
Using Apama Studio

5.2.0

August 2014

This document applies to Apama 5.2.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its Subsidiaries and or/its Affiliates and/or
their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA Inc.
and/or its Subsidiaries and/or its Affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective
owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG′s licensing conditions and terms. These terms are located at http://documentation.softwareag.com/
legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products." This document is located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-Using_Apama_Studio-5.2.0-20140808@233876

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

Using Apama Studio 5.2.0 3

Table of Contents

Preface.. 9
About this documentation...9
How this book is organized..9
Documentation roadmap.. 10
Contacting customer support... 12

Chapter 1: Overview of Developing Apama Applications...13
Samples and tutorials...13
The Apama interface.. 14
The Apama Workbench perspective.. 15

Workbench Project view..15
The Apama Developer perspective..17

Project Explorer view.. 18
The Apama Runtime perspective...18
Apama projects...19

Managing project hierarchies.. 20
Working with Apama projects...21

Editors..21
Outline view... 22
Scenario Browser view..22
Engine Receive view...23
Engine Status view..24
Engine Information view..25
Console view... 25
Problems view... 26
Data Player Control view.. 26

Building Apama projects...27
Launching Apama projects...27
Specifying the location of the license file...27

Chapter 2: Working with Projects... 29
Creating Apama projects..29
Adding resources to Apama projects...30

Creating new monitor files for EPL applications...31
Creating new event definition files for EPL applications...31

Creating event definitions by adding EPL code...32
Creating event definitions from XML files..32
Creating event definitions from XSD files..33

Creating new files for JMon applications.. 34
Adding a new JMon application...34
Adding a JMon monitor..34
Adding a JMon event...35
Adding an EPL Plugin written in Java... 37

Creating new scenarios...38

Table of Contents

Using Apama Studio 5.2.0 4

Creating new blocks..39
Creating a block with the block editor... 39
Creating a block from an EPL event definition..40
Adding EPL code to a block..41

Creating new scenario functions...42
Creating new dashboards... 43
Creating dashboards with the Dashboard Generation wizard.. 43
Creating dashboards with the Dashboard Builder.. 44
Creating new dashboard-deployment configurations..44
Creating new event files... 45
Adding resources to EPL projects.. 45
Adding resources to JMon projects.. 46

Adding JMon applications.. 47
Adding JMon classes... 47
Adding non-JMon Java files...48

Adding bundles to projects..50
Bundle instances.. 50

Adding adapters to projects.. 53
Adding Universal Messaging configuration to projects... 55

Editing Apama files...56
Obtaining content assistance.. 56
Using auto-completion...57
Displaying information for events and actions.. 57
Specifying comments.. 57
Using auto-Indent.. 58
Using auto-bracketing..58
Using tabs..58
Defining shorthand (templates) for frequently used EPL code... 59
Sharing templates among Apama Studio installations... 59
Specifying colors to distinguish EPL elements... 60
Shortcuts when editing Apama files..61

Navigating in Apama files.. 61
Using the Outline view to navigate... 62
Using the Quick Outline to navigate... 62
Jumping to an event or action definition or variable declaration.. 62
Searching in EPL files...62

Building Apama projects...64
Build automatically when a resource changes..65
Build all Apama projects... 65
Build one Apama project...65
Build a working set..65
Clean and rebuild projects.. 66
Configuring the project build path...66

Project source files...66
Specifying projects... 67
Specifying external dependencies... 68

Specifying dependencies for a single-user project... 68
Specifying dependencies for a multi-user project...69

Table of Contents

Using Apama Studio 5.2.0 5

Defining MonitorScript Build Path variables...69
Importing projects... 70
Importing adapter configurations..70
Exporting project information..71

Exporting a project initialization file list...71
Exporting to a deployment script.. 72
Exporting scenarios... 75
Exporting Correlator Deployment Packages... 75
Exporting adapter configurations...75
Exporting ApamaDoc...76

Deleting projects and resources...76
Deleting resources...76
Deleting projects..77

Adding the Apama nature to a project...77
Internationalizing Apama applications.. 77
Checking the error log..78
Setting up the environment before importing projects... 78
Using Apama Studio to configure adapters that use UM.. 79

Chapter 3: Creating Blocks..81
About blocks... 81

Introduction to block definition files...81
Description of block interface elements.. 82
How scenarios communicate with their blocks... 82

Defining new blocks in Apama Studio... 82
Specifying the block metadata.. 83
Specifying the block interface... 84
Creating parallel-aware blocks..85
Adding EPL code to the block definition...85
Considerations for adding EPL code to the block definition... 86
Details about EPL code that you can add..87
Timeliness of acknowledgements... 93

An example block... 94
Description of the Correlation Calculator block interface..94
Description of the Correlation Calculator block EPL...96

Chapter 4: Launching Projects..102
Running Apama projects.. 102

Default launch configuration..102
Workbench perspective..102
Developer perspective..103

Defining custom launch configurations... 103
Adding a correlator..108

Correlator arguments... 108
Persistence options.. 109
Injections...110
Event Files..112

Connecting correlators.. 113
Adding an external process.. 113

Table of Contents

Using Apama Studio 5.2.0 6

Testing a subset of your apama application... 114
Monitoring apama applications...115

Console view... 115
Using the Engine Information view... 115
Using the Engine Receive view.. 116

Engine Receive Viewer preferences..117
Using the Engine Status view...117
Using the Scenario Browser view... 118

Displaying the Scenario Browser...119
Browsing scenarios.. 119
Creating new instances of scenarios...121
Viewing Scenario instances... 121
Editing a scenario instance..122
Deleting a scenario instance..123
Deleting all scenario instances.. 123

Dashboards..124

Chapter 5: Debugging EPL Applications..125
Adding breakpoints... 125
Launching a debug session... 126

Creating a debug configuration...127
Debugging a remote application.. 129
Debug view...129
Breakpoints view...131
Variables view...132
Command-line debugger.. 133

Chapter 6: Debugging JMon Applications... 134
Preparing the correlator for remote debugging..134
Creating a debug run configuration..136
Debug perspective..138

Using the Debug view...139
Working with breakpoints.. 140
Viewing stack frame variables.. 140

Example debug session... 141
Debug example of preparing code and JAR file...141
Debug example of starting correlator and injecting application.. 143
Example of debugging in Apama Studio.. 143

Additional resources for Java debugging...144

Chapter 7: Profiling EPL Applications.. 146
Launching profiling sessions.. 146

Launching a default profiling session..147
Launching a custom profiling session...147

Creating a custom profile launch configuration... 147
Launching a remote profiling session... 148

Creating a remote profiler launch configuration...148
The Apama Profiler perspective...149

Profiling Monitor view.. 149

Table of Contents

Using Apama Studio 5.2.0 7

Execution Statistics view...150
The Execution Statistics tab.. 151
Comparison of Execution Statistics tab... 152

Viewing EPL code... 152
Using filters...153

Creating a Filter...153
Managing Filters.. 154

Taking snapshots.. 155
Using snapshots... 155
Choosing profiling information columns... 156
Updating profile data.. 156
Displaying Apama perspective preferences... 157

Chapter 8: Using the Data Player..158
Introduction to the Data Player.. 158
Using the Data Player.. 158

Adding the ADBC adapter...159
Configuring the ADBC adapter... 159
Launching the project..160
Specifying playback queries..161

Data Player Control view..164
Playback settings...164
Playback controls.. 165
Playback status... 165

Creating query templates... 166
Command-line Data Player interface... 167

Chapter 9: Generating Dashboards...168
Starting the wizard..168
Using the wizard...169
Using the titlebar/toolbar.. 170
Using the Introduction form..170
Using the Main, Create, Edit, and Details Forms.. 171
Using the layout configuration forms..173

Chapter 10: Preparing Dashboards for Deployment... 177
Dashboard feature checklist...177
Changing correlator definitions for deployment..178
Choosing among deployment types...178

Application installation... 179
Authentication.. 179
Authorization.. 179
Data Protection..180
Scalability...180
Choosing among Web-based deployment types.. 180

Installation...180
Served data.. 180
Refresh latency.. 181
Dashboard command support..181

Table of Contents

Using Apama Studio 5.2.0 8

Dashboard iPad Support..181
Using the Deployment Configuration editor... 181

Starting the Configuration editor... 181
Saving deployment configurations.. 182
Sections of the configuration editor GUI...182
Title bar/Toolbar...182
General Settings..183
Startup and Server.. 184
Additional JAR Files.. 184
Layout.. 185
Using the Dashboard Package wizard..185

Generating a deployment package from the command line.. 186
Sharing information with the Dashboard Administrator..187

Chapter 11: File Definition Formats.. 188
Function definition file format... 188

Defining metadata in function definition files.. 188
Defining the version element... 189
Defining the description element... 190
Defining the imports element... 190
Defining the parameters element...190

Defining EPL code in function definition files...191
Block definition file format.. 191

Block definition file DTD..191
Block definition file encodings...192
XML elements that define a block.. 192

About this documentation

Using Apama Studio 5.2.0 9

Preface

n About this documentation .. 9

n How this book is organized ... 9

n Documentation roadmap ... 10

n Contacting customer support .. 12

About this documentation
Apama Studio is an integrated environment for developing Apama applications. The process of
developing an Apama application is centered around an Apama project. This manual describes how
to create projects and add the various Apama resources that make up an application.

Preface

How this book is organized
The information in this book is organized as follows:

"Overview of Developing Apama Applications" on page 13 describes Apama Studio’s
integrated environment for developing Apama applications.

"Working with Projects" on page 29 describes how to create and configure projects, add
resources to them, and launch applications from them.

"Creating Blocks" on page 81 describes how to create custom blocks for scenarios in Apama
applications.

"Launching Projects" on page 102 describes how to create launch configurations projects.

"Debugging EPL Applications" on page 125 describes how to use Apama Studio to debug
applications written in the Apama Event Processing Language (EPL). Beginning with Release 4.3,
Event Processing Language is the new name for MonitorScript.

"Debugging JMon Applications" on page 134 describes how to use Apama Studio to debug
Apama applications written in JMon.

"Profiling EPL Applications" on page 146 describes how to use Apama Studio to collect
profiling data for applications written in EPL.

"Using the Data Player" on page 158 describes how to configure the Apama Database
Connector (ADBC) adapters to play back event data from a database and how to use the Query
Editor and Data Player control.

"Generating Dashboards" on page 168 describes how to use the Dashboard Wizard to generate
dashboards and how to specify the dashboard’s visualization objects and the scenario variables to
use with them.

Documentation roadmap

Using Apama Studio 5.2.0 10

"Generating Dashboards" on page 168 describes how to prepare a project’s dashboards for
deployment, including how to create a deployment package with the Dashboard Deployment
Configuration Editor.

"File Definition Formats" on page 188 describes the formats of Apama’s function definition
and block definition files.

Preface

Documentation roadmap
On Windows platforms, the specific set of documentation provided with Apama depends on
whether you choose the Developer, Server, or User installation option. On UNIX platforms, only the
Server option is available.

Apama provides documentation in three formats:

HTML viewable in a Web browser

PDF

Eclipse Help (if you select the Apama Developer installation option)

On Windows, to access the documentation, select Start > All Programs > Software AG > Apama 5.2 >
Apama Documentation . On UNIX, display the index.html file, which is in the doc directory of your
Apama installation directory.

The following table describes the PDF documents that are available when you install the Apama
Developer option. A subset of these documents is provided with the Server and User options.

Title Contents

What’s New in Apama Describes new features and changes since the previous release.

Installing Apama Instructions for installing the Developer, Server, or User
Apama installation options.

Introduction to Apama Introduction to developing Apama applications, discussions of
Apama architecture and concepts, and pointers to sources of
information outside the documentation set.

Using Apama Studio Instructions for using Apama Studio to create and test Apama
projects; write, profile, and debug EPL programs; write JMon
programs; develop custom blocks; and store, retrieve and
playback data.

Developing Apama
Applications in Event
Modeler

Instructions for using Apama Studio’s Event Modeler editor
to develop scenarios. Includes information about using
standard functions, standard blocks, and blocks generated
from scenarios.

Developing Apama
Applications in EPL

Introduces Apama’s Event Processing Language (EPL) and
provides user guide type information for how to write EPL
programs. EPL is the native interface to the correlator. This

Documentation roadmap

Using Apama Studio 5.2.0 11

Title Contents
document also provides information for using the standard
correlator plug-ins.

Apama EPL Reference Reference information for EPL: lexical elements, syntax, types,
variables, event definitions, expressions, statements.

Developing Apama
Applications in Java

Introduces the Apama in-process API for Java, referred to
as JMon, and provides user guide type information for how
to write Java programs that run on the correlator. Reference
information in Javadoc format is also available.

Building Dashboards Describes how to create dashboards, which are the end-user
interfaces to running scenario instances and data view items.

Dashboard Property
Reference

Reference information on the properties of the visualization
objects that you can include in your dashboards.

Dashboard Function
Reference

Reference information on dashboard functions, which allow
you to operate on correlator data before you attach it to
visualization objects.

Developing Adapters Describes how to create adapters, which are components that
translate events from non-Apama format to Apama format.

Developing Clients Describes how to develop C, C++, Java, or .NET clients that can
communicate with and interact with the correlator.

Writing Correlator Plug-ins Describes how to develop formatted libraries of C, C++ or Java
functions that can be called from EPL.

Deploying and Managing
Apama Applications

Describes how to:

Use the Management & Monitoring console to configure,
start, stop, and monitor the correlator and adapters across
multiple hosts.

Deploy dashboards over wide area networks, including
the internet, and provide dashboards with effective
authorization and authentication.

Improve Apama application performance by using multiple
correlators, and saving and reusing a snapshot of a
correlator’s state.

Use the Apama ADBC adapter to store and retrieve data in
JDBC, ODBC, and Apama Sim databases.

Use the Apama Web Services Client adapter to invoke Web
Services.

Use correlator-integrated messaging for JMS to reliably send
and receive JMS messages in Apama applications.

Contacting customer support

Using Apama Studio 5.2.0 12

Title Contents

Use Universal Messaging to connect correlators.

Using the Dashboard Viewer Describes how to view and interact with dashboards that are
receiving run-time data from the correlator.

Preface

Contacting customer support
You may open Apama Support Incidents online via the eService section of Empower at http://
empower.softwareag.com. If you are new to Empower, send an email to empower@softwareag.com with
your name, company, and company email address to request an account.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Directory at https://empower.softwareag.com/public_directory.asp and give us a call.

Preface

https://empower.softwareag.com/eservice
https://empower.softwareag.com/eservice
https://empower.softwareag.com/public_directory.asp

Samples and tutorials

Using Apama Studio 5.2.0 13

Chapter 1: Overview of Developing Apama Applications

n Samples and tutorials ... 13

n The Apama interface ... 14

n The Apama Workbench perspective ... 15

n The Apama Developer perspective ... 17

n The Apama Runtime perspective .. 18

n Apama projects ... 19

n Working with Apama projects .. 21

n Building Apama projects ... 27

n Launching Apama projects .. 27

n Specifying the location of the license file .. 27

Apama Studio is an integrated environment for developing Apama applications. The process of
developing an Apama application is centered around an Apama project. In Apama Studio you create
a project; you then use Apama Studio to:

Create new Apama resources for the application

Include standard, pre-packaged Apama resources

Include existing Apama resources from other projects or applications

Specify configuration properties necessary for launching the application

Run and monitor the application

Export the initialization information necessary for deploying the application

When you add resources to your application, Apama Studio creates the resource’s metadata and
launches the appropriate editor where you add the code to implement its behavior. As you create
the resource’s application code, Apama Studio automatically validates it. Where necessary, Apama
Studio launches the Apama tool such as Event Modeler or Dashboard Builder that is appropriate to
the specific resource being added.

Samples and tutorials
Apama Studio is packaged with several sample programs and tutorials. These are available from
the Apama Welcome screen, which is displayed when you start Apama Studio for the first time
and which is always available by selecting Help > Welcome from the Apama Studio menu. From the
Welcome screen click Samples or Tutorials and then click Apama Samples or Apama Tutorials.

The Apama samples are demonstration applications that illustrate some of the features and
capabilities of the Apama platform; they include dashboards in which you can interact with the
application and readme files that describe what the application does, what files make up the project,

The Apama interface

Using Apama Studio 5.2.0 14

and how you might modify the application. Use the demonstration applications to gain an overview
of what goes into an Apama project and what some common Apama applications can do.

The tutorials are interactive instructions that get you quickly up to speed writing Event Processing
Language programs, creating scenarios, defining reusable blocks for use in scenarios, and creating
dashboards that provide the user interface to scenarios. Each tutorial provides a skeleton project and
a completed project. At the end of the tutorial instructions, you run the project.

When you open a sample or a tutorial for the first time, it is copied into the Eclipse workspace.
You can revert to the original sample or tutorial without any changes you’ve made at any time by
deleting the project as follows:

1. Right-click the project.

2. Click Delete.

3. Select Also delete contents in the confirmation dialog and click Yes.

Then open the project again from the Tutorials or Samples Welcome page.

Overview of Developing Apama Applications

The Apama interface
Apama Studio is an Eclipse plug-in and using it is similar to working in other Eclipse development
perspectives.

Apama Studio provides the following distinct perspectives for working with projects, Apama
Developer, Apama Runtime, Apama Workbench, and Apama Profiler. In each of the perspectives,
you can create projects, add Apama resources, and launch your application. While developing
your application you can switch from one perspective to the other. For more information, see the
following:

"The Apama Workbench perspective" on page 15

"The Apama Developer perspective" on page 17

"The Apama Runtime perspective" on page 18

When you debug an Apama application, by default Apama Studio switches to the Eclipse Debug
perspective. When profiling an Apama application written in the Apama Event Processing Language
(EPL), Apama Studio uses the Apama Profiler perspective. (Beginning with Apama 4.3, “Apama
Event Processing Language” is the new name for MonitorScript.)

Note: When using any of the Apama perspectives, you can redisplay the default perspective layout
by selecting Window > Reset Perspective from the Apama Studio menu.

Caution: The recommended installation folder is Program Files, which is a protected location on
recent Microsoft Windows operating systems. These include the client operating systems Windows
7 and Windows 8.1, and the server operating systems Windows Server 2008 R2 and Windows 2012
R2. To write to the Program Files folder, you must run the Apama installer with Administrative
privileges. After Apama installation, if you want to add additional plug-ins to Eclipse, you can
run the Eclipse plug-in installer or use the Eclipse Check for Updates facility but you must have
Administrative privileges when you install the Eclipse plug-in. Lack of Administrative privileges
might cause the plug-in installation to fail or become corrupt. Adiministrative privileges are

The Apama Workbench perspective

Using Apama Studio 5.2.0 15

required because Eclipse also installs its plug-ins in the protected Program Filess folder. Alternatively,
you can choose to install Apama in a non-recommended location outside the Program Files folder.

Overview of Developing Apama Applications

The Apama Workbench perspective
The Workbench perspective presents a more streamlined view of a single Apama project. It shows
only the resources related to that project and provides a simplified way of launching an Apama
application.

The important interface components of the Apama Workbench perspective are:

"Workbench Project view" on page 15

"Editors" on page 21

"Scenario Browser view" on page 22

"Console view" on page 25

"Problems view" on page 26

Overview of Developing Apama Applications

Workbench Project view

The Apama Workbench perspective

Using Apama Studio 5.2.0 16

When you develop an application in the Apama Workbench perspective, you work on a single
project at a time. The project is displayed in the Workbench Project view. This is where you add
the various Apama resources that are necessary for the application. This is also where you run the
application that is represented by the project.

When viewing a project in the Workbench perspective you can use the Show All Folders icon
to toggle between a displaying a limited view of the project’s resources and displaying all of the
project’s resources. In the limited view, below, Apama Studio only displays scenarios and dashboard
resources:

Clicking the Show All Folders icon displays an expanded view that lists the Event Processing
Language (EPL) files and other file types, such as event files, block files, and function files used in
the project as shown below.

The Apama Developer perspective

Using Apama Studio 5.2.0 17

The Apama Workbench perspective

The Apama Developer perspective
The Apama Developer perspective uses the full Eclipse interface and displays all the Apama projects
in the user’s workspace. It is designed for experienced developers and assumes that you are familiar
with standard Eclipse features.

The Apama Runtime perspective

Using Apama Studio 5.2.0 18

The important interface components of the Developer perspective are:

"Project Explorer view" on page 18

"Console view" on page 25

"Outline view" on page 22

"Problems view" on page 26

"Editors" on page 21

Overview of Developing Apama Applications

Project Explorer view
The Apama Developer perspective uses the standard Eclipse Project Explorer view. This view is at
the center of the process of developing an application in Apama Studio. This is where you add and
manage all the Apama resources that are necessary for the application. The Project Explorer view is
where you build and launch your projects.

The Apama Developer perspective

The Apama Runtime perspective
The Apama Runtime perspective is similar to the Apama Developer perspective but is designed
for inspecting and interacting with a running Apama application. This perspective is designed for
experienced developers and assumes that you are familiar with standard Eclipse features.

Apama projects

Using Apama Studio 5.2.0 19

To use the Apama Runtime perspective:

1. Select Window > Open Perspective > Other from the Apama Studio menu.

2. Select Apama Runtime from the Open Perspective dialog.

3. Click OK.

The Apama Runtime perspective is made up of these views:

"Project Explorer view" on page 18

"Scenario Browser view" on page 22

"Engine Receive view" on page 23

"Engine Status view" on page 24

"Engine Information view" on page 25

"Outline view" on page 22

"Console view" on page 25

"Problems view" on page 26

"Data Player Control view" on page 26

Overview of Developing Apama Applications

Apama projects

Apama projects

Using Apama Studio 5.2.0 20

An Apama project typically manages a single Apama application. A project provides a means of
keeping the application’s resources organized. In the process of developing an application with
Apama Studio, you add the various resources that make up the application to the project. For
example, you can include:

EPL files — These files define monitors and associated event types that are used by your
application. EPL files have a .mon extension.

