argument names that will be used by the Dashboard Builder
®* The argument names that will be used by the implementation of evaluaterunction
® The return type of the function (string, Double, Integer, OF com.apama.dashboard.data.ITabularData)
® The names of the returned columns, for functions that return table data

* A text description of the function

Note: When you create a dashboard custom function you must specify prefixes for parameters
according to the parameter type. A prefix must be s_arg for a string parameter, t_arg for a rapie
parameter or i_arg for an integer parameter, for example, s_arg1, s_arg2. You can see sample
code that shows this in the getrunctionbescriptors () definition near the beginning of "Sample
[FunctionLibrary implementation" on page 135.

Developing a custom-function library

Implementing evaluateFunction

Implement this method to evaluate a specified function with specified actual arguments. The
function is specified with the function name. The arguments are specified with an instance of

com.apama.dashboard.data.IVariableData.

Building Dashboards 5.2.0 - APAMA 133

Creating custom functions

For functions that return table data, use the factory class com.apana.dashboard.data.TabularbataFactory
to create an instance of 1TabularData.

When you compile your implementation, ensure that dashboard_client5.2.5ar is on your class path.
This jar file is in the 1ib directory of your Apama installation.

Your implementation of evaluaterunction can set or retrieve substitution values, if necessary, by using
the following methods of DashboardManager and 1pashboardContext:

® DashoardManager.getFunctionDashboardContext: This static method takes as argument an instance of
Ivariablebata and returns an instance of rpashboardcontext. ’ass the instance of rvariablepata that is
paSSGd,hlﬂ)evaluateFunction

® IDashboardContext.getSubstitution: Gets the value of a substitution with a given name.
® IDashboardContext.setSubstitution: Sets the value of a substitution with a given name.

® IpashboardContext.setSubstitutions: Sets the values of substitutions, where the substitutions and
values are specified with string vectors.

Each set method has a boolean argument, triggerupdate, which controls whether objects attached to
the substitution are updated. If it is ra1se, they are not. If the substitutions are only used as command
parameters or in drilldowns, you can improve performance by specifying faise.

Here is an example:

IDashboardContext ctxt =
DashboardManager.getFunctionDashboardContext (v) ;
String vall = ctx.getSubstitutionValue ("S$substl");

ctx.setSubstitution ("$subst2", "val2", false);

Developing a custom-function library

Installing a custom-function library

To install your function library for a given Data Server or Display Server, do both of the following:

®* Include aline in the Data Server or Display Server’s exrenstons. ini file that specifies the fully
qualified name of your 1runctionLibrary implementation. The line must have the following form:

function fully-qualified-classname

®* create a jar file that contains your rrunctionribrary implementation, and either add it to
APAMA_DASHBOARD_CLASSPATH (changes to this environment variable are picked up by dashboard
processes only at process startup) or add it to the list of External Dependencies in your project's
Dashboard Properties (In Apama Studio, right click on your project and select Properties, expand
Apama, select Dashboard Properties, activate the External Dependencies tab, and click the Add
External button).

A Data Server or Display Server’s exrenstons. 11 is, by default, located in the 1iv directory of its
Apama installation. You can specify a Data Server or Display Server’s exrensrons. ini file at startup by
using the -x or --extensionrile Option—see Deploying Apama Applications.

The exrenstons. ini specifies the function library to use. This file identifies all the user supplied
extension classes (including command libraries and scenario authorities). Here is a sample
EXTENSIONS.ini:

function com.apama.dashboard.sample.SampleFunctionLibrary

Building Dashboards 5.2.0 - APAMA 134

Creating custom functions

command com.apama.dashboard.sample.SampleCommandLibrary
scenarioAuthority com.apama.dashboard.sample.SampleScenarioAuthority

This file installs a function library, a command library, and a scenario authority.

Creating custom functions

Sample IFunctionLibrary implementation

Below is a sample implementation of rrunctionvibrary, which you can find under sampies

\dashboard studio\tutorial\src:

package com.apama.dashboard.sample;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.StringTokenizer;

import java.util.Vector;

import java.util.regex.Pattern;

import com.apama.dashboard.data.ITabularData;

import com.apama.dashboard.data.IVariableData;

import com.apama.dashboard.data.TabularDataFactory;
import com.apama.dashboard.data.internal.TabularData;
import com.apama.dashboard.function.FunctionDescriptorFactory;
import com.apama.dashboard.function.IFunctionDescriptor;
import com.apama.dashboard.function.IFunctionLibrary;
/**

*

SampleFunctionLibrary is an example of a custom function library for

* Dashboard Studio. Custom functions allow you to extend Dashboard Studio
* by the additon of custom functions to process data for use as data
* attachments.
* <p>
* SampleFunctionLibrary implements the functions:
*
* <1i>String to Table: Parses an encoded string to produce tabular
* data.
*
*
* $Copyright (c) 2013 Software AG, Darmstadt, Germany and/or its licensorss$
* @version $1d$S
*/
public class SampleFunctionLibrary implements IFunctionLibrary {
private final static String FUN_ STRINGTOTABLE = "String to Table";

// Column naming modes

enum ColMode {
AUTO, STRING, STATIC;

}i

/**
* Get the list of function descriptors for the functions implemented
* by this function library. Each command descriptor identifies one

* function.

*/

public Vector<IFunctionDescriptor> getFunctionDescriptors () {
Vector<IFunctionDescriptor> v = new Vector<IFunctionDescriptor> ();
IFunctionDescriptor fd = FunctionDescriptorFactory.createFunctionDescriptor (

FUN_ STRINGTOTABLE,

new String[] { "String", "Row Delimiter", "Column Delimiter",

"Column Name Mode","Column Names", "Allow Empty Rows/Columns"},
new String[] { "s_ argl", "s arg2", "s arg3", "s arg4", "s argb5", "s arg6"},
IFunctionDescriptor.RETURN_TYPE TABLE,
null,

"This function produces a table from the specified string by using " +

"the specified row and column delimiters to tokenize the string. If " +

"the table is to contain only 1 column, do not specify a value for " +

"Column Delimiter. "™ +

"Column names are determined by the \"Column Name Mode\". Specify one of: \n" +

Building Dashboards 5.2.0 - APAMA 135

Creating custom functions

" AUTO : Names generated as colO, coll, col2, ...\n" +
" STATIC Names defined in \"Column Names\", comma seperated\n" +
" - STRING Names defined in first row of \"String\"\n\n" +
"Use \"Allow Empty Rows/Columns\" to create empty rows/columns for all delimiters\n"
+ " - false (default) : empty tokens will be skipped\n" +
" - true : empty tokens will result in empty rows/columns\n");
v.add(fd) ;
return v;

}
/**
* Evaluate a function.
*
* @param command Function to evaluate.
* (@param parameters Parameters to function.
*/
public Object evaluateFunction(String function, IVariableData parameters) {
if (function.equals (FUN STRINGTOTABLE)) {
return stringToTable (parameters) ;
} else {
return null;
}
}
/**
* Generate a table from the string parameter passed to function.
*
* (@param parameters Parameters to function.
* @return Tabular data
*/
private ITabularData stringToTable (IVariableData parameters) {
// See if "Allow Empty Fields" is used. If not, then return value of
// stringToTableOld() which preserves old behavior
// This is needed so as not to break any old StringToTable behavior
String allowEmptyCells = parameters.getStringVar("s arg6");
if (allowEmptyCells == null ||
allowEmptyCells.equals ("") ||
allowEmptyCells.equalsIgnoreCase ("false") ||
allowEmptyCells.equals ("0") ||
allowEmptyCells.equalsIgnoreCase ("no")) {
return stringToTableOld (parameters) ;
}
// Function arguments
String inString = parameters.getStringVar ("s argl");
String unquoteRowDelim = parameters.getStringVar ("s arg2")
String unquoteColDelim = parameters.getStringVar ("s arg3")
String colModeS = parameters.getStringVar ("s arg4");
String colNames = parameters.getStringVar ("s argb5");
String colDelim = unquoteColDelim;
String rowDelim = unquoteRowDelim;
// Check required values
if (inString == null || inString.equals(""))
return null;
// StringTokenizer will do the right thing
if ((unquoteColDelim == null) || (unquoteColDelim.length() == 0)) {
unquoteColDelim = "";
}
// The delimiters are treated as a list of chars as delimiters
// Do this by adding a | between chars
char[] rowDelimChars = unquoteRowDelim.toCharArray ()
char[] colDelimChars = unquoteColDelim.toCharArray ()
StringBuffer rowDelimSB = new StringBuffer();
StringBuffer colDelimSB = new StringBuffer();
// default any regular expression special chars so we can escape them.
final String metaChars = "~ [\\[ANIANAANNHENN IAN2ANAN O NNV INN <S>/ NN*S 8]+
if (rowDelimChars.length > 0) {
for (char c¢ : rowDelimChars) {
// escape any special char
if (!Pattern.matches (metaChars, String.valueOf(c))) {
rowDelimSB.append ("\\") ;

’
’

’
’

}
rowDelimSB.append(c) ;

Building Dashboards 5.2.0 - APAMA 136

Creating custom functions

rowDelimSB.append (" |") ;
}
// remove last '|'
rowDelimSB.setLength (rowDelimSB.length()-1);
}
if (colDelimChars.length > 0) {
for (char c¢ : colDelimChars) {
// escape any special char
if (!Pattern.matches (metaChars, String.valueOf(c))) {
colDelimSB.append ("\\") ;
}
colDelimSB.append(c) ;
colDelimSB.append (" |");
}
// remove last '|'
colDelimSB.setLength (colDelimSB.length()-1);
}
// get the actual, escaped, delimiter regular expressions
rowDelim = rowDelimSB.toString();
colDelim = colDelimSB.toString();
// How are the columns to be named
ColMode colMode = ColMode.AUTO;
if ((colModeS != null) && (colModeS.length() > 0)) {
try {
colMode = ColMode.valueOf (colModeS.trim() .toUpperCase()) ;
} catch (IllegalArgumentException e) {
// bogus column mode is specified, default to AUTO
colMode = ColMode.AUTO;

}
// The number of splitted strings in the first row is the number of columns in table

int colCount = 0;

String[] rows;

// 1if no rowDelim, whole string is treated as a row
if (rowDelim.equals("")) {

rows = new String[] {inString};
} else {
rows = inString.split (rowDelim, Integer.MAX VALUE);

}
// if inString is empty, no row is needed
if (inString.equals("")) {
rows = new String[0];
}
// we do have some rows...
if (rows.length > 0) {
// 1if no column delimiter, whole row is one column
if (colDelim.equals("")) {
colCount = 1;
} else {
// use col delimiter to split it
colCount = rows[0].split(colDelim, Integer.MAX VALUE) .length;

}
// Initialize table and add columns
ITabularData table = TabularDataFactory.createTabularData() ;
String[] columnNames = null;
switch (colMode) {
case AUTO:
for (int i=0; i<colCount; i++) {
table.addColumn ("col" + i,TabularData.COL TYPE STRING) ;
}
break;
case STRING:
// Make sure this is at least one row
if (rows.length > 0) {
// 1lst row is the colNames
// we do have some rows...
// if no column delimiter, whole row is one column, which will be the col name
if (colDelim.equals("")) {
columnNames = new String[] {rows[0]};

Building Dashboards 5.2.0 - APAMA 137

Creating custom functions

table.addColumn (columnNames [0], TabularData.COL TYPE STRING); // the 1lst row IS
// the name
} else {
// use col delimiter to split it
columnNames = rows[0].split(colDelim, Integer.MAX VALUE);
int n = 0;
if (columnNames != null) {
for (String colName : columnNames) {
table.addColumn (
(colName.equals("")) ? "col"™ + n : colName,TabularData.COL_TYPE STRING) ;
nt++;

}
// since we've used lst row as column names, remove it from the array
List<String> rowList = new ArrayList<String> (Arrays.asList (rows));
rowList = rowList.subList(l, rows.length);
rows = new String[rows.length-17];
rows = rowList.toArray(rows);
}
break;
case STATIC:
// get static column from argument
columnNames = colNames.split(",", Integer.MAX VALUE);
// Figure out the correct number of columns
int maxCol = 0;
// 1f column delimiter is empty, then there is only one column, regardless
if (unquoteColDelim.equals("")) {
maxCol = 1;

} else {
// If there isn't any row data, just use all columnNames
maxCol =
(rows.length > 0 && !rows[0].equals("")) ? colCount : columnNames.length;

}
// add column names based on the colNames argument

int i = 0;
if (columnNames != null) {
for (; i < columnNames.length && i < maxCol; i++) {
String colName = columnNames([i];
table.addColumn (
(colName.equals("") 2 "col" + i : colName),TabularData.COL TYPE STRING) ;

}
// 1if static col names is shorter, fill up with default column names
for (; i < maxCol; i++) {
table.addColumn ("col" + i,TabularData.COL TYPE STRING) ;
}
colCount = maxCol;
break;
}
// parse string and adding rows to table
for (int row = 0; row < rows.length; row++) {
table.addRow ("row" + row);
boolean noColDelimiter = colDelim.equals("");

if (colCount == 1) {
table.setCellValue (rows[row], row, 0);
} else {

String[] cols;
// 1if no col delimiter, whole row is one column, no need to split
if (noColDelimiter) {

cols = new String[] {rows[row]};
} else {

// do need to split it

cols = rows[row].split(colDelim, Integer.MAX VALUE);

if (cols != null) {

for (int col = 0; col < colCount && col < cols.length; col++) {
table.setCellValue (cols[col], row, col);

Building Dashboards 5.2.0 - APAMA 138

Creating custom functions

}
return table;

}
Jxx
This is the old StringToTable implementation which uses StringTokenizer, which will
by default ignore consecutive delimiters

@param parameters

@return

/

private ITabularData stringToTableOld (IVariableData parameters) {

// Function arguments

String inString = parameters.getStringVar ("s)

String rowDelim = parameters.getStringVar ("s)

String colDelim = parameters.getStringVar ("s arg3");
("s_)
("s_)

I

String colModeS = parameters.getStringVar
String colNames = parameters.getStringVar
// Check required values

if ((inString == null) || (inString.length() == 0) |
(rowDelim == null) || (rowDelim.length() == 0)) {
return null;

}

// StringTokenizer will do the right thing

if ((colDelim == null) || (colDelim.length() == 0)) {

colDelim = "";
}
// Map special delimiter strings to their internal value
// rowDelim = delimValue (rowDelim);
// colDelim = delimValue (colDelim);
// How are the columns to be named
ColMode colMode = ColMode.AUTO;
if ((colModeS != null) && (colModeS.length() > 0)) {
try {
colMode = ColMode.valueOf (colModeS.trim() .toUpperCase()) ;
} catch (IllegalArgumentException e) {
// bogus column mode is specified, default to AUTO
colMode = ColMode.AUTO;

}
// The number of tokens in the first row is the number of columns in table
int colCount = 1;
StringTokenizer st = new StringTokenizer (inString,rowDelim);
if ((st.hasMoreTokens())) {
colCount = new StringTokenizer (st.nextToken(),colDelim).countTokens () ;
}
// Tokenizer for iterating through rows in string
StringTokenizer rowSt = new StringTokenizer (inString,rowDelim);
// Initialize table and add columns
ITabularData table = TabularDataFactory.createTabularData() ;
switch (colMode) {
case AUTO:
for (int i=0; i<colCount; i++) {
table.addColumn ("col" + i,TabularData.COL TYPE STRING) ;
}
break;
case STRING:
st = new StringTokenizer (rowSt.nextToken(),colDelim);
for (int i=0; i<colCount; i++) {
table.addColumn (st.nextToken (), TabularData.COL TYPE STRING) ;
}
break;
case STATIC:
st = new StringTokenizer (colNames,",");
for (int i=0; i<colCount; i++) {
if (st.hasMoreTokens()) {
table.addColumn (st.nextToken (), TabularData.COL TYPE STRING) ;
} else {
table.addColumn ("col" + i,TabularData.COL TYPE STRING) ;

Building Dashboards 5.2.0 - APAMA 139

Creating custom functions

}
break;
}
// Parse string adding rows to table
int row = 0;
while (rowSt.hasMoreTokens()) {
table.addRow ("row" + row);
if (colCount == 1) {
table.setCellValue (rowSt.nextToken (), row, 0);
} else {
int col = 0;
StringTokenizer colSt = new StringTokenizer (rowSt.nextToken(), colDelim);
while (colSt.hasMoreTokens () && (col < colCount)) {
table.setCellValue (colSt.nextToken (), row, col++);

}
rowt+;
}
return table;

}

Creating custom functions

Building Dashboards 5.2.0

«"APAMA

Scenario lifecycle

Chapter 5: Defining Dashboard Commands

B SCENAMO [IECYCIE ..vviiieieeicieiceecee et ettt bbb bbbt es e bbb s e 141
B DefiNiNG COMMANGSooiiiiiice et s bbb bbb bbbttt bbbt b b b e b enereberis 142
B Using dashboard variables in COMMANGSceiuiuiimiiniiieieie s 143
B Defining commands for creating @ SCeNario INStANCEccvieririr s 146
B Defining commands for editing @ SCENAIO INSIANCEcccviivivireiiiccte e 148
B Supporting deletion of @ SCENANO INSIANCEoviiiieiece e 150
B Supporting deletion of all iNStances 0f @ SCENAMOocvivieriiceee s 152
B Using popup dialogs for COMMENGS ..o 153
B ComMMANG OPHONSoviiiiicc ettt b bbbt e s s e e e e e e s s n e 155
B Associating a command With KEYSITOKES ... 155
B Defining MUHtiple COMMENGS ..o 157
B Creating CUSIOM COMMENGSouivriiicieieseieieieise sttt 158
B Apama set substitution COMMANG ..o e 160

For users to have full control over their scenario instances, their dashboards need to provide
the ability to create, edit, and delete instances of the scenarios. Dashboard Builder allows you to
integrate these operations with dashboards.

The sections listed below provide general information about commands, and detail the how to
integrate scenario-management commands into a dashboard to create, edit, and delete scenario
instances. They also include sections on compound commands and custom commands. The
command for sending events to correlators is covered in a separate chapter (see "Defining Send-event
Commands" on page 220), as is defining SQL commands (see "Using SOL Data" on page 234).

Scenario lifecycle

To use a scenario that has been loaded into a correlator, a user must create an instance of it. To
create an instance, the user specifies values for all the scenario input variables so that the instance
is properly configured. Users can create multiple instances of a scenario, typically with one or more
different values for input variables.

When a user creates a scenario instance, he or she is the owner of the instance; by default, other users
do not have access to it.

Once created, an instance continues running until complete or deleted by the user (instances can also
tail if, for example, a run time error occurs). The values of the input variables can be edited after it
has been created to change the characteristics of the instance.

Building Dashboards 5.2.0 - APAMA 141

Defining commands

The Create, Edit, and Delete operations are part of the scenario lifecycle. Dashboard Builder enables
you to integrate commands with a dashboard so they can be performed by users.

Defining Dashboard Commands

Defining commands

A command is defined by associating it with an action property of a dashboard object such as a
push button. When the action is triggered, in this case, when the button is pressed, the command is
performed.

For control objects such as push buttons, commands are defined by setting the actioncommand
property. For other objects such as labels and charts, the commands are defined by setting the commana

property.
To see how this works:
1. Create anew dashboard.

2. From the Controls tab in the Object Palette, select the Push Button object and add it to the dashboard
canvas.

3. With the push button object selected, in the Object Properties panel, right click on the actioncommand
property and select Define Command > Apama from the popup menu.

Copy

|
Define Cormmand
SYSTEM
sGL
MULTIPLE

This displays the Define Apama Command dialog.

Building Dashboards 5.2.0 - APAMA 142

Using dashboard variables in commands

[Define Aparma Command @
Command: |Create scenario instance "|
Correlator: ||:|efault "|

Scenario: |t|.|t|:|ria| "|
- Parameters:
Instrument: |Sin5trument |"|
Clip Size: |SclipSize v
Data Servern |<|:Iefault> |"’|
I OK | | Apply | | Reset | | Clear | | Cancel |

4. To define acommand, select acommand type and specify values for the remaining fields.
The fields vary based on the command being defined. The common set of fields is as follows.

m Command — The command to be performed when the action is triggered. The command
selected will hide or show many of the other fields.

m Correlator — The correlator where the command is to be executed. If creating a new instance
of a scenario, this is the correlator where the instance will be created.

m Scenario — The type of scenario being created edited or deleted.

m Data Server — Advanced users can specify the logical name of the Data Server to serve the
data for the command execution. See "Working with multiple Data Servers" on page 70 for
more information.

In this documentation, some of the Define Apama Command dialogs are shown without the Data
Server field, which was added in a later release.

The fields in the Parameters section are specific to the specified scenario.

Note, when executing commands in display server deployed dashboards, warning and error
dialogs are not displayed to warn of error conditions that occur.

Defining Dashboard Commands

Using dashboard variables in commands

Building Dashboards 5.2.0 - APAMA 143

Using dashboard variables in commands

The value of all fields in the Define Apama Command dialog, with the exception of the command field,
can be set to dashboard variables. This allows you to dynamically configure the command or set its
parameters at run time.

For example, you will typically set the field tnstance to the dashboard variable sinstancerd. The
instanceId field identifies the scenario instance the command is to affect, and the variable sinstanceIa
gets set to the unique id of the dashboard’s currently-selected scenario instance. If you then trigger
a scenario command, the command will affect the instance identified by sinstancerq, which is the
instance selected on the dashboard.

Understanding dashboard variables is essential to being able to add scenario commands to a
dashboard. Most commands take parameters that you need to supply values for and in most cases
you’ll want to prompt the user for the values.

To create an instance of the tutorial, scenario values for the 1nstrument and c1ip size variables must
be specified. To enable the user to do this, the dashboard needs to include input fields where the
values can be specified. These values then need to be used as parameters to the command. This is
done through the use of dashboard variables.

To get the value a user has entered in an input field, you need to associate the input field with a
dashboard variable so that the variable is updated when the user enters a value in the field. This is
done by setting the varroset property of the input field.

For an example of how this works:
1. Create anew dashboard

2. From the Controls tab in the Object Palette, select the first text field object and add it to the dashboard
canvas.

3. From the Labels tab in the Object Palette, select the second label object and add it to the dashboard canvas.

The resulting dashboard should look similar to the following.

valuestring I

You will now associate the text field with a variable so that when its value changes the label
object updates to show the value.

4. Add the dashboard variable svaiue by selecting Variables from the Tools menu and adding it in the
Variables panel.

Building Dashboards 5.2.0 - APAMA 144

Using dashboard variables in commands

Variables

Variable Mame: MName Scope | Data Tvpel Source |
$apama_roles Local Scalar
$apama_server_hosk Local Scalar
fapama_server_port Local Scalar
$apama_user Local acalar
$instanceld Local Scalar

|$value | $instancestate Local Scalar
ftimestamp Local Scalar

Initial Walue:

IUse &s Substitution [+ Public

Data Type:

| Add || Remaove |

5. Ensurethat Use As Substitution is checked. Be sure to click on the Add button to add it the list of variables.
Several substitution variables are automatically created when you create a dashboard.

6. Select the label object and in the Object Properties panel, right click on the vaiuestring property and select
Attach to Data | Variable.

Copy

Aktach to Daka APAMS
=ML
FUMCTION

This displays the Attach to Variable Data dialog.

Building Dashboards 5.2.0 - APAMA 145

Defining commands for creating a scenario instance

3 Attach To VariableData all

Property Mame: valuestring

Wariable Mame; |$value 1Ir|
Columnis): | |‘|E|
Filker: []
Filker Calumnn:
Filker Yalue:
I (04 || Apply || Reset || Clear || Cancel |

7. Select svalue and click on OK.
The label object will contain no text; it is attached to the svaiue variable which has not been set.

8. Select thetext field object and in the Object Properties panel, attach its varroset property to the dashboard
variable svalue.

9. Sdect the executeOnLostFocusFlag property and enableit.

The text field is now bound to svaiue. When text is entered into the field svaiue will change and
the label object will update to show the new value. You are now ready to test this.

Control objects such as text fields and push buttons are not enabled in the Builder canvas. To test
these objects, you need to save the dashboard and then select Tools | Preview Window....

