§ software

Apama EPL Reference

5.2.0

August 2014

=" APAMA

This document applies to Apama 5.2.0 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its Subsidiaries and or/its Affiliates and/or
their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA Inc.
and/or its Subsidiaries and/or its Affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective
owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are located at http://documentation.softwareag.com
legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products." This document is located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-Apama_EPL_Reference-5.2.0-20140808@233876

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

Table of Contents

=1 T 8
About this dOCUMENTATION.cuiiieeice e 8
How this BOOK IS OFQANIZEA..........cciiiiiiiiiiciiies st n e bbb bt 8
DoCUMENLAtION FOAAMAD. ...ttt s sttt 9
Contacting CUSIOMET SUPPOIL..........ccueiiiiiicieteisis ettt bbbt bbb b b s bbb s n s 11

Chapter 1: Introduction and Notation Conventions............ccccceiceiiiriiinssssssnsnsnseeeeeeeeeeeeens 12
HEIIO WOTIA EXAMPIE.....cucveieiiiiiiicii sttt se e ettt n bbbt es 12
NOEALION CONVENTIONS. ..ottt e ettt n et nn e 13
Notation for SEQUENCES Of SYMDIOIS........ccviviiiiiicretecce e 14
Notation for repetition 0f SYMDOIS..........ccuviiiccccccce bbb 14
Notation for ChoiCES Of SYMDOIS.........c.ciiiiiiiriic s 14

L0 = T o3 =T gy Y/ o - 17
Primitive @nd StTNG YPES ..ottt 18

0T0T0] 1= o TSSO 18
AECIMAL ..ottt e e et e st e s bbbttt bbb bbb bbb bbbt Reae e e e e s s s b an s 20
FIOBL. ... 21
0T =Y TSR 27
SHTIMG ettt 30
REFEIENCE TYPES ... cvcvcvcicii e bbb bbb bbb bbbt bbbt en e n et 37
7 1 TP 39
CRANNELL......cuiitieiccctccece ettt e bbb e bbb bbbt e s s e e b bbbttt bbbttt tans 40
CRUNK st 41
(010] 01 PSPPI 43
QICHIONAY ...t 44
BVENE. ettt R ARt 49
EXCEPHON. .. bbbt nn e 52
IS EBNMET ettt ettt bbbt bbb bbb bbb b R e e e e e ettt en s st bbb naee 55
[OCALION. ...ttt 95
ET=T 011 =TSP 57
StACKTIACEEIBMENL. ...ttt s s 62
SETBAIM. ...t R bbbttt 63
Lo a0 g XY= T o 0 7o YT 63
TYPE PrOPEItIES SUMMEIY.......cvieeeeeiirireeieeeteestseeseeeteesssesesseseseseesetssesssseses et s s ss et esesesesssesetesesssseesesesssssnsnsens 64
Timestamps, dates, and HIMES........ccovrreereercece e 67
Type methods and INStANCE MEOGS. ..o s 67
TYPE CONVEISION.euvetirieeiseii ittt 69
COMPAIADIE EYPES....viieieiteiicieteie ettt bbb bbb s bbbttt b bttt n s 71
ClONEADIE TYPES.....vviiecectete ettt bbb bbb bbb bbbttt et b bbbt nas 72
Potentially CYClIC tYPES.....c.vieeeieiieicieisict bbb 72
Which types are potentially CYClIC?........oviiiieiiiecce e 73
String form of potentially CYClIC fYPES.......ccviveiiicctc et 74
Support for IEEE 754 SPECIal VAIUES..........ceureeiririeiciessiieeie ettt 75

Apama EPL Reference 5.2.0 - APAMA 3

Table of Contents

Chapter 3: Events and Event Listeners...........ccccccemmccececeererrrrrr e e 79
EVENE AEfINIIONS. ...ttt 79
EVENE fIBIAS. ... e 79
EVENE GCHONS. ...ttt 80
Event field and aCtion SCOPE........cceiriceere ettt 81
EVENE EEMPIALES. 81
BY-POSItION QUANITIEES.......c.cviviieiiictcteie ettt ettt bbb bbb bbb s 82
BY-NAME QUANITIETS.......cvuveiiiecesic bbb 83
RANGE EXPIESSIONS.....eiiiiisisiisisie ettt s et e bttt e bt e b s e R s e s e s e n e e e e e 84
Event listener AefiNIIONS. ... 86
EVENE IITECYCIE. ...ttt 86
EVENE lISIENET IfECYCIE.....iviveveiiiciectee bbbt 86
EVENE PrOCESSING OFAEN ..ottt bbbt bbbt ettt et b bbbt r e e e s 87
EVENE EXPIESSIONS. ... ceviiiecieieieis ettt ettt a et s bbbt b n sttt nas 89
EVENE PHIMANIES.....cocvcteiieee bbbt b bbbt b sttt b s 90
401 TP 92
THE NOT OPEIALOT. .. .cvtiiecieietss ettt ettt b ettt s s 93
TRE @Il OPEIALON.... .. et bbbttt s bbbt 94
The and, xor, and or logical eVENt OPEratOrS..........ccccvviviiicccc s 94
The followed-Dy EVENT OPEIATON..........coieiiieieieesi s 95
Event expression Qiagram.........oovveiriirirriss e nerens 95
Event expression Operator PreCEAENCE. ..o enes 96
EVENE CANNEIS.... ..ottt sttt 96
L0 T= T o3 (=Y g 1 o V1 oY 97
MONIEOE IFECYCIE....uvvivveisieiecte ettt bbb bbb s bbb seas 97
(010 =T 4T 98
PACKAGES. ...ttt 99
The USING ECIArALION.c.cviiiiiiceciee ettt bbbt bbb 99
MONIEOr AECIATALIONS. ittt es bbb s bbbt ens 99
The iMPOIt AECIArAtION.......c.cviiicecce bbbt 100
MONIEOT ACHONS.......eeeiiiei sttt s 101
SIMPIBACHONS.covviectctete ettt bbbt bbb sttt s bbb bbbt b s s st bbb s s 101
ACtONS WIth PArAMELETS. ...ttt 102
COMEEXES ...ttt 103
PlUG NS ettt ettt b bbbt b bR bbb R AR R R e AR e e e e e e e et n e 105
GArDAGE CONBCHON.ceeieciiie bbb 105
Chapter 5: Aggregate FUNCLIONS........cccccmiiiiiiiieiir e 107
Built-in aggregate fUNCHONS.........ccciicecsce et 107
CUSTIOM GQQIEUALES.cocuetiiiieceete ettt et bbbt b bbbttt b s st et b b s st et b s s nee 109
Chapter 6: Statements............cooiiiiiiiiiir s 112
SIMPIE SEAEEMENES. ...ttt 112
The assignment STAtEMENL.........cciiiccc bbb 113
The emit SEAIEMENL. ..ot 114
The enQUEUE SEAEEMENL..........ov ittt es 115
The enqueue . . . 10 STALEMENL.......cciicce s 115

Apama EPL Reference 5.2.0 - APAMA 4

Table of Contents

The eXpression StAtEMENL..........ccciii sttt 117
THe 10g STAIEMENL.......coicececee bbbt 117
The Print STAtEMENL. ..ot ns 118
The OULE STAEEMENL. ..o bbb bbb bbb 119
The send . . . 10 SEAEMENL........covirce s 119
The SPawn StAIEMENL.........ccoiec b 120
The spawn action to context statement.........cc.oiere e, 121
Variable declaration StateMENTS...........coiiiir e 121
COMPOUNG STAIBMENTS.c.iiectiteieiicce bbbttt st bbb bbb se bt bn s 123
The fOr STAtEMENL.........oeee bbb bbbt 123
The from SEAIEMENL........ceeece s 124
The if STAIEMENT......eiee ettt 124
The ON SEAIEMENL........ooie ettt bbbttt bbb bbb b bt 125
The While STAIEMENT. ..o 126
The try-Catch STAteMENL.......coiiiice s 127
Transfer of CONrol StAIEMENTS........c.ciiiice e 127
The break StAtEMENT.........c.v e 128
The CONtINUE STALEMENT........coiiceeee ettt 128
The dig STAIEMENL.........oeee bbb 128
The return STAIEMENT.........c. e 129
Chapter 7: EXPreSSiONS.......ccviiiiiiiiiiiiiiinsissesssssssssssssssssnssssessssees 130
INtrOAUCHION 10 EXPIESSIONS......cocviviieieictcicicic ettt b bbbt e s e s 130
PrIMAIY EXPIESSIONS. cvvriseiiseeees ittt 131
POSHIX EXPIESSIONS.v.viiivcteteisiitcte ettt sttt s sttt s bbb bbb bbb st b et s s s 132
Action and MEhO CallS.........c.iiieriee et 133
The SUDSCHIPL OPEIALOr [J..iveeeeeieiiieicieisiseeiee ettt 133
The new Object Creation OPEIALON..........cccvviviiciiri e 133
Unary additiVe OPEAOrS.ccviviiiiiiieii sttt ettt nns 134
MUIPIICAIVE OPEIALOTS........cucviiieiicieie sttt et s st s e 134
MUIIPHICAtION OPETATON.......ceiviveiciccecte et bes 135
ST (o T I 1= = (o) TR PTTTRR 135
REMAINAET OPEIATON.......oiie et s bbbttt s e nnes 135
AQAIIVE OPEIAIOIS. ... cvcviveiiicicie ettt b bbbt bbbt es et et b sttt n s 136
DAY [0 1T o] =T =1 o PSSP 136

RS TU o (0110 0 T 0= = (o TSP 136
String CoNCAtENAtioN OPEIALOT..........ccviiicicectcrc e eaes 136

T T 0] o1=T =1 o £ T RPN 137
LESS-thaN OPEIALON.......cooviececeeie ettt 137
Less-than-0r-eqUAal OPETATON.........ccuciiieceerercce s bbb 137
EQUAIEY OPEIALOL.......cociceiccece bbbttt 138
LT TUE= LAV 1=T =1 o] TP 138
Greater-than-0r-eqUal OPEIALOT..........c.civicieieieiece et nee 138
Greater-than OPEIAION. ..ottt bbb bbb st bbbttt b s 138
SRt OPEIAIOIS. ...ttt ettt b e 138
Left Shift OPEIALOF......cvcviiececeeec bbbttt 139
RIGE Shift OPEIAION ..ottt bbb bbb 139
LOGICAI OPEIALOTS.......eueereeiesieii et 140

Apama EPL Reference 5.2.0 - APAMA 5

Table of Contents

Logical INErseCtion (AN)..........ceuieeuiuiiriciriieiii s 140
(0T [or= 1IN0 (o] TP 141
LOGICAl EXCIUSIVE OF (XOT).....iuiuiteiiicicteieise ettt ettt s bbbt bbbt bbb bbbt b s s nnas 141
Unary 10giCal iNVESE (NO)........cviuivieeiireirieieieiei it 141
BitwiSe 10GICal OPEIALOrS.......vivcvcteiiiieccte sttt bbbt bbbttt 141
Bitwise iNterseCtion (ANG)..........cccceiiiiiiiciiici bbb bbb s 142
BItWISE UNION (OF)...euveitiiieiiciieet bbb 142
BItWISE EXCIUSIVE (XOT)...iviviveiiiicicteteiieeete ettt sttt s s 143
UNGIY DItWISE INVEISE....cuiiiiiiiiii ittt a bbb bbb b bbbt erene e rens 143
EXPression OPerator PrECEABNCE.ccviiireeirrireeee ettt ettt b e sese s s e s 143
SHBAM QUETIES.......vviicectete ettt bbbttt e bbb bbbt bbbttt s s e 144
Stream query WINAOW defiNtIONS........ccvviiieiieeiiccee et 146
Sream SOUMCE TEMPIALES.......cueuiri ettt sses 148
Chapter 8: Variables.......... et r e s e 150
Variable deClarations.............ceieiie e 150
Primitive type variable decClarations.............cccvviececeeeecceeee e 150
Primitive-type INIHAIZETS. ..o e 151
Reference-type variable declarations............cccovvcveeiiiiccss e 152
Action variable deClarations............ccoiererieere e 152

Chunk variable deClarations...........cccrirrrieesr e 153

Context variable deClarations............coorriinre s 154
Dictionary variable deClarations...........cccovccieiiiiiiiiniii i 154

Event variable declarations...........coceriicrecces e 155

Listener variable deClarations............cceeeriiriiinieeisee e 156
Location variable declarations.............ccerieerrreeesr e 156
Sequence variable deClarations............cocerrirrrree e 157

Stream variable deClarations............cooirirreee e 158

VaMDIE SCOPE.......vivctcteiete ettt bbb bbb bbb b bbb b e R e AR e AR e e e e s e e st s nn e 158
Predefined Variable SCOPE. ..ottt 159
MOMIEOE SCOPE.....vvuieieeteteiisiete ettt b bbb bbbttt s bbb n ettt s 159
ACHON SCOPE....vititceitiiiieit ittt e e e e st s b e st et b bbbttt e b et et et et e R e neaeeas 159
oot Qo] o TP 159
EVENE ACHON SCOPE......cviieiictcicce et bbb bbb 160
Custom aggregate fUNCHON SCOPE.......cccviiuiriieiicctete ettt bbb 160
Provided VArADIES........c.cooiiiicce ettt bbb bbb bbbt et e 160
CUITENETIMIE ...ttt 160
EVENE tIMESIAMPS......oie bbb bbbt rererers 161

Sl et e b bbb bbbt bbb bbb e b e bbb e bt et e R e e e r e e e s e s e 161
Specifying Named CONSEANE VAIUES.........ccovirieiiriicce st 162
Chapter 9: Lexical Elements............cooeeiiiiiiiiiiiiiisciciiiess s sssssssssssssssss s ssssssssssssssssssnnnnnes 163
PrOGrAM EEXE. ..o bbb e e e e et s r e 163
COMIMENLS......ovtctctctetcteee ettt ettt bbbt bbbttt et e bbb e b e b e s e e e e e e e bbb bbb s ettt ebebeb et et eb et et ebene e e e nis 164
WRIEE SPACE......cuviiectcteteiee ettt sttt bR bbbt s bbb st b bttt 164
LINE TIMINGLOTS. ..ottt sttt e ettt e 166
SYMDOIS .. 167
AENEIEES. ...ttt 168
KBYWOITS. ..ottt e e 2ttt b bbb bbbt bbb AR b e b e R e R e e et e e e et ettt st ettt eee 168

Apama EPL Reference 5.2.0 - APAMA 6

Table of Contents

LiSt Of EPL KEYWOITS. ..ottt 169

List of identifiers reserved for fUlUre USE..........oocvrriiriree s 170
Escaping keywords to use them as identifiers...........ccocceviiiiieieiieiecee e 171

L] 01T =1 o £ TTTT 172
OrdiNArY OPETAIOIS......c.cviviiiiiiiecie sttt bbbt bbbt b s bbb 172
ArthMELIC OPEIAIOIS......c.cvcececceee bbb 173
COMPAIISON OPETAONS. ... ieeeieieiriereieteisi sttt s st seseses s 173

LOGICAl OPEIAOS......cvviiiecieteisi ettt b bbbttt b b s 174

EVENE OPEIALOLS. ..ot bbbttt ettt r s R e e 174
EXPrESSION OPEIALOFS.v.ieceeeieisicieieis sttt sttt 174
FIEIA OPEIAIOIS......oucecvctctiiccte sttt bbbt bbbt 176
SBPAIALOLS.......cocecveiiecct ettt ettt bbbt bbb bbb A bbb R b bt ee s bbbt e bbb s s st et bans 178
LIEEIAIS. ..ttt ettt et e bbbt bbbt bbb bbbt b e bbbt e b e R e e e e e s s n s enn s 178
BOOIBAN [HEIAIS. ..o 179

gy C=Yo L= T (=T = T TPTTRR 179
BASE 10 HEIAIS.......ceeeeeeecciete sttt 180

BaSE 16 [IHEIAIS........veeeceeiieie s 180

Floating point and decimal [HEralS..........ccuovviiiriiiiisce e 181
SHNG THETAIS...... et 182
LOCALON HEFAIS......cveveeeiei it 183
DICHONAIY EEIAIS........cciiicisieise et bbbttt bbbt r bbb e e 183
SEAUENCE TILEIAIS........ceceeeeeiececee ettt 184
NBIMES ...ttt R ARt 184
(04 T= T o3 =T g 0 I 411 186
Chapter 11: Obsolete Language Elements..........cccccceeeeeiiiiiei e sccccccssccs s ssssmssnnnes 188
Old Style ISTENET CAllS.........cucveveieiicectce ettt bbb bbbt 188
Old style SPAWN SEAIEMENES.......c.cvieiic bbb 188

Apama EPL Reference 5.2.0 - APAMA 7

About this documentation

Preface
B ADOUL thiS OCUMENTALIONveeiic ettt 8
B How this DOOK IS OFANIZEAcucuiviiiiiiiieee ettt bbb bbbttt bebans 8
B DoCUMENLALION FOQUMED ..viviririririiiiiieee sttt ettt s ettt es sttt s bbb ebe bt 9
B Contacting CUSIOMET SUPPOITcuiviiiiiririteteiiiis ettt ettt s b 1

About this documentation

Apama® Event Processing Language (EPL), which is the new name for Apama MonitorScript, is the
native language of the Apama event correlator. You use EPL to write programs that process events in
the correlator. Apama EPL Reference is a companion to the Apama Studio EPL tutorials and Developing
Apama Applications in EPL. Use the tutorials and Developing Apama Applications in EPL to learn how to
write programs in EPL. Use this reference to answer questions and obtain complete details about a
particular construct.

Note: Within the product, both EPL and MonitorScript are used and should be treated as
synonymous.

Preface

How this book is organized

The information in this book is organized as follows:
® ‘"Introduction and Notation Conventions" on page 12
®* "Types" on page 17

® "Events and Event Listeners" on page 79

® "Monitors" on page 97

& "Aggregate Functions" on page 107

® "Statements" on page 112

®* "Expressions" on page 130

® "Variables" on page 150

®* "Lexical Elements" on page 163

® "Limits" on page 186

® "Obsolete Language Elements" on page 188

Preface

Apama EPL Reference 5.2.0 - APAMA 8

Documentation roadmap

Documentation roadmap

On Windows platforms, the specific set of documentation provided with Apama depends on
whether you choose the Developer, Server, or User installation option. On UNIX platforms, only the
Server option is available.

Apama provides documentation in three formats:

* HTML viewable in a Web browser

* PDF

* Eclipse Help (if you select the Apama Developer installation option)

On Windows, to access the documentation, select Start > All Programs > Software AG > Apama 5.2 >
Apama Documentation . On UNIX, display the index.ntm1 file, which is in the doc directory of your
Apama installation directory.

The following table describes the PDF documents that are available when you install the Apama

Developer option. A subset of these documents is provided with the Server and User options.

Title Contents
What's New in Apama Describes new features and changes since the previous release.
Installing Apama Instructions for installing the Developer, Server, or User

Apama installation options.

Introduction to Apama

Introduction to developing Apama applications, discussions of
Apama architecture and concepts, and pointers to sources of
information outside the documentation set.

Applications in Event
Modeler

Using Apama Studio Instructions for using Apama Studio to create and test Apama
projects; write, profile, and debug EPL programs; write J]Mon
programs; develop custom blocks; and store, retrieve and
playback data.

Developing Apama Instructions for using Apama Studio’s Event Modeler editor

to develop scenarios. Includes information about using
standard functions, standard blocks, and blocks generated
from scenarios.

Developing Apama
Applications in EPL

Introduces Apama’s Event Processing Language (EPL) and
provides user guide type information for how to write EPL
programs. EPL is the native interface to the correlator. This
document also provides information for using the standard
correlator plug-ins.

Apama EPL Reference

Reference information for EPL: lexical elements, syntax, types,
variables, event definitions, expressions, statements.

Apama EPL Reference 5.2.0

s- APAMA

Documentation roadmap

Title

Contents

Developing Apama
Applications in Java

Introduces the Apama in-process API for Java, referred to
as JMon, and provides user guide type information for how
to write Java programs that run on the correlator. Reference
information in Javadoc format is also available.

Building Dashboards Describes how to create dashboards, which are the end-user

interfaces to running scenario instances and data view items.
Dashboard Property Reference information on the properties of the visualization
Reference objects that you can include in your dashboards.

Dashboard Function

Reference information on dashboard functions, which allow

Reference you to operate on correlator data before you attach it to
visualization objects.

Developing Adapters Describes how to create adapters, which are components that
translate events from non-Apama format to Apama format.

Developing Clients Describes how to develop C, C++, Java, or .NET clients that can

communicate with and interact with the correlator.

Writing Correlator Plug-ins

Describes how to develop formatted libraries of C, C++ or Java
functions that can be called from EPL.

Deploying and Managing
Apama Applications

Describes how to:

* Use the Management & Monitoring console to configure,
start, stop, and monitor the correlator and adapters across
multiple hosts.

* Deploy dashboards over wide area networks, including
the internet, and provide dashboards with effective
authorization and authentication.

* Improve Apama application performance by using multiple
correlators, and saving and reusing a snapshot of a
correlator’s state.

* Use the Apama ADBC adapter to store and retrieve data in
JDBC, ODBC, and Apama Sim databases.

* Use the Apama Web Services Client adapter to invoke Web
Services.

* Use correlator-integrated messaging for JMS to reliably send
and receive JMS messages in Apama applications.

* Use Universal Messaging to connect correlators.

Using the Dashboard Viewer

Describes how to view and interact with dashboards that are
receiving run-time data from the correlator.

Apama EPL Reference 5.2.0

s- APAMA

10

Contacting customer support

Preface

Contacting customer support

You may open Apama Support Incidents online via the eService section of Empower at http://
empower.softwareag.com. If you are new to Empower, send an email to empoweresoftwareag.com with
your name, company, and company email address to request an account.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Directory at https://empower.softwareag.com/public_directory.asp and give us a call.

Preface

Apama EPL Reference 5.2.0 - APAMA 1"

https://empower.softwareag.com/eservice
https://empower.softwareag.com/eservice
https://empower.softwareag.com/public_directory.asp

Hello World example

Chapter 1: Introduction and Notation Conventions

B Hello WOTIA @XMPIEveeciceciccceee et e ettt et renes 12
B NOALION CONVENTIONS ...t 13
B Notation for SeqUENCES Of SYMDOIS ..ot 14
B Notation for repetition 0f SYMDOIScoviriiiic s 14
B Notation for choiCes Of SYMDOIScciiiiiiiiiiiii e 14

EPL is a flexible and powerful curly-brace, domain-specific, language designed for writing programs
that process events.

In EPL, an event is a data object that contains a notification of something that has happened, such
as a customer order was shipped, a shipment was delivered, a sensor state change occurred, a stock
trade took place, or myriad other things. Each kind of event has an event type name and one or
more data elements (called event fields) associated with it. External events are received by one or
more adapters, which receive events from an event source and translate them from a source-specific
format into Apama’s internal canonical format. Derived events can be created as needed by EPL
programs.

Hello World example

Though it contains many of the familiar constructs and features found in general-purpose
programming languages like Python or Java, EPL also has special features to make it easy to
aggregate, filter, correlate, transform, act on, and create events in a concise manner. Here is the
canonical "hello world" example written in EPL:

monitor HelloWorld

{
action onload()

{
print "Hello world!"™;
}
}

The Apama event processor, called the correlator, receives events of various types from external
sources and routes them to one or more active EPL programs, called monitors. Monitors have
registered event handlers, called listeners, for events of particular types with specific combinations
of data values or ranges of values. When the correlator detects an event of interest, it calls the
appropriate event handlers. If there are no handlers for an event, the correlator discards it or passes
it to an event handler specifically for events that have no handler.

Event handlers in EPL are conceptually similar to methods or functions used for handling user-
interface events in other languages, such as Java Swing or SWT applications. In EPL, code is executed
only in response to events. Except, that is, for the special EPL on1cad (), ondie (), and onunload() actions.
See "Monitor lifecycle" on page 97 for information about these actions.

Introduction and Notation Conventions

Apama EPL Reference 5.2.0 - APAMA 12

Notation conventions

Notation conventions

The Apama EPL Reference describes the EPL language grammar using a pictorial form of Backus-Naur
Form (BNF) notation informally termed railroad diagrams. Each diagram is a drawing that represents
one rule or production of the language grammar. The diagrams show

® Lexical rules — how sequences of characters are composed to form the basic elements of the
language, called tokens or symbols.

® Syntactic rules — how symbols are used to compose statements and other language constructs
such as event definitions.

In addition to the lexical and syntactic rules, both of which have to do with a program’s structure,
there are semantic rules, which have to do with meaning. For example, the operands of the
mulitiplication operator (*) must be of type decimal, float OF integer — this is a semantic rule. The
semantic rules are described in the text that accompanies the syntax rules.

Each railroad diagram drawing is preceded by a rule name in italic text. The rule can then be
referred to by its name in other diagrams.

The railroad diagram drawings consist of sequences and combinations of round and square cornered
boxes connected together by "tracks" represented as lines with arrowheads that indicate the direction
of travel. For example:

Example

——(roundcorneredbox)—-l SquareCorneredBox I——

Each diagram represents one language construct or grammar production rule and is read from left
to right, following the lines as if you were on a train moving along its track. Branches can occur at
various points to allow you to choose amongst several possible alternatives, to skip over optional
constructions, and to go back to an earlier point to repeat certain constructions (for example, the
comma separated parameter lists in action calls).

Round-cornered boxes represent sequences of characters that form the terminal symbols of the
language. Terminal symbols must be taken literally. They are not defined in terms of any other
symbol. Terminal symbols are things such as keywords, separators, punctuation, and operators. For
convenience, several characters are usually elided into a single box rather than making them separate
boxes. For example:

Action

Square-cornered boxes represent named nonterminal symbols or production rules, each of which is
further elaborated by a rule in another diagram. At the point where a nonterminal symbol appears,
you insert a construct that follows the rules for that symbol and then continue. All nonterminal
symbols are defined in terms of a combination of other nonterminal and terminal symbols in a
manner such that if all nonterminal symbols were to be replaced by their definitions, the result is a
finite sequence consisting only of terminal symbols.

There are three kinds of combinations of terminal and non-terminal symbols: sequence, repetition,
and choice.

Apama EPL Reference 5.2.0 - APAMA 13

Notation for sequences of symbols

Introduction and Notation Conventions

Notation for sequences of symbols

A sequence of symbols is denoted by several boxes connected by lines or tracks, as in the diagram
below of a while loop.

WhileStatement

——(while)—-l Expression H Block I——

The following program fragment is constructed according to this rule.

while a == Db

Introduction and Notation Conventions

Notation for repetition of symbols

Repetition is denoted by a track that loops back to an earlier point in the same diagram, as in the
example below, which has multiple names separated by periods, used in the specification of the
name of an interface implemented by a class.

PackageSpecification

The following program fragment illustrates how to use this rule.

package com.apamax.mypackage;

Introduction and Notation Conventions

Notation for choices of symbols

A choice among several alternatives is indicated by branches in the tracks, as in the example below
where you have several options for specifying a method’s characteristics.

Apama EPL Reference 5.2.0 . APAMA

14

Notation for choices of symbols

SimpleAction

550
\—<onBeginRecovery>—
\{onConcludeRecovery}/

The following program fragments illustrate how to use this rule.

action onload()
{
}

action onunload()
{
}

action ondie ()
{
}

action myAction ()
{
}

In the preceding example, you had to choose one of the four alternatives. Sometimes the choices are
optional and you can choose one of the options or none. In the following diagram, you can optionally
include a Sequencelnitializer.

SequenceDeclaration

——@—-l DataType |—-@—-| Identifier I @
\@-l Sequencelnitializer |—f

This is indicated by a straight-through track with the optional construct below it. When there are
multiple options, they are shown "stacked", as shown in the next diagram.

Apama EPL Reference 5.2.0 - APAMA 15

Notation for choices of symbols

Digits1

TEIXITIL

This means you must choose from one of the digits o through 9. For the sake of brevity, the notation
.. is often used to indicate a sequence of consecutive characters from which you can choose one.
Thus the following diagram means exactly the same thing as the longer form of Digits shown in the
previous diagram.

Digits2

9
..

o

Introduction and Notation Conventions

Apama EPL Reference 5.2.0 - APAMA 16

Chapter 2: Types

Primitive and SING TYPES .vvviiiiiiess e 18
RETEIENCE TYPES .ottt bbbt bbb bbb bbb bbb e e e s e s s s s sttt nas 37
MONITOT PSEUAO-TYPE .viviieirieeieiiiet ettt bttt ettt 63
TYPE PrOPEItIES SUMIMAIYevvieieieeitieies ettt es ettt es bt s bbbt b b s et et es bbb 64
Timestamps, dates, aNd IMESccccicccccee et 67
Type methods and INSTANCE METNOGAScvuiiiiriccce e 67
TYPE CONVETSION ...ttt bbb b b 69
COMPATADIE TYPES ...vuveeiiieeieiiiee sttt 71
ClONEADIE TYPES ...ttt et e et s st n s sttt 72
Potentially CYCHC TYPES ..veiicieieeeee ettt 72
Support for [EEE 754 SPECIAI VAIUESccuiueiiiiiicicieeeeee s 75

EPL has primitive types and reference types. Data in the primitive types are simple scalar values.
Reference types (also called complex types or object types) have values that are more complicated
and some, like the dictionary type, have multiple values and have definitions that involve more than

one type.

When values are passed as parameters in action and method invocations, primitive types are passed
by value, and reference types are passed by reference. When a parameter is passed by value, the
called action or method receives a copy of the value and has no direct way to change the variable that
the value may have been derived from. When a parameter is passed by reference, the called action

or method receives a reference instead of a copy and if the called action changes the value, the caller
also sees the change.

Note that there is no type equivalent to a memory address or pointer.

DataTypeName

PrimitiveDataTypeName
ReferenceDataTypeName

EPL supports the following types:

® Primitive types:

"boolean" on page 18
"decimal" on page 20
"float" on page 21
"integer" on page 27

Apama EPL Reference 5.2.0 - APAM A 17

Primitive and string types

* string" on page 30 — Technically, a string is a reference type but it behaves like a primitive

type.

* Reference types:

m "action" on page 39
m "chunk" on page 41
m "context" on page 43

m '"dictionary" on page 44

m event" on page 49

m ‘'listener" on page 55
m '"location" on page 55
m 'sequence" on page 57
m stream" on page 63

The dictionary and sequence reference types are also container types.

Primitive and string types

Apama supports these primitive types: boolean, decimal, float, and integer. Technically, a stringis a
reference type. However, because strings are immutable, it behaves more like a primitive type than
a reference type. Consequently, string appears in the ReferenceDataTypeName diagram, but it is
discussed with the other primitive types.

PrimitiveDataTypeName

==
. decimal '
float

®* "boolean" on page 18

® "decimal" on page 20
® "float" on page 21

® ‘integer" on page 27
® 'string" on page 30

Types

boolean

Apama EPL Reference 5.2.0

s- APAMA

18

Primitive and string types

The boolean type has two possible values: true or false.

Operators

The table below lists the EPL operators that you can use with Boolean values.

Operator Description Result Type
- Equal comparison boolean
1= Not equal comparison boolean
or Boolean (logical) or boolean
and Boolean (logical) and boolean
xor Boolean (logical) exclusive or boolean
not Boolean (logical) inverse boolean

False sorts before true.

Methods

The following methods may be called on variables of boo1ean type:

BooleanMethods

—-| BooleanExpression

E

canParse G Xpression 0
'H_'N.
toString 0 0

® canparse() — returns true if the string argument can be successfully parsed.

® parse() — method that returns the voolean instance represented by the string argument. You can
call this method on the voo1ean type or on an instance of a voo1ean type. The more typical use is to
call parse () directly on the boolean type.

The parse () method takes a single string as its argument. This string must be the string form of a
poolean Object. The string must adhere to the format described in Deploying and Managing Apama
Applications, "Event file format". For example:

boolean a;

a := boolean.parse ("true");

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

® tostring() —returns a string representation of the voolean. The return value is "true" if the
referenced Boolean’s value is true. The return value is "ra1se" if the referenced Boolean’s value is

false.

Primitive and string types

Apama EPL Reference 5.2.0 - APAMA 19

Primitive and string types

decimal

A signed decimal floating point number. Either a decimal point (.) or an exponent symbol (e) must be
present within the number for it to be a valid decima1, plus a decimal suffix (¢) to distinguish it from a
float.

When perfect accuracy of base-10 numbers is a requirement, use the decimal type in place of the fioat
type. When extremely small floating point variations are acceptable, you might choose to use the
float type to obtain better performance.

For information about Apama client API support for the decinal type, see What’s New in Apama.

Values

Values of the decimal type are a finite-precision approximation of the mathematical real numbers,
encoded as 64-bit decimal floating-point values consisting of sign, significand, and exponent, as
defined by the “IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754 -2008 (IEEE,
New York)”. Values of the decimal type have a precision of exactly 16 decimal digits.

The largest positive decimal floating point value that can be stored in a variable of type decinal is
9.999999999999999 * 10384

The smallest nonzero positive value that can be stored is

10-398

In addition to the usual positive and negative numbers, the IEEE standard also defines positive and
negative zeros, positive and negative infinities, and Not-a-Number values.

Because decimal values are of finite precision, they cannot accurately represent all values, for
example, recurring decimals or irrational numbers. However, decimals have the advantage over
floats in that provided a decimal literal does not exceed the 16-place precision, it will be represented
exactly within the correlator. The following program illustrates the difference between decima1 and
float types in this regard:

monitor foo

{

action onload()
{
float £;
decimal d;
f :=0.1;
d := 0.1d;
print f.formatFixed(18);
print d.formatFixed(18);

}
This program produces the output below.. Note the small error in the least significant digit in the
float, versus the decinal.