JMon Monitor files — These Java source files define monitors for Apama applications written in
Java.

JMon Event files — These Java source files define event types for Apama applications written in
Java.

Scenario definition files — If your application uses scenarios, you specify the new scenario in
Apama Studio. This adds a scenario definition file to your project and opens the new scenario in
Apama Studio’s Event Modeler editor where you specify its behavior. Scenario definition files
have a .sdf extension.

Dashboard definition files — If your application uses dashboards, you specify the new
dashboard in Apama Studio. This adds a dashboard definition file to your project and opens the
new dashboard in Apama’s Dashboard Builder. Dashboard definition files have an .rtv extension.

Bundles — These are pre-packaged collections of Apama objects.

Event files — Event files have an .evt extension.

Block definition files — If your application uses scenarios and, in addition to the standard blocks
packaged with Apama, you need to create customized blocks, you create the block in Apama
Studio. This adds a block definition file to your project. Block definition files have a .bdf extension.

Function definition files — If your application uses scenarios and, in addition to the standard
functions packaged with Apama, you need to create customized functions, you create the
function in Apama Studio. This adds a function definition file to your project. Function definition
files have a .fdf extension

Overview of Developing Apama Applications

Managing project hierarchies
Apama Studio organizes your project into a hierarchy that is displayed in the Project Explorer view
(if you are using the Developer perspective) or the Workbench Project view (if you are using the
Workbench perspective). The hierarchy is made up of folders that group Apama resource files by
type. The Project Explorer view lists all your Apama projects, while the Workbench Project view lists
just the current project. Apama Studio displays a different icon for each type of resource file:

 indicates an Apama project.

 indicates a bundle.

 indicates an EPL (.mon) file.

 indicates a JMon monitor or JMon event (.java) file.

Working with Apama projects

Using Apama Studio 5.2.0 21

 indicates an EPL plug-in written in Java (.java) file.

 indicates an event (.evt) file.

 indicates a scenario (.sdf) file.

 indicates a scenario block (.bdf) file.

 indicates a scenario function (.fdf) file

 indicates a dashboard (.rtv) file.

 indicates a correlator deployment package (.cdp) file.

If a monitor or scenario file contains an error, Apama Studio displays an error icon over the
monitor file name or scenario file name, over the folder that contains the file that has the error,
and over the project folder. For example, a scenario file that contains an error would look like this:

.

Apama projects

Working with Apama projects
Apama Studio provides a variety of ways to interact with the resources in your application’s project.

This section briefly describes these Apama Studio features; for more information on how to use
them, see "Working with Projects" on page 29 and "Launching Projects" on page 102.

Overview of Developing Apama Applications

Editors
Apama Studio provides wizards and editors to create and modify the resource files that define the
following:

Monitors

Events

Blocks

Functions

Scenarios

Dashboards

When you add a resource, Apama Studio generates the definition file and opens it in the appropriate
Apama editor.

Working with Apama projects

Using Apama Studio 5.2.0 22

Note: When you add or edit a dashboard, Apama Studio creates the dashboard’s definition file and
opens the Apama Dashboard Builder in a separate window.

As you edit resource files, you can take advantage of the Apama Studio editing features, including
content assistance, auto-bracketing, templates for frequently entered constructs, and problem
detection. After you build an Apama project, Apama Studio flags each line that contains an error.

Working with Apama projects

Outline view
The Outline view shows the structure of the EPL or block file that is open in an Apama editor. The
following illustration displays an Outline view of an EPL file.

When you click on an event type or action in the outline, the editor pane highlights and displays the
line of code that defines that item in the file.

Working with Apama projects

Scenario Browser view
The Scenario Browser view displays scenario definitions that are loaded in the correlator and any
scenario instances that are running. When an application is running in Apama Studio, you can add,
edit, and delete scenario instances.

Working with Apama projects

Using Apama Studio 5.2.0 23

For more information on using the view, see "Using the Scenario Browser view" on page 118.

Working with Apama projects

Engine Receive view
The Engine Receive view shows all events generated from the connected correlator.

The Toggle Connection button to temporarily disconnect the EngineReceive view from the
correlator.

When the Toggle Connection button is pressed, the console will not update any further events from
correlator. The background of the console will be changed to indicate the temporary disconnect
mode. The Select All, Clear, and Copy actions will still work in this mode.

To resume from the temporary disconnect mode, simply click on the Toggle Connection button again
to resume the connection. The console will be cleared and new events will be shown in the console
again.

For more information on the Engine Receive view, see "Using the Engine Receive view" on page
116.

Working with Apama projects

Using Apama Studio 5.2.0 24

Working with Apama projects

Engine Status view
The Engine Status view displays the information about the correlator status. The information is the
same as the output of Apama command line tool engine_watch.

For more information on Studio’s Engine Status view, see "Using the Engine Status view" on page
117.

Working with Apama projects

Working with Apama projects

Using Apama Studio 5.2.0 25

Engine Information view
The Engine Information view inspects a running correlator and displays defined contents of the
correlator. It shows the same information as the Apama command line tool engine_inspect. For
example:

The following actions are available:

Delete button — Direct deletion of the defined named entities. You can also delete the entity
by right clicking the entity and selecting Delete from the drop down menu. A confirmation
message is displayed after you click Delete. If the entity has dependencies on it, a confirmation
message is displayed asking if you want allow a forced deletion.

Send button — Send an event from this view. You can also send an event by right clicking it
and selecting Send from the drop down menu.

For more information on Studio’s Engine Information view, see "Using the Engine Information
view" on page 115.

Working with Apama projects

Console view
The Console view displays information concerning a running Apama application. An application
can have several consoles:

Correlator — Displays output from the correlator.

Working with Apama projects

Using Apama Studio 5.2.0 26

Engine Inject —Displays initialization information injected to the correlator.

Engine Send — Displays information from Apama components such as dashboards that stream
data to the correlator.

Correlator Initialization — Displays information about the correlator initialization including the
Java files, .mon files (monitors), and .sdf files (scenarios) that have been injected and the .evt files
(events) that have been sent and whether the actions succeeded or failed.

To view one of these consoles, click the drop down arrow of the Display Selected Console button
and select the console you want.

Working with Apama projects

Problems view
The Problems view is a standard Eclipse Problems view that lets you view a list of any errors in
your EPL and scenario files, and ODBC-ADBC and JDBC-ABDC adapter instances. When you build
an Apama project, if Apama Studio detects errors in your project's files, or file dependency errors, it
lists them here. The Problems view is displayed when you run an application.

Working with Apama projects

Data Player Control view
The Data Player Control view allows you to control how Apama data is played back in an
application running in a project. For example, you can specify how fast to play back the event data,
step through events one at a time of specify a query to filter what events are played back.

For more information on the Data Player Control, see "Using the Data Player" on page 158.

Building Apama projects

Using Apama Studio 5.2.0 27

Working with Apama projects

Building Apama projects
Apama Studio validates Apama projects, in a process known as “building” the project. During
validation, Apama Studio

Checks the syntax to ensure that it is valid EPL or Java code.

Checks that only valid values have been specified. For example, if you specify integer as the type
of a field, it ensures that you specify an integer as the value of the field.

Ensures that the dependencies are valid throughout the project.

In summary, Apama Studio validates that its launcher can inject the project’s EPL files into the
correlator.

For more information, see "Building Apama projects" on page 64.

Overview of Developing Apama Applications

Launching Apama projects
Apama Studio can launch an Apama project in a test environment. When Apama Studio launches
a project, the default is that it starts an instance of the correlator and injects all the resources that
are included in the project. You can change the default launch behavior by editing the launch
configuration for the project.

You can specify multiple launch configurations for each Apama project, including configurations for
debugging and profiling applications. For each launch configuration, you can:

Add correlator arguments.

Specify event files that should be sent to initialize/start the application.

Specify what adapters to use.

Define environment variables, for example, appending directories to the PATH used to start the
correlator and any IAF processes.

Indicate whether the configuration can be shared among Apama Studio installations.

For more information on creating launch configurations and launching Apama projects, see
"Launching Projects" on page 102.

Overview of Developing Apama Applications

Specifying the location of the license file
When Apama Studio launches an application configured to start a correlator Apama Studio looks
for the Apama license file in the default location, which is APAMA_WORK\license\license.txt. This is
automatically taken care of when the correlator is started by Apama Studio.

Specifying the location of the license file

Using Apama Studio 5.2.0 28

If your Apama license file is not located in the default location you can specify the location before
launching your application. If you do not then the correlator will be started in an evaluation mode.
This means it can communicate only with processes on the same machine and it will automatically
exit after 30 minutes of operation. Check the correlator console output on startup to see if the
correlator is running in evaluation mode. If it is put a license into the default location or provide the
location of the license file if it is somewhere non-standard.

In Apama Studio, to specify the location of the Apama license file:

In the Apama Studio menu bar, choose Window > Preferences.

In the Preferences dialog that appears, click Apama.

In the License file field, specify or navigate to the path of the Apama license file. The default path
is APAMA_WORK\license\license.txt.

Click Apply and then OK.

Overview of Developing Apama Applications

Creating Apama projects

Using Apama Studio 5.2.0 29

Chapter 2: Working with Projects

n Creating Apama projects ... 29

n Adding resources to Apama projects .. 30

n Editing Apama files ... 56

n Navigating in Apama files ... 61

n Building Apama projects ... 64

n Importing projects .. 70

n Importing adapter configurations ... 70

n Exporting project information ... 71

n Deleting projects and resources .. 76

n Adding the Apama nature to a project .. 77

n Internationalizing Apama applications ... 77

n Checking the error log .. 78

n Setting up the environment before importing projects ... 78

n Using Apama Studio to configure adapters that use UM .. 79

This section describes how to use Apama Studio to develop applications.

You can use Apama Studio to write Apama applications in the Apama Event Processing Language
(EPL) and in the Apama in-process API for Java (JMon).

As you develop your application to a stage where you want to run it for testing purposes, you can
launch it directly from Apama Studio. For more information on launching Apama projects, see
"Launching Projects" on page 102.

Note: When using any of the Apama perspectives, you can redisplay the default perspective layout
by selecting Window > Reset Perspective from the Apama Studio menu.

Creating Apama projects
To create an Apama project:

1. From the Apama Studio menu, select File > New > Apama Project to display the New Project dialog. If
you are using the Apama Workbench perspective, you can also click the New Project button in top right
of the Workbench Project view.

2. In the New Apama Project dialog, specify information for the following fields:

a. In the Project Name field, enter the name of your new project. Project names typically use titlecase
capitalization and may contain spaces, for example. “My Project”.

Adding resources to Apama projects

Using Apama Studio 5.2.0 30

b. If you want to store the project in a directory other than the default location, clear the Use default
location checkbox, click Browse, and navigate to and select the location for storing your new project.

3. If you do not need to change the bundles that will be included in the project click Finish which takes you to
Step 6.

Bundles are packages of Apama objects such as EPL files, event definition files, and event files
that are required for specific types of applications. Adapter bundles contain the configuration
files, service monitors, and other files associated with the standard Apama adapters.

When you create a new project the settings for selected bundles remain the same as they were
for the last time you created a new project. If you want to change these settings and specify other
bundles for your application, click Next.

4. On the Configure new project page, add checkmarks to the bundles that are appropriate to the type of
application you are developing,. For example if your application is a dataview application, select the
DataView Service bundle.

If you are creating a project for an EPL application, click Finish.

If you are creating a project for a JMon application, add a check to the Add Java support to this
project checkbox and click Next.

5. If you are creating a JMon application, in the Configure the new Apama Java application dialog, fill
in the fields as desired. Click Finish.

6. If you are not currently in an Apama perspective, the Open Associated Perspective? dialog appears; it
is up to you whether to select Remember my decision. Click Yes or No.

If you are in the Apama Developer perspective, Apama Studio displays the name of your new
project in the Project Explorer view pane on the left of the perspective. If this is your first project, the
other panes are blank.

Working with Projects

Adding resources to Apama projects
You specify the Apama resources that make up your application by adding them to the Apama
project. Apama Studio recognizes and provides editing features for the following files:

EPL files (.mon)

Block definition files (.bdf)

Function definition files (.fdf)

Event files (.evt)

JMon monitor and event files (.java)

Scenario definition files (.sdf)

Dashboard definition files (.rtv) — opens in Dashboard Builder

However, you can add any type of file to an Apama project and Eclipse uses the correct editor to
open it.

Adding resources to Apama projects

Using Apama Studio 5.2.0 31

When adding new blocks and functions to a project, you should create the definition files using
Apama Studio.

Working with Projects

Creating new monitor files for EPL applications
EPL files define monitors and/or event types.

To add a new EPL file to an Apama project:

1.
If you are in the Apama Workbench perspective, click the Show All Folders icon if necessary to
display the enhanced view that shows all the project’s resources.

2. In the Project Explorer view or the Workbench Project view, right click the monitors folder of the
project where you want to add the EPL file and select New > MonitorScript File. In the Workbench
Project view you can also select the monitors folder and click the New MonitorScript File button

3. In the New MonitorScript File wizard, enter information in the following fields:

a. The Containing Folder field is the folder where the file will be saved; by default this is the folder of the
currently selected project, but you can select another folder using the Browse button.

b. In the File name field, specify the name of the new file. Specifying the .mon extension is optional as
Apama Studio will add the .mon file extension. Apama Studio will not let you specify anything except
.mon as a file extension.

c. The Package field is optional; information in this field is an EPL package name.

4. Click Finish. The name of the new file now appears in the Project Explorer viewor the Workbench
Project view under the project that contains it and the EPL file opens in the EPL editor.

5. In the EPL editor, add the desired EPL code and save the file.

For more information about EPL, see "Getting Started with Apama EPL" in Developing Apama
Applications in EPL. For more information on the editing features available when writing EPL code,
see "Editing Apama files".

Adding resources to Apama projects

Creating new event definition files for EPL applications
You can add new event definitions to an Apama Studio project. There are several ways to create
event definitions:

"Creating event definitions by adding EPL code" on page 32

"Creating event definitions from XML files" on page 32

"Creating event definitions from XSD files" on page 33

Adding resources to Apama projects

Using Apama Studio 5.2.0 32

Creating event definitions by adding EPL code
To create an event definition by adding EPL code:

1. In the Project Explorer view, right-click the project’s eventdefinitions folder and select New > Event
Definition from the pop-up menu. The New Event Definition dialog is displayed.

2. In the New Event Definition dialog, in the Generate Event Definition using field, select EPL Editor and
click Next. The Choose output location for Event Definition dialog is displayed.

3. In the Choose output location for Event Definition dialog, enter information in the following fields:

a. The Containing Folder field is the folder where the file will be saved; by default this is the currently
selected folder of the current project, but you can select another folder or project using the Browse
button.

b. In the File name field, specify the name of the new file. Specifying the .mon extension is optional as
Apama Studio will add the .mon file extension. Apama Studio will not let you specify anything except
.mon as a file extension.

c. The Package field is optional; information in this field is an EPL package name.

4. Click Finish. The new event definition file is added to the specified folder in the project and the EPL file
opens in the EPL editor.

5. In the EPL editor, add the desired EPL code and save the file.

Note, you can also create these types of event definitions by using the New > MonitorScript menu item;
for details, see "Creating new monitor files for EPL applications" on page 31.

Creating event definitions from XML files
You can create an event definition that is based on the structure of an XML document. The generated
event definition is based on the following:

All fields are treated as string.

All prefixes are ignored, in other words, event definitions will be generated even if inner
elements have different namespaces.

Namespace attributes (attributes having an xmlns prefix) are ignored.

All inner event names are prepended with Element_.

Generated event definitions will have an xmlTextNode field if the XML element contains a text
value and also contains an attribute.

To create an event definition from an XML file:

1. In the Project Explorer view, right-click the project’s eventdefinitions folder and select New > Event
Definition from the pop-up menu. The New Event Definition dialog is displayed.

2. In the New Event Definition dialog, in the Generate Event Definition using field, select XML File and
click Next. The Choose output location for Event Definition dialog is displayed.

3. In the Choose output location for Event Definition dialog, enter information in the following fields:

Adding resources to Apama projects

Using Apama Studio 5.2.0 33

a. The Containing Folder field is the folder where the file will be saved; by default this is the currently
selected folder of the current project, but you can select another folder or project using the Browse
button.

b. In the File name field, specify the name of the new file. Specifying the .mon extension is optional as
Apama Studio will add the .mon file extension. Apama Studio will not let you specify anything except
.mon as a file extension.

c. The Package field is optional; information in this field is an EPL package name.

4. Click Next. This displays the Select XML File dialog.

5. In the Select XML File dialog, in the XML File field, specify the name of the XML file on which you want
to base the event. You can use the Browse button to navigate to the desired file. The Down Arrow button
switches the scope between Workplace and FileSystem.

6. In the Select XML File dialog, in the Event Name field, specify the name you want to assign to the root
level event.

7. Click Finish. Apama Studio creates an EPL file that defines the root level event along with associated
nested events.

Creating event definitions from XSD files
You can create event definitions that are based on the structures of elements defined in XSD schema
files.

To create an event definition from an XSD file:

1. In the Project Explorer view, right-click the project’s eventdefinitions folder and select New > Event
Definition from the pop-up menu. The New Event Definition dialog is displayed.

2. In the New Event Definition dialog, in the Generate Event Definition using field, select XSD File and
click Next. The Choose output location for Event Definition dialog is displayed.

3. In the Choose output location for Event Definition dialog, enter information in the following fields:

a. The Containing Folder field is the folder where the file will be saved; by default this is the currently
selected folder of the current project, but you can select another folder or project using the Browse
button.

b. In the File name field, specify the name of the new file. Specifying the .mon extension is optional as
Apama Studio will add the .mon file extension. Apama Studio will not let you specify anything except
.mon as a file extension.

c. The Package field is optional; information in this field is an EPL package name.

4. Click Next. This displays the Select XSD File dialog.

5. In the Select XSD File dialog, click the Browse button to the right of the Schema Element/Type field.
This displays the Type Chooser dialog.

6. In the Type Chooser dialog, specify the file that contains schema's global element that you want to use as
the root element on which to base the event definition. Click the Browse button to navigate to the file. The
Drop-down arrow allow you to change scope among Recent files, Local file system, Workspace, Remote
URL, and XML Schema. After selecting a file, click OK. This returns to the Select XSD File dialog with
the root element you selected displayed in the Schema Element/Type field.

Adding resources to Apama projects

Using Apama Studio 5.2.0 34

7. In the Select XSD File dialog, in the Event Name field, specify the name you want to assign to the root
level event.

8. Click Finish. Apama Studio creates an EPL file that defines the root level event along with associated
nested events.

Creating new files for JMon applications
For Apama projects that use JMon applications, you can add new JMon applications, JMon monitors,
and JMon events. In Apama applications written in Java, monitors and event types are implemented
as Java classes.

Adding resources to Apama projects

Adding a new JMon application
To add a new JMon application to an Apama project:

1.
If you are in the Apama Workbench perspective, click the Show All Folders icon if necessary to
display the enhanced view that shows all the project’s resources.

2. In the Project Explorer view or the Workbench Project view, right click the name of the project where
you want to add the monitor and select New > Java Application. The New Java Application wizard is
displayed.

3. In the New Java Application wizard, in the Configuration field specify the name of the application
and click Finish. The application is added to the project and its configuration opens in the Apama Java
configuration editor.

4. In the Apama Java configuration editor, specify the application’s meta-data and add classes and contents as
required. For more information on editing the configuration, see "Adding resources to JMon projects"
on page 46.

Creating new files for JMon applications

Adding a JMon monitor
To add a new JMon monitor to an Apama project:

1.
If you are in the Apama Workbench perspective, click the Show All Folders icon if necessary to
display the enhanced view that shows all the project’s resources.

2. In the Project Explorer view or the Workbench Project view, right click the name of the project where
you want to add the monitor and select New > Java Monitor. You can also select File > New > Other from
the Apama Studio menu and then select Apama > Java Monitor from the Select a wizard dialog. The
New Apama Java Monitor wizard is displayed.

Adding resources to Apama projects

Using Apama Studio 5.2.0 35

3. In the New Apama Java Monitor wizard, enter information in the following fields:

a. The Application field is the application to which you are adding the monitor.

b. In the Monitor name field, specify the name of the new monitor. This will become the name of the class
and the Java file.

c. The Description field is optional.

d. The Apama Package field is optional; this is the package of the monitor inside the correlator.

e. Add a check to the Implement MatchListener check box if you want Apama Studio to generate the
skeleton code for the class’s MatchListener interface.

f. The Source Folder field specifies the folder in the project to contain the file; by default this is java/src.

g. The Java Package field is optional; this is the package of the created Java class.

4. Click Finish. The name of the new class file now appears in the Project Explorer viewor the
Workbench Project view under the project that contains it and the .java file opens in the editor.

For more information about JMon applications, see "Overview of JMon Applications" in Developing
Apama Applications in Java.

Creating new files for JMon applications

Adding a JMon event
To add a new JMon event to an Apama project:

Adding resources to Apama projects

Using Apama Studio 5.2.0 36

1.
If you are in the Apama Workbench perspective, click the Show All Folders icon if necessary to
display the enhanced view that shows all the project’s resources.

2. In the Project Explorer view or the Workbench Project view, right click the name of the project where
you want to add the monitor and select New > Java Event > Other. You can also select File > New from
the Apama Studio menu and then select Apama > Java Event from the Select a wizard dialog. The New
Apama Java Event wizard is displayed.