10. Typetext into the text field abject in the preview window, and press Enter. The label object will update to
show the text that was entered.

Binding control objects to dashboard variables makes the values available for use not only as
property attachments but also as parameters to commands. For fields in the Define Apama Command
dialog, you can either hard code a value by typing it in or select a dashboard substitution variable,
such as svalue, to use as the value. The latter will be the most common case as control objects such as
text fields will typically be used to get the value for command parameters.

Defining Dashboard Commands

Defining commands for creating a scenario instance

To add the create function to a dashboard, you need to add control objects such as text fields and
check boxes to the dashboard to prompt the user for the values of scenario input variables. You need
to then create dashboard variables to hold the values of the control objects and the objects bound to
the variables via their varroset property.

You next need to add a control object, such as a push button, to the dashboard to perform the
command. In the Define Apama Command dialog, select the command Create scenario instance and
use the dashboard variables as the values for the scenario variables.

1. Openthefile tutorial-create.rtv by Selecting Create Instance in the tutorial main page.

Building Dashboards 5.2.0 - APAMA 146

Defining commands for creating a scenario instance

2. Double click on the object labeled Test to display the dashboard in a new window such that the control

objects are enabled..

Table
Instrument | Price | Welociky | Shares | Position | Clip Size
FPRIGS 50,582 0 FE00 466,596 100
CRCL 10.26 0 -22400 -229,524 100
MSFT 2723 -0.0111 -16600 -452,018 100

Instrument;

I

Clip Size:

|

This dashboard displays a summary table of all instances of the tutorial scenario and a form for

creating new instances.

3. Intheform enter arer for the rnstrument and 100 for theciip size and click on the Create button. Thiswill
create a new instance of the scenario..

Table
Instrument| Price | Welocty | Shares | Position | Clip Size
PRS 59,587 0.01 Foan 419,090 100
CRCL 10.29 -0.01a7 -21800 -Z224,322 100
M3FT 2723 0.01 -17400 -474,150 100
&PPL a0 0 0 0 100

[nstrument;
APPL

Clip Size:

—y
[}
[}

Create

This dashboard has the dashboard variables $instrument and $ciipsize defined. The text fields are
bound to these such that the variables are set when text is entered in the fields. The actioncommand
property for the Create button is set to perform the create command and use the value of the

variables as command parameters.

4. Select the Create button and in the properties panel double click on the actioncommand property.

If the test window is displayed, you need to first close it so that you can select Create button in
the Dashboard Builder main window.

Building Dashboards 5.2.0

147

s- APAMA

Defining commands for editing a scenario instance

[Define Aparma Command @ﬁ
Comrmand: "Create scenario instance '"
Correlator: ||:|efault "|

Scenario: |Scenari|:u_tut|:|ria| "|
Parameters:
Instrument: |5in5trument |"’|
Clip Size: |SclipSize ~|
Data Serven |<|:Iefault> |"’|
I Ok, | | Apply | | Reset | | Clear | | Cancel |

Here the command is defined to create an instance of the tutorial scenario on the default correlator.
You can see that the values for the scenario input variables nstrument and c1ip size are set to the
value of the dashboard variables $instrument and $clipsize.

When creating a scenario instance you must specify a value for each of the scenario input variables. If
you do not, you will receive an error when you try to perform the command.

Defining Dashboard Commands

Defining commands for editing a scenario instance

Adding the edit function to a dashboard is similar to you adding the create function. You need to
add control objects such as text fields and check boxes to the dashboard to prompt the user for the
values of scenario input variables. Then you need to create dashboard variables to hold the values of
the control objects and the objects bound to the variables via their varroset property.

You next need to add a control object, such as a push button, to the dashboard to perform the
command.

The differences are that when defining the command in the Define Apama Command dialog, you
need to identify which instance of the scenario to edit. You also need to identify which scenario
variables are to be edited. Unlike the create command, a subset of scenario variables can be changed
with the zdit command. Users cannot edit scenario variables that have been declared immutable.

1. Openthefile tutorial-edit.rtv by selecting Edit Instance in the tutorial main page.

2. Double click on the object labeled Test to display the dashboard in a new window such that the control
objects are enabled..

Building Dashboards 5.2.0 - APAMA 148

Defining commands for editing a scenario instance

Table
Inskrument Price | Velocty | Shares | Position | Clip Size Instrurment:
PRGS 59,99 0 2600 155,943 100 |:|
CRCL 10,18 0 &00 6,114 100
MSFT 27.3 0 1000 27,290 100 Clip Size:

)

Edit

This dashboard displays a summary table of all instances of the tutorial scenario and a form for
editing them.

3. Doubleclick on the apma row in the table. Thiswill cause the scenario instance for APMA to become
selected and its input variables to be displayed in the form.

4. Intheform changetheciip size t0 200 and pressthe Edit button. The value of c1ip size will change for
APMA in the table indicating the scenario instances has been edited.

Table
Instrument | Price | Welocity | Shares | Position | Clip Size [nstrument;
PRIGS 6011 0 2200 132,264 100
DRCL
CRCL 10.28 0 200 2,055 200
MSFT 27.53 0 400 11,012 100 Clip Size:

Edit

b2
=
e =1
m
o
-

As in the Create sample, this dashboard has the dashboard variables sinstrunent and scilipsize
defined. The text fields are bound to these such that the variables are set when text is entered in
the fields. The actioncommand property for the Edit button is set to perform the z4it command and
use the value of the variables as command parameters.

5. Select the Edit button and in the Object Properties panel, double click on the actioncommana property.

Building Dashboards 5.2.0 - APAMA 149

Supporting deletion of a scenario instance

[Define Apama Command @ﬁ
Command: "Edit scenario Instance '"
Correlator ||:|efau|t "|

Scenario: |Scenariu:u_tutu:uria| "|
- Filter:
By variable: |apama.in5tancelu:| "|
Where value in: |5in5tanc&ld |"’|
- Parameters:
Instrument: |5in5trument |'|
Clip Size: ¥ |Sclipsize ~|
Drata Server: |<|:Iefault3:~ |"|
I oK | | Apply | | Reset | | Clear | | Cancel |

Here the command is defined to edit the instance of the tutorial scenario whose instance id equals
$instanceId. You can see that the values for the scenario input variables rnstrument and c1ip size are
set to the value of the dashboard variables sinstrument and $clipsize.

The checkbox next to each scenario variable field is used to specify that the variable is to be edited.
When performing an eqait you do not need to specify values for all scenario variables; only those you
want to change.

The riiter fields are used to identify the instance to be edited. In this sample sinstance1d is set when
you select a row in the table to the apama.instance1d of the selected scenario instance.

The properties of table and other objects in Dashboard Builder are preconfigured to set sinstancerd
when a drilldown is performed. However, you can use dashboard variables other than sinstancerd to
hold the apama.instancezd of a scenario instance.

Defining Dashboard Commands

Supporting deletion of a scenario instance

To add the pe1ete function to a dashboard you need to add a control object such as a push button and
set its action to perform the delete.

1. Openthefile tutorial-delete. rtv by selecting Delete Instance in the tutorial main page.

2. Double click on the object labeled rest to display the dashboard in a new window such that the control
objects are enabled.

Building Dashboards 5.2.0 - APAMA 150

Supporting deletion of a scenario instance

Table
Instrument Price | Welocity | Shares | Position | Clip Size | |
FPRIGS &0, 44 u] 13000 75,720 100
CRCL 10,45 u] Q300 102,312 200

MIFT 2744] -2000 -S54, 530 100

This dashboard displays a summary table of all instances of the tutorial scenario and a Delete
button for deleting the selected instance.

3. Doubleclick onthe APMA row in the table. Thiswill cause the scenario instance for APMA to become
selected and its Instrument name displayed in the form above the Delete button.

4. Click onthe Delete button. Thiswill delete the APMA instance of the scenario asindicated by the APMA
row being removed from the table.

Table
Instrument | Price | Yelociky | Shares | Position | Clip Size | PRGS |
CRCL 10.59 0.0143 Ba00 69,594 200
MaFT 27.53 0 -a00 -16,5158 100

| Delete

As with edit, when performing a pelete you need to identify the instance to be deleted.

5. Select the Delete button and in the Object Properties panel, double click on the actioncommand property.

Building Dashboards 5.2.0 - APAMA 151

Supporting deletion of all instances of a scenario

[Define Apama Command @ﬁ
Command: ||De|ete scenaric instance '"
Correlaton ||:|efau|t "|

Scenario: |Scenariu:u_tutu:uria| "|
Filter:

By variable: |apama.in5tancelu:| "|
Where value in: |5in5tanc&ld |"’|
Data Server: |<|:Iefault3:~ |"|

I oK | | Apply | | Reset | | Clear | | Cancel |

Here the command is defined to delete the instance of the tutorial scenario whose instance id
equals SinstancelId.

Defining Dashboard Commands

Supporting deletion of all instances of a scenario

For a dashboard you may want to provide an option to delete all instances of a scenario. This can be
done by including a control object and setting its action command as follows.

Building Dashboards 5.2.0 - APAMA 152

Using popup dialogs for commands

Define Aparma Command @
Comrmand: ||De|ete all instances of a scenaric '"
Correlator ||:|efault "|

Scenario: |Scenari|:u_tut|:|ria| "|

Instances All instances

Data Server: |<|:Iefault> |'|

I Ok, || Apply || Reset || Clear || Cancel |

Deleting all instances of a scenario will only delete those instances to which the user has delete
access. By default, these are the instances created by the user.

Defining Dashboard Commands

Using popup dialogs for commands

For the create and edait commands you might not want to integrate the input fields with the main
dashboard. They might, for example, occupy space that is better used for display information about
running scenarios. An alternative is to place the input fields in separate dialog windows. In this case,
the main dashboard contains Create and Edit buttons. Clicking them displays the appropriate dialogs
where users enter the parameters for the command in the input fields and then click the OK button to
perform the command. You can set up popup dialogs like this in Dashboard Builder.

1. Open tutorial-create-popup. rtv Dy selecting Create Instance Popup from the tutorial main page.

2. Doubleclick on the Test label to display the dashboard in a new window such that the control objects are
enabled.

Building Dashboards 5.2.0 - APAMA 153

Using popup dialogs for commands

Table
Inskrument Price | Velocty | Shares | Pastion | Clip Size
PRIZS 59,23 0.0143 15600 923,958 100
CRCL 10,39 0.0143 -13000 -186,540 100
Create..
MaFT 27,32 0 -13400 -366,053 100
aPPL 59.5 -0.0143 9200 547,400 100

Here the dashboard contains a Create button but no fields for setting the input variables.

Click on the Create button. Thiswill display adialog window with the fields for creating a scenario
instance.

This dialog is really just another dashboard, in this case tutorial-create-form.rtv. The Create
button displays this dialog by performing a drilldown and displaying tutorial-create-form.rtvin

a new window.
4. Select the Create button object and double click on the actioncommand property in the Object Properties
panel.

]
NERNESysEmommant! ﬂ’

Command Type: |Dri|| Diown oF Sek Subskitubion 1Ir|

| Edit Crill Diowen Target |

Drrill Crover Target: kukorial-create-Form. rky

Drrill dovwm ko a news display or set subskitutions on the current display.,
Click on Edit Drill Down Target ko define wour drill down or substitution,

I (4 | | Apply | | Reset | | lear | | Cancel |

The command is defined to perform the pril1 pown or set substitution system command. (Note
that system commands are not supported for dashboards deployed as applets.)

5. Click on the Edit Drill Down Target button..

e >

el T O P ETH I ES ﬂi
Apply Drill Doven Ta: |New Window W
Drrill Doaver Displayy Mame: |tutnrial-create-FDrm.rtv |v|

Drrill Diavr Branch Funckion fame: | |

The drilldown is set to display tutorial-create-form.rtvin a new window. This gives it the
behavior of a popup dialog.
The dashboard for the popup dialog was created in Dashboard Builder.

6. Open thefile tutorial-create-form. rtv.

You can now select objects in the form and examine their properties in the property panel. The
settings are very similar to those in the previous create instance example. The dashboard contains
the variables sinstrument and sc1ipsize which are bound to the text fields. The actioncommand

Building Dashboards 5.2.0 - APAMA 154

Command options

property on the ox button is defined to perform the create operation using the values of these
variables.

What is different is that when OK is pressed, the command will be performed and the dialog
window closed. The option to close the window is set in the closeWindowOnSuccess property.

7. Inthe Builder window, select the OK button object.

8. Herethe closeWindowOnSuccess property is enabled. If this property is enabled, the dashboard closes the
window that performed the command if the command completes successfully. If the command generates an
error, the window will not be closed.

9. The Cancel button also has a command associated with it. To see this, select the Cancel button object and
in the Object Properties panel, double click on the actioncommana property..

ST eSS IO

Command Type: |CI|:|5E= Windo v|

Window Mame:

Close the specified window. IF no Window Mame is given, the window
containing this objeck will be closed. This command may nat be used ka
close the main window,

I (0] 4 || apply || Reset || Clear || Cancel

Here the command is set to close the window.

Defining Dashboard Commands

Command options

The Object Properties pane provides some properties that control some command options:

& commandCloseWindowOnSuccess — If enabled, the dashboard will close the window that
performed the command if the command completes successfully. If the command generates an
error the window will not be closed.

®* commandConfirm — If enabled, the dashboard will display a confirmation message (specified by
the commandConfirmText property) before performing the command. It is recommended that this
be enabled for delete commands.

® commandConfirmText — If commandConfirm is enabled, the dashboard will display the value of this
property as a confirmation message.

Defining Dashboard Commands

Associating a command with keystrokes

This chapter’s previous examples define commands that are to be invoked by the dashboard users
via mouse actions. You can also define commands that are to be invoked by dashboard users via
keystrokes.

You do this by adding a HotKey object to the Builder canvas.

Building Dashboards 5.2.0 - APAMA 155

Associating a command with keystrokes

Note: Thin client, Display Server deployments do not support this feature. With such deployments,
users cannot use keystrokes to invoke builder-defined commands. In addition, the HotKey is not
supported inside of composite objects.

The HotKey object is located in the Controls tab of the object palette:

Object Palette

Trends | Tables | Graphs | General ' Labels ', Meters ' Scales | Indicators * Contrals "I,ILinks |

Haot
Key

When you add a HotKey object to the Builder canvas, it does not appear on the end user’s
dashboard. But as dashboard builder, you set HotKey properties in order to associate keystrokes
with a command:

* hotKey property: Specify the keystrokes that you want dashboard users to use in order to invoke
the command. The value of this property is a text string whose format is described below.

® command property: Specify the command to be invoked. Do this as described in this chapter,
above.

The hotKey property value must be a text string that consists of a sequence of keystroke-designators. A
simple keystroke designator is one of the following:

®* Function key designator: r1, 2, £3, ..., Or rFi2.
* digit or letter: &, 0, ¢, ..., 2,0, 1, 2, ..., O 9.

You can also form a keystroke designator by adding one of the following prefixes to a simple
keystroke designator:

® SHIFT+
® CTRL+
® ALT+

® CTRL+SHIFT+

® ALT+SHIFT+

® CTRL+ALT+

® CTRL+ALT+SHIFT+

So for example, the keystroke that results from holding down the control and the shift key and
striking the F1-function key is designated as follows

CTRL+SHIFT+F1

And the keystroke that result from holding down the shift key and striking the letter f is designated
as follows:

Building Dashboards 5.2.0 - APAMA 156

Defining multiple commands

SHIFT+f

For the dashboard user, when focus is on the dashboard, the specified key sequence triggers
execution of the command.

Defining Dashboard Commands

Defining multiple commands

You can associate multiple commands with an action by using the Define Multiple Commands dialog.

1. Right click on the commana property and select Define Command > MULTIPLE.

Copy
Paste

L]

Define Command

SYSTEM

biHeight
bikame

APAMA

MULTIPLE

&

2. Inthe Define Multiple Commands dialog, choose APAMA in the New Command combo box, and then click
the Add button to add an Apama command.

i

-

=7 Define Multiple Commands ==
New Command: |APAMA || Add |
sqL | Duplicate |

| Remove |

| Top |

| MoveUp |

| Move Down |

| Bottom |

ok || Ay || Reset || Clear || Cancel |

Important: The commands are launched in an arbitrary order, and are executed asynchronously;

there is no guarantee that one command will finish before the next one in the sequence starts.

See "Apama set substitution command" on page 160.

Defining Dashboard Commands

Building Dashboards 5.2.0

s- APAMA

157

Creating custom commands

Creating custom commands

To provide a Data Server or Display Server with a library of custom commands, do both the
following:

1. Develop animplementation of com.apama.dashboard. function.ICommandLibrary. S€€ ”Developing a
custom-command library" on page 158.

2. Install your implementation. See "Installing a Custom-Command Library" on page 159.

Defining Dashboard Commands

Developing a custom-command library

A sample implementation of rcommandribrary is included below in "Sample ICommandLibrary
implementation" on page 159.

You can find a sample implementation of rcommandLibrary in the following file:
samples\tutorial\src\com\apama\dashboard\sample\SampleCommandLibrary.java

Your implementation of rcommandribrary must implement the following methods:

® getCommandDescriptors: Creates a command descriptor for each function that the library supports;
returns a list of com. apama.dashboard.command. ICommandDescriptors. This method is called once at Data
Server or Display Server startup.

® invokeCommand: Performs the command with the specified name, using the specified arguments.

When you compile your implementation, ensure that dashboard_clients.2.jar is on your class path.
This jar file is in the 1ib directory of your Apama installation.

Your implementation of invokecomnand can set or retrieve substitution values, if necessary, by using the
fOHOWiI’Ig methods of con. apama.dashboard.DashboardManager and com. apama.dashboard.IDashboardContext:

® DashoardManager.getCommandDashboardContext: This static method returns an instance of
IDashboardContext.

® IDashboardContext.getSubstitution: Gets the value of a substitution with a given name.
® IpashboardContext.setSubstitution: Sets the value of a substitution with a given name.

® TDashboardContext.setSubstitutions: Sets the values of substitutions, where the substitutions and
values are specified with string vectors.

Each set method has a boolean argument, triggerupdate, which controls whether objects attached to
the substitution are updated. If it is fa1se, they are not. If the substitutions are only used as command
parameters or in drilldowns, you can improve performance by specifying faise.

Following is an example:

import com.apama.dashboard.DashboardManager;
import com.apama.dashboard.IDashboardContext;

IDashboardContext ctxt =
DashboardManager.getCommandDashboardContext () ;
String vall = ctxt.getSubstitutionValue ("$substl");

Building Dashboards 5.2.0 - APAMA 158

Creating custom commands

ctxt.setSubstitution ("$subst2", "val2", false);

Creating custom commands

Installing a Custom-Command Library

To install your function library for a given Data Server or Display Server, do both of the following:

®* Include aline in the Data Server or Display Server’s exrenstons. ini file that specifies the fully
qualified name of your rcommandribrary implementation. The line must have the following form:

command fully-qualified-classname

® (Create a jar file that contains your rcommandribrary implementation, and either add it to

APAMA_DASHBOARD_CLASSPATH (changes to this environment variable are picked up by dashboard
processes only at process startup) or add it to the list of External Dependencies in your project's
Dashboard Properties (In Apama Studio, right click on your project and select Properties, expand

Apama, select Dashboard Properties, activate the External Dependencies tab, and click the Add
External button).

A Data Server or Display Server’s exrenstons. 11 is, by default, located in the 1iv directory of its

Apama installation. You can specify a Data Server or Display Server’s exrenstons. ini file at startup by

using the -x or --extensionrile Option—see Deploying and Managing Apama Applications.

The exrenstons. ini specifies the function library to use. This file identifies all the user supplied
extension classes (including function libraries and scenario authorities). Here is a sample
EXTENSIONS.ini:

function com.apama.dashboard.sample.SampleFunctionLibrary
command com.apama.dashboard.sample.SampleCommandLibrary
scenarioAuthority com.apama.dashboard.sample.SampleScenarioAuthority

This file installs a function library, a command library, and a scenario authority.

Creating custom commands

Sample ICommandLibrary implementation

Below is a sample implementation of rcommandribrary, which you can find under sampies
\dashboard_studio\tutorial\src:

package com.apama.dashboard.sample;

import java.util.ArrayList;

import java.util.List;

import javax.swing.BorderFactory;

import javax.swing.JFrame;

import javax.swing.JLabel;

import com.apama.dashboard.command.CommandDescriptorFactory;
import com.apama.dashboard.command.ICommandDescriptor;
import com.apama.dashboard.command.ICommandLibrary;

/**

* SampleCommandLibrary is an example of a custom command library for

* Dashboard Builder. Custom commands allow you to extend Dashboard Builder
* to run custom code in response to a user action such as a clicking on

* a button.

* <p>

*

SampleCommandLibrary implements the commands:

Building Dashboards 5.2.0 =" APAMA

159

Apama set substitution command

*
* <1li>Show Message: Displays a message window showing the arguments
* passed to the command.
*
*
* $Copyright (c) 2013 Software AG, Darmstadt, Germany and/or its licensors$
*
* @version $Id: SampleCommandLibrary.java 84623 2008-06-25 22:41:10Z cr $
*/
public class SampleCommandLibrary implements ICommandLibrary {
private final static String CMD ECHO = "Show Message";
/**

* Get the list of command descriptors for the commands implemented
* by this command library. Each command descriptor identifies one
* command.
*/
public List<ICommandDescriptor> getCommandDescriptors () {
List<ICommandDescriptor> v = new ArraylList<ICommandDescriptor> ();
v.add (CommandDescriptorFactory.createCommandDescriptor (CMD ECHO)) ;
// Add additional command descriptors here.
return v;
}
/**
* Execute a command.
*
* (@param command Command to execute.
* (@param parameters Parameters to command.
*/
public boolean invokeCommand (String command, Object parameters) {
if (command.equals (CMD ECHO)) {
//Create and set up the window.
JFrame frame = new JFrame ("Message");
frame.setDefaultCloseOperation (JFrame.DISPOSE ON CLOSE) ;
//Add the ubiquitous "Hello World" label.
JLabel label = new JLabel (parameters.toString());
label.setBorder (BorderFactory.createEmptyBorder (30,100,30,100)) ;
frame.getContentPane () .add (label) ;
frame.setLocation (100,100) ;
//Display the window.
frame.pack() ;
frame.setVisible (true);
} else {
// Add additional command handlers here.
}

return true;
}

Creating custom commands

Apama set substitution command

To set substitution values without using the Drill Down or Set Substitution system command, use the
Apama set substitution command:

1. Right-click the command property and select System.

2. In the Command Type combo box of the Define System Command dialog, select Execute Custom
Command.

3. In the Command Name: field, type Apama SetSub1.0.

4. Inthe Command Value: field, type a string in the following format:

Sub=Value[; Sub=Value...]

Building Dashboards 5.2.0 - APAMA 160

Apama set substitution command

For example, to set smysub1 to valuel and smysub2 to value2, enter the following command value:

MySubl=valuel;MySub2=value2
Remember to remove the s from the substitution name.

Defining Dashboard Commands

Building Dashboards 5.2.0 - APAMA 161

Using Object Grids

Chapter 6: Reusing Dashboard Components

B USING ODJECE GHIAS .viviviiiiiii sttt bbbttt bbb s b renenns 162
B USING COMPOSITE ODJECSvvvicecicicieiceicctctee ettt bbb bbb s s s s st naes 169
B USING COMPOSIEE GFIUSvuveiiiiieisiciei et 177
B USING INCIUAE FIIES w.vvviiiiecece bbbt 182
B Working with multiple diSplay PANEISccccciiiiii e 187

As the number and complexity of your dashboards grow, you need the ability to modularize
dashboard components into manageable and reusable sets. This allows you to efficiently develop
and maintain your dashboards.

This chapter describes the features of Dashboard Builder that allow you to create reusable dashboard
components and expand beyond the Table object for the rich display of tabular data.

Using Object Grids

The Object Grid allows you to display tabular data using one or more other object types to show
the values of scenario variables or DataView fields. An Object Grid is, as the name implies, a grid of
objects. Following is an example of an object grid from the Object Grid tutorial sample:

Object Grid

“EUB

Here the grid is using one of the label object types in order to display the Instrument and Price
variables of the tutorial scenario instances. The label object used provides a graphical indication of
the price as well. There is one instance of the label object for each instance of the scenario. If a new
instance of the scenario were created an entry for it would automatically be added to the object grid.