0.100000000000000006
0.100000000000000000

There are a number of decimal constants provided in EPL. See "Support for IEEE 754 special values"
on page 75.

Apama EPL Reference 5.2.0 - APAMA 20

Primitive and string types

Operators

The EPL operators that you can use with decinal types are the same operators that you can use with
float types. See float "Operators” in the next section of the documentation.

Methods

The methods that you can call on decinal types are the same methods that you can call on f1o0at types.
See f1oat "Methods" in the next section of this documentation. There are a few differences according
to whether the method is called on a decimal or £10at type and these are noted in the descriptions.

Primitive and string types

float

A signed floating point number. Either a decimal point (.) or an exponent symbol (e) must be present
within the number for it to be a valid f1cat.

When perfect accuracy is a requirement, use the decinal type in place of the rioat type. When
extremely small floating point variations are acceptable, you might choose to use the f1cat type to
obtain better performance.

Values

Values of the rioat type are a finite-precision approximation of the mathematical real numbers,
encoded as 64-bit binary floating-point values consisting of sign, significand, and exponent, as
defined by the “IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754 -1985
(IEEE, New York)”. Values of the r10at type have a precision of approximately 16 decimal digits. (The
binary significand is 52 bits wide.)

The largest positive floating point value that can be stored in a variable of type f1cat is

1.7976931348623157 * 10° ¢ and the smallest nonzero positive value that can be stored is

2.2250738585072014 * 10 >0

In addition to the usual positive and negative numbers, the IEEE standard also defines positive and
negative zeros, positive and negative infinities, and Not-a-Number values. For information about
how the correlator handles these values, see "Support for IEEE 754 special values" on page 75.

Because float values are of finite precision and binary encoded, they cannot accurately represent

all values. In particular, when a floating point literal expressed in decimal notation is converted to

its binary floating-point representation, there can be a slight loss of accuracy. This occurs because
most decimal fractions cannot be represented precisely in binary. So the fraction 0.1 or 1/10 in base 10
becomes the infinitely repeating fraction o0.0oo1100110011001100110011... When it is converted to base 2.
Similarly, conversions from floating point values to integral or string types will sometimes be inexact.
The following program illustrates the effects of finite precision and conversions between base 10 and
base 2:

monitor foo
{
action onload()
{
float £;
f :=0.1;
print f.formatFixed(18);

Apama EPL Reference 5.2.0 - APAMA 21

Primitive and string types

}

This program produces the output 0.100000000000000006. Note the small error in the least significant

digit.

There are a number of f1o0at constants provided in EPL. See "Support for IEEE 754 special values" on

page 75.

Operators

The following table lists the EPL operators available for use with floating point values, that is decimal

or float types.

Operator Description Result Type
< Less-than comparison boolean
<= Less-than or equal comparison boolean
= Equal comparison boolean
1= Not equal comparison boolean
>= Greater-than or equal comparison boolean
> Greater-than comparison boolean

Unary floating point identity

decimal OT float

Unary floating point additive inverse

decimal OT float

Floating point addition

decimal Or float

Floating point subtraction

decimal OT float

Floating point multiplication

decimal OT float

/

Floating point division

decimal Or float

Overflows and underflows are ignored by the EPL runtime.

The correlator compares floating point values as follows:

® Finite float and decimal types compare in the obvious way.
®* _1nfisequal to -1nf and is less than any finite number or +1nt.

* .1nfisequal to +1nf and is greater than any finite number or -1nt.

* yanis not equal to anything, including another van.

® [f you try to use nan for keying or sorting the correlator terminates the monitor instance.

Methods

The following inbuilt methods may be called on variables of decinal or float type. Unless noted
otherwise, if you call a method on a decimal type the return value is a decimal, and if you call the

Apama EPL Reference 5.2.0

«"APAMA *

Primitive and string types

method on a rioat type, the return value is a f10at. In all method descriptions, x represents the value

that the method is called on.

FloatMethods and DecimalMethods

DecimalExpression

FloatExpression

(O~0

bitEquals

Expression °
Expression 0

canParse

ceil G)

}

floor c)
om0 o
\-GformatScientific G

'i

isFinite “

isInfinite a

)

o Expression ‘ Expression

Expression Expression

parse Expression

)

Ik
|

toDecimal e)

toFloat e)

toString °)

\—<Additional math methods) /
® .ps() — returns | x|, the absolute value of x.
® acos() — returns the inverse cosine of x in radians. Special case: x.acos () =wan, if 12| > 1.
® .cosh() — returns the inverse hyperbolic cosine of x. Special case: x.acosh () =nay, if x < 1.
® asin() — returns the inverse sine of x in radians. Special cases:

Apama EPL Reference 5.2.0

«"APAMA *

Primitive and string types

| (NaN) .asin() = NaN
|] x.asin() = NaN,ifIXI > 1

® asinn() — returns the inverse hyperbolic sine of .

®* stan() — returns the inverse tangent of x.

® .tan2(y) — returns the two-parameter inverse tangent of x and y. Special cases:
| (anything) .atan2 (NaN) = NaN

| (NaN) .atan2 (anything) = NaN

| (+0) .atan2 (anything except NaN) = %0

| (+0) .atan2 (-anything except NaN) = fpi

| (anything except 0 and NaN) .atan2 (0) = +pi/2

u (anything except *Infinity and NaN).atan2 (+Infinity) = %0

| (anything except tInfinity and NaN) .atan2 (-Infinity) = #pi

[| (+Infinity) .atan2 (+Infinity) = +pi/4

| (+Infinity) .atan2 (-Infinity) = +3pi/4

| (+Infinity) .atan2 (anything except 0, NaN and +Infinity) = #pi/2
® tann() — returns the inverse hyperbolic tangent of x. Special cases:

|] x.atanh () = NaN,ifIXI > 1

| (NaN) .atanh () = NaN

|] (+1) .atanh() = £Infinity
® LitEquals(decimal) OT bitEquals (float) — returns true if the value it is called on and the value

passed as an argument to the method are the same. The value the method is called on and

the argument to the method must both be decima1 types or must both be rioat types. The
method performs a bitwise comparison. This is useful because vitequals () returns true for
NaN.bitEquals (NaN) for nans that are bitwise identical whereas nan = nan is always false even if the
nans have identical representations.

® canparse(string) — returns true if the string argument can be successfully parsed.
®* cbre() — returns the cube root of .

® ccil() — returns the smallest possible integer that is greater than or equal to the value the
method is called on. Special cases:

|| (+Infinity) .ceil() = integer.MAX
| (-Infinity) .ceil() = integer.MIN

B (NaN).ceil () causes a runtime error; the correlator terminates the monitor

® .os() — returns the cosine of x. See also the note at the end of this list.
® cosh() — returns the hyperbolic cosine of x. Special case: (tInfinity or NaN).cosh() = |x|
® .. r() — returns the error function of x. The formula is as follows:

Apama EPL Reference 5.2.0 - APAMA 24

Primitive and string types

erf{m}=%/«ﬂ"2dt.
T Jo

exp() — returns e to the power x or ex, where x is the value of the decimal or f10at and where e is
approximately 2.71828183. Special cases:

|] exp (NaN) = NaN

B exp(+Infinity) = +Infinity

| exp (-Infinity) 0
exponent () — When called on a ri0at value, this method returns the integer that is the exponent

exponent

where x =nantissa*2 assuming 0.5 <= |mantissal < 1.0. When called on a decinal value,

this method returns the exponent where x = mantissa*10°°°"""

1.0. Special cases:

assuming 0.1 <= |mantissal| <

| (0.0) .exponent () = 0
B (tInfinity or NaN).exponent () terminates the monitor instance that contains the method call.

floor () — returns the largest possible integer that is less than or equal to the value the method is
called on. Special cases:

| (+Infinity) .floor() = integer.MAX

| (-Infinity) .floor() = integer.MIN

B (NaN).floor () causes a runtime error; the correlator terminates the monitor.
fmod (y) — returns x mod y in exact arithmetic.

formatFixed (integer) — returns a string representation of the value the method is called on where
the value is rounded to the number of decimal places specified in the argument. This method can
operate on the IEEE special values.

formatScientific (integer) — returns a string representation of the value the method is called on
where the value is truncated to the number of significant figures specified in the argument and
formatted in Scientific Notation. This method can operate on the IEEE special values.

fractionalPart () — returns the fractional component of .
gammal () — returns the logarithm of the gamma function.
ilogb() — returns an integer that is the binary exponent of non-zero x. Special case: throws

exception for ilogb (NaN).

integralPart () — returns an integer that is the integral part of a floating point value. Similar to
floor (), Which rounds down, and cei1 (), which rounds up. integralrart () rounds towards zero.
Special case: throws exception for integralrart (van).

isFinite () — returns true if and only if the value it is called on is not +nfinity or naw.
isInfinite() — returns true if and only if the value it is called on is t1nfinity.

isNaN() — returns true if and only if the value it is called on is nan.

1n() — returns the natural log of the value the method is called on. Special cases:

| (0).1n() = -Infinity

Apama EPL Reference 5.2.0 - APAMA 25

Primitive and string types

B (-anything).ln() = NaN
®* 1og10() — returns the log to base 10 of the value the method is called on. Special cases:
B (0).loglO() = -Infinity
| (-anything) .1logl0 () = NaN
®* nantissa() — When called on a f10at value, this method returns a mantissa where x =
mantissa*2**P7"*"" agsuming that 0.5 <= |mantissa| < 1.0. When called on a decina1 value, this

exponent

method returns a mantissa where x = mantissa*10
Special cases:

assuming that 0.1 <= |mantissal < 1.0.

| (0.0) .mantissa() = 0.0
B (Infinity or NaN).mantissa() terminates the monitor instance that contains the method call

® nax(decimal, decimal) OF max (float, float) — returns the value of the larger operand. You can call
this method on the decimal or f1o0at type or on an instance of a decimal Or float type.

® nin(decimal, decimal) OF min(float, float)— returns the value of the smaller operand. You can call
this method on the decimal Or float type or on an instance of a decinal Or £loat type.

® nextafter(y) — returns the next distinct floating-point number after x that is representable in the
underlying type in the direction toward y.

® parse(string) —method that returns the decimal or f1oat instance represented by the string
argument. You can call this method on the decinal or £1cat type or on an instance of a decimal or
float type. The more typical use is to call parse () directly on a decimal or f1oat type.

The parse () method takes a single string as its argument. This string must be the string form of
an event object. The string must adhere to the format described in Deploying and Managing Apama
Applications, "Event file format". For example:

float a;
a := float.parse("123.456");

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

A call to decimal.parse () can include or exclude the appended 4. In other words,
decimal.parse("1.0") aIld,decimal.parse("l.Odﬁ) both work.

The parse () method can operate on the string form of the IEEE special values.

® pow(decimal) OF pow (float) — returns x to the power y (where y is the argument) or xy. See also
"Special cases of pow()" on page 77.

® rand() — returns a random value from 0.0 up to (but not including) the value the method was
invoked on. If the value was negative, then the random value will be from the value (but not
including it) up to 0.0. When you are calling the rand () method on a variable, the method behaves
correctly if the variable value is zero, for example, (0.0) .rand() returns o.o.

Special case: (tInfinity or NaN).rand() causes a runtime error; the correlator terminates the
monitor.

®* ound() —rounds to the nearest integer. Uses banker's rounding, which means the round-to-even
method, to break ties. For example, it rounds both 3.5 and 4.5 to 4. Special cases:

Apama EPL Reference 5.2.0 - APAMA 26

Primitive and string types

|] (+Infinity) .round() = integer.MAX
| (-Infinity) .round() = integer.MIN

B (NaN).round () causes a runtime error; the correlator terminates the monitor.

® scalbn(n) — When called on a t1oat value, this method returns x+2", where nis of integer type.
When called on a decimal value, this method returns x*10", where n is of integer type.

® sin() — returns the sine of x. See also the note at the end of this list.

®* sinh() — returns the hyperbolic sine of x. Special case: (+Infinity or NaN).sinh() = |x|

®* sqrt() — returns the positive square root of the value it is called on. Special cases:
|] (-anything) .sqrt () = NaN
B (+Infinity).sqrt() = +Infinity

®* tan() — returns the tangent of x. See also the note at the end of this list.
® tann() — returns the hyperbolic tangent of x. Special case: nan.tannh () = Nan

® topecimal() — returns a decimal representation of the f1cat. This method can operate on the IEEE
special values.

® torloat() — returns a float representation of the decimal. This method can operate on the IEEE
special values.

® :tostring() — returns a string representation of the fioat Or decimal it is called on. This method can
operate on the IEEE special values. A call to decimal.tostring() does not include a a suffix.

Note: Let trig be any of sin, cos, or tan. The argument to these functions is in units of Radian. Also
(tInfinity or NaN).trig() = NaN.

Primitive and string types

integer

Values of the integer type are negative, zero, and positive integers encoded as 64-bit signed two’s
complement binary integers. The lowest negative value that can be stored in a variable of type

integer is -9223372036854775808 or (-2°%) and the highest positive value that can be stored is
9223372036854775807 or (2°° - 1).

There are a few integer constants provided in EPL. See "Support for IEEE 754 special values" on page
75.

Operators

The following table describes the EPL operators available for use with integer values.

Operator Description Result Type

< Less-than comparison boolean

Apama EPL Reference 5.2.0 - APAMA 27

Primitive and string types

Operator Description Result Type
<= Less-than or equal comparison boolean
= Equal comparison boolean
1= Not equal comparison boolean
>= Greater-than or equal comparison boolean
> Greater-than comparison boolean
+ Unary integral identity integer
- Unary integral additive inverse integer
+ Integral addition integer
- Integral subtraction integer
* Integral multiplication integer
/ Integral division integer
% Integral remainder integer
or Bitwise or integer
and Bitwise and integer
xor Bitwise exclusive or integer
not Unary bitwise inverse integer
>> Bitwise shift right integer
<< Bitwise shift left integer

An attempt to divide by zero (0) or to compute a remainder of zero raises an error. Overflows and
underflows in arithmetic are ignored by the EPL runtime.

When you use the shift operators, the sign of a result value can differ from that of the operand
value being shifted. When you use not the sign of the result value will be the opposite of that of its
operand.

Methods

The following methods may be called on variables of integer type:

Apama EPL Reference 5.2.0 - APAMA 28

Primitive and string types

IntegerMethods

_.l IntegerExpression |—@—)

(O~0O

©)

00

IntegerExpression |-@-| IntegerExpression |-@-/

IntegerExpression |-@-| IntegerExpression |—-@-/

©)

)
)
toDecimal e)

o%¢

(00

abs () — returns as an integer the absolute value of i or |il, where i is the value of the integer.

canparse () — returns true if the string argument can be successfully parsed.

getUnique () — method that generates a unique integer in the scope of the correlator. This is a type
method as well as an instance method. It returns an integer that is unique for the correlator
session’s lifetime. When the correlator is shut down and restarted, then the integers returned
might be the same as some or all of the values produced in the earlier session.

When correlator persistence is enabled the state of this method is preserved across shutdown and
recovery. In other words, as long as you use the same recovery datastore, it does not matter how
many times you restart the correlator. The result of invoking getunique () will always be a unique
number across all restarts.

This method starts by generating 0, 1, 2, 3, and so on. However, you cannot assume that you will
receive the integer you might expect. The returned numbers are 64-bit signed integers.

For example, the following statement prints a different number every time the correlator executes
it:

print integer.getUnique () .toString();

Following are more examples:

monitor M {
action onload() {
integer 1i;
i integer.getUnique(); // called on type
i.getUnique () ; // called on instance

i

Apama EPL Reference 5.2.0 - APAMA 29

Primitive and string types

max (integer, integer) —returns as an integer the value of the larger operand. You can call this
method on the integer type or on an instance of an integer type.

min(integer, integer) —returns as an integer the value of the smaller operand. You can call this
method on the integer type or on an instance of an integer type.

parse () —method that returns the integer instance represented by the string argument. You can
call this method on the integer type or on an instance of an integer type. The more typical use is
to call parse () directly on the integer type.

The parse () method takes a single string as its argument. This string must be the string form of an
integer Object. The string must adhere to the format described in Deploying and Managing Apama
Applications, "Event file format". For example:

integer a;
a := integer.parse("20080116");

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

pow (integer) — returns as an integer the value of the operand to the power x (where x is the

argument) or i, where : is the value of the operand. Note that negative values of x are not
allowed, as these would generate floating point results.

rand () — returns a random integer value from o up to (but not including) the value of the variable
the method was invoked on. The following snippet of code would set 5 to a random value from o
to 19:

integer A;

integer B;

A := 20;

B := A.rand();

while the next snippet would set & to a random value from -14 and o:

integer A;
integer B;
A := -15;
B := A.rand();

When you are calling the rand () method on a variable, the method behaves correctly if the
variable value is zero, that is (0) .rand () returns o.

toDecimal () —returns a decimal representation of the integer.
toFloat () — returns a float representation of the integer.

tostring () —returns a string representation of the integer.

Primitive and string types

string

A text string.

Apama EPL Reference 5.2.0 - APAMA 30

Primitive and string types

Usage

Enclose string literals in double quotes. Values of the string type are sequences of non-null Unicode
characters encoded in UTF-8 format. Note that UTF-8 is a variable-width encoding and a character
can occupy from 1 to 4 bytes of storage. The characters in the 7-bit ASCII character set are a subset of
UTF-8 and occupy a single byte each.

Although string types are discussed as though they are primitive types, they are actually reference
types. However, EPL’s string objects are immutable. For example, a statement such as s:=s+" suffix";
creates a new string object and changes the variable s to refer to that new string object. Any other
references to the old value continue to point to the old value.

Operations that can return a different string value, such as concatenation, case folding, or trimming
white space, always create new strings rather than modifying the existing value in place. The
previous value’s storage is recovered later by the EPL runtime garbage collector.

The length of a string is limited by the memory available at runtime, which can be multiple
gigabytes. In practice, you are unlikely to exceed the limit in a single string. (The total address space
available to the EPL runtime system is limited to roughly four gigabytes when running on a 32-bit
system.)

Use the \ to enter special characters in string literals:

To enter this... Insert this...
" (double quote) \"
\ (backslash) \
newline character \n
tab character \t
Operators

The table below lists the EPL operators available for use with string values.

Operator Description Result Type

< Less-than string comparison boolean
<= Less-than or equal string comparison boolean
= Equal string comparison boolean
1= Not equal string comparison boolean
>= Greater-than or equal string comparison boolean
> Greater-than string comparison boolean
+ String concatenation string

Apama EPL Reference 5.2.0 - APAMA 31

Primitive and string types

When you compare two strings for equality, the result is true if the strings are the same length and
each character in one string is identical to the corresponding character at the same position in the
other string.

When you compare two strings for less than or greater than, the characters in the strings are
compared pairwise according to the numerical values of their Unicode code points. The comparison
is case-sensitive so capital letters are not equal to their lower case equivalents. Characters earlier in
the character set sort before characters later in the character set. To order two unequal strings, the
earliest difference is considered. For example, "abcxdet" sorts earlier than "abcvdet", "abc sorts earlier
than "abcxyz"; the empty string sorts earliest of all.

Methods

The following methods may be called on values of string type:

Apama EPL Reference 5.2.0 - APAMA 32

Primitive and string types

StringMethods

—-| StringExpression |—©-)

canParse ° Expression)

:

d Expression)

’ StartExpression |-—@—/

findFrom

intern c)
Expression)

length a)
(O~0

)
Feptecerti (0 o ®
(06
CIONG)
Expression |-@-| Expression |-@—/
(06
toDecimal e)
toFloat c)
toInteger o)
toLower c)
toUpper G)
©)

® canparse() — returns true if the string argument can be successfully parsed.

i

!

!

|

!

® clone(string) — returns a reference to the specified string. When called on a string, the clone ()
method does not make a copy of the string since strings are immutable.

® rfind(substring) — returns an integer indicating the index position of the substring passed as
parameter to the method. If the string parameter does not exist as a substring within the string,
the method returns -1. Note that in EPL string indices (the position of a character within the
string) count upwards from o.

Apama EPL Reference 5.2.0 - APAMA 33

Primitive and string types

® rindFrom(substring, fromIndex) — behaves like the find() method, but starts searching for the
specified substring with the character indicated by fromindex. For example, if the value of
fromIndex is 7, the search begins with the character that has an index of 7.

® intern() — marks the string it is called on as interned. Subsequent incoming events that contain a
string that is identical to an interned string use the same string object. The intern() method takes
no arguments and returns the interned version of the string it is called on. For example:

print "hello world";
print "hello world".intern();

Both statements print:

hello world

The benefit of using the intern() method is that it reduces the amount of memory used and the
amount of work the garbage collector must do. A disadvantage is that you cannot free memory
used for an interned string.

If there are a limited number of strings that will be used many times then calling intern() on
these strings speeds the handling of events that use them. You might want to call intern() on
the names of products or stock symbols, which are all used frequently. For example, invoking
"aPMA" . intern () might make sense if you are expecting a large number of incoming events of the
form rick(mapvar, ...).You would not want to call intern () on order IDs, because there are so
many and each one is likely to be unique.

Calling intern() on a string is a global operation. That is, all contexts can then use the same string
object. Any strings already in use by the correlator are not affected, even if they match the string
intern () is called on.

If you use correlator persistence, details of which strings have been interned are not stored in the
recovery datastore. If the correlator shuts down and restarts, you must call intern() again on the
pertinent strings.

® join(sequence<string> s) — concatenates the strings in s using the string it is called on as a
separator. The single parameter must be a sequence type that contains strings. You cannot specify
a variable number of string parameters. For example:

sequence<string> s :=
["Something", "Completely", "Different"];
print ", ".join(s);
This prints the following;:
Something, Completely, Different
® length() — returns an integer indicating the length of the string.

®* 1trin() — returns a string where all white space characters at the beginning have been removed.
White space characters are space, new line and tab characters.

® parse() — method that returns the string value represented by the string argument without
enclosing that value in quotation marks. You can call this method on the string type or on an
instance of a string type. The more typical use is to call parse () directly on the string type.

The parse () method takes a single string as its argument. The string must adhere to the format
described in Deploying and Managing Apama Applications, "Event file format".

Use the following format to specify the string you want to parse:

"your string with escape characters"

Apama EPL Reference 5.2.0 - APAMA 34

Primitive and string types

Use a backslash to escape each quotation mark or backslash in your string, including quotation
marks that enclose your string. For example, to parse "se11o woriav, specify it as "\ "Hello World
\"". In other words, if you are writing literal strings in EPL, you must precede all backslashes and
quotation marks with a backslash. For example:

string a := "\".\\\\.A\"";
string b := string.parse(a);
print a;

print b;

This prints the following;:

".\\."
AL

The string.parse () method is useful when you have a string that contains backslash escape
characters and you want to obtain a string without them.

More examples:

string a := string.parse("\"Hello World\"");
string b := string.parse ("\"\\\"\"");

print a;

print b;

This prints the following:

Hello World

"

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates. For example, the following is an error and causes the correlator to terminate:

a := string.parse("Hello World");
The parse () method cannot parse the result of a tostring () method. This is because the tostring ()

method does not enclose its result in quotation marks, nor does it escape any special characters.
For example, the following is false:

x = string.parse(x.toString())

If a string contains no special characters (for example, " or \) then the following equality does
hold true:

x = string.parse ("\""+x.toString()+"\"")

® rcplaceAll (string, string) — takes two string arguments, stringl and string2. For the string the
method is called on, the rep1lacerii () method makes a copy of that string, replaces instances of
stringl With instances of string2 and returns the revised string. For example:

string x := "XYZ";
print x.replaceAll ("Y","y");
print x;

This prints the following;:
XyZ
XY7Z

Notice that x itself is unchanged. If string1 is an empty string then the monitor instance dies. If
instances of string1 overlap then the method replaces only the first instance in the overlapping
instances.

®* trim() — returns a string where all whitespace characters at the end have been removed.
Whitespace characters are space, new line and tab characters.

Apama EPL Reference 5.2.0 - APAMA 35

Primitive and string types

® split(string) — returns a sequence of strings that represent the string argument split at
occurrences of the string that the method is called on. The returned sequence always contains
at least one string. The sp1it () method is useful for separating a a string that contains newline
characters into individual lines or for dividing comma-separated values in a single string into
multiple strings. For example:

Method Call Returned Sequence
", ".split ("x,y,z") ["x","y","z"]
", ".split ("M) ("]
", Mosplit (", x,, y") [,y

® substring(integer, integer) — returns the substring indicated by the integer parameters. The
parameters indicate the position of the first and last characters of the substring, the first being
inclusive, while the second is exclusive. If a parameter is a positive value it is taken to be the
position of a character going from left to right counting upwards from o. If a parameter is a
negative value it is taken to be the position of a character going from right to left counting
downwards from -1. Therefore if

string s;
s := "goodbye";
then
s.substring (0, 0) is ""
s.substring (0, 2) is "go"
s.substring (2, 4) is "od"
s.substring (0, 7) is "goodbye"
s.substring (0, -1) is "goodby"
s.substring (-4, -1) is "dby"
s.substring (-7, -1) is "goodby"
s.substring (-7, 7) is "goodbye"
® toBoolean() — returns true if the string is "true" and false in all other cases. This method is case
sensitive.
®* toDecimal () — returns a decimal representation of the string, if the string starts with one or more

numeric characters. The numeric characters can optionally have amongst them a decimal point or
mantissa symbol. Returns o.0 if there are no such characters.

® torloat() — returns a float representation of the string, if the string starts with one or more
numeric characters. The numeric characters can optionally have amongst them a decimal point or
mantissa symbol. Returns o.o if there are no such characters.

® toInteger () — returns an integer representation of the string, if the string starts with one or more
numeric characters. Returns o if there are no such characters.

® tokenize(string) — the format for invoking this method is deiimiters.tokenize (text). The
tokenize () method categorizes each character in the text argument as either part of a delimiter
(the character appears in the de1imiters string) or part of a token (any other character) and then
divides the text argument into tokens separated by delimiters. The method returns the tokens as
a sequence of strings. If you try to tokenize an empty string the returned sequence is empty. The
tokenize () method is useful for extracting words from whitespace. For example:

string s =" This is\na test! See? ")
print " ".tokenize(s).toString();
print " .,:;!?\n\t".tokenize(s).toString();

Apama EPL Reference 5.2.0 - APAMA 36

Reference types

This prints the following;:

["This", "is\na", "test!","See?"]

["ThiS", "iS", "a", "test", "See"]
® toLower () — returns an all-lowercase string representation of the string.
® toupper () — returns an all-uppercase string representation of the string.

Primitive and string types

Reference types

In addition to the primitive types, EPL provides for a number of object types. These types are
manipulated by reference as opposed to by value (in the same way as complex types are handled in
Java). They are:

® "action" on page 39

® "Channel" on page 40

® "chunk" on page 41

® 'context" on page 43

® ‘"dictionary" on page 44
® ‘event" on page 49

®* "Exception" on page 52
® 'listener" on page 55

®* "Jocation" on page 55

® "sequence" on page 57
® "StackTraceElement" on page 62
& 'stream" on page 63

When a variable of reference type is assigned to another one of the same type, the latter will
reference the same object as the former, and should one be changed, the other one would reflect the
change as well.

If you require a variable of reference type to contain a copy of another one of the same type, thatis a
completely distinct but identical copy, then you should use the c1one () method as described below.
This returns a deep copy of the variable, that is, it copies it and all its contents (and their contents in
turn) recursively.

The string type is technically a reference type, but unlike all other reference types, the string type is
immutable; its value cannot change. The c1one () method has no effect on strings, as they cannot be
changed.

Note that you cannot use an object type for matching in an event template. For example, suppose
you have the following event types:

InnerEvent
{

float £;
}

Apama EPL Reference 5.2.0 - APAMA 37

Reference types

WrapperEvent

{

string s;
InnerEvent anInnerEvent;

}

The following statement is correct:

on all WrapperEvent (s = "some string")

However, the following statement is not allowed:

on all WrapperEvent (anInnerEvent.f

More than one variable can have a reference to the same underlying data value. For example,
consider the following code:

sequence <integer> sl;
sequence <integer> s2;

sl :=
s2 :=
print
s2[1]
print

Both s1 and s2 refer to the same array, so whichever variable you use, there is only one copy of the
data values. So the program’s output is

55
99

[12, 55, 42];
sl;

sl[1].toString; // print second element of sl
:= 99; // change the second element
sl[1l].toString; // print second element of sl again

ReferenceDataTypeName

context
dictionary
event
listener
location
sequence
stream
string

Channel

diddd

Exception

\$<?tackTraceElemenﬁ>—/

Types

Apama EPL Reference 5.2.0

s- APAMA

38

Reference types

action

In addition to defining an action, you can define a variable whose type is action. This lets you assign
an action to an action variable of the same action type. An action is of the same type as an action
variable if they have the same argument list (the same types in the same order) and return type (if

any).

Usage

Defining action type variables is useful for invoking an action and for passing an action to another
action.

You can use an action variable anywhere that you can use a sequence 0Or dictionary variable. For
example, you can

®* Pass an action as a parameter to another action.

® Return an action from execution of an action.

* Store an action in a local variable, global variable, event field, sequence, Or dictionary.
You must initialize an action variable before you try to invoke it.

You cannot send, route, emit, or enqueue an event that contains an action type member.

When an action variable is a member of an event the behavior of the action depends on the instance
of the event that the action is called on. Consequently, it can be handy to bind an action variable
member with a particular event instance. This is referred to as creating a closure. For details, see
"Declaring action variables in event definitions" in Developing Apama Applications in EPL.

An action variable is a potentially-cyclic type — a type that directly or indirectly refers to itself. For
details about the behavior of such objects, see "Potentially cyclic types" on page 72.

When the correlator clones a value that contains an action variable, or copies a value that contains
an action variable into a new monitor because of a spawn operation, the correlator preserves the
structure inside the value. This means that if two things are references to the same object in the
original value, they will be references to the same object in the copy. This includes objects referred to
by closures that have been assigned to action variables.

When you call tostring() on an object that contains an action variable the result is the name of

the method or action in the action variable. If the action variable contains a closure, the tostring ()
method outputs the bound value followed by the name of the action or method being called on the
value. For example:

"E (42) .£"
"12.0.rand"

See "String form of potentially cyclic types" on page 74.

When the tostring () method encounters an empty action variable the output is new followed by the
type. Following are two examples:"

. " . "
new action<>

" . . "
L new action<sequence<string>,float> returns boolean

Apama EPL Reference 5.2.0 - APAMA 39

Reference types

Methods

The only operation that you can peform on an action variable is to call it. You do this in the normal
way by passing a set of parameters in parentheses after an expression that evaluates to the action
variable. For an example and additional details, see "Using action type variables" in Developing
Apama Applications in EPL.

Reference types

Channel

Values of channel type are objects that hold either a string, which is a channel name, or a context
object depending on how you construct it.

Usage

The channel type is defined in the com.apana namespace. Typically, to easily refer to channel objects, you
specify

using com.apama.Channel

The channel type lets you send an event to a channel or context. If the channe1 object contains a string
then the event is sent to the channel with that name. If the channe1 object contains a context then the
event is sent to that context.

A Channel object has three constructors:

Channel (string)
Channel (context)
new Channel

The third constructor creates a channel object that contains an empty context object. The contained
empty context is the same result you would get from new context. It is a runtime error to send an
event to an empty context. Likewise, it is a runtime error to send an event to a channe1 object that
contains an empty context.

For example, the following two lines have the same result:

send e to "MyChannel";

send e to Channel ("MyChannel") ;

Similarly, the following two lines have the same result when c is a variable of the context type:
send e to c;

send e to Channel (c);

The benefit of using a channel object rather than a string or context object is that the channe1 object is
polymorphic. For example, by using a channe1 object to represent the source of a request, you could
write a service monitor so that the same code sends a response to a service request. You would not
need to have code for sending responses to channels and separate code for sending responses to
contexts.

You cannot send an event to a sequence of channel objects. You cannot route a channel object but a
routable object can have a channel object as a member.

Methods

The following methods may be called on values of channel type:

Apama EPL Reference 5.2.0 - APAMA 40

Reference types

ChannelMethods

—-| ChannelExpression ’ G 0

(arse) O-{Brpresion |0

canParse () — returns true if the string argument can be successfully parsed to create a channel
object. You cannot parse a string representation of a channel object that contains a context. For
more information about the parseable type property, see the table in "Type properties summary"
on page 64.

clone () — returns a new channel that is an exact copy of the channel the cione () method is called
on. The original channel’s content is copied into the new channel.

empty () — returns true if the channe1 object contains an empty context. This lets you distinguish
between an object that contains a default initialization value and an object that has been explicitly
populated.

parse () — returns the channel instance represented by the string argument. You can call this
method on the channel type or on an instance of a channel type. The more typical use is to call
parse () directly on the Channel type.

The parse () method takes a single string as its argument. This string must be the string form of a
channel object. The string must adhere to the format described in Deploying and Managing Apama
Applications, "Event file format". For example:

Channel a;

a := Channel.parse (com.apama.Channel ("channelName") ;
Channel b;
b := Channel.parse (com.apama.Channel (context (3, "contextName", true));

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

tostring () — returns a string that contains the channel name or the name of the contained
context.

Reference types

chunk

Values of the chunk type are references to dynamically allocated opaque objects whose contents
cannot be seen or directly manipulated in EPL. They are used by correlator plug-ins to store state
information across multiple plug-in method calls.

In EPL, chunk reference values can be held in variables of the type chunk and passed as parameters to
plug-ins when they are called. The chunk type lets you reference data that has no equivalent EPL type.

Apama EPL Reference 5.2.0 - APAMA 41

Reference types

It is not possible to perform operations on data of type chunk from EPL directly; the chunk type exists
purely to allow data output by one external library function to pass through to another function.
Apama does not modify the internal structure of chunk values in any way. As long as a receiving
function expects the same type as that output by the original function, any complex data structure
can be passed around using this mechanism.