3. In the New Apama Java Event wizard, enter information in the following fields:

a. The Application field is the application to which you are adding the event.

b. In the Monitor name field, specify the name of the new event. This will become the name of the class
and the Java file.

c. The Description field is optional.

d. The Apama Package field is optional; this is the package of the event inside the correlator.

e. The Source Folder field specifies the folder in the project to contain the file; by default this is java/src.

f. The Java Package field is optional; this is the package of the created Java class.

4. Click Finish. The name of the new class file now appears in the Project Explorer viewor the Workbench
Project view under the project that contains it and the .java file opens in the editor.

For more information about JMon applications, see "Overview of JMon Applications" in Developing
Apama Applications in Java.

Creating new files for JMon applications

Adding resources to Apama projects

Using Apama Studio 5.2.0 37

Adding an EPL Plugin written in Java
To add a new correlator plugin written in Java to an Apama project:

1.
If you are in the Apama Workbench perspective, click the Show All Folders icon if necessary to
display the enhanced view that shows all the project’s resources.

2. In the Project Explorer view or the Workbench Project view, right click the name of the project where
you want to add the correlator plugin and select New > Java EPL Plugin. You can also select File > New >
Other from the Apama Studio menu and then select Apama > Java EPL Plugin from the Select a wizard
dialog. The New Apama Java EPL Plugin wizard appears.

3. In the New Apama Java EPL Plugin wizard, enter information in the following fields:

a. The Application field is the application to which you are adding the plugin.

b. In the Plugin name field, specify the name of the new plugin. This will become the name of the class
and the Java file.

c. The Description field is optional.

d. The Apama Package field is optional; this is the package of the plugin inside the correlator.

e. The Source Folder field specifies the folder in the project to contain the file; by default this is java/src.

f. The Java Package field is optional; this is the package of the created Java class.

4. Click Finish. The name of the new class file now appears in the Project Explorer view or the
Workbench Project view under the project that contains it and the .java file opens in the editor. In

Project Explorer, the icon indicates a Java plugin to the correlator.

Adding resources to Apama projects

Using Apama Studio 5.2.0 38

5.
Select the Show All Folders icon in the Project View pane. You will find the source file for your Java
class in the java/src package in your project. You can now add functionality to the class as required for
your application. This can be called from EPL using the mechanism described in "Using Java plug-ins" in
Writing Correlator Plugins.

For applications that you plan to inject into a correlator, the recommendation is to create separate jar
files for:

EPL plugins written in Java

JMon applications

Although the mechanism for creating these jars and describing their meta-data is similar, the
interactions of these two different uses of injected jars mean that they will often need to be injected
into the correlator separately. The creation of separate jar files ensures that you can inject your
application components in the correct order, which is typically:

1. EPL plugins written in Java

2. EPL monitors and events

3. JMon applications

For more information, see "Overview of JMon Applications" in Developing Apama Applications in Java
and "Writing Correlator Plugins in Java" in Writing Correlator Plugins.

Creating new files for JMon applications

Creating new scenarios
Scenarios define templates that, when instantiated with a set of parameters supplied by the user,
implement an application’s strategy. To add a new scenario to an Apama project:

1. In the Project Explorer view or the Workbench Project view, right click the scenarios folder of the
project where you want to add the scenario and select New > Scenario. In the Workbench Project view

you can also select the scenarios folder and click the New Scenario button

2. In the New Scenario wizard, enter information in the following fields:

a. The Containing Folder field is the folder where the definition file will be saved; by default this is the
folder of the currently selected project, but you can select another folder using the Browse button.

b. In the File name field, specify the name of the new file. Specifying the .sdf extension is optional as
Apama Studio will add the .sdf file extension. Apama Studio will not let you specify anything except
.sdf as a file extension.

3. Click Finish. Apama Studio adds the name of the new scenario definition file to project and opens the new
scenario in the Apama Event Modeler.

Using Event Modeler, you complete the scenario by adding state and rules and specify the blocks
and functions necessary to implement the desired strategy. For more details on developing scenarios,
see "Overview of Using Event Modeler" in Developing Apama Applications in Event Modeler.

Adding resources to Apama projects

Adding resources to Apama projects

Using Apama Studio 5.2.0 39

Creating new blocks
This section is a brief description of how to create a new block in Apama Studio. For more details
on this process, see "Creating Blocks" on page 81. You can create a block in Apama Studio either
from scratch or from an existing event definition.

For information on creating new blocks, see the following topics:

"Creating a block with the block editor" on page 39

"Creating a block from an EPL event definition" on page 40

"Adding EPL code to a block" on page 41

Note: When you create a new block, you should place it in the project’s default blocks directory. This
directory is found in the project’s catalogs directory. The blocks directory has a name in the form
project_name blocks. So, for example, the default block directory of a project named My_Project will be
catalogs\My_Project blocks. If you place the block in the default block directory, scenarios created in
the project will automatically find them and make them available in Event Modeler when you are
displaying the scenario.

Creating a block with the block editor
Creating a block in Apama Studio consists of two main steps. In the first step you create the block
metadata and specify its interface. In the second step you add the EPL code that implements the
block’s behavior.

To add a new block to an Apama project using the block editor:

1. In the Project Explorer or Workbench Project view, right-click the default block folder (typically
catalogs\project_name blocks) and select New > Block button from the pop-up context menu. The New
Event Modeler Block dialog is displayed.

2. In the New Event Modeler Block dialog, specify the name of the project in the Containing folder field
if you want to create the block in a different project; you can also click Browse to select the project from a
list of projects in the workspace.

3. Also in the New Event Modeler Block dialog, select Block Editor in the Generate block using field and
click Next. The Create a new Apama Block dialog is displayed.

4. In the Create a new Apama Block dialog, fill in the various fields or accept the default values. The most
important fields to set at this point are the block name and version. The Type field specifies what type of
code will be generated for the block. The choices are:

Callback — Implements the block as an event type; this is the default. Generates EPL code to
which you can add custom code.

Callback (DEBUG) — Implements the block as an event type. Generates EPL code to which you
can add custom code. Also generates statements that can help you debug the EPL you are
adding. You can easily switch your block between Callback and Callback (DEBUG).

5. Click Finish. The block definition file for the new block is added to the project and the block’s metadata is
displayed in the Builder tab of the block editor.

Adding resources to Apama projects

Using Apama Studio 5.2.0 40

6. The left side of the Builder tab displays the parameters, input feeds, output feeds, and operations that make
up the block; a new block will not contain any entries here. To add one of these elements:

a. Right click the element you want to add and select Add Parameter, Add Input Feed, Add Output Feed,
or Add Operation. The right side of the Builder tab displays the item’s properties.

b. Fill in the values for the properties.

7. For input feeds and output feeds, right click the element and select Add Field.

8. In the Properties panel for the field you added in the previous step fill in the values for the properties and
field validation specifications. Repeat for each field you want to add to an input or output feed.

9. When you finish specifying the block’s metadata, save the file.

For details about adding EPL code to a block, see "Adding EPL code to a block" on page 41.

Creating a block from an EPL event definition
In cases where you want to create an event from a scenario or to update the scenario types from an
Apama event, you should create a block based on the event type.

Creating a block from an existing EPL event definition consists of selecting the event definition from
which you want to create the block, specifying whether you want to create an input block or an
output block, and specifying what fields in the event are to be used when the block is generated. For
input blocks, the specified fields are used to construct listeners; for output blocks, the specified fields
are used to set the values of output parameters.

To add a new block to an Apama project from an existing EPL event definition:

1. In the Project Explorer or Workbench Project view, right-click the default block folder (typically
catalogs\project_name\blocks) and select New > Block from the pop-up context menu. The New Event
Modeler Block dialog is displayed.

2. In the New Event Modeler Block dialog, specify the name of the project in the Containing folder field
if you want to use an event definition in a different project; you can also click Browse to select the project
from a list of projects in the workspace.

3. Also in the New Event Modeler Block dialog, select EPL event definition in the Generate block using
field and click Next. The Select the Block type and Event type dialog is displayed.

4. In the Select the Block type and Event type dialog, click Browse to display the Event Type Selection
dialog. Note, that events with field types chunk, listener, or stream are not listed because they cannot be
emitted, routed, or enqueued.

a. In the Event Type Selection dialog‘s Choose an Event Type field, enter the name of the event. As
you type, event types that match what you enter are shown in the Matching Events list.

b. In the Matching Events list, select the name of the event type you want to use to generate the block.
The name of the EPL file that defines the selected event is displayed in the status area at the bottom of
the dialog.

c. Click OK.

5. In the Select the Block type and EPL type dialog, specify whether you want to generate an input block
or an output block. Also, in the Include comments field, add a check if you want to include ApamaDoc
comments from the event definition in the generated block code and click Next. The Create New Apama
Block dialog is displayed.

Adding resources to Apama projects

Using Apama Studio 5.2.0 41

6. In the Create a New Apama Block dialog, specify the name, version, type and description of the new
block. By default, Apama Studio uses the name of the event as the basis for the name of the block. The
Type field specifies what type of code will be generated for the block. The choices are:

Callback — Implements the block as an event type; this is the default. Generates EPL code to
which you can add custom code.

Callback (DEBUG) — Implements the block as an event type. Generates EPL code to which you
can add custom code. Also generates statements that can help you debug the EPL you are
adding. You can easily switch your block between Callback and Callback (DEBUG).

When you finish entering information, click Next. The Select Block Parameters from Event Fields
dialog is displayed.

7. In the Select Block Parameters from Event Fields dialog, in the Event Fields field, specify the fields to
be used to create the block.

Note, for input blocks, fields with inner event fields, and fields of dictionary or sequence types are
not displayed. Also, for both input and output blocks, constant, action, and context fields are not
displayed.

When you create a new input block, code is generated for a block parameter and listener for
a specified field. If you select more than one field, block parameters and listeners are created
for all combinations of all the selected fields. The maximun number of fields you can select is
ten.

For input blocks, code is also generated for an output feed that includes all the fields in the
specified event, as well as start and stop actions that activate and deactivate the listeners.

When you create a new output block, code is generated for parameters for the event fields
you specify. This means that values for those fields can be specified when the block is used.

8. Click Finish.

Apama Studio creates the block’s .bdf file (the block definition file) and opens it in the block editor.
The left side of the Builder tab displays the parameters, input feeds, output feeds, and operations
that are automatically generated from the information you specified for the block. For details about
adding EPL code to a block, see "Adding EPL code to a block" on page 41.

Adding EPL code to a block
When you save a block, Apama Studio generates the underlying code that defines the block’s
interface and saves it as a block definition file with a .bdf extension. To this file, you then add EPL code
to implement the necessary behavior. To add code to the block:

1. If necessary, double-click the block in the Project Explorer to open it in the block editor. In the block
editor display the Source tab.

2. On the Source tab, code is displayed either with a gray background or a white background. Code with a
gray background is maintained by Apama Studio and is not editable. The sections of code with a white
background are the areas where you add your custom EPL code.

For more information on adding EPL code to a block, see "Adding EPL code to the block definition"
on page 85. Also, for background information on the elements that make up the actual code of a
block’s block definition file, see "File Definition Formats" on page 188.

Adding resources to Apama projects

Using Apama Studio 5.2.0 42

Creating new scenario functions
Many Apama applications are implemented partially or entirely as scenarios. Apama Studio
supplies many pre-packaged scenario functions that can be used in conditions or actions when
defining rules for scenarios. In addition, you can define your own scenario functions within Apama
Studio.

Note: When you create a new function, you should place it in the project’s default functions
directory. This directory is found in the project’s catalogs directory. The function directory has a
name in the form project_name functions. So, for example, the default functions directory of a project
named My_Project will be catalogs\My_Project functions. If you place the function in the default
function directory, scenarios created in the project will automatically find them and they will be
available in Event Modeler when you are displaying the scenario.

To define a new scenario function:

1.
If you are in the Apama Workbench perspective, click the Show All Folders icon if necessary to
display the enhanced view that shows all the project’s resources.

2. In the Project Explorer view or the Workbench Project view, open the catalogs folder of the project
where you want to add the EPL file.

3. Right click the functions folder within the catalogs folder. It will have a name such as MyProject
functions. Select New > Scenario Function.

In the Workbench Project view you can also select the functions folder and click the New Scenario

Function button .

4. In the New Scenario Function wizard, specify information for the following fields:

a. The Containing Folder field is the folder where the function definition file will be saved; by default
this is the functions folder you selected in Step 4, but you can select another folder using the Browse
button.

b. In the Function Name field enter a unique name for the function. By convention, this should be in
uppercase.

c. In the Display Name field enter the name that will be displayed in the Apama Event Modeler tool. By
default this the same as the Function Name but you can change it if you like; it does not need to be
unique.

d. In the Return type field specify the type for the value returned by the function.

e. In the Description field specify the descriptive text that will accompany the function in the Apama
Event Modeler tool.

5. Click Finish. This generates the definition file for the function and opens the file in the Apama editor.

6. The function definition file is an XML file. To implement the behavior of the function you need add the
EPL code to the action statement in the file’s <code> element. In the .fdf file, this section is labeled:

// TODO: put MonitorScript code to implement the function here

Adding resources to Apama projects

Using Apama Studio 5.2.0 43

After you have added a new scenario function to a project, when you look at a scenario in the project
with the Apama Event Modeler, the new function will be included in the Event Modeler’s function
catalog associated with the project.

For more information on using functions in scenarios, see "Using functions in Event Modeler" in
Developing Apama Applications in Event Modeler. For more information on the XML format of the
function definition file, see "File Definition Formats" on page 188.

Adding resources to Apama projects

Creating new dashboards
Dashboards provide the ability to view and interact with scenarios and DataViews. They contain
charts and other objects that dynamically visualize the values of scenario variables and DataView
fields. Dashboards can also contain control objects for creating, editing, and deleting scenario
instances and DataView items. Normally, you add new dashboards after you have substantially
developed and tested your application.

You can create dashboards with either the Dashboard Generation wizard or the Dashboard Builder.
The wizard allows you to generate simple, default dashboards, customized with your choices
regarding basic layout and visualization objects to use. The Builder is a graphical composition tool
that gives you fine-grained control over a dashboard’s appearance and behavior.

The following sections describe how to create dashboards to your project:

"Creating dashboards with the Dashboard Generation wizard" on page 43

"Creating dashboards with the Dashboard Builder" on page 44

Adding resources to Apama projects

Creating dashboards with the Dashboard Generation wizard
To create dashboards that are generated by the Dashboard Generation wizard, follow these steps:

1. If you are using the Project Explorer view, ensure that a project is selected.

2. In either the Project Explorer view or the Workbench Project view, select New > Dashboard from the
File menu. (You can also right-click in the navigation pane and select Dashboard from the popup menu.
In the Workbench Project view, you can also click the New button that is above the navigation pane and
select Dashboard from the Apama folder, or click the down arrow that is next to the New button, and select
Dashboard from the popup menu.)

3. In the New Dashboard dialog, click the Dashboard Generation wizard radio button, and enter a name
in the Configuration name field. The Dashboard Generation wizard uses this as the name of the new
configuration that will be used to generate your Dashboards. When you use the Wizard, you can accept a
default configuration or specify a custom configuration.

4. Click Finish.The Dashboard Generation Wizard appears, and displays the new dashboard-generation
configuration. In addition, a new dashboard-generation configuration file (dashboard_generation.xml)
appears under the current project’s config folder, if one wasn’t already present.

Adding resources to Apama projects

Using Apama Studio 5.2.0 44

For information on using the Dashboard Generation wizard, see "Generating Dashboards" on page
168, in Using Apama Studio.

Adding resources to Apama projects

Creating dashboards with the Dashboard Builder
To create a dashboard and develop it with the Dashboard Builder, follow these steps:

1. If you are using the Project Explorer view, ensure that a project is selected.

2. In either the Project Explorer view or the Workbench Project view, select New > Dashboard from the
File menu. (You can also right-click in the navigation pane and select Dashboard from the popup menu. In
the Workbench Project view, you can also click the New button and select Dashboard from the Apama
folder, or click the down arrow next to the New button, and select Dashboard from the popup menu.)

3. In the New Dashboard dialog, click the Dashboard Builder radio button, and enter information in the
following fields:

a. Containing Folder is the folder where the dashboard definition file will be saved; by default this is the
dashboards folder of the current project, but you can select another folder using the Browse button.

b. File name specifies the name of the new definition file. Specifying the .rtv extension is optional as
Apama Studio will add the .rtv file extension. Apama Studio will not let you specify anything except
.rtv as a file extension.

4. Click Finish. The name of the new dashboard definition file appears under the current project’s dashboards
folder. Additionally, in a separate window Apama Studio opens the Apama Dashboard Builder tool
showing the new dashboard.

Using Dashboard Builder, you complete the dashboard by adding visualizing and control objects
and connecting them to live correlator data. For more information on completing dashboards, see
Chapter 1, "Introduction" in Building Dashboards.

Adding resources to Apama projects

Creating new dashboard-deployment configurations
Dashboard-deployment configurations contain the information necessary for the generation
of deployment packages for a project’s dashboards. Follow these steps to create a deployment
configuration:

1. If you are using the Project Explorer view, ensure that a project is selected.

2. In either the Project Explorer view or the Workbench Project view, select New > Dashboard
Deployment from the File menu. (You can also right-click in the navigation pane and select Dashboard
Deployment from the popup menu. In the Workbench Project view, you can also click the New button
that is above the navigation pane and select Dashboard Deployment from the Apama folder, or click the
down arrow that is next to the New button, and select Dashboard Deployment from the popup menu.)

3. In the New Dashboard Deployment Configuration dialog, enter a name in the Configuration field.
The Dashboard Deployment Configuration Editor uses this as the name of the new configuration.

Adding resources to Apama projects

Using Apama Studio 5.2.0 45

4. Click Finish.The Dashboard Deployment Configuration Editor appears, and displays the new dashboard
configuration. In addition, a new dashboard-deployment configuration file (dashboard_deploy.xml) appears
under the current project’s config folder, if one wasn’t already present.

For information on using the Dashboard Configuration Deployment Editor, see "Using the
Deployment Configuration editor" on page 181 in "Generating Dashboards" on page 168 in
Using Apama Studio.

Adding resources to Apama projects

Creating new event files
To add a new event file to an Apama project:

Event files are used to supply events of a specific type. For example in applications written in EPL,
you should usually send in an event to tell the monitors making up the application to start listening
for events once everything has been injected.

1.
If you are in the Apama Workbench perspective, click the Show All Folders icon if necessary to
display the enhanced view that shows all the project’s resources.

2. In the Project Explorer view or the Workbench Project view, right click the events folder of the project
where you want to add the event file and select NewFile > Event. In the Workbench Project view you can

also select the events folder and click the New Event File button .

3. In the New Event File wizard, enter information in the following fields:

a. The Containing Folder field is the folder where the file will be saved; by default this is the folder of the
currently selected project, but you can select another folder using the Browse button.

b. In the File name field, specify the name of the new file. Specifying the .evt extension is optional as
Apama Studio will add the .evt file extension. Apama Studio will not let you specify anything except
.evt as a file extension.

4. Click Finish. The name of the new file now appears in the Project Explorer viewor the Workbench
Project view under the project that contains it and the event file opens in the Apama Studio event editor.

Adding resources to Apama projects

Adding resources to EPL projects
To add an existing EPL file that defines a monitor to an Apama project, you add the file as an
External Dependency. You can also add EPL files that are contained in an Apama Correlator
Deployment Package file. To add a file to an active project as an external dependancy:

1. Select Project > Properties from the Apama Studio menu.

2. In the Properties dialog, select MonitorScript Build Path from the left hand pane and select the External
Dependencies tab in the right pane.

Adding resources to Apama projects

Using Apama Studio 5.2.0 46

3. Click Add External button and navigate to the files you want to add. You can select EPL (.mon) files or
Correlator Deployment Package (.cdp) files.

4. When finished, click OK at the Properties dialog.

Adding resources to Apama projects

Adding resources to JMon projects
To add existing resources to a JMon project, you modify the project’s configuration. The
configuration information is stored in the project’s config/apama_java.xml file.

To add resources to a JMon project, double click the project’s config/apama_java.xml file. The Apama
Java configuration editor opens.

The Application drop-down list on the right of the editor’s title bar shows the application you are
editing. You can select any JMon application currently included in the project and you can add JMon
applications from other projects to your current project.

You can add other JMon classes (JMon events and JMon monitors) and non-JMon Java files to a
project.

Adding resources to Apama projects

Adding resources to Apama projects

Using Apama Studio 5.2.0 47

Adding JMon applications
To add a JMon application from another Apama project:

1.
Click the Add application button (). The New Application Name dialog is displayed.

2. Specify a name for the new application and click OK. The editor will display the settings for this new
application and the name will be added to the editor’s drop down list.

3. In the Apama Java configuration editor, expand the Java Application Classes heading. This displays the
current list of the Java classes included in the project. Click Add; this displays the Select Java Apama
Files dialog showing the available JMon Application projects.

4. Select the JMon application file you want and click OK.

5. When you save the configuration information, Apama Studio generates a .jar file and puts it in a new folder
in the current project.

Adding resources to JMon projects

Adding JMon classes
In order to add a JMon monitor or event from another Apama project:

1. In the Apama Java configuration editor, expand the Java Application Classes heading. This displays the
current list of the Java classes included in the project. Click Add; this displays the Select Java Apama
Files dialog showing the available JMon application projects.

Adding resources to Apama projects

Using Apama Studio 5.2.0 48

2. In the Select Java Apama Files dialog navigate to the class you want to add, select it, and click OK.

3. In the Apama Java configuration editor, you can also change the order in which the JMon classes are listed
with the Up and Down buttons. This affects the way the files are ordered in the manifest file and the order
in which they are injected in the correlator. Events are injected first, followed by monitors; in both cases,
they are injected in the order they are listed here.