Most objects that appear in the object palette can be displayed in the object grid. Exceptions include
tables, some graphs and some general objects. More than one object can be used to visualize each
row in the tabular data.

: ____ Object Grid
v | N
' ORCL __ 10.24

Building Dashboards 5.2.0 - APAMA 162

Using Object Grids

The grid above uses three objects to display the Instrument, Price, and Shares variables of the scenario
instances.

Object grids provide one alternative to table objects for visualizing tabular data. They are simple to
use but provide limited control over the layout of the objects:

®* Objects within a grid are each given the same space as the largest object in the grid.

®* Objects within a grid are positioned using a flow layout; positioning objects in the top-left corner
of the grid and progressing to the right and bottom.

The following illustrates the layout behavior of the object grid:

i __Object Grid
MSFT | 644
== orct |

E

T200

q%

This is the same object grid as in the previous illustration. The only change is that it was resized to be
slightly narrower which caused the flow layout of objects to change.

If precise control over the layout of objects is required use the Composite or Composite Grid objects.

Reusing Dashboard Components

Configuring Object Grids

The Object Grid is in the Composite tab of the object pallet.

Object Grid
-
o [T - [[
San Franciseo San Jose
Q CITTTTTTITTY om0 ENEEEEEEN 100
Dallas Chicaas =

The Object Grid is initialized to display the same sample data as the Table object. The sample data
contains seven rows so there are seven instances of the object in the grid.

After adding an Object Grid to your dashboard, you need to attach its valueranie property to the
tabular data that you want to display. It can be attached to any tabular data source, including the
following:

®* Apama scenario instance tables
®* Apama DataViews
®* Dashboard functions that produce tabular data

® Tabular XML data

Building Dashboards 5.2.0 - APAMA 163

Using Object Grids

The iconproperties property is used to select and configure the objects that are displayed in the
grid. With the grid object selected, in the Object Properties panel, double click on the iconproperties
property to display the Icon Properties dialog.

:' [Eurl Frodgriiss a‘f

Icon Class Mame: | E |v|
Property Name | Map Property Walue |

Fieldwidth Cefaulk 43.0 b

label Colurmnn Instrument

labelTextColor Defaulk

labelTextFonk Default Sansserif

labelTe:xtHeight Drefaulk 10.0

labelwidth Default 56.0

walue Column Price

walueDivisor Default 0.0

walueFarmat Defaulk

valugHighalarm Defaulk ad

valueHighiarning Defaulk A

waluetlax Default 100,0

waluetin Defaulk 0.0 —

walueTextColor Default _

walueTextFont Defaulk Sans5erif -

[] Allows multiple icon bypes

I QK | | Apply | | Clear | | Zancel |

Building Dashboards 5.2.0 - APAMA 164

Using Object Grids

e

GaT R RORENES)

Icon Class Mame: | b

|v|

Property Narme | Map Property Walue |
Fieldwidth Defaulk 43.0 b
label Colurnn Instrument
labelTextColor Defaulk
labelTextFonk Default Sansserif
labelTextHeight Drefaulk 10.0
labelwidth Default 56.0
walue Zolumn Price
walueDivisor Default 0.0
walueFormat Defaulk
valugHighalarm Defaulk ad
walueHighWarning Drefaulk Bt
walueflax Default 100.0
waluetin Defaulk 0.0 —
walueTextColor Default _
walueTextFont Defaulk Sans5erif -
[] Allows multiple icon bypes
I Ok, | | apply | | Clear | | Zancel |

By default the Object Grid is configured to display a single object for each row in its tabular data. The
Icon Class Name field is where you select the type of object that you want to display in the grid:

Toon Class Mame: | EENEESIE]

obi_meder(ia

Froperty Name
Fieldwickh obi_meterDé
Labed ol _rsbanE
oby _meeter 20
LabedTantColor obi_meeterz]

LabedTectFont ltllj!ﬂ:ﬁ"tmt

bsbelTactHoght |obi_piescale0l

Eabedvidth Do

56,0

The properties listed correspond to the properties of the object type selected. Properties in the
Icon Properties dialog can have their value set in one of three ways. How a property is being set is

indicated in the Map column of the property list:

® Default: The property will take the default value. If the default value changes in a future version

of Dashboard Builder, the property will take the new default.

* Value: The property has a user-supplied value. This value will be the same for all instances of the
object displayed in the grid.

® Column: The property value comes from the tabular data that the grid object is attached to.
Each instance of the object in the grid corresponds to one row in the tabular data. Binding a
property to a column causes each instance of the object to use the value of that column in the
corresponding row in the tabular data.

Building Dashboards 5.2.0

«"APAMA ©

Using Object Grids

If you click in the Map column for a property, the Builder displays a list that you can use to select
how the property value is set.

7= o - T
walueDivisor Defaulk 0.0

valueFormat M

Evah.mHith.larm 75

If you select Value, the value for the property is entered in the Property Value column. If you select
Column, clicking in the Property Value column will display a list of all the columns in the tabular data.

e oo e

Codurmin
valueDivisor Defauit P
valueF ormak Defauk e
walueHiohAlarn Def ama. instanceld

T

When you bind a property to a column in the tabular data, each instance of the object displayed in
the grid has that property bound to the value of that column in the corresponding row in the tabular
data.

To display multiple objects for each data row, enable the Allow multiple icon types check box at the
bottom of the Icon Properties dialog.

o Allow Filtiple icon bypes
ok [sy |[cex][cance

When enabled, the dialog will change to allow you add multiple objects for display in the grid.

Building Dashboards 5.2.0 - APAMA 166

Using Object Grids

- 1
Zhcon BEnoneniies! m‘
Icon Class Mame: |obj_labellg |v|
| add Tcon | obj_labell4
| Delete Icon |
Property Mame MMap Property Yalue
Fieldwidth Ciefaulk 4a.0 b
label Colurmn Instrument
labelTextCalar Defaulk
labelTextFonk Defaulk Sans5erit
labelTextHeight Defaulk 10.0
labewidth Defaulk 56,0
value Caluran Price
valusDivisor Defaulk 0.0 |5
valugFormat Defaulk
valueHighalarm Drefaulk a4
valugHighiarning Defaulk A
walueiar Drefaulk 100.0 Ed
Allows multiple icon types
I Ok, | | apply | | Clear | | Zancel

Use Add Icon and Delete Icon buttons to add and remove objects from the grid.

Using Object Grids

Recreating the Object Grid sample

The Dashboard Builder tutorial includes an example of the Object Grid, which you can view by
double-clicking Object Grid on the tutorial main page. This displays the file tutorial-object-grid.rtv.

: Object Grid
v DGR -

To recreate this sample, create a new dashboard and perform the following steps:

1. Add an Object Grid to the dashboard and attach itsvaiueTabie property to the tutorial scenario asfollows.

Building Dashboards 5.2.0 - APAMA 167

Using Object Grids

i "

=7 Attach to Apama ==
Property: valueTable

Attach to: | Scenario instance table -|

For. | -]

Correlator: | default -|

Scenario: |Scenario_tutorial ~

Timestamp variable: | -|

Display variables: |Instrument:Price - .

Filter: (]

By variable: | apama.instanceld -|

| member of -|

voe | &

Using time interval: |50 |=|[seco..]|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The grid object will update and display as follows:
Object Grid

o [— o (E—

Plant Plant

o [o

I Plant

Unless you have separately created or deleted instances of the tutorial scenario, there will be
three instances of the scenario and the grid will display three instances of the object. The objects
do not show any values from the tutorial scenario because none of their properties have been
bound to it in the Icon Properties dialog.

2. Select the grid object and double click on the iconproperties property to display the Icon Properties
dialog. In the dialog select obj_label14 asthe Icon Class Name.

Toon Class Nama: o Tl
Uf_FAN =
_______ Pr. mmﬁ-“""m
fiekdwicth abllss i
| obi_labell | i
labe obi_lsbell 15
label TextCokor
labelTextFant ob]_meter(s
labelTextHeight |T0imeteré -

3. Inthelcon Properties dialog click in the Map column of the va1ue property and select the type Column.
Click in the Property Value column and select Price.

Building Dashboards 5.2.0 - APAMA 168

Using Composite objects

e o e
walusDivisor Default nstrurent

valueFormat Default h
wrab b dinh filaern Frafandh ama.instanceld

This sets the va1ue property of each instance of the object to the value of the Price variable in the
corresponding instance of the tutorial scenario.

=

4. Similarly for the 1ave1 property, set the Map column to Column and select Instrument as the value.

o rameen B

labelTexkCalor Do ault
belTextFor Default ice ;
LahalTevtHeinkt et O pama instancel

The dashboard should now appear similar to the Object Grid tutorial.
Using Object Grids

Using Composite objects

The Composite object allows you to display an rtv file as an object within another rtv file. This is a
powerful capability which allows a complex dashboard to be subdivided into multiple components
that can be independently developed and reused in multiple dashboards. The following illustration
shows an example of a bid and ask depth display:

auantities BidS ASKS quansties

648 103.22 103.24 9x

445 103.21 }103.25 |62

226 103.20 [103.26 | 543

444 103.19 [103.27 | 33

997 103.18 |103.28 | 452

This can be created and saved in an rtv file and with the Composite object be used in one or more
other dashboards.

108 | BdPl | AskPl Mﬁll

707 10216 10218 261[a XOM ==IL===) Apama
SR OU0AP 11051 WS Jan-11 12:01:38

07 10153 10055 ke g L ASt 00 msa)
o WAS AT T4 Duanthiey adﬁ Am T anibe

mod tand o 648 103.22 103.24 sn

47 %00 702 ™ v
107 1024 0245 27 145 10321 103 25 625 10323
671 10049 10051 A5 Cuantty
S49 1250 1025 814 2% 103.20 103.26 | 843 Bl
n w3 BT s
I I) T i 10319 | 103287 | ™ Lomost Pusition
7 MAl %4)) I JRpp——
517 Mt .56 w7 997 103.18 03.28 452

&% 10047 10065 114
M7 W4 970 w4
¥ 10002 100.04 bd Dwect Marke! Access
267 1023 102.99 65 Quantily 100

NS w4 9783 47

Al 00 100 L33 I
92 #B52 BH 96 Type |LBAT - SELL
710007 10009 508

¥ OHes 9 I
ted 0200 1242 107 Price) 0.0
4 10020 10022 Télw

Building Dashboards 5.2.0 .- APAMA 169

Using Composite objects

Here the bid and ask display is shown in a Composite object combined with other objects to form a
complete dashboard.

Note: The HotKey (see "Associating a command with keystrokes" on page 155) is not supported
inside of composite objects.

Reusing Dashboard Components

Creating files to display in composite objects

While the Composite object can display any rtv file, reusable rtv files are typically parameterized.
When you select the rtv for display in a Composite object, the Composite object will expose as
properties all the variables defined in the rtv file. These variables are the parameters to the file, and
can be set as needed for each use of the file.

As a simple illustration consider an rtv file with a single label object, where you want the text of the
label, its color, and its font to be configurable whenever the file is used in a Composite object.

Label

To do this, define variables in the rtv file for each of these properties, such as the following:
* labelText

® |abelColor

®* labelFont

In the properties panel, attach the 1ave1, 1abelTextcolor, and 1abelTextront properties of the label
object to these variables.

label lcal label Text
!HL'L'ITL' \.I. :UI or IUL-\.'II JI.".'I'\: JIL"
labelTextFont local labelFont

When you use these variables in a Composite object, you'll be able to set values for each in order to
configure the appearance of the label.

When you edit properties of a Composite object, the property panel attempts to display the
appropriate editor based on the name of the variable. Therefore, when you name variables for fonts
and colors, end them with Font or Color, for example labelColor.

Variables that will be used for tabular data must have the data type Table.

When you define a variable, if you do not want to expose it as a property in a Composite object,
uncheck the Public attribute of the variable in the Variables panel.

Building Dashboards 5.2.0 - APAMA 170

Using Composite objects

Warialnhs B
privaleVariable

Endtial Vsl on:

Use As Substibution || Publc

Note: Substitutions defined in an rtv file are not exposed as properties when the file is used in a
Composite object. Variables that you want exposed as properties cannot be defined as substitutions,
hence they can’t start with a $.

Note: Variable names cannot conflict with the names of properties of the Composite object; variables
whose names conflict with Composite-object property names will not be exposed as properties. For
example, you cannot have a variable label in a file displayed in a composite. The name conflicts with
the 1abe1 property of the Composite object.

Using Composite objects

Configuring Composite objects
The Composite object is in the Composite tab of the object pallet.

Composite Object
San Francisco

The Composite object is initialized to display one row of the same sample data as the Table object.
The rtv file displayed contains three objects to show the city and unit statistics.

After adding a Composite object to a dashboard you need to specify the rtv file to display. The
rtvName property is used to select the file.

LRI BAL I=F

:tut-:nial-cumDusite-detai-sirr: -

PR BN ¥ T .

Note: This rtv file must not itself contain any composite objects. You cannot nest composite objects.

When you select a file, the Composite object is redrawn in order to display the contents of the file.

Composite Object

Note that the Composite object is resized to the size specified in the file being displayed. When you
create the file, set its Background Properties to the desired size and color.

Building Dashboards 5.2.0 - APAMA 171

Using Composite objects

The property panel for the Composite object will update to show as properties all the variables
defined in the selected file.

=l Composite
labelColar
labelFont SansSerif
labelText
rkvharne tutorisl-composite-detail-simple
substitutions

Here the labelColor, labelFont, and labelText variables are exposed as properties. Setting these you can

change the appearance of the Composite object:

Composite Object

Test]

Here the 1abeicolor is set to red, the 1abelFont tO Sanserif Bold and the 1abelText to the Stl‘il’lg Test.

Composite object properties that expose variables do not need to be set to static values. You can
attach them to any data source, including a scenario or DataView. When so attached, a property’s
corresponding variable changes whenever the attached data changes. Properties in the rtv file that
are attached to the exposed variables will update in turn. The following dashboard illustrates this:

Table Composite Object
lg@m‘eﬂ: Po-sl_tmﬂ PTF:E‘ | Shdra-s Yalociky |
F ':':3 1 0.0 932
Rz =BT - 1111.

This dashboard consists of a table object showing all instances of the Tutorial scenario and a
Composite object containing a single label. This Composite object shows the current price of
whatever instrument is selected in the table. Whenever the price changes the composite object
updates to show the current price.

As in previous examples, the rtv file that is displayed in the composite has the variable labelText,
which is exposed as a property on the Composite object. The label in the file is attached to labelText

such that it will show its value. Rather than supplying a static value for the corresponding property

1abelText in the Composite object, this dashboard has 1aveirext attached to the selected instance of
the Tutorial scenario.

Building Dashboards 5.2.0 s APAMA

172

Using Composite objects

P "

=7 Attach to Apama @

Property: labelText

Attach to: | Scenario instance table -|

| 7

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | -|

Display variables: | Price -
Filter.

By variable: | apama.instanceld -|

s 7

Value: |Sinstanceld Ly |+

Using time interval: |50 | =] sece... +|

Data Server: | <default> ~|

| OFK | | Apply | | Reset | | Clear | | Cancel |

By attaching the property to the scenario and filtering by $instanceld, the 1abe1Text property will
update when ever the value of the attachment changes. When the 1abe1text property changes, it will
change the value of the corresponding variable in the rtv file displayed in the composite which will
in turn be reflected in the label.

Using Composite objects

Using substitutions with Composite objects

The Composite object supports the setting of substitutions on the file displayed in the composite. It
has a single substitutions property where the name and value of one or more substitutions can be
specified.

=l Composite
labedCalor
labelFont SansSerif Bold
lsbe Tt
riwiame tutorial-composite-det ail-sub

Substitutions are specified as a string with the following syntax:

Ssubname:subvalue $subname?2:subvalue?2 ..

Building Dashboards 5.2.0 - APAMA 173

Using Composite objects

* If a substitution value contains a single quote character, it must be escaped using a backslash.

$subname:/’ Quoted Value/’

* f a substitution value contains a space, the entire value must be enclosed in single quotes. Do not
escape these single quotes.

Ssubname:’Value with Spaces’
® Substitution names cannot contain the following characters:
[
L
[
H tab

| space

L

L

Note: Substitutions and variables in a Composite object are scoped to the object. If a dashboard
contains a Composite object, and both the dashboard and the Composite object have the substitution
$mySub defined, changes to the value of one will not affect the other. The Composite object will have
its own value as will the dashboard.

When you use a Composite object to display detailed information on a selected scenario instance

or DataView item, it is often easiest to set the substitution $instanceld on the composite. Setting
$instanceld allows you to define in the rtv file displayed in the composite attachments and commands
which filter on $instanceld as you normally would in other dashboards.

Building Dashboards 5.2.0 - APAMA 174

Using Composite objects

For this use case, the simplest way to set $instanceld as a substitution on a composite is to attach
the substitutions property of the composite object to the apama.substitutions variable of the selected
instance.

P

= Attach to Apama

Property: substitutions
Attach to: | Scenario instance table -|
For: | -]
Correlator: | default -|
Scenario: | Scenario_tutorial -|
nestamp variable: | 7]
Display vanables | |apama.substitutions - |

Filter:

By variable: | apama.instanceld -|
|equal -]
Value: [Sinstanceld -l
Jing time interval: | “eecon <]
Data Server: | <default> Bl
ok || Apply || Reset || Clear || Cancel |

The value of apama.substitutions is a string formatted for use as the value of the supstitutions property.

An example of the value for an instance of the tutorial scenario is the following:

SinstancelId:default.tutorial.21l

This results in the substitution $instanceld being set to defauit.tutorial.21 in the rtv file displayed in
the composite. Attachments and commands filtering on $instanceld would be tied to this instance.

Note: If the file displayed in a Composite object has buttons or other objects which execute Apama
commands to edit or delete an instance of a scenario, you need a substitution set to the ID of the
instance. This substitution can be used as the filter on the command to identify the instance that the

command operates on. The standard substitution to use is $instanceld.

Note: Variables cannot be used in filters on attachments or commands. You cannot define a variable

instanceld, use it in the filter, and set the value as a property on a composite object.

Using Composite objects

Composite object interactivity

Building Dashboards 5.2.0

«"APAMA

Using Composite objects

The Composite object has the command and drilipownTarget properties. These operate as with other
objects, allowing you to define commands and drilldowns that are executed when the object is
clicked on.

If the file displayed in the composite contains objects with their command Or drililpownTarget properties
set, these will take precedence over those defined on the Composite object.

The following illustration is of a Composite object displaying an rtv file with one label object:

Composite Object

The label object Command A is defined to run some command, command A, and the command property
of the composite is set to run a different command, command B. Clicking on the label object will run
command A, since the command property in the rtv file overrides that of the composite. Clicking on
the dark blue background of the composite will run command B.

Using Composite objects

Composite object sample

The Dashboard Builder tutorial includes an example of the Composite object.

®* Open the file tutorial-composite-simple.rtv by selecting Composite Simple on the tutorial main
page.

Composite Object

Tas

This dashboard displays a composite object with its rtvname property set to the file tutorial-composite-

detail-simple.

. Open the file tutorial-composite-detail-simple.rtv in the dashboard Builder.

Examine the label, labelTextColor, and 1abelTextront properties to see that they are attached to
variables.

Building Dashboards 5.2.0 - APAMA 176

Using Composite Grids

= Labal
label loec al Labhel Tk
labelTexbColor local babelColor
labelTextFonk local blabelFont

From the Tools menu select Variables to see that the variables labelText, labelColor, and labelFont are
defined as public variables. These variables are set as properties on the Composite object.

=l Composite
labelColor
labelFank SansSerif
label Tt
rbvhlame tutorisl-composite-detail-simple
substitutions

Using Composite objects

Recreating the Composite object sample
To recreate this sample, create a new dashboard and perform the following steps:

1. AddaComposite object to the dashboard and set itS rtvname property to tutorial-composite-detail-
simple. Thelist of propertiesin the property panel for the Composite object will update.

2. Settheiaveicolor O red, the 1abe1Font 10 sans serif Bold, and the 1abelText tO Test.

The dashboard should now appear similar to the Composite Simple tutorial. Experiment with
adding new variables to tutorial-composite-detail-simple.rtv and attach object properties to these.
In the Composite object, experiment with attaching properties and substitutions to the tutorial
scenario.

Composite object sample

Using Composite Grids

The Composite Grid object combines the capabilities of the Composite and Object Grid objects to
provide a powerful and flexible means to display multiple scenario instances or DataView items.

Composite Grid

MSFT

ORCL

PRGS

Above, a Composite Grid is used to display the instances of the tutorial scenario. The rtv file
displayed in the grid contains a set of objects to display the details of a single instance of the tutorial
scenario.

Building Dashboards 5.2.0 - APAMA 177

Using Composite Grids

The objects are attached to the tutorial scenario filtering on $instanceld to select a single instance. The
Composite Grid object is configured to pass each instance a unique value of $instanceld such that
there is one row in the grid for each instance of the scenario.

Note: The Composite Grid object is really just an Object Grid with the Icon Class Name in its
iconProperties set to obj_composite. The Composite Grid has all the behaviors of the Object Grid and
Composite objects.

Reusing Dashboard Components

Configuring Composite Grids
The Composite Grid is in the Composite tab of the object pallet.

Composite Grid

San Francisco aline J
Lirmit '“|'. . Unit n Froduetion '-
(4] e | | k|

The Composite Grid is initialized to display the same sample data as the Table object. The sample
data contains seven rows so there are seven instances of the object in the grid. For each row of data
the Composite Grid displays an rtv file containing several objects to show the city and unit statistics.

After adding an Object Grid to your dashboard you need to attach its vaiueranie property to the
tabular data to display. See the Object Grid section for details.

The iconproperties property is used to configure the Composite object displayed in the grid. With
the grid object selected, in the Object Properties panel, double click on the iconproperties property to
display the Icon Properties dialog.

Building Dashboards 5.2.0 - APAMA 178

Using Composite Grids

alcon Properties E*

Icon Class Mame: ||:|I:|j_|:|:|m|:u:|site |v|
Property Mame | Map Property Walue |

bivisFlag Yalue N =l

borderPixels Walue a

label Walue

labelTextAligny Defaulk Cenker

labelTextColor Default _

labelTextFonk Defaulk Sans5erif Bold

labelTextHeight Defaulk 12.0

abjHeighk Defaulk 128.0

objwidth Defaulk 2aa.0

onScheduls Defaulk n

plant Zolumn Plankt

rbviane Walue sample_composite

skakus Column Skatus —

subskitukions Walue apara,substitutions

unitsCompleted Zolumn Inits Completed =

[Allowe multiple icon bypes

I Ik, | | apply | | Clear | | Zancel

Notice that Icon Class Name is set to obj_composite.

Within the Icon Properties dialog set the rtviname property to the name of the rtv file to display in the
Composite. The list of properties will update to show as properties all the public variables in the
selected rtv file.

Note: If the list of properties does not update, close the Icon Properties dialog and redisplay it.

The properties of the Composite object can now be configured in the Icon Properties dialog as
needed.

The substitutions property is preset to the value of apama.substitutions.

rkvidame Value butorisl-composite-det.,..
substitutions apema.sutlstituti-rus
wisFlag Def sl [w

The effect of this is to set the substitution $instanceld uniquely for each instance of the Composite
object displayed in the grid. Each instance will have $instanceld set to a unique instance of the
scenario or DataView that the Composite Grid is attached to.

Using Composite Grids

Composite Grid sample

Building Dashboards 5.2.0 - APAMA 179

Using Composite Grids

The Dashboard Builder tutorial includes an example of the Composite Grid object.

* Open the file tutorial-composite-grid.rtv by selecting Composite Grid on the tutorial main page.

Composite Grid

MSFT

ORCL 1600

Anares

PRGS

This dashboard displays in a grid a composite object with its rtvname property set to the file tutorial-

composite-grid-detail.rtv.

- Open the file tutorial-composite-grid-detail.rtv in the Dashboard Builder.