To use chunks with plug-ins, you must first declare a variable of type chunk. You can then assign the
chunk to the return value of an external function or use the chunk as the value of the out parameter
in the function call.

The following example illustrates this. The complex.testa () method prints output to stdout. Apama
provides the source code for complex_plugin. You can find it in the Apama samples\correlator plugin
\cpp directory.
monitor ComplexPluginTest {
// Load the plugin
import "complex plugin" as complex;
// Opaque chunk value
chunk myChunk;
action onload() {
// Generate a new chunk
myChunk := complex.test3(20);
// Do some computation on the chunk
complex.testd4 (myChunk) ;

}

Although the chunk type was designed to support unknown data types, it is also a useful mechanism
to improve performance. Where data returned by external plug-in functions does not need to be
accessed from EPL, using a chunk can cut down on unnecessary type conversion. For example,
suppose the output of a 10caltime () method is a 9-element array of type f10at. While you could
declare this output to be of type sequence<float>, there is no need to do so because the EPL never
accesses the value. Consequently, you can declare the output to be of type chunk and avoid an
unnecessary conversion from native array to EPL sequence and back again.

An event can contain a field of type chunk, however you cannot send, emit, route, or enqueue an
event that has a chunk type field.

Methods

The following methods may be called on variables of chunk type.

ChunkMethod

—-| ChunkExpression

® clone() —requests that the plug-in return a new cnunk that is an exact copy of the chunx that c1one ()
was called on. the clone () method calls the copy () C++ virtual member function on the existing
AP_chunk Object.

See "Working with chunk in C++" in Writing Correlator Plug-ins.

Apama EPL Reference 5.2.0 - APAMA 42

Reference types

®* cnpty() —returns true if the chunk is empty. This lets you distinguish between a chunk that
contains a default initialization value and a chunk that has been explicitly populated by a
correlator plug-in. You can also get an empty chunk as a result of a new chunk expression.

® getowner () —returns a string that contains the name of the correlator plug-in that the chunk
belongs to. The name returned is the name you specify as the first argument in the import
statement that loads the correlator plug-in. For example:

import "TimeFormatPlugin" as tfp;
The getowner () method on a chunk from that plug-in returns "rinerormatplugin" and not "tep".
The getowner () method returns an empty string if the chunk is empty.

Reference types

context

Values of the context type are references to contexts. A context lets EPL applications organize work
into threads that the correlator can concurrently execute.

Usage

Use one of the following constructors to create a context reference:

context (string name)
context (string name, boolean receivesInput)

The optional receivesinput Boolean flag controls whether the context is public or private:

®* true — A public context can receive external events on the default channel, which is the empty
string (""). There is no requirement for a monitor instance in this context to subscribe to the
default channel.

* ralse — A private context does not receive external events on the default channel. This is the
default.

When you create a context reference, the context might or might not already exist. You use the
context reference to spawn to the context or send an event to the context. When you spawn to a
context, the correlator creates the context if it does not already exist.

When you start a correlator it has a single main context. You can then create additional contexts.
Context objects are lightweight and creating one only creates a stub object and allocates an ID. In
other words, when you create a context, you are actually creating a context reference.

A context is subscribed to the union of the channels each of the monitor instances in that context is
subscribed to. This is a property of the monitor instances running in a context and is not accessible
by means of the context reference object.

Methods

After you create a context, you can call the following instance methods on that context:

Apama EPL Reference 5.2.0 - APAMA 43

Reference types

ContextMethods

——{ ContextExpression
-0

getliame }{ ()
isPublic O)
toString 0O)

® current() — Returns a context object that is a reference to the current context. The current context
is the context that contains the monitor instance or event instance that is calling this method.

!

g

® get1d() — Returns an integer that is the ID of the context.
® getname () — Returns a string that is the name of the context.
®* ispuplic() — Returns a Boolean that indicates whether the context is public. If the context was

created as a public context then the return value is true.

® tostring() — Returns a string that contains the properties of the context. For example, for a public
context whose name is test, the content of the returned string would be something like this:

context (1, “test”, true)
In addition, the current () static method returns a reference to the current context.
See also "Contexts" on page 103.

Reference types

dictionary

A dictionary is a means of storing and retrieving data based on an entry key. This enables, for
example, a user’s name to be retrieved from a unique user ID.

The syntax of a dictionary definition is:

dictionary < key, item > varname

Dictionaries are dynamic and new entries can be added and existing entries deleted as desired.
The dictionary key must be a comparable type. See "Comparable types" on page 71.

The item can be any Apama type.

Two dictionaries are equal only if they contain the same keys and the same value for each key. When
dictionaries are not equal they are ordered as though they were sequences of key-value pairs, sorted
in key order.

Example

// A simple stock dictionary, each stock’s name is gained and
// stored from a numerical key
//

dictionary< integer, string > stockdict;

Apama EPL Reference 5.2.0 - APAMA 44

Reference types

// A dictionary that can be used to store the number of times
// that a given event is received

//

dictionary< StockChoice, integer > stockCounterDict;

Note that a dictionary Of sequences Or dictionarys is supported. Care must be taken in how these are
specified by separating trailing > characters with whitespace, to distinguish them from the right-shift
operator >>. For example:

// A correctly specified dictionary containing sequence elements
dictionary< integer, sequence<float> > willWork;

// An incorrectly specified dictionary containing sequence elements
// dictionary< integer, sequence<float>> willNotWork;

A global variable of type dictionary is initialized by default to an empty instance of the type defined.
On the other hand, a local variable must be explicitly initialized using the new operator, as follows:

dictionary<integer, string> stockdict;
stockdict := new dictionary <integer, string>;

It is also possible to both declare and populate a variable of type dictionary as a single statement,
regardless of the scope in which the variable is declared, as follows:

dictionary<integer, string> stockdict := {1:"IBM", 2:"MSFT", 3:"ORCL"};

using () to delimit the dictionary, a comma , to delimit individual entries, and a colon : to separate
keys and values.

Dictionary types do not allow duplicate keys. Ensure that you do not specify duplicate keys when
initializing a dictionary or in a string that will be parsed to produce a dictionary.

A dictionary variable can be a potentially cyclic type — a type that directly or indirectly refers to
itself. For details about the behavior of such objects, see "Potentially cyclic types" on page 72.

Methods

The methods available on the dictionary data structure are:

Apama EPL Reference 5.2.0 - APAMA 45

Reference types

DictionaryMethods

—-| DictionaryExpression |—®—)

KeyExpression |——©——| ItemExpression |——@——
©)

(O~0
clone o)
KeyExpression |-—@——| Expression
getOrAdd KeyExpression ’ 0
getOrDefault ° KeyExpression |-@

getOrAddDef ault}-@-l KeyExpression
hasKey KeyExpression |——@

(O~0

o Expression)
o KeyExpression |-@
O
(0~0
(ee)-(O0

add (key, item) —add an entry to the dictionary. The first parameter is an expression whose type
is the same type as the dictionary’s key type and which becomes the entry’s key. The second
parameter is an expression whose type is the same type as the dictionary's item type and
whose value becomes the entry’s item value. The key expression is evaluated first, then the item
expression. There is no return value. For example:

4

getOr

:
i

|

;

stockdict.add (71, "ACME");

When you are adding an entry and the key you specify already exists in the dictionary, the
correlator replaces the item already in the dictionary with the new item.

canparse () — this method is available only on dictionaries where the item type is parseable.
Returns true if the string argument can be successfully parsed to create a dictionary object. For
more information about the parseable type property, see the table in "Type properties summary"
on page 64.

clear () — sets the size of the dictionary to 0, deleting all entries. Takes no parameters. Returns no
value.

Apama EPL Reference 5.2.0 - APAMA 46

Reference types

® clone() —returns a new dictionary that is an exact copy of the dictionary. All the dictionary’s
contents (both keys and items) are cloned into the new dictionary, and if the items were complex
types themselves, their contents are cloned as well.

When the dictionary you are cloning is a potentially cyclic type, the correlator preserves multiple
references, if they exist, to the same object. That is, the correlator does not create a separate copy
of the object to correspond to each reference. See also "Potentially cyclic types" on page 72.

® getDefault (key, item) —Before Apama 5.0, the getor () method was called getpefauit (). You should
not use the getpefault () method. It remains only for backwards compatibility, it is deprecated,
and it will be removed in a future release. Use the getor () method instead.

® getor(key, alternative) —returns the item that corresponds to the specified key. If the specified
key is not in the dictionary, the getor () method returns aiternative. The benefit of calling this
method is that if you were to call dictionaryikey] instead of dictionary.getor () and the key you
were trying to look up did not exist, the correlator would terminate the monitor instance.

The getor () method lets you avoid a call to the naskey () method before you look up a key.

For example, suppose you have the following dictionary:

dictionary<integer,string> integerSgrts := {
1:"one", 4:"two", 9:"three", 16:"four", 25:"five", 36:"six",
49:"seven", 64:"eight", 8l:"nine", 100:"ten" };

Now suppose you call the following method:

integerSgrts.getOr (key, "irrational")

Assume that you specify a key that is in the range of 1 - 100. If the value of the key is a square
of an integer, getor () returns the written form of the key's square root. For any other key value,
getor () returns "irrational™.

® getorDefault (key) —retrieves an existing item by its key or returns a default instance of the
dictionary's item type if the dictionary does not contain the specified key.

The getorpefault () method lets you avoid a call to the naskey () method before you look up a key.

® getorAdd(key, alternative) —retrieves an existing item by its key or adds the specified key to the
dictionary with aiternative as its value if it is not already present and also returns the specified
alternative.

The getoradd () method lets you avoid a call to the nhaskey () method before you look up a key. If
the item type is complex, a call to the getorada () method can be more efficient than a call to the
getor () method, because it will not construct a default item unless necessary.

® getoraddpefault (key) — retrieves an existing item by its key or, if it is not already present, adds the
specified key with a default instance of the dictionary's item type and returns that instance.

For example, suppose you want to maintain a record of which client companies each sales

representative handles. You might write:

dictionary<string, sequence<string> > representing := {};
representing.getOrAddDefault ("Sue") .append ("We-Haul") ;

representing.getOrAddDefault ("Joe") .append ("McDonuts") ;
representing.getOrAddDefault ("Sue") .append ("ACME") ;

The first time getoraddpefault () is called with key "suer, that key does not exist yet, so it is added
with an empty sequence as the item. That empty sequence is then returned, so "we-rau1" can be
appended to it. The second time getoraddpefault () is called with key "suer, the existing sequence
(containing "we-raul") is returned, so "acme" can be appended to it.

Apama EPL Reference 5.2.0 - APAMA 47

Reference types

This idiom is considerably simpler and more efficient than testing hasxey () and then either
adding or retrieving.

® hasKey (key) — returns true if a key exists within the dictionary, ra1se otherwise. Takes one
parameter, which is an expression whose type is the same as the referenced dictionary's key type
and whose value is the key value whose presence in the dictionary is tested.

For example: stockdict.hasKey (71)

® eys() —returns a sequence Of the dictionary’s keys sorted in ascending order. This will be a
sequence Of the same type as the key type of the dictionary. The primary purpose of this method is
to enable one to iterate over a dictionary’s contents by looping through the sequence of its keys,
as follows;
integer k;
for k in stockdict.keys () {

myString := stockdict[k];
}
The xeys () method performs a deep copy (like the cione () method) of the dictionary keys into
a sequence; that is by value as opposed to by reference. This behavior ensures that the result of
keys () is a consistent view of the dictionary's keys at the time xeys () was called, regardless of
whether entries were added to or removed from the dictionary while examining the result of
xeys (). This also ensures that the dictionary keys themselves cannot be modified by changing the
sequence.

® parse() —this method is available only on dictionaries where the item type is parseable. Returns
the dictionary object represented by the string argument. For more information about the
parseable type property, see the table in "Type properties summary" on page 64. You can call
this method on the dictionary type or on an instance of a dictionary type. The more typical use is
to call parse () directly on the dictionary type.

The parse () method takes a single string as its argument. This string must be the string form of
a dictionary object. The string must adhere to the format described in Deploying and Managing
Apama Applications, "Event file format". For example:

dictionary<string, integer> d := {};

d := dictionary<string, integer>.parse("{\"foo\":1, \"bar\":2}");

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

When a dictionary is a potentially cyclic type, the behavior of the parse () method is more
advanced. See "Potentially cyclic types" on page 72.

® remove (key) — remove an entry by key. Takes one parameter, which is an expression whose type
is the same as the referenced dictionary's xey type and whose value is the value of the key of the
entry to be removed. The remove () method does not return a value. If the key value is not present
in the referenced dictionary, a runtime error is raised.

FCerXarnFﬂeZstockdict.remove(7l);
® size() —returns as an integer the number of elements in the dictionary. Takes no parameters.

® tostring() —converts the entire dictionary in ascending order of key values to a string. This will
create a string that contains all the elements enclosed within curly braces, (}, separated by
commas, ,, with each element consisting of the key followed by an item, the two being separated
by a colon, :.

Apama EPL Reference 5.2.0 - APAMA 48

Reference types

That is,

{key1:item1, ... ,keyp:<itemp>}

The string is constructed by invoking the tostring() method on each of the referenced
dictionary's key/value pairs and catenating them into the result.

When a dictionary is a potentially cyclic type, the behavior of the tostring() method is different.
See "Potentially cyclic types" on page 72.

® values() —returns a sequence of the dictionary’s items sorted in ascending order of keys. The order
of the items in the returned sequence is the order returned by the dictionary's xeys () method.
The sequence contains items that are the same type as the item type in the dictionary. The primary
purpose of this method is to let you iterate over a dictionary’s contents by looping through the
sequence of its item values, as follows;

string v;
for v in stockdict.values() {
myString := v;

}

The values () method performs a shallow copy of the dictionary items, that is, if the items are of
a reference type the returned sequence contains references to the dictionary’s items rather than
clones of them. This behavior ensures that a change to an object in the dictionary is reflected in
the returned sequence and a change to an object in the sequence is reflected in the dictionary.

® [xey]—retrieve or overwrite an existing item by its key, or create a new item.
For example, stockdict[71] := "XRX";

If you are using rkxey] to write and if an item with the key xey does not exist, the correlator creates
it. If you are using (xey] to retrieve and if an item with the key xey does not exist, it is a runtime
error.

Reference types

event

Values of the event type are data objects that can represent notifications of something happening,
such as a customer order, shipment delivery, sensor state change, stock trade, or myriad other things.
Event objects can also be used as a container or structure for holding several related data values.

Usage

Each kind of event has a type name and one or more data elements, called event fields, associated
with it. An event can also have blocks of executable code, called actions, associated with it.

A field in an event can be any Apama type. If an event contains a field of type action, chunk, listener,
or stream, you cannot specify that event in an event template, and you cannot send, emit, route or
enqueue that event.

Two events are equal if corresponding members are equal. If corresponding members are not equal
then the events are ordered according to the first member that differs.

The correlator orders events by considering the event’s fields in order.

Apama EPL Reference 5.2.0 - APAMA 49

Reference types

An event variable can be a potentially cyclic type — a type that directly or indirectly refers to itself.
For details about the behavior of such objects, see "Potentially cyclic types" on page 72.

See Developing Apama Applications in EPL, "Defining event types".

Methods

The following methods may be called on variables of event type:

EventMethods

@00
getFieldNames o (}~))
getFieldTypes “ 0
getFieldValues
getlame)+ ()
getTine o ()
isExternal
D0 ©
toString 0 0

The following methods may be called on event types:

'!

!!

'?

|

EventTypeMethodCall

—-| EventTypeName . getName ° °
'.mt'.'.
getFieldTypes ° 0

® canparse() — this method is available only on events that are parseable. Returns true if the string
argument can be successfully parsed to create an event object. For more information about the
parseable type property, see the table in "Type properties summary" on page 64.

®* clone() —returns a new event that is an exact copy of the event. All the event’s contents are cloned
into the new event, and if they were complex types themselves, their contents are cloned as well.
Takes no parameters.

When the event you are cloning is a potentially cyclic type, the correlator preserves multiple
references, if they exist, to the same object. That is, the correlator does not create a copy of the
object to correspond to each reference. See also "Potentially cyclic types" on page 72.

Apama EPL Reference 5.2.0 - APAMA 50

Reference types

® getrieldNames () — returns a sequence Of strings that contain the field names of an event type. This
method takes no parameters. The return value is of type sequence <string>. You can call this
method on an event type or on an instance of an event type.

® getrieldTypes () —returns a sequence of strings that contain the type names of an event type’s
fields. This method takes no parameters. The return value is of type sequence <string>. You can
call this method on an event type or on an instance of an event type.

® getrieldvalues() —returns a sequence of strings that contain the field values of an event. This
method takes no parameters. The return value is of type sequence <string>.

® getname () —returns a string whose value is an event’s type name. This method takes no
parameters. You can call this method on an event type or on an instance of an event type.

® getTime() —returns a float that indicates a time expressed in seconds since the epoch, January 1st,
1970. The particular time returned is as follows:

m If the correlator created this event, the getTime () method returns the time that the correlator
created the event. This is the creation time in the context in which the correlator created the
event.

m Coassignment sets the timestamp of an event. A call to gettime () On a coassigned event
returns the time that the correlator performed the coassignment. This is the time in the
context in which the correlator performed the coassignment and it can be the time the event
was received or routed. For an enqueued event, a call to getrine () returns the receiving
context’s current time when the enqueued event arrived in the context.

An event’s timestamp might not match the time when an event listener for that event fires.
For example, consider the following;:

on A():a and B() :b {

}

Suppose that currentrine is 1 when the correlator processes » and currentrine is 2 when the
correlator processes s. A call to a.getrine () returns 1, while a call to b.getTine () returns 2. Of
course, the event listener fires only after processing s.

® isgxternal () —Treturns a boolean that indicates whether the event was generated by an external
source. Such an event came from an external event sender, triggered an event listener, and was
coassigned to a monitor instance variable. When a monitor instance enqueues an event, this event
is considered to be generated by an external source.

A return value of true indicates an event that was generated by an external source.

When the correlator spawns a monitor instance, it preserves the value that the isexternal ()
method returns. In other words, if you coassign an external event in a monitor instance, and
then spawn that monitor instance, the isexternal () method returns true in the spawned monitor
instance.

This method takes no parameters.

The isExternal () method returns fal1se when a monitor instance
m Routes an event that was external

m Creates an event inside the correlator

m Clones an event

Apama EPL Reference 5.2.0 - APAMA 51

Reference types

This method is useful when you need to determine whether an event came from outside or was
in some way derived inside the correlator. Although this distinction is often clear from the event
type, that is not always the case.

parse () — this method is available only on events that are parseable. Returns the event object
represented by the string argument. For more information about the parseable type property,

see the table in "Type properties summary" on page 64. You can call this method on an event

type or on an instance of an event type. The more typical use is to call parse () directly on the event

type.

The parse () method takes a single string as its argument. This string must be the string form of
an event object. The string must adhere to the format described in Deploying and Managing Apama
Applications, "Event file format". For example:

A a := new A;
a := A.parse("A (10, \"foo\")");

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

When an event is a potentially cyclic type, the behavior of the parse () method is different. See
"Potentially cyclic types" on page 72.

tostring () —returns a string representation of the event. Takes no parameters. The return value
is constructed by calling the tostring() method on each of the referenced event’s fields and
catenating the individual return values into the result.

When you define an event type inside a monitor it has a fully qualified name. For example:

monitor Test

{
event Example{}

}

The fully qualified name for the xamp1e event type is rest.Example and the tostring () output for
the event name is "Test.Example () ".

When an event is a potentially cyclic type, the behavior of the tostring () method is different. See
"Potentially cyclic types" on page 72.

Also, you can define your own actions on events.

Reference types

Exception

Values of exception type are objects that contain information about runtime errors.

Usage

The Exception type is defined in the com. apama.exceptions Namespace. Typlcally, you specify using
com.apama.exceptions.Exception SO you can easily refer to Exception ObjECtS.

An Exception object has methods for accessing an error message, an error type, and a sequence of
com.apama.exceptions.StackTraceElement Objects that show where the exception occurred and what the
calls were that led to the exception.

Apama EPL Reference 5.2.0 - APAMA 52

Reference types

You cannot route an exception Object but a routable object can have an exception object as a member.

Methods

The following methods may be called on values of exception type:

ExceptionMethods

—-| ExceptionExpression ‘

oY
o
-0
%oStringWithStackTrace}-@-—@-/

® getMessage() — returns a string that contains the exception message.

L getStackTrace () — returns a sequence Of StackTraceElement objects that represent the stack trace
for when the exception was first thrown. The sequence is empty if the exception has not been
thrown.

®* getType () — returns a string that contains the exception type, which is one of the following:

Exception Type Description Example

ArithmeticException

Illegal arithmetic
operations

Attempt to divide by 0, call to
the ceil() method on wnan, call
to the exponent () method on
infinity, specifying vav as all or
part of an ordered key, call to
the rand () method on an illegal
float value such as 1nfinity

DefaultContextException

Spawning, sending

or enqueuing to a
context and specifying
a context variable that
has been declared but
the context has not yet
been created

monitor m {
context c;
action onload()
{
send A() to c;
}

IndexOutOfBoundsException

Invalid index in a
sequence or string
operation

sequence.insert (-1, x)

IllegalArgumentException

Illegal argument value
in an expression

nrosplit ()

IllegalStateException

Calling an action when
itis illegal to do so

spawn Statement in ondie () Or

onunload ()

Apama EPL Reference 5.2.0

s- APAMA

53

Reference types

Exception Type Description Example

MemoryAllocationException Unable to fulfill An invalid size is passed to the
memory allocation sequencesetCapacity() method
request

NullPointerException Attempt to call an event E {
action variable when : action<string> x;
that V.ar.le‘ibl.e has not monitor m
been initialized E e;

action onload() {
e.x("This will fail!");
}

OtherInternalException An internal error
occurred

ParseException Error that occurs while parse ("two") OnN an integer
parsing

PluginException An exception thrown

by a correlator plug-
in. See the note that
follows this table.

StackOverflowException Attempt to use more
space than is available
on the stack

In C++ correlator plug-ins, you can customize exception types so that the type returned has this
format:

PluginException:user defined type
See AP UserPluginException in the correlator plugin.hpp file in the inc1ude folder of your Apama
installation.

In Java plug-ins, the exception type returned has this format:

PluginException:class name

For example:

import "MyJavaPlugin" as myjavaplugin;

action myAction() {
try f{
myjavaplugin.processfile ("config.txt");
} catch (Exception e) {
log "Exception of type "
+ e.getType () at WARN;

Returns something like:

Exception of type
PluginException:java.io.FileNotFoundException

Apama EPL Reference 5.2.0 - APAMA 54

Reference types

®* tostring() — returns a string that contains the exception message and the exception type.

® tostringWithStackTrace () — returns a string that contains the exception message, the exception
type, and the stack trace elements.

Reference types

listener

A handle to a listener.

Usage

A 1listener variable can be instantiated only by assigning to it the outcome of an on statement, a
from statement, or by assigning to it the value of another 1istener variable. Values of 1istener type
are references to 1istener objects created with the on statement or from statement. The main use of
listener variables is, in combination with the 1istener type’s inbuilt quit method, to terminate an
active listener when it is no longer needed.

An event can contain a field of type 1istener, however you cannot send, emit, route, or enqueue an
event that has a 1istener type field. Also, you cannot specify an event with a 1istener field in an event
template.

The following method may be called on variables of 1istener type.

ListenerMethods

—-| ListenerExpression ‘ @ ° o

®* qit() —causes the listener to terminate immediately.

If the listener is invalid or has already been quit, then the quit () method does nothing and does
not raise an error.

The quit () method takes no parameters and does not return a result.

Reference types

location

Values of the 1ocation type describe rectangular areas in a two-dimensional unitless Cartesian
coordinate plane. Locations are defined by the r10at coordinates of two points x1, y1 and x2, y2 at
diagonally opposite corners of an enclosing boundary rectangle.

The format of a 10cation type is as follows:

location(x1, yl1, x2, y2)

An example of a valid location therefore looks as follows:

location(15.23, 24.234, 19.1232, 28.873)

Apama EPL Reference 5.2.0 - APAMA 55

Reference types

A point can be represented simply as a rectangle with both corners being the same point. You can
access the data members of a 1ocation type in the same way that you access the fields of an event. For
example:

location 1 := location(1.0, 2.0, 3.0, 4.0);
print l.xl.toString();

This prints 1.0. You can use a 1ocation type to describe a rectangular area but you can also use it to
describe various other quantities, such as line segments connecting two endpoints, circles, vectors, or
points in a four-dimensional space. However, certain inbuilt methods, such as the inside () method,
give correct results only for boundary rectangles.

A listener that is watching for a particular value for a 1ocation field matches when it finds a 10cation
field that intersects with the 10cation value specified by the listener. In the following example, the
listener matches each a event whose 1oc field specifies a location that intersects with the square
defined by (0.0, 0.0, 1.0, 1.0). When the limits specified for a 10cation type are out of order,

the correlator correctly orders them before performing a comparison. When locations touch it is
considered to be an intersection.

location 1 := location (0.0, 0.0, 1.0, 1.0);
on all A(loc = 1)

Methods

The following methods may be called on variables of 1ocation type:

LocationMethods

—-| LocationExpression ‘ canParse c Expression o

)
o
Expression 0

® canparse() — returns true if the string argument can be successfully parsed.

(o)

%

parse

®* clone() —returns a new location thatis an exact copy of the 1ocation.

® cxpand(float) —returns a new location expanded by the value of the f1cat parameter in each
direction. For example:
location 1 := location (0.0, 0.0, 0.0, 0.0);
on all A(loc = l.expand(0.5))

This event listener watches for a events whose 10c field specifies a location that intersects with
(-0.5, -0.5, 0.5, 0.5).

® inside(location) —returns true if the location is entirely enclosed by the space defined by the
location parameter, raise otherwise. Note that if the two locations are exactly equal, the result of
calling the inside () method is faise.

Apama EPL Reference 5.2.0 - APAMA 56

Reference types

parse () —method that returns the 1ocation instance represented by the string argument. You can
call this method on the 1ocation type or on an instance of a 1ocation type. The more typical use is
to call parse () directly on the 10cation type.

The parse () method takes a single string as its argument. This string must be the string form of a
location object. The string must adhere to the format described in Deploying and Managing Apama
Applications, "Event file format". For example:

location a;
a := location.parse(" (15.23, 24.234, 19.1232, 28.873)");

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

tostring () —returns a string representation of the 1ocation.

Reference types

sequence

Values of the sequence type are finite ordered sets or arrays of entries whose values are all of the same
primitive or reference type. The type can be any Apama type.

Usage

Sequences are indexed by nonnegative integers from 0 to one less than the number of entries given
by their size inbuilt method. Sequences are dynamic and new entries can be added and existing
entries deleted as needed.

The individual elements of a sequence can be referenced in several ways.

With subscripts — use the [1 operators in combination with an integral expression, to reference
sequence elements as an array. For example, asequence (3] refers to the fourth element of a
sequence. The first element is asequence (0]. The last, for a sequence with » elements is asequence[n
-1]

With the for loop — use the for loop to iterate over the individual elements of the sequence from
tirst to last. See "The for statement" on page 123.

With instance methods — You can use the indexof, insert, delete (and others) methods to operate
on individual elements.

Two sequences are equal if they are the same length and corresponding elements are equal.
Otherwise, they sort according to the earliest difference. For example:

"abe" sorts earlier than "apexyz»
[1,2,3] sorts earlier than (1, 3, 0]

[1,2,3] sorts earlier than [1,2,3,77,88,99]

The empty sequence sorts earliest of all.

Syntax

The syntax for sequences is:

Apama EPL Reference 5.2.0 - APAMA 57

Reference types

sequence< type > varname

For example:

// A sequence to hold the names and volume of all my stocks

// (assuming the StockNameAndPrice event type includes a string
// for stock name and float for the volume)
sequence<StockNameAndPrice> MyPortfolio;

// A sequence to hold a list of prices
sequence<float> myPrices;

Note that sequences of sequences (and so on) are also supported. Care must be taken in how these are
specified by separating trailing > characters with white space, to distinguish them from the right-shift
operator >>. For example:

// A correctly specified sequence containing sequence elements
sequence< sequence<float> > willWork;

// An incorrectly specified sequence containing sequence elements
sequence<sequence<float>> willnotWork;

A global variable of type sequence is initialized by default to an empty instance of the type defined.
On the other hand, you must explicitly initialize a local variable using the new operator, as follows

sequence<integer> someNumbers;
someNumbers := new sequence<integer>;

It is also possible to both declare and populate a variable of type sequence as a single statement,
regardless of the scope in which the variable is declared, as follows:

sequence<integer> someNumbers := [0, 1, 2, 3, 4, 5, 6, 7, 8, 91;
Use () to delimit the sequence and a comma , to delimit individual elements.

A sequence variable can be a potentially cyclic type — a type that directly or indirectly refers to itself.
For details about the behavior of such objects, see "Potentially cyclic types" on page 72.

Methods

The methods available to the sequence data structure are:

Apama EPL Reference 5.2.0 - APAMA 58

Reference types

SequencelMethods

_.l SequenceExpression |—©—)

TEDNO >
Sppenasezence (O o

canParse “ Expression)

(O~0

i

clone e)

insert

O

>

remove Expression)

reverse c)

setCapacity Expression

v

w5iz(0 >

g

)

toString c)

® oppend(item) —appends the item to the end of the sequence.

For example: myPrices.append(55.20) ;

® sppendSequence (sequence) — appends the sequence tO the end of the sequence that this method is
called on. The appended sequence must be the same type as the sequence this method is called

on.

® canrarse() — this method is available only on sequences where the item type is parseable.
Returns true if the string argument can be successfully parsed to create a sequence object. For
more information about the parseable type property, see the table in "Type properties summary"

on page 64.

® clear() — sets the size of the sequence to 0, deleting all entries.

® Clone() —returns a new sequence that is an exact copy of the sequence. All the sequence’s contents
are cloned into the new sequence, and if they were complex types themselves, their contents are

cloned as well.

Apama EPL Reference 5.2.0

«"APAMA °

Reference types

When the sequence you are cloning is a potentially cyclic type, the correlator preserves multiple
references, if they exist, to the same object. That is, the correlator does not create a copy of the
object to correspond to each reference. See also "Potentially cyclic types" on page 72.

® indexOf (item) —return as an integer the location of the first matching item within the sequence.
This method is available only if the item type is a comparable type. For details about whether
a type is comparable and, if so, how the comparison is done, see "Comparable types" on page
71. The value returned by indexot () will be from o to size() - 1 if the item is found, or -1 if
the item is not a member of the sequence. A call to indexof () to find the index of a van value in a
sequence of decimal OT float values returns -1 because van values cannot be compared for equality
by using the standard operator.

® insert(item, integer) —insert the item specified into the location indicated by the second
parameter. The location must be a valid index within the sequence, or the next index due to be
filled. That means that the only valid values are from o to size (), inclusive. An invalid value will
cause a runtime error, which will terminate the enclosing monitor instance.

®* parse() — this method is available only on sequences where the item type is parseable. Returns
the sequence object represented by the string argument. For more information about the parseable
type property, see the table in "Type properties summary" on page 64. You can call this
method on the sequence type or on an instance of a sequence type. The more typical use is to call
parse () directly on the sequence type.

The parse () method takes a single string as its argument. This string must be the string form of a
sequence object. The string must adhere to the format described in Deploying and Managing Apama
Applications, "Event file format". For example:

sequence<float> s := [];
s := sequence<float>.parse("[1.0, 4.0, 9.0, 16.0, 25.01");

You can specify the parse () method after an expression or type name. If the correlator is unable
to parse the string, it is a runtime error and the monitor instance that the EPL is running in
terminates.

When a sequence is a potentially cyclic type, the behavior of the parse () method is different. See
"Potentially cyclic types" on page 72.

remove (integer) — remove the n™" element in the sequence, moving all the elements above it down
and reducing the size by 1. Note that in EPL sequence elements are indexed from o, i.e. the first
element is at location o.

FOI’ example: myPrices.remove (1) ;

®* rcverse() —modifies the sequence by reversing the order of the items in the sequence. For
example, if the sequence contains 1, 2, 3, 4, then after execution of reverse () the updated sequence
contains 4, 3, 2, 1. There is no return value; the method modifies the sequence in place and does
not create a new sequence nor does it create any new items.

® sctCapacity (integer) — sets the amount of memory initially allocated for the sequence. Note that
this does not limit the amount of memory the sequence can use. By default, as you add more
elements to a sequence, the correlator allocates more memory. Calling sequence.setcapacity () can
improve performance because it removes the need to add more memory repeatedly as you add
elements to the sequence. For example, consider a sequence that you intend to populate with
1000 elements. A call to setcapacity (1000) removes the need to allocate additional memory unless
more than 1000 elements are added. A call to this method does not change the behavior of your
code.

Apama EPL Reference 5.2.0 - APAMA 60

Reference types

setSize (integer) — sets the number of elements in the sequence to the specified integer, either
deleting entries from the end or adding initialized (using default values of variables) entries to
the end.

For example: myprices.setsize (10);
size() —returns as an integer the number of elements in the sequence.

sort () — Sorts the sequence it is called on in ascending order. The type of the sequence items must
be comparable. See "Comparable types" on page 71. There is no return value; the method
modifies the sequence in place and does not create a new sequence nor does it create any new
items. A sequence of decimal Or £loat Values that contains nan values cannot be sorted and will
result in termination of the monitor instance that contains the method call.