Adding resources to JMon projects

Adding non-JMon Java files
To add non-JMon Java files:

1. In the Apama Java configuration editor, expand the Additional Content heading. This displays the current
list of non-JMon Java files included in the project.

Adding resources to Apama projects

Using Apama Studio 5.2.0 49

You can add files from other Apama projects and you can add non-project files from outside the
Apama Studio workplace.

2. To add a file from an existing Apama project:

a. Click Add from a project. This displays the Select a Resource dialog.

b. Navigate to the file you want to add, select it, and click OK.

3. To add a file from outside Apama Studio:

a. Click Add a Variable. The Select variables to add to build path dialog is displayed

Adding resources to Apama projects

Using Apama Studio 5.2.0 50

.

b. Select a variable and, if necessary, click Extend to identify specific folders on the path. Click OK.

Adding resources to JMon projects

Adding bundles to projects
Bundles are named collections that group the Apama objects that are necessary for different types
of applications. Standard Bundles contain service monitors and event definitions that are specific to
the type of application you are building. For example, applications that include scenarios need the
Scenario Service bundle, while applications that use data views need the DataView bundle. Adapter
Bundles contain adapter configuration files, monitors, and other files needed by the Integration
Adapter Framework (IAF). For information on adding adapters, see "Adding adapters to projects" on
page 53.

Adding resources to Apama projects

Bundle instances
Many bundles and adapters contain only EPL or Java files; adding these bundles means that
references to the bundle files will be added to the project build path, but does not involve copying
any files into the project. However, when you add a bundle that contains customizable files such as
.evt or adapter configuration files, Apama Studio physically copies these files into the project, in
addition to the changes made to the project build path.

If you add more than one instance of a particular bundle or adapter to the project, Apama Studio
creates separate copies of these files for each instance (except for bundles where it only makes sense
to have one copy of the instance files per project). If a bundle contains instance files, you can change
and customize those files in any manner. It is possible to add multiple instances of such bundles
to a given project, to allow different customizations of the same instance files, for example if your

Adding resources to Apama projects

Using Apama Studio 5.2.0 51

application needs to run with two instances of a particular adapter, each connected to a different
data provider.

If a bundle contains instance files, the Add Bundle Instance dialog will prompt for a unique bundle
instance name to identify the instance, to distinguish it from any other instances of the same bundle.
This instance name will be included in the filename of the bundle instance files when they are copied
into the project. If only one instance of a given bundle will be required, it is fine to use the default
bundle instance name. Each bundle or adapter instance is represented in the Project Explorer.

After adding a bundle that contains instance files, the instances can be removed or updated
independently (right-click the instance name and select Remove Instance from the pop-up menu).
After a bundle with instance files is removed, a dialog will appear to confirm whether you also wish
to delete the instance files that were copied to the project. Usually you will want to delete these files
at the same time as removing the bundle, as long as backup copies of any important customizations
have been made.

It is never necessary to have more than one instance of a bundle that does not contain any instance
files, so this option is disabled in the Add Bundle Instance dialog.

To add a bundle to an Apama project:

1. There are two ways of adding a bundle to a project.

If you are creating a new Apama project, select File Project > New > Apama , give it a name, and
click Next. The New Apama Project dialog opens.

Adding resources to Apama projects

Using Apama Studio 5.2.0 52

If you are adding a bundle to an existing project, in the Project Explorer right-click the project and
select Apama > Add Bundle. The Add Bundle dialog opens.

Adding resources to Apama projects

Using Apama Studio 5.2.0 53

2. Select the bundle that is appropriate for your application. Click Finish or OK.

Apama Studio adds the bundle to the Bundles folder in your project along with the supporting
monitors such as DatabaseSupport.mon. If a bundle contains a Correlator Deployment Package you can
see this in the bundle's hierarchy in the project's Bundles folder in Project Explorer.

Adding bundles to projects

Adding adapters to projects
Apama provides standard adapters that communicate with third-party messaging systems,
transforming incoming messages into Apama events and, in the opposite direction, transforming
Apama events into the proprietary representations required by third-party messaging systems. In
addition, the adapter for the Apama Database Connector (ADBC) allows an application to connect
to standard ODBC and JDBC data sources as well as Apama Sim data sources. You can add these
adapters to an Apama Studio project by the adding the corresponding adapter bundle to the project.

To add an adapter to a project:

1. There are several ways of adding an adapter to a project.

If you are creating a new Apama project, select File > Project > New > Apama , give it a name, and
click Next. New Apama Project dialog opens.

Adding resources to Apama projects

Using Apama Studio 5.2.0 54

If you are adding an adapter to an existing project:

a. In the Project Explorer right-click the project and select Apama > Add Adapter. The Add Adapter
Instance dialog opens.

b. If desired, in the Add Adapter Instance dialog, create a new name for the adapter instance or accept
the default instance name. Apama Studio prevents you from using a name that is already in use.

Adding resources to Apama projects

Using Apama Studio 5.2.0 55

2. Select the adapter bundle that is appropriate for your application. Click Finish or OK.

Apama Studio adds an instance of the adapter to the Adapters folder in your project along with the
supporting monitors such as IAFStatusManager.mon and the associated service monitors. Reference to
bundled files associated with the adapters, such as IAF Status Manager and Status Support are listed
in the adapter’s Dependent Bundles folder

You can add multiple instances of a given adapter to a project. This allows you create different
configurations of the adapter, for example if your application needs to run with different data
providers.

For more information on configuring Apama standard adapters, see "Standard Apama Adapters" in
Developing Adapters (available if you selected Developer during installation) and "Using the Apama
Database Connector" in Deploying and Managing Apama.

Adding resources to Apama projects

Adding Universal Messaging configuration to projects
Universal Messaging (UM) is Software AG's middleware service that delivers data across different
networks. It provides messaging functionality without the use of a web server or modifications to
firewall policy. In Apama applications, you can configure and use the connectivity provided by UM.

Apama provides the UM-config.properties template file in the etc folder of your Apama installation
directory. The template is for a standard Java properties file. When you add UM configuration to a
project, Apama Studio copies the UM-config.properties file to the config folder in your project.

To add UM configuration information to a project:

Editing Apama files

Using Apama Studio 5.2.0 56

1. Right-click the project you want to add UM configuration properties to.

2. Select Apama > Add UM Configuration.

A project can contain only one UM configuration properties file. If a UM-config.properties file is
already in the config folder of your project then this option is not available.

3. Right-click the UM-config.properties file that is now in the config folder of your project. Select Open
With > Apama UM Configuration Editor.

For details about the content of this file, see "Defining UM properties for Apama applications" in
Deploying and Managing Apama Applications.

For information about using UM in an Apama application, see .

For information about using UM in an Apama application, see "Using Universal Messaging" in
Deploying and Managing Apama Applications.

Adding resources to Apama projects

Editing Apama files
Apama Studio provides many features to help you write application code for monitor files (.mon),
block definition files (.bdf), event files (.evt), and JMon monitor and JMon event files. The following
topics provide instructions for using these features:

"Obtaining content assistance" on page 56

"Using auto-completion" on page 57

"Displaying information for events and actions" on page 57

"Specifying comments" on page 57

"Using auto-Indent" on page 58

"Using auto-bracketing" on page 58

"Using tabs" on page 58

"Defining shorthand (templates) for frequently used EPL code" on page 59

"Sharing templates among Apama Studio installations" on page 59

"Specifying colors to distinguish EPL elements" on page 60

"Shortcuts when editing Apama files" on page 61

Working with Projects

Obtaining content assistance
To obtain content assistance, enter Ctrl+space in a blank line, or after one or more words in a line.

Editing Apama files

Using Apama Studio 5.2.0 57

Apama Studio displays a list of keywords or names that are valid in that location. For example, it
might display a list of event types, standard functions, or actions. Double click the one you want or
select with the arrow keys and press Enter.

To ensure that content assistance is always as up-to-date as possible, turn on automatic builds.
Automatic builds ensure that when you add, delete, or change a project resource, Apama Studio
immediately builds the project. Building a project after a resource change ensures that content
assistance has access to the most current resources. See "Build automatically when a resource
changes" on page 65.

Using auto-completion
To have Apama Studio automatically complete the word you are typing, enter Ctrl+space.

If you have entered enough characters so that there is only one possible completion, Apama Studio
inserts the rest of the word. If there are two or more possible completions, Apama Studio displays a
list of the completion candidates. Double-click the correct completion or select with the arrow keys
and press Enter.

Apama Studio displays only those completion candidates that are valid in the current context and
scope.

To ensure that auto-completion is always as up-to-date as possible, turn on automatic builds.
Automatic builds ensure that when you add, delete, or change a project resource, Apama Studio
immediately builds the project. Building a project after a resource change ensures that auto-
completion has access to the most current resources. See "Build automatically when a resource
changes" on page 65.

Displaying information for events and actions
When you position the mouse cursor to hover over an event declaration or action, Apama Studio
pops up a box that displays the event type definition or the signature for the action.

Specifying comments
To toggle comment notation, click in a line or select one or more lines, and press Ctrl+/.

Alternatively, you can adjust comment notation as follows:

1. Click in a line or select one or more lines.

2. Right-click anywhere in the code editor.

3. In the menu that appears, select Source and then one of the following:

Toggle comment — Inserts // comment notation if the selected line or lines is not a comment.
Removes // comment notation if the selection is already a comment.

Editing Apama files

Using Apama Studio 5.2.0 58

Add block comment — Inserts /* at the beginning of the section, and */ at the end of the
selection.

Remove block comment — Removes the /* and */ notation.

Using auto-Indent
To indent one or more lines relative to the entire EPL file:

1. Click in a line or select one or more lines.

2. Press Ctrl+i.

Alternative: Right-click in the code editor and select Source > Correct Indentation .

Using auto-bracketing
Auto-bracketing is turned on by default.

When auto-bracketing is turned on, and you enter an open bracket ({) or open quotation marks,
Apama Studio automatically inserts the closing bracket or closing quotation marks.

To toggle auto-bracketing:

1. In the Apama Studio menu bar, choose Window > Preferences.

2. Expand Apama.

3. Click MonitorScript.

4. Select or clear the Auto Close Brackets checkbox.

5. Click OK.

Using tabs
Apama Studio inserts tabs instead of spaces by default. Each tab is four spaces.

To toggle whether Apama Studio uses tabs or spaces:

1. In the Apama Studio menu bar, choose Window > Preferences.

2. Expand Apama.

3. Expand MonitorScript.

4. Click Editor Formatting.

5. Select or clear the Insert tabs instead of spaces checkbox.

6. If you want, adjust the number of spaces in each tab.

7. Click OK.

Editing Apama files

Using Apama Studio 5.2.0 59

Defining shorthand (templates) for frequently used EPL code
EPL templates provide a way for you to define a short name for a longer pattern that you often
specify in an EPL file. For example, Apama Studio provides the dict template. When you enter dict
followed by a space, Apama Studio automatically inserts dictionary<>.

Apama Studio provides some templates and you can define additional templates. Each Apama
project can use all EPL templates.

Apama Studio provides the following EPL templates. To use one, type its name followed by a space.

Name Description Pattern

dict dictionary<> dictionary<%\c>

ona on all on all %\c

onall on all on al %\c

seq sequence<> sequence<%\c>

In the pattern, %\c indicates the location of the cursor after you type the template name.

To define an EPL template:

1. In the Apama Studio menu bar, choose Window > Preferences.

2. Expand Apama.

3. Expand MonitorScript.

4. Click Editor Templates.

5. Click New.

6. In the Name field, specify what you want to enter to insert an instance of the template.

7. In the Description field, specify what Apama Studio should display in the EPL file.

8. In the Pattern field, duplicate what you specified in the Description field and insert %\c to indicate the
location of the cursor after Apama Studio inserts the value.

9. Click OK twice. All Apama projects can now use this template.

Sharing templates among Apama Studio installations
You can define templates in one Apama Studio installation, and export them for use in another
Apama Studio installation.

To export templates:

1. In the source Apama project, define the templates you want to share. See "Defining shorthand
(templates) for frequently used EPL code" on page 59.

Editing Apama files

Using Apama Studio 5.2.0 60

2. In the Editor Templates dialog, click Export All.

3. In the Export Abbreviations dialog, specify a text file to contain the templates you are exporting. The
default file name is Abbreviations.txt. If you can, specify a path that is reachable from Apama Studio
installations that will import the templates.

4. Click Save.

5. Click OK.

In some other Apama Studio installation, import the templates as follows:

1. Open the project into which you want to import templates.

2. In the Apama Studio menu bar, choose Window > Preferences .

3. Expand Apama.

4. Expand MonitorScript.

5. Click Editor Templates

6. Click Import.

7. In the Import Abbreviations dialog, navigate to a file that contains template definitions.

8. Double-click it.

9. Click OK

Specifying colors to distinguish EPL elements
In EPL files, Apama Studio uses the following colors to indicate the various parts of EPL code:

Keywords are dark magenta.

Types are red.

Comments are green.

Literal values are blue.

Operators (+, –, =, and so on) are black.

All other text is black.

To change one or more colors:

1. In the Apama Studio menu bar, choose Window > Preferences.

2. Expand Apama.

3. Expand MonitorScript.

4. Click Editor Colors.

5. Click the current color of the item whose color you want to change.

6. In the color palette that appears, click the new color.

7. Click OK twice.

Navigating in Apama files

Using Apama Studio 5.2.0 61

Shortcuts when editing Apama files
Apama Studio provides the following shortcuts, in addition to the usual Eclipse shortcuts:

Action Key Description

Auto-completion and
content assistance

Ctrl+space If the text you entered has only one
possible completion, Apama Studio
inserts the completion. If you did not
enter any text, or if there are two or
more completion candidates, Apama
Studio displays candidates for you to
choose from.

Toggle comment line
notation

Ctrl+/ Toggles comment notation for selected
lines. That is, this action inserts or
removes // from the beginning of each
line.

Insert block comment Ctrl+Shift+/ Makes the selected text a block
comment. That is, this action inserts /
* at the beginning of the selected text,
and */ at the end of the selected text.

Remove block comment
notation

Ctrl+Shift+\ Removes block comment notation
from the selected text. That is, this
action removes /* from the beginning
of the selected text, and */ from the
end of the selected text.

Auto-indent Ctrl+i Inserts appropriate indents in selected
lines relative to the entire file.

Move line (s) up Alt+up arrow Move the selected line or lines to be
before the previous line.

Move line(s) down Alt+down arrow Move the selected line or lines to be
after the subsequent line.

Shorthand for any EPL Templates Templates let you define short names
for patterns you frequently specify
in EPL files. See "Defining shorthand
(templates) for frequently used EPL
code" on page 59.

Navigating in Apama files

Navigating in Apama files

Using Apama Studio 5.2.0 62

In addition to the usual Eclipse navigation tools, Apama Studio lets you quickly jump to particular
parts of an EPL file by

"Using the Outline view to navigate" on page 62

"Using the Quick Outline to navigate" on page 62

"Jumping to an event or action definition or variable declaration" on page 62"Adding JMon
classes" on page 47

"Searching in EPL files" on page 62

You can use these features to navigate the code of EPL files (.mon), and block definition files (.bdf).

Working with Projects

Using the Outline view to navigate
In an Apama Studio perspective, the Outline view displays the event types and monitors in the
currently open .mon or.bdf file, showing event parameters and actions and monitor fields, actions,
and listeners within actions. When you click an entry in the Outline view, the focus in the editor view
jumps to the code that defines the item you clicked.

Apama Studio updates the Outline view each time it saves your EPL file. If you add a resource to
your EPL file but you do not save your file, the new resource does not appear in the Outline view
until you save your file.

Using the Quick Outline to navigate
While you are viewing a .mon or.bdf file in the Apama Studio editor, you can use the Quick Outline
to jump to an event type, monitor, or action. Press Ctrl+O or select Navigate > Quick Outline to display
the Quick Outline. Apama Studio pops up a list of event parameters and actions and monitor fields,
actions, and listeners within actions for the current EPL file. Click an entry in the list to jump to the
code that defines the item you click.

Jumping to an event or action definition or variable declaration
To jump to an event or action definition or variable declaration:

1. Select a reference to the event, action, or variable whose declaration you want to view.

2. Press F3 or choose Navigate > Open Declaration from the Apama Studio menu bar. Apama Studio
highlights the line that begins the declaration for the selected event or variable.

Searching in EPL files

Navigating in Apama files

Using Apama Studio 5.2.0 63

You can search for event types in your project’s .mon or.bdf files. To start a search:

1. In either the Developer or Workbench perspective, select Search > Search from the menu bar. In the

Developer perspective, you can also click the Search icon . The Search dialog is displayed. Make
sure the MonitorScript Search tab is selected.

2. Type the event type you want to search for in the Event name (fully qualified) field. You can use wildcard
characters and regular expressions in your search. Modify the search details as necessary, for example by
specifying if the search should be case sensitive or if you want to limit the scope of the search. You can
limit your search to templates (event listeners), senders (route, enqueue, and emit), and variables (event
types are used as variables).

3. Click Search. Results are displayed in the Search view (Search tab), showing the files where the search
term occurs and how many times it occurs. To display the first occurrence of the search term, double

click the file name or click the Show Next Match button. This opens the file containing the term in the

appropriate editor. You can navigate through all occurrences of the search term with Show Next Match

and Show Previous Match buttons.

Building Apama projects

Using Apama Studio 5.2.0 64

Building Apama projects
In Apama Studio, “building a project” refers to the process in which the project is validated, and any
errors or warnings flagged to the user. This section describes the features Apama Studio provides to
control when Apama Studio will build an Apama project.

Apama Studio includes options to:

"Build automatically when a resource changes" on page 65

"Build all Apama projects" on page 65

"Build one Apama project" on page 65

"Build a working set" on page 65

"Clean and rebuild projects" on page 66

Apama Studio tries to complete each build. It does not stop when it finds an error. If Apama Studio
finds problems during validation, it indicates them as follows:

In the Problems view, the error icon appears at the beginning of each line that describes an
error.

In the Project view, the error icon appears at the beginning of the name of a project that
contains at least one file that is not valid.

In the Project view, the error icon also appears at the beginning of the name of each file that is
not valid.

Building Apama projects

Using Apama Studio 5.2.0 65

In the file editor, the error icon appears at the beginning of each line that contains an error.

In the overview scroll bar to the right of the editing pane, regardless of how long the file is, a
mark appears for every error in the file. You can hover over a mark to view a description of the
error that it flags, or you can click on any mark to display the line that contains that error.

Working with Projects

Build automatically when a resource changes
Apama Studio can automatically build a project whenever you add, delete, or change a resource
in that project. This is the default and Apama strongly recommends that you leave this feature on.
Building a project automatically ensures that content assistance menus are always up to date.

To toggle Build Automatically on or off:

1. Select Project in the Apama Studio menu.

2. In the drop-down menu that appears, if a checkmark appears in front of Build Automatically, automatic
builds are already turned on. Otherwise, select Build Automatically to turn it on.

Build all Apama projects
To validate all Apama projects in your workspace, choose Project > Build All from the Apama Studio
menu bar.

Build one Apama project
To validate one Apama project:

1. In the Apama Project Explorer view, select the project you want to build.

2. In the Apama Studio menu bar, choose Project > Build Project.

Build a working set
When an Apama project is large, you might find it more efficient to build a subset of the project
rather than the entire project. To build a subset of an Apama project, specify a working set that
contains the files you want to build. Then build the working set you defined.

To define a working set:

1. In the Apama Studio menu bar, choose Project > Build Working Set > Select Working Set.

2. In the Select Working Set dialog, click New.

3. Double-click Resource.

Building Apama projects

Using Apama Studio 5.2.0 66

4. Specify a name for this working set.

5. Expand the project(s) that contains the file(s) that you want to be in the working set.

6. Select the file(s) that you want to be in the working set, and click Finish.

7. Back in the Select Working Set dialog, select the working set you just defined and click OK.

To build this working set, choose Project > Build Working Set > working_set_name from the Apama
Studio menu bar.

Clean and rebuild projects
When Apama Studio cleans a project, it discards all build problems and build states. To rebuild a
project from scratch, as though you have never built it before:

1. In the Apama Studio menu bar, choose Project > Clean.

2. Indicate which projects you want to rebuild from scratch or select Clean all projects.

3. Click OK.

Configuring the project build path
By default, Apama Studio will include all of the files in a project when building (and launching) it.
However, for many applications it will be necessary to customize the build path, adding additional
files from outside the project (and less commonly, limiting the set of files under the project directory
that will be included). The set of files under the project directory that will be build can be customized
using the Source tab. Apama Studio provides three ways to add additional files from outside the
project to its build path:

Required Projects

External MonitorScript Dependencies

Bundles

Project source files
By default, all files in the project directory are included in the build path, but this can be customized.
Files within a project are grouped into folders and you can specify which folders should be included
when a project is built. In addition, within each folder you can specify patterns that determine which
files should be included or excluded.

To specify files this way:

1. Select the project in the Project view and select Project > Properties from the Apama Studio menu.

2. Expand Apama.

3. In the Properties dialog, select MonitorScript Build Path, and display the Source tab.

Building Apama projects

Using Apama Studio 5.2.0 67

4. On the Source tab you add new folders and specify which files to include in the build process. For
example, you can include all event files with the .evt extension. For folders in the project, you can also
modify which files to include or exclude.

Specifying projects
A project can make use of other Apama Studio projects. To specify that your project should include
another project in the build process:

1. Select the project that requires another project in the Project view and select Project > Properties from the
Apama Studio menu.