Examine the 1ave1, and value properties of the objects to see that they are attached to the tutorial
scenario filtering on $instanceld. Range Dynamic objects are used to show Shares, Position, and
Velocity. These objects are configured to change color to show if the value is positive, negative, or
zero.

Using Composite Grids

Recreating the Composite Grid sample
To recreate this sample create a new dashboard and perform the following steps:
1. AddaComposite Grid object to the dashboard.

2. With the Composite Grid selected, in the Object Properties panel select the vaiueTabie property and attach
it to the tutorial scenario asfollows:

Building Dashboards 5.2.0 - APAMA 180

Using Composite Grids

=7 Attach to Apama ==
Property: valueTable

Attach to: [Scenario instance table ~

For: | -]

Correlator: | default -|

Scenario: | Scenario_tutorial -|

Timestamp variable: | -|

Display variables: | Price:Shares;Position;Velocity - .

Filter: (]

By variable: | apama.instanceld -|

| equals -]

Value: |Sinstanceld |~|

Using time interval: |50 |+]lseco... ~|

Data Server: | <default> Bl

| ok || Apply || Reset || Clear || Cancel |

The Composite Grid will be similar to the following:

Composite Grid

Plant

Plant

Plant

Unless you have created or deleted instances of the tutorial scenario, there will be three instances
of the Composite object in the grid. They do not show any data because the sample rtv file is not
attached to the data of the tutorial scenario.

3. With the Composite Grid selected, double click on the iconproperties property in the Object Properties
panel. Thiswill display the Icon Properties dialog.

Building Dashboards 5.2.0 - APAMA 181

Using include files

=7 Icon Properties @

Icon Class Mame: ||:|I::|j_cc|r'r1p|:|5ite |"|
Property Mame | Map | Property Value |

bgOpaqueFlag Default -

bgVisFlag Value [l

borderPixels Value 0

label Value

labelMinTabWidth Default 128

labelTextllignx Default Center

labelTextAlign Default Inside Top

labelTextColor Default]

labelTextFont Default Sans5erif Bold

labelTextHeight Default 10.0

objHeight Default 128.0

objWidth Default 288.0

onSchedule Default 0

plant Column Plant —

[Allow multiple icon types

| Ok | | Apply | | Clear | | Cancel

Inthe Icon Properties dlalog set the rtvName property 10 tutorial-composite-grid-detail. Close theIcon
Properties dialog.

The dashboard should now appear similar to the Composite Grid tutorial.

Composite Grid sample

Using include files

The Dashboard Builder include file feature provides a way to partition dashboard development

and to reuse content in multiple dashboards. It allows you to include in a dashboard the objects,
functions, and variables of another :tv file. Unlike the Composite object, the included file is not in an
object; rather, the contents of the included file are added to the dashboard.

A common use of include files is for navigation controls and status bars that are part of multiple
dashboards. The following illustration shows a simple status bar. Here the status bar contains an
indicator (the green circle) of connectivity to the correlator, as well as the Apama logo. These objects
could be defined in the rtv file statusbar.rtv file as follows:

Building Dashboards 5.2.0 - APAMA 182

Using include files

© =" APAMA

The file statusbar.rtv could then be included in another dashboard.

Instrument | B CQuantitiss Bids Asks Quantities Last Hiige
SFT :
B Tal 8 0 0 0 0
n 0 0 Quantty
0
0 0 0
i i i] Current Paosition
0 0 0

Direct Market Access

Quantity |0

e i
1T T 1

@ =" APAMA

To include an rtv file in a dashboard, select IncludeFiles in the Tools menu. This will display the
Include Files dialog.

Building Dashboards 5.2.0 - APAMA 183

Using include files

“ Include Files @

tutorial-include-background.riv

Add

| oK || Apply || Cancel

The Add and Remove buttons are used to add and remove included rtv files. More than one rtv file
can be included, and the included files can themselves include other files. However, a file will only
be included once.

All the objects, functions, and variables that are defined in an included file become part of the
dashboard. Within the Dashboard Builder these are, with one exception, read-only. They appear,
can be copied, and can be used in attachments, but they cannot be modified. To modify included
elements, open the file containing them in the Dashboard Builder.

The exception is for the initial value of an included variable. Within a dashboard, you can override
the initial value of included variables. Consider, for example, an included file that contains a label
that is attached to the variable headerTitle. When you include this file in a dashboard, the value of the
variable headerTitle can be set to the title of the dashboard.

Note: If objects from an included display file have the same value for the objname property as objects
in the current display, or other included displays, this may cause links to attach to the wrong object.
To avoid this overlap, assign a unique value to the obiname property of objects in files that you intend
to include in other displays.

The background properties such as Model Width, Model Height, and bgColor of included files are
ignored.

Substitutions such as $instanceld may be used in attachments in included files. Substitutions and
variables in included files are scoped to the including dashboard. Runtime changes to their values
will be reflected in included objects and functions. An attachment in an included file filtering on
$instanceld will update whenever $instanceld changes in the dashboard.

Reusing Dashboard Components

Include File sample

The Dashboard Builder tutorial includes an example of Include Files.

®* QOpen the file tutorial-include-sub.rtv by selecting Include File Subs on the tutorial main page.

Building Dashboards 5.2.0 - APAMA 184

Using include files

Table
Instrument Price | Paosition | Shares Velocity
MSFT -364,080 -44400 -0.0036
PRGS 6.77 18,956 2800 0.0083
ORCL 39.49 -3,223.200 -81600 -0.0067

@

.

.

A

This dashboard uses a status bar defined in an included file. The status bar contains an indicator

of correlator connectivity and objects to show the instrument, price, and other variables of the

selected instance of the tutorial scenario.

®* Open the file tutorial-include-sub-background.rtv in the Dashboard Builder.

Building Dashboards 5.2.0

s- APAMA

185

Using include files

Q@ [s (e,

Examine the attachments of the vaiue and 1ave1 properties of the objects. Notice that they are
attached to the tutorial scenario and filtering on $instanceld. No values are displayed because
$instanceld does not have a value. It is set in the dashboard that includes this file.

Using include files

Recreating the Include File sample

To recreate the Include File sample create a new dashboard and perform the following steps:

1. AddaTable object to the dashboard and attach itsSvaiueTabie property to the tutorial scenario asfollows:

Building Dashboards 5.2.0 - APAMA 186

Working with multiple display panels

2.

= Attach to Apama

Property: walueTable

(=]

Attach to: ||Scn.=-_r|ari|:| instance table

For |

Correlator: | default

Scenario: | Scenario_tutarial

Timestarnp variable: |

Display variables: |In5trument;Price;Pu:usiti|:un

Filter: []

By variable: |ar:ema.i|'|£ta|'|-:e[:l

|E:|l.|a|-_'-

Sinstanceld

Value:

Using time interval: |':.'1

T

Data Server |<default3:~

| OK | | Apply | | Reset | |

Clear | | Cancel |

=7 Include Files ==

tutorial-include-sub-background. v

|| Add ||| Remowve |

| OK || Apply || Cancel |

Select Include Files from the Tools menu and add tutorial-include-sub.background.rty.

The dashboard should now appear similar to the Include File tutorial. Double-click on a row in the
table to see values displayed in the included status bar.

Include File sample

Working with multiple display panels

It is possible to deploy several displays arranged in separate panels in a single window. Multiple
panels are useful when you want to view multiple displays from a top level entry point or if you
need to include a navigation panel. To define a window with multiple display panels, create an XML
tile, a panels-configuration file, that specifies a panel layout for a deployed dashboard.

Building Dashboards 5.2.0

«"APAMA *

Working with multiple display panels

You can supply the location of the panels-configuration file to the Deployment Configuration Editor
(see Using the Deployment Configuration Editor in Using Apama Studio) or to the Dashboard Viewer
executable (by using the -c or --panelconfig option—see the Dashboard Viewer guide).

The name of a panels-configuration file must have the .ini extension. By default, the Display Viewer
looks for the paners. ini file in the current directory. If a panels-configuration file is not found in

the current diretory, the Display Server and Display Viewer look for it in the 1i» directory of your
Apama installation directory.

Reusing Dashboard Components

About the format of the panels-configuration file

The panels-configuration file is in XML, and must start with the following:

<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">

The panels-configuration file must end with the following:

</panels>

In this release, a new set of tags are allowed in the panels-configuration file. These tags are different
from the tags that were allowed in previous releases. Previously allowed tags are still allowed.
However, new tags and old tags cannot be in the same panels-configuration file.

For information about the new tags, see "Using new tags to configure the panels in a window" on
page 188.

For information about the old tags, see "Using old tags to configure the panels in a window" on page
211.

Working with multiple display panels

Using new tags to configure the panels in a window

When using the new tags each panels-configuration file must contain exactly one rtvrayout tag. The
rtvLayout tag encloses the tags that define the multiple displays. Each child tag of the rtvrayout tag
must specify the region attribute with a value of nortnh, south, east, west, Or center. This determines the
location of each panel in the display.

Typically, an rtvrayout tag contains one of the following combinations:

®* A main rtvDisplayPanel tag whose region attribute is set to center.
An rtvaccordionPanel tag Or an rtvTreePanel tag whose region attribute is set to west Or east.
Possibly other secondary rtvpisplaypanel tags with other region attribute values.

®* A main rtvTabbedDisplayPanel tag whose region attribute is set toO center.
Possibly other secondary rtvpisplaypanel tags with other region attribute values.

An rtviayout tag can contain the following attributes:

Building Dashboards 5.2.0 - APAMA 188

Working with multiple display panels

® Jividers - Set to true if you want a draggable divider to be drawn between child panels. The
default is false.

®* :itle - Specify the title of the main window.

As a child of the rtviayout element, you can specify one or more rtvdisplaypanel elements. An
rtvDisplayPanel element creates a panel. The display inside the panel is specified by the following
rtvDisplayPanel attributes:

®* display - Specify the location of this CardPanel if it is in a BorderPanel. Valid values are west, east,
center, north, and south

®* nane - Specify the Window Name previously specified in the Drill Down Properties dialog. If you are
using tabbed panels and you do not specify a name, it is constructed by using the display name
and substitutions to make it easy to drill down between tabs. In this case, when you drill down
from a tab by using the Current Window option and the specified display with the specified
substituions is already loaded in another tab, the Display Viewer switches to that tab.

® region- Spec1fy the pOSitiOl’l of the panel as west, east, center, north, OT south.

® subs - Specify initial substitutions for this panel. Substitutions are optional and must use the
following syntax:

$subname:subvalue $subname?2:subvalue?

If a substitution value contains a single quote you must escape it by using a forward slash, for
example:

Sfilter:Plant=/'Dallas/"'

If a substitution value contains a space it must be enclosed in single quotes. Do not escape these
single quotes. Following is a correct example:

Ssubname:subvalue $subname2:'sub value 2'

A substitution string cannot contain the following characters:

: | . tab space , ; =< > "' " &/ N {} [] (
Substitutions that you set in Application Options apply to all displays.

Following is an example of; an rtvbisplaypanel element:

<rtvDisplayPanel region="north" name="title panel"” display="title.rtv" </rtvDisplayPanel>

Working with multiple display panels

Configuring panels with accordion controls

As a child of the rtviayout element, you can specify one or more rtvaccordionpanel elements. An
rtvAccordionPanel element creates a panel that contains an accordion control for display navigation.
The accordion control assumes there is a panel in the center region that was created with the
rtvbDisplaypanel element. The accordion control sends its navigation commands to this center panel.

The contents of a panel created with the rtvaccordionpanel element cannot be more than two levels
deep, not including the root node. If you require deeper nesting create a panel with the rtvrreeranel
element.

Use the following attributes to specify the location of an accordion control panel:
® rcgion- Spec1fy the pOSitiOl’l of the panel as west, east, center, north, OI south. The default is center.

®* yidth - Specify the width of the panel in pixels. The default is 125.

Building Dashboards 5.2.0 - APAMA 189

Working with multiple display panels

Using new tags to configure the panels in a window

Configuring static tree navigation panels

As a child of the rtvrayout element, you can specify one or more rtvrreeranel elements. An
rtvTreepanel element creates a panel that contains a static navigation tree. The navigation tree
assumes there is a panel in the center region that was created with the rtvbispiayprane1 element. The
static navigation tree sends its navigation commands to this center panel.

There are two ways to create a tree-driven, multi-panel application: the static tree navigation panel
and the tree control. Use a static tree navigation panel when you know the specific sources that are to
populate the tree and they remain constant for the life of the application. For example, if you know
all the displays that compose your application and the static representation of a tree will be used
only for navigating those displays the static tree navigation panel is suitable, as well as easier to
configure.

Use the tree control when the number of tree nodes, leaves, labels, or icons chnges during the
lifetime of the application. Data can be provided that will change the nodes and leaves of the tree
and also change the label and icon representation on the tree with dynamic data. See "Using tree
controls in panel displays" on page 192.

Use the following attributes to specify the location of a static tree navigation panel:
® rcgion - Specify the position of the panel as west, east, center, north, Or south. The default is center.
* yidth - Specify the width of the panel in pixels. The default is 125.

Using new tags to configure the panels in a window

Configuring tabbed navigation panels

As a child of the rtvrayout element, you can specify one or more rtvrabbedpisplaypanel elements. An
rtvTabbedDisplayPanel element creates a panel with tabs for navigation. The display inside the panel is
specified by the following rtvrabbedpisplaypanel attributes:

® tabs - Specify the name of a tab definition file. This XML file should describe the tabs you want in
the panel. See "Using tab definition files" on page 191.

® Jdisplay - Specify the name of the display (.rtv) file to load into the panel.

®* subs - Specify initial substitutions for this panel. Substitutions are optional and must use the
following syntax:

Ssubname:subvalue $subname?2:subvalue2

If a substitution value contains a single quote you must escape it by using a forward slash, for
example:

$filter:Plant=/'Dallas/'

If a substitution value contains a space it must be enclosed in single quotes. Do not escape these
single quotes. Following is a correct example:

$subname:subvalue $subname2:'sub value 2'

A substitution string cannot contain the following characters:

: | . tab space , ; =< >"'"" & /N {} [1 ()

Substitutions that you set in Application Options apply to all displays.

Building Dashboards 5.2.0 - APAMA 190

Working with multiple display panels

® rcgion- Spec1fy the pOSitiOIl of the panel as west, east, center, north, OI south.
® placement - Specify top Or bottom to indicate where you want the tabs to appear in the panel.

Following is an example of; an rtvpisplaypanel element:

<rtvDisplayPanel region="north" name="title panel" display="title.rtv" </rtvDisplayPanel>

Using new tags to configure the panels in a window

Using tab definition files

When you specify an rtvrabbedpisplaypanel element in a panels configuration file, you must set the
element's tabs attribute to the name of the tab definition file that defines the tabs you want in the
panel.

The tab definition file must start with the following:

<?xml version="1.0" ?>
<navtree>

The tab definition file must end with the following:
</navtree>

For example:

<?xml version="1.0" ?>

<navtree>

<node label="Bar Chart" display="displ.rtv"/>

<node label="History Graph" display="disp2.rtv" subs="$vl:xyz"/>
</navtree>

Inside the navtree element, you can define one or more node elements. Each node element adds a tab to
the panel. You can specify the following attributes for each node element:

® display - Specify the name of the display (.rtv) file.
® 1avel - Specify the label for this tab in the panel.

®* subs - Specify substitutions to apply to this tab. Substitutions are optional and must use the
following syntax:

$subname:subvalue $subname?2:subvalue2

If a substitution value contains a single quote you must escape it by using a forward slash, for
example:

$filter:Plant=/'Dallas/'

If a substitution value contains a space it must be enclosed in single quotes. Do not escape these
single quotes. Following is a correct example:

Ssubname:subvalue $subname2:'sub value 2'

A substitution string cannot contain the following characters:

: | . tabspace , ; =< >'""g& /N {}[1 ()

Using new tags to configure the panels in a window

Examples of configuration files for multiple panels

The following eaneLs.ini file uses the new tags and creates a title panel at the top, an accordion panel
on the left, and a main display in the center. There are draggable dividers between all panels.

<?xml version="1.0" ?>

Building Dashboards 5.2.0 - APAMA 191

Working with multiple display panels

<panels xmlns="www.sl.com" version="1.0">
<rtvLayout title="Accordion Example" dividers="true">
<rtvDisplayPanel region="north" name="title panel"
display="title.rtv"/>
<rtvAccordionPanel region="west" width="200" navdata="navtree.xml"/>
<rtvDisplayPanel region="center" name="main panel"
display="chart main.rtv"/>
</rtvLayout>
</panels>

The next eaness. 1v1 file creates a tabbed display panel at the top and a title panel at the bottom.

<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<rtvLayout title="Tab Example">
<rtvTabbedDisplayPanel region="center" tabs="navtabs.xml" display="stock chart"/>
<rtvDisplayPanel region="south" name="title panel" display="title.rtv"/>
</rtvLayout>
</panels>

Using new tags to configure the panels in a window

Using tree controls in panel displays

The tree control (class name: obj_citree) lets you create a rich and compact visual presentation of
hierarchical data. This control is most often used in a multi-panel application for display navigation.
The control tree can also be used in any application where hierarchical data is most effectively
displayed using expandable/collapsible tree nodes.

There are two methods for creating a tree-driven multi-panel application:

® Static tree navigation panel — Use a static tree navigation panel when you know the specific
sources that will populate the tree and they remain constant for the life of the application. For
example, if you know all the displays that compose your application and the static representation
of a tree will be used only for navigating those displays, the static tree navigation panel is
suitable (and is easier to configure). To configure the static tree navigation panel, add the
tree using the rtvrreeranel tag to the paness. ini file. For details about configuring the tree, see
"Configuring static tree navigation panels" on page 190.

® Tree control — Use the tree control method if the number of nodes or leaves, labels or icons of
the tree change during the lifetime of the application. Data can be provided that will change the
nodes and leaves of the tree and also change the labels, and icon representations on the tree with
dynamic data.

When using the tree control to construct an application with multiple panels one panel displays
a .rtv file that has instanced the tree control and the other contains the displays which are drilled
down to by selecting items on the tree.

The following illustrates a two-panel application in which the tree control in the left panel updates
the display in the right panel:

Building Dashboards 5.2.0 - APAMA 192

Working with multiple display panels

s Agent Detail

Agent: Agent 20 Region: |South

Mame I—t:;l.‘-n Call Rate dteen C ks djgrt Hama

LowCallRate

58895555555 -555%

You can optionally configure tree control icons, using images of your choice, to visually indicate the
type of elements in the tree, for example, Production or Sales, whether the element is in a critical
state, and to also propagate the status of priority elements to the top of the tree. See "Configuring
tree control icons" on page 198.

Working with multiple display panels

Creating tree controls

The input of tabular data determines the content of the tree control, as well as the appearance of each
object in the tree. As with other controls, to configure a drill-down, set substitutions, or execute a
command when a user clicks a tree node, use the actioncommand property. As with other table-driven
objects, the drillpowncolumnsubs property can be configured to set substitutions to column values from
the row in the table (attached to the valueranie property) that corresponds to the selected tree node.

After you attach your tabular data to the tree control vaiuerable property, specify the table format
for the tree in the valuerablerormat property. The table format is determined by the format of the
table you attach to the valueranie property. There are two table format options, each with their own
requirements:

®* Row-leaf: This format is intended for use when the valuerabie property is attached to a table and
all leaves in the tree are at the same depth. For example, where the tree control is attached to a
scenario instance table. The nodeIndexcolumnyames property specifes the columns from the scenario
instance table that will appear in the heirarchy in the tree control.

®* Row-node: If the row-leaf format is not suitable for your data, use the row-node format. Your
data table must also contain a row for each node in the tree, including the top-level node (rather
than just the leaf nodes, as with the row-leaf format), as well as a column for the node and a
column for the parent node. The row-node format allows each leaf of the tree to have a different
depth.

The default table format is row-leaf. The following are examples of the row-leaf and row-node table
formats, which both produce the tree in the image that follows. Here is a row-leaf table:

App Name PID

App0 1000

Building Dashboards 5.2.0 - APAMA 193

Working with multiple display panels

App0 1004
AppO 1008
Appl 1001
Appl 1005

Here is a row-node table:

Node Parent
app0

1000 app0
1004 app0
1008 app0
appl

1001 appl
1005 appl

Here is the tree control that both these tables produce:

1 appD |5
™ 1000
™ 1004
™ 1008
£ app1
Y 1001
™ 1005

After you configure the tree table format, you can optionally configure the tree control icons. See
"Configuring tree control icons" on page 198.

Using tree controls in panel displays

Creating row-leaf format control trees

In the row-leaf table format, there is one row in the table for each leaf node in the tree. A leaf node
is added to the tree for each row in the table attached to the vaiueranie property. The path to a leaf
node (that is, the ancestor nodes of the leaf) is determined by the values in each of the table columns
specified by the nodeIndexcolumnnames property. When the valuerabie property is attached to the
scenario instance table, the tree's nodendexcolumnnames property is typically set to the same columns
that are specified in the Display variables field of the Attach to Apama dialog.

Building Dashboards 5.2.0 - APAMA 194

Working with multiple display panels

To illustrate how to create a tree using the row-leaf format, consider a table that has two columns, 2pp
Name and p1p, and the following rows:

App Name PID
app0 1000
app0 1004
app0 1008
appl 1001
appl 1005

Set tree control properties as follows:

* Attach the tree control object's valuerable property to Apama as you would attach any table
object. In the Attach to Apama dialog, in the DisplayVariables field, select the variables App Name

and PID.

® Set the valueTableFormat property to the row-1eaf format.

® Set the nodeIndexColumnNames property to app Name;PID.

The following image illustrates the structure of the tree. There are two nodes labeled app0 and app1.
Node appo has three child nodes labeled 1000, 1004, 1008. Node app1 has two child nodes, labeled 1001

and 100s.

3 &pp0
™ 1000
™ 1004
™ 1008
El app1
B 1001

=
1 10

Suppose we add another column, agentyane, by selecting that variable from the Display Variables field

of the Attach to Apama dialog. The table has the following rows:

AgentName App Name PID
Agentl App0 1000
Agentl AppO 1004
Agentl App0 1008
Agentl Appl 1001

Building Dashboards 5.2.0

«"APAMA *

Working with multiple display panels

Agentl Appl 1005
Agent2 AppO 1000
Agent2 App0 1004
Agent?2 Appl 1001

We also update the tree control nodeIndexcolunnnanes property to AgentName;App Name;PID.

The following figure illustrates the new structure of the tree. The tree now has two top-level nodes
labeled Agent1 and Agent2, each with two child nodes, app0 and app1.

=3 Agentl
—"lfannﬂ-
[y 1000
% 1004
% 1008
CS] app1
% 1001
Y% 1004
] Agentd
= =] app0
3 1000
% 1004
£ app?

5 1001

As illustrated above, the label string for a node at depth v is taken from the nth column in the
nodeIndexColumnNanes property. Therefore, the labels for the top-level nodes come from the first column
in the nodeIndexcolumnNames property (agentnane), the labels for the second-level nodes come from the
second column in nodeIndexColumnNames property (2pp Name), and so forth.

To specify node labels from a different set of valuerable columns, use the noderabelcolumnNames
property. Enter a semicolon-separated list of column names in the noderabelcolunnyames property, one
for each level in the tree, where the nth column name in the list contains the labels for tree nodes at
depth n.

To modify tree control icons or configure tree control icon behavior, see "Configuring tree control
icons" on page 198.

Creating tree controls

Creating row-node format tree controls

In the row-node format tree control, there is one row in the table for each node in the tree, including
the top-level node rather than just one row for each of the leaf nodes as with the row-leaf format.

There are two columns in the table that help define the tree structure:

®* One of the table columns contains a node ID string and is identified by the noderdcolumnName
property. By default, the node ID string is used as the node label in the tree. The node ID string

Building Dashboards 5.2.0 - APAMA 196

Working with multiple display panels

must be unique among all nodes with the same parent. Or, if the uniquenode1driag property is
checked, each node ID string must be unique in the entire tree.

* Another table column contains the ID of the parent node, which is identified by the
parentIdColumnName property.