For example:

sequence<integer> s := [4,2,3,1];
s.sort () ;

After that, s is (1,2, 3, 4].

tostring () — convert the entire sequence to a string. This will create a string containing all the
elements enclosed within square brackets [1, separated by commas, , . Thatis, (<item> , ...,

<itemp>]

When a sequence is a potentically cyclic type, the behavior of the tostring () method is different.
See "Potentially cyclic types" on page 72.

linteger] — retrieve or overwrite an existing entry from the sequence, specifically the one located
at the index specified. Note that in EPL sequence elements are indexed from o, that is, the first
element is number o. The index specified must be valid, that is it must be between 0 and size () -
1, inclusive, as otherwise a runtime error will occur and the monitor instance will terminate.

F(erxarn}ﬂeltotalCost := myPrices[1l] + myPrices[2];

Iterating over sequence elements

You can iterate over a sequence both on the elements and on the indices. The indices are numbered
from o to size() - 1, inclusive. For example:

sequence<string> seq := ["zero", "one", "two"];

// sequence elements
string s;
for s in seq {

}

print s;

// sequence indices
integer i := 0;
while 1 < seqg.size() {

}

print seqli];
i =i+ 1;

Loops are discussed in "Compound statements" on page 123.

Reference types

Apama EPL Reference 5.2.0 - APAMA 61

Reference types

StackTraceElement

A stackTraceglenment type value is an object that contains information about one entry in the stack
trace.
Usage

A com.apama.exceptions.Exception object contains a sequence Of stackTrackElement objects, which indicate
where an exception occurred. The correlator generates this sequence. You should not need to create
stackTraceElement Objects yourself. The first object in the sequence points to the line of code that
caused the exception. The next object points to the action that contains the code that caused the
exception. The next object points to the action that called that action, and so on.

The stackrracerlement type is defined in the com.apama.exceptions namespace. Typically, you specify
using com.apama.exceptions.StackTraceElement SO yOUu Can easily refer to stackTraceElement objects.

It is permissible to parse an event that contains a stackTraceElenent Object or a sequence of
StackTraceElement objects.

Methods

The following methods may be called on values of stackrraceElement type:

StackTraceElementMethods

—-| StackTraceElementExpression . c 0

® getactionName () — returns a string that contains the name of the action in which the exception
occurred.
® getrilename() — returns a string that contains the name of the file that contains the code in which

the exception occurred.

® getLineNumber () — returns an integer that indicates the line number of the code in which the
exception occurred.

® getTypeName () — returns a string that indicates the type (event, aggregate, monitor) that contains
the action in which the exception occurred..

® +tostring() — returnsa Stl’il’lg whose format is » typeName.actionName () filename:linenumber".

Reference types

Apama EPL Reference 5.2.0 - APAMA 62

monitor pseudo-type

stream

A value of strean type refers to a stream. Each stream is a conduit or channel through which items
flow. The item types that can flow through streams are event, location, boolean, decimal, float, integer,
or string. A stream transports items of only one type. Streams are internal to a monitor.

Usage

An event can contain a field of type strean, however you cannot send, emit, route, or enqueue an
event that has a strean type field. Also, you cannot specify an event that has a strean field in an event
template.

Syntax

The syntax for declaring a strean variable is:

stream< type > varname

Replace type with the type of the items in the stream. This can be an event type, or 1ocation, boolean,

decimal, float, integer, OT string.

Replace varname with an identifier for the stream. For example:

stream<Tick> ticks;

Methods

The methods available to the strean type are:

StreamMethods

—-| StreamExpression

® clone() —returns the original stream. It does not clone it.
® quit() —causes a stream listener to terminate.

If the referenced listener’s value is an inert stream, then the quit () method does nothing and does
not raise an error.

The quit () method takes no parameters and does not return a result.

Reference types

monitor pseudo-type

The use of the monitor keyword as a pseudo-type is limited to invocation of the supbscrive () and
unsubscribe () methods.

Usage

Use the following formats:

Apama EPL Reference 5.2.0 - APAMA 63

Type properties summary

monitor.subscribe (channel name) ;
monitor.unsubscribe (channel name) ;

Replace channel _name with a string expression that resolves to the name of the channel you want to
subscribe to or unsubscribe from. In a monitor instance, call these methods from inside an action.

It is not possible to use instances of the monitor type. For example, there cannot be variables or event
members of type monitor. You cannot specify a com.apama.Channel object as the argument to subscribe ()
Or unsubscribe () method.

MonitorMethods

monitor

G StringExpression
o StringExpression

® subscribe () — Subscribes the calling context to the specified channel. All listeners in the same
context as the calling monitor instance can process events sent to the specified channel. The
calling monitor instance owns the subscription. If the calling monitor instance terminates the
subscription ends.

Multiple monitor instances in the same context can subscribe to the same channel. Each event is
delivered once as long as any of the subscriptions are active. An event is not delivered once for
each subscription.

® unsubscribe () — Unsubscribes the calling context from the specified channel. If this was the only
subscription in the context to the specified channel then the context no longer processes events
sent to the unsubscribed channel.

Types

Type properties summary

Apama type properties include the following:
* Indexable — An indexable type can be referred to by a qualifier in an event template.

® Parseable — A parseable type can be parsed and has canrarse () and parse () methods. The type can
be received by the correlator.

* Routable — A routable type can be a field in an event that is
m Sent by the route statement
m Sent by the send...to Or enqueue. . .to statement
m Sent by the enqueue statement
m Sent outside the correlator with the enit statement
®* Comparable — A comparable type can be used as follows:
m Dictionary key
m Item in a sequence on which you can call sort () Or indexos ()
m Stream query partition key

m Stream query group key

Apama EPL Reference 5.2.0 - APAMA 64

Type properties summary

m Stream query window with-unique key

m Stream query equijoin key

® Potentially cyclic — A potentially cyclic type uses the en notation when it is parsed or converted

to a string. When a potentially cyclic type is cloned, the correlator uses an algorithm that

preserves aliases. See "Potentially cyclic types" on page 72

®* Acyclic — An acyclic type is a type that is not potentially cyclic.

* :-free — z-free types cannot contain references to instances of a particular event type e. This

property is used only to determine whether = is acyclic.

The following table shows the properties of each Apama type.

Type

Indexable

Parseable

Routable

Comparable

Acyclic

e-free

boolean

®

®

decimal

&

float

o

integer

string

location

O 0|00 |0

Channel

o

Exception

OO0 0|0 |0 |0 |0

context

o

listener

chunk

stream

action

(3 B % T R ¢ B %

3B B ¢ B

B 00 B8 006006606000

B 0[O0 |0O|0O| 00|00 |00 |0

B 000|000 0|00 06|00 |0

sequence

(3¢ I ¢ T I ¢ T N >¢ I ¢ A O ¢ B I B R B C B C B I <

Apama EPL Reference 5.2.0

s- APAMA

65

Type properties summary

Type Indexable Parseable Routable Comparable | Acyclic e-free

dictionary E:!
event r % V.4 1.4 W %

& Yes. This type has the corresponding property.
" Attempts to use a van in a key terminates the monitor instance.
? A channel object is parseable only when it contains a string.

* Although a context can be enqueued, it is not parseable, so the correlator will reject
it from the input queue with a warning.

% No. This type does not have the corresponding property.

This type inherits the corresponding property from its constituent types, that is, the
item type in a sequence, the key and item types in a dictionary, the types of fields in
an event. The type has the corresponding property only when all its constituent types
have that property.

4

An event defined inside a monitor cannot be received from an external source
nor emitted from that correlator. An event defined inside a monitor can be sent or
enqueued only within the same correlator.

The type is comparable only when all its constituent types are both comparable and

acyclic.
¥ An event k is acyclic only when all its constituent types are both acyclic and =-free.
Examples

The following code provides examples of event type definitions and their properties.

// You can do everything with "Tick", including index both its fields.
event Tick {
string symbol;
float price;
}
// You can do everything with "Order", except refer to its target or
// properties fields in an event template.
event Order {
string customer;
Tick target;
string symbol;
float quantity;
dictionary<string, string> properties;
}
// The correlator cannot receive the next event as an external event and
// you cannot usefully enqueue it, but you can send it, route it, or
// enqueue it to a context.
event SubscriptionRequest {
string channel;
context recipient;

Apama EPL Reference 5.2.0 - APAMA 66

Timestamps, dates, and times

// You can do very little with this event except access its members and
// methods. It cannot be routed, you cannot sort sequence<TimeParse>,
// trying to group a stream query by TimeParse is illegal, and so on.
event TimeParse {
import "TimeFormatPlugin" as TF;
string pattern;
chunk compiledPattern;
}
// This has all the same restrictions as TimeParse, but is also
// potentially cyclic, so will use the @n format when parsed or
// converted to a string.
event Room {
string roomName;
float squareFeet;
sequence<Room> adjacentRooms;
sequence<Employee> occupants;
}

Types

Timestamps, dates, and times

Although EPL does not have time, date, or datetime types, timestamp (a date and time) values can
still be represented and manipulated because EPL uses the rioat type for storing timestamps. See
"currentTime" on page 160.

Timestamp values are encoded as the number of seconds and fractional seconds (to a resolution of
milliseconds) elapsed since midnight, January 1, 1970 UTC and do not have a time zone associated
with them. Although the resolution is to milliseconds, the accuracy can be plus or minus 10
milliseconds, or some other value depending on the operating system.

If you have two float variables that both contain timestamp values, subtracting one from the other
gives you the difference in seconds.

You can add or subtract a time interval from a timestamp by adding or subtracting the appropriate
number of seconds (60.0 for 1 minute, 3600.0 for 1 hour, 86,400.0 for 1 day, and so forth).

See also:
® cvent.getTime () for information about when the correlator assigns timestamps to events.

* "Using the Time Format plug-in" in Developing Apama Applications in EPL for information about
formatting timestamps.

Types

Type methods and instance methods

There are two kinds of inbuilt methods — type methods and instance methods. Type methods are
associated with types. Instance methods are associated with values.

Type methods

To call a type method, you specify the name of the type followed by a period, followed by the
method name with its parameters enclosed in parentheses. Some methods do not have parameters
and for them you must supply an empty parameter list.

Apama EPL Reference 5.2.0 - APAMA 67

Type methods and instance methods

TypeMethodCall

_.l DataTypeName |—@—)
(—l TypeMethodName |-® @
\<| ActualParameterList |-f

CommonTypeMethodCall
—{DuTypeame) © ®

Examples

event someEvent;
{

integer n;
}
integer 1i;
i:=integer.getUnique () ;
print someEvent.getName () ;

Instance methods

Each type (except action), whether primitive or reference, has a number of instance methods that
provide a number of useful functions and operations on instance variables of that type. These
methods are quite similar to actions except that they are predefined and associated with variables,
not monitors or events.

InstanceMethodCall

_.l ExpressionReference |—©-)
(<| InstanceMethodName |-® @
\<| ActualParameterList |-f

To call an instance method, you specify an expression followed by a period and the name of the
method, followed by a parenthesized list of actual parameters or arguments to be passed to the
method when it is called.

Example

integer i := 642;
float £;

f := i.toFloat ();

print f.formatFixed (5);

The ExpressionReference can be a simple variable name or a more complicated expression that
includes a namespace, action or method calls, literals, subscript operators and so on.

The InstanceMethodName is the name of a method that is specific to the type of the variable. The
ActualParameterList syntax is described in "Action and method calls" on page 133.

Apama EPL Reference 5.2.0 . APAMA

68

Type conversion

Some methods do not have parameters and for those, you must supply an empty argument list as
fOHOWSZ methodname ().

See Also

See the following sections for the methods you can call on types and instances:
®* "boolean" on page 18

® "float" on page 21

®* ‘"integer" on page 27

® 'string" on page 30

® "action” on page 39

®* "context" on page 43

® ‘"dictionary" on page 44
* ‘event" on page 49

® 'listener" on page 55

® "location" on page 55

® "sequence" on page 57
® 'stream" on page 63

Types

Type conversion

EPL requires strict type conformance in expressions, assignment and other statements, parameters in
action and method calls, and most other constructs. This means that

* The left and right operands of most binary operators must be of the same type.

®* An actual parameter passed in a method or action invocation must be of the same type as the
type of the corresponding formal parameter in the action or method definition.

* The expression result type on the right side of an assignment statement must be the same type as
that of the target variable.

®* The expression result type in a variable initializer must be the same type as that of the variable.
* The expression result type in a subscript expression must be integer.

®* The expression result type in a return statement must be the same type as that specified in the
action’s returns clause.

EPL does not allow implicit or explicit casting to perform type conversions. Instead, the inbuilt
methods associated with each type include a set of methods which perform type conversion. For
example:

string number;

integer value;

number := "10";
value := number.tolInteger();

Apama EPL Reference 5.2.0 - APAMA 69

Type conversion

This illustrates how to map a string to an integer. The string must start with some numeric

characters, and only these are considered. So if the string’s value was “10n”, the integer value

obtained from it would have been 10. Had the conversion not been possible because the string did
not start with a valid numeric value, then vaiue would have been set to o.

These method calls can also be made inside event expressions as long as the type of the value
returned is of the same type as the parameter where it is used. Therefore one can write:

on all StockTick ("ACME", number.toFloat());

Method calls can be chained. For example one can write:

print

((2 + 3).toString().toFloat ()

+ 4.0).toString();

Note that as shown in this example, method calls can also be made on literals.

The following table indicates the source and target type-pairs for which type conversion methods are

provided.
Source Target Type
Type
boolean | decimal |dicticmary| ewvent integer float sequence | string

boolean [assign toString ()

decimal assign . toFloat () toString()
round ()
ceil ()
floor ()

dicticnary assign and toString ()

clone
event assign and toString()
clone

integer tolecimal () assign and toString()
toFloat ()

float toDecimal () . assign toString()
round ()
ceil ()
floor ()

sequence assign and toString ()

clone
string toBoclean() | toDecinal () | parses () parse () toInteger() | teFloat () |parse () assign and
parss () parss () parse () parse () parse ()

In the table above, "assign" means values of the type can be directly assigned to another variable of
the same type, without calling a type conversion method and "clone" means a value of the type can
be copied by calling the cione () method.

Apama EPL Reference 5.2.0

s- APAMA

70

Comparable types

Types

Comparable types

The operators <, >, <=, >=, =, or = can be used to compare two values that are both the same type and
that type can only be one of the following types:

® decimal
® float
® integer
* string

The following types are considered to be comparable types because you can use each one in a
sequence that you plan to sort:

* poolean

® decimal

® float

® integer

® string

® context

® Jdictionary if it contains items that are a comparable type
®* cvent if it contains only comparable types

® Jocation

® scquence if it contains items that are a comparable type
The correlator cannot compare the following types of items:
® sction

®* chunk

® Jictionary if it contains items that are an incomparable type
® cvent if it contains at least one incomparable type

® listener

® scquence if it contains items that are an incomparable type
® stream

* Potentially cyclic types

For details about how the correlator compares items of a particular type, see the topic about that
type.

In EPL code, you must use a comparable type in the following places:

Apama EPL Reference 5.2.0 - APAMA 71

Cloneable types

® As the key for a dictionary. The type of the items in the dictionary does not need to be
comparable.

* |na sequence lf you want to call the indexOf () Of sort () method on that sequence.
®* Asakey in the following stream query clauses:

m Equi-join

B group by

B partition by

B with unique

Types

Cloneable types

Since variables of reference types are bound to the runtime location of the value rather than the
value itself, direct assignment of a variable of reference type copies the reference (that is, the value’s
location) and not the value. To make a copy of the value, you must use the c1one instance method
instead of assignment. The types that have this property are called cloneable types.

The cloneable types are string, dictionary, event, location, and sequence.

For dictionary, event, and sequence types, the behavior of the cione () method varies according to
whether or not the instance is potentially cyclic.

* When the instance is potentially cyclic, the correlator preserves multiple references, if they exist,
to the same object. That is, the correlator does not create a copy of the object to correspond to
each reference. See also "Potentially cyclic types" on page 72.

®* When the instance is not potentially cyclic, and there are multiple references to the same object,
the correlator makes a copy of that object to correspond to each reference.

While you can call the cione () method on a stream value, or a value that indirectly contains a stream or
listener value, cloning returns another reference to the original stream or listener and does not clone
it.

Types

Potentially cyclic types

A cyclic object is an object that refers directly or indirectly to itself. For example:

event E {
sequence<E> seq;

}

E e := new E;

e.seq.append (e) ;

When an object is cyclic or contains a reference to a cyclic object, it can be referred to as containing
cycles. If it is possible to create an object that contains cycles, the type of that object is referred to as
potentially cyclic.

Apama EPL Reference 5.2.0 - APAMA 72

Potentially cyclic types

When a type has the potential to contain cycles, and you call parse () on that type, or tostring () or
clone () on an object of that type, the result is different from when those methods are called on a
type, or object of a type that is not potentially cyclic. Consequently, it is sometimes important to
understand which types are potentially cyclic and what the string form of these objects looks like.

This is described in the following topics:

®* "Which types are potentially cyclic?" on page 73

® "String form of potentially cyclic types" on page 74
Types

Which types are potentially cyclic?

A type is potentially cyclic if it contains one or more of the following;:

® A dictionary OI sequence type that has a parameter that is of the enclosing type. For example:

event E {
dictionary<integer,E> dict;
}
event E {
sequence<E> seq;

}

®* An action variable member. For example:

event E {
action<E> a;

}

* A potentially cyclic type. For example:

event E {
sequence <E> seq;

}

event F {
E e;

}

r does not have any members that refer back to =, nor does it contain any action variables.
However, it does contain £, which is a potentially-cyclic type. Therefore, an instance of r might
contain cycles.

Likewise, a dictionary OT sequence is potentially cyclic if it has a parameter that is a potentially
cyclic type. Consider the following event type:
event E {

sequence <E> seq;

}

Given this event type, dictionary<string, E>is potentially cyclic because its parameter is
potentially-cyclic. Similarly, sequence<e> is potentially cyclic.

A cyclic object can indirectly contain itself. Consider the following, using the same definition of = as
above.

E el := new E;
E e2 := new E;
el.seq.append(e2) ;
e2.seq.append(el) ;

Apama EPL Reference 5.2.0 - APAMA 73

Potentially cyclic types

In this example, both 1 and e2 are cyclic:
® .1iSel.seq[0].seql0]
® oS e2.seq[0].seql0]

Following is another example of an object that indirectly contains a cycle:

E e3 := new E;
E e4 new E;
e3.seq.append (ed) ;
ed.seq.append(ed) ;

In this example, 3 is cyclic, even though it does not refer back to itself. Instead, 3 refers to e4 and e«
refers back to itself.

You can pass objects that contain cycles between EPL and Java. Remember that JMon programs do
not support action type variables, and so any cyclic types you pass cannot contain them.

Potentially cyclic types

String form of potentially cyclic types

A potentially cyclic object might have more that one reference to the same object. When you need
the string form of a potentially cyclic object, the correlator uses a special syntax to ensure that you
can distinguish multiple references to the same object from references to separate objects that merely
have the same content.

When the correlator converts a potentially cyclic object to a string, the correlator labels that object
eo. If the correlator encounters a second object during execution of the same method, it labels that
object as e1, and so on. Whenever the correlator encounters an object that it has already converted, it
outputs that object's eindex label rather than converting it again. For example:

event E { sequence<E> seq; }

E e := new E;

e.seqg.append (e) ;

print e.toString(); // "E([QO])"

Following is a more complicated example:

event Test {
string str;
sequence<Test> seq;
string str2;

}

monitor m {

action onload() {
Test t:=new Test;
t.str:="hello";
t.str2:=t.str;
t.seqg.append (t) ;
Test t2:=new Test;
t.seqg.append (t2) ;
t.seqg.append (t2) ;
t2.seq.append (t) ;
print t.toString();

}

This prints the following;:

Test ("hello"™, [@0, Test ("", [@O],""),@2],"hello")

Apama EPL Reference 5.2.0 - APAMA 74

Support for IEEE 754 special values

The objects eo, e1, e2, and e3 correspond to the following:

@0 Test ("hello", [@0, Test ("", [@0],""),@2], "hello™) t in the above example

el [0, Test ("", [€0],""), 2] t.seq in the above example
e2 Test ("", [@0],"") t2 in the above example

@3 [€0] t2.seq in the above example

The following example uses the cione () method and contains action references. The result uses the
new string syntax for aliases to the same object.

event E

}

{

action<> act;
sequence<string> x;
sequence<string> y;

monitor m {

}

E

a.
.yi=a.x;

E

b.

action onload() {

a:=new E;
x.append ("alpha");

b:=a.clone();
x[0] :="beta";

print b.y.toString();
print a.toString();

The output is as follows:

["beta"]

E (new action<>, ["alpha"], Q1)

Note that dictionary keys can never contain aliases so they do not receive ex» labels for referenced
objects in tostring () and parse () methods.

Whether you need to do anything to handle this string syntax depends on why you want a string
representation of your object:

If you are using the string for diagnostic messages, you just need to understand the syntax.

If you plan to feed the string into the parse () method, the parse () method will handle it correctly.

If you plan to feed the string into some other program, you should either avoid repeated
references in an object or make sure the other program can handle the eindex syntax.

Potentially cyclic types

Support for IEEE 754 special values

EPL supports the following IEEE 754 special f1oat and decinal values:

naN — in EPL, these are quiet vans. The string representation is "van".

+Infinity — The string representation is "nfinity".

-1nfinity — The string representation is "-1nfinity".

Apama EPL Reference 5.2.0

«"APAMA ~

Support for IEEE 754 special values

The correlator returns one of these values as the result of an invalid computation. For example,
dividing zero by zero or calculating the square root of a negative number. The correlator returns
infinities as the result of computations that overflow, for example taking a very large number and
dividing it by a very small number.

The correlator can receive external events that contain these special values. You can send, route,
emit, and enqueue events that contain these values. If the correlator receives an event that contains a
floating point value that is too large to be represented as a 64-bit floating point number the behavior
is as if the value had overflowed and the correlator represents the value as infinity.

The following operations return va:

® 0.0/0.0

® ¢ osqrt() (where x < O)

® . .1n() (Where x <0)

® x.log10() (Where x <o)

® Infinity - Infinity

® 0.0 * Infinity

In addition, most operations that accept nan as a parameter return nan. For example:
® qNaN.exp() = NaN

® NaN + 3.0 = NaN

The nan value behaves differently when compared to other floating point numbers. van does not
compare equal to any other number, including itself. It is unordered with respect to all other floating
point numbers, so van < x and nan > x are both false.

The following operations return positive infinity (note that IEEE 754 has signed zeroes):
® /0.0 (where x> 0)

®* y/-0.0 (Where x <o)

® Infinity.sqrt()

The following operations return negative infinity:

® /0.0 (where x<o)

® y/-0.0 (Where x > 0)

®* (0.0).1n()

The following table lists the available constants. These are provided to ensure consistent values, and
a few have been provided for convenience.

Constant Value

decimal.E '
float.E Euler's number, e

decimal.PI
float.PI The ratio of a circle's circumference to its diameter — 3.14159265

Apama EPL Reference 5.2.0 - APAMA 76

Support for IEEE 754 special values

Constant Value
decimal .MIN
float.MIN The smallest, positive, normalized floating point number.
(~2e-308)

decimal.MAX L. . . .
float.MAX The largest, finite, positive floating point number. (~2e+308)

decimal .EPSILON
float.EPSILON The smallest x where (1+x) > 1. Note that decimal.epstron and

float.EpsILoON are not the same value. The value is dependent on
whether the type is decimal Or float.

decimal .NAN

float.NAN IEEE 754 Not-a-Number.
decimal.INFINITY
float.INFINITY IEEE 754 positive infinity.

integer.MAX
Largest positive value an integer can take (2°° - 1).

integer.MIN
Largest negative value an integer can take (-2°°).

Special cases of pow()

In the normal case, x.pow (y) yields exactly what you might expect, s0 3.0.pow(3.0) = 27.0 and
2.0.pow(0.5) = 1.41421. But there are a very large number of special cases. The documentation for
fd1ibm, which is the mathematics library used by the EPL interpreter for rioat types lists the special
cases shown below. Although EPL uses a different math library for decimal types, the behavior is the
same for float and decinal types.

. (anything)o =1

* (n' - x forany x

. (anything)NaN = NaN

. NaN(anything except 0) — NaN

. X+w:+w,iflxl > 1

. X_w:+0,iflxl > 1

. X+w:+0,iflxl <1

. X_w:+°°,iflxl <1

. irliroo = NaN

. +O(+anything except 0 and NaN) - 40

. _O(+anything except 0, NaN and odd integer) - 40
. +O(—anything except 0 and NaN) = e

. _O(—anything except 0, NaN and odd integer) = e
. (odd integer) (odd integer)

-0 = -(+0)

Apama EPL Reference 5.2.0 - APAMA 77

Support for IEEE 754 special values

- +w(+anything except 0 and NaN) -

& +w(—anythlng except 0 and NaN) - 40

™ _w(anything) _ _O(—anything)

& (~anything) (integer) - (-1) (integer) N (+anything(lnteger))

. (-manything except 0 and «) (non-integer) = NaN

Types

Apama EPL Reference 5.2.0 78

s- APAMA

Event definitions

Chapter 3: Events and Event Listeners

B EVENE EfINITIONS ..o 79
B EVENEEBMPIAIES ..o e bbb bbbt b b b e e e et s s sttt 81
B Event listener definitioNS ..o e 86
B EVENEHIfEOYCIE 1ottt 86
B EVENt ISTENET IfECYCIE ..vvvecicccccee e ettt s ettt a e 86
B EVENE PrOCESSING OFAET ...vvteictctctetctet ettt sttt sttt bbbt bbb b bbbt b e s e e s s e e s s s e s s s st b 87
B EVENE EXPIESSIONS ...oviviiitieieitetet ittt ettt ettt et s bbb e bbb e s b e b e b et b e b e s e st e b e e st b e s e st s enn s e 89
B EVENT CRANNEIS ..ottt 96

In EPL, an event is a data object that is a notification of something happening, such as arrival of a
customer order, shipment delivery, sensor state change, stock trade, or myriad other things. Each
kind of event has an event type name, zero or more data elements or fields, and zero or more event
actions associated with it.

Event objects can also be used simply as complex data structures to hold multiple related data
values. They can also be used as a container for actions that can be shared by multiple monitors.

Event objects are hierarchical structures that can contain simple values, other events, and arrays.

When the correlator executes an on statement, it creates an event listener. An event listener watches
for an event, or a sequence of events, that matches the event or event sequence specified in the on
statement. Conceptually, event listeners sift the events that come in to the correlator and watch for
matching events.

Event definitions

An event definition specifies the event type, and any event fields and/or event action fields.

EventDefinition

——Cevent)—-l EventTypeName |-@ @

EventFieldDef

EventActionDef

Events and Event Listeners

Event fields

Apama EPL Reference 5.2.0 - APAM A 79

Event definitions

An event field definition specifies the type and name of the field.

EventFieldDef

I DataTypeDef H EventFieldName |—@—

Rule components

DataTypeDef is as described in "Variable declarations” on page 150. Event fields that do not have
the wildcard attribute are indexed by the correlator when you listen for them. There can be at most
32 indexes on an event type. Event fields of the type 10cation use two indexes for each field.

An event that contains an action, chunk, listener, and/or strean field is valid only within the monitor
that creates it. You cannot send, enqueue or route an event that contains, directly or indirectly, a field
of such types.

Event definitions

Event actions

An event action is a subprogram or function that is associated with the event definition. It can be
invoked or called from any monitor or from another action in the same event. Like monitor actions,
the caller must supply actual parameters of the same type and number as the event action’s formal
parameters and if the action returns a value, then the return value must be consumed by the caller.

Unlike monitor actions (see "Monitor actions" on page 101), events do not have the special actions
onload(), onunload(), and ondie ().

EventActionDef

——<action>—-| ActionName I @——
\<| FormalParameters |-f

Event action formal parameters

Event action FormalParameters is a comma-separated list of ParameterDefinitions, enclosed in
parentheses.

FormalParameters
(O)
N 7/
ParameterDefinition
)
N

Apama EPL Reference 5.2.0 - APAMA 80

Event templates

Rule components

The FormalParameters is a comma-separated list of ParameterDefinitions, enclosed in parentheses.

A parameter definition consists of a type name and an identifier. The identifier is the name of a
parameter variable which will be bound to a copy of the value of an expression specified by the caller
(that is, the value passed by the caller) when the action is invoked. The number and type of actual
parameter values passed by a caller must match those listed in the action’s formal parameters.

The scope of a parameter variable is the statement or block that forms the action body. Parameter
variables are very similar to an action’s local variables.

Event action return value

An event action return value specifies the return value type.

ReturnValue

——(returns)—-l DataTypeName I——

Rule components

If the event action definition includes a returns clause, then the action returns a value of the specified
type. All control paths within the action body must lead to a return statement before the end of the
action body.

Event action body

The block construct forms the event action body. All variable references within an event action body
must be one of the following:

* A field of the event
* A formal parameter of the action
* A local variable defined in the action body

Event definitions

Event field and action scope

The scope of an event’s fields and actions is the same as the scope of the event itself except that the
event fields are always referenceable within the event’s actions.

Event definitions

Event templates

An event template is a construct that allows you to specify qualifying or matching criteria based on
values of one or more of an event’s fields. In event templates, you can qualify only on those event
fields whose type is a primitive type. Event templates are used with on statements. See "The on
statement” on page 125.

Apama EPL Reference 5.2.0 - APAMA 81

Event templates

EventTemplate

—-| EventTypeName |-@ @
\—l EventFilterExprList |-j °

An event template begins with the name of an event type that is to be matched.

Event template s can be either positional or named or a combination of both. Further, the criteria can
be omitted entirely, in which case any event of the same event type will match.

Optionally, a colon and an identifier can follow the event expressions. This is called an event
coassignment and specifies a variable whose value will become (that is, will be assigned) a reference
to the matched event structure when the correlator detects a matching event and listener, and
invokes the actions defined in the listener.

See also "Stream source templates" on page 148.

EventQualifierExprList

ByPositionQualifierList |

ByNameQualifierList I

ByPositionQualifierList |-—@——| ByNameQualifierList

When both positional and named qualifiers are present in an event template qualifier expression list,
the positional matches must come first.

Events and Event Listeners

By-position qualifiers

The correlator evaluates a positional event template against the event field that is at the same
position in the event definition as the qualifier's position in the qualifier list.

ByPositionQualifierList

—-| ByPositionQualifier I
(-l ByPositionQualifier |—-@j

Example

For example, suppose an event has the fields shown below:

event samplel

{
string itemName;
float price;
integer quantity;

}

An example of a by-position qualifier list for this event is as follows:

Apama EPL Reference 5.2.0 - APAMA 82

Event templates

samplel ("eggs", 0.50, 3)

This template matches sample1 events that have an itemvame value of "eggs®, a price value of 0.50, and a
quantity value of s.

ByPositionQualifier

(%)
N

\-l RangeExpression I—/

{LELT,

Rule components

In ByPositionQualifier constructs, * matches any value of an event field in the corresponding
position.

A RangeExpression(see "Range expressions" on page 84) matches the event field values in the
corresponding position to a low and high boundary value of the range. A match occurs when the
tield value is within the range.

The relational operators < (less than), <= (less than or equal to), > (greater than), >= (greater than or
equal to), and = (equal to) specify a comparison of the event field value with the expression value
that follows. A match occurs when the relation result is true. The expression to the right of the
relational operator cannot contain any references to the event’s fields and must have a result type
that is the same as the event field’s type and must be one of decimal, float, integer OF string.

Event templates

By-name qualifiers

In ByNameQualifiers, the qualifier names an event field whose value is to be matched, instead of
matching by position.

ByNameQualifierList

—-| ByNameQualifier I
(—l ByNameQualifier |—-@-)

Apama EPL Reference 5.2.0 - APAMA 83

Event templates

ByNameQualifier

oo ()

Expression

{LELT,

e (i) e

Rule components

The identifier must be the name of one of the event’s fields. The field’s type must be integer, decimal,
float, OF string. Each event field is allowed to appear only once on the left side of a by-name qualifier
and the same field is not allowed in both a by-position qualifier and a by-name qualifier in the same
event template.

If the qualifier is of the form Identifier = , this means the qualifier matches all possible values of the
specified event field.

If the qualifier is of the second form, using one of the relational operators < (less than), <= (less than
or equal to), > (greater than), >= (greater than or equal to), and = (equal to), then the event field value
is compared with the event template’s value and a match occurs when the result of the comparison is
true.

If the qualifier is of the third form, using in followed by a range expression, then the field is
compared against the boundary values of the range.

The expression or range expression on the right side is not allowed to refer to any of the event’s
fields.

The expression or range expression is evaluated once, when the on statement containing the template
is executed and its event expressions evaluated, not each time an event of the same type is processed
by the correlator.

Event templates

Range expressions

A RangeExpression is a part of a qualifier expression that describes a range of consecutive decinal,
float, integer, OF string values between a low boundary and a high boundary. The correlator tests an
event’s field value against this range to determine whether or not it falls within the specified range.

Apama EPL Reference 5.2.0 - APAMA 84

Event templates

RangeExpr

< @ > :Expression I—-()—-| Expressionl < @ >

Rule components

The first expression’s value forms the low boundary value and the second expression’s value forms
the high boundary value.

Both expression values must be of the same type and one of decimal, float, integer, OF string. Both
expression types must be of the same type as the event field being tested. Neither expression can
contain any references to the event’s fields.

If the low boundary value is greater than the high boundary value the EPL runtime automatically
reverses them.

Example

In the following EPL, the three on statements specify event listeners that are all listening for the same
range of events:

event test
{
string s;
float £;
}

monitor RangeExample
{

test t;

action onload()

{
on test (f > 9.0) and test (f <= 10.0)

{

}
on test ("", (9.0 : 10.0]
{

}
on test (f in (9.0 : 10.0]

{
}

}

Depending on which of the starting operators, [or (, and ending operators, 1 or), you use, the
boundary values will either be included in the range or excluded from: it. If the starting operator

is [, then the low boundary value is included and candidate values greater than or equal to the

low boundary value are in the range. If the starting operator is (, then the low boundary value is
excluded and candidate values larger than the low boundary value are in the range. If the ending
operator is 1, then the high boundary value is included and candidate values less than or equal to
the high boundary value are in the range. If the ending operator is), then the high boundary value is
excluded and candidate values lower than the high boundary value are in the range. Note that you
can have one kind of starting operator at the beginning and the other kind at the end; they do not
need to match.