2. Expand Apama.

3. In the Properties dialog, select MonitorScript Build Path, and display the Projects tab.

Building Apama projects

Using Apama Studio 5.2.0 68

4. On the Projects tab, click Add to display the Required Project Selection dialog where you specify which
projects to include in the build process.

Specifying external dependencies
When an EPL file in your project depends on an external EPL file, you must explicitly specify the
dependency. For example, if you refer to event types or actions that are defined in other EPL files,
you must specify the files that define those constructs. This ensures that Apama Studio includes the
external file in the validated project. It also ensures that the Apama Studio builder, content assistance
facility, and launcher have access to the most up-to-date version of each required file.

How you define dependencies depends on whether you are the only one using your project or you
share the project with one or more users.

Specifying dependencies for a single-user project

When you are the only one using a project, specify a file that your EPL file depends on as follows:

1. Select the project for which you want to define a dependency.

2. In the Apama Studio menu bar, choose Project > Properties.

3. In the Properties dialog that appears, select Apama.

4. Click MonitorScriptBuild Path.

5. Display the External Dependencies tab.

6. Click Add External.

7. In the MonitorScript File Selection dialog, navigate to the file your project requires.

8. Double-click the file.

9. Click OK in the Properties dialog to specify the dependency.

Building Apama projects

Using Apama Studio 5.2.0 69

Specifying dependencies for a multi-user project

When Apama Studio builds a project, it defines any dependencies in an XML file that hardcodes
the path to the external file(s). This works correctly if you do not share projects among multiple
users. However, if two or more users share a project, they might not store external files in the same
location.

If you are sharing projects among two or more users, you should use a variable to define an external
file on which your EPL file depends. For example, Apama Studio automatically defines APAMA_HOME
and APAMA_WORK variables that can be used to locate files under either of those directories in a way that
is independent of exactly where Apama has been installed on the current machine. To use a variable
to define a dependency:

1. Select the project, or a file in the project, for which you want to define a dependency.

2. In the Apama Studio menu, choose Project > Properties.

3. In the Properties dialog that appears, expand Apama.

4. Click MonitorScriptBuild Path.

5. Display the External Dependencies tab.

6. Click Add Variable.

7. In the New Variable Dependency Entry dialog that appears, do one of the following:

If a variable already exists that identifies the required file, double-click that variable. Then
click OK. You are done and can skip the remaining steps.

To define a new variable that identifies the required file, click Configure Variables.

8. In the New Variable Entry dialog, in the Name field, enter the name of the new variable. The convention
is to use UPPER_CASE names for build path variables (for example, APAMA_HOME).

9. Click File... or Folder... according to which one you want the variable to represent.

10. Navigate to the appropriate folder or EPL file and double-click it.

11. Click OK twice.

12. Click OK in the Preferences dialog; Apama Studio confirms that the classpath variables have changed,
and prompts you to indicate whether you want to rebuild your project so that it can use the new variable.
Click Yes.

Defining MonitorScript Build Path variables
In any Apama project, you can define a variable that you can use in all your Apama projects. You
might find it useful to define a variable in a situation where multiple users share the same project. If
the project is dependent on one or more external files, not all users might have the external file stored
in the same location. Each user defines a variable to specify the location of a shared file dependency.

To define an Apama project variable:

1. In the Apama Studio menu bar, choose Window > Preferences.

2. In the Preferences dialog that appears, expand Apama.

3. Click MonitorScript Path Variables.

Importing projects

Using Apama Studio 5.2.0 70

4. In the MonitorScript Path Variables dialog, click New.

5. In the New Variable Entry dialog, in the Name field, enter the name of the new variable.

6. Click File... or Folder... according to which one you want the variable to represent. Choose whatever is
convenient for you. If the variable represents a directory, you can use the same variable in the path for
more than one file. If the variable represents a file, you can use that variable for only that file’s path.

7. Navigate to the appropriate folder or EPL file and double-click it.

8. Click OK and in the New Variable Entry dialog, click OK again.

9. Click OK in the Preferences dialog; Apama Studio displays the Build path Variables Changed dialog
asking if you want to perform a full build of your project. Click Yes to ensure that the current project state
is consistent with the new variable. If you are sure that the new variable does not affect the current project
state, you can click No.

Importing projects
To import an Apama Studio project created on another machine into this Apama Studio workspace:

1. Select File > Import > General > Existing Projects into Workspace from the Apama Studio menu. Click
Next.

2. In Select root directory specify the root directory where the project is located.

3. Add a check box next to the project(s) you want to import.

4. Check the Copy projects into workspace checkbox if you want to copy all the project files into the
workspace directory (located under APAMA_WORK)

Leave the check box unchecked if you want to simply link to the project in its current location
instead.

If you have an Apama application that is not currently part of an Apama project:

1. Select File > New > Apama Project from the Apama Studio menu.

2. Enter the name of the new project.

3. Uncheck the Use default location check box.

4. Specify the folder containing the files that you wish to import as a new project.

5. Click Finish.

A project that you import might have dependencies on environment variables, bundles, blocks, or
functions that have not yet been added to Apama Studio. As an alternative to explicitly adding each
dependency, see "Setting up the environment before importing projects" on page 78.

Working with Projects

Importing adapter configurations

Exporting project information

Using Apama Studio 5.2.0 71

You can import a Web service client adapter configuration from an archive file that has been
generated in Apama Studio. To import a Web service client adapter configuration into an Apama
Studio project:

1. In the Project Explorer view, right-click the name of the project and select Import from the pop-up menu.
This displays the Import dialog.

2. In the Import dialog, expand Apama.

3. Select Adapter Configurations and click Next. The Adapter Configurations Import Wizard appears.

4. In the Adapter Configurations Import Wizard, specify the archive file that contains the adapter
configuration you want to import. You can use the Browse button to navigate to the desired project.

5. Accept or specify the name of the project into which you want to import the adapter configuration. You can
use the Browse button to navigate to the desired location.

6. Click Finish. This adds the adapter configuration to the specified Apama project.

Working with Projects

Exporting project information
You can export a project's information for the following purposes:

"Exporting a project initialization file list" on page 71

"Exporting to a deployment script" on page 72

"Exporting scenarios" on page 75

"Exporting Correlator Deployment Packages" on page 75

"Exporting adapter configurations" on page 75

"Exporting ApamaDoc" on page 76

Working with Projects

Exporting a project initialization file list
To export a project initialization file list:

1. Select File > Export from the Apama Studio menu.

2. Expand Apama.

3. Select Project Initialization File List and click Next.

4. If you want the file list to also contain all event files from the project, select Include event files (*.evt).

5. Specify a name for the file to hold the initialization file list and click Finish.

This creates an ordered list of the files on the project build path and saves it in a text file (with
one entry per line). This file can be imported into an Apama component’s Initialization tab in the

Exporting project information

Using Apama Studio 5.2.0 72

Enterprise Management and Monitoring console (EMM) to help convert a development Apama
Studio project into a production EMM deployment.

Note that at present this list does not include any scenario (.sdf) files on the build path. Scenarios
should therefore be exported to an EPL file manually (using Event Modeler), and the EPL files added
directly to EMM's initialization list once the Apama Studio Initialization File has been imported.

Exporting to a deployment script
You can export an application’s launch configuration to create a deployment script. This generates
the build files, configuration files, property definition files, scripts, and EPL files from scenarios and
copies other resources such as dashboards that are used by Ant to build and launch the project on a
different machine.

To export an Apama launch configuration to a deployment script:

1. In the Project Explorer view, right-click the name of the project and select Export from the pop-up menu.
This displays the Export dialog.

2. In the Export dialog, expand Apama.

3. Select Apama Ant Export and click Next. The Ant Export dialog appears.

4. In the Ant Export dialog, specify the settings as follows:

Exporting project information

Using Apama Studio 5.2.0 73

Launch configuration — The export operation uses the project’s default launch configuration,
but if a project has multiple launch configurations, you can select which one to export. If you
want to select a different launch configuration, click Browse. This will display the Choose
Launch Configuration dialog.

Destination directory — The name of the directory for the exported files.

Generate initialization list during launch — Dynamically creates the file injection list from the
project directory when the exported deployment script is executed, rather than during the
export process.

When you select this option you need to export your project's launch configuration only once.
The generated scripts specify the location of your project directory and then use the content
of your project directory to create the file injection list at deployment time. If you do not
select this option, then you must re-export the configuration each time you add, remove or
edit a file in your application.

For JMon applications that you develop in Apama Studio, Apama Studio creates the required
.jar files whenever you modify your Java files. If you do not develop your JMon application
in Apama Studio, see Generating deployment descriptor files from annotations in Developing
Apama Applications in Java for information about building the .jar file for your application.
Ensure that your application's .jar file is in your project directory before export.

If you selected a shared location when you created the launch configuration that you are
exporting then Apama Studio generated two files that contain the launch information (.deploy
and .launch) and put them in the specified shared location. After you create the launch
configuration, any changes you make to the launch configuration are reflected in these
files. Since the exported deployment script uses these files at deployment time, any launch
configuration changes will also be reflected upon deployment. Except, if you change the
shared location then you must re-export the launch configuration to a new Ant deployment
script. If you do not, the old Ant deployment script fails because it cannot find the .deploy file.

When Generate initialization list during launch is selected the option to Generate Scenario EPL
during export is not available. Instead, EPL .mon files are always created from scenario files
upon deployment. Also, Copy resources to destination is not available because the script points
to the project directory.

Copy resources to destination — By default, the export operation copies only the project’s
dashboard definitions. To change the specific resources that Apama Studio exports, click
Browse to display the Export Resource Browser dialog and specify the resources you want.

Exporting project information

Using Apama Studio 5.2.0 74

Use relative paths — By default, the generated build.xml file uses relative pathnames for the
application’s monitors, events, scenarios, jars, and adapter configurations and properties.
Uncheck this box if you want to use absolute pathnames.

Include custom file — If you want the exported launch configuration to perform other
operations, select this option to generate a stub custom.xml file. The custom.xml file has pre-
custom and post-custom targets where you can add the desired operations.

Batch resources when possible — By default, the build.xml file generated by the export
operation specifies that all monitors in the project will be injected in a batch when the
application is launched. If you want to inject each monitor separately when the application is
launched, uncheck this check box.

Launch correlator in separate console — By default, the exported launch configuration will
launch the correlator in a separate console. Uncheck this check box if you want to start the
correlator in the console where the launch is started.

Generate Windows scripts — Exports all scripts used by the launch configuration in Windows
form.

Generate Unix scripts — Exports all scripts used by the launch configuration in UNIX form.

Generate Scenario EPL during export — Generates EPL files for scenarios during the export
operation. If you do not select Generate initialization list during launch and you want to copy the
scenario definition files instead of generating EPL files, uncheck this check box. Note that
when you select Generate initialization list during launch any scenarios are converted to EPL .mon
files when the launch configuration injects the files into the correlator. Consequently, this
option is not available when Generate initialization list during launch is selected.

Generate export log — By default the export operation generates a log file that records the
export operation. Uncheck the check box if you do not want to record the log file.

Click Finish. Apama Studio generates the files in the specified destination directory.

Exporting project information

Using Apama Studio 5.2.0 75

Exporting scenarios
From Apama Studio’s Export dialog, you can export a project’s scenarios in two ways:

As EPL code — See "Exporting scenarios as EPL" in Developing Apama Applications in Event
Modeler.

As block templates — See "Exporting scenarios as block templates" in Developing Apama
Applications in Event Modeler.

Exporting Correlator Deployment Packages
You can export a project's EPL and scenario files to a Correlator Deployment Package (CDP). CDP
files use a proprietary, non-plaintext format that treats EPL and scenario files in a manner similar to
the way a JAR file treats a collection of Java files.

1. In the Project Explorer view, right-click the name of the project and select Export from the pop-up menu.
This displays the Export dialog.

2. In the Export dialog, expand Apama.

3. Select Export as Correlator Deployment Package and click Next. The Correlator Deployment Package
wizard is displayed.

4. On the first page of the Correlator Deployment Package wizard, if necessary specify a project in the
Project field. You can use the Browse button to navigate to the desired project.

5. Also on the first page of the Correlator Deployment Package wizard, in the Package Filename field,
specify the name of the CDP file you want to create. You can use the Browse button to navigate to the
desired location.

6. Click Next. The second page of the Correlator Deployment Package wizard is displayed.

7. On the second page of the Correlator Deployment Package wizard, specify the files you want to add to
the package as follows:

a. On the Artifacts Selection tab, select the EPL and scenario files you want to include in the package.

b. On the Injection Order tab, use the Move Up and Move Down buttons to specify the order in which you
want to inject the EPL and scenario files.

8. Click Finish.

Exporting project information

Exporting adapter configurations

Deleting projects and resources

Using Apama Studio 5.2.0 76

You can export a project's Web service client adapter configuration to an archive file, which you can
generate in Apama Studio. To export a Web service client adapter configuration from an Apama
Studio project:

1. In the Project Explorer view, right-click the name of the project and select Export from the pop-up menu.
This displays the Export dialog.

2. In the Export dialog, expand Apama.

3. Select Adapter Configurations and click Next. The Adapter Configurations Export Wizard appears.

4. In the Adapter Configurations Export Wizard, if necessary, specify a project in the Project field. You
can use the Browse button to navigate to the desired project.

5. In the Adapter Configurations field, select the adapter configurations you want to export.

6. In the Adapter Resources field, select the adapter resources you want to export.

7. In the To archive file: field, specify the archive file that you want to contain the exported adapter
configuration. You can use the Browse button to navigate to the desired location.

8. Click Finish. This creates an archive file in the specified location. You can import this archive into any
Apama project.

Exporting project information

Exporting ApamaDoc
In Apama Studio you can use the ApamaDoc tool to generate reference documentation for the EPL
source code you add to a project. From the Export dialog, select ApamaDoc Export. This generates
static HTML pages that document the structure of all EPL code in a project.

For detailed information on how to annotate your EPL source code and generate ApamaDoc, see
"Generating documentation for your EPL code" in Developing Apama Applications in EPL.

Deleting projects and resources
If you want to delete projects or resources you should use Apama Studio to do so, rather trying to
delete them directly from the file system.

Working with Projects

Deleting resources
To delete a resource from a project:

1. In the Project Explorer view or Workbench Project view, right-click the resource and select Delete
from the pop-up menu or select the resource and select Edit > Delete from the Apama Studio menu. In the
Workbench Project view you can select the resource and click the Delete button.

2. In the Confirm Resource Delete dialog, click Yes if you want to proceed.

Adding the Apama nature to a project

Using Apama Studio 5.2.0 77

Deleting projects and resources

Deleting projects
To delete a project:

1. In the Project Explorer view or Workbench Project view, right-click the project and select Delete
from the pop-up menu or select the resource and select Edit > Delete from the Apama Studio menu. In the
Workbench Project view you can select the resource and click the Delete button.

2. In the Confirm Project Delete dialog select whether or not you want to delete all the project’s resources
from the filesystem, or simply remove the project from the Project view leaving all files in place. After
selecting the latter option, such projects can be added to the workspace again using the Import wizard (see
"Importing projects" on page 70). In most cases it is more useful to select the option to delete the
project's contents at the same time as the project itself, to avoid confusion.

Deleting projects and resources

Adding the Apama nature to a project
If you are working with a project that is not an Apama project, for example, a Java project, you can
apply the Apama nature to the project with Apama Studio. The project then becomes an Apama
project in addition to whatever natures it had before.

To add the Apama nature to a project:

1. In the Project Explorer view (or in the Package Explorer view if the project is a Java project), right click
the project.

2. Select Apama > Add Apama Nature from the pop-up menu.

After you apply the Apama nature to a project, the project shares all the features of any other Apama
project, for example, EPL errors will be detected and flagged, and the project can be launched in an
Apama correlator.

Note that the Add Apama Nature menu item is not available if a project is already an Apama project.

Working with Projects

Internationalizing Apama applications
By default, Apama Studio saves Apama project files in your platform’s native encoding. If you
choose to save Apama project files in UTF-8 encoding in the Resource tab of a file or a folder’s
Properties dialog, Apama Studio adds a UTF-8 BOM character at the beginning of each file. This
indicates that the contents are in UTF-8. The character is required to be compatible with other
Apama tools.

To specify the encoding for Apama projects:

1. In the Apama Project Navigator view, click the project for which you want to define the encoding.

Checking the error log

Using Apama Studio 5.2.0 78

2. In the Apama Studio menu bar, choose Project > Properties.

3. In the Properties dialog, click Info.

4. In the Text File Encoding group box, click Other and select the encoding you want.

5. Click OK.

Working with Projects

Checking the error log
While using Apama Studio, you might receive a message that prompts you to check the error log.
If the Error Log tab does not already appear with the Problems, Tasks, and Console tabs, display it as
follows:

1. In the Apama Studio menu, choose Window > Show View > Other.

2. In the Show View dialog, expand General.

3. Double-click Error Log. The Error Log tab now appears with the Problems, Tasks, and Console tabs.

Please see the APAMA_WORK\logs\apama_studio.log file for more detailed information about any
unexpected problems you encounter while using Apama Studio

Working with Projects

Setting up the environment before importing projects
A project that you want to import into Apama Studio might have dependencies on any of the
following:

Environment variables

Catalogs of blocks, bundles or functions

String substitutions

Before you can build your project, you would need to add each dependency to Apama Studio. An
alternative to adding each dependency is to define the dependencies in a file, and place the file in the
$APAMA_HOME\studio\extensions folder. When Apama Studio starts it collects any files in its extensions
folder and uses them to set up the Apama Studio environment. When you then import your project
its dependencies will already be in place.

Format of extensions file

A file in the extensions folder must have the .ste (Studio Tuning Extension) extension and the data it
contains must be in the following format:

Define each item to be added to Apama Studio on its own line.

The first value in each line must be the type of the item you want to add. The type must be one of
the following:

BLOCK_CATALOG

Using Apama Studio to configure adapters that use UM

Using Apama Studio 5.2.0 79

BUNDLE_CATALOG

FUNCTION_CATALOG

STRING_SUBSTITUTION

VARIABLE

In each line, insert a semicolon between values.

Insert # at the beginning of a line to make it a comment.

The values you specify vary according to the specified type. Path specifications must be fully
qualified; they cannot be relative. In a path specification, you can use a variable, which can be
defined directly in Apama Studio or in any .ste file. You can specify the items in any order.

For block, bundle, or function catalogs, the format is the type followed by a path. For
example:
BLOCK_CATALOG ; C:\Program Files\MyCompany\MyApp\MyBlockCatalog

For string substitutions, the substitution value cannot be edited or removed in Apama Studio.
For details, See Java development user guide > Reference > Preferences > Run/Debug > String
Substitutions in the Eclipse help provided with Apama Studio. The format is as follows:
STRING_SUBSTITUTION ; variable_name ; path ; description

For example:
STRING_SUBSTITUTION ; HOME ; C:\MyApp ; Install dir for my app

For variables, the variable's value cannot be edited and the variable cannot be removed in
Apama Studio. The format is as follows:
VARIABLE ; variable_name ; path

For example:
VARIABLE ; HOME ; C:\MyApp

Suppose you have a .ste file in place and you start Apama Studio. If you subsequently modify the
content of that .ste file you must restart Apama Studio for the changes to take effect.

Results of using an extensions file

After you define an extensions file, place it in the $APAMA_HOME\studio\extensions folder and then start
Apama Studio.

You should see the items you defined in the extensions file in the appropriate Apama Studio dialogs.
For example, select Window > Preferences and then expand Apama and click Catalogs. Any catalogs
you specified in the extensions file should appear in the appropriate tab. However, you cannot edit
or remove any catalogs that were added to Apama Studio by means of an extensions file.

If you import a project that uses any of the items specified in the extensions file then the imported
project will be valid with regard to any of these dependencies.

Working with Projects

Using Apama Studio to configure adapters that use UM
You can use Apama Studio to configure an IAF adapter to use Universal Messaging. To do this:

Using Apama Studio to configure adapters that use UM

Using Apama Studio 5.2.0 80

1. Add support for UM to your project. See "Adding Universal Messaging configuration to projects"
on page 55.

2. Add one of the following adapters to your project:

File Adapter

JDBC Adapter

ODBC Adapter

Sim File Adapter

WebServices Client Adapter

3. Open the instance of the adapter you just added. In the Settings tab, you can see the following
substitution variables:

APAMA_MSG_ENABLED

UM_MSG_ENABLED

Use Apama Studio's launch configuration editor to manage these substitution variables.

4. Select Run > Run Configurations....

5. In the Run Configurations dialog, select the Apama project that contains the adapter you want to
configure and then click the Components tab.

6. In the Components tab, double-click the adapter you want to configure.

In the Adapter Configuration dialog, if you added UM support to your project, the default for a new
adapter in your project is that the UM Messaging radio button is selected. Adding UM support to a
project does not change an existing adapter configuration.

7. Ensure that UM Messaging is selected. This sets the related substitution variables as follows:

APAMA_MSG_ENABLED is false.

UM_MSG_ENABLED is true.

8. Click OK , Apply, and then Close to save the adapter configuration in that launch configuration.

Apama Studio manages the APAMA_MSG_ENABLED and UM_MSG_ENABLED substitution variables by means of
the launch configuration.

If you click the XML Source tab you can see that the <apama> element and the <universal-messaging>
element each contain the enabled attribute. In the <apama> element, Apama Studio sets the enabled
attribute to the @APAMA_MSG_ENABLED@ substitution value. In the <universal-messaging> element, Apama
Studio sets the enabled attribute to the @UM_MSG_ENABLED@ substitution value. When you launch the
project Apama Studio uses the settings of the APAMA_MSG_ENABLED and UM_MSG_ENABLED substitution
variables to set the value of the enabled attribute in each element.

The default is that the enabled attribute is set to true. Consequently, if you delete the enabled attribute,
it is as if it is set to true.