To create the same tree as the row-leaf format example in the previous topic, a table representation of
the tree control using the row-node format would be as follows:

Node Parent
app0 <blank>
1000 app0
1004 app0
1008 app0
appl <blank>
1001 appl
1005 appl

The <v1ank> entries represent an empty string, which indicates that nodes appo and app1 have no
parent, making them top-level nodes in the tree.

Set the tree control properties as follows:

®* valueTable property to attach to the table that contains the data to be displayed
® valueTableFormat property to the row-node format

® nodeldColumnName property to node

® parentIdColumnName property to parent

The result is a tree structure with two top-level nodes labeled appo and app1. Node appo has three child
nodes labeled 1000, 1004, 1008. Node app1 has two child nodes, labeled 1001 and 1005.

To add another tree level for the agentnanme, as in the the Row-Leaf format example in the previous
topic, modify the table as follows:

Node Parent
Agentl <blank>
app0 Agentl
1000 app0
1004 app0
1008 app0

Building Dashboards 5.2.0 - APAMA 197

Working with multiple display panels

Agent2 <blank>
app0 Agent?2
1000 app0
1004 app0
appl Agent2
1001 appl
1005 appl

Also, uncheck the uniqueNoderdriag property to allow for node IDs that are not unique, such as the
app0 and 1000 nodes in the example, which are used in multiple tree levels. Because some of the rows
are also identical, the order of the table rows is important. For example, this row appears twice in the
table: 1000appo. In each case the 1000appo row comes after a unique parent row: first under appoagent1
and then under appoagent2. The tree uses this information to determine where to place the node for
1000 in each case.

The tree now has two top-level nodes labeled agent1 and agent2, each with two child nodes, appo and
appl.

By default, the node ID string is used as the node label in the tree. If a different column in the table
must provide the label, specify the name of that column in the noderabelcolunnname property.

In the row-node format, each branch of the tree can have a different depth, while in the row-leaf
format all branches typically have the same depth, which is the number of columns specified in the
nodeIndexColumnNames property.

To modify tree control icons or configure tree control icon behavior, see "Configuring tree control
icons" on page 198.

Creating tree controls

Configuring tree control icons

You can optionally configure tree control icons, using images of your choice, to visually indicate the
type of elements in the tree, for example, Production or Sales, whether the element is in a critical
state, and to also propagate the status of priority elements to the top of the tree.

The use of one or both of the following icons is optional. Each node in the tree control can display
these two configurable icons:

®* Typeicon — Use the type icon to assign static images to nodes that indicate either the type of
element it contains, or its level in the tree. By default, a folder image is used for all non-leaf
nodes, and a document image is used for all leaf nodes.

For example, if you have groups of elements based on geographic location, you could assign

an icon for the country, state and city (for example, US, California, San Francisco). Or, if you
have groups of elements based on their function, you could assign an icon for each function
(Purchases, Operations, Sales, and so forth). You can also assign images for each depth in the tree
for a visual indication of where you are while navigating within the tree.

Building Dashboards 5.2.0 - APAMA 198

Working with multiple display panels

® Status icon — Use the status icon to assign images that are used when an element in the tree has
a specified value. You can also configure the status in order of priority so that the most critical
status is propagated up the tree first. By default, there is no status icon.

If a node has a type icon and a status icon, the type icon always appears to the left of the status icon.

Using tree controls in panel displays

Attaching a tree control icon to data

For convenience, both the type icon and the status icon can be attached to data. The type icon
and status icon have different data table requirements. Typically, an attachment to a static XML
file containing the appropriate tables is used. The following describes the data table format
requirements:

®* Typeicon — To attach the type icon to data, use the noderypeproperties property. The data
attachment must be a two-column table. Typically, a static XML file containing the table is used.
The first column must contain string values of node (for non-leaf nodes), 1cast (for leaf nodes),
numeric values for depth, or string values that match the node labels, or the values from the
column in valuerable specified by the noderypecolumnname property. The second column must be
the path to the .png, .gif, or .jpg image. The default assignments are node, rtvrreeNode16.png and
_leaf, rtvTreeLeafl6.png. The column names are not important.

® Statusicon — To attach the status icon to data, use the nodestatusproperties property. The data
attachment must be a three-column table. Typically, a static XML file containing the table is used.
The first column must contain string values that match values from the column in valuerable
specified by the nodestatuscolumnnane property. The second column must be the path to the .png,
.gif, Or .jpg image. The third column must contain the non-negative integer priority value.

A static XML file is read once each time you run Dashboard Viewer. If you specify (or modify) an
XML source using the Application Options dialog, you may specify whether that XML source is static.
For details, see Creating XML Sources.

Configuring tree control icons

Configuring tree control type icons

Type icons indicate the type of node in the tree. The type icon for each node is determined either by
the value of a column in the valuerable property, or by the node position in the tree. By default, the
type icon appears to the left of the node label.

This section describes how to configure type icons using the Node Properties dialog. You can also
configure type icons by attaching the noderypeproperties property to data.

To configure the type icon, use the nodeTypeproperties property to define a two-column table of data.

Select the nodeTypeproperties property in the property sheet, then click the D button to open the
Node Properties dialog.

Building Dashboards 5.2.0 - APAMA 199

Working with multiple display panels

Sanodeproperties x
Mode Depth or Type | Image

non-leaf node o~

leaf node

_|fs';.fmliI:,I'Navigaticun,l'glu:ul:ue_l6.png || b5 |

1

2

3

4

Davies ﬁ

Brown '-';’k

Smith + >

I K I | apply | | Clear | | Zancel |

& Select Image

----- globe_16.png
----- [globe_24.png
----- [globe_32.png

----- [globe_48.png
----- [help_blue_16.png

----- [help_blue_24.png
----- [help_bue_32.png
----- [help_bue_45.png
..... D help_bubble_16.png
----- [help_bubble_24.png
----- [help_bubble_32.png
----- D help_bubble_48.png
----- D help_green_16.png
----- [help_green_24.png
----- [help_green_32.png
----- [help_green_48.png
..... [home_16.png

..... [home_24.png

..... D harme_32.png

..... D home_45.png

X

‘|

K I | Clear

Cancel |

In the Node Properties dialog, the Node Depth or Type column lists the available nodes. The first two
rows, non-leaf node and leaf node, indicate the default settings: non-leaf nodes in the tree use a folder

image and leaf nodes use a document image. To change the default setting, click the asa button in
the Image column for the node and choose an icon from the Select Image dialog.

The next five rows, numbered 0 - 4, represent the node depth or level, zero (0) being the root node.
The Image column lists the icons being used for each node. By default, the Image column for all of
those rows is <v1ank>, indicating that the non-leaf node and leaf node icon assignments are used. Icon

assignments override non-leaf node and leaf node assignments.

Building Dashboards 5.2.0

«"APAMA

Working with multiple display panels

You can also assign an image icon based on node level. Such an icon provides a visual indication of
where you are while navigating in the tree. To assign an image to a specific node level in the tree,

click the D button for one of the rows numbered 0 - 4 in the Image column and choose an icon from
the Select Image dialog. Repeat for each node level.

You can assign an image icon based on node labels you create that describe the nodes as a group.

For example, suppose the Node Depth or Type column contains the string Davies with the {:? image
selected.

This means that all nodes whose label matches the Davies string display the {:? image in the tree.

To assign an image to a specific node type in the tree, assign a column name in the
nodeTypeColumnName property. Select the nodeTypeProperties property in the property sheet, then
click on the button to open the Node Properties dialog. Click New to add a custom row to the table.
A drop-down list of values for the column assigned to the nodeTypeColumnName property appears
in the Node Depth or Type column. Select a column name from the drop-down list. Click the button
in the Image column and choose an icon (to use for all nodes that have that column name in the
valueTable row that corresponds to the node) from the Select Image dialog.

You can also type a string in the Node Depth or Type column and the Image column.
To not use an icon, in the Node Properties dialog, select the icon in the Image column, then click Clear.
Note that the root node is invisible if the rootNodeLabel property is blank.

Configuring tree control icons

Configuring tree control status icons

Status icons indicate the current state of a node. You can configure the status icon to propagate
the status of a child node up the tree to its ancestors. The status icon shown for an ancestor node
corresponds to the current highest status priority among all of its descendants.

The status icon for a node is determined by the discrete value of a specified column in the valuerapie
property. The values can be strings or numbers. The comparison is done for an exact match.

If the current status value for a tree node does not match any of the values you specify in the
nodestatusProperties property, no status icon is displayed for that node.

By default, the status icon appears on the left of the node label. The value, rett or rignt, is specified in
the nodestatusiconros property. If a node has both a type icon and a status icon, the type icon always
appears to the left of the status icon. By default, no status icons appear in the tree.

This section describes how to configure status icons using the Node Properties dialog. You can also
configure status icons by attaching the nodestatusproperties property to data. For details about that,
see "Attaching a tree control icon to data" on page 199.

To configure status icons, specify the status table column name in the nodestatuscolumnname property,
then use the nodestatusproperties property to define a three-column table of data and configure icon
behavior. The nodestatusproperties property is visible only if the nodestatuscolumnname property is non-

blank.

Select the nodestatusproperties property in the property sheet, then click the D button to open the
Node Properties dialog.

Building Dashboards 5.2.0 - APAMA 201

Working with multiple display panels

In the Node Properties dialog, to map an image to a node status, click New, then click in the Status
Value column. A drop-down list appears containing all values in the node status column of the
valueTable property (which you previously specified in the nodestatuscolumnnane property). Select a
value from the drop-down list.

Click the D button in the Image column for the node and choose an icon from the Select Image
dialog. This icon is used as the status icon for all nodes that match the value selected in the Status
column.

Click the Bbutton in the Priority column for the node and assign an integer value: 0, 1, 2, 3, 4, 5, or
a higher number. There is no upper limit on the number. The largest number is the highest priority
and is propagated up the tree first. A value of zero (0) is not propagated. You might want to assign
a value of zero to multiple nodes so that they do not propagate up the tree. A non-zero value can be
assigned only once.

For example, suppose the nodestatuscolumnName property is set to the application status table column
of the valuerabie property. You could define the mapping for the nodestatusproperties property as
follows:

Status Value Image Priority

Blocked 2

Running ? 1

The values in the Application Status column of each row in the valuerable property is compared to the
two values listed in the Status Value column (Blocked and Running). If the Application Status value in

one of the rows is Blocked, the ' status icon is displayed as the status icon for that row. If there is
no match, for example, the Application Status value in one of the rows is unknown, no status icon is

displayed in the tree node for that row. Because the ‘*'status icon is assigned the highest priority, the

% status icon is always propagated up the tree first. If none of the rows has a Blocked status, the ?
status icon is propagated up the tree.

For example, in the following image, the priority status of a single node, app3/1003, is propagated up
to its parent, app3, and also to the top-level ancestor, Agent1.

Building Dashboards 5.2.0 - APAMA 202

Working with multiple display panels

'] Agent1 |
¢ Wl app0 @
[1000 @
1004 @
[y 1008 @
3 1012 @
> v¥ app1 @
o 4 app2 @
¢ @ app3 !
[1003 !
[1007 @
1011 @
- Agent2 @
¢ i app0 @

Configuring tree control icons

Specifying tree control properties
There are a number of properties that you can specify for a tree control.

Using tree controls in panel displays

Specifying tree control background properties

T

The bgcolor property determines the color of the tree control background. Select the bgColor property

and click m Choose a color from the palette to set the background color of the tree control.

Specifying tree control properties

Specifying tree control data display properties

The following properties specify how data is displayed in the tree control.

* nodeldColumnName

This property is available when the valueTableFormat is Row-Node. With the Row-Node format
there are two table columns that define the tree structure: the nodeldColumnName property and

the parentldColumnName property.

The nodeldColumnName property specifies the table column containing the node ID string. The
node ID string must be unique among all nodes with the same parent. Or, if the uniqueNodeldFlag
property is checked, each node ID string must be unique in the entire tree. By default, the node

ID string is used as the node label in the tree.

Building Dashboards 5.2.0

«"APAMA

Working with multiple display panels

nodelndexColumnNames

This property is available when the valueTableFormat is Row-Leaf. It specifies the path to a leaf
node, that is, the ancestor nodes of the leaf.

When the valueTable property is attached to the current table of a scenario instance the
nodeIndexColumnNames property is typically set to the same columns that are specified in the Display
variables field of the Attach to Apama dialog used to set the valuerable property.

Enter a semicolon-separated list of column names, where the Nth column name in the list
contains the labels for tree nodes at depth N. The labels for top-level nodes are defined by the
first column in the nodelndexColumnNames property, the labels for the second-level nodes are
defined by the second column, and so forth. For example:

AgentName;App Name;PID

The labels for the top-level nodes are defined by the AgentName column, the labels for the second-
level nodes are defined by the App Name column, and labels for the third-level nodes are defined
by the PID column.

To specify node labels from a different set of valueTable columns, use the nodeLabelColumnNames
property.
®* nodelabelColumnName

This property is available when the valueTableFormat is Row-Node. By default, the node ID string
is used as the node label in the tree. Use the nodeLabelColumnName property to specify a different
valueTable column to provide the label.

®* nodelLabelColumnNames

This property is available when the valueTableFormat is Row-Leaf. Use the nodeLabelColumnNames
property to specify a different set of valueTable columns to provide node labels. Enter a
semicolon-separated list of column names, one for each level in the tree, where the Nth column
name in the list contains the labels for tree nodes at depth N.

® nodeStatusColumnName

This property applies to the status icon. It specifies the name of the valueTable column containing
node status values. The column specified populates the Node Properties dialog Status Value
column, in which you map node status values to image icons. The icons are displayed for any
node whose value matches the value selected.

® nodeTypeColumnName

This property applies to the type icon. It specifies the name of the valueTable column containing
values to use for mapping icon images to node types in the tree. The column specified populates
the list of available values in the Node Properties dialog Node Depth or Type column, in which you
map node types to image icons. The icons are displayed for any node whose value matches the
value selected.

® parentldColumnName

This property is available when the valueTableFormat is Row-Node. With the Row-Node format
there are two table columns that define the tree structure: the parentidColumnName property and
the nodeldColumnName property.

The parentldColumnName property specifies the table column containing the parent node ID.

Building Dashboards 5.2.0 - APAMA 204

Working with multiple display panels

uniqueNodeldFlag
This property is available when the valueTableFormat is Row-Node.

When enabled, this property specifies that each node ID string must be unique in the entire tree.
When disabled, it specifies that each node ID string must be unique among all nodes with the
same parent.

valueColumnName

Specifies the name of the column whose value is assigned to the $value variable when a node in
the tree is selected. If not specified, the label string of the selected node is assigned to the $value
variable. The $value variable is the only substitution that can be used in the Display Name field of a
drill-down command.

valueTable

Attach your tabular input data to this property. There are two valueTable format options, each
with their own requirements: Row-Leaf and Row-Node.

As with other table-driven objects, the drillDownColumnSubs property can be configured to set
substitutions to column values from the row in the valueTable that corresponds to the selected tree
node.

valueTableFormat
Specifies the format of the valueTable: Row-Leaf or Row-Node.
varToSet

Allows you to update the attached variable with the value from the control.

Specifying tree control properties

Specifying tree control interaction properties

The following properties specify interactions in the tree control.

actionCommand

Use the actionCommand property to assign a command to the tree. You can configure the tree to
open a drill-down display, set substitutions, or execute a command in response to a user click on
a tree node.

The actionCommand property can reference the value from the tree by using the keyword $value.
When the command is executed, the variable attached to the varToSet property is updated with
the selected node data.

The drillDownColumnSubs property can be configured to set substitutions to column values from
the row in the valueTable that corresponds to the selected tree node.

If the execOnLeafOnlyFlag property is checked, the tree actionCommand property executes only
when a leaf node is clicked (a click on a non-leaf node expands only the node). If unchecked, the
tree actonCommand property executes on all nodes, not just the leaf.

commandCloseWindowOnSuccess

If selected, the window that initiates a system command will automatically close when the
system command is executed successfully. This property only applies to system commands.

Building Dashboards 5.2.0 - APAMA 205

Working with multiple display panels

With data source commands, the window is closed whether or not the command is executed
successfully.

For multiple commands, this property is applied to each command individually. Therefore, if the
tirst command in the multiple command sequence succeeds, the window will close before the
rest of the commands are executed.

The commandCloseWindowOnSuccess property is not supported in the Display Server.
commandConfirm

If selected, the command confirmation dialog is enabled. Use the commandConfirmText property to
write your own text for the confirmation dialog, otherwise text from the command property will
be used.

For multiple commands, if you confirm the execution then all individual commands will be
executed in sequence with no further confirmation. If the you cancel the execution, none of the
commands in the sequence will be executed.

commandConfirmText

Enter command confirmation text directly in the Property Value field or select the LJ button to
open the Edit commandConfirmText dialog. If commandConfirmText is not specified, then text from
the command property will be used.

drillDownColumnSubs

Use the drillDownColumnSubs property to set substitutions to column values from the row in the
valueTable that corresponds to the selected tree node.

Select the D button to open the Drill Down Column Substitutions dialog to customize which
substitutions are passed into drill-down displays.

enabledFlag
If unchecked, the tree nodes are the color gray and do not respond to user input.
execOnLeafOnlyFlag

If checked, the tree actionCommand is executed only for leaf nodes, and a click on a non-leaf node
only expands the node. Also, the mouseover tooltip only appears for leaf nodes.

If unchecked, the tree actionCommand property executes on all nodes, and the mouseover tooltip
appears for all nodes.

mouseOverFlag

Specifies whether a tooltip appears when the cursor is positioned over a node. The tooltip shows
the node path (the node label preceded by the labels of all of its ancestors), the node status (if the
nodeStatusColumnName property is specified), and its value (if the valueColumnName property is
specified).

tablndex

Use the tablndex property to define the order in which the tree receives focus when navigated
from your keyboard. Initial focus is given to the object with the smallest tabindex value, from
there the tabbing order proceeds in ascending order. If multiple objects share the same tabindex

Building Dashboards 5.2.0 - APAMA 206

Working with multiple display panels

value, initial focus and tabbing order are determined by the alpha-numeric order of the table
names. Tables with a tablndex value of 0 are last in the tabbing order.

The tabindex property does not apply to tables in the Display Server, nor to objects that are
disabled, invisible, or have a value of less than 0.

Specifying tree control properties

Specifying tree control label properties

The following properties specify the appearance of tree control labels.

labelTextColor

This property sets the color of label text. Click the D button and choose a color from the palette.
labelTextFont

This property sets the font of label text. Select the font from the drop-down menu.

labelTextSize

This property sets the height of the label in pixels.

Specifying tree control properties

Specifying tree control node structure properties

The following properties specify the node structure in the tree control.

nodeStatuslconPos

Specify the status icon position in the tree: Left or Right. By default, the status icon appears on
the left of the node label. If a node has both a type icon and a status icon, the type icon always
appears to the left of the status icon. By default, no status icons appear in the tree.

nodeStatusProperties

This property specifies the status icon for a node. By default, no status icon is displayed.

Click the D button to open the Node Properties dialog and map images to values, and set the
status priority order for propagation up the tree.

NThe nodeStatusProperties property is visible only if the nodeStatusColumnName property is non-
blank.

You can also use the nodeStatusProperties property to attach a status icon to data. The data
attachment must be a three-column table. Typically, a static XML file containing the table is used.
The first column must contain string values that match values from the column in the valueTable
specified by the nodeStatusColumnName property. The second column must be the path to the
.png, .gif, OF .jpg image. The third column must contain the non-negative integer priority value.

A static XML file is read once each time you run Dashboard Viewer. If you specify (or modify)
an XML source using the Application Options dialog, you may specify whether that XML source is
static.

nodeTypeProperties

Building Dashboards 5.2.0 - APAMA 207

Working with multiple display panels

This property specifies the type icon for a node. By default, non-leaf nodes in the tree use a folder
image and leaf nodes use a document image.

Click the D button to open the Node Properties dialog to map images to nodes. Mapping can be
based on the node depth in the tree or the type of node.

You can also use the nodeTypeProperties property to attach a type icon to data. The data
attachment must be a two-column table. Typically, a static XML file containing the table is
used. The first column must contain string values of _node (for non-leaf nodes), _leaf (for leaf
nodes), numeric values for depth, or string values that match the node labels, or the values
from the column in the valueTable specified by the nodeTypeColumnName property. The second
column must be the path to the .png, .gif, or .jpg image. The default assignments are _node,
rtvTreeNode16.png and _leaf, rtvTreeLeaf16.png. The column names are not important.

oThe logic for determining which type icon is used is as follows.

If the nodeTypeColumnName property specifies column C, and the value of C in the valueTable row
that corresponds to N is V, and there is a row in nodeTypeProperties that assigns value V to image
11, then I1 is used as the type icon for N. Otherwise:

m If the label of node N is XYZ, and there is a row in the nodeTypeProperties property that assigns
value XYZ to image 12, then 12 is used. Otherwise,

m If the depth of node N is D, and there is a row in the nodeTypeProperties property that assigns
depth D to image I3, I3 is used. Otherwise,

m If Nisaleaf, and the leaf node image is 14, 14 is used. If 14 is blank no type icon appears.
Otherwise,

m If the non-leaf node image is 15, I5 is used. If |5 is blank no type icon appears.

A static XML file is read once each time you run Dashboard Viewer. If you specify (or modify)
an XML source using the Application Options dialog, you may specify whether that XML source is
static.

rootNodeLabel

Specify whether the tree root node is visible. By default, this property is blank and the root node
is not visible.

Specifying tree control properties

Specifying tree control object layout properties

The following properties specify the layout in the tree control.

anchor

Specifies where to anchor an object in the display. If an object has the dock property set, the anchor
property will be ignored.

The anchor property is only applied when the dimensions of the display are modified, either by
editing Background Properties or resizing the window in Layout mode.

Select None, or one or more the following options:
m None - Object not anchored. This is the default.

m Top - Anchor top of object at top of display.

Building Dashboards 5.2.0 - APAMA 208

Working with multiple display panels

m Left - Anchor left side of object at left of display.
®m Bottom - Anchor bottom of object at bottom of display.
®m Right - Anchor right side of object at right of display.

When a display is resized the number of pixels between an anchored object and the specified
location remain constant. If an object is anchored on opposite sides (that is, top and bottom or left
and right), the object will be stretched to fill the available space. If the Resize Mode is set to Scale
and an object is anchored on opposite sides, then the object will be moved rather than stretched
to fill the available space.

® dock

Specifies the docking location of an object in the display. An object should not be docked if the
Resize Mode is set to Scale.

Select from the following options:

m None - Object is not docked. This is the default.
m Top- Dock object at top of display.

m Left - Dock object at left of display.

m Bottom - Dock object at bottom of display.

m Right - Dock object at right of display.

m Fill - Dock object in available space remaining in the display after all docked objects are
positioned.

If the dimensions of the display are modified, either by editing Background Properties or resizing
the window in Layout mode, the properties (objX, objY, objWidth and objHeight) of docked objects
will automatically adapt to match the new size of the display.

When multiple objects are docked to the same side of the display, the first object is docked
against the side of the display, the next object is docked against the edge of the first object, and so
on.

When objects are docked to multiple sides of the display, the order in which objects were added
to the display controls docking position. For example, suppose the first object added to the
display is docked at the top and the second object is docked at the left. Consequently, the first
object will fill the entire width of the display and the second object will fill the left side of the
display from the bottom of the first object to the bottom of the display.

Objects in a displaythat have the dock property set to Fill, are laid out across a grid in the available
space remaining after all docked objects are positioned. By default, the grid has one row and

as many columns as there are objects in the display. You can modify the grid in the Background
Properties dialog.

Once an object is docked, there are some limitations on how that object can be modified.
m Docked objects cannot be dragged or repositioned using objX and objY properties.

m Docked objects cannot be resized using the objWidth or objHeight properties. To resize you
must drag on the resize handle.

Building Dashboards 5.2.0 - APAMA 209

Working with multiple display panels

m Docked objects can only be resized toward the center of the display. For example, if an object
is docked at the top, only its height can be increased by dragging down toward the center of
the display.

m Docked objects set to Fill cannot be resized.

m Docked objects cannot be moved using Align. Non-docked objects can be aligned against a
docked object, but a docked object will not move to align against another object.

m Docked objects are ignored by Distribute.
objHeight

This property is read-only. It shows the height in pixels of the object, which is set by the height of
the tree display.

objName

Name given to facilitate object management by means of the Object List dialog. Select Tools >
Object List.

objWidth

This property is read-only. It shows the width in pixels of the object, which is set by the width of
the tree display.

objX

Sets the x position of the object.
objY

Sets the y position of the object.
visFlag

Sets the visibility of the object.