Event templates

Apama EPL Reference 5.2.0 - APAMA 85

Event listener definitions

Event listener definitions

You define an event listener in an on statement. See "The on statement” on page 125.

Events and Event Listeners

Event lifecycle

An event enters the correlator in one of the following ways:

®* Anevent is received from another component, such as the engine_send utility, an adapter, another
correlator, or a process that is using the Apama client API. The correlator places the event on
the input queue of each context that is subscribed to the channel on which the event is sent. If an
event is not sent on a named channel then the correlator places the event on the input queue of
each public context.

®* An EPL program creates an event instance and executes a send. . to statement. If the target is a
channel then the correlator places the event on the input queue of each context that is subscribed
to that channel. If the target is a context (or a sequence of contexts) then the correlator places the
event on the input queue of that context (or on the input queue of each context in the sequence).

®* An EPL program creates an event instance and executes an enqueue. . . to statement. The correlator
places the event on the input queue of the specified context or on the input queue of each context
in the specified sequence of contexts.

®* An EPL program creates an event instance and executes an enqueue statement. The correlator
places the event on the input queue of each public context. If the input queue for a public context
is full then the correlator keeps the event on a special queue for enqueued events until there is
room on the input queue that was full.

®* An EPL program creates an event instance and executes a route statement. The correlator places
the event on the input queue of only the context that contains the monitor instance that routed
the event.

When the event gets to the front of the context’s input queue, the correlator evaluates the event to
determine if it is a match for any active event listeners in that context. That is, the correlator checks
whether there are any event listeners in that context that are watching for that particular event. If
there is a match, the match triggers the event listener. This means that the correlator executes the
actions defined in the matching event listener.

It is possible for the actions defined in the event listener to route one or more events back to the
context’s input queue. A routed event goes right to the front of the context input queue. When the
correlator is finished processing the event that triggered the event listener action, the correlator
evaluates any routed events before it moves on to the event that was on the input queue after the
matching event.

Events and Event Listeners

Event listener lifecycle

Apama EPL Reference 5.2.0 - APAMA 86

Event processing order

When you inject a monitor into the correlator, the correlator instantiates the monitor in the main
context and executes the monitor’s onlocad () action. The onlcad() action typically specifies at least one
on statement. An on statement includes an event expression that identifies the event or sequence of
events that you are interested in. This is what you want to listen for. An onlcad() statement is not
required to specify an on statement. If there is no on statement, the correlator immediately unloads
the monitor.

When the correlator executes an on statement, it sets up an event listener for the specified event or
sequence of events. After the correlator sets up the event listener, the event listener watches for an
event that matches its event expression. When the event listener detects a matching event, the event
listener triggers and the correlator executes the action specified in the on statement.

For an event listener that is looking for a single instance of an event, this is straightforward.
However, the event expression that defines what you are looking for can specify all instances of an
event, all instances of a sequence of events, and it can have temporal and logical constraints. This
makes the lifecycle of an event listener less straightforward.

For example, consider the following event listener:

on all A() success;

When the correlator sets up this event listener, it sets up an event template to look for an » event.
When an a event arrives, the correlator does the following;:

®* Executes the success () event listener action.
® Sets up a new event template to look for the next a event.

Now consider this event listener:

on all A() -> all B() success;

Again, suppose that the correlator sets up this event listener and an » event arrives. This time the
correlator does the following:

1. Sets up an event template to listen for the next s event.
2. Sets up an event template to listen for the next a event.

This event listener will be active until it is explicitly killed because there will always be an event
listener that is looking for the next » event.

Additional information about event listener lifecycles is in Developing Apama Applications in EPL,
"How the correlator executes event listeners".

Events and Event Listeners

Event processing order

As mentioned earlier, contexts allow EPL applications to organize work into threads that the
correlator can execute concurrently. When you start a correlator it has a main context. You can create
additional contexts to enable the correlator to concurrently process events. Each context, including
the main context, has its own input queue. The correlator can process, concurrently, events in each
context.

Concurrently, in each context, the correlator

®* Processes events in the order in which they arrive on the context’s input queue

Apama EPL Reference 5.2.0 - APAMA 87

Event processing order

* Completely processes one event before it moves on to process the next event
When the correlator processes an event within a given context, it is possible for that processing to:
* Send or enqueue an event to a particular channel

The correlator places the event on the input queue of each context that is subscribed to the
specified channel.

* Send or enqueue an event to a particular context or to a sequence of contexts

The correlator places the event on the input queue of the specified context or on the input queue
of each context in the specified sequence.

* Enqueue an event

The correlator places the enqueued event on the special queue just for events generated by the
enqueue keyword. A separate thread moves these events to the input queue of each public context.
This arrangement ensures that if the input queue of a public context is full, the event generated
by enqueue still arrives on its special queue, and is moved to each appropriate input queue as soon
as that queue has room. Active event listeners will eventually receive events that are enqueue’d,
once those events make their way to the head of the input queue alongside normal events.

® Route an event

The correlator places the routed event at the front of that context’s input queue. The correlator
processes the routed event before it processes the other events in that input queue.

If the processing of a routed event routes one or more additional events, those additional routed
events go to the front of that context’s input queue. The correlator processes them before it
processes any events that are already on that context’s input queue.

For example, suppose the correlator is processing the e1 event and events ez, £3, and =4 are on the
input queue in that order.

Context
E4 E3 E2 El

—>

While processing 1, suppose that events en1 and en2 are created in that order and enqueued. These
events go to the special queue for enqueued events. Assuming that there is room on the input
queue of each public context, the enqueued events go to to the end of the input queue of each public
context:

Context
En2 Enl E4 E3 E2 El

>

While still processing £1, suppose that events r1 and r2 are created in that order and routed. These
events go to the front of the queue:

Apama EPL Reference 5.2.0 - APAMA 88

Event expressions

Context
En2 Enl E4 E3 E2 R2 R1 El

.

When the correlator finishes processing &1, it processes z1. While processing r1, suppose that two
event listeners trigger and each event listener action routes an event. This puts event r3 and event r4
at the front of that context’s input queue. The input queue now looks like this:

Context
En2 Enl E4 E3 E2 R2 R4 R3 R1

>

It is important to note that r3 and r4 are on the input queue in front of r2. The correlator processes
all routed events, and any events routed from those events, and so on, before it processes the next
routed or non-routed event already on the queue.

Now suppose that the correlator is done processing r1 and it begins processing =3. This processing
causes rs to be routed to the front of that context’s input queue. The context’s queue now looks like
the following;:

Context
En2 Enl E4 E3 E2 R2 R4 R5 R3

>

See also Developing Apama Applications in EPL, "Understanding time in the correlator".

Events and Event Listeners

Event expressions

An event expression is a special type of expression that is used with the on statement (see "The on
statement" on page 125) to define the rules for detecting events of interest and invoking an action
when a matching event is detected. In an event expression, you can specity filtering rules based on
an event’s field values, sequencing rules for events followed by other events, times and time ranges
during which an event is of interest, and other rules.

Event expressions should not be confused with ordinary EPL expressions of type event. Ordinary
EPL expressions of all types are described in "Expressions" on page 130.

The on statement is discussed in "The on statement” on page 125, but because the on statement and
event expressions are so closely related, here are the on statement diagrams:

OnStatement

@——l EventExpression H ListenerAction I——
\\-l Listener Assignment |-j

Apama EPL Reference 5.2.0 - APAMA 89

Event expressions

ListenerAssignment

listener Identifier
ListenerReference

Events and Event Listeners

Event primaries

The event primary is the simplest form of an event expression clause and can be combined with
other event primaries and event operators to form more complex event expressions. An event
primary can take the following forms:

EventPrimary

|
I EventTemplate |——

unmatched

i

completed

Nl Timer I
\—®——| EventExpression |-—@ /

Event templates are constructs that allows you to specity filtering or matching criteria based on
values of one or more of an event’s fields. See "Event templates" on page 81. For convenience, the
syntax diagram is repeated here.

EventTemplate

—-| EventTypeName |-—® @
\<| EventFilterExprList |-f ‘

The completed operator

A completed event template matches only after all other work is completed. When an event that
matches a completed template comes into the correlator, the correlator

1. Runs all of the event’s normal or unmatched event listeners. Normal event templates do not specify
the completed O unmatched keyword.

2. Processes all routed events that result from those event listeners.
3. Triggers the completed event listeners.

For example:

on all completed A(f < 10.0) {}

Apama EPL Reference 5.2.0 - APAMA 90

Event expressions

The unmatched operator
An unmatched event template matches against events for which both of the following are true:

® Except for completed and unmatched event templates, the event is not a match with any other event
template currently loaded in the context.

®* The event matches the unnatched event template.
The correlator processes events as follows:

1. The correlator tests the event against all normal event templates in the context. Normal event
templates do not specify the compieted or unmatched keyword. If there are any matches, those event
listeners trigger and the correlator executes those event listener actions. If execution of the event
listener actions routes any events, the correlator then processes those events.

2. If the correlator does not find a match, the correlator tests the event against all event templates
in the context that specify the unmatched keyword. If the correlator finds one or more matches,
it triggers an event listener for each match found. In other words, if multiple unmatched event
templates match a given event, they all trigger. The correlator executes the event listener actions
defined by the event listeners that trigger. If any events are routed during execution of those
actions, the correlator processes the routed events.

3. The correlators tests the event against all event templates in the context that specify the completed
keyword. If the correlator finds one or more matches, it triggers an event listener for each match
found.

Example

For example, suppose you have the following code:

on all A("foo", < 10) : a {
print "Match: " + a.toString();
a.count := a.count+l; // count is second field of A
route a;
}
on all unmatched A(*,*): a {
print "Unmatched: " + a.toString();
}
on all completed A("foo", *) : a {
print "Completed: " + a.toString();

}

The incoming events are as follows:

A("foo", 8);
A("bar", 7);
The output is as follows.

Match: A("foo", 8)
Match: A("foo", 9)
Unmatched: A("foo", 1
Completed: A("foo", 1
Completed: A("foo", 9
Completed: A("foo", 8
Unmatched: A("bar", 7

Specity the unmatched keyword with care. Be sure to communicate with any others who write event
templates. If you are relying on an unmatched event template, and someone else injects a monitor that

happens to match some events that you expected to match your unmatched event template, you will
not get the results you expect.

Apama EPL Reference 5.2.0 - APAMA 91

Event expressions

Parenthesized event expressions

Just as with primary and bitwise expressions, EventExpressions can be enclosed in parentheses to
control expression evaluation order or to improve readability.

ParenthesizedEventExpression

——@—-l EventExpression |—-@—-

Event expressions

Timers

Specify a timer with the wait, at, or within keyword.

Timer

EventPrimary |——<within

The wait event operator

The wait operator can be used to limit the amount of time that an event listener can match an
event. The wait operator’s expression specifies the time in seconds. The result of evaluating the wait
expression must be of type f1oat.

The at event operator

The 2t operator allows triggering of an event listener at a specific time or repeatedly at multiple

times, depending on how the series of expressions that follow the at operator are constructed.

AtTimes

AtExpression ’ AtExpression ’

(<| AtExpression |——@——| AtExpression |—@-)
:-l AtExpression I
0 AtExpression

The time specification of the at operator consists of either five or six AtExpressions, corresponding
to the number of minutes of the hour (0 to 59), hour of the day (0 to 23), day of the month (1 to 31),
month of the year (1 to 12), day of the week (0 to 6, 0=Sunday), and seconds respectively.

Apama EPL Reference 5.2.0 - APAMA 92

Event expressions

If the optional number of seconds is omitted, 0 is used.

AtExpression
ey

AtPrimary

Expression

Expression |-—®——| Expression

Expression

In the AtPrimary, the » operator means that all times (minute, hour, etc.) for the corresponding part
of the time specification will match.

AtList

b ()

The AtList is a sequence initializer that contains one or more AtPrimary time values separated by
commas. See "Sequence variable declarations" on page 157.

The within operator

The witnin operator takes one operand, which is an expression of type t1o0at, whose value is the
number of elapsed seconds from an event primary’s activation time that the event primary can be
matched. The witnhin operator’s result type is boo1ean. If the event is matched before the specified time
has elapsed, the within operator’s result is true. When the time has elapsed and the event has not
been matched, the within operator’s result is faise.

WithinExpr
EventPrimary |—-<within “ 0
EventPrimary

Event expressions

The not Operator

The not operator specifies logical negation.

Apama EPL Reference 5.2.0 - APAMA 93

Event expressions

NotExpr

@)
|]

Event expressions

The all Operator

When the a11 operator appears before an event template, when that event template finds a match, it
continues to watch for subsequent events that also match the template.

AllExpr

: NotExpr |—-

Consider the following event expression:

all A -> B

This event listener would match on every 2 and the first s that follows it. The way this works is

that upon encountering an 2, the correlator creates a second event listener to seek the next 2. Both
event listeners would be active concurrently; one looking for a s to successfully match the sequence
specified, the other initially looking for an 2. If more 2s are encountered the procedure is repeated;
this behavior continues until either the monitor or the event listener are explicitly killed.

Consider the following sequence of incoming events:

Cl Al F1 A2 C2 Bl D1 El B2 A3 Gl B3
With these input events, on a11 2() -> () would return the following:

{a1, B1}, {22, B1} and {a3, B3}.

Note that a11 is a unary operator and has higher precedence than ->, or and and.

Event expressions

The and, xor, and or logical event operators

The logical operators ang, or, and xor are similar to the corresponding operators in primary and
bitwise expressions, but do not have quite the same precedence.

The and event operator

The ana operator specifies logical intersection.

Apama EPL Reference 5.2.0 - APAMA 94

Event expressions

AndExpr

——| AllExpr l

R ()

The xor event operator

The xor operator specifies logical exclusive or.

XorExpr

——| AndExpr I

i on)

The or event operator

The or operator specifies logical or.

OrExpr

——| XorExpr l

o ()

Event expressions

The followed-by event operator

The followed-by operator -> is a Boolean operator that takes left and right operands, both event
expressions. The followed-by operator waits for the left operand to become true and then waits for
the right operand to become true. When both are true then the result value is true. If either becomes
false, then the result value is false.

FollowedByExpr

o)

Event expressions

Event expression diagram

Apama EPL Reference 5.2.0 - APAMA 95

Event channels

EventExpression

—-| FollowedByExpr |——

Event expressions

Event expression operator precedence

The following table lists the event expression operators in order by their precedence, from lowest to
highest. See "Expression operator precedence" on page 143 for a corresponding table of primary
and bitwise expression operator precedence.

Operation Operator
Logical negation not
All all
Logical intersection and
Logical exclusive or xor
Logical union or
Followed-by ->

For example, the following expression:

on all A()or B() and not C() -> D()

is equivalent to this expression:

on (
(all A())
or
(B() and (not C()))
) => D()

Event expressions

Event channels

Adapter and client configurations can specify the channel to deliver events to. A channel is a string
name that contexts and receivers can subscribe to in order to receive particular events. In EPL, you
can send an event to a specified channel. Sending an event to a channel delivers it to any contexts
that are subscribed to that channel, and to any clients or adapters that are listening on that channel.

You can use the com.apana.channel type to send an event to a channel or context. The channel type
holds a string or a context. When it holds a string an event is sent to the channel that has that name.
When it holds a context an event is sent to that context.

Events and Event Listeners

Apama EPL Reference 5.2.0 - APAMA 96

Monitor lifecycle

Chapter 4: Monitors

B MONIOT IfECYCIE ...ttt bbb b et a e e e s s s s s e st st 97
B PIOGIAMS oottt ettt b et b e e e e e e e s bbb bbbtk bbb b e b e bbbt b e b e s e e e e e e ettt sttt bt taen 98
B PACKAGES ...oveeceeieiiteee ettt ettt R et R s 99
B The USING ECIArAtIONc.civiiiieircieisic et b bbbt b s 99
B MONIOr ECIATATIONSveieieeceee bbb 99
B The import AECIArAtIONciiiiiiiiee ettt bbb b b bns 100
B MONHOT BCHONS ..vveit ittt 101
B CONEEXES .vvuieiicieisiet et R ARttt 103
B PlUGAINS oottt ettt bbb bbb bbb bbb bR AR R AR e s enenn e 105
B Garbage COMBCHONvveceeeeeeee et et et b bbbt s e et ss s st b bbb bane 105

An EPL file is a file that contains the source text for an optional package specification and one or
more event declarations or monitor definitions. A file can consist entirely of event declarations
without any monitors.

A monitor is a group of related variable declarations and actions. The monitor is the primary unit of
execution in EPL. An action is a group of related variable declarations and statements. An action can
either be part of a monitor or part of an event declaration.

The executable statements (except for global variable intializers) are always inside an action. An
action can be either a subprogram or a function. The difference is that a function has a return value
and a subprogram does not.

Each file is injected in either whole or not at all; if some parts compile validly but others do not,
nothing is injected and an error is returned. Injecting can also return warnings about the code
injected. For example, use of keywords that may be reserved in the future.

Monitor lifecycle

EPL programs are compiled and run (executed) by the Apama correlator. The unit of program
execution is a monitor, which starts executing in the monitor’s onload () action. To execute a monitor,
you load (inject) it into the correlator. The correlator then does the following;:

1. Compiles the monitor’s source text
2. Ifno errors are detected, creates the main monitor instance along with its global variables
3. Invokes the monitor instance’s onload() action

When the onload () action has executed to completion (that is, the control path reaches the closing
curly brace of the onlcad () action), if the monitor instance has event listeners or streaming networks,
then it remains active but in a suspended state.

Apama EPL Reference 5.2.0 - APAMA 97

Programs

The correlator calls the monitor instance’s event listeners whenever it detects events that match the
event listeners” event expressions.

A monitor instance terminates when one of the following events occurs:

®* The monitor instance executes a die statement in one of its actions.

®* A runtime error condition is raised.

® The monitor is terminated externally (for example, with the engine_delete utility.

®* The monitor instance has executed all its code and there are no remaining listeners or streaming
networks. This will occur rapidly if the onicad () action does not create any.

When a monitor instance terminates, the correlator does the following;:
1. Invokes the monitor instance’s ondie () action, if it is defined.

2. If the monitor instance that is terminating is the last active instance of that monitor, the correlator
also does the following:

m Invokes the monitor’s onunload() action if it is defined.
m Removes the monitor’s code from the correlator.
m Frees all the monitor’s resources.

To summarize, consider that when a monitor spawns monitor instances, there is a set of monitors
that includes the original monitor instance and any spawned monitor instances. As the monitor
instances in this set terminate, the correlator calls the ondie () action, if it is defined, for each monitor
instance that terminates. When the last monitor instance in the set terminates, the correlator also calls
the onunload () action. Thus, the correlator calls ondie () once for each monitor instance in the set, and
calls onunload () only once for the entire set.

Monitors

Programs

An EPL program contains an optional package declaration, event declarations and/or monitor
declarations.

Program
1\—l PackageDeclaration |-j (-l UsingDeclaration |-)
EventDefinition I
MonitorDeclaration
CustomAggregateDefinition
Monitors

Apama EPL Reference 5.2.0 - APAMA 98

Packages

Packages

A package declaration provides a scope for events and/or monitors.

PackageDeclaration

Svsud

Monitors

The using declaration

The using declaration lets you use a type in a package other than the package the type was defined in
without having to specify the fully qualified name of the type.

UsingDeclaration
(us ing> I Identifier

Insert a using declaration, after the optional package declaration and before any other declarations,
that specifies the fully qualified name of the type. For example:

using com.myCorporation.custom.myCustomAggregate;
You can specify multiple using declarations in a file.

In a file, you cannot specify two using declarations that bring in types that have the same base name.
See also "Name Precedence"” on page 185.

You cannot specify a using declaration for named objects such as monitors, JMon monitors, and
namespaces.

Monitors

Monitor declarations

Specify persistent when you want a persistence-enabled correlator to save the state of the monitor
in a recovery datastore on disk. In a monitor, import declarations, event declarations, variable
declarations, and action definitions can be freely mixed in any order.

Apama EPL Reference 5.2.0 - APAMA 99

The import declaration

MonitorDeclaration

(monit or>—-| MonitorTypeName

\m

o | M
ImportDeclaration | Q/

EventDeclaration

VariableDeclaration

ActionDefinition

Monitors

The import declaration

The import declaration loads a plug-in library and makes it available to an EPL program. Plug-in
libraries are shared libraries on Linux and UNIX systems and Dynamic Link Libraries on Windows
systems.

ImportDeclaration
9 (O~ ®

Rule components

The PlugInName is the name of the plug-in’s library. On Linux and UNIX systems, the library is
loaded from a 1ibr1ugInname.so file located in one of the directories listed in the environment variable
Lp_rrerary_paTH. On Windows, the library is loaded from a riugrnname.d11 file located in the vin folder

The PlugInName is a library filename, not a full file-path, and is not allowed to contain any of the
characters used as directory or device separators (forward slash, colon, or backslash). The AliasName
is an identifier for use in the EPL program when you call the library’s actions.

Example

For example, to call a plug-in action foo () in the plug-in library wffftl, you would write the
following:
monitor m {

import "wffftl" as fft;

action onload()

{
sequence <float> data := [];
fft.foo (data);

}

Monitors

Apama EPL Reference 5.2.0 - APAMA 100

Monitor actions

Monitor actions

Monitors can have two forms of actions: simple actions and actions with parameters and/or return
values.

ActionDefinition
SimpleAction
ActionWithParameters |-f

See also

®* "SimpleActions" on page 101

® "About onload()" on page 102

®* "About ondie()" on page 102

® "About onunload()" on page 102

®* "Actions with parameters" on page 102

Monitors

SimpleActions

A simple action has a name and a body consisting of a block. The body contains the executable code
of the action. There are no parameters.

SimpleAction

550
\—<onBeginRecovery>—
\-ConConcludeRecovery}/

Rule components

The action names onload (), onunload (), ondie (), onBeginRecovery (), and onConcludeRecovery () are special.
These actions are invoked automatically when certain events in a monitor’s life cycle occur.

A block must follow the action name. Note that there are no formal parameters in this form of action
definition and the action cannot return a value.

Apama EPL Reference 5.2.0 - APAMA 101

Monitor actions

About onload()

The on1cad() action is invoked immediately after a monitor has been loaded. This action must be
present in every monitor.

About ondie()

The ondie () action, if present, is invoked by the correlator when a monitor instance terminates.

About onunload()

The onunload () action, if present, is invoked by the correlator after all instances of a monitor have
terminated, just before the last monitor instance is unloaded.

About onBeginRecovery()

The onBeginrecovery () action, if present, is invoked by the correlator during recovery of a persistence-
enabled correlator. The correlator executes onBeginrecovery () on monitors and any live events after it
reinjects source code and restores state in persistent monitors.

About onConcludeRecovery()

The onconcluderecovery () action, if present, is invoked by the correlator during recovery of a
persistence-enabled correlator. The correlator executes onconcluderecovery () on monitors and any live
events before it begins to send clock ticks.

Monitor actions

Actions with parameters

An action can take an optional list of parameters.

ActionWithParameters

——Caction ActionName |-)

\—@—l FormalParameterList |-@-j \—Creturns)—-l DataTypeName |-f

Formal parameters

The FormalParameterList is a comma-separated list of type name and identifier pairs.

Apama EPL Reference 5.2.0 - APAMA 102

Contexts

FormalParameterList

DataTypeName H Identifier
7
2/

The identifier is the name of a parameter variable that will be bound to a copy of the value of an
expression specified by the caller (that is, the value passed by the caller) when the action is invoked.
The number and type of actual parameters passed by a caller must match those listed in the action’s
formal parameters.

The scope of a parameter variable is the statement or block that forms the action body. Parameter
variables are very similar to an action’s local variables.
Action return value

If you specify a returns clause, then the action must return a value whose type matches that specified
in the returns clause. You specify the return value by using a return statement and result expression
within the action. Every control path (see "Transfer of control statements" on page 127) within the
action body must lead to a return statement with a result expression of the correct type.

Action body

After the returns clause (or after the formal parameters if there is no returns clause), a statement
forms the action body. The action body can be a single statement or a block.

Within the action body, you use the parameter variable names to obtain the values that are passed to
the action by its caller.

Monitor actions

Contexts

Contexts allow EPL applications to organize work into threads that the correlator can concurrently
execute. In EPL, context is a reference type. When you create a variable of type context, or an event
field of type context, you are actually creating an object that refers to a context. The context might or
might not already exist. You can then use the context reference to spawn to the context or send an
event to the context. When you spawn to a context, the correlator creates the context if it does not
already exist.

When you start a correlator it has a single main context. You can then create additional contexts. A
context consists of the following;:

* One or more monitor instances. Except, the main context exists even if it does not contain any
monitor instances.

®* An event input queue.
* Listeners that belong to the contained monitor instances.

The correlator maintains event definitions and monitor definitions outside contexts. This lets all
contexts share the same event and monitor definitions.

Apama EPL Reference 5.2.0 - APAMA 103

Contexts

Instances of the same monitor can exist in multiple contexts. Each monitor instance can belong to
only one context.

A context has the following properties:

®* Name — A string that you specify when you create the context. This name does not need to be
unique.

®* [D — The correlator assigns a unique integer.

®* rcceiveInput flag — A Boolean value that indicates whether the context can receive external input
events on the default channel, which is the empty string ().

A value of true lets the context receive external events on the default channel; this is a public
context. A value of true is equivalent to a subscription to the default channel; there is no
requirement for a monitor instance in this context to subscribe to the default channel.

A value of fa1se indicates a private context that does not receive external events on the default
channel. This is the default.

Note that the main context is public.

* Channel subscriptions — A context is subscribed to the union of the channels each of the monitor
instances in that context is subscribed to. This is a property of the monitor instances running in a
context and is not accessible by means of the context reference object.

You can spawn to other contexts. When the last monitor instance in a context terminates, that context
stops doing work and stops consuming resources until you spawn another monitor instance to it.

In a context, when you route an event the event goes to the front of that context’s input queue. You
can route events only within a context.

You can send an event to a particular context. When you do this, the event goes to the end of the
specified context’s input queue. The correlator processes it after it processes any other events that are
already on the context’s input queue. See "The send . . . to statement" on page 119.

You can use a context as part of the key for a dictionary. You can route an event that contains a
context field. You cannot parse a context. Context objects are immutable reference objects.

Upon injection, each monitor’s initial instance runs in the main context. You must explicitly create
additional contexts. Conceptually, a context is like a correlator but with the following differences:

* All contexts share the same namespace, and thus share all monitor and event definitions that
have been injected.

®* A monitor instance must have a context reference to pass an event to that context.

* There is one enqueued events queue for all contexts. When you specify the enqueue command
(not the enqueue event to context command), the enqueued event goes to the special queue for
enqueued events. The correlator then places the event on the input queue of each public context.
The correlator ensures that an enqueued event always arrives on the appropriate input queue(s).
An enqueue Operation never blocks. However, if the input queue of a context is full and the
enqueued events queue gets very large, the result can be an unbounded memory usage error.

* [Execution of Java is allowed in only the main context.

® The engine receive utility receives events from all contexts or it can be configured to receive
events from only specified channels.

Apama EPL Reference 5.2.0 - APAMA 104

Plug-ins

® The engine_send utility sends events to all public contexts or to the contexts that are subscribed to
the channels it is configured to send events on.

For information about creating a context, see "context” on page 43 in "Types" on page 17.

For a monitor instance to interact with the EPL in another context, the monitor instance must have
a reference to that context. A monitor instance can obtain a reference to another context in only the
following ways:

* By creating the context.

* By receiving a context reference, which must be of type context. A monitor instance can receive
this reference by means of a sent, routed or enqueued event, or a spawn operation.

If a monitor instance that creates a context does not send a context reference outside itself, no other
context can send events to that context, except by means of correlator plug-ins. This affords some
degree of privacy for the context.

A context object (a context reference) does not do anything. It is simply the target of the following:
® spawn action identifier() [(argument list)] to context expression;

See "The spawn action to context statement” on page 121.
® send event expression to context expression;

See The send . . . to statement.

You can create any number of contexts. Creating a context just allocates an ID and creates a small
object.

Monitors

Plug-ins

EPL can be extended through the use of plug-ins, which are modules written either in C or C++ and
loaded dynamically into the EPL runtime with the inport statement. Plug-in modules are invoked in
exactly the same way as actions in an EPL event.

See Developing Apama Applications in EPL, Using correlator plug-ins in EPL".

Monitors

Garbage collection

EPL, like languages such as Java or C#, relies on garbage collection. Intermittently, the correlator
analyses the events that have been allocated, including dictionaries, sequences, closures and
streaming networks, and allows memory used by events that are no longer referencable to be re-
used. Thus, the actual memory usage of the correlator might be temporarily above the size of all live
objects. While running EPL, the correlator might wait until a listener or onlcad() action completes
before performing garbage collection. Therefore, any garbage generated within a single action or
listener invocation might not be disposed of before the action/ listener has completed. It is thus
advisable to limit individual actions/listeners to performing small pieces of work. This also aids in
reducing system latency.

Apama EPL Reference 5.2.0 - APAMA 105

Garbage collection

The cost of garbage collection increases as the number of events a monitor instance creates and
references increases. If latency is a concern, it is recommended to keep this number low, dividing the
working set by spawning new monitor instances if possible and appropriate. Reducing the number
of event creations, including string operations that result in a new string being created, also helps

to reduce the cost of garbage collection. The exact cost of garbage collection could change in future
releases as product improvements are made.

Monitors

Apama EPL Reference 5.2.0 - APAMA 106

Built-in aggregate functions

Chapter 5: Aggregate Functions

B Built-in aggregate fUNCHONSvcvivceccce bbb 107

B CUSIOM QQQIEJALESviiiciciie ettt bbb bbb b bbb b s s s e e e s e st sttt ane 109

In stream queries, you can specify aggregate functions in the select clause.An aggregate function
calculates a single value across all items currently in the window. EPL provides a number of
commonly used aggregate functions. If a supplied aggregate function does not meet your needs, you
can define a custom aggregate function.

Built-in aggregate functions

EPL provides the following built-in aggregate functions. In the table, the argument names, for
example, vaiue and weignt, are placeholders for expressions. Additional information about some of
these functions follows the table.

Aggregate Function Argument(s) Returns Result Description
avg (value) decimal OF float decimal OF The arithmetic mean of the
float values in the window. The

avg () and mean () functions do
exactly the same thing. They
are aliases for each other.

count () - integer The number of items in the
window, including any NaN
items

count (predicate) boolean integer The number Of items fOI'

which the argument is true

count (value) decimal OT float integer The number Of items where
the decimal Or float value is
not NaN
first (value) decimal OF float decimal OF The earliest value in the
float window being aggregated
over
last (value) decimal OT float decimal OT The latest Value in the
float window being aggregated
over
max (value) decimal OT float decimal OT The maximum Value
float

Apama EPL Reference 5.2.0 - APAM A 107

Built-in aggregate functions

Aggregate Function Argument(s) Returns Result Description
mean (value) decimal OT float decimal OT The arithmetic mean Of the
float values in the window. The
mean () and avg () functions do
exactly the same thing. They
are aliases for each other
min (value) decimal OF float decimal OT The minimum value
float
nth (value, index) decimal, decimal OT The Value Of the specified
nth (value, 0) returns integer O float decimal O float item in
the same item as float, integer the index position, starting
first (value). with the earliest item in the
window (item 0) and moving
toward the latest item.
prior (value, index) decimal, decimal OT The value of the specified
prior (value,0) returns integer OF float decimal OF float item in the
the same item as float, integer index position, starting with
last (value). the most recent item in
the window (item 0) and
moving toward the earliest
item.
stddev (value) decimal OF float decimal OF The standard deviation of
float the values
stddev2 (value) decimal OT float decimal OF The sample standard
float deviation of the values

sum (value)

decimal, float

decimal, float

The sum of the values

Or integer O integer
wavg (value, weight) decimal,decimal decimal OT The WEightEd average
Or float, float float of the values where each

value is weighted by the
corresponding weight

Calculations by the built-in aggregate functions might be affected by underflow and overflow. For
example, adding a very large number to the collection that the sun () function operates on, then
adding a very small number, and then removing the very large number will probably result in o,

and not the very small number. Just adding the very small number would result in behavior that
you would expect. The overflow and underflow characteristics are as defined for IEEE 64-bit floating

point numbers.

Positional functions

For the first (), last (), nth(), and prior () functions, all values (van, +-c and so on) are treated the

same, and position in the window is the only thing that matters.

Apama EPL Reference 5.2.0

«"APAMA ™

Custom aggregates

Overloaded functions

The sum() function is overloaded. You can specify a decimal, float OF integer. The return type matches
the argument type.

The avg (), first (), last(), max (), mean(), min (), nth(), prior (), stddev (), and stddev2 () functions are
overloaded. You can specify a decimal Or a float. The return type matches the argument type.

The count () function is overloaded. You can specify a boolean, decimal, float Or no argument. The
return type is an integer.

The wavg () function is overloaded. You can specify a decimal, decimal Or a float, float combination.

The return type will be a decinal or a f1oat, respectively.

See also

non

Developing Apama Applications in EPL, "Working with streams and stream queries", "Aggregating
items in projections”.

Aggregate Functions

Custom aggregates

In a stream query, you can specify an aggregate function in the select clause. If one of the supplied
aggregate functions does not meet your needs, you can define a custom aggregate function for use in
a select clause.

CustomAggregateDefinition

—{ aggregate

I X
I AggregateName |-—®——| FormalParameterList

bounded

nbounded

u.