See also: "Configuring adapters to use UM" in Deploying and Managing Apama Applications.

Working with Projects

About blocks

Using Apama Studio 5.2.0 81

Chapter 3: Creating Blocks

n About blocks ... 81

n Defining new blocks in Apama Studio ... 82

n An example block .. 94

Apama comes with many standard blocks that you can use in your scenarios. In addition, you
can use Apama Studio to create your own blocks to implement specialized behavior. This section
describes how to create custom blocks for use by scenarios in your Apama applications.

About blocks
Blocks are modules that you can import and use within your scenarios in Apama’s Event Modeler.
Blocks accept inputs, execute logic of their own, and generate output. Their primary purpose is to
provide scenarios with access to complex functionality that can only be programmed in Apama
Event Processing Language (EPL). They also provide an element of reuse. EPL is the new name for
MonitorScript and is the native language of the event correlator.

For more information on writing EPL code, see "Getting Started with Apama EPL" in Developing
Apama Applications in EPL.

Apama is distributed with a library of blocks that perform a variety of tasks such as general and
financial analysis, order management, and timing. For more information on these, see "Using
Standard Blocks" in Developing Apama Scenarios. If an application requires additional functionality,
developers can create their own custom blocks.

The following topics provide more introductory information about blocks:

"Introduction to block definition files" on page 81

"Description of block interface elements" on page 82

"How scenarios communicate with their blocks" on page 82

Creating Blocks

Introduction to block definition files
A block is defined in a block definition file, which has a .bdf extension. This XML file describes
the functionality of the block and includes its implementation in EPL. With Apama Studio, you
graphically define the block’s interface, and Apama Studio automatically generates all the XML
elements of the .bdf file. In addition, Apama Studio generates skeleton EPL code for the block’s
behavior. Apama Studio provides a dedicated editor where you add your custom code and it
validates the EPL code you add.

The block definition file actually defines an EPL template. The term “template” is used because the
EPL in the .bdf is not complete EPL code. Instead of the actual block name, the .bdf code uses a

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 82

specially encoded stand-in for the real block name. The real names are automatically generated when
the combined scenario and block are converted into full EPL code when they are injected into the
correlator.

Description of block interface elements
A block’s interface consists of the set of parameters, input feeds, output feeds and operations it
defines. You specify these items when you create a block with Apama Studio. Apama Studio then
generates the corresponding actions.

Parameters — Parameters configure the behavior of a block. You typically use parameters to
initialize the block or to modify its core behavior.

Input feeds — Input feeds connect live data streams to blocks. In each block input feed, you
define input fields and map data in the stream to the appropriate input field. All the fields of an
input feed are updated simultaneously.

Output feeds — Output feeds stream output data generated by the block. Each output feed is a
collection of fields that all get updated simultaneously.

Operations — Operations are specific behaviors that the scenario invokes, such as starting or
stopping the processing of data.

For examples, see "Using Standard Blocks" in Developing Apama Scenarios.

How scenarios communicate with their blocks
Apama Studio implements a block as an event type. When you create a block, Apama Studio
generates the event type definition for that block. The block’s event type definition includes a
number of actions that Apama Studio defines for you and that you can edit.

Communication from a scenario to a block instance is accomplished through calls to these actions.
That is, to initialize a block, change a parameter, call an operation, and so on, a scenario calls an
action on the event that contains the block instance.

Communication from the block to its host scenario is also accomplished by calling actions. In this
case, the actions have been passed into the block by the scenario. For example, when a scenario
initiates an operation the scenario passes in an action that the block must call to indicate that the
operation has been completed.

Defining new blocks in Apama Studio
Apama Studio provides an integrated graphical environment for creating custom blocks that you
can use to build scenarios in Event Modeler. The Apama Studio block editor contains two tabs, the
Builder tab and the Source tab.

On the Builder tab, you add the metadata for the block and specify its interface. On the Source tab,
you add the EPL code that implements the block’s behavior. Apama Studio validates the EPL code
you add to the block. When you save a block, Apama Studio saves it as a block definition file with a.bdf

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 83

extension. Block definition files are then used when you add the block to a scenario in the Event
Modeler.

You can define a new block from scratch by using the block editor or you can base the new block on
an existing event type definition.

See "File Definition Formats" on page 188 for detailed information on the internals of block
definition files.

This topic is organized as follows:

"Specifying the block metadata" on page 83

"Specifying the block interface" on page 84

"Creating parallel-aware blocks" on page 85

"Adding EPL code to the block definition" on page 85

"Considerations for adding EPL code to the block definition" on page 86

"Details about EPL code that you can add" on page 87

"Timeliness of acknowledgements" on page 93

Creating Blocks

Specifying the block metadata
Creating a block in Apama Studio consists of two main steps. In the first step you create the block
metadata and specify its interface. In the second step you add the EPL code that implements the
block’s behavior.

When you create a new block, you should place it in the project’s default blocks directory. This
directory is found in the project’s catalogs directory. The block directory has a name in the form
project_name\blocks. So, for example, the default block directory of a project named My_Project will be
catalogs\My_Project blocks. If you place the block in the default block directory, scenarios created in
the project will automatically find them and make them available in Event Modeler when you are
displaying the scenario.

You add a new block to a project by right-clicking the project and selecting New > Block from the pop-
up context menu. Apama Studio displays the New Block wizard where you specify whether you
want to create a block from scratch or base it on an existing event type. You also specify any other
information that will make up the block’s metadata.

When you finish adding information in the New Block wizard, the block is added to the project and
the block’s metadata is displayed in the Builder tab of the block editor.

For specific steps on how to add a new block to an Apama project, see :

"Creating a block with the block editor" on page 39

"Creating a block from an EPL event definition" on page 40

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 84

Specifying the block interface
After you create a block, Apama Studio displays your new block in the Block Editor with the Builder
tab selected:

Initially, the name of the block is selected and Apama Studio displays general information about the
block. Most of the fields are self-explanatory and you can use them to help you maintain your blocks.
Use the ID field to distinguish versions of your block. Select the Parallel-aware checkbox if you want to
be able to use this block in a parallel scenario. See "Creating parallel-aware blocks" on page 85.

The Deprecated checkbox indicates whether this is an older version of the block. All Apama standard
blocks that use the old-style block implementation (Apama releases prior to 4.2) are deprecated.
They will not be supported in a future release.

If you have any custom blocks that use the old-style implementation, you should convert them to the
new implementation and mark the old-style version as deprecated. To convert a block, open it in the
Block Builder editor, select Callback or Callback (DEBUG) as the code type, and click the Source tab.
See the Apama 5.0 migration guide for details about how you must manually edit the re-generated
block file to correctly use the new implementation that Apama Studio generates for you. Apama
Studio never automatically converts a block to use the new implementation.

Event Modeler uses the setting of the Deprecated checkbox to determine how to display the block in
the Block Wiring panel. Deprecated blocks have an orange border while current blocks have a black
border.

Also, suppose you write a custom block that uses the new-style implementation and you then revise
that block. You can select the Deprecated checkbox for the older version to encourage use of the new
version.

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 85

At this point, if you are creating a new block based on an existing event definition, the code for
the block’s input and output feeds, along with the fields associated with the feeds, and the block’s
operations has been generated.

If you are creating a new block from scratch, the block does not contain any of the parameters, input
feeds, output feeds, and operations that provide the interface of the block. When you add these
elements, Apama Studio generates the EPL code that defines the action that implements the element.

To add a parameter, input feed, output feed, or operation:

1. Right click the element you want to add and select Add Parameter, Add Input Feed, Add Output Feed,
or Add Operation. The right side of the Builder tab displays the item’s properties.

2. Fill in the values for the properties.

3. For input feeds and output feeds, right click the element and select Add Field.

4. In the Properties panel for the field you added in the previous step, fill in the values for the
properties and field validation specifications.

When you save a block, Apama Studio generates the underlying code that defines the block’s
interface and saves it as a block definition file with a .bdf extension. To this file, you then add EPL code
to implement the necessary behavior. To add code to the block, see "Adding EPL code to the block
definition" on page 85.

Creating parallel-aware blocks
If you want a parallel scenario to use a block, you must mark that block as parallel-aware. You do
this in the Builder tab of the block builder editor in Apama Studio. Select the block name. Then select
the Parallel-aware checkbox near the bottom of the Builder tab fields.

The correlator runs each instance of a parallel scenario in a separate context. For information about
contexts, see "Implementing parallel processing" in Developing Apama Applications in EPL.

When you mark a block you are creating as parallel-aware it means that you are taking responsibility
for ensuring that the block functions correctly when run in multiple contexts. Blocks that do not
listen for events are trivially parallel-aware since running in another context has no effect on that
block. All of the block’s interactions are mediated by the scenario.

Blocks that listen for events must ensure that the events they are listening for actually reach the
context they are in. You can achieve this by storing a reference to the main context during the
instancePreSpawnInit() action. Use this reference to inform services running in the main context where
they should send events. Look at the Market Depth standard block for a good example of this.

Adding EPL code to the block definition
In Apama Studio, when you click the Source tab of the block builder editor, Apama Studio displays
the block’s definition file. Apama Studio generates and populates all XML elements including the
<code> element. The <code> element contains the EPL code that specifies the block’s behavior.

Apama Studio generates skeleton EPL with comments that indicate where to insert your code. The
generated code defines the actions listed below. Each of these actions is a field in the event type that

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 86

defines the block. The block’s scenario will call these actions to accomplish the work of the block. For
each action that Apama Studio defines, you can add custom code that specifies the exact behavior
you need.

For each block parameter, there is an action that updates that parameter.

For each block input feed, there is an action that takes as its arguments the fields of the feed.

For each block operation, there is an action that performs the operation.

For each block output feed, there is an action that takes as its arguments the fields of the feed.

setup action

intancepreSpawnInit action

instancePostSpawnInit action

cleanup action

start action (for input blocks based on existing event definitions)

stop action (for input blocks based on existing event definitions)

send action (for output blocks based on existing event definitions)

In addition to defining these actions, Apama Studio generates sections for adding user-defined
monitors, user-defined variables, and user-defined actions. Also, the generated EPL code defines
a block-level variable named blockInstanceId$. This variable contains the integer that uniquely
identifies the instance of the block among those owned by the containing scenario and all its
instances.

To add EPL code to the block:

1. In Apama Studio, in the Project Explorer view, double-click the block’s .bdf file.

2. In the block builder editor, click the Source tab.

3. On the Source tab, enter code as needed only where there is a white background.

Code appears either with a gray background or a white background. Code with a gray
background is maintained by Apama Studio and is not editable. The sections of code with a
white background are the areas where you add your custom EPL code. Remember to remove the
comment flags from lines on which you specify code.

4. Save the project.

As you add and edit code in your block, you have the full range of Apama Studio features as
described in "Editing Apama files" on page 56. You also have the full range of navigating features as
described in "Navigating in Apama files" on page 61.

Considerations for adding EPL code to the block definition
As you add custom code to your block, keep the following in mind:

The # character denotes special names that will subsequently be assigned automatically by the
code generator. Therefore, do not use the # character anywhere else in your EPL files, including
within comments.

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 87

You must not call die() anywhere in the block event type definition. Consequently you should
not call spawn() in the block event type definition as you would have no way of terminating the
new monitor instance.

In situations where you might want to spawn from within a block, use a utility monitor that is part
of the block’s definition instead. Insert the EPL code for a utility monitor in the USER DEFINED MONITORS
section of your block definition file. For example, suppose your block subscribes to one or more
market data feeds and you want to track data and status messages that result from each subscription.
Write a utility monitor that listens for events related to the subscriptions and caches values that result
from subscription operations. You can call die() in this monitor without affecting the block or the
scenario.

If the EPL code in your block causes a runtime error, for example you attempt a division by zero
or you attempt to access an out of bounds index in a sequence or dictionary, the scenario monitor
will be terminated by the correlator.

See also "Timeliness of acknowledgements" on page 93.

Details about EPL code that you can add
The following sections describe what Apama Studio generates for you and where to add EPL code:

"Actions that update parameters" on page 87

"Actions that update input feeds" on page 88

"Actions that perform operations" on page 88

"Actions that update output feeds" on page 89

"setup action" on page 89

"instancePreSpawnInit action" on page 89

"instancePostSpawnInit action" on page 90

"cleanup action" on page 92

"start action" on page 92

"stop action" on page 92

"send action" on page 92

"User-defined monitors or event types" on page 93

"User-defined variables" on page 93

"User-defined actions" on page 93

Actions that update parameters

Apama Studio generates skeleton code for an action for each parameter you specify for the block.
Each action updates the value of the parameter. These actions are named update$parameter_name,
where parameter_name is the metadata name you specified for the parameter. Each action takes the
parameter’s specified name as an argument.

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 88

Each time the value of a block parameter changes in the scenario, the scenario calls the
corresponding update action on the block. It is up to you to define appropriate EPL code in the body
of this action to handle the block parameter update. It is bad practice to send updates to output feeds
during a parameter update action because it can cause unexpected results in the running scenario.

If a parameter should not be editable, leave the body of its update action empty.

For example, if a block specifies a string parameter called New Parameter 1 Apama Studio generates
the following skeleton code:
 action update$new_parameter_1(string new_parameter_1) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for modifications to new parameter 1 --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If a block is based on an existing event and is an input block, the skeleton code contains additional
information about the parameter. In the following example a parameter based on the event field
customerName has been specified:
 action update$customerName(string customerName) {
// BLOCKBUILDER - USER DEFINED ACTION
 parameter_customerName := customerName ;
 isSet_parameter_customerName := true;
 setupNewListener();
// BLOCKBUILDER - END OF USER DEFINED ACTION

Actions that update input feeds

Apama Studio generates skeleton code for an action for each input feed you specify for the block.
Each action updates the values of the corresponding input feed’s fields. These actions are named
input$input_feed_name, where input_feed_name is the metadata name you specified for the input feed.
Each action takes an argument for each field in the corresponding input feed.

It is up to you to define appropriate EPL code in the body of this action to handle the update to
the input feed. For example, if a block specifies an input feed named Input Feed 1, Apama Studio
generates the following skeleton code:
 action input$new_input_feed_1(#string string_field, float float_field)
{
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for new input events on stream new input feed 1 --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions that perform operations

Apama Studio generates skeleton code for an action for each operation that you specify in the
block. Each action performs the operation. These actions are named operation$operation_name where
operation_name is the metadata name you specified for the operation. Each action takes only an
acknowledge() action variable argument.

It is up to you to define appropriate EPL code in the body of this action to handle the operation’s
invocation. You must call the acknowledge() action when the operation is complete. There are
constraints on how long you can hold up a call to acknowledge(). Often, an operation updates output
feeds before calling acknowledge(). See "Timeliness of acknowledgements" on page 93.

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 89

For example, if a block specifies an operation called New Operation 1, Apama Studio generates the
following skeleton code:
 action operation$new_operation_1(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for invocations of operation new operation 1 --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions that update output feeds

Apama Studio generates a sendOutput action for each output feed that you specified for the block.
Each action updates the values of the corresponding output feed’s fields. These actions are named
sendOutput$output_feed_name where output_feed_name is the metadata name of the output feed. Each
action takes an argument for each field in the corresponding output feed.

You do not need to add code for these actions. To output results from your block you should call one
of these output feed actions. If your block uses an output feed new_output_feed_1 with a boolean field
new_field_1 and a string field new_field_2, Apama Studio generates the following code:
action<boolean,string> sendOutput$new_output_feed_1;

setup action

Apama Studio generates skeleton code for the setup() action. The scenario calls the setup() action
once on each block instance in a scenario definition. The scenario makes this call when you inject the
scenario into the correlator. Use the setup() action to specify any initialization that is not specific to a
scenario instance. Apama Studio generates the following skeleton code:.
 action setup {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert setup code --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

instancePreSpawnInit action

Apama Studio generates skeleton code for the instancePreSpawnInit() action. The scenario calls the
instancePreSpawnInit() action on each scenario instance. The scenario makes this call just before it
spawns the scenario instance. The scenario passes the following values into the instancePreSpawnInit()
action:

Scenario ID

Dictionary of extra data

Target context the scenario instance will run in. For a scenario that is not parallel (that is, it is a
serial scenario), the target context is always the main context.

Use the instancePreSpawnInit() action to perform initialization in the main context. For example,
the main context might need information about which context the scenario instance, and
therefore the block instance(s) will run in. A block cannot generate output feed values inside the
instancePreSpawnInit() action, but it can generate output feed values inside the instancePostSpawnInit()
action.

When the scenario calls the instancePreSpawnInit() action, it passes an acknowledgment() action.
You are responsible for ensuring that the instancePreSpawnInit() action calls this acknowledgment()

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 90

action when it has completed this phase of initialization. To help you do this, Apama Studio
generates a call to acknowledge() when it generates the skeleton code for the block. See "Timeliness of
acknowledgements" on page 93.

Apama Studio generates the following skeleton code:
 action instancePreSpawnInit (
 integer blockInstanceId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 context target,
 action<> acknowledge) {
 self.blockInstanceId$:= blockInstanceId$;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert pre-spawn initialisation code --
//
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If a block is based on an existing event, the skeleton code contains additional code to specify the
context.
 action instancePreSpawnInit(
 integer blockInstanceId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 context target,
 action<> acknowledge) {
 self.blockInstanceId$:= blockInstanceId$;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert pre-spawn initialisation code --
//
preSpawnContext := context.current();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

instancePostSpawnInit action

Apama Studio generates skeleton code for the instancePostSpawnInit() action. The scenario calls the
instancePostSpawnInit() action on each newly spawned scenario instance. The scenario makes this call
right after it spawns the scenario instance. Part of this action is to pass the following to the scenario
instance:

Scenario ID

Dictionary of extra values

Initial values of the block's parameters

Additional data for use by the automatically generated code.

When the scenario calls the instancePostSpawnInit() action, it passes an acknowledgment() action.
You are responsible for ensuring that the instancePostSpawnInit() action calls this acknowledgment()
action when it has completed this phase of initialization. To help you do this, Apama Studio
generates a call to acknowledge() when it generates the skeleton code for the block. See "Timeliness of
acknowledgements" on page 93.

Apama Studio generates the following skeleton code:
 action instancePostSpawnInit (
 integer blockInstanceId$,
 string ownerId$,

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 91

 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge)
 param_type param1 //one for each parameter
 action<output_field_types> sendOutput$outfeed {
 // one action like the above for each output feed
 // one line like the following for each output feed
 self.sendOutput$outfeed1 := sendOutput$outfeed1;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert post-spawn initialisation code --
//
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If the block is an input block based on an existing event, the generated code looks like this:
 action instancePostSpawnInit(
 integer blockInstanceId$,
 string ownerId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge,
 string name,
 action<string,float> sendOutput$TestEvent) {
 self.sendOutput$TestEvent := sendOutput$TestEvent;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert post-spawn initialisation code --
//
 enqueue TestEventForwardRequest (context.current()) to preSpawnContext;
 // Store the initial values
 parameter_name := name;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

If the block is an output block based on an existing event, the generated code looks like this:
 action instancePostSpawnInit(
 integer blockInstanceId$,
 string ownerId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge,
 string name) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert post-spawn initialisation code --
//
 if (preSpawnContext.getId() = context.current().getId()) then {
 serialExecution := true;
 }
 else {
 serialExecution := false;
 }
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

The scenario is not in a fully created state until all blocks have acknowledged their
instancePostSpawnInit() call. Also, updating of output feeds is not supported at any stage before
instancePostSpawnInit() is called. If initial values for output feeds need to be generated, do this in the
instancePostSpawnInit() action.

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 92

cleanup action

Apama Studio generates skeleton code for the cleanup() action. When a block’s scenario enters its end
state, is deleted, or dies for some other reason, the scenario calls the block’s cleanup() action. Even if
there is a runtime error, the scenario calls the cleanup() action.

After the scenario calls the cleanup() action, the block should no longer try to update its output feeds.
The block should act in every possible way as if it was dead. However, if there is any finalization
work that you want to accomplish, you can add it to the body of the cleanup() action. Apama Studio
generates the following skeleton code:
 action cleanup {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert finalization code --
//
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

start action

For blocks that are based on existing event definitions and are specified as input blocks, Apama
Studio generates code for a start action. Once the start operation is invoked the block calls a
setupNewListener action, which creates the listener code for the event on which the block is based. If
any event fields have been specified when defining the block, they are used as parameters to create
filters in the listener. Apama Studio generates the following code:
 action operation$start(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 isStarted := true;
 setupNewListener();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

stop action

For blocks that are based on existing event definitions and are specified as input blocks, Apama
Studio generates code for a stop action. When the stop operation is invoked all active listeners are
terminated. Apama Studio generates the following code (where “l” is a listener defined elsewhere):
 action operation$stop(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 isStarted := false;
 l.quit();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

send action

For blocks that are based on existing event definitions and are specified as output blocks, Apama
Studio generates code for a send$event action. When the send action is called, it sends the specified
event on which the block is based. For example, with a specified event, testEvent (containing two
fields, name and IDnum), Apama Studio generates the following code:
 action operation$send$_testEvent(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert handler for invocations of operation send_testEvent --
//
 if (serialExecution) then{
 route testEvent(parameter_name,parameter_IDnum);

Defining new blocks in Apama Studio

Using Apama Studio 5.2.0 93

 }
 else {
 enqueue testEvent(parameter_name,parameter_IDnum) to preSpawnContext;
 }
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

User-defined monitors or event types

If you need to add monitors or event types to a block, define them in the specified section of the
block’s generated EPL code:
// BLOCKBUILDER - USER DEFINED MONITORS
//
// -- insert any additional monitors you require --
//
// BLOCKBUILDER - END OF USER DEFINED MONITORS

For more information on designing monitors see "Defining Monitors" in Developing Apama
Applications in EPL.