Specifying tree control properties

Descriptions of unique tree control property behavior

The following describes properties that behave uniquely with the tree control.

valueColumnName - This property specifies the name of the column whose value should be
assigned to the $value variable when a node in the tree is clicked. If not specified, the label string
of the selected node is assigned to $value. Note that $value is the only substitution that can be
used in the Display Name field of a drill-down command.

mouseOverFlag - If this property is checked, a tooltip appears when the cursor is positioned over
a leaf node. The tooltip shows the node path (the node label preceded by the labels of all of its
ancestors), the node status (if the nodeStatusColumnName property is specified), and its value (if
the valueColumnName property is specified).

execOnLeafOnlyFlag - If this property is checked, the tree actionCommand property executes only
when a leaf node is clicked (a click on a non-leaf node expands only the node). If unchecked, the
tree actionCommand property executes on all nodes, not just the leaf.

rootNodeLabel - This property specifies the tree root node (of which there is only one). By default,
this property is blank and the root node is not visible.

Building Dashboards 5.2.0 - APAMA 210

Working with multiple display panels

Specifying tree control properties

Tree control limitations
In the Display Viewer, mouseover text is displayed only if the tree has focus.
In the Thin Client:

®* The tree node appearance, such as spacing and fonts, might vary slightly as compared to the
Display Viewer, and also may vary slightly between different browsers.

®* A tree node cannot expand/collapse by double-clicking on it. The +/- icon must be clicked.

* In Internet Explorer, nodes expand/collapse even if the tree enabledFlag property is unchecked.
(However, the tree actionCommand cannot be invoked).

* In Mozilla Firefox, the horizontal scrollbar might appear and disappear after each mouse click in
the tree.

* IniOS Safari (iPad), if the tree mouseOverFlag property is checked, a user must click a tree node
twice to invoke the tree command. The first click only displays the node mouseover text.

® IniOS Safari (iPad), scrollbars will not appear in a tree control. If the tree contains more nodes
than are visible, use a two-finger drag gesture inside the tree area to scroll.

* IniOS Safari, a click on the +/- icon expands/collapses the node as expected. However, if the
execOnLeafOnlyFlag property is unchecked, the tree command is also executed.

Using tree controls in panel displays

Using old tags to configure the panels in a window

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

When using the old tags in the panels-configuration file the following tags are supported. Remember
that you cannot mix old tags and new tags in the same panels-configuration file.

Tag Description

BorderPanel
A border panel allows you to specify a central display and place up

to four other displays to the north, south, east or west. Border panels
are implemented as javax.swing.JpPanels with a Borderrayout Add a
sranel with a border layout to the main window. See "Using border
panels" on page 212.

CardPanel
e A card panel allows you to stack displays so that they are all active,

but only one is showing. This is useful when you have a trend graph
that needs to maintain data when it is not being displayed. Card
panels are implemented as javax.swing.Jpanels with a cardrayout.
Display Server deployments do not support card panels. Add a

Building Dashboards 5.2.0 - APAMA 211

Working with multiple display panels

Tag Description

spanel with a card layout to the main window. See "Using card
panels" on page 213.

GridPanel
A grid panel allows you to arrange your panels in tabs. Add a sranel
with a grid layout to the main window. See "Using grid panels" on
page 214.

TabbedPanel

A tabbed panel allows you to arrange your panels in tabs. Add a
Jrabbedpane to the main window. See "Using tabs panels" on page
215.

RTViewNavTreePanel L .
A tree panel can be used inside a border panel to display a tree that

is used to navigate displays in one of the border panel regions. Add
a Jeanel containing a Jrree into a Borderranel. This requires use of the
cardpanel. See "Using the RTViewNavTreePanel tag" on page 218.

RTViewPanel L. . . .
Add a panel containing the specified display into a Borderpanel,

CardPanel, TabbedPanel, OI GridPanel. See ”USiI‘lg the RTViewPanel tag”
on page 218.

Working with multiple display panels

Using border panels

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

Use the Borderranel tag to add a border panel to the main window. This tag supports the following
attributes:

minWidth
Set the minimum width for a Borderpanel, in pixels. The default value is 300.

The minimum height is determined by the ninwidath and the overall aspect
ratio of the panels contained in the Borderpanel. The minwidtn attribute can be
used to prevent the Dashboard Viewer from being resized so small that the
displays in the Borderranel are unreadable.

title . . .
Set the title of the main window.

Use rrviewpanel OF RTViewNavTreePanel Subelements to specify . rtv files for the center, north, south,
east, and west panels.

Here is an example:

<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<BorderPanel title="Test of Border Panels">
<RTViewPanel region="north" name="north panel" display="long panel"
subs="$title:'North Panel'"/>
<RTViewPanel region="center" name="center panel" display="small panel"
subs="$title:'Center Panel'"/>
<RTViewPanel region="west" name="west panel" display="small panel"
subs="$title:'West Panel'"/>
<RTViewPanel region="east" name="east panel" display="small panel"

Building Dashboards 5.2.0 =" APAMA

212

Working with multiple display panels

subs="$title:'East Panel'"/>
<RTViewPanel region="south" name="south panel" display="long panel"
subs="$title:'South Panel'"/>
</BorderPanel>
</panels>

When you create displays for use in border panels, the height and width of each display must be set
in relation to the other displays. Displays in the west, east and center must all be equal in height. The
width of the display in the north and south, must equal the combined width of the displays in the
west, east and center. You will need to increase the width of the display in the north and south by the
border width for each border that divides the west, center and east panels. Note: To set the height and
width of a display in the Dashboard Builder, select File | Background Properties and set the Model Width
and Model Height. If you are using a background image for your display, create the image so that the
height and width of the image are one pixel larger than the size you want the display to be.

The following shows dimensions of display (.rtv) files set to fit accurately in multiple display panels:

Display Name Display Location Model Width Model Height
small panel.rtv
- center 320 240
small panel.rtv
a east 320 240
small panel.rtv
- west 320 240
long panel.rtv
B north 962 120
long panel.rtv
- south 962 120

Using old tags to configure the panels in a window

Using card panels

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

With card layout, you use the cardranel element to specify a main panel and subordinate panels.
Display Server deployments do not support card layout.

The cardranel tag supports the following attributes:

region . . cer . . .
Set the location of this cardranel if it is in a Borderpanel. Valid values
are west, east, center, north, and south.

title . . .
Set the title of the main window.

Here is an example:

<?xml version="1.0" 72>
<panels xmlns="www.sl.com" version="1.0">

<CardPanel>
<RtViewPanel title=" Main Panels " name="main" display="main panel"/>
<!-- The following three panels will always be kept in memory -->

<RtViewPanel title="Panel 101" display="med panel" subs="S$title:101">

<RtViewPanel title="Panel 102" display="med panel" subs="S$title:102">

<RtViewPanel title="Panel 103" display="med panel" subs="S$title:103">
<!-- All other displays will be loaded on demand -->

Building Dashboards 5.2.0 - APAMA 213

Working with multiple display panels

</CardPanel>
</panels>

When you create displays for use in card panels, the height and width of each display must be the
same. To set the height and width of a display in the Dashboard Builder, select File | Background
Properties and set the Model Width and Model Height. If you are using a background image for your
display, create the image so that the height and width of the image are one pixel larger than the size
you want the display to be.

Using old tags to configure the panels in a window

Using grid panels

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

Use the cridranel tag to arrange panels into a specified number of rows and columns. Display Server
deployments do not support grid layout.

This tag supports the following attributes:

columns
Sets the number of columns in the grid. If the number of columns is not

specified, it will be calculated based on the number of rrviewrane1s and the
specified number of rows.

rows

Sets the number of rows in the grid. If the number of rows is not specified,
it will be calculated based on the number of rrviewpane1s and the specified
number of columns.

title
Set the title of the main window.

Here is an example:

<?xml version="1.0" 2>

<panels xmlns="www.sl.com" version="1.0">

<GridPanel title="Test of Grid Panels" rows="0" columns="3">
<RTViewPanel name="detaill" display="small panel" subs="$title:'101'"/>
<RTViewPanel name="detail2" display="small panel" subs="$title:'102'"/>
<RTViewPanel name="detail3" display="small panel" subs="$title:'103'"/>
<RTViewPanel name="detail4" display="small panel" subs="$title:'201'"/>
<RTViewPanel name="detail5" display="small panel" subs="$title:'202'"/>
<RTViewPanel name="detail6" display="small panel" subs="$title:'203'"/>

</GridPanel>

</panels>

When you create displays for use in grid panels, the height and width of each display must be the
same. To set the height and width of a display in the Dashboard Builder, select File | Background
Properties and set the Model Width and Model Height. If you are using a background image for your
display, create the image so that the height and width of the image are one pixel larger than the size
you want the display to be.

Using old tags to configure the panels in a window

Building Dashboards 5.2.0 - APAMA 214

Working with multiple display panels

Using tabs panels

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

Use the Tabbedranel tag to arrange .rtv files into a tabbed panel. This tag supports the following
attributes:

placement . .
Set the position of the tab. Valid arguments are 1ett, rignt, top, and
votton. Note: This argument is ignored by the Data Server. Tabs are
always in the top position.

preload . . i
Set to false so that only one display at a time is loaded.

title . . .
Set the title of the main window.

Here is an example:

<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">
<TabbedPanel title="Test of Tabbed Panels" placement="top">

<RTViewPanel title="Main Panel" display="main panel"/>
<RTViewPanel title="Panel 101" display="med panel" subs="S$title:101"/>
<RTViewPanel title="Panel 102" display="med panel" subs="S$title:102"/>
<RTViewPanel title="Panel 103" display="med panel" subs="S$title:103"/>
<RTViewPanel title="Panel 201" display="med panel" subs="S$title:201"/>
<RTViewPanel title="Panel 202" display="med panel" subs="S$title:202"/>
<RTViewPanel title="Panel 203" display="med panel" subs="S$title:203"/>
</TabbedPanel>
</panels>

When you create displays for use in tabbed panels, the height and width of each display must be
the same. To set the height and width of a display in the Dashboard Builder, select File | Background
Properties and set the Model Width and Model Height. If you are using a background image for your
display, create the image so that the height and width of the image are one pixel larger than the size
you want the display to be.

By default, the displays for all tabs are loaded at startup and are never unloaded.You can set to
false the preload attribute on the TabbedPanel tag in order to change this behavior so that only

the display for the first tab is loaded at startup and the display for a tab is unloaded when the user
selects another tab. In other words, if preload=false, only one display at a time is loaded in a tabbed
panel.

Following is an example:

<?xml version="1.0" ?>
<panels xmlns="www.sl.com" version="1.0">

<TabbedPanel title="Test of Tabbed Panel" placement="top" preload="false">
<RtViewPanel title="Table Overview" display="overview"/>
<RtViewPanel title="Production Table" display="production table"/>

<RtViewPanel
</panels>

title="System Table" display="system table"/> </TabbedPanel>

Using old tags to configure the panels in a window

Building Dashboards 5.2.0

s- APAMA

215

Working with multiple display panels

Using tree panels

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

With tree panels, you define the contents of a tree-structured navigation pane by specifying an xml
file (navtree .xml in this example) as the value of the navtreedata attribute in an rTviewNavTreepanel
element:

<?xml version="1.0" ?>

<panels xmlns="www.sl.com" version="1.0">

<BorderPanel>
<RTViewPanel region="north" name="title panel" display="title panel"/>
<CardPanel region="center">

<RtViewPanel title=" Overview " name="main" display="main panel"/>
</CardPanel>
<RtViewNavTreePanel region="west" width="192" height="480"
lineStyle="Angled" navtreedata="navtree.xml">

</RtViewNavTreePanel>

</BorderPanel>

</panels>

The file that you specify for the navtreedata attribute must be in XML, and must start with the
following:

<?xml version="1.0" ?>
<navtree xmlns="www.sl.com" version="1.0">

The navtreedata file must end with the following;:

</navtree>

The following tags are supported:

node

Add anode to the navigation tree.
treefont . . .

Set the font used in the navigation tree.
treecolor

Set font and background color in the navigation tree. Specify in
hexadecimal RGB format: #rrggbb (for example, #oorrrr for cyan) or
ﬂlefOHOVVhlg:black,white,red,blue,green,yellow,cyan,maqenta,qram
lightGray, darkGray, orange, pink.

The node tag supports the following attributes:

display

Name of the display (.rtv) file.

label
- Label for this node in the navigation tree. Defaults to display

name if no label is set. Specify the font and color of the label using
HTML. For example, to draw a green label using a 50-point italic
monospaced font:

label="<html><p style=

'font-family:monospaced; font-style:italic; font-size:50;color:green'>
Your Label Goes Here"

HTML font settings specified here override treecolor and treefont
settings for this node.

Building Dashboards 5.2.0 - APAMA 216

Working with multiple display panels

mode
If the attribute value is keepalive, the display is kept in memory the

entire time the application is running.

subs

Substitutions to apply to the display. Substitutions are optional and
must use the following syntax:

Ssubname:subvalue $subname?2:subvalue2

If a substitution value contains a single quote, it must be escaped
using a / :

Sfilter:Plant=/'Dallas/’'

If a substitution value contains a space, it must be enclosed in single
quotes. Do not escape these single quotes:

$subname:subvalue $subname2:'sub value 2'
A substitution string cannot contain any of the following characters:

| . tabspace , = <> "s /N (1] ()

The treefont tag supports the following attributes:

name

Specifies the font family name.
style

Can be set to plain, bold, italic, OF bold italic.
size

Font point size.

The treecolor tag supports the following attributes:

text
Specifies the font color for tree labels.

background .
Specifies the background color for the tree and non-selected tree
labels.

selection

Specifies the background color for a selected tree label.

Here is an example:

<?xml version="1.0" ?>
<navtree xmlns="www.sl.com" version="1.0">
<node label="Nav Tree Example">
<node label="Main Displays" display="main panel">
<node label="100 Displays">
<node label="Panel 101" mode="keepalive" display="med panel" subs="$title:101">
</node>
<node label="Panel 102" mode="keepalive" display="med panel" subs="S$title:102">
</node>
<node label="Panel 103" mode="keepalive" display="med panel" subs="$title:103">
</node>
</node>
<node label="200 Displays">
<node label="Panel 201" display="med panel" subs="S$title:201">
</node>
<node label="Panel 202" display="med panel" subs="S$title:202">
</node>
<node label="Panel 203" display="med panel" subs="$title:203">
</node>
</node>
</node>

Building Dashboards 5.2.0 - APAMA 217

Working with multiple display panels

</node>
</navtree>

Nodes can be nested. You can only specify one top-level node.

Using old tags to configure the panels in a window

Using the RTViewNavTreePanel tag

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

The rrviewNavTreeranel tag supports the following attributes:

navtreedata X X L. X X X
Name of the navigation tree definition file. This XML file must
describe the elements of the tree.

lineStyle . X . . .
Set the line style used in the navigation tree. Valid values are angiea
al1d.Horizontal.

region . . cper e .
Set the location of this rTviewNavTreepanel if it is in a BorderPanel.
Valid values are west, east, center, north, and south.

height Lo .
Set the 1r11t1a1 helght Of the RTViewNavTreePanel.

width Lo .
Set the initial width of the rRTviewNavTreepanel.

Using old tags to configure the panels in a window

Using the RTViewPanel tag

The tags described in this topic are deprecated. They will be removed in a future release. Your
should change to the new tags. See "Using new tags to configure the panels in a window" on page
188.

The rrviewranel tag supports the following attributes:

displa
o Name of display (.rtv) file to load into the panel.

name
COI‘I’GSPOI’IdS to window Name entered in the prill pown Properties

dialog. When using tabbed panels, if the name is not specified,

a name is constructed internally using the display name and
substitutions to make it easy to drill down between tabs. In this case,
when you drill down from a tab using the current window option

and the specified display with the specified substitutions is already
loaded in another tab, the Dashboard Viewer will switch to that tab.

region . . ce . . .
Set the location of this rRTviewranel if it is in a Borderranel. Valid values

are west, east, center, north, and south.

scrollbars

Control the visibility of scroll bars in the panel. The permitted
values are as-needed, never, and always. The default value is as-
needed. In some cases, setting the scrollbars attribute to never

Building Dashboards 5.2.0 =" APAMA

218

Working with multiple display panels

on title or footer panels can improve the resize behavior of the
Dashboard Viewer.

subs

Specify initial substitutions for this panel. Substitutions are optional
and must use the following syntax:

Ssubname:subvalue $subname?:subvalue?

If a substitution value contains a single quote, it must be escaped
using a / :

$filter:Plant=/'Dallas/'

If a substitution value contains a space, it must be enclosed in single
quotes. Do not escape these single quotes:

Ssubname:subvalue $subname2:'sub value 2'
A substitution string cannot contain any of the following characters:

| . tabspace , = <> "s /N ()11 ()

Note: Substitutions set in Application Options will apply to all displays.

title

Set the title of the tab containing this rrviewpanel. This is only used if
the rRTviewpanel iS in a Tabbedpanel.

Using old tags to configure the panels in a window

Building Dashboards 5.2.0

s- APAMA

219

Using the Define Apama Command dialog

Chapter 7: Sending Events to Correlators

B Using the Define Apama Command di@logccceeeieiiiiiieiie i 220

B SeNd VENT QUENOTIZATION ...ttt ettt e et e et e et et e et e se e et e et e se e et e e teer e et e ere st et e eeeeeeerenre e 227

Dashboard Builder supports the creation of Dashboard commands that send user-defined events,
just as it supports the creation of commands that send predefined Scenario manipulation commands.

Using the Define Apama Command dialog

As with Scenario-management commands, you define a send-event command by associating it with
the command, actionCommand, OF commandstring property of a Dashboard object such as a button.

To make the association:
1. Select the Dashboard abject.
2. Right click onthe actioncommand OF commandstring property in the Object Properties panel.

3. Select Define Command > Apama from the popup menu.

Copy

Paste

Akkach bo Data]

Detach From Data

Display Data

Define Command
SYSTEM

Use Skyle Shesk
Sl

Crvertide Style Sheet @
MLULTIPLE

This displays the Define Apama Command dialog.

Sending Events to Correlators

Command field

The choices for the Command field include Send event.

Building Dashboards 5.2.0 - APAMA 220

Using the Define Apama Command dialog

L o

Define Aparna Command @

Command: ||Create scenario instance

Create scenario instance
Carrelator: I

Edit scenaric Instance
Scenario: Delete scenario instance

e Delete all instances of a scenario

Instrument:
Clip Size: |100 |
Data Server: |<default:~ |v|
ok || Apply || Reset || Clear || Cancel |

. T

Command: |Send event '|

Correlator: |default v|

Package: |cum.test '|
Event: |EchnE\rent v|

Channel: || |'|

- Parameters:

msa: |TestMessage |'|

| Refresh BEvent Definitions

Data Server: |~idefault:~ | "|

| OK | Apply Reset Clear Cancel

Building Dashboards 5.2.0

«"APAMA “

Using the Define Apama Command dialog

Using the Define Apama Command dialog

Package field

The choices for the Package field include all the packages for the selected correlator. Events that do
not have a package are grouped under the package “default”.

Package: | default v|

Using the Define Apama Command dialog

Event field

The choices for the Event field include all the events for the selected package.

Using the Define Apama Command dialog

Channel field

Optionally, specify a channel on which to send the event. For example:

orders
If you do not specify a channel then the default channel is used.

Using the Define Apama Command dialog

Other dialog fields

The remaining fields shown are dependent on the event selected; one field is shown in the dialog for
each field in the event.

Building Dashboards 5.2.0 - APAMA 222

Using the Define Apama Command dialog

& 1 I

Command: |Send event v|
Correlator: |default '|
Package: ||cnm.apama.demu.nms '||
Event: |ﬁ«mendDrder '|
Channel: | |v|
- Parameters:

orderld: | |'| =

seniceld: | |'|

symbal: | |'|
price: | |'| -

| Refresh Event Definitions |

Data Server: |~idefaulr:~ |1r|

| DK | Apply Reset Clear Cancel

As with other commands, the value of each event field can be attached to a Dashboard variable or set
to a hard coded value.

In the following example order1d, symbol, price, and quantity are attached to dashboard variables, side
and type (you would scroll down to see these fields) are fixed, and other fields (again, scroll down to
see them) are not set:

Building Dashboards 5.2.0 .l APAMA 223

Using the Define Apama Command dialog

Define Apama Cnmmami, :

Command: |Send event '|
Correlator: |default '|
Package: |cnm.apama.ﬁemn.nms '|
Event: |NewDrder '|
Channel: | |'|
-Parameters:
orderld: |$ﬂrderld |v| s
symbal: |$symbn| |'|
price: |$pri|:e |v|
side: | |'| -

| Refresh BEvent Definitions |

Data Server: | =default= | v|

Using the Define Apama Command dialog

ILI Apply Reset Clear Cancel

Default values

It is not necessary to set each event field in order to send an event. Empty fields are set to default

values depending on type:.

Type Default Value

boolean false

integer 0

float 0.0

string wr

location (0.0,0.0,0.0,0.0)

sequence [1

dictionary {}

event event name (default fields)

Building Dashboards 5.2.0

«"APAMA *

Using the Define Apama Command dialog

Other dialog fields

Specifying values for complex types

You specify values for complex types (1ocation, sequence, dictionary, OF event) by using the format
specified in the MonitorScript Reference. For example to specify extraParams you could specify the
value as follows:

extraParams: |{"Field1":"value1",."Fie|-:|2":"valueE"} |v|

You can also use dashboard variables, or a single dashboard variable that contains the entire value,
for example:

exkraParams: |$extraParams | v|

where SextraParams equals {“"fieldl”:”valuel”,”field2”:”value2”}.

Other dialog fields

Updating event definitions in Builder

The Dashboard Builder retrieves the latest event definitions from each correlator at startup. If the
event definitions change, you can force them to be refreshed by using the Refresh Event Definitions
button at the bottom of the Define Apama Command dialog.

Note that the Refresh Event Definition button only updates the event definitions for the selected
correlator.

Using the Define Apama Command dialog

Example

The Weather sample, available at the Apama Studio Welcome page, uses the following dialogs to
define actions for the Add Location and Delete Location buttons:

Building Dashboards 5.2.0 - APAMA 225

Using the Define Apama Command dialog

[Apama Command :_r-x_.' ;
Command: |Send event '|
Correlator: | default -|

Package: | com.apamademo.weather '|
Event: |AddLocation -|
Channel: | |'|
- Parameters:
location: |$Iﬂ|::atinn |'|
| Refresh Event Definitions |
Data Server: |<default- ~|

| Ok | Apply Reset Clear Cancel
oo e oot D

Command: |Send event v|

Correlator: |default "|

Package: |cnm.apamademn.weather v|
Event: |De|eteanatinn "|

Channel: | |v|

- Parameters:

location: |$In|::atinn |v|

| Refresh Event Definitions |

Data Server: | =default= | v|

| Ok | Apply Reset Clear Cancel

Building Dashboards 5.2.0 .l APAM A 226

Send event authorization

Using the Define Apama Command dialog

Send event authorization

By default, any user is authorized to send any event. However you can create a custom
event authority that determines whether a given user is authorized to send a given event.
An event authority is a Java class that implements the cansend method of the interface

com.apama.dashboard.security.IEventAuthority

boolean canSend (IUserCredentials credentials, Event event);

If cansend () returns true the user is allowed to send the event. If it returns fa1se the user is not
allowed to send the event and the attempt to send the event is treated as a command failure.
Dashboard object property settings determine if this error is displayed to the user.

The event authority is specified in the exrenstons. ini file in the 1ib directory of your Apama
installation. Here is a portion of exrenstons. ini as shipped:
List of event authorities. An event authority is called to determine

if a user has rights to send an event to a correlator. Each must implement
the interface:

#4 com.apama.dashboard.security.IEventAuthority

Multiple authorities can be specified. They will be called in the order
listed.