(<<returns>—-| DataTypeName ImportDeclaration I @
AggregateAction
ActionWithParameters
AggregateFieldDef
N

Rule components

You define custom aggregate functions outside of an event or a monitor and the aggregate function’s
scope is the package in which you declare it. To use custom aggregate functions in monitors in other
packages, specify the aggregate function’s fully-qualified name, for example:

from a in all A() select com.myCorporation.custom.myCustomAggregate (a)

Apama EPL Reference 5.2.0 - APAMA 109

Custom aggregates

Alternatively, you can specify a using statement. See "The using declaration" on page 99.

Specify bounded when you are defining a custom aggregate function that will work with only a
bounded window. That is, the query cannot specify retain al1. Specify unbounded when you are
defining a custom aggregate function that will work with only an unbounded window. That is, the
query must specify retain all. Do not specify either bounded Or unbounded when you are defining a
custom aggregate function that will work with either a bounded or an unbouded window.

The name of a custom aggregate function must be unique within a package; you cannot overload it
or define an event or monitor with the same name as an aggregate function.

The FormalParameterList is zero or more comma-separated type/name pairs. Each pair indicates
the type and the name of an argument that you are passing to the aggregate function. For example,

(float price, integer quantity).

The DataTypeName must be an EPL type. This is the type of the value that your aggregate function
returns.

The body of a custom aggregate function can contain fields that are specific to one instance of the
custom aggregate function and actions to operate on the state.

AggregateAction

GO0 S—
returns>—-| DataTypeName |./
FormalParameterList F—@-\)

\—CreturnsH DataTypeName |-f

FormalParameterList |——@—/

Rule components

In a custom aggregate function, the init (), add (), remove () and value () actions are special. They define
how stream queries interact with custom aggregate functions.

®* init() — If a custom aggregate function defines an init () action it must take no arguments and
must not return a value. The correlator executes the init () action once for each new aggregate
function instance it creates in a stream query.

® .dd() — A custom aggregate function must define an add () action. The add() action must take the
same ordered set of arguments that are specified in the custom aggregate function signature.
That is, the names, types, and order of the arguments must all be the same. The correlator
executes the add () action once for each item added to the set of items that the aggregate function
is operating on.

® remove() — A bounded aggregate function must define a remove () action. An unbounded
aggregate function must not define a remove () action. If you do not specify either vounded or
unbounded, the remove () action is optional. The remove () action must take the same ordered set of
arguments as the adda () action, followed by an argument of the type returned by add(), if any, and

Apama EPL Reference 5.2.0 - APAMA 110

Custom aggregates

must not return a value. The correlator executes the remove () action once for each item that leaves
the set of items that the aggregate function is operating on.The value that remove () is called with is
the same value that 244 () was called with.

®* value() — All custom aggregate functions must define a vaiue () action. The value () action must
take no arguments and its return type must match the return type in the aggregate function
signature. The correlator executes the vaiue () action once per batch per group and returns the
current aggregate value to the query.

Custom aggregate functions can declare other actions, including actions that are executed by
the above named actions. A custom aggregate function cannot contain a field whose name is
onBeginRecovery, onConcludeRecovery, init, add, value, OT remove, €VEN if, for example, the custom

aggregate function does not define a remove () action.

AggregateFieldDef
—-| DataTypeDef H FieldName |-@—-—

Rule components

In the body of a custom aggregate function, you can define fields that are specific to the custom
aggregate instance they are in.

Aggregate Functions

Apama EPL Reference 5.2.0 - APAMA 111

Simple statements

Chapter 6: Statements

B SiMple STAIEMENTS ..o et 112
B ComPouNd STAEBMENLS ...cviviuiiiiiiie bbbt b bbbttt bbbt bees 123
B Transfer of CONrol STALEMENES ... 127

Sequences of EPL statements define the steps that are performed by a program. They are executed
in the order they are written — sequentially from top to bottom and left to right within a statement
block. (For expressions, the evaluation order is affected by parentheses, associativity, and operator
precedence.)

The order in which statements are executed is called the flow of control or the control path. Some
statements can contain other statements enclosed within their structure and can be used to execute
statements conditionally, thus altering the normal control path. You can use the break, continue, and
return statements to change the normal control path.

Statement

SimpleStatement I
CompoundStatement
TransferOfControlStatement

A block is zero or more statements enclosed in curly braces.

Block
A SR
{ D

U
l Statement l

A block can be used wherever a single statement can be used. Variables declared in a block are
referenceable only in the block in which they are declared, and only in statements that come after the
variable’s declaration.

Simple statements

Simple statements are statements that do not enclose other statements or statement blocks and that
do not cause a transfer of control. They are executed in the order they are written.

Apama EPL Reference 5.2.0 - APAMA 112

Simple statements

SimpleStatement

4-| AssignStatement |——
-+ EmitStatement |——
-+ EmitToStatement |—
\-| EnqueueStatement |—

\-l EnqueueToStatement |-/

\-l ExpressionStatement |-/

-+ PrintStatement f——
-+ RouteStatement |——
-+ SendToStatement —
\-| SpawnStatement |—/
\-| SpawnToStatement |—/
\-+{ VariableDeclaration |—

Statements

The assignment statement

The assignment statement binds a value to a variable. The value is determined by evaluating the
expression on the right side of the assignment operator :=. The result type of the expression must
match the type of the variable. For variables of the reference types, the same value can be bound to
more than one variable. See "Reference types" on page 37.

Apama EPL Reference 5.2.0 - APAMA 113

Simple statements

AssignStatement

Identifier

Identifier

Expression

Expression

Expression

@)

DictionaryConstructor

SequenceConstructor

Simple statements

The emit statement

The enit statement publishes an event to a named channel of the correlator’s output queue. If a
channel name is not specified, then the event goes to the default channel whose name is the empty
string ("). External receivers get events on the default channel only if they are subscribed to all
channels.

Note: The cnit statement will be deprecated in a future release. Use the send statement instead. See
"The send . . . to statement" on page 119.

EmitStatement
——Cemit)—-l Expression I @
)

Rule components

The first expression is an expression whose result type is either an event type or string. If the type
is string, then the value of the string is assumed to be in the same format as that produced by the
event’s tostring () method.

The expression following the keyword to must be of type string and is the name of the channel to
which the event will be sent.

The enit method dispatches events to external registered event receivers. That is, the emit statement
causes events to go out of the correlator. Active event listeners will not receive events that are
emitted.

Apama EPL Reference 5.2.0 - APAMA 114

Simple statements

Events are emitted onto named channels. For an application to receive events from the correlator it
must register itself as an event receiver and subscribe to one or more channels. Then if events are
emitted to those channels they will be forwarded to it.

Channels effectively allow both point-to-point message delivery as well as through publish-subscribe.
Channels can be set up to represent topics. External applications can then subscribe to event
messages of the relevant topics. Otherwise a channel can be set up purely to indicate a destination
and have only one application connected to it.

You cannot emit an event whose type is defined inside a monitor.
You cannot emit an event that has a field of type action, chunk, listener, O stream.

When you emit an event type that has a dictionary field, the items in the dictionary are sorted in
ascending order of their key values.

Simple statements

The enqueue statement

The enqueue statement sends an event to the back of the input queue of each public context. The
expression is evaluated and the resulting event is sent to all input queues of public contexts. If an
input queue is full, then the enqueued event is saved on a temporary holding queue until the input
queue has room for it. There is one temporary holding queue for all contexts. When an input queue
is full, processing in the context that enqueued the event blocks until the enqueued event arrives on
all public input queues.

EnqueueStatement
——(enqueue)—-l Expression |-@—

Rule components

Note that enqueued events are processed in the order they are enqueued.

The expression’s result type must be an event type or string. When it is a string, the correlator parses
it as an event.

Enqueued events are put on the back of the input queue, behind any externally sourced events
already queued.

You cannot enqueue an event whose type is defined inside a monitor.
You cannot enqueue an event that has a field of type action, chunk, listener, OF stream.

Simple statements

The enqueue . . . to statement

The enqueue. . . to statement sends an event to a context you identify.

Apama EPL Reference 5.2.0 - APAMA 115

Simple statements

Note: The cnqueue. . .to statement is superseded by the send. . .to statement. The enqueue. . . to
statement will be deprecated in a future release. Use the send. . . to statement instead. See .

Enqueue . . ToStatement

——(enqueue)—-l Expression @ Expression °

Rule components

The result type of the first Expression must be event. It cannot be a string representation of an event.
The result type of the second Expression can be one of the following;:

® context — The enqueue...to statement sends an event to the back of the input queue of the
specified context. The expression is evaluated and the resulting event is sent to the input queue of
only the specified context.

® scquence<context> — The enqueue. ..to statement sends a copy of the event to the back of the input
queue of each context in the specified sequence. The expression is evaluated and the resulting
event is sent to the input queue of all the contexts in the sequence.

For example:

sequence <context> ctxs := [cl, c2, c3 1;

Ping ping = Ping();

enqueue ping to ctxs;
You cannot enqueue an event to a com.apama.channel object that contains a context. You cannot
enqueue an event to a dictionary of contexts. However, it is a common pattern to enqueue to a
sequence generated by dictionary.values (). For example:

enqueue x to d.values;

If the target context's input queue is full the sending context blocks and waits for space on the queue
unless doing so would cause a deadlock. See "Deadlock avoidance when parallel processing" in
Developing Apama Applications in EPL.

Note that enqueued events are processed in the order they are enqueued. Enqueued events are put
on the back of the input queue, behind any externally sourced events already queued.

You must create the context before you enqueue an event to the context. You cannot enqueue an
event to a context that you have declared but not created. For example, the following code causes the
correlator to terminate the monitor instance:
monitor m {

context c;

action onload()

{

enqueue A() to c;
}
}
If you enqueue an event to a sequence of contexts and one of the contexts has not been created
first then the correlator terminates the monitor instance. For details, see "Enqueuing to contexts" in
Developing Apama Applications in EPL.

Enqueueing an event to a sequence of contexts is non-deterministic. For details, see "Enqueuing an
event to a sequence of contexts" in Developing Apama Applications in EPL.

Apama EPL Reference 5.2.0 - APAMA 116

Simple statements

In an enqueue. . . to statement, you cannot enqueue an event that has a field of type action, chunk,

listener, O stream.

Simple statements

The expression statement

An expression that does not return a value can be used as a statement.

ExpressionStatement

Expression °

One would use an expression statement if the expression has desired side effects. For example, an
action or method call can be used in this way.

To be used as a statement, an expression must return nothing.

Simple statements

The log statement

The 104 statement writes messages and accompanying date and time information to the correlator’s
log file, if one was specified when the correlator was started.

LogStatement

o
LogLevel

If there is no log file, then the message is written to the correlator’s standard output stream stdout.

Apama EPL Reference 5.2.0 - APAMA 17

Simple statements

LogLevel

@

FATAL

ERROR

DEBUG

TRACE

T

The Expression result must be of type string. The value is written only if the current logging level
in effect is a priority equal to or higher than the 10greve1 specified in the 104 statement, with the
exception of orr. If you do not specify a level, crit, the highest priority level, is used. At a 1ogrevel
equal to orr, only logs explicitly set to this level will be written. For details, see "Logging and
printing" in Developing Apama Applications in EPL.

Example

For example:

log "Your message here" at INFO;

This EPL statement produces a log message that looks like this:

2010-07-11 09:08:49.200 INFO [3716] - MyMonitor[l] Your message here

Simple statements

The print statement

The print statement writes textual messages followed by a newline to the correlator’s standard
output stream — stdout. The Expression result must be of type string.

PrintStatement
——(print)—-l StringExpression |-—@—

Example

For example:

print "Your message here.";

This EPL statement produces output that looks like this:

Your message here.

Apama EPL Reference 5.2.0 - APAMA 118

Simple statements

The print statement is less useful for reporting diagnostic information than the 109 statement, as it
does not contain any information about the time or origin of the message, and cannot be turned off
by changing the log level.

Simple statements

The route statement

The route statement evaluates the expression and then sends the resulting event to the front of the
current context’s input queue.

RouteStatement

——Croute Expression |-—@——

The expression’s result type must be an event. The event is processed only within the same context
that executes the route statement.

Routed events are put on the input queue, ahead of any externally sourced events, and ahead of any
previously routed events that have not yet been processed. For more details, see "Event processing
order" on page 87.

The isexternal () method returns false for routed events.

You cannot route an event whose type is defined in a monitor. You cannot route an event that has a
field of type action, chunk, listener, O stream.

Simple statements

The send to statement

The send. . . to statement sends an event to the channel, context, sequence of contexts, or
com.apama.Channel object that you specify.

Send...ToStatement
(e { Expresion |0 o

Rule components

The result type of the first Expression must be an event. It cannot be a string representation of an
event.

The result type of the second Expression can be one of the following;:

®* string — The send...to statement sends the event to the specified channel. All contexts and
external receivers subscribed to that channel receive the event. If there are no subscribers to
the specified channel or if no receivers are listening on the specified channel then the event is
discarded.

Apama EPL Reference 5.2.0 - APAMA 119

Simple statements

® context — The send...to statement sends the event to the back of the input queue of the specified
context. The event expression is evaluated and the resulting event is sent to the input queue of
only the specified context.

® scquence<context> — The send...to statement sends a copy of the event to the back of the input
queue of each context in the specified sequence. The event expression is evaluated and the
resulting event is sent to the input queue of each context in the sequence.

For example:

sequence <context> ctxs := [cl, c2, c3 1;
Ping ping = Ping();
send ping to ctxs;

® com.apama.Channel — The send...to statement sends the event to the specified channe1 object. If
the cnhannel object contains a string, the event is sent to the channel with that name. If the channe1
object contains a context, the event is sent to that context. You cannot send an event to an empty
context object.

You cannot send an event to a dictionary of contexts. However, it is a common pattern to send to a
sequence generated by dictionary.values (). For example:

send x to d.values;

If the target context's input queue is full the sending context blocks and waits for space on the queue
unless doing so would cause a deadlock. See "Deadlock avoidance when parallel processing" in
Developing Apama Applications in EPL.

Sent events are processed in the order they are sent. Sent events are put on the back of the input
queue, behind any events already queued.

You must create the context before you send an event to the context. You cannot send an event to a
context that you have declared but not created. For example, the following code causes the correlator
to terminate the monitor instance:

monitor m {
context c;
action onload()

{
send A() to c;

}
}

If you send an event to a sequence of contexts and one of the contexts has not been created first then
the correlator terminates the monitor instance. For details, see "Enqueuing to contexts" in Developing
Apama Applications in EPL.

Sending an event to a sequence of contexts is non-deterministic. For details, see "Sending an event to
a sequence of contexts" in Developing Apama Applications in EPL.

In a send. .. to statement, you cannot send an event that has a field of type action, chunk, listener, Or

stream.

Simple statements

The spawn statement

The spawn statement creates a copy of the currently executing monitor instance in the current context.

Apama EPL Reference 5.2.0 - APAMA 120

Simple statements

SpawnStatement

——(spawn)—-l ActionName I @
\—@—l ActualParameterList |—®—f

Simple statements

The spawn .ction tO contex: Statement

The spawn action() to context statement creates a copy of the currently executing monitor instance in
the specified context. A monitor instance must have a reference for the specified context in order to
spawn to that context.

SpawnToStatement

——Cspawn)—-l ActionName I
\@—l ActualParameterList |—®-j

@ Expression 0

The result type of Expression must be context. The spawn action()to context statement spawns a new
monitor instance in the specified context.

Simple statements

Variable declaration statements

A variable declaration statement can specify a primitive or reference variable.

VariableDeclaration

PrimitiveVariableDeclaration

ReferenceVariableDeclaration

Constant
See "Variable declarations" on page 150.

Primitive type variable declarations

A PrimitiveVariableDeclaration specifies a boolean, decimal, float, integer, OF string type variable.

Apama EPL Reference 5.2.0 - APAMA 121

Simple statements

PrimitiveVariableDeclaration

—-| PrimitiveTypeName H Identifier }

]

A
f N
Identifier

See "Primitive type variable declarations" on page 150.

Reference type variable declarations

A ReferenceVariableDeclaration specifies a reference type variable.

ReferenceVariableDeclaration

4—<act ion ActionVariableDeclaration I

\-<context>—-| ContextVariableDeclaration I—

\—Cchunk}-l ChunkDeclaration I

\-Cdi ctionary)—-l DictionaryDeclaration I—/

\-l EventDeclaration I

\-Clistener ListenerDeclaration I—/
\-<location>-| LocationDeclaration I—
\—Csequence>-| SequenceDeclaration I—/

\-Cstrea.m}-l StreamDeclaration I

\-<string>—-| Identifier I @-/

A variable declaration statement can appear anywhere in a block. Variables declared in a block are
scoped to that block and can be used in statements that follow the declaration.

For details, see "Reference type variable declarations" on page 122.

Simple statements

Apama EPL Reference 5.2.0 - APAM A 122

Compound statements

Compound statements

Compound statements enclose other statements or blocks and affect how the enclosed statements are
executed.

CompoundStatement

ForStatement

\-l FromStatement I—/
\-l WhileStatement I—

\-l TryCatchStatement |-/

Statements

The for statement

The for statement is used to iterate over the members of a sequence and execute the enclosing
statment or block once for each member.

ForStatement
IterationVariable |-—@—| Expression H Block I—-—

Rule components

The expression, which must produce a reference to a sequence Or a dictionary’s key, is evaluated. Then
the IterationVariable is assigned a value successively obtained from each element of the sequence,
starting with the first, and if the last sequence entry has not been reached, the statement that forms
the loop body is executed.

The IterationVariable’s type must match the type of the sequence elements.
The loop body is either a single Statement or a Block.

Within the loop body, the preax statement can be used to cause early termination of the loop by
transferring control to the next statement after the loop body. The continue statement can be used to
transfer control to the end of the body, after which the sequence size is tested to determine if the last
entry has been reached. If it has not, then the loop body is executed. The return statement can be used
to terminate both the loop and the action that contains it.

Compound statements

Apama EPL Reference 5.2.0 - APAMA 123

Compound statements

The from statement

The rrom statement is used to create a stream listener. A stream listener watches for items from a
stream and passes output items to procedural code.

A from statement is similar to an on statement, which listens for events processed by the correlator
and then executes an event listener action for each matching event or pattern. See "The on statement”
on page 125.

FromStatement
1\«l Listener Assignment |J

f rom>-| Expression
StreamQuery

Rule components

Identifier H Statement I——

You can assign the result of a rrom statement to a 1istener variable. This lets you call quit () on the
stream listener.

A stream listener passes output items from a stream to procedural code. The stream, specified in
Expression, can be a reference to an existing stream or a stream source template. Alternatively, it can
be the stream created by an in-line stream query.

A colon and an identifier follow the Expression or in-line stream query. This signifies a coassignment
— when new items are available from the stream, the stream listener coassigns each output item to
the specified variable.

The statement following the identifier can be a single EPL statement or a block of EPL statements.
The £ron statement passes the output item to this statement or block and executes the statement or
block once for each output item. If the output of the query is a lot that contains more than one item,
and you want to execute the statement or block just once for the lot, coassign the output to a sequence.

See Developing Apama Applications in EPL, "Working with Streams and Stream Queries", "Working
with lots that contain multiple items".

Compound statements

The if statement

The it statement is used to conditionally execute a statement or block.

Apama EPL Reference 5.2.0 - APAMA 124

Compound statements

IfStatement

——@-—l Expression |—-<then>—-| Block |—)

IfStatement

else

Rule components

The expression, whose result type must be boolean, is evaluated and if its result is true the block
following the tnen keyword is executed. After the body of the then clause has been executed, control
is transferred to the next statement following the i statement.

If the expression result is faise, and an e1se clause is present, the statement or block following the
else is executed. After the body of the e1se clause has been executed, control is transferred to the next
statement following the i ¢ statement.

If the expression result is faise, and the e1se clause is not present, control is transferred to the next
statement following the i r statement.

Compound statements

The on statement

The on statement is used to create an event listener that looks for input events that match the pattern
specified by an event expression. When a matching event is detected, the event listener fires (also
referred to as triggers) and the specified event listener action is executed.

OnStatement

@——l EventExpression H ListenerAction I——
h ListenerAssignment |—j

Rule components

The ListenerAssignment clause is used to obtain a reference to the event listener that is created by
the on statement. One can either define a new variable of type 1istener Or specify a reference to an
existing listener variable.

Example

listener 1 := on ...

sequence <listener> aSequence;
aSequence[0] := on ...

The EventExpression is an event expression that specifies what events are of interest. See "Event
expressions” on page 89.

Apama EPL Reference 5.2.0 - APAMA 125

Compound statements

The ListenerAction defines the processing that will be performed when a matching event is detected
and the event listener fires.

ListenerAction

ActionName

Statement

The ListenerAction can be one of the following:
& Name of a monitor action
® A statement

* A block

The ListenerAction is invoked automatically by the correlator when the event expression is satisifed.
This may be

®* When a matching event is detected.

® Jf unmatched is specified in the expression, the event matches the expression, and there are no
matching event listeners that do not specify the unmatched keyword.

* If completed is specified in the expression, and any matching events have been completely
processed by other event listeners.

If an action name is specified instead of a block, then it must be an action that does not return a value
and that does not have any parameters.

Compound statements

The while statement

The wnile statement is used to repeatedly evaluate a poolean expression and execute a block as many
times as the expression result is found to be true.

WhileStatement

——(while)—-l Expression H Block I—-—

Rule components

The expression, whose result type must be voolean, is evaluated and if the result is true, the block
is executed. Control then transfers to the top of the loop and the expression is evaluated again.
When the expression result is ra1se, control is transferred to the next statement following the whiie
statement.

The body of the loop must be a block; it must be inside curly braces.

Within the loop body, the break statement can be used to cause early termination of the loop by
transferring control to the next statement after the loop body. The continue statement can be used to
transfer control to the end of the body, after which the expression will be evaluated again and the

Apama EPL Reference 5.2.0 - APAMA 126

Transfer of control statements

loop body executed if the expression result is true. The return statement can be used to terminate
both the loop and the action that contains it.

Compound statements

The try-catch statement

The try-catch statement is used to handle runtime exceptions.

TryCatchStatement

G H{Bo

G Exception)—-l Identifier 0

Rule components

The catch clause must specify a variable whose type iS com. apama.exceptions.Exception.

You can nest try-catch statements in an action and you can specify multiple actions in a txy block and
specify a try-catch statement in any number of actions.

See also: "Catching exceptions" in Developing Apama Applications in EPL, Defining What Happens When
Matching Events Are Found.

Example

using com.apama.exceptions.Exception;

action getExchangeRate (
dictionary<string, string> prices, string fxPair) returns float ({
try {
return float.parse(prices[fxPair]);
} catch (Exception e) {
return 1.0;
}
}

Compound statements

Transfer of control statements

Transfer of control statements alter the normal control path by stopping the sequential execution of
statements within a block. All of them end execution of the block that contains them. After a continue
statement is executed, the containing block might be executed again in a new loop iteration. The aie
and return statements also end the action in which they are executed.

Apama EPL Reference 5.2.0 - APAMA 127

Transfer of control statements

TransferOfControlStatement

BreakStatement

ContinueStatement

DieStatement

ReturnStatement

Statements

The break statement

The breax statement transfers control to the next statement following the loop (for or wnile statement)
that encloses the breax statement. A preak statement can only be used within a for or while statement.
Any statements between the preak statement and the end of the block are not executed.

BreakStatement

e

Transfer of control statements

The continue statement

The continue statement can be used in a block enclosed by a for or while statement to end execution of
the current iteration and transfer control to the beginning of the loop. When a continue statement is
executed, control is immediately transferred to the beginning of the inner most enclosing for or while
statement. Any statements between the continue statement and the end of the block are not excuted.

ContinueStatement

continue °

Transfer of control statements

The die statement

The aie statement terminates the execution of a monitor. When the correlator executes a die
statement, it terminates only the monitor instance that contains the die statement being executed. If
the monitor instance that spawned the monitor instance being terminated is still active, that monitor
instance is not affected. If that original monitor instance spawned any other monitor instances, those
monitor instances are not affected. If the monitor instance being terminated defines an ondie () action,

Apama EPL Reference 5.2.0 - APAMA 128

Transfer of control statements

the correlator executes the ondie () action for just the monitor instance being terminated, and then
terminates the monitor instance.

DieStatement

Transfer of control statements

The return statement

The return statement ends the execution of an action and control is transferred to the action’s caller, at
the point following the action call (which might be in the middle of an expression). Any statements
between the return statement and the end of action are not executed.

ReturnStatement

If the action does not have a returns clause then an expression is not permitted in the return
statement.

If the action has a returns clause then an expression whose value is the action’s return value is
required in the return statement. The expression type must match the type specified in the returns
clause.

Transfer of control statements

Apama EPL Reference 5.2.0 - APAMA 129

Introduction to expressions

Chapter 7: Expressions

B INtroduCtion 10 EXPIrESSIONScviviviiiiiiisisis et e st e bbbttt n e s renenens 130
B PriMAry EXPrESSIONScoiiiiiiiiiiitieitste ettt s ettt et et b ettt be s e e e e se s e et st et st bbbttt ettt ettt et s ererne 131
B POSHIX EXPIESSIONS ..ouviviiiicicietete ettt ettt ettt bbbttt ettt e b b s s s e s e s e se e e et s s s bbb s s 132
B Unary additiVe OPEIALONSc.oviiiieieiii ettt 134
B MUIIPlICALIVE OPEIAIOIScuiviieieiiiiiiiii it e sttt sttt bbb ben b s s e rens 134
B AQGILIVE OPEIALOTS ...ouiiiiciicciete ettt bbb bbb b bbbt s e e e e e bbb s b bbbt tane 136
B RElAtONAl OPEIALOTSooieiiiiicieiet ettt ettt bbbttt bbb bbbttt bbb b re e 137
B SNift OPEIALOTS .viviviiicsctcie ettt bbb s bbbt s bbbttt 138
I I To or= 1 AT oL £ (o] TR SRRSO 140
B BitwiSe 10gICal OPErAOrSiuiiiiiericiiciee bbb 141
B EXPression OPErator PrECEUBNCEcccceiriririeeiieee ettt sttt ettt s st s s s s s e e e e e e s s s 143
B SHEAM QUEMIES ooeeeeiiiceeeie ettt s bttt 144
B Stream SOUrCE tEMPIAIEScvcviviviicicceee bbb 148

In many programs, much work is performed by evaluating expressions, which are combinations
of operators, operands, and punctuation. They are used to detect events of interest to the program,
perform calculations, comparisons, invoke actions, invoke inbuilt methods, compute parameter
values passed to action and method calls, and so on.

Introduction to expressions

EPL has several kinds of expressions:

®* Primary and bitwise expressions are used for computations.

* A stream query definition creates a derived stream from an existing stream.
® A stream source template creates a new stream from an event template.

Event expressions are used in on statements for event pattern matching and sequence detection.
Event expressions are not ordinary EPL expressions. See "Event expressions” on page 89.

Apama EPL Reference 5.2.0 - APAMA 130

Primary expressions

Expression

PrimaryExp

BitwiseExp

StreamQueryDefinition

StreamSourceTemplate

Primary and Bitwise Expression Notes

When a primary or bitwise expression (called expression for the remainder of this section) is
evaluated (that is, it is executed), it will produce a result value if the expression is a variable, a literal,
or a combination of values and operators. If the expression is an action or inbuilt method call, then
evaluating the expression produces a result value when the action or inbuilt method returns a value,
but if the action or inbuilt method does not return a value, then the expression does not produce a
result. Note that when an expression includes action or method calls, then evaluating the expression
might produce side effects. A side effect is a change in the state of the execution environment. For
example, a called action might change the value of a global variable or generate a derived event. If
evaluating an expression produces a result, then in addition to a value, the expression result has a
type. This is the expression type. An expression’s type is always known at compile time.

The elements of an expression are evaluated roughly from left to right, taking into account
parentheses and operator precedence. Binary operators have a left operand and a right operand.
If an operator is left-associative, its left operand is evaluated first, followed by the right, and then
the operation is performed. If an operator is right-associative, its right operand is evaluated first,
followed by the left, then the operation is performed. In action calls, the actual parameter list
expressions are evaluated from left to right. Many of the operators used in primary or bitwise
expressions are polymorphic and can operate on operands of several types. For example, the
addition operator performs floating point addition when its operands are of type decimal Or float
and performs integer addition when its operands are of type integer. Here are some examples of
expressions:

(a.size() + b[3]) / (n -1);
"foo" + s + " " + b.toString() + f.formatFixed(8);

i

i

Expressions

Primary expressions

The primary expression is the simplest form of expression. It can take the following forms:

Apama EPL Reference 5.2.0 - APAMA 131

Postfix expressions

PrimaryExp

\-l Literal I

\-l PostfixExpression I

\-l ParenthesizedExpression I

\-l ObjectType |—-@—-| ActualParameterList |-@-/

Identifiers in expressions

In an expression, an identifier is a variable name, an instance method name, a type method name, or
an action name.

Literals in expressions

A literal in an expression is a compile-time constant value as described in "Literals" on page 178.

ParenthesizedExpression

“ Expression °

Expressions

Postfix expressions

PostfixExpression

Identifier

\—@—l ActualParameterList |—@—J

@—-l ActualParameterList |—-@—/

Primary

TypeLiteral
@ ObjectType J

Rule components

A primary followed by a ." symbol, and an identifier must represent a variable reference, an action
call, or a method call. Action and method calls are described in "Action and method calls" on page
133.

An expression enclosed by the [and 1 symbols denotes a subscript operation for a sequence or
dictionary. This can be used on the right or left side of an assignment statement.

Apama EPL Reference 5.2.0 - APAMA 132

Postfix expressions

The new operator is used to create an instance of a reference type or event type.

Expressions

Action and method calls

An action call within an expression transfers control to the statements within the action body

during expression evaluation and temporarily suspends the expression evaluation. If the action has
parameters, then their values are copied to the action’s formal parameter variables. When the control
flow reaches the action’s end or the action executes a return statement, control is transferred back to
the expression and evaluation continues.

ActualParameterList

Expression

Rule components

The ActualParameterList is a comma-separated list of expressions. The entire list is enclosed in
parentheses. It forms the set of parameter values that are passed when the action is called. Each
expression value is copied to the corresponding parameter variable specified in the action definition’s
FormalParameters and the expression result type must match the parameter variable’s type. The
number and order of actual parameters passed by a caller must also match those listed in the action
definition’s formal parameters.

The action or method being invoked in the expression must return a value. The action’s return type
becomes the expression result type.

Postfix expressions

The subscript operator []

The subscript operator takes one operand. The operand can be an integer index into a sequence or
a key type index of a dictionary. The subscript operator produces a result of the same type as the
sequence’s entry type or dictionary’s item type.

Postfix expressions

The new object creation operator

The operator new produces a result whose type is the type of the object parameter. It has one operand,
the name of the type of object to be created.

Postfix expressions

Apama EPL Reference 5.2.0 - APAMA 133

Unary additive operators

Unary additive operators

The unary additive operators are used to perform arithmetic on one right operand of type decimal,
float O integer. The result type of the unary arithmetic operators is the same as the type of the
operand.

UnaryArithmeticExp

PrimaryExp

PrimaryExp

Rule components

Both of the unary arithmetic operators have one operand, which must be an expression of type
decimal , float OF integer. The result type is the same as the type of the operand.

Unary inverse

The unary additive inverse operator produces a result that is its right operand value with the sign
reversed. If the operand value is negative, the result value is positive. If the operand value is positive,
the result value is negative. If the operand value is zero, the result value is zero.

Unary identity
The unary additive identity operator + produces a result that is its right operand value.

Expressions

Multiplicative operators

The multiplicative operators are used to perform arithmetic on two operands of matching type, both
decimal Or both f1cat or both integer.

MultiplicativeExp
—-| UnaryArithmeticExp I
\ @ I UnaryArithmeticExp

e

Apama EPL Reference 5.2.0 - APAMA 134

Multiplicative operators

Rule components

The left and right operands must both be expressions of type decinal or both be of type f1cat or both
be of type integer.

The result type of the multiplicative operators is the same as the type of the operands.

Expressions

Multiplication operator

The multiplication operator = produces a result by computing the numeric product of its two
operands. If the two operands are both expressions of type integer, then integral multiplication is
performed and the result is of type integer. If the two operands are both of type decimal or both of
type tloat, then floating-point multiplication is performed and the result type is the same as the
operand type.

Multiplicative operators

Division operator

The division operator / produces a result by computing the numeric quotient of its two operands.
The left operand value, the dividend, is divided by the right operand value, the divisor.
Operand type

If both operands are of type integer, any fractional part of the result value is discarded. In other
words, the result is truncated toward zero. For example, the expression 13/5 yields a result of 2.

If both operands are of type integer, then integral division is performed and the result is of type
integer. If both operands are of type decimal or both are of type f1oat, then floating-point division is
performed and the result type is the same as the operand type.

If the right operand’s value is zero, a runtime error is raised.

Multiplicative operators

Remainder operator

The remainder operator % produces a result by computing the numeric remainder from dividing the
left operand value by the right operand value. For example, the expression 13%s5 yields a result of 3.

Operand type

If both operands are of type integer, then the integral remainder is computed and the result is of type
integer. If both operands are of type decimal or both of type f1oat, then the floating-point remainder is
computed and the result type is the same as the operand type.

Apama EPL Reference 5.2.0 - APAMA 135

Additive operators

If the right operand’s value is zero, a runtime error is raised.

Multiplicative operators

Additive operators

The additive operators perform addition, subtraction, and string concatenation.

AdditiveExp

—-| MultiplicativeExp I

@ - I MultiplicativeExp

The additive operators are used to perform arithmetic on two operands of matching type -- both of
type decinal, both of type integer or both of type t1cat. The result type of the additive operators is the
same as the type of the operands.