User-defined variables

If you need to add variables to a block, define them in the specified section of the block’s generated
EPL code, which is the first section in the block’s #block# event code:
event #block# {
// BLOCKBUILDER - USER DEFINED VARIABLES
//
// -- insert any additional variables you require --
//
// BLOCKBUILDER - END OF USER DEFINED VARIABLES

User-defined actions

In addition to the actions described above you can add any other actions that you require to
implement the unique functionality of your block. Add additional actions at the end of the block
definition file in the specified section:
// BLOCKBUILDER - USER DEFINED ACTIONS
//
// -- insert any additional actions required --
//
// BLOCKBUILDER - END OF USER DEFINED ACTIONS

Timeliness of acknowledgements
When a scenario calls an action that takes an acknowledgement() action parameter the scenario expects
to receive a timely acknowledgement.

This means that the acknowledgement must be made within the chain of routed events that are
currently being processed, starting with the event that is the immediate cause of the operation being
performed. This constraint exists because the scenario is in a state of limbo while it is waiting for an
acknowledgement. If another event comes into the scenario, either a control event or one that comes
into one of its blocks, while the scenario is waiting for an acknowledgement then the scenario can get
into an inconsistent state. For example, during a block operation, the scenario expects updates only
from the block that the operation is called on.

An example block

Using Apama Studio 5.2.0 94

This constraint is usually easily met. If an operation routes a request event that it expects a routed
response to then the block can simply wait for that response before returning the acknowledgement
to the scenario. Alternatively, the block can set up a completed listener for the request event. If the
block does not expect a response with interesting data that it wants to reflect to output feeds then
the block can immediately return the acknowledgement even if there are still routed events to be
processed. It is especially important to ensure that all operations are acknowledged for all paths
through the code because unacknowledged operations will cause the scenario to hang.

An example block
As an example, consider the Correlation Calculator Block, which is one of the standard blocks
provided with Apama.

The Correlation Calculator Block calculates the correlation coefficient between two streams of data.
The calculation can be performed over an unlimited set of data from each stream, or a set limited
by number of samples or age of samples. The calculator generates output only if there is at least one
suitable sample from each stream.

A correlation coefficient approaching +1.0 shows a strong correlation between the streams,
a coefficient close to 0.0 shows little or no correlation between the streams and a coefficient
approaching –1.0 shows an inverse correlation between the streams; for example, if one is increasing,
the other is decreasing.

The following topics describe the Correlation Calculator block:

"Description of the Correlation Calculator block interface" on page 94

"Description of the Correlation Calculator block EPL" on page 96

Creating Blocks

Description of the Correlation Calculator block interface
The Correlation Calculator block has the following parameters:

Parameter Description

period The maximum age of any sample that is used in the calculations, in seconds.
Any samples older than this will be discarded before performing the
calculation.

size The maximum number of samples per stream that are used in the calculation.

One or both of the above parameters must be 0, in which case that limit is not imposed. It is not
possible to restrict the number of samples by both age and number of samples, but it is possible to
remove the limit on the number of samples (thus an unbounded set of samples is kept). Note that
imposing a limit after input events have been received will clear all existing samples.

The Correlation Calculator block has the following operations:

An example block

Using Apama Studio 5.2.0 95

Operation Description

start Starts the calculation of coefficients. Must be called before the calculator will
generate any statistics (output feed).

stop Stops the calculation of further coefficients. Any subsequent events on the
input feeds are ignored.

clear Discards all current data.

The Correlation Calculator block defines the following input feeds, each with one field:

Input feed Fields Description

data1 value The first input set.

data2 value The second input set.

Note that at least one value from each feed must have been received (and if set, within period
seconds) before an output will be generated.

The Correlation Calculator block has the following output feed:

Output feed Fields Description

correlation The correlation coefficient (between -1.0 and +1.0).statistics

samples The number of sample pairs used for this calculation.

The XML elements at the beginning of the Correlation Calculator’s block definition file describe
this interface. When you create your own block, Apama Studio generates and populates these XML
elements for you.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE block SYSTEM "http://www.apama.com/dtd/bdf.dtd">
<!--Apama Block Definition File-->
<block name="Correlation Calculator">
 <version>
 <id>2.0</id>
 <date>7 May 2009</date>
 <author>Rune Madsen</author>
 <comments>Copyright(c) 2013 Software AG, Darmstadt, Germany and/or its licensors</comments>
 </version>
 <description>Calculates the correlation of two input data streams over a configurable
 time window and sample set size.</description>
 <properties parallel-aware="true" deprecated="false">
 <input-feeds>
 <feed name="data1" id="9578163894100102">
 <description>The first stream of numeric data to use in the correlation
 calculations</description>
 <field name="value" id="9578163894100103">
 <description>The numeric data value</description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 </feed>
 <feed name="data2" id="9578163894100104">
 <description>The second stream of numeric data to use in the correlation
 calculations</description>
 <field name="value" id="9578163894100105">

An example block

Using Apama Studio 5.2.0 96

 <description>The numeric data value</description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 </feed>
 </input-feeds>
 <output-feeds>
 <feed name="statistics" id="9578163894100106">
 <description>Stream of correlation values generated every time a new data item
 arrives</description>
 <field name="correlation" id="9578163894100107">
 <description>The correlation of the samples in the data sets. Between -1 and
 +1.</description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 <field name="samples" id="9578163894100108">
 <description>The number of sample pairs used in the correlation
 calculation</description>
 <validation type="integer" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 </feed>
 </output-feeds>
 <parameters>
 <field name="period" id="9578163894100109">
 <description>The duration of the configurable time window given in seconds.
 Samples older than the period will be discarded from the data set. Set to zero
 to keep samples indefinitely, up to the maximum number of samples specified
 with the size parameter.</description>
 <validation type="float" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 <field name="size" id="9578163894100110">
 <description>The maximum size of the sample set. The oldest sample will be
 replaced by the new sample when the total number of samples has reached this
 limit. Set to zero to keep all samples, unless period is set.</description>
 <validation type="integer" stringcase="mixed" trim="true" unique="false"
 mutability="mutable" />
 </field>
 </parameters>
 <operations>
 <operation name="start" id="9578163894100111">
 <description>Activate the correlation calculations</description>
 </operation>
 <operation name="stop" id="9578163894100112">
 <description>Pause the correlation calculations</description>
 </operation>
 <operation name="clear" id="9578163894100113">
 <description>Clear the existing sample data</description>
 </operation>
 </operations>
 </properties>

Description of the Correlation Calculator block EPL
After the XML elements that describe the block interface, there is a <code> element. The <code>
element contains the EPL. The first section in which you can add custom EPL code is the user-
defined monitors section. The Correlation Calculator block defines a few events here.

User-defined monitors and/or events
<code><![CDATA[// Apama generated code - ONLY EDIT INDICATED SECTIONS
// Generated code type: CALLBACK
// Generated code version: 1

An example block

Using Apama Studio 5.2.0 97

// BLOCKBUILDER - USER DEFINED MONITORS

event CorrelationCalculator_DataPoint {
 float value1;
 float value2;
 float time;
}

event CorrelationCalculator_Incr {
 float x1;
 float y1;
 float x2;
 float y2;
 float xy;
 float N;
}

event CorrelationCalculator_InputData {
 float value;
 float time;
}

// BLOCKBUILDER - END OF USER DEFINED MONITORS

User-defined variables

After the section for user-defined monitors or events, Apama Studio begins the event type definition
that implements the block. The placeholder name of the event type is always #block#. When you
inject a scenario that uses a block, the correlator replaces #block# with the actual name of the block
plus a unique number that distinguishes the instance of the block from other instances.

The first section after the event declaration is for user-defined variables. Each variable is a field in the
event type. The Correlation Calculator block defines a number of variables.
event #block# {
// BLOCKBUILDER - USER DEFINED VARIABLES
 sequence<CorrelationCalculator_DataPoint> dataset;
 boolean running;
 boolean infinite;
 CorrelationCalculator_Incr incr;

 integer MAX_INT;
 float MAX_FLOAT;
 float NO_CORRELATION;

 CorrelationCalculator_InputData inputdata1;
 CorrelationCalculator_InputData inputdata2;

 float period;
 integer size;

// BLOCKBUILDER - END OF USER DEFINED VARIABLES

Actions for updating output feeds

Following the user-defined variables are the variables that Apama Studio automatically generates for
every block. This includes an integer variable to contain the block instance ID and an action variable
for each output feed in the block. For the Correlation Calculator block, these variables are defined as
follows:
 integer blockInstanceId$;
 action<float,integer> sendOutput$statistics;

An example block

Using Apama Studio 5.2.0 98

Actions for updating parameters

Next come the actions that update parameters. Apama Studio defines the action and the block
writer fills in the code that actually updates the parameter. For the Correlation Calculator block, the
following actions update the period and size parameters:
 action update$period(float period) {
// BLOCKBUILDER - USER DEFINED ACTION
 self.period := period;
 updateInfinite();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action update$size(integer size) {
// BLOCKBUILDER - USER DEFINED ACTION
 self.size := size;
 updateInfinite();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions for updating input feeds

Next come the actions that update input feeds. Again, Apama Studio defines the action and the
block writer fills in the code that actually does the update. For the Correlation Calculator block, the
following actions update the data1 and data2 input feeds:
 action input$data1(float value) {
// BLOCKBUILDER - USER DEFINED ACTION
 if not running then {
 return;
 }
 self.inputdata1.value := value;
 self.inputdata1.time := currentTime;
 doStats1();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action input$data2(float value) {
// BLOCKBUILDER - USER DEFINED ACTION
 if not running then {
 return;
 }
 self.inputdata2.value := value;
 self.inputdata2.time := currentTime;
 doStats2();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Actions for performing operations

The actions that perform operations come next. For the Correlation Calculator block, these actions
are defined as follows:
 action operation$start(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 running := true;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action operation$stop(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 running := false;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

An example block

Using Apama Studio 5.2.0 99

 action operation$clear(action<> acknowledge) {
// BLOCKBUILDER - USER DEFINED ACTION
 inputdata1.value := MAX_FLOAT;
 inputdata2.value := MAX_FLOAT;
 dataset.setSize(0);
 incr := new CorrelationCalculator_Incr;
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

Standard setup and cleanup actions

After defining the actions that implement the interface to the block, Apama Studio defines the
standard setup and cleanup actions that it defines in every block. These look like the following
for the Correlation Calculator block. Notice that the instancePreSpawnInit() action has no user-
defined code. The scenario calls this action on each new scenario instance. Since nothing other
than what Apama Studio automatically fills in is necessary, the user-defined section for the
instancePreSpawnInit() action is empty.
 action setup {
// BLOCKBUILDER - USER DEFINED ACTION
 MAX_INT := 0x7fffffffffffffff;
 MAX_FLOAT := 1.0e300;
 NO_CORRELATION := -2.0;
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action instancePreSpawnInit(integer blockInstanceId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 context target,
 action<> acknowledge) {
 self.blockInstanceId$:= blockInstanceId$;
// BLOCKBUILDER - USER DEFINED ACTION
//
// -- insert pre-spawn initialisation code --
//
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action instancePostSpawnInit(integer blockInstanceId$,
 string ownerId$,
 string scenarioId$,
 dictionary<string, string> userData$,
 action<> acknowledge,
 float period,
 integer size,
 action<float,integer> $$sendOutput$statistics) {
 self.$$sendOutput$statistics := $$sendOutput$statistics;
// BLOCKBUILDER - USER DEFINED ACTION
 self.period := period;
 self.size := size;
 inputdata1.value := MAX_FLOAT;
 inputdata2.value := MAX_FLOAT;
 updateInfinite();
 acknowledge();
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

 action cleanup {
// BLOCKBUILDER - USER DEFINED ACTION
// BLOCKBUILDER - END OF USER DEFINED ACTION
 }

An example block

Using Apama Studio 5.2.0 100

User-defined actions

Finally, any additional user-defined actions come at the end of the block definition file. For the
Correlation Calculator block, these actions contain the unique functional content of this block.
// BLOCKBUILDER - USER DEFINED ACTIONS
 action doStats1 {
 if inputdata2.value != MAX_FLOAT then {
 doStatsCommon(inputdata2.time);
 }
 }

 action doStats2 {
 if inputdata1.value != MAX_FLOAT then {
 doStatsCommon(inputdata1.time);
 }
 }

 action doStatsCommon(float timestamp) {
 float N;
 float Mx;
 float sum, div;
 float correlation;

 if not infinite then {
 // Remove expired samples
 removeExpiredSamples();

 // Add new pair to dataset
 dataset.append(
 CorrelationCalculator_DataPoint(inputdata1.value,
 inputdata2.value, timestamp));
 }
 incrAdd(inputdata1.value, inputdata2.value);

 // Calculate correlation
 N := incr.N;
 Mx := incr.x1 / N;
 sum := incr.xy - Mx*incr.y1;
 div := (incr.x2 - Mx*incr.x1) * (incr.y2 - incr.y1*incr.y1/N);
 if sum = 0.0 then {
 correlation := 0.0;
 } else
 if div != 0.0 then {
 correlation := sum / div.sqrt();
 } else {
 correlation := NO_CORRELATION;
 }
 sendOutput$statistics(correlation, N.floor());
 }

 action removeExpiredSamples {
 float timeLimit := -MAX_FLOAT;
 integer sizeLimit := MAX_INT;
 if self.period > 0.0 then {
 timeLimit := currentTime - self.period;
 } else
 if self.size > 0 then {
 sizeLimit := self.size;
 }
 while (dataset.size() > 0 and dataset[0].time <= timeLimit)
 or dataset.size() >= sizeLimit {
 incrRemove(dataset[0].value1, dataset[0].value2);
 dataset.remove(0);
 }
 }

 action updateInfinite {
 boolean wasInfinite := infinite;

An example block

Using Apama Studio 5.2.0 101

 // Set infinite to true if period/size is infinite
 infinite := self.period <= 0.0 and self.size <= 0;
 if infinite then {
 dataset.setSize(0);
 } else
 if wasInfinite then {
 // Infinite has gone from true to false,
 // must reset incremental data
 incr := new CorrelationCalculator_Incr;
 }
 }

 action incrAdd(float x, float y) {
 incr.x1 := incr.x1 + x;
 incr.y1 := incr.y1 + y;
 incr.x2 := incr.x2 + x*x;
 incr.y2 := incr.y2 + y*y;
 incr.xy := incr.xy + x*y;
 incr.N := incr.N + 1.0;
 }

 action incrRemove(float x, float y) {
 incr.x1 := incr.x1 - x;
 incr.y1 := incr.y1 - y;
 incr.x2 := incr.x2 - x*x;
 incr.y2 := incr.y2 - y*y;
 incr.xy := incr.xy - x*y;
 incr.N := incr.N - 1.0;
 }
// BLOCKBUILDER - END OF USER DEFINED ACTIONS
}]]></code>
</block>

Running Apama projects

Using Apama Studio 5.2.0 102

Chapter 4: Launching Projects

n Running Apama projects ... 102

n Monitoring apama applications .. 115

As you develop your applications, you can test them by running them from Apama Studio. Projects
contain launch configurations that specify which resources in the project need to be started and any
initialization information they need. By default, a single launch configuration is created for each
project the first time it is launched, but you can create others to test an application with a different set
of monitors or a different version of a block.

This section contains the following topics:

"Running Apama projects" on page 102

"Monitoring apama applications" on page 115

For information about creating launch configurations for debugging and profiling purposes, see the
following:

"Debugging EPL Applications" on page 125

"Debugging JMon Applications" on page 134

"Profiling EPL Applications" on page 146

Running Apama projects
Apama Studio uses a project’s launch configuration to start the application. You can use the project’s
default launch configuration or you can define one or more configurations for launching your
Apama project in different ways.

Default launch configuration
An application’s default launch configuration starts the default correlator and uses all the monitors
and events defined in the project. A project’s default launch configuration is available in both the
Workbench and Developer perspectives.

Workbench perspective
To start the default launch configuration for the current project from the Workbench perspective:

1.
In the Workbench Project view, click the Start button . This starts the default correlator with all
the project’s monitors, events and scenarios. If the project includes a default dashboard, Apama Studio
launches it in the Dashboard Viewer. Information about the running application is shown in the Console
view and if the project has a scenario, the Scenario Browser view is displayed.

Running Apama projects

Using Apama Studio 5.2.0 103

2.
To restart the application, click the Restart button in theWorkbench Project view.

3.
To stop the click the Stop button in theWorkbench Project view. In addition to halting the
application, this closes the Dashboard Viewer

Developer perspective
To start the default launch configuration for a project from the Developer perspective:

1. In the Project Explorer view, select the project you want to run.

2. Select Run > Run from the Apama Studio menu. This starts the default correlator with all the project’s
monitors, events and scenarios. If the project includes a default dashboard, Apama Studio launches it in
Dashboard Viewer. Information about the running application is shown in Apama Studio’s Console view.

3. If you want to inspect the behavior of the project’s scenarios in the Scenario Browser, select Window >
Show View > Scenario Browser.

4. To stop a running application click the Terminate button in the Console view. If the launch
configuration started Dashboard Viewer, you may want to stop Dashboard Viewer before stopping
the application otherwise when you stop the application Dashboard Viewer will display a message its
connection to the correlator was lost.

Defining custom launch configurations
In many cases you may want to create custom launch configurations, for example to run your
applications with a subset of the monitors in your project or if your application relies on an IAF
adapter. Note that the Apama Workbench perspective is targeted at creation of simple applications
and so does not provide much support for projects with multiple launch configurations. If you need
the power of multiple launch configurations use the Apama Developer perspective.

When you create a new shared custom launch configuration Apama Studio creates two files and
places them in the directory specified by Shared file. The names of these files have the following
format and the launch configuration information is split between them:

launch_config_name.deploy

launch_config_name.launch

Any changes you make to the launch configuration will be reflected in the .deploy file. However, if
you export a launch configuration to an Ant deployment script and then the shared location changes
then you must re-export the launch configuration to a new Ant deployment script. If you do not, the
old Ant deployment script fails because it cannot find the .deploy file. See

To create a launch configuration:

1. In the Project Explorer view, select the project you want.

2. If you are using the Apama Developer perspective, select Run > Run Configurations from the Apama
Studio menu. The Create, manage, and run configurations wizard starts. The wizard has four tabs, the
Apama Project tab, the Components tab, the Environment tab, and the Common tab.

Running Apama projects

Using Apama Studio 5.2.0 104

If you are using the Apama Workbench perspective, select the project of interest in the
Workbench Project view and then click the Edit button just above the Start, Stop, and Restart
buttons in the launch control panel. This allows the default launch configuration for the project
to be edited. Creating multiple launch configurations is not recommended for Workbench
perspective users

3. In the wizard’s Name field assign a name to the launch configuration

4. On the Apama Project tab fill in the following information:

Project — The project field specifies the project to launch.

Dashboards — This contains information about launching a dashboard when the project runs.
It contains the following fields:

Open Dashboard Viewer during launch — Specifies whether or not the Dashboard Viewer should be
launched when running the project. The default is to run the Dashboard Viewer.

Use default dashboard — The default dashboard is the dashboard project in the dashboards
directory of the project. You can launch another dashboard by disabling the default dashboard
and specifying the project relative path of the dashboard to launch.

viewer Arguments — Specify any arguments to be added to the end of the command line for the
dashboard viewer process.

5. The Components tab lists the components that are needed by the project such as additional correlators or
external processes. You can add and remove components, edit their specifications, change the order in
which they are started, or specify connections between correlators. Components are started in the order

Running Apama projects

Using Apama Studio 5.2.0 105

in which they appear in the Components tab from top to bottom. However, there is no waiting for one
component to finish its startup before the next component is started. In other words, you cannot depend on
startup for one component to already be complete when a subsequent component is started.

You specify information on this tab as follows:

Up — Moves the component up in the order in which it starts.

Down — Moves the component down in the order in which it starts.

Edit — Allows you to modify the settings for the component.

Remove — Removes the component from the launch configuration

Add — Allows you to add a correlator or an external process to the launch configuration. To
add a component, click the Add button and select the type of component you want to add.

Restore Default — Sets the launch configuration to use the default launch configuration.

Connections — Displays the Connections dialog, which lets you add and remove connections
between correlators. See "Connecting correlators" on page 113.

6. The Environment tab lists any additional environment variables needed to run any of the processes started
by this launch configuration.

Running Apama projects

Using Apama Studio 5.2.0 106

Then provide information here in the following ways:

New —Specify a new environment variable.

Select — Select an environment variable from the list of Eclipse environment variables.

Edit —Modify the value of an environment variable.

Remove — Remove an environment variable from this configuration.

Apama recommends that you append new environment settings to the native environment as
otherwise it will be necessary to manually specify the standard Apama environment variables in
order for the process to start correctly.

Note that to add a suffix or prefix to an existing environment variable, a new environment
variable of that name should be created, and the existing value specified as part of the variable’s
value, for example, PATH=${env_var:PATH};C:\my path.

7. The Common tab specifies additional attributes for running this launch configuration.

Running Apama projects

Using Apama Studio 5.2.0 107

This tab displays the following fields:

Save as

Local file

Shared file — This is the default selection and the default path is the config\launch folder
in your project directory. Click Browse to navigate to and select another location that is
available to all users sharing this project.

Display in favorites menu

Select the appropriate checkbox to display this configuration as a choice in the drop-down
menu of the Debug or Run button in the Apama Studio toolbar.

Console encoding — The default encoding for output to the console is Cp1252. To encode
console output in a different format, click Other and select the encoding you want. For
example, UTF-8.

Standard Input and Output

Allocate Console (necessary for input) — For correlator launch configurations, there are no
reasons not to allocate a console. Allocating a console does not affect performance.