Format:

eventAuthority <classname>

NoOpEventAuthority - Allows all users to send events

eventAuthority com.apama.dashboard.security.NoOpEventAuthority

DenyAllEventAuthority - Allows no users to send events

#eventAuthority com.apama.dashboard.security.DenyAllEventAuthority

eventAuthority <your class name here>

Two event authorities are provided with your installation:

® com.apama.dashboard.security.NoOpEventAuthority: Permits all users to send any event.

® Ccom.apama.dashboard.security.DenyAllEventAuthority: Denies all users rights to send any event.

NoOpEventAuthority is the default event authority. Use a custom event authority when deploying your
Dashboards.

See Deploying and Managing Apama for more information on customizing authorization.

Sending Events to Correlators

Building Dashboards 5.2.0 - APAMA 227

XML data format

Chapter 8: Using XML Data

B XML data fOMMEL ...ttt 228
B Defining an XML data SOUICEcooiiiiiiiiiiiiiic ettt bbbt tans 230
B Attaching 0DJECtS t0 XML datacoviiiiiiiiiicce e 232

Dashboard Builder enables you to augment your dashboard by using XML data files as a data source
in addition to Apama scenarios and DataViews. The properties of dashboard objects can be attached
to data elements in XML files. To be used as a data source, an XML file must follow the formatting
guidelines presented in this chapter.

XML files can be used to make a dashboard more generic by isolating label values, colors, and
similar attributes in a file which can be shared by multiple dashboards. XML files can also be used as
an intermediary for bringing data from other sources into a dashboard.

XML data format

XML files used as data sources with Dashboard Builder must adhere to the formatting guidelines
detailed in this section.

XML data files must contain the dataset element. This element identifies the XML data as a
dashboard XML data file. The standard template for an XML data file is as follows:

<?xml version="1.0"?>
<dataset xmlns="www.sl.com" version="1.0">Data elements</dataset>

All XML data files must adhere to this template.

XML data files can contain both scalar and tabular data elements as discussed in the following
sections. XML data files can contain multiple scalar and tabular data elements.

Using XML Data

Scalar data elements

Scalar data elements are single values such as a string or number. Scalar data elements are useful
for isolating common labels, colors, and similar items in XML resource files that can be shared by
multiple dashboard files.

A scalar element is defined in an XML data file with the data tag as follows:

<data key="element name" value="element value" />

The xey attribute specifies the name of the data element. This name will be used when attaching
object properties to the data element. The value specifies the value for the element; both string and
number values can be specified for the value.

Following is an example of an XML data file containing scalar data elements:

<?xml version="1.0"?>

Building Dashboards 5.2.0 - APAMA 228

XML data format

<dataset xmlns="www.sl.com" version="1.0">
<data key="status label" value="Current Status:" />
<data key="status complete" value="Completed" />
<data key="status failed" value="Failed" />
<data key="load factor" value="1.5" />
<data key="max occurence" value="10000" />
</dataset>

Here, five different scalar data elements are defined. The first three, status 1abel, status_complete, and
status_failed, have string values. The last two, 10ad_factor and max_occurence, have number values.

XML data format

Tabular data elements

Tabular data elements contain multiple columns and rows of data. The value for each field can be a
string, integer, double, or boolean. Tabular data elements are useful for data sets containing multiple
item instances. Tabular data can be used to populate Table, Trend Chart, and other dashboard
objects.

Tabular elements are defined in a tabie tag that includes a set of tags that describe the data in the
table and tags for each row of data values. A tabular element is defined as follows:

<table key="production table">
<tc name="columnl"
type="string | double | int | boolean"
index="true | false"/>
<tc name="column2"
type="string | double | int | boolean"
index="true | false"/>
<tr name="ID0">
<td>columnl value</td>
<td>column2 value</td>
</tr>
<tr name="ID1">
<td>columnl value</td>
<td>column2 value</td>
</tr>
</table>

The xey attribute on the table tag specifies the name of the data table. This name will be used when
attaching object properties to the data element.

The tc tag defines a column in the table. For each column, you must specify a name, type, and
whether or not the column is to be used as index. Subsequent row definitions must contain values for
each column where the type of the value matches the type defined for the column. The index field is
reserved for future use.

The tr tag defines a single row of data. Each row must contain a ta tag for each column in the table.
The td tags define the value for a column for a single row.

Following is an example XML data file containing a tabular data element named production_table:

<?xml version="1.0"?>
<dataset xmlns="www.sl.com" version="1.0">
<table key="production table">
<tc name="Plant"
type="string"
index="true"/>
<tc name="Units in Production"
type="int"
index="false"/>
<tc name="Units Completed"

Building Dashboards 5.2.0 - APAMA 229

Defining an XML data source

type="int"
index="false"/>
<tc name="Status"
type="string"
index="false"/>
<tc name="On Schedule"
type="boolean"
index="false"/>
<tr name="PID 0">
<td>San Francisco</td>
<td>87</td>
<td>70</td>
<td>online</td>
<td>true</td>
</tr>
<tr name="PID 1">
<td>San Jose</td>
<td>75</td>
<td>63</td>
<td>online</td>
<td>false</td>
</tr>
</table>
</dataset>

Here, the table is defined as containing four columns; piant, units in Production, Units Completed, and
on schedule. There are two rows in the table; one each for San Francisco and San Jose.

XML data format

Defining an XML data source

To attach object properties to data elements in an XML data file, you need to first make the XML data
file known by adding it as a data source.

1. Select Options... from the Tools menu. Thiswill display the Application Options dialog.
2. Inthe Application Options dialog select XML in the |eft pane.

Application Options @
General XML\
Apama
SQL XML Source Prefic XML Sources:
| | localized-labels (static)

Default XML Source: xml data

hocaﬁzedJabeh '|

| Add || Remove |

oK || Apply || Cancel

Building Dashboards 5.2.0 - APAMA 230

Defining an XML data source

5.

On this tab you can define the XML files to be used as data sources. The XML Source Prefix field
allows you to define a file path prefix that can be used to locate XML data files.

Set the XML Source Prefix field to the directory of the tutorial samplein your Apamainstallation. By
default thisis:

%APAMA HOMES%\samples\dashboard studio\tutorial\

Be sure to include the final backslash in the XML Source Prefix.
Click the Add button to define anew XML data source.

This will display the Edit XML Source dialog.

Define anew data source as follows and click on the OK button.

I =

=7 Add XML Source ==

KML Source Name:|xr‘r1| data |

KML Source Path:|tutu:uria|-xrr1|-u:|ata.xm| |
Uze XML Source Prefic
Statics

Contains Substitutions: [

| oK || Cancel || Help |

You have defined the XML data source named xm1 data. The data for this data source is in the file
tutorial-xml-data.xml located in the tutorial directory.

When defining an XML data source you specify:

XML Source Name — The name you will use to refer to the data source when defining data
attachments.

XML Source Path — The full path to the XML data file. If an XML source prefix is used, a partial
path only need be specified.

Use XML Source Prefix — If enabled, the XML source prefix will be affixed to the XML source
path.

Static — If enabled Apama will read the file only once. If disabled, Apama will read the file each
time it is modified. Each time the file is read any attached objects will update to show the latest
data elements in the file.

Contains Substitutions — Enable this option if the XML source path contains substitution variables.
If enabled, Apama will not read the file until the substitutions have been defined.

To edit an existing XML data source double click on it in the list of XML sources. You can also specify
an XML data source to use as the default when defining XML data attachments.

XML data source definitions are saved in orr1ons. ini. To persist an XML data source definition you
must click Save in the Application Options dialog.

Using XML Data

Building Dashboards 5.2.0 - APAMA 231

Attaching objects to XML data

Attaching objects to XML data

After having defined an XML data source you can attach object properties to the data elements
within the XML data file. The steps for doing this are similar to defining attachments to scenario
data.

1. If you have not yet done so, define the XML data source xm1 qata as detailed in the previous section.

2. Openthefile tutorial-xmi-data.rtv by selecting XML Data on the tutorial main page.

Table
Plank |Units in Prod. .. [Units Comple.. | Status | on Schedule
San Francisco a7 70 anline
San Jose 75 63 online |
Ciallas an 93 anline
ihicago 65 4 online
Mew Yok 4z 53 offline |
ok ik 77 93 waiking For 5., [l

The table object in this dashboard is attached to the production_table data element in the file

tutorial-xml-data.xml.

3. Openthefile tutorial-xmi-data.xml in atext editor and examine it to see that there is a column in the table
for each column defined for production table and that thereisarow in the table for each row defined.

4. Select thetable object and double click on the vaiuerabie property in the Object Properties panel.

=7 Attach To XML Data ==
Property Name: valueTable

XML Source: | TS ~|

DataKey: |production_table -l

Column(s) |* [-[E]

Filter: [
Filter Column: | |~|
Filter Value:
Data Server: | <default> ||
| Ok || Apply || Reset || Clear || Cancel |

Here the property is attached to the production_tavie data element for the XML data source
named xm1 data. The columns and rilter fields can be used to select a subset of columns or rows as
is done for scenario data attachments.

5. With the table object still selected, right click the 1ane1 property and select XML from the Attach to Data
menu.

Building Dashboards 5.2.0 - APAMA 232

Attaching objects to XML data

Copy
Paste

o
Detach from Data m

Display Data SQL
Define Command k FUMCTION
VARIABLE

Use Style Sheet
Override Style Sheet

6. If 1ave1 isascalar property, it must be attached to a scalar data element. Attach it to the data element
string element @S shown in the following:

P "

=7 Attach To XML Data

Property Mame: label

XML Source: |xml data |
DataKey: |string_element |
corme: N -

Filter: []

Drata Server: |<defau|t:~ |~r|

| ok || Apply || Reset || Clear || Cancel |

Do not use the Data Server field of the Attach to XML Data dialog.
The label of the table will change.

tast
Plant |LIniI:s in Prod.. .|Llnit5 Comple.. | Skakus | 2n Schedule
San Francisco a7 70 online
San Jose 75 63 online [l
Dallas an a3 online
iZhicago 65 4 online
Mew Yiork 4z 23 offline [l
Chekr ik 77 93 waiking Far =,]

Using XML Data

Building Dashboards 5.2.0 .l APAMA 233

SQL system requirements and setup

Chapter 9: Using SQL Data

B SQL system requirements @nd SEIUPc.oooiiirreccee s 234
B Attaching visualization objects t0 SQL dataccccorviiiei e 234
B Defining SQL COMMEANGSoiviiiiieiie bbb 238
B Specifying application OPLONScccviiireieii e 240
B Deploying applet and WebStart dashboardscccccceiiiiiiieii e 245
B Setting up SQL database CONNECHONScciuiiriieirreeecee et 246
B Setting SQL data SOUCE OPHIONScviiuiiiiieirieirr s 250

The SQL data source provides access to JDBC or ODBC enabled databases. The Attach to SQL Data
dialog makes it easy to browse, select data tables, filter information, and institute query policies with
a simple user interface. For those familiar with SQL, it is also possible to enter SQL commands to
specify database queries.

SQL system requirements and setup

The SQL data source requires a database with a JDBC or ODBC driver. In addition, if you use the
applet deployment, you will need to set up applet permissions on each client to allow access to your
database. See "Setting up SQL database connections" on page 246.

You must also modify your Dashboard Properties (select Properties from the Project menu in Apama
Studio). In order to use a direct JDBC connection to communicate with a database, add your JDBC
jar file to your Dashboard Properties.

Using SQL Data

Attaching visualization objects to SQL data

From the Object Properties window you can access the Attach to SQL Data dialog, which is used
to connect an object to your database using an SQL query. Once an object has been attached to your
database it can receive periodic or on-demand updates.

When an object property is attached to data, the Property Name and Value in the Object Properties
window will be displayed in green. This indicates that editing this value from the Object Properties
window is no longer possible.

To remove the data attachment and resume editing capabilities in the Object Properties window,
right-click on the Property Name and select Detach from Data. You will recognize that an object
property has been detached from the database when the Property Name and Value are no longer green.

Building Dashboards 5.2.0 - APAMA 234

Attaching visualization objects to SQL data

33 Attach o 500 Data x|
Property Name: wvalueTable
Database Name: |RTVHISTORY ||
Enter SOL Query: [
Table Mame: |1.r|:|yages |1r|
Column(s): |i |v| EI
Filter:
Update Mode: |Run Query On Demand v|
Maximum Rows: | 100
Data Server: |-::default:=- |v|
I K | | Apply | | Reset | | Clear | | Cancel |

Use the --sq1 quote command line option to enclose all table and column names specified in the
Attach to SQL Data dialog in quotes when an SQL query is run. This is useful when attaching to
databases that support quoted case-sensitive table and column names. Note: If a case-sensitive table
or column name is used in the Filter field, or you are entering an advanced query in the SQL Query
field, they must be entered in quotes even if the --sq1 quote option is specified.

To connect an object to your database using an SQL query:
1.

Right-click on the Property Name from the Object Properties window and select Attach to Data > SQL.
The Attach to SQL Data dialog displays.

The Attach to SQL Data dialog provides drop down menus and an optional filter field that allow
you to specify information that will be used to create an SQL query for the selected database.
Alternatively, select the Enter SQL Query checkbox in order to enter an advanced query.

From the Database Name drop down menu, select the name of database to query.

The Database Name drop down menu lists all available databases. The Database Name field
automatically displays the name of the default database. If the item you require is not listed, type
your selection into the field.

A Database Repository file can be used to populate the initial values of drop down menus for
Table Name and Column(s). See "Specifying application options" on page 240 for information

on how to create a Database Repository file. Otherwise, drop down menus populate based on
databases added from the Application Options dialog or those typed directly into the Database
Name field.

Check the Enter SQL Query checkbox in order to enter an advanced query.

If selected, the SQL Query text field, where you can enter your query, will replace the Table Name,
Column(s) and Filter fields.

Building Dashboards 5.2.0 - APAMA 235

Attaching visualization objects to SQL data

This option is for advanced users; SQL syntax will not be validated or checked for errors

Za Atiach T S01LData %]

Property Name: wvalueTable

Database Name: | IIEI{L]

Enter SOL Query:

gelect * from
"yoc', "trades”
SQL Query:

Update Made: |Run Query On Demand v|

Mazximurn Rows: |1IIJU |

Data Server: | <default = | v|

I K || Apply || Reset || Clear || Cancel |

4. Inthe Table Name field, enter the name of table in database to query.

You can create a file to exclude tables from the Table Name drop down menu. See "Setting up SOL
database connections" on page 246 for details.

5. From the Column(s) pull down menu, select the columnsin table to display.

A Database Repository file can be used to populate the initial values of drop down menus for
Table Name and Column(s). See "Specifying application options" on page 240 for information on
how to create a Database Repository file.

6. IntheFilter field, optionally, enter SQL filter to apply to query.
Uses standard SQL syntax.
7. From the Update Mode pull down menu, select one of the following:

= Run Query Once: Select this if the data returned by this query is static. If selected, Apama will
run this query only once. This is the default setting.

® Run Query Every Update Period: Select to run this query each update period. See "Specifying
application options" on page 240 for information on setting the update period.

®m Run Query Every Query Interval: Select to run this query once every Query Interval.

® Run Query On Demand: Select to run this query each time a display that uses the query is
opened and each time a substitution string that appears in the query string has changed.
8. Inthe Query Interval (seconds) field, enter the time in seconds to control how often Apamawill run this
query.
The query interval is evaluated during each update pass, so the amount of time elapsed between
gueries may be longer than the value entered. For example, if the update period is 2 seconds

Building Dashboards 5.2.0 - APAMA 236

Attaching visualization objects to SQL data

and the query interval is 5 seconds, the query will get run every six seconds. This option is only
available if the Update Mode is Run Query Every Query Interval.

9. Inthe Maximum Rows field, enter the maximum number of rows to return from this query.

On some objects an additional property may further reduce the number of data points displayed.
For example, the naxnumberofrows property on the table or the maxpointsperrrace property on the
trend graph.

10. Do not modify Data Server field.
11. Click OK to apply the value and close the dialog.
You can also choose the following;:
® Apply: Applies values without closing the dialog.
m Reset: Resets all fields to last values applied.
m Clear: Clears all fields. Detaches object from database (once Apply or OK is selected).
m Cancel: Closes the dialog with last values applied.

By default Apama will attempt to communicate with your database using a JDBC-ODBC bridge
connection that is not password protected. If you are using a direct JDBC connection or a
password protected ODBC-JDBC bridge connection, you will need to add your database in
Application Options | SQL.

Using SQL Data

Validation colors

Fields in the dialog change colors according to the information entered. These colors indicate
whether or not information is valid. Information entered into the dialog is validated against the
selected database or the Database Repository file. See "Specifying application options" on page
240 for information on how to create a Database Repository file. Note: Filters and advanced SQL
queries are not validated.

The following describes the significance of the Attach to SQL Data validation colors:

®* Blue: Unknown, that is, entry does not match any known database (or you have not attempted a
connection—see Note below).

& Yellow: Offline, that is, not connected to database.

®* White: Valid.

® Red: Invalid. Database is valid, but Table or Column(s) selected are not.

Note: If a database is unknown, when you click OK or Apply Apama will attempt to communicate
with it using an ODBC-JDBC bridge connection that is not password protected. If the validation
response remains unknown, see "SOL tab" on page 241 for information on how to add a database.

If you are using a direct JDBC connection or a password protected ODBC-JDBC bridge connection,
you will need to add your database in Application Options.

Attaching visualization objects to SQL data

Building Dashboards 5.2.0 - APAMA 237

Defining SQL commands

Substitutions

Substitutions allow you to build open-ended displays in which data attachments depend on values
defined at the time the display is run. Generic names, such as stable1 and stavle2, are used instead
of specific values. Later when the display is running, these generic values are defined by the actual
names, such as production_table and system_table. In this way, a single display can be reused to show
data from a number of different databases.

Attaching visualization objects to SQL data

Select table columns

From the Attach to SQL Data dialog you can specify which table columns to display and in what
order they will appear. In order to populate tthe listing of available columns, you must first select a
valid database and table.

To specify which table columns to display and in what order they will appear:
1. Right-click on the Property Name from the Object Properties window and select Attach to Data > SQL.
The Attach to SQL Data dialog displays.

2. Click on the ellipses button in the Column(s) field (or right-click in the Column(s) field and click on Select
Columns).

The Select Columns dialog displays, which contains a list of Available Columns that you can add to
your table.

3. Toadd acolumn, select an item from the Available Columns list and click on the Add button.
If the item you require is not listed, type your selection into the Enter Column Name field.
4. Click the Remove button to delete an item previously added to the Selected Columns list.

5. Control the order of columnsin atable by arranging the itemsin the Selected Columns list with the Move
Up and Move Down buttons.

Validation colors indicate whether selected columns are valid. However, if even one column selected
is invalid the Column(s) field in the Attach to SQL Data dialog will register as an invalid entry.

Note: Invalid columns will not update.

Attaching visualization objects to SQL data

Defining SQL commands

From the Object Properties window you can access the Define SQL Command dialog. This dialog is
used to assign SQL commands allowing you to issue commands from within a dashboard.

To assign SQL commands:

Building Dashboards 5.2.0 - APAMA 238

Defining SQL commands

1.

Right-click on the appropriate command property in the Object Properties window and select Define
Command > SQL.

The Define SQL Command dialog displays, which provides a drop down menu with available
databases and a field to enter a SQL statement.

= YT o i
et S ECOTT e 31

Properby Mame: actionCommand

Database Mame: | L TVHISTORY |1r|

insert into "wvoc™."trades”
(symbol,side,price,quantity) wvalues

SOL Command: ('¢aymbol','§3ide’ , sprice,fquantity)

Queries: |Run Affected Queries After Command v|

Daka Server: | <defaultk = | v|

I Ok | | Apply | | Reset | | Clear | | Cancel |

In the Database Name drop down menu, enter the name of database to query.

The Database Name drop down menu lists all available databases. The Database Name field
automatically displays the name of the default database. If the item you require is not listed, type
your selection into the field. Drop down menus populate based on databases added from the
Application Options dialog or those typed directly into the Database Name field.

Inthe SQL Command field, enter a SQL statement to execute using standard SQL syntax.
This option is for advanced users, SQL syntax will not be validated or checked for errors.

In the Queries field, if Run Affected Queries After Command is selected, Apamaimmediately runs all
gueries, including static queries, that use the database table modified by the command. This causes table
changes to be displayed immediately, rather than waiting for the next scheduled query update.

This option is only supported for update, insert, and delete operations in which the name of
the database table to be modified is specified explicitly. If a command performs another SQL
operation (such as running a stored procedure that modifies tables), the results of the operation
will not be displayed until the next scheduled update of each affected query. Display of the
modified data may be delayed for other reasons, for example, if the database does not commit
the results immediately and instead returns the old data on the next query.

Do not modify the Data Server field.

Click OK to apply the value and close the dialog.

You can also choose the following:

® Apply: Applies values without closing the dialog.
m Reset: Resets all fields to last values applied.

m Clear: Clears all fields. Detaches object from assigned command (once Apply or OK is selected).

Building Dashboards 5.2.0 - APAMA 239

Specifying application options

m Cancel: Closes the dialog with last values applied.

Using SQL Data

Validation colors

The Database Name field changes colors according to the information entered. These colors indicate
whether or not information is valid. Information entered into the dialog is validated against the
selected database or the Database Repository file. See "Specifying application options" on page

240 for information on how to create a Database Repository file.

Note: The SQL Command field is not validated.

The following describes the significance of the Define SQL Command validation colors:

® Blue: Unknown. Entry does not match any known database (or you have not attempted a
connection—See Note below).

* Yellow: Offline. Not connected to specified database.

* White: Valid. Database name is valid.

Note: If a database is unknown, when you click OK or Apply Apama will attempt to communicate
with it using an ODBC-JDBC bridge connection that is not password protected. If the validation
response remains unknown, see "SOL tab" on page 241 for information on how to add a database.
If you are using a direct JDBC connection or a password protected ODBC-JDBC bridge connection,
you will need to add your database in Application Options.

Defining SQL commands

Special values

When an actionCommand is executed $value is replaced with the value from the control. This value
may be used in any field in the Define SQL Command dialog.

Note: This value may only be used for Action Commands.

Defining SQL commands

Specifying application options

To access the Application Options dialog, in the Builder select Tools > Options.

Options specified in the SQL tab can be saved in an initialization file (orr1oNs. ini). On startup, the
initialization file is read by the Builder, Viewer, Display Server, and Data Server to set initial values.
If no directory has been specified for your initialization files and orrzons.ini is not found in the
directory where you started the application, then Apama will search under 1iv in your installation
directory.

Building Dashboards 5.2.0 - APAMA 240

Specifying application options

Note: Options specified using command line arguments will override values set in initialization
files.

Using SQL Data

SQL tab

This tab allows you to add or remove your databases and set the default database. In order for
Apama to communicate with your databases, you must set up either a direct JDBC connection or an
ODBC-]JDBC bridge connection.

When you add a database to the list it will be highlighted in yellow indicating that it is not
connected. To attempt to connect to a database, click OK, Apply, or Save. If the background remains
yellow, then Apama was unable to make a connection to your database. Note: Databases that have
been set up to Use Client Credentials will not connect unless you are logged in and you have objects in
your display that are using that connection.

Check your database connection and see "Setting up SQL database connections" on page 246 for
information on how to set up your driver correctly.

If the connection is successful, and the Get Tables and Columns from Database checkbox is selected,
Apama will use information from this database to populate drop down menus in the Attach to Data
dialog with available tables and columns. If a database repository is found, information from your
database will be merged with data from the repository file. If you deselect the Get Tables and Columns
from Database checkbox Apama will no longer query your database for this information, but the
database repository will still be used to populate drop down menus. Using a database repository

to populate drop down menus makes it possible to specify which tables and columns from your
database will be listed in the Attach to Data dialog and gives you the ability to build displays while
databases are offline.

If you are using a direct JDBC connection or a password protected ODBC-JDBC bridge connection,
you must click Save in order to record your options in oerrons.ini. This will allow Apama to
reconnect with your database the next time you run the Builder or the Viewer.