Expressions

Addition operator

The addition operator + produces a result by computing the numeric sum of its left and right
operands. If the two operands are both expressions of type integer, then integral addition is
performed and the result is of type integer. If the two operands are both of type decima1 or both of
type f1oat, then floating-point addition is performed and the result type is the same as the operand

type.
Additive operators

Subtraction operator

The subtraction operator — produces a result by computing the numeric difference between the left
and right operands by subtracting the value of the right operand from the left. If the two operands
are both expressions of type integer, then integral subtraction is performed and the result is of
type integer. If the two operands are both of type decimal or both of type f1cat, then floating-point
subtraction is performed and the result type is the same as the operand type.

Additive operators

String concatenation operator

Apama EPL Reference 5.2.0 - APAMA 136

Relational operators

The string concatenation operator + produces a result by "adding" two strings together. The result is
a new string whose value is the value of the right operand, an expression of type string, appended to
the value of the left operand, an expression of type string. The result type of the string concatenation
operator is string.

Additive operators

Relational operators

The relational operators are used to determine the equality, inequality, or relative values of their left
and right operands.

CompareExp

——| AdditiveExp I \
: AdditiveExp |i

LT

/

The left and right operands must be expressions of the same type and the type must be allowed
for that operator. You can use each relational operator on decimal, float, integer, and string types
(see "Primitive and string types" on page 18). On voolean types, you can use the - and - relational
operators.

The result type of all six relational operators is roolean.

Expressions

Less-than operator

The less-than operator < produces the result true if the left operand’s value is smaller than the right
operand’s value and fa1se otherwise.

Relational operators

Less-than-or-equal operator

Apama EPL Reference 5.2.0 - APAMA 137

Shift operators

The less-than-or-equal operator <= produces the result true if the left operand’s value is smaller than
or equal to the right operand’s value and fa1se otherwise.

Relational operators

Equality operator

The equality operator - produces the result true if the left operand’s value is equal to the right
operand’s value and fa1se if they are not equal.

Relational operators

Inequality operator

The inequality operator - produces the result true if the left operand’s value is not equal to the right
operand’s value and fa1se if they are equal.

Relational operators

Greater-than-or-equal operator

The greater-than-or-equal operator => produces the result true if the left operand’s value is larger
than or equal to the right operand’s value and fa1se otherwise.

Relational operators

Greater-than operator

The greater-than operator > produces the result true if the left operand’s value is larger than the right
operand’s value and fa1se otherwise.

Relational operators

Shift operators

The shift operators << and >> perform a shift of an integral value, moving bits in the result a specified
number of positions to the right or left. The result type of both shift operators is integer.

Apama EPL Reference 5.2.0 - APAMA 138

Shift operators

ShiftExp

——| CompareExp I
\ < @ - :CompareExp}—T/

Rule components

The left operand is an expression of type integer whose value is to be shifted. The right operand is
the shift count, an expression of type integer whose value is the number of bits the left operand value
is to be shifted.

The shift count must be a nonnegative value less than 64. If the shift value is zero, then the result
value is equal to the left operand value. Values less than zero or greater than 63 will produce
unpredictable results and should not be used.

Expressions

Left shift operator

The left shift operator << produces a result by moving the left operand value’s bits to the left and
filling the vacated bits on the right with 0 bits. Bits that are moved beyond the leftmost bit (the sign
bit) position are discarded.

Example

The following table illustrates this using 64-bit binary values.

i := 42; 00101010

i << 24 0000000000000000000000000000000000101010000000000000000000000000

Shift operators

Right shift operator

The right shift operator >> produces its result by moving the left operand value’s bit to the right. The
vacated bits on the left are filled with 0 bits if the left operand value is zero or positive and filled with
1 bits if the left operand value is negative. Bits that are moved to beyond the rightmost bit (the least
significant bit) position are discarded.

Examples

The following tables illustrate this using 64-bit binary values.

i :=42; 00101010

Apama EPL Reference 5.2.0 - APAMA 139

Logical operators

i>> 24 00
i := -42; 1111111111111121111211211111111111111111111111111111111111111010110
i >> 24 1111111111111121111211211

Shift operators

Logical operators

The logical operators ang, or, xor and not perform Boolean arithmetic on their operands.

LogicalExp

[ShiftExp l \

| I——
@ ShiftExp
e
(or)

Rule components

The logical operators’ left and right operands are expressions whose result type must be boo1ean. The
result type of all four operators is boolean.

Expressions

Logical intersection (and)

The and operator produces a result of true if both of its operand values are true and fa1se otherwise.

When the correlator evaluates a logical and expression it evaluates the left operand first. If the
left operand evaluates to false then the correlator does not evaluate the right operand since the
expression cannot be true. For example:

a and b

If = is false then whether or not » is true the expression will be false so the correlator does not
evaluate v. This lets you write code such as the following:

if (dict.hasKey (k) and dict[k] = "someValue")

If x is not in the dictionary then the left operand evaluates to false and so the entire logical expression

is false. The correlator never evaluates dict[k] = "somevalue", which would cause an error if x is not in
the dictionary.

Logical operators

Apama EPL Reference 5.2.0 - APAMA 140

Bitwise logical operators

Logical union (or)
The or operator produces a result of true if either of its operand values is true and faise otherwise.

When the correlator evaluates a logical or expression it evaluates the left operand first. If the
left operand evaluates to true then the correlator does not evaluate the right operand since the
expression will always be true. For example:

a or b

If a is true then regardless of what v evaluates to the expression will be true so the correlator does not
evaluate b.

Logical operators

Logical exclusive or (xor)

The xor operator produces a result of true if either of its operand values is true and the other is fa1se
and fa1se if both are true or both are faise.

Logical operators

Unary logical inverse (not)

The unary not operator produces the result true if its right operand value is faise, and fa1se if the
operand value is true.

Logical operators

Bitwise logical operators

The bitwise logical operators examine one bit at a time in their operands and compute the
corresponding bit value in the result.

BitwiseExp
[CompareExp I

1
@ CompareExp
s

(0r)

Apama EPL Reference 5.2.0 - APAMA 141

Bitwise logical operators

Rule components

The bitwise operators ang, or, and xor are binary operators that have a left and right operand. The

bitwise operator not is a unary operator that has only a right operand.

The result type of all four bitwise operators is integer. Note that EPL integers are 64 bits wide.

Expressions

Bitwise intersection (and)

The bitwise intersection operator and produces a result by comparing all 64 bits of its left and right

operands, which must be expressions of type integer, one bit at a time. For each bit in the two
operands, the corresponding bit in the result value is set to 1 if both operand bit values are 1 and set
to o if either operand bit value is o.

Example

The following table illustrates this using 64-bit binary values.

a = 42; 00101010
b := 642 001010000010
a and b 0010

Bitwise logical operators

Bitwise union (or)

The bitwise union or produces a result by comparing all 64 bits of its left and right operands,

which must be expressions of type integer, one bit at a time. For each bit in the two operands, the

corresponding bit in the result value is set to 1 if either or both operands bit values is 1 and set to o if
both operand bit values are o.

Example

The following table illustrates this using 64-bit binary values.

a = 42; 00101010
b := 642; 001010000010
a or b 001010101010

Bitwise logical operators

Apama EPL Reference 5.2.0 . APAMA

142

Expression operator precedence

Bitwise exclusive (xor)

The bitwise exclusive or operator xor produces a result by comparing all 64 bits of its left and right
operands, which must be expressions of type integer, one bit at a time. For each bit in the two
operands, the corresponding bit in the result value is set to 1 if either operand’s bit value is 1 and the
other is 0 and set to o if both operand bit values are o or both are 1. In other words, the result bit is 1 if
both bit values are different and o if they are the same.

Example

The following table illustrates this using 64-bit binary values.

a := 42; 00101010
b := 642; 001010000010
a xor b 001010101000

Note that the expression a xor b yields the same result as not (a and b).

Bitwise logical operators

Unary bitwise inverse

The unary bitwise not operator produces a result by computing the bitwise complement or inverse
of its right operand, which must be an expression of type integer. For each bit in the operand’s value,
the corresponding bit in the result value is set to 1 if the operand’s bit value is 0 and o if the operand’s
bit value is 1.

Example

The following table illustrates this using 64-bit binary values.

b = 42; 00101010

not b 11010101

Bitwise logical operators

Expression operator precedence

The following table lists the primary and bitwise expression operators in order by their precedence,
from lowest to highest. See also "Event expression operator precedence" on page 96.

Apama EPL Reference 5.2.0 - APAMA 143

Stream queries

Operation Operator Precedence
Logical or bitwise union or 1
Logical or bitwise exclusive or xor 2
Logical or bitwise intersection and 3
Unary logical or bitwise inverse not 4
Relational <, <=, >, >=, 1= 5
Additive +, - 6
String concatenation + 6
Multiplicative X, /% 7
Unary additive +, - 8
Name qualifier (Dot) 9
Object constructor new 9
Subscript [] 9
Action call ActionName () 10
Parenthesised expression () 10
Stream query from 10
Stream source template all 10

Expressions

Stream queries

A stream query defines an operation that the correlator applies continuously to one or two streams
of items. The output of a stream query is a continuous stream of derived items, strean<x>, where xis
the type returned by the expression in the select clause.

Apama EPL Reference 5.2.0

«"APAMA ™

Stream queries

StreamQueryDefinition

——<‘fr0m>—-| Identifier @—-@
\-l WindowDefinition |-f

(

\—l WindowDefinition
ot T |- Frpresion \4

‘WindowDefinition

(<| Expression |——<equa1s>—-| Expression I

\{wher@—l Expression |-f

((setect) [Bxpression |—
select Expression
having)—-l Expression

Rule components

A £rom clause specifies a stream that the query is operating on.

An item in a stream can be an event, a simple type (voolean, decimal, float, integer O string) OT @
location type. The first rdentifier is the identifier that represents the current item in the stream you
are querying. You use this identifier in subsequent clauses in the stream query.

The first expression identifies the stream that you want to query.

A stream query window definition is optional. If you do not specify any window then the stream
query operates on only the items that arrive on the stream for a given activation of that query. See
"Stream query window definitions" on page 146.

A subsequent £ron clause indicates a cross-join operation.

Alternatively, a subsequent join clause indicates an equi-join operation. An equi-join has a key
expression for each of the two streams that are being joined. Two items are joined into an output item
only if the values of their key expressions are equal.

Apama EPL Reference 5.2.0 - APAMA 145

Stream queries

A wnere clause qualifies the items produced from a window or a join operation.

A group by clause organizes the qualified items, or the items produced from a window or join
operation.

A naving clause filters the output items produced from the projection.

The required se1ect clause specifies how to generate the output items.

Semantic constraints

from Identifier in Expression join Identifier in Expression

The identifier can be any legal identifier and, within the stream query's scope, is associated with
items from the source stream and therefore has their type. In a joined stream query, the two
identifiers must be distinct.

The expression's result must be a value of some stream type. The correlator evaluates the expression
outside the stream query's scope. For example:

stream<A> a := all A();
from a in a ..

This is legal, because the identifier a is not in scope for evaluation of the expression a.

on Expressionl equals Expression2

The correlator evaluates both expressions within the stream query's scope.

Expressionl must contain the first item identifier and cannot contain the second. Expression2z must
contain the second item identifier and cannot contain the first.

The two expressions must return the same type, and that type must be a comparable type.

where Expression group by Expression, Expression,
The item identifier or identifiers are in scope and should be used in these expressions. The where
expression must return a boolean value. The group by expressions can return any comparable types.

having Expression

The item identifier or identifiers are in scope and can be used in this expression. The presence of
this clause implies that the projection must be an aggregate projection. The expression must return a
boolean Value.

You can use one or more aggregate functions in the naving expression. In fact, you can use aggregate
functions only in having expressions and select expressions.

select [rstream] Expression
The item identifier or identifiers are in scope and can be used in this expression. The expression must
return a value.

You can use one or more aggregate functions in a select expression. In fact, you can use aggregate
functions only in having expressions and se1ect expressions. If you specify an aggregate function you
cannot specify the rstrean keyword.

Expressions

Stream query window definitions

In a stream query, the optional window definition specifies which items in a stream to operate on.

Apama EPL Reference 5.2.0 - APAMA 146

Stream queries

StreamQueryWindowDefinition

Expression

L-(retain>—-| Expression I ~
\{every}-l Expression |-j

\.@ithinH Expression I \{

every)—-l Expression |-f |
(/

retain)—-l Expression

with)——(unique)—-l Expression

Typically, stream queries process a window over a stream. A stream is an ordered sequence of items
over time. A window specifies which items to operate on. Windows can contain a portion of the
stream based on number of items, time of item arrival, content of item, or other criteria.

Rule Components

When the stream query window definition is retain a11, the window contains all items that have
ever been in the stream. Conceptually, once an item enters a retain a1l window, it remains in the
window indefinitely, or until the stream query is terminated. The retain a11 clause specifies an
unbounded window. Unbounded windows have restrictions on their use:

* You cannot have a partitioned or batched unbounded window.
®* You cannot perform a join operation on an unbounded window.

®* You cannot speciy an unbounded window when you use rstream in the seiect clause of a stream
query.

When you use a custom aggregate function in a stream query that contains an unbounded window,
you cannot use a bounded aggregate function. You should also be aware that, if you use a badly

Apama EPL Reference 5.2.0 - APAMA 147

Stream source templates

implemented custom aggregate function in a stream query that contains an unbounded window,
then this can result in uncontrolled memory usage.

A partition by clause divides the input data into several partitions and then applies the stream query
window definition separately to each partition. The partition by expressions must be comparable

types.

The retain clause specifies the maximum number of items to be retained by the window. The retain
expression must be an integer expression. In a size-based window, as each new item arrives in the
stream, it is added to the window. After the number of items in the window reaches the window size
limit specified in the retain clause, the arrival of a new item causes removal of the oldest item from
the window.

The witnin clause specifies the number of seconds to keep each new item in the window. The within
expression must be a rioat expression. In a time-based window, as each new item arrives in the
stream, it is added to the window. As soon as an item has been in the window for the number of
seconds specified by the witnhin expression, the correlator removes the item from the window.

By default, the contents of a window change upon the arrival of each item. The every keyword can be
used to control when the contents of the window change, which causes the items to be added to the
window in batches of several items at once. Time-based windows can be controlled to update only
every p seconds and size-based windows can be controlled to update only every m events.

The contents of the window can also depend on the content of individual items in the stream. Specify
with uniqueExpression to limit the window to containing only the most recent item for each key value
identified by the expression.

Semantic constraints

In a stream query window definition for one of a joined stream query's input streams, it is always an
error to refer to the other input stream's item identifier.

partition by Expression, Expression, ...

You should use the item identifier in each expression. Expressions can return any comparable types.

retain Expression [every Expression]

You cannot use the item identifier in these expressions. These expressions must return integer values.

within Expression [every Expression]

You cannot use the item identifier in these expressions. These expressions must return f1ocat values.

with unique Expression

You should use the item identifier in this expression. The expression can return any comparable type.

Stream queries

Stream source templates

A stream can be created from an event template using the a11 keyword. This is referred to as a stream
source template.

Apama EPL Reference 5.2.0 - APAMA 148

Stream source templates

StreamSourceTemplate

EventTypeName |-® @
\-l EventQualifierExprList |-f

A stream source template is the a11 keyword followed by a single event template. The output of a
stream source template is a continuous stream of items, stream<x>, where x is the type specified by
the event template.

Expressions

Apama EPL Reference 5.2.0 - APAMA 149

Variable declarations

Chapter 8: Variables

B Variable deCIArations ... 150
B VArIEDIE SCOPE .oiiiic ettt bbb bbbttt bbb b b bbb bR R e AR e e s e e s s bbb 158
B Provided VAM8DIEScoiiiiiiiiieiei e 160
B Specifying Named CONSIANT VAIUEScoviiriiiiriiricesce s 162

Variables are names that are bound to data values (in the case of primitive types) or the location

of data values (in the case of reference types). Variables are declared by specifying a type, a name,
and optionally, an initial value. With the exception of the string type, once declared, new values can
be computed and assigned to variables as needed. Strings are immutable and variable assignment
causes a new string value to be created and bound to the string variable.

Variable declarations

Before a variable or a named constant value can be referenced in a program, it must be declared.

The declaration gives the variable or named constant a unique name, a type and, optionally

except for constants, an initial value. There are three forms of variable declarations, the
PrimitiveVariableDeclaration, the ReferenceVariableDeclaration and the Constant. You must supply
a literal value for a constant. Aside from the types, the main difference is that the declarations for the
primitive types are simpler than for reference types.

Variable declarations in actions and blocks are statements that are executed when the program’s
control flow reaches them.

VariableDeclaration

PrimitiveVariableDeclaration

ReferenceVariableDeclaration

Constant

Variables

Primitive type variable declarations

The PrimitiveTypeName is one of the primitive types: boolean, decimal, float, integer, OF string.

Apama EPL Reference 5.2.0 - APAMA 150

Variable declarations

PrimitiveVariableDeclaration

—-| PrimitiveTypeName H Identifier }

]

A
f N
Identifier

Rule components

The Identifier following the type name becomes the variable’s name. The variable name must
be unique with respect to other variables declared within the same scope in which the variable
declaration occurs. Variable names cannot be the same as any of the keywords listed in "Lexical
Elements" on page 163.

Example

boolean a;
boolean b;
boolean c, d;
integer 1i;
float f; s
string sl;
string s2;

The diagram is also true for reference variable declarations, however additional detail about
reference variable declarations is in "Reference-type variable declarations" on page 152.

Variable declarations

Primitive-type initializers

Variable of the primitive types can be given an initial or starting value by including an Initializer
after the variable name.

Initializer
&

Rule components
The expression result type in an Initializer must be of the same type as the variable being initialized.
The expression’s result value is used as the variable’s initial or starting value.

Examples

boolean a := true;

Apama EPL Reference 5.2.0 - APAMA 151

Variable declarations

boolean b := false;
boolean c true, d := false;
integer i 42;

float £ :
string sl :
string s2 :

00.6180339887;
"abcdefghijklmnopgrstuvwxyz";
sl;

Il
o e=nnn

Variable declarations

Reference-type variable declarations

ReferenceVariableDeclarations differ in structure depending on the particular reference type. See
"Reference types" on page 37. Each kind of declaration contains an Identifier that becomes the
variable’s name. The variable name must be unique with respect to other variables declared within
the same scope in which the variable declaration occurs. Variable names cannot be the same as any of
the keywords listed in "Lexical Elements" on page 163.

ReferenceVariableDeclaration

4—<act ion ActionVariableDeclaration I

\-<context>—-| ContextVariableDeclaration I—
\—Cchunk}-l ChunkDeclaration I

\-Cdi ctionary)—-l DictionaryDeclaration I—

\-l EventDeclaration I

\-Clistener ListenerDeclaration I—/
\—Clocation>-| LocationDeclaration I—
\-Csequence}-l SequenceDeclaration I—/

\-<strea.m>—-| StreamDeclaration I

\-<string>—-| Identifier I @-/

Variable declarations

Action variable declarations

You can assign an action to an action variable of the same action type. An action is of the same type
as an action variable if they have the same argument list (the same types in the same order) and
return type (if any).

Apama EPL Reference 5.2.0 - APAMA 152

Variable declarations

ActionVariableDeclaration

——@-l ActionParameterTypeList |—@—)

\{returns}-l DataTypeName |-f

ActionParameterTypelList

\T-{ DataTypeName }—Tr
7
N

Rule components

The format for defining an action variable is as follows:
action<[typel [, typel2]...]> [returns type3] name;

Follow the action keyword with zero, one or more parameter types enclosed in angle brackets and
separated by commas. The angle brackets are required even when the action takes no arguments.

Optionally, follow the parameter list with a returns clause. Specify the returns keyword followed by
the type of the returned value.

Finally, specify the name of the variable.
Example

action<string> a;
action<integer, integer> returns string b;

Reference-type variable declarations

Chunk variable declarations

Variables of the type chunk are not used directly in EPL but can be passed as parameters in calls to
plug-ins. See "Plug-ins" on page 105. Initializers are allowed for chunk variables.

ChunkDeclaration

Identifier ()
ChunkExpression

Examples

chunk c;
chunk cl, c2;

Reference-type variable declarations

Apama EPL Reference 5.2.0 - APAMA 153

Variable declarations

Context variable declarations

Use one of the following constructors to create a context:

context (string name)
context (string name, boolean receivesInput)

ContextVariableDeclaration

——| Identifier I @
ContextInitializer

ContextlInitializer

StringExpression I @
\—@—l BooleanExpression |-J

Rule components

The optional receivesinput Boolean flag controls whether the context is public or private:

®* A public context can receive external events on the default channel, which is the empty string (")
as well as events that are sent on channels that the context is subscribed to.

® A private context can receive only those events that are sent on channels that the context is
subscribed to. The default is that a context is private.

Example

The following example creates a reference, , to a private context whose name is test:

context c:=context ("test");

Reference-type variable declarations

Dictionary variable declarations

A DictionaryDeclaration specifies a key type, a data type, an identifier, and an optional initializer.

DictionaryDeclaration

.®.| KeyType |—-@-—| DataType

(

OO
N
DictionarylInitializer

Rule component

The dictionary’s KeyType and DataType, separated by a comma, are enclosed in angle brackets.
The KeyType defines the type of the dictionary’s key values. The DataType defines the type of the
dictionary’s data values.

Apama EPL Reference 5.2.0 - APAMA 154

Variable declarations

The Identifier becomes the dictionary variable’s name.
The initial dictionary size is determined by the number of entries in the ditionary’s initializer if one is

present and zero otherwise.

Examples

dictionary<string, integer> dayNumbers;
dictionary<integer, string> dayNames;

Dictionarylnitializer
O O
N L

Expression

Expression

N
2/

Rule component

A Dictionarylnitializer is a comma-separated list of expression pairs separated by colons. The entire
list is enclosed in curly braces. Each expression value pair becomes an element in the dictionary. In
each pair, the first expression value is the element’s key value and the second is the element’s data
value.

The first expression result type in each pair must match the dictionary’s key type. The second must
match the dictionary’s data type.

Examples

event PhoneticAlphabet
{

action getPhoneticHexValues () returns dictionary <string, string>
{
dictionary <string, string> dict :=
{"a":"Alfa", "B":"Bravo", "C":"Charlie", "D":"Delta",
"E":"Echo", "F":"Foxtrot"};
return dict;

}

dictionary <string, integer> dayNumbers :=
{"Sunday": 1, "Monday":2, "Tuesday": 3, "Wednesday": 4,
"Thursday": 5, "Friday": 6, "Saturday": 7};

dictionary <integer, string> dayNames :=
{1: "Sunday", 2: "Monday", 3: "Tuesday",
4: "Wednesday", 5: "Thursday", 6: "Friday",
7: "Saturday"};

Reference-type variable declarations

Event variable declarations

Event variable declarations, unlike variables of other reference types, do not begin with the keyword
event, but instead begin with the EventTypeName that is part of the event definition that defines the
event and its fields and actions. See "Event definitions" on page 79.

Apama EPL Reference 5.2.0 - APAMA 155

Variable declarations

EventDeclaration

—-| EventTypeName |—-| Identifier I @
\—@—l EventInitializer |j

Examples

event etypel
{
integer 1i;

}

event etype2
{

boolean b;
integer i;
float £;
string str;
location 1;
etypel n;
}
etype2 e := etype2(true, -10, 1.73, "abc",

location(1.0, 1.0, 5.0, 5.0), etypel (1));

Reference-type variable declarations

Listener variable declarations

Listener variable values are references to listeners and cannot be initialized in the way other variables
can. Instead, you must use the on statement or trom statement to assign a value to a 1istener variable.

ListenerDeclaration
o

Rule component

The Identifier becomes the 1istener variable’s name.

Example

listener 1;

Reference-type variable declarations

Location variable declarations

The Identifier becomes the location variable’s name.

LocationDeclaration

Identifier ()
LocationInitializer

Apama EPL Reference 5.2.0 - APAMA 156

Variable declarations

Examples

location rect;
location point;

Locationlinitializer

location G Expression ’ Expression 0 Expression |-—@-—| Expression |-—@—

The four Expressions in the location initializer are separated by commas and must have a result
type of f1oat, are the coordinates of the two points x1, y1, and x2, y2, forming the location’s enclosing
boundary rectangle.

Examples
location rect := location(1.0, 1.0, 5.0, 5.0);
location point := location(1.0, 1.0, 1.0, 1.0);

Reference-type variable declarations

Sequence variable declarations

A value of type sequence contains a set of data elements or entries that are all of the same type.

SequenceDeclaration

——@—-l DataType |—-®—-| Identifier I @
\@—l Sequencelnitializer |-j

Rule components

The DataType enclosed in angle-brackets defines the type of the element values contained in the
sequence. You can use any primitive or reference type.

The Identifier becomes the sequence variable’s name.

When you have a sequence of sequences or a sequence of dictionaries, the possibility that the
declaration will contain two adjacent > characters arises. To distinguish them from the right shift
operator >>, you must include a space between them.

Examples

sequence <integer> s;
sequence <string> w;

Sequencelnitializer
(1) (1)
N 2/

Expression

Apama EPL Reference 5.2.0 - APAMA 157

Variable scope

Rule components

A Sequencelnitializer is a comma-separated list of expressions enclosed in square brackets. Each
expression value becomes an element in the sequence and the initial sequence size is determined by
the number of expressions in the initializer.

The expression result types must all match the type specified in the sequence declaration.

Examples
sequence <integer> s := [1, 3, 5, 7, 11, 13, 171;
sequence <string> w := ["one", "three", "five", "seven"];

Reference-type variable declarations

Stream variable declarations

A streanm variable references a linearly ordered flow of items that have been processed by the
correlator. The items in a stream are always ordered according to the order in which the correlator
processed them. When more than one item arrives in a lot the correlator preserves the order in which
it processed them.

StreamDeclaration

——@—-l DataTypeName F—@—@

)
N

Rule components
An item in a stream can be any Apama type. A particular stream can contain only one type of item.

The optional initializer can be a stream source template, a stream query definition, or any other
expression that returns a stream. A stream source template is an event template that specifies the
a11 keyword and no other qualifiers. See "Stream source templates” on page 148. A stream query
definition specifies a query that the correlator applies continuously to one or two streams. See
"Stream queries" on page 144.

Examples
stream<Tick> ticks := all Tick (symbol="APMA");
stream<integer> derived := from a in sA select a.i;

Reference-type variable declarations

Variable scope

The parts of a program in which a particular variable can be referenced (that is, its value used or a
new value assigned) is called the scope of the variable. In EPL, variables can have scopes that include

* All monitors — these are global variables that are part of EPL, also called predefined variables.
®* The monitor within which they are declared.

® The action within which they are declared.

Apama EPL Reference 5.2.0 - APAMA 158

Variable scope

® The block within which they are declared.

®* The event within which they are declared.

® The custom aggregate function in which they are declared.
®* The stream query within which they are identified.

Regardless of the scope of a variable, it cannot be referenced in statements or expressions until after
it has been declared or specified as an item identifier in a stream query. Further, variables scoped to
actions or blocks cannot be referenced until a value has been assigned.

Within a scope at a particular level, variables declared at that level must have unique names. They

can, however, have names that are the same as variables defined at an outer scope and in that case

the variables declared at the inner level hide or mask the ones defined at the outer level(s) until the
end of their scope.

Variables

Predefined variable scope

Predefined variables are defined by the correlator and are accessible in all monitors. See "Provided
variables" on page 160.

Variable scope

Monitor scope

A variable that is defined in a monitor is visible and can be referenced in all parts of the monitor.
Such variables are also called global variables.

Variable scope

Action scope

A variable that is declared in an action (also called a local variable) can only be referenced within the
action. A variable that is a formal parameter of an action can only be referenced within the action. If
a local variable declared in an action has the same name as a global variable declared at the monitor
level, the local variable hides the global variable until the end of the action.

Variable scope

Block scope

A variable that is declared within a block can only be referenced within the block. A block is one
or more statements enclosed within curly braces (the characters { and }). If a local variable declared
in a block has the same name as a global variable declared at the monitor level, or a local variable

Apama EPL Reference 5.2.0 - APAMA 159

Provided variables

declared at the action level, the block’s local variable hides the global variable or the action’s variable,
or both if all three have the same name, until the end of the block (the closing }).

Variable scope

Event action scope

The fields of an event are part of the event declaration. An event field’s scope depends on where it is
declared. When an event also includes action definitions, the statements in the action can reference
the event'’s fields as simple identifiers. From the point of view of an event’s action, the fields can be
said to be scoped to the event.

Variable scope

Custom aggregate function scope

A variable that is declared in a custom aggregate function (also called a local variable) can only be
referenced within the custom aggregate function. If a local variable declared in a custom aggregate
function has the same name as a global variable declared at the monitor level, the local variable hides
the global variable until the end of the custom aggregate function.

Variable scope

Provided variables

The EPL execution environment provides several variables. You can use these variables in the same
way as variables you declare yourself, except that you cannot assign values to them. Instead, the
correlator automatically assigns values to these variables.

Variables

currentTime

Purpose

The currentrime variable is a read-only f1cat global variable that contains a timestamp value with the
current time and date as read from the correlator’s clock. Timestamps are encoded as the number of
seconds and fractional seconds elapsed since midnight, January 1, 1970 UTC and do not have a time
zone associated with them.

The current time is the time indicated by the most recent clock tick. Use the currentrine variable
to obtain the current time. The value of the currentTine variable is always changing to reflect the
correlator’s current time.

Apama EPL Reference 5.2.0 - APAMA 160

Provided variables

If you have multiple contexts, it is possible for the current time to be different in different contexts. A
particular context might be doing so much processing that it cannot keep up with the time ticks on
its queue. In other words, if contexts are mostly idle, then they would all have the same current time.

In a context, the current time is never the same as the current system time. In most circumstances it is
a few milliseconds behind the system time. This difference increases when the context’s input queue
grows.

When a listener executes an action, it executes the entire action before the correlator starts to process
another event. Consequently, while the listener is executing an action, time and the value of the
currentTime Variable do not change. Consider the following code snippet,

float a;

action checkTime () {

a := currentTime;
}
// ... Lots of additional code
// A listener calls the following action some time later
action logTime () {
log a.toString(); // The time when checkTime was called
log currentTime.toString(); // The time now

}

In this code, an event listener sets r1oat variable a to the value of currentTime, which is the time
indicated by the most recent clock tick. Some time later, a different event listener logs the value of =
and the value of currentrime. The values logged might not be the same. This is because the first use of
currentTime Mmight return a value that is different from the second use of currentrine. If the two event
listeners have processed the same event, the logged values are the same. If the two event listeners
have processed different events, the logged values are different.

The correlator maintains a clock that advances at a fixed interval (default) of 0.1 seconds. The clock
does not advance while an event is being processed.

Provided variables

Event timestamps

Purpose

The correlator defines an arrival timestamp for every event it receives. The arrival time value is set
from the main context’s clock when an event is received by the correlator, just before it is placed on
the input queue of each public context.

You can access the arrival timestamp by calling the event’s inbuilt getrime () method (see "event"

on page 49). After the correlator creates an event or after you coassign an event, the getTime ()
method returns the time in the context when the event was created or coassigned. An event'’s arrival
timestamp has the same scope as the event itself.

Provided variables

self

Apama EPL Reference 5.2.0 - APAMA 161

Specifying named constant values

Purpose

The predefined variable se1£ is an event reference that can be used to refer to an event instance
within the event’s definition.

Within an event action body, you can use the se1£ variable to refer an event instance of that event
type. In other words, the scope of se1t is each action body in the event definition. For example:

event Circle
{
float radius;
location position;
action area () returns float
{
return (float.PI * radius * radius);
}
action circumference () returns float
{
return (2.0 * float.PI * self.radius);
}
}

Provided variables

Specifying named constant values

A constant is a named literal and its value cannot be changed during runtime.

Constant

Identifier e

PrimitiveTypeName

You can declare an identifier for a constant value in an event type definition or in a monitor. A
constant appears in memory once. Spawning a monitor that contains a constant does not make
copies of the constant.

The type of a constant must be voolean, decimal, float, integer, OF string.

The name you assign to a constant must be unique within the event type or monitor that contains the
constant definition.

The literal that you assign to the constant must be the specified type.

When you define a constant event field, you can refer to that constant from outside the event. Qualify
the name of the constant with the event name, for example, myevent .nyconstant.

You cannot declare a constant in an action, directly in a package, or in a custom aggregate function.

Variables

Apama EPL Reference 5.2.0 - APAMA 162

Program text

Chapter 9: Lexical Elements

B PrOGram tEXE ..ottt bbbttt r Rt e s 163
B COMMENES oottt ettt b b s e et e s e st bbb bbb bbbt bbb b eb et et e b e s e e e e 164
B WNRITE SPACE ...vvivieieieiieeeee ettt ettt bbbttt bbbttt ettt b ettt b e ae e e 164
B LINE LEIMINATIOTS ...o.vvieiiecec ettt ettt ettt ettt b et sttt e st bese sttt ns st rene s 166
B SYMDOIS oottt bR R AR AR e s st et sttt 167
B {AENEIIBS ittt bbb bbb bbb bbb AR bR R e e e e e et bbbttt bt tane 168
B KEYWOIAS vttt et s e st et £ bbbk bbbt e s 168
B OPEIALOTS ...oiviviiiececte ettt s bbb st b bR Rt b st s R bbb bbbt b st et n s 172
T o 1 (0] £ TSP TPPPRP 178
B LIEIAIS oottt bbb bbbt b b AR e e e e et bbbttt et bbbttt et ererns 178
B NBIMES oottt ettt ettt e st et et ettt s e e b b oA et et e b e et e b b e e b e b et ettt eae bbb ese bt eb e et et ere e 184

The lexical rules of the EPL grammar describe how sequences of characters are used to form the
basic elements of the language, that is, identifiers, constants (string, numeric, and so on), operators,
separators, white space, comments, and language keywords. These elements, after discarding any
white space and comments, form the symbols used in the syntactical grammar of the language.

Program text

A program’s source text is composed of an optional UTF-8 byte-order marker followed by characters
that form a sequence of symbols, white space, comments, and line terminators, up to the end of file
(denoted by the EOF symbol).

Program Text

\\l UTF8ByteOrderMarker |-j

[EOF |
|EOFI

WhiteSpace
T

LineTerminator

UTF8ByteOrderMarker

—-<0xEF>-<0xB@-<0xBF>——

Apama EPL Reference 5.2.0 - APAMA 163

Comments

The UTE-8 byte order marker is a sequence of three consecutive bytes with the values oxer, 0xzs,
and oxer respectively, appearing at the beginning of a file containing EPL source text. The UTF-8
character encoding format does not need a byte-order marker to indicate the byte order because
UTEF-8 is by definition a bytewise encoding. A UTF-8 byte-order marker at the start of a file just
indicates that the program text is encoded in the UTF-8 format. It is inserted automatically by some
text editors, such as Notepad on Windows systems.

A program’s source text can be encoded as Unicode UTF-8, as 7-bit ASCII (which is a proper subset
of UTF-8), or various other encodings. The comiler will convert the source text from the locale’s
encoding to UTF-8 if necessary. In practice, this really only affects comments, white space, and string
literals because all other EPL constructs are limited to the ASCII subset. "Identifiers" on page 168,

for example, are limited to only a few of the many possible Unicode characters.

Lexical Elements

Comments

Comments are explanatory notes or text intended for human readers to help them unerstand what a
program or section of a program does.

Comment
BlockComment
EndOfLineComment
BlockComment

4@—@T—| CharacterExceptStarSlash T@—@—

EndOfLineComment

4@-—@T—| CharacterExceptLineTerminator i—T-l LineTerminator I——

There are two kinds of comments: block comments and end-of-line-comments.

Block comments begin with the character sequence slash-asterisk /+, which is followed by any
number of other characters and line breaks, followed by a closing asterisk-slash =/ sequence. The
entire contents of all block comments are ignored.

End-of-line comments begin with two consecutive slash characters // followed by any number of
characters up to and including the end of the current line. The entire contents of all end-of-line
comments are ignored.

Lexical Elements

White space

Apama EPL Reference 5.2.0 - APAMA 164

White space

White space characters are characters such as spaces and tabs that are used between symbols to
separate them. White space characters are sometimes required between symbols when they would
otherwise be misinterpreted or unrecognizable. For example, the symbol / is used as the division
operator and the symbol = is used as the multiplication operator, but the character pair / with no
white space between them marks the beginning of a block comment.

WhiteSpace

ASCIIWhiteSpace

UnicodeWhiteSpace

Though they act as separators between symbols, white space characters are otherwise ignored and
discarded during program compilation.

Judicious use of white space improves a program’s readability.

The ASCIIWhiteSpace characters and their encodings are listed below:

Table 1. ASCIIWhiteSpace characters and their encodings

Code Point UTF-8 Encoding ASCII Encoding Name
0x0020 0x20 0x20 Space
0x0009 0x09 0x09 Horizontal Tab
0x000c 0x0c 0x0c Form Feed
0x001c oxlc oxlc File Separator
0x001d 0x1d 0x1ld Group Separator
0x001le Oxle Oxle Record Separator
0x001f 0x1f 0x1f Unit Separator

The UnicodeWhiteSpace characters, as defined by the Unicode character dictionary, and their
encodings are listed below:

Table 2. UnicodeWhiteSpace characters and their encodings

Code Point UTF-8 Encoding Name
0x0085 0xc2 0x85 unnamed control character
0x00a0 0xc2 0xal NO-BREAK SPACE
0x1680 Oxel 0x9a 0x80 OGHAM SPACE MARK
0x180e Oxel 0xa0 Ox8e MONGOLIAN VOWEL SEPARATOR

Apama EPL Reference 5.2.0 - APAMA 165

Line terminators

Code Point UTF-8 Encoding Name

0x2000 0xe2 0x80 0x80 EN QUAD

0x2001 0xe2 0x80 0x81 EM QUAD

0x2002 Oxe2 0x80 0x82 EN SPACE

0x2003 Oxe2 0x80 0x83 EM SPACE

0x2004 Oxe2 0x80 0x84 THREE-PER-EM SPACE
0x2005 Oxe2 0x80 0x85 FOUR-PER-EM SPACE

0x2006 Oxe2 0x80 0x86 SIX-PER-EM SPACE

0x2007 Oxe2 0x80 0x87 FIGURE SPACE

0x2008 Oxe2 0x80 0x88 PUNCTUATION SPACE
0x2009 Oxe2 0x80 0x89 THIN SPACE

0x200a 0xe2 0x80 0x8a HAIR SPACE

0x2028 Oxe2 0x80 0xa8 LINE SEPARATOR

0x2029 Oxe2 0x80 0xa9 PARAGRAPH SEPARATOR
0x202f 0xe2 0x80 Oxaf NARROW NO-BREAK SPACE
0x205£ Oxe2 0x81 0x9f MEDIUM MATHEMATICAL SPACE
0x3000 0xe3 0x80 0x80 IDEOGRAPHIC SPACE

All white space characters appearing between two symbols are ignored. However, note that white
space appearing within string literals is not igored. See "Literals" on page 178.

Lexical Elements

Line terminators

Line terminators are used to mark the end of a line of source text. Different operating systems use
different characters or character sequences to mark the end of a line.

Apama EPL Reference 5.2.0

«"APAMA *

Symbols

LineTerminator

ASCIINewline (0z04) |

ASCIICarriageReturn (0z0D)

ASCIICarriageReturn |-| ASCIINewline

The following terminators are used on various operating systems:

Operating System Line Terminator
Mac OS X ASCII Carriage Return (0xop)
UNIX ASCII Newline (0x0a)
Linux ASCII Newline (0x0a)
Windows ASCII Carriage Return (oxop) followed by ASCII Newline (0x02)

In general, any number of line terminators can be used between any two symbols in a program and
they are treated the same as other white space. A line terminator appearing at the end of an end-of-
line comment terminates the comment.

Lexical Elements

Symbols

Symbols (also called tokens, atoms, or lexemes) are the elements and words of the language,
consisting of identifiers, keywords, operators, separators, and literals. Symbols are composed of one
or more characters, excluding white space, comments, and line terminators.

Symbol

Identifier
Keyword
Operator

Separator

il

Literal

Sometimes you must use at least one white space character between two symbols in order to make
them distinguishable from each other and from another symbol. For example, the symbol >> is the
right-shift operator and the symbol > is used to indicate the end of the element type in a sequence
declaration. Since you can have a sequence of sequences, such a declaration could have two adjacent
symbols. Since >> in a sequence declaration looks just like the right-shift operator, you have to write
them with a white space character between them, thusly: > >. On the other hand, the expression a-»
(subtract the value of the variable named » from the value of the variable named =) is unambiguous

Apama EPL Reference 5.2.0 - APAMA 167

Identifiers

and no extra white space characters are needed. If you wrote it as = - » it would mean the same
thing.

Lexical Elements

Identifiers

An identifier is a sequence of allowed characters

Characters

An identifier is a character sequence composed of a combination of the following characters:
® The 26 letters of the Roman alphabet in upper and lower case

* Digits o through ¢

® Underscore () character

®* Dollar sign (s) character

The first character may not be a digit. Identifiers are case sensitive. An identifier cannot have the
same spelling as a keyword. For example, the word action is a keyword and cannot be used as an
identifier. See "Lexical Elements" on page 163 for a list of the EPL keywords.

The length of an identifier is limited by available memory. In practice, this means you can make them
as long as you want, but very long identifiers are hard to type and harder to read.

Identifier

|
i

I underscore '

underscore

Lexical Elements

Keywords

In EPL, reserved words are referred to as keywords. You must escape them to use them as identifiers
in your code.

Relevant topics

® "List of EPL keywords" on page 169

Apama EPL Reference 5.2.0 - APAMA 168

Keywords

® "List of identifiers reserved for future use" on page 170
® "Escaping keywords to use them as identifiers" on page 171

Lexical Elements

List of EPL keywords

The table below lists the reserved words called keywords. EPL keywords are case sensitive. You
cannot use keywords as identifiers in EPL programs unless you prefix them with a hash symbol

(#). Some keywords are flagged with an asterisk (*). You can safely use these keywords outside the
scope of a stream query. Inside a stream query, you cannot use these keywords as identifiers unless
you prefix them with a hash symbol (#). See "Escaping keywords to use them as identifiers" on page

171.

Table 3. EPL keywords

action aggregate all and

as at boolean bounded
break by * call catch
chunk completed constant context
continue currentTime decimal dictionary
die else emit enqueue
event every * false float

for from group * having *
if import in integer
join * largest * location log
monitor new not on
optional or package partition *
persistent print retain * return
returns route rstream * select *
send sequence smallest * spawn
static stream streamsource string
then throw to true

Apama EPL Reference 5.2.0

s- APAMA

169

Keywords

try unbounded unique * unmatched
using wait where * while
wildcard with * within Xor

Some reserved keywords are actually operators. Nevertheless, the restriction still applies. Some

Apama tools, such as the Event Modeler, generate code based on EPL and in such code there might
be symbols that resemble identifiers but contain hash (#) characters, which are not allowed in
identifiers. These "identifiers" are placeholders that are later replaced with valid identifiers that do
not contain the hash character.

The string join() method is still supported. That is, you can still use the following and you do not
receive a warning: string.join (). Also, note that the join keyword has a query scope and join is also a
reserved word for use outside queries in a future release.

Note that ondie, onload, and onunload are not reserved keywords. They are the names of
special actions. While you can use "ondie", "onload", and "onunicad" as identifiers, doing so is not

recommended.

Keywords

List of identifiers reserved for future use

EPL might use the identifiers listed in the table below as keywords in a future release. In this release,
if you use one of these reserved words, the correlator logs a warning,.

List of reserved identifiers

In this table, some identifiers are flagged with as asterisk (*). These identifiers are reserved as
keywords only within stream queries. That is, the correlator logs a warning only if you use this
identifier inside a stream query. To use one of these identifiers inside a stream query without logging
a warning, prefix it with a hash symbol (#). See "Escaping keywords to use them as identifiers" on

page 171.

Table 4. |dentifiers reserved for future use

abstract ALL * AND *
assert bignum BY *
byte case char
class default enum
EQUALS * eval EVERY *
except extends FALSE *
finally FROM GROUP *

Apama EPL Reference 5.2.0

s- APAMA

170

Keywords

HAVING immutable implements
IN * instanceof interface
join JOIN LARGEST *
native NOT * null

or * otherwise PARTITION *
private protected public
RETAIN * RSTREAM * runtime
SELECT * SMALLEST * sortedsequence
switch sync SYNC *
synchronized table throws
transient TRUE * UNIQUE *
void volatile WHERE *
window WITH * WITHIN *
Keywords

Escaping keywords to use them as identifiers

You can use a keyword as an identifier if you escape it with a hash symbol (#). For example:

package com.company.#monitor.client;
using com.company.#monitor.server.Event;

In a stream query, you can use a query-scope keyword as an identifier if you prefix it with a hash
symbol (#). For example:

event Tick

{...

string partition;

}
from t in all Tick() partition by t.#partition retain 5

You can define a JMon event type that has a field name that is the same as an EPL keyword. To refer
to that field in EPL, prefix it with a hash symbol. For example:

class MyEvent extends Event {
int integer;

}
on all MyEvent (#integer = 5): m { ... }

To avoid warning messages if you use a reserved word as an identifier, escape the reserved word
with a hash symbol (#).

Apama EPL Reference 5.2.0 - APAMA 171

Operators

Keywords

Operators

Operators are symbols used in expressions and statements to perform a computation on or test a
relation between data values or, in event expressions, to detect sequences and patterns of events. As
you will see, the same symbol is sometimes used for different operations, depending on the context
in which the operator is used. For example, the and operator is used both in logical expressions, and
event sequencing and the = operator is used both for integer and floating point multiplication and to
match any value in event templates.

Operator

OrdinaryOperator

EventOperator

This section discusses the following topics:
® "Ordinary operators" on page 172
m "Arithmetic operators" on page 173
m "Comparison operators" on page 173
m '"Logical operators" on page 174
® "Event operators" on page 174
® "Expression operators"” on page 174
®* 'Field operators" on page 176
See also:
®* "Event expression operator precedence" on page 96
® "Expression operator precedence" on page 143

Lexical Elements

Ordinary operators

The ordinary operators are used in primary and bitwise expressions. See "Expressions” on page 130
to perform calculations and comparisons on variables, data values, and other constructs. "Types" on
page 17 provides information about the operators that you can use with values of each type.

Apama EPL Reference 5.2.0 - APAM A 172

Operators

OrdinaryOperator

ArithmeticOperator

ComparisonOperator

LogicalOperator

The ordinary operators are grouped into three subcategories: arithmetic, relational, and logical.

Operators

Arithmetic operators

Arithmetic operators are for use in expressions.

ArithmeticOperator

4—<+ — addition, unary additive identity, string catenation)——

\-C— - subtraction, unary additive im}ers@

\—C* - multiplicatz’on)

% — remainder
\—<<< — integer left shiﬂ)
\-<>> — integer right shift>

\—C: = - assignment> /

Ordinary operators

Comparison operators

Comparison operators are for use in expressions.

ComparisonOperator

4—<= - equals compam'son)
\—<.= — not equals compam'son)—/
\—<< — less than comparison)—/
\—<> — greater than or equal comparist—/
\—< = —less than or equal compam‘so@—/

\-<>= — greater than or equal comparz'son)—/

Apama EPL Reference 5.2.0 - APAMA 173

Operators

Ordinary operators

Logical operators

Logical operators are for use in expressions.

LogicalOperator

or — boolean or, integer bitwise or

~

J

xor - boolean exclusive or, integer bitwise exclusive or

and — boolean and, integer bitwise and

N

J

not - boolean inverse, integer one’s complement

Ordinary operators

Event operators

Event operators are special operators that are used in the on statement’s event expression. An on

statement defines an event listener. See "Event expressions" on page 89.

EventOperator

4—<* — event field wildcard match)——

\—Cz — listener coassign, mnge)—

\-<wait — event timer

\—<within — event timer

\-Call — eventl sequencing

\-Cand — event sequencing

\-Cor - event sequencing

\—Cnot - event sequencing

Operators

Expression operators

\-<—> — followed by)—/
\-<at - event timer)—

[

L1

Apama EPL Reference 5.2.0

s- APAMA

174

Operators

Another way to categorize the operators supported in EPL is as as expression operators and field
operators. You can use the following operators wherever you can specify an expression. Note that

they are all binary operators.

Table 5. Expression operators

Operator Operation Description
+ . . .
Addition Returns a decimal, float Or an integer according to
the operands, or concatenation in the case of string
operands
Subtraction Returns a decimal, float Or an integer according to
the operands
Modulus Returns an integer and is a valid operator only for
integers
/
Division Returns a decimal, float Or an integer according to
the operands
Multiplication Returns a decinal, float Or an integer according to
the operands
> . . .
Greater than Returns a boolean value indicating whether the
condition expressed is true or false
< . . .
Less than Returns a boolean value indicating whether the
condition expressed is true or false
>: . . .
Greater than or equal to Returns a boolean value indicating whether the
condition expressed is true or false
<: . . .
Less than or equal to Returns a boolean value indicating whether the
condition expressed is true or false
Equivalence Returns a boolean value indicating whether the
condition expressed is true or false
=
Not equals Returns a boolean value indicating whether the
condition expressed is true or false
or . . .
Logical or, Bitwise or On boolean types, On integers
and . . .
Logical and, Bitwise and On boolean types, On integers
Xor . . .
Loglcal xor, Bitwise xor On boolean types, On integerS
not 3
Logical not On voolean types
Operators

Apama EPL Reference 5.2.0

s- APAMA

175

Operators

Field operators

Field operators can appear within event templates to define a field value.

Description

The on keyword creates an event listener that watches the series of events processed by the correlator
for individual events or patterns of particular events. You define the sequence of interest in an event
expression made up of one or more event templates. The first part of an event template defines the
event type of the event the event listener is to match against, while the section in brackets describes
further filtering criteria that must be satisfied by the contents of events of that type for there to be

a match. Event template field operators define what values, or range of values, are acceptable for a
successful event match.

The value that a field operator applies to can be the result of an expression. Therefore, it is possible
to have >, <, >=, <=, and/or = present in both their roles, as expression operators and as field operators,
within an event template. This is not a problem, since the latter are unary while the former are binary
and the semantics are quite different.

The following table describes the field operators:

Table 6. Field operators

Operator Description

[valuel:valueZ] Specifies a range of values that can match. The values themselves are
included in the range to match against. For example:

on stockPrice(*, [0 : 10]) doSomething();
This example will invoke the dosomething () action if a stockprice event

is received where the price is between 0 and 10 inclusive. You can
apply this range operator to decimal, float, integer and string types.

[valuel:value2) Specifies a range of values that can match. The first value itself is
included in the range to match against while the second value is
excluded from the range to match against. For example:

on stockPrice(*, [0 : 10)) doSomething();

This example will invoke the dosomething () action if a stockprice event
is received where the price is between 0 and 9 inclusive (assuming
the field was of integer type). You can apply this range operator to
decimal, float, integer and string types.

(valuel:value2] Specifies a range of values that can match. The first value is excluded
from the range to match against while the second value is included.
For example:

on stockPrice(*, (0 : 10]) doSomething();

This example invokes the doscmetning () action if a stockprice event is
received where the price is between 1 and 10 inclusive (assuming the

Apama EPL Reference 5.2.0 - APAMA 176

Operators

Operator

Description

field was an integer). This operator can apply to decimal, float, integer
and string types.

(valuel:value?2)

Specifies a range of values that can match. The values themselves are
excluded from the range to match against. For example:

on stockPrice(*, (0 : 10)) doSomething();

This example will invoke the dosomething () action if a stockprice event
is received where the price is between 1 and 9 inclusive (assuming
the field was of integer type).You can apply this range operator to
decimal, float, integer and string types.

> value

All values greater than the value supplied will satisfy the condition
for a match.You can apply this operator to decimal, float, integer, and
string types. When used with a string, the operator assumes lexical
ordering.

< value

All values less than the value supplied will satisfy the condition for
a match. You can apply this operator to decimal, f1oat, integer, and
string types. When used with a string, the operator assumes lexical
ordering.

>= value

All values greater than or equal to the value supplied will satisfy

the condition for a match. You can apply this operator to decinal,
float, integer, and string types. When used with a string, the operator
assumes lexical ordering.

<= value

All values less than or equal to the value supplied will satisfy the
condition for a match. You can apply this operator to decimal, float,
integer, and string types. When used with a string, the operator
assumes lexical ordering.

= value

All values equal to the value supplied will satisfy the condition for
a match. You can apply this operator to decimal, float, integer, and
string types. When used with a string, the operator assumes lexical
ordering.

value

With one exception, only a value equivalent to the value supplied
will satisfy the condition for a match. The exception is a 1ocation
type field. A 10cation value consists of a structure with four f1cats
representing the coordinates of the corners of the rectangular
space being represented. A listener that is watching for a particular
value for a 1ocation field matches when it finds a 1ocation field that
intersects with the 1ocation value specified in the listener’s event
expression. In the following example, the listener matches each »
event whose 1oc field specifies a location that intersects with the
square defined by (0.0, 0.0, 1.0, 1.0).

location 1 := location(0.0, 0.0, 1.0, 1.0);
on all A(loc = 1)

Apama EPL Reference 5.2.0

s- APAMA

177

Separators

Operator Description
* Any value for this field satisfies the condition for a match.
Operators
Separators

Separators are symbols that are used in certain statements and expressions.

Separator uses
Separators are used to:

* Keep the various parts from bumping into each other, for example commas between parameter
values in an action call

® Group related elements together, for example the left and right braces at the beginning and end
of a block of statements
Separator

O,

Lexical Elements

Literals

A literal is a source text representation of a constant value of a primitive type, or a 1ocation,
dictionary, OT sequence type.

Apama EPL Reference 5.2.0 - APAM A 178

Literals

Literal

4-| BooleanLiteral I——
\-l DecimalLiteral I—
\-l LocationLiteral I—/
\-l DictionaryLiteral |-/
\-l SequenceLiteral I—/

You might want to declare a constant for a frequently used literal so that you can refer to it by name.
See "Specifying named constant values" on page 162.

Lexical Elements

Boolean literals

There are two Boolean literal values: true and faise.

BooleanlLiteral
Example

a := true;

b := false;
Literals

Integer literals

Integer literal values can be written either base 10 (decimal) or base 16 (hexadecimal).

Apama EPL Reference 5.2.0 - APAMA 179

Literals

IntegerLiteral

I BaselOIntegerLiteral

Basel6IntegerLiteral I

Literals

Base 10 literals

Base 10 integral literal values are a sequence of one or more of the digits o through o.

Base10IntegerLiteral

nn
[
[

= 1023;
1= 9223372036854775807;

The value can optionally be preceded by a sign. If the sign is omitted, + is assumed.

The number 9223372036854775807 or (2°° - 1) is the largest base 10 integer literal value that can be
represented.

Integer literals

Base 16 literals

Base 16 integral literal values begin with the characters 0x, and consist of a combination of the
decimal digits o through s and the hexadecimal digits a through ¢ and 2 through .

Base16integerLiteral

®

Examples

J 1= 0x0;

J = 0x0d;

j := 0x0aFF;

j := OxTEffffffffffefes;

Apama EPL Reference 5.2.0 - APAMA 180

Literals

The number ox7seereeeereeeeer or (2°° - 1) is the largest base 16 integer literal value that can be

represented.

You cannot specify a negative hexadecimal literal. The correlator treats hexadecimal literals as
unsigned integers. For example, the following is illegal:

-0x43af

Integer literals

Floating point and decimal literals

There are several forms of floating point literals.

DecimallLiteral

FloatLiteral e

FloatLiteral

Digits H Exponent

\-l Digits |—-| Exponent I

\-Q—-l Digits H Exponent I

Digits

Apama EPL Reference 5.2.0

s- APAMA

181

Literals

Exponent

Digits

(e) [Digits |
YT Bl

Floating-point literal values can take one of the following forms:

* Optional sign, integer digits followed by an exponent.

® Optional sign, integer digits, a decimal point, and an optional exponent,

* Optional sign, integer digits, a decimal point, fraction digits, and an optional exponent.
* Optional sign, a decimal point, fraction digits, and an optional exponent.

If the sign is omitted, "+ is assumed. If the exponent is omitted, e0 is assumed.

The exponent is the letter ‘e” followed by an optional sign, and one or more decimal digits.

Examples

0.0;

1.5

200128.00005
3.14159265358979;
le4;

le-4;

10000e0;

.1234;

.1234e4;

1.E-32;

1.E-032;
6.0221415E23;
1.7976931348623157e308;

Fh Hh Hh Fh Fh Fh Hh Hh Fh Fh Fh Hh Hh
LI | | | | | | | | R | O N | |

The largest positive floating point literal value that can be represented in EPL is 1.7976931348623157

308 s - -308
+ 10~ . The smallest positive nonzero value that can be represented is 2.2250738585072014 * 10~ ",

If you write a floating-point literal whose value would be outside the range of values that can be
represented, the compiler raises an error.

Literals

String literals

A string literal is a sequence of characters enclosed in double quotes.

Apama EPL Reference 5.2.0 - APAMA 182

Literals

StringLiteral
N /M
N N

StringChar

backslash

AN

The backslash character is used as an escape character to allow inclusion of special characters such as
newlines and horizontal tabs.

The symbol StringChar above means all the characters other than the ASCII doublequote " and the
ASCII backslash \.

To include a double quote in a string literal, precede it with a \ character which serves as an escape
character, which means "do not treat this quote as the end of the string literal". To include a newline,
use \n. To include a tab character, use \t. To include a single \ character, use two: \\. The compiler
will remove the extra backslashes.

Examples

s := "Hello, World!";

s := "\ta\tstring\twith\ttabs\tbetween\twords";

s := "a string on\n two lines";

s := "a string with \\ a backslash and a \" quote";

The length of a string literal is limited only by available memory at compile time andruntime. In
practice, this means you can make them as long as you need.

Literals

Location literals

The four FloatLiterals form the location’s corner point coordinates, x1, y1 and x2, y2.

LocationLiteral

“ FloatLiteral o FloatLiteral 0 FloatLiteral ‘ FloatLiteral 0

Literals

Dictionary literals

Apama EPL Reference 5.2.0 - APAMA 183

Names

Each LiteralDictionary entry in the comma-separated list forms one dictionary entry consisting of a
key value and item value pair.

DictionaryLiteral

4®T—| LiteralDictionaryEntry |—T®—
N

2/

LiteralDictionaryEntry

[Tt - -{ed.

The first Literal in a dictionary entry is the key value and the second is the item value. All key values
must be the same type. All item values must the same type. Both must be of a type that matches the
types specified in the dictionary variable’s definition.

Literals

Sequence literals

Each Literal in the comma separated list forms one entry in the sequence literal. The types must all
be identical and must match the sequence type.

Sequenceliteral

(O}
ol

Literals

Names

Names are used in EPL programs to refer to the various different kinds of entities in the program.
Actions, variables and reference variable members, parameters, monitors, methods, aggregate
functions, events, packages, and plug-ins all have names.

Description

Names are either simple or qualified. Simple names consist of a single identifier. Qualified names
consist of a sequence of identifiers separated by . symbols.

Every name has a scope, which is the part of a program’s text where the name can be used as a
simple identifier. The scope is determined by where in the program the name is declared. See
"Variable scope" on page 158.

Do not create EPL structures in the com.apama namespace. This namespace is reserved for future
Apama features. If you do inadvertently create an EPL structure in the com.apana namespace, the

Apama EPL Reference 5.2.0 - APAMA 184

Names

correlator might not flag it as an error in this release, but it might flag it as an error in a future
release.

Name Precedence

When there are duplicate unqualified names for types, the correlator searches for the associated
definition in the following order, and uses the first one it finds:

1. The monitor-internal type definitions, for example, event type definitions and custom aggregate
function definitions

2. Definitions that have been brought in with a using declaration in the current file
3. Definitions in the current package (this could be the root namespace if a package was omitted)
4. The root namespace

If you try to create a package-level type that has the same name as a definition brought in with a
using declaration, it causes a compiler error and the code does not inject. For example:

package foo;

using bar.Bar;

event Bar { // Causes an error when injecting as Bar has already been
// defined by a "using" declaration.}

You cannot define a type that has the same fully-qualified name as another type.

If two types have the same name but are in different packages, either one can take precedence over
the other depending on their ordering in the precedence list. The correlator uses the first match it
finds even if that results in an error when a lower-priority match would have worked. For example:

X x;

This causes an error if, for example, there is an aggregate function called x in the current package
even if there is an event type called x in the root namespace.

Lexical Elements

Apama EPL Reference 5.2.0 - APAMA 185

Chapter 10: Limits

EPL enforces the limits described in the following table.

EPL Limit

Value

Lowest integer

—2°7 (-9223372036854775808)

Highest integer

2%° —1(9223372036854775807)

Integer precision

64 bits (about 18 decimal digits)

Maximum integer left shift

63 bits

Maximum integer right shift

63 bits

Lowest negative floating point value

~1.7976931348623157 x10°°°

Highest negative nonzero floating point value

-2.2250738585072014 x 10 >°8

Lowest positive nonzero floating point value

2.2250738585072014 x 108

Highest positive floating point value

1.7976931348623157 x 10°°®

Floating point precision

About 15 decimal digits

Lowest negative decimal floating point value

-9.999999999999999 * 10>8*

point value

Highest negative nonzero decimal floating ~1073°8
point value
Lowest positive nonzero decimal floating 1073°8

Highest positive decimal floating point value

9.999999999999999 * 10>8*

Decimal precision

Exactly 16 decimal digits

Maximum identifier length

Limited by available memory

Maximum number of entries in a sequence

Limited by available memory

Maximum number of entries in a dictionary

Limited by available memory

Maximum number of characters in a string

Limited by available memory

Maximum number of active listeners

Limited by available memory, typically
many tens of thousands

Apama EPL Reference 5.2.0

s- APAMA

186

EPL Limit

Value

Maximum number of active monitors

Limited by available memory

Maximum number of fields in an event

21 (65536)

Maximum number of actions in an event

21 (65536)

Maximum indexed fields in an event

32

Memory address space available to EPL
runtime

On 32-bit systems, limited to about two
gigabytes. The correlator stops if it runs out
of memory.

Maximum number of active stream queries

Limited by available memory

Maximum stream window size

Limited by available memory

Apama EPL Reference 5.2.0

s- APAMA

187

Old style listener calls

Chapter 11: Obsolete Language Elements

B Old Style STENET CaIIS ...vvcvieeieiecccceeee ettt s

B Old style SPAWN STALEMENLScciiiiiiice ettt et r s

As EPL has evolved, some older language constructs have been supplanted by more useful and

flexible ones. The new constructs can accomplish the same effects and more and their use is
preferred. Nevertheless, existing programs may still use the obsolete constructs, which are described

in this section.

Old style listener calls

Do not specify the following:

on A() foo;

Instead, specify the following:

on A() fool();

Obsolete Language Elements

Old style spawn statements

Do not specify the following:

spawn actionName;

Instead, specify the following:

spawn actionName () ;

Obsolete Language Elements

Apama EPL Reference 5.2.0

s- APAMA

188

	Table of Contents
	Preface
	About this documentation
	How this book is organized
	Documentation roadmap
	Contacting customer support

	Chapter 1: Introduction and Notation Conventions
	Hello World example
	Notation conventions
	Notation for sequences of symbols
	Notation for repetition of symbols
	Notation for choices of symbols

	Chapter 2: Types
	Primitive and string types
	boolean
	decimal
	float
	integer
	string

	Reference types
	action
	Channel
	chunk
	context
	dictionary
	event
	Exception
	listener
	location
	sequence
	StackTraceElement
	stream

	monitor pseudo-type
	Type properties summary
	Timestamps, dates, and times
	Type methods and instance methods
	Type conversion
	Comparable types
	Cloneable types
	Potentially cyclic types
	Which types are potentially cyclic?
	String form of potentially cyclic types

	Support for IEEE 754 special values

	Chapter 3: Events and Event Listeners
	Event definitions
	Event fields
	Event actions
	Event field and action scope

	Event templates
	By-position qualifiers
	By-name qualifiers
	Range expressions

	Event listener definitions
	Event lifecycle
	Event listener lifecycle
	Event processing order
	Event expressions
	Event primaries
	Timers
	The not Operator
	The all Operator
	The and, xor, and or logical event operators
	The followed-by event operator
	Event expression diagram
	Event expression operator precedence

	Event channels

	Chapter 4: Monitors
	Monitor lifecycle
	Programs
	Packages
	The using declaration
	Monitor declarations
	The import declaration
	Monitor actions
	SimpleActions
	Actions with parameters

	Contexts
	Plug-ins
	Garbage collection

	Chapter 5: Aggregate Functions
	Built-in aggregate functions
	Custom aggregates

	Chapter 6: Statements
	Simple statements
	The assignment statement
	The emit statement
	The enqueue statement
	The enqueue . . . to statement
	The expression statement
	The log statement
	The print statement
	The route statement
	The send . . . to statement
	The spawn statement
	The spawn action to context statement
	Variable declaration statements

	Compound statements
	The for statement
	The from statement
	The if statement
	The on statement
	The while statement
	The try-catch statement

	Transfer of control statements
	The break statement
	The continue statement
	The die statement
	The return statement

	Chapter 7: Expressions
	Introduction to expressions
	Primary expressions
	Postfix expressions
	Action and method calls
	The subscript operator []
	The new object creation operator

	Unary additive operators
	Multiplicative operators
	Multiplication operator
	Division operator
	Remainder operator

	Additive operators
	Addition operator
	Subtraction operator
	String concatenation operator

	Relational operators
	Less-than operator
	Less-than-or-equal operator
	Equality operator
	Inequality operator
	Greater-than-or-equal operator
	Greater-than operator

	Shift operators
	Left shift operator
	Right shift operator

	Logical operators
	Logical intersection (and)
	Logical union (or)
	Logical exclusive or (xor)
	Unary logical inverse (not)

	Bitwise logical operators
	Bitwise intersection (and)
	Bitwise union (or)
	Bitwise exclusive (xor)
	Unary bitwise inverse

	Expression operator precedence
	Stream queries
	Stream query window definitions

	Stream source templates

	Chapter 8: Variables
	Variable declarations
	Primitive type variable declarations
	Primitive-type initializers
	Reference-type variable declarations
	Action variable declarations
	Chunk variable declarations
	Context variable declarations
	Dictionary variable declarations
	Event variable declarations
	Listener variable declarations
	Location variable declarations
	Sequence variable declarations
	Stream variable declarations

	Variable scope
	Predefined variable scope
	Monitor scope
	Action scope
	Block scope
	Event action scope
	Custom aggregate function scope

	Provided variables
	currentTime
	Event timestamps
	self

	Specifying named constant values

	Chapter 9: Lexical Elements
	Program text
	Comments
	White space
	Line terminators
	Symbols
	Identifiers
	Keywords
	List of EPL keywords
	List of identifiers reserved for future use
	Escaping keywords to use them as identifiers

	Operators
	Ordinary operators
	Arithmetic operators
	Comparison operators
	Logical operators

	Event operators
	Expression operators
	Field operators

	Separators
	Literals
	Boolean literals
	Integer literals
	Base 10 literals
	Base 16 literals

	Floating point and decimal literals
	String literals
	Location literals
	Dictionary literals
	Sequence literals

	Names

	Chapter 10: Limits
	Chapter 11: Obsolete Language Elements
	Old style listener calls
	Old style spawn statements