Note: Regardless of which tab you are currently working from in the Application Options dialog,
each time you click OK, Apply, or Save Apama will attempt to connect to all unconnected databases,
except those that have Use Client Credentials checked.

Building Dashboards 5.2.0 - APAMA 241

Specifying application options

ll Application Uphions: mi
General S0L "'.

Apama

Default Database: Databases:

XML [RTVHISTORY ~| RTVHISTORY

| Add Database |

| Remove Database |

[]suppress Permission Errors from Dakabase

[+|Get Tables and Calumns From Database

| Save Database Repository

Ok | | Apply | | Cancel

The Application Options dialog has the following fields and buttons:

® Default Database: Name of database used as the default for data attachments. Select from drop
down menu to change default setting.

* Add Database: Click to open the Add Database dialog. To edit, select a database from the list and
double-click. Databases that are updating objects in a current display cannot be renamed.

'ﬂ Al Liirainiaine m—i

Database Name: |RTVHISTORY |

User Mame: |'mc |

Password: |-u |

Use Client Credentials: []

Table Types: | |

Run Queries Concurrenthy: [

Use QODBC Driver: ||

JDBC Options:

JDBC Driver Class Mame: |'1I.cwi.monetdb.jdbc.MnnetDrivar|

IDBC Database LRL: |jdbc:mnnetdb:j']'lncalhc-stj'demn |

| QK Il Cancel || Help |

Specifying application options

Building Dashboards 5.2.0 - APAMA 242

Specifying application options

Adding a Database
The Add Database dialog has the following fields:

Database Name: The name to use when referencing this database connection in your data
attachments. If this connection will use an ODBC driver, this name must be the data source name
used in the ODBC setup.

User Name: The user name to pass into this database when making a connection. This parameter
is optional.

Password: The password to pass into this database when making a connection. This parameter is
optional.

Use Client Credentials: If selected, the user name and password from the Apama login will be used
instead of the User Name and Password entered in the Add Database dialog. Connections to this
database will only be made when you are running with login enabled and a display is opened
that accesses this database.

As a result, this connection will not be made when you click OK or Apply in the Application
Options dialog and will remain yellow. If you will be using the Data Server or the Display Server
with a database connection that has this option enabled, you must enable Use Client Credentials for
Database Login in these applications.

Table Types: Specify the types of tables to retrieve when querying the database for available
tables. Refer to your database manual for a list of valid table types. This parameter is optional.
Table types are entered as a comma delimited list, for example, rasLe, viewm.

Run Queries Concurrently: If selected, each query on the connection is run on its own execution
thread. The default is disabled. Note: This option should be used with caution since it may cause
SQL errors when used with some database configurations and may degrade performance due
to additional database server overhead. See your database documentation to see whether it
supports concurrent queries on multiple threads.

Use ODBC Driver: If selected, use an ODBC-JDBC bridge to connect to this database. An ODBC
data source must be setup for this database to connect using an ODBC driver.

JDBC Driver Class Name: The fully qualified name of the JDBC driver class to use when connecting
to this database. The path to this driver must be included in the rrv_uvserpars environment
variable.

JDBC Database URL: The full database URL to use when connecting to this database using the
specified JDBC driver. Consult your JDBC driver documentation if you do not know the database
URL syntax for your driver.

Remove Database: Select a database from the list and click Remove Database to delete. Databases
that are updating objects in a current display cannot be removed.

Suppress Permission Errors From Database: If selected, SQL errors with the word "permission"

in them will not be printed to the console. This is helpful if you have selected the Use Client
Credentials option for a database. In this case, your login does not allow access for some data in
their display, you will not see any errors.

Get Tables and Columns from Database: If selected, information from your database will
automatically populate drop down menus in the Attach to Data dialog and you will be able to

Building Dashboards 5.2.0 - APAMA 243

Specifying application options

select from available tables and columns in your database. Note: If a database repository is found,
information from your database will be merged with data from the repository file.

* Save Database Repository: Click to save a file that records available tables and columns in your
database and applies values to drop down menus in the Attach to Data dialog.

Instead of using the Add Database dialog, it is possible enter this information manually into
opTIONS.ini. See "Entering database information directory into OPTIONS.ini" on page 244.

Specifying application options

Database repository

Click Save Database Repository to save a file that contains available information for tables and
columns in your database. Before saving a database repository, you must add the database or
databases from which the file will retain information.

Note: If Apama does not make a connection with your database, then information from that
database cannot be saved to the database repository file.

Information stored in the database repository file will be used to populate the initial values of drop
down menus in the Attach to Data dialog. Note: The saved file will be named sqirepository.xnl. If the
name of the database repository file is changed, Apama will not be able to locate the file. As a result,
drop down menus will populate based on databases added from the Application Options dialog or
those typed directly into the Attach to Data dialog.

When you click Save Database Repository, a confirmation dialog will appear to verify in which
directory you would like to save the database repository file. If you specified a directory for your
initialization files, all repository files will be saved to, and read from, that directory. If you select the
1ib directory, the repository file will be available from any directory where you run Apama. If you
do not select the 1iv directory, the repository file will be saved in the directory where you started the
current session and will only be available when you run Apama from that particular directory.

See "Setting up SOL database connections” on page 246 for details on editing an existing database
repository file.

Specifying application options

Excluding tables From the Attach To SQL Data dialog

To exclude tables from the Attach to SQL Data dialog, see "Setting up SOL database connections" on
page 246 for details.

Specifying application options

Entering database information directory into OPTIONS.ini

Building Dashboards 5.2.0 - APAM A 244

Deploying applet and WebStart dashboards

To add an SQL database by entering information directly into oerroxs.ini (instead of using the Add
Database dialog—see "Adding a Database" on page 243), add a line of text of the following form:

sgldb databaseName username password jdbcUrl jdbcClassName tableTypes useClientCredentials-boolean
runQueriesConcurrently-boolean

You must supply all fields. Use “~” for fields that do not have a value.

Following is an example:

sgldb myDatabase - - - - - false false

In the example above, the databaseName is nypatabase, and both useClientCredentials and
runQueriesConcurrently are faise. All other fields are not specified.

For ODBC databases, use “~” for jabcurl and jdbcclassname. For JDBC databases these fields must be
set.

See also "Generating encrypted passwords for SQL data sources” on page 245.

Specifying application options

Generating encrypted passwords for SQL data sources

If you are adding an SQL data source by entering information directly into oprzons.ini (see "Entering
database information directory into OPTIONS.ini" on page 244), and you specify a username

and password, use the dashboard_management utility in order to generate an encrypted version of the
password. Use the encrypted version in the sqidb line of oprrons. ini.

Commands of the following form yield the encrypted string as output:

dashboard management -e | --encryptString password

Following is an example:

dashboard management -e sunshine

This yields the following output:
0134901351013440134901338013390134401335

Following is a sample sqldb line that includes the encrypted password shown above:

sgldb test2 username 0134901351013440134901338013390134401335 - - - true false

Entering database information directory into OPTIONS.ini

Deploying applet and WebStart dashboards

This page contains details about the deployment process that are specific to the SQL data source. See
Deploying Apama Applications for general information about dashboard deployment.

If you will be using applet or WebStart dashboards that include SQL data attachments, modify your
Java security settings to include the following permission:

permission java.util.PropertyPermission "file.encoding", "read";

If you will be accessing a database on another system, modify your Java security settings to include
the following permission:

permission java.net.SocketPermission "host", "accept, connect, listen, resolve";

Where host is the system where the database is running.

Building Dashboards 5.2.0 - APAMA 245

Setting up SQL database connections

If you are using an ODBC driver to connect to your database, modify your Java security settings to
include the following permission:

permission java.lang.RuntimePermission "accessClassInPackage.sun.jdbc.odbc";

If you are using a JDBC driver to connect to your database, include the jar for your driver in the
arcaIve parameter. Depending on your driver, you may also need to add an accessclassinpackage
RuntimePermission for your driver package.

Using SQL Data

Setting up SQL database connections

Apama communicates with your database using either a direct JDBC connection or an ODBC-JDBC
bridge connection. Both connections require some set up before Apama can communicate with your
database.

Once you have set up your database connection, you will need to add your database in the Builder
from the Application Options dialog on the SQL tab (see "SOL tab" on page 241). Apama will
attempt to connect to your database. If Apama is unable to connect to your database, this means that
either the driver is not set up correctly or that you do not have permission to access the database.
Note: Databases that have been set up to Use Client Credentials will not connect unless you are logged
in and you have objects in your display that are using that connection.

If the connection is successful, and the Get Tables and Columns from Database checkbox is selected

in the Application Options dialog, Apama will use information from this database to populate
drop down menus in the Attach to Data dialog with available tables and columns. If a Database
Repository is found, information from your database will be merged with data from the repository
tile. If you deselect the Get Tables and Columns from Database checkbox Apama will no longer query
your database for this information, but the Database Repository will still be used to populate drop
down menus. Using a Database Repository to populate drop down menus makes it possible to
specify which tables and columns from your database will be listed in the Attach to Data dialog and
gives you the ability to build displays while databases are offline.

Apama includes ODBC and JDBC database drivers for the following Apama-certified databases
(note, the ODBC drivers are available only for Windows platforms):

+ DB2
® Microsoft SQL Server
® Qracle

These database drivers eliminate the need to install database-vendor-supplied drivers. The ODBC
database drivers are licensed to be used only with the Apama ADBC adapter. The JDBC drivers can
be used with any Apama component.

For more information on the supplied database drivers, see the documentation available in the
following locations:

apama_install dir\doc\db drivers\jdbc\books.pdf
apama_install dir\doc\db drivers\odbc\books.pdf

Using SQL Data

Building Dashboards 5.2.0 - APAMA 246

Setting up SQL database connections

Direct JDBC connection

In order for Apama to communicate with your database using a straight JDBC connection, you must
have a JDBC driver for your database.

Apama includes JDBC database drivers that eliminate the need to install database-vendor-supplied
drivers. When you add a database to a dashboard you can specify the use of one of these Apama
drivers. To add a database to a dashboard, see "SOL tab" on page 241, which provides information
about the Add Database dialog. To use the Apama JDBC database driver for an added database, enter
values for JDBC Options in the Add Database dialog. Also, be sure to add the jar file that contains

the appropriate driver class to your Dashboard Properties (select Properties from the Project menu in
Apama Studio).

To use the Apama JDBC driver, specify the following according to the type of SQL database you
want to add. In the URL, replace zosrname, porr and parasasenave or parasasesip with the actual values
for the particular database you want to connect to.

+ MSSQL (eysqlserver. jar is in the apama_install dir\lib folder)
URL: jdbc:sag:sqglserver://HOSTNAME: : PORT; databaseName=DATABASENAME
Class name: com. apama.jdbc.sglserver.SQLServerDriver

* Oracle (eyoracle Jjar in the apama_install dir\lib folder)

URL: jdbc:sag:oracle://HOSTNAME: : PORT; SID=DATABASESID
Class name: con. apama.jdbc.oracle.OracleDriver

« DB2 (eyde .Jjar in the apama_install dir\lib folder)

URL: jdbc:sag:db2://HOSTNAME: : PORT; DatabaseName=DATABASENAME
Class name: con. apama.jdbc.db2.DB2Driver

JDBC drivers are available from most database vendors. To make a non-Apama database driver
available to Apama,:

1. Locate the driver on your machine and add the jar that contains the driver class to your
Dashboard Properties (select Properties from the Project menu in Apama Studio).

2. Add the path to the JDBC driver jar file to the apaua_paskBoarp_crassears environment variable.
This is required for the data server, display server or dashboard builder to be able to find and
load the JDBC driver class. You can add paths to multiple driver classes.

3. In the Add Database dialog, provide the database URL and the class name for your JDBC driver.
The database URL typically contains the protocol and sub-protocol strings for your database as
well as the path to the database and a list of properties. If you do not know the syntax for your
database URL, consult the documentation for your JDBC driver.

Setting up SQL database connections

ODBC-JDBC bridge connection

Building Dashboards 5.2.0 - APAMA 247

Setting up SQL database connections

In order for Apama to communicate with your database using an ODBC-JDBC bridge, you must
have an ODBC driver for your database. Most databases that run on Microsoft Windows come
standard with an ODBC driver. You must also register your database with ODBC before accessing it
from Apama. The name specified for the ODBC data source name during the ODBC driver setup is
the name you will use when accessing the database from Apama.

Apama includes several ODBC database drivers that eliminate the need to install database-vendor-
supplied drivers. For more information, see "Setting up SQOL database connections" on page 246.

Setting up SQL database connections

Registering your database with ODBC

To register your database with ODBC on Windows:

1. From the Windows Control Panel, double-click on the ODBC Data Sources icon. If thisicon is not listed,
double-click on the Administrative Tools icon and then double-click on the Data Sources (ODBC) icon.

This will open the ODBC dialog.

Inthe ODBC didog, click Add.

In the Create New Data Source window, select the driver for which you want to setup a data source.
Click Finish to display the Setup dialog.

Enter aData Source Name. Thisisthe name you will use in Apama when creating data attachments.
4. Click the Select button and choose your database.

5. Click OK in the Select Database, Setup, and ODBC dialogs.

N gk LN

Note: Standard UNIX systems do not provide an ODBC driver. On UNIX systems, it is currently
unsupported to set up an ODBC driver to communicate with your database.

Setting up SQL database connections

Using a database repository file

A Database Repository file may be used to populate the initial values of drop down menus in the
Attach to Data dialog. See Application Options for information on how to create a Database Repository
file.

It is possible to edit an existing Database Repository file, however the file name sqirepository.xml
cannot be modified. If sqlrepository.xml is not found in the specified directory or your current
working directory, Apama will look in the 1i» directory. If the Database Repository file is not found,
drop down menus will remain empty until databases are added from the Application Options
dialog or typed directly into the Attach to SQL Data dialog.

To edit an existing Database Repository file, supported tags and attributes are as follows:

® sqlrepository tag, xmins attribute: Top level tag that includes the namespace attribute xmins, which
must be defined as www.sl.com (xmlns:"www. sl. com").

Building Dashboards 5.2.0 - APAMA 248

Setting up SQL database connections

® 4 tag, name attribute: Database name
® table tag, name attribute: Table name
® ol tag, possible attribute: Column value

An example Database Repository file:

<?xml version="1.0"?>
<sglrepository xmlns="www.sl.com" version="3.0">
<db name="SampleDB">
<table name="production_table">
<col>Plant</col>
<col>Units in Production</col>
<col>Units Completed</col>
<col>Status</col>
<col>0On Schedule</col>
</table>
<table name="system table">
<col>System</col>
<col>Status</col>
<col>%Free Space</col>
<col>CPU Usage</col>
<col>0On Site</col>
</table>
<table name="trade_ table">
<col>Customer</col>
<col>Symbol</col>
<col>Shares</col>
<col>Purchase Price</col>
<col>Current</col>
<col>High</col>
<col>Low</col>
</table>
</db>
</sglrepository>

Setting up SQL database connections

Excluding tables From the Attach To SQL Data dialog

To exclude tables from the Attach to SQL Data dialog, copy the sqirepository.xmi file to a new
sqlexcludedtables.xml file and remove the table references that you want to include in the Attach to
SQL Data dialog drop down menus. For example:

<?xml version="1.0"?>
<sqglrepository xmlns="www.sl.com" version="3.0">
<db name="SampleDB">
<table name="production_table">
<col>Plant</col>
<col>Units in Production</col>
<col>Units Completed</col>
<col>Status</col>
<col>0On Schedule</col>
</table>
</db>
</sglrepository>

Save the sqlexcludedtables.xnl file to the 1ib directory of your Apama installation. Table information
stored in sqlexcludedtables.xml Will now be excluded from the initial values of Table Name drop down
menus in the Attach to SQL Data dialog.

Building Dashboards 5.2.0 - APAMA 249

Setting SQL data source options

Note: It is not necessary to create a Database Repository file in order to use sqlexcludedtables.xml.
Apama will still use the sqlexcludedtables.xnl file to exclude tables from the Attach to SQL Data

dialog. If you have an sqlexcludedtables.xml file and you click the Save Database Repository button,
the new sqirepository.xmi file will not contain any of the tables listed in your sqlexcludedtables.xml

file.

To create your own sqlexcludedtables.xnl file without creating a Database Repository File, supported
tags and attributes are as follows:

® sqlexcludedtables tag, xmins attribute: Top level tag that includes the namespace attribute xmins,
which must be defined as www.s1.com (xmlns="www .sl.com").

® g tag, name attribute: Database name

® table tag, name attribute: Table name to exclude
Note: The file name sqlexcludedtables.xml cannot be modified.

Setting up SQL database connections

Setting SQL data source options

The Builder, Viewer, Data Server, and Display Server executables support the following command
line option:

-q | —--sgl [retry:<ms> | fail:<n> | db:<name> | noinfo | nopererr | quote]

® retry: Specify the interval (in milliseconds) to retry connecting to a database after an attempt to
connect fails. Default is -1, which disables this feature.

®* rai1: Specify the number of consecutive failed SQL queries after which to close this database
connection and attempt to reconnect. Default is -1, which disables this feature.

®* 4: Name of SQL database. Only databases using ODBC drivers can be added on the command
line

®* noinfo: Query database for available tables and columns in your database. If a Database
Repository file is found, it is used to populate drop down menus in the Attach to SQL Data
dialog.

® nopererr: SQL errors with the word permission in them will not be printed to the console. This is
helpful if you have selected the Use Client Credentials option for a database. In this case, if your
login does not allow access for some data in their display, you will not see any errors.

* quote: Encloses all table and column names specified in the Attach to SQL Data dialog in quotes
when an SQL query is run. This is useful when attaching to databases that support quoted case-
sensitive table and column names. Note: If a case-sensitive table or column name is used in the
Filter field, or you are entering an advanced query in the SQL Query field, they must be entered in
quotes, even if the -sq1quote Option is specified.

Using SQL Data

Building Dashboards 5.2.0 - APAMA 250

	Table of Contents
	Preface
	How This Book Is Organized
	Documentation roadmap
	Contacting customer support

	Chapter 1: Introduction
	About dashboards
	Starting the Dashboard Builder
	Starting Builder from the Windows Start menu
	Starting Builder from Apama Studio
	Specifying Dashboard Builder options

	Starting Builder from the command line

	Scenario instance and DataView item ownership
	Using the tutorial application

	Chapter 2: Using Dashboard Builder
	Dashboard Builder layout
	The menubar
	The toolbar
	The canvas
	The Object Palette
	The Object Properties panel

	Specifying data sources
	Specifying correlators
	Specifying XML data sources
	Activating data source specifications
	Saving data source specifications

	Setting the background properties
	About resize modes
	About resize modes and Display Server deployments
	About resize modes and composite objects

	Working with objects
	Adding objects to a dashboard
	Selecting an object
	Resizing objects
	Moving objects
	Copy and pasting objects
	Deleting objects

	Setting Builder options
	Setting Dashboard options
	Setting options in the General tab group
	Setting options in the General tab
	Setting options in the Substitutions tab
	Setting options in the Data Server tab
	Setting options in the Custom Colors tab

	Setting options in the Apama tab group
	Setting options in the SQL tab group
	Setting options in the XML tab group
	Saving options

	Command line options

	Chapter 3: Attaching Dashboards to Correlator Data
	Dashboard data tables
	Scenario instance table
	Scenario trend table
	Scenario OHLC table
	Correlator status table
	Data Server status table
	Scenario constraint table
	DataView item table
	DataView trend table
	DataView OHLC table
	SQL-based instance table
	Setting data options

	Scenario instance and DataView item ownership
	Creating a data attachment
	Using the Attach to Apama dialog
	Selecting display variables or fields
	Displaying attached data
	Filtering data
	Attaching to constraint data
	About timestamps
	Using dashboard variables in attachments
	About non-substitution variables

	About drilldown and $instanceId
	About other predefined substitution variables
	Using SQL-based instance tables
	Working with multiple Data Servers
	Builder with multiple Data Servers
	Viewer with multiple Data Servers
	Display Server deployments with multiple Data Servers
	Applet and WebStart deployments with multiple Data Servers

	Using table objects
	Creating a scenario summary table
	Filtering rows of a scenario summary table
	Performing drilldowns on tables
	Specifying drill-down column substitutions
	Hiding table columns
	Using pre-set substitution variables for drill down
	Formatting table data
	Colorizing table rows and cells
	Setting column headers
	Using rotated tables

	Using pie and bar charts
	Creating a summary pie or bar chart
	Using series and non-series bar charts
	Performing drilldowns on pie and bar charts

	Using trend charts
	Creating a scenario trend chart
	Charting multiple variables
	Adding thresholds
	Configuring trend-data caching

	Using stock charts
	Using OHLC values
	Creating a scenario stock chart
	Adding overlays
	Recreating the Stock Chart Overlay sample

	Generating OHLC values

	Localizing Dashboard Labels
	Localizing Dashboard Messages

	Chapter 4: Using Dashboard Functions
	Using built-in functions
	Creating custom functions
	Developing a custom-function library
	Implementing getFunctionDescriptors
	Implementing evaluateFunction

	Installing a custom-function library
	Sample IFunctionLibrary implementation

	Chapter 5: Defining Dashboard Commands
	Scenario lifecycle
	Defining commands
	Using dashboard variables in commands
	Defining commands for creating a scenario instance
	Defining commands for editing a scenario instance
	Supporting deletion of a scenario instance
	Supporting deletion of all instances of a scenario
	Using popup dialogs for commands
	Command options
	Associating a command with keystrokes
	Defining multiple commands
	Creating custom commands
	Developing a custom-command library
	Installing a Custom-Command Library
	Sample ICommandLibrary implementation

	Apama set substitution command

	Chapter 6: Reusing Dashboard Components
	Using Object Grids
	Configuring Object Grids
	Recreating the Object Grid sample

	Using Composite objects
	Creating files to display in composite objects
	Configuring Composite objects
	Using substitutions with Composite objects
	Composite object interactivity
	Composite object sample
	Recreating the Composite object sample

	Using Composite Grids
	Configuring Composite Grids
	Composite Grid sample
	Recreating the Composite Grid sample

	Using include files
	Include File sample
	Recreating the Include File sample

	Working with multiple display panels
	About the format of the panels-configuration file
	Using new tags to configure the panels in a window
	Configuring panels with accordion controls
	Configuring static tree navigation panels
	Configuring tabbed navigation panels
	Using tab definition files
	Examples of configuration files for multiple panels

	Using tree controls in panel displays
	Creating tree controls
	Creating row-leaf format control trees
	Creating row-node format tree controls

	Configuring tree control icons
	Attaching a tree control icon to data
	Configuring tree control type icons
	Configuring tree control status icons

	Specifying tree control properties
	Specifying tree control background properties
	Specifying tree control data display properties
	Specifying tree control interaction properties
	Specifying tree control label properties
	Specifying tree control node structure properties
	Specifying tree control object layout properties
	Descriptions of unique tree control property behavior

	Tree control limitations

	Using old tags to configure the panels in a window
	Using border panels
	Using card panels
	Using grid panels
	Using tabs panels
	Using tree panels
	Using the RTViewNavTreePanel tag
	Using the RTViewPanel tag

	Chapter 7: Sending Events to Correlators
	Using the Define Apama Command dialog
	Command field
	Package field
	Event field
	Channel field
	Other dialog fields
	Default values
	Specifying values for complex types

	Updating event definitions in Builder
	Example

	Send event authorization

	Chapter 8: Using XML Data
	XML data format
	Scalar data elements
	Tabular data elements

	Defining an XML data source
	Attaching objects to XML data

	Chapter 9: Using SQL Data
	SQL system requirements and setup
	Attaching visualization objects to SQL data
	Validation colors
	Substitutions
	Select table columns

	Defining SQL commands
	Validation colors
	Special values

	Specifying application options
	SQL tab
	Adding a Database
	Database repository
	Excluding tables From the Attach To SQL Data dialog
	Entering database information directory into OPTIONS.ini
	Generating encrypted passwords for SQL data sources

	Deploying applet and WebStart dashboards
	Setting up SQL database connections
	Direct JDBC connection
	ODBC-JDBC bridge connection
	Registering your database with ODBC
	Using a database repository file
	Excluding tables From the Attach To SQL Data dialog

	Setting SQL data source options