File — If you want to capture correlator output in a file, navigate to and select a file to contain
the correlator output.

Append — When you capture correlator output in a file, indicate whether you want to append
the output to the specifies file.

Launch in background — The default is that the correlator runs as a background process.

Running Apama projects

Using Apama Studio 5.2.0 108

Adding a correlator
When you add a correlator to the launch configuration, Apama Studio displays the Correlator
Configuration dialog, which includes these tabs:

Correlator Arguments

Persistence Options

Injections

Event Files

Correlator arguments
The Correlator Arguments tab specifies the options and arguments that Apama Studio uses to start the
correlator.

You can accept the default values or change one or more arguments. You can also add arguments. In
addition, you can also control the behavior with the following options:

Running Apama projects

Using Apama Studio 5.2.0 109

Hostname — localhost. The name of the correlator host machine.

Port — This is the port on which the correlator listens for monitoring and management requests.

Log level — Default is INFO.

Log to file — Default is ${LAUNCH_CONFIG_NAME}_${CORRELATOR_NAME}.output.log. This is the correlator
status log.

Input log — Default is Correlator_1_${START_TIME}_${ID}.input.log. This log contains all incoming
messages. See Using an input log to diagnose problems in Deploying and Managing Apama
Applications.

Reuse Correlator — Select this option to use an already running correlator.

Clear Correlator — Select this option to delete all the correlator contents when the launch starts.

Java Support — Select this option to provide Java support for JMon applications. Normally this is
automatically selected when a JMon application is created in Apama Studio.

UM Messaging — Select this option to inject the project's UM-config.properties file, which is in
the project's config folder. This is equivalent to specifying the -UMconfig option when starting a
correlator. Uncheck this box if you want to run the project without using UM. If the project does
not contain a UM configuration properties file, this option is disabled.

See "Using Universal Messaging" in Deploying and Managing Apama Applications.

JMS Support — Select this option to provide JMS support for correlator-integrated messaging.
Normally this is automatically selected when the correlator-integrated messaging adapter for
JMS is added to an Apama application.

Distributed MemoryStore Support — Select this option to provide support for distributed
MemoryStore. With the distributed MemoryStore, you can create distributed stores that provide
access to data that will be shared among Apama applications running in separate correlators.

Maximum java heap size in Mb (-Xmx). Default is 512.

Maximum java off-heap storage in Mb (-XX:MaxDirectMemorySize). Default is 16384.

Extra command line arguments. Specify any additional arguments for starting the correlator. See
Starting the event correlator in Deploying and Managing Apama Applications.

Persistence options
The Persistence Options tab specifies the correlator persistence settings Apama Studio will use when it
runs this launch configuration.

Enable correlator persistence — When set, this tells the correlator to start with the persistence
option.

Directory location — This specifies the location on disk of the persistent store used to preserve
correlator state.

Startup options — These options specify the startup behavior of the correlator with respect to how
it handles its persistent store.

Clear state and re-inject — Specifies that you want to clear the contents of the recovery
datastore.

Running Apama projects

Using Apama Studio 5.2.0 110

Resume from persistent state — Specifies that the correlator will restart using the state from its
persistent store as of the last committed snapshot.

Prompt for startup options dialog during correlator launch — Specifies that Apama Studio will
present a dialog when launching the application. The dialog asks whether to clear the
correlator state information and re-inject the application code or to resume from the state
information stored in the last committed snapshot.

For more information on correlator persistence, see "Using Correlator Persistence" in Developing
Apama Applications in EPL.

For more information on persistence options for starting the correlator, see "Starting the event
correlator" in Deploying and Managing Apama Applications in EPL.

Injections
The Injections tab lists the files, except event files, that will be injected or sent into the correlator
when Apama Studio runs this launch configuration. This includes the files that are in your project as
well as additional files that have been added to the project build path. See "Defining custom launch
configurations" on page 103.

Running Apama projects

Using Apama Studio 5.2.0 111

By default the Injections tab lists all EPL files in the project. The files are listed in dependency
order. This is the order in which Apama Studio will load the files. Apama Studio determines the
dependency order when it builds the project. In almost all projects, you do not need to change the
order. However, if necessary, you use this tab to change the order in which Apama Studio injects the
project’s EPL files.

When Automatic Ordering is selected you have the option to exclude files from the launch
configuration by unchecking them. When you run this project the unchecked files are not injected.

When you select Manual Ordering the Up and Down buttons appear. Select the file whose position you
want to change and click the Up or Down button as many times as needed. When Manual Ordering is
selected Apama Studio does not resolve any conflicts. It is up to you to correctly order the files.

Running Apama projects

Using Apama Studio 5.2.0 112

If you uncheck a check box, the corresponding file remains in the list, but will not be loaded during
this launch configuration.

All selected EPL files are injected and then all selected .evt files (on the Event Files tab) will be
injected.

Event Files
The Event Files tab lists the event files that will be injected or sent into the correlator when Apama
Studio runs this launch configuration. This includes event files that are in your project as well as
additional event files that have been added to the project build path. See "Defining custom launch
configurations" on page 103.

Running Apama projects

Using Apama Studio 5.2.0 113

By default the Event Files tab lists all .evt files in the project. The files are listed in lexicographic order
by file name. This is the order in which Apama Studio will inject the files.

If necessary, you use this tab to change the order in which Apama Studio injects the project’s event
files. Select the file whose position you want to change and click the Up or Down button as many
times as needed. It is up to you to ensure that the files are injected in the correct order.

If you uncheck a check box, the corresponding event file remains in the list, but will not be injected
during this launch configuration.

All selected EPL files (listed on the Injections tab) are injected and then all selected .evt files will be
injected.

Connecting correlators
When you are creating a custom launch configuration you can specify connections between
correlators. This is similar to connecting correlators with the engine_connect correlator utility.

Each connection you add goes in only one direction. For example, suppose you define a connection
from correlatorA to correlatorB. This connection lets correlatorA send events to correlatorB. If you
want correlatorA to receive events from correlatorB you must add a second connection that specifies
correlatorB as the source of the connection and correlatorA as the target of the connection.

To connect correlators:

1. In the Run Configurations dialog, select the Components tab and ensure that the correlators you
want to connect are listed as components. See "Adding a correlator" on page 108.

2. Click Connections.

3. In the Connections dialog, click Add, which activates a row in the connections table.

4. In the activated row, in the From field, select the name of the correlator that is the source of this
connection. If the name of the correlator you want to connect does not appear, click Cancel to
return to the Components tab and then select Add > Add Correlator.

5. In the To field, select the name of the correlator that is the target of this connection.

6. In the Channel field, specify one or more channels to be used by this connection. Use a comma as
a separator. For example, channelA, channelB.

7. In the Flags field, specify any options that are supported by the engine_connect utility.

See "Event correlator pipelining" in Deploying and Managing Apama Applications.

After adding the desired connections, click OK to return to the Components tab.

To remove a connection, select the row that defines the connection and click Remove.

Adding an external process
When you add an external process to the launch configuration, Apama Studio displays the External
Process Configuration dialog.

Running Apama projects

Using Apama Studio 5.2.0 114

This dialog allows the user to add and edit an external process associated with the launcher. You can
enter the relevant information in the following fields:

Name — The name is a unique name in the launcher.

Command — This is the command line string that is used to invoke the external process. This
command string can use the variables from the Workspace, File System, or Variables configured in
Eclipse. These variables are replaced with their corresponding values when launched.

Testing a subset of your apama application
In a large Apama application, you might want to test a subset instead of the entire application. The
best way to do this is to define a launch configuration that injects only the monitors you want to test.
Use this configuration only to test the subset. Create a different launch configuration to test the entire
application.

The reason you want a separate configuration for testing the subset is that you must disable the
monitors in your project that are not in the subset you want to test.

To disable a file in a launch configuration:

1. Define the launch configuration as you normally would. See "Defining custom launch configurations"
on page 103.

2. In the Create, manage, and run configurations dialog, on the Components tab, select the correlator in
which you want to perform the testing and click Edit. Or, click Add > Add Correlator to add the correlator
on which you want to do the testing.

3. In the Correlator Configuration dialog that appears, on the Initialization tab, deselect the file(s) you do not
want to inject.

4. Click OK, Apply, and then Run or Close.

Monitoring apama applications

Using Apama Studio 5.2.0 115

Monitoring apama applications
Apama Studio provides various ways to monitor a running Apama application.

Console view

Engine Information view

Engine Receive view

Engine Status view

Scenario Browser

Dashboards

Note that in the Developer perspective it is possible to launch multiple projects at any one time. By
default, the Console view and the Scenario Browser view will display information about the most
recently launched correlator. To monitor a different correlator, select Window > Show View > Other >
Debug from the Apama Studio menu and select the Debug view — this lists all running launches.
Select the correlator that you wish to monitor from this list.

Opening the Apama Runtime perspective (either from the perspective shortcut bar in the top right,
or selecting Window > Open Perspective > Other > Apama Runtime from the Apama Studio menu)
results in a convenient layout of all the available Apama Runtime views. This is the recommended
way to make use of these views. You can switch back to the Apama Developer or Workbench
perspective at any time.

Console view
The Console view displays information concerning a running Apama application. An application
can have several consoles:

Correlator — Displays output from the correlator.

Engine Inject —Displays initialization information injected to the correlator.

Engine Send — Displays information from Apama components such as dashboards that stream
data to the correlator.

Correlator Initialization — Displays information about the correlator initialization including the
Java files, .mon files (monitors), and .sdf files (scenarios) that have been injected and the .evt files
(events) that have been sent and whether the actions succeeded or failed.

To view one of these consoles, click the drop down arrow of the Display Selected Console button
and select the console you want.

Using the Engine Information view

Monitoring apama applications

Using Apama Studio 5.2.0 116

The Engine Information view inspects a running correlator and displays defined contents of the
correlator. It displays the same information as the Apama command line tool engine_inspect.

The information is grouped as follows (click on the right-facing triangle to view the contents of each
group):

Aggregates — The names of custom (user-defined) aggregate functions that have been injected. You
use aggregate functions in stream queries. Apama built-in aggregate functions are not listed.

Contexts — The names of any user-defined contexts, how many monitor instances are running in
each context, how many entries are on each context’s input queue, and the names of any channels
each context is subscribed to.

Events — The names of all event types in the correlator, and the number of templates of each type, as
defined in listener specifications.

Java Monitors — The names of all Java applications in the event correlator and the number of event
listeners each Java application has created.

Monitors — The names of all monitors in the event correlator and the number of monitor instances
each monitor has spawned.

Plugin Receivers— The names of any plug-in receivers, the channels each plug-in receiver is
subscribed to, and the number of items on each plug-in receiver's input queue. A p;ug-in receiver is a
correlator plug-in that is subscribed to one or more channels.

Receivers— The names of any external receivers, the address of each external receiver, the channels
each external receiver is subscribed to, and the number of entries on the output queue of each
external receiver.

Timers — Displays the current EPL timers active within the system. The four types of timers that
might be displayed here are wait, within, at, and stream. The stream timers are those set up to support
the operation of a stream network.

This view allows direct deletion of the defined named entities using the Delete button on the tool
bar or from the context (right-click) menu.

The user can send an event from this view as well using the send operation by clicking the Send

button on the toolbar or via the context menu. Double clicking an event item also invokes this
operation.

Displaying information in the Engine Information view can slow performance, so you may want to
close the view if Studio is not very responsive.

Using the Engine Receive view
The Engine Receive view shows all events generated from the connected correlator. Each batch of
events is separated with an optional separator.

Select All — Select all text in the console.

Clear — Clear all text in the console.

Copy — Copy all selected text to the clipboard

Monitoring apama applications

Using Apama Studio 5.2.0 117

Show Separator — Show a separator line in each event batch.

Show Date/Time of batch — Show a date/time of each event batch

You can also change whether to display the separator line and change how it is displayed by clicking
the drop down arrow at the top right of the view to display the menu and select Options. See "Engine
Receive Viewer preferences" on page 117.

Click the Toggle Connection button to temporarily disconnect the Engine Receive view from the
correlator.

When the Toggle Connection button is pressed, the console will not update any further events from
correlator. The background of the console will be changed to indicate the temporary disconnect
mode. The Select All, Clear, and Copy actions will still work in this mode.

To resume from the temporary disconnect mode, simply click on the Toggle Connection button again
to resume the connection. The console will be cleared and new events will be shown in the console
again.

Engine Receive Viewer preferences
You can change the display options of the Engine Receive view by clicking the drop down arrow at
the top right of the view. From the menu select Options, which displays theEngine Receive Viewer
Preferences dialog. This dialog contains settings that specify how information is displayed in the
Engine Receive view.

Display a separator — Toggles whether each batch of events is visually separated.

Display date/time for batch — Toggles whether the date and time for each batch of events is displayed.

Custom text for separator — Specifies the characters composing the separator.

Max window size (KB) — Select a setting between 100 and 10000.

Using the Engine Status view
The Engine Status view displays the information about the correlator status. The information is the
same as the output of Apama command line tool engine_watch.

Uptime(ms) — The time in milliseconds since this correlator was started. This figure is unaffected if
the state of the correlator is restored from a checkpoint file.

Number of contexts — The number of contexts in the correlator. This includes the main context plus
any created contexts.

Number of monitors — The number of monitor definitions injected into the correlator. This figure
changes upwards and downwards as monitors are injected, deleted or just expire. A monitor expires
when each of its instances dies, has no listeners left, or causes a runtime error.

Number of sub-monitors — The number of monitor instances across all contexts in the correlator. In
monitors, spawn actions create monitor instances. This figure changes upwards and downwards as
monitor instances are spawned, killed or just expire.

Monitoring apama applications

Using Apama Studio 5.2.0 118

Number of java applications — The number of JMon applications loaded in the correlator. JMon
applications do not expire, so this value only decreases when you explicitly unload a JMon
application.

Number of listeners — The number of event listeners created by monitor instances across all contexts,
plus the number of JMon applications.

Number of sub-listeners — The number of sub-listeners that have been created by listeners across all
contexts.

Number of event types — The total number of event types defined within the correlator. This figure
decreases when you delete event types from the correlator.

Events on input queue — The sum of the number of events on the input queue of each context. The
main context has its own input queue and any user-defined contexts each have an input queue.

Events received — The total number of events ever received by the correlator. A checkpoint preserves
this value. If you restore the state of the correlator from a checkpoint file, this number reflects the
total number of the events seen by the correlator from which the checkpoint was originally made.
Note that if an event is on an input queue, it has been received but not processed.

Events processed — The total number of events processed by the correlator in all contexts. This
includes external events and events routed to contexts by monitors. An event is considered to have
been processed when all listeners that were waiting for it have been triggered, or when it has been
determined that there are no listeners for the event.

Events on internal queue — The sum of the number of routed events on the input queue of each
context. The internal routing queue in each context is a high priority queue for events that you
internally routed with the route instruction in your EPL files. The correlator always processes routed
events before processing events on the input queue.

Events routed internally — The sum of the number of events routed in each context since the correlator
started. A checkpoint preserves this value. If you restore the state of a correlator from a checkpoint
file, this number reflects the total number of the events routed to the internal queues for the
correlator from which the checkpoint was originally made.

Number of consumers — The number of event consumers registered with the correlator. Event
consumers receive events emitted by the correlator.

Events on output queue — The number of events waiting on the correlator’s output queue to be
dispatched to any registered event consumers.

Output events created — The total number of output events created by the correlator. A checkpoint
preserves this value. If you restore the state of a correlator from a checkpoint file, this number reflects
the total number of output events created by the correlator from which the checkpoint was originally
made.

Output events sent — The total number of output events that the correlator has sent to event
consumers. For example, suppose the correlator created 10 output events and sent each event to two
consumers. The number of output events sent is 20. A checkpoint preserves this value. If you restore
the state of a correlator from a checkpoint file, this number reflects the total number of output events
sent by the correlator from which the checkpoint was originally made.

Using the Scenario Browser view

Monitoring apama applications

Using Apama Studio 5.2.0 119

Apama Studio’s Scenario Browser view displays the scenario definitions loaded into the correlator
along with the metadata for those scenarios. The Scenario Browser also displays scenario instances
that are running along with the scenario output values. In the Scenario Browser you can add, edit,
and delete scenario instances.

Displaying the Scenario Browser
By default, in the Workbench perspective, the Scenario Browser is opened when you launch an
application. In the Developer perspective you need to display the Scenario Browser view manually
by selecting Window > Show View > Scenario Browser from the Apama Studio menu. Developer
perspective users may find it more convenient to switch to the Runtime perspective, either from the
perspective shortcut bar in the top right, or by selecting Window > Open Perspective > Other > Apama
Runtime. You can switch back to the Apama Developer perspective at any time.

The Scenario Browser view looks something like the following, showing running correctors in the
left pane.

The details of the selected correlator are shown in the right pane.

Browsing scenarios
To examine a scenario definition, click its name in the left pane. The illustration below shows the
StatisticalArbitrage scenario definition. The Scenario Browser displays a list of the scenario’s details
in two tabs in the right pane: the Details tab and the Instance Summary tab.

The Details tab shows the metadata of the selected scenario; in the following illustration, the
metadata for the StatisticalArbitrage scenario is displayed.

Monitoring apama applications

Using Apama Studio 5.2.0 120

The Instance Summary tab shows the output fields of the selected scenario’s instances. Each column
represents a scenario output field. The following illustration shows the Instance Summary tab for the
StatisticalArbitrage scenario with two scenario instances.

Monitoring apama applications

Using Apama Studio 5.2.0 121

Creating new instances of scenarios
In the Scenario Browser view, you can create new instances of scenarios that are running in the
application.

1. In the Scenario Browser’s left pane, select the scenario for which you want to make a new instance.

2.
Click the Add Scenario Instance button near the top left of the Scenario Browser tab. The Add
Scenario Instance dialog appears, showing the scenario’s details including the input and output variables
that make up the scenario definition in the left-hand column. The right-hand column displays the values of
those variables.

3. To create an instance of the scenario you specify values for the input fields in the right-hand column. Fields
with default values are already filled in. You can add or edit values in cells that have a white background.
To specify a value, double click in the empty cell and enter the information.

4. Click OK. Apama Studio adds the scenario instance to the Scenario Browser’s left pane.

Viewing Scenario instances
You can display the details of a scenario instance in the Scenario Browser view as follows:

1. In the Scenario Browser, select the scenario ID of the instance you want. In the right pane, Apama Studio
displays the names of the scenario variables in the left column and the current values of the variables in the

Monitoring apama applications

Using Apama Studio 5.2.0 122

right column. The values of the output variables are continuously updated. The following illustration shows
an example from the Statistical Arbitrage demo.

2. You can expand and collapse the display in the right pane by clicking the plus and minus symbols.

Editing a scenario instance
To edit the input values of a scenario instance:

1. In the left pane of the Scenario Browser, select the instance ID of the scenario instance you want to edit.

2.
Click the Edit button near the top left of the Scenario Browser. The Edit scenario instance dialog is
displayed. While you are editing the values in the scenario instance Apama Studio suspends the display of
output information.

Monitoring apama applications

Using Apama Studio 5.2.0 123

3. Edit the values for the input fields in the right-hand column by double clicking in the desired cell and
entering the new value.

4. Click OK. Apama Studio resumes displaying output values.

Deleting a scenario instance
To delete a scenario instance:

1. In the left pane of the Scenario Browser, select the instance ID of the scenario instance you want to delete.

2. Click the Delete button near the top left of the Scenario Browser.

Deleting all scenario instances
To delete all instances of a given scenario:

1. In the left pane of the Scenario Browser, select the name scenario for which you want to delete all the
instances.

2.
Click the Delete All button near the top left of the Scenario Browser.

Monitoring apama applications

Using Apama Studio 5.2.0 124

Dashboards
When you launch a project that contains a dashboard, by default Apama Studio automatically starts
the Dashboard Viewer and displays the project’s default dashboard. If desired you can change this
behavior as described in "Defining custom launch configurations" on page 103. You can specify
that you do not want Dashboard Viewer to start automatically or that Viewer should display a
dashboard other than the project’s default dashboard. When you define a launch configuration you
can also specify any command line options to need to be passed to the Dashboard Viewer.

Adding breakpoints

Using Apama Studio 5.2.0 125

Chapter 5: Debugging EPL Applications

n Adding breakpoints .. 125

n Launching a debug session .. 126

n Debugging a remote application ... 129

n Debug view ... 129

n Breakpoints view ... 131

n Variables view ... 132

n Command-line debugger ... 133

You can debug Apama applications written in EPL in Apama Studio. As is the case when debugging
other applications in Eclipse, when you debug EPL applications, you can set breakpoints to suspend
the application at specific points, examine the contents of variables, and step through the application.

The basic tasks involved in debugging an EPL application in Apama Studio are:

1. Set breakpoints in the Developer perspective.

2. Create a debug launch configuration for the project.

3. Review the executing application in the Debug perspective, examining information such as the
call stack, context status, and variable values.

Adding breakpoints
You can add breakpoints to any of the EPL files included in the project. To add a breakpoint to an
EPL file:

1. In the Developer perspective open the EPL file in which you want to add a breakpoint.

2. Double click in the left margin of the desired line in the EPL file or right click in the left margin and select
Toggle Breakpoint from the pop-up menu. The breakpoint is indicated by a solid blue circle in the left
margin, as shown in the action onload line in the illustration below.

Launching a debug session

Using Apama Studio 5.2.0 126

3. Repeat Step 1 and Step 2 for each breakpoint you want to set.

Note, when debugging an application on a remote machine, breakpoints are supported only inside
EPL actions of monitors and events. Breakpoints inside listeners of actions or breakpoints outside of
actions are not supported. See "Debugging a remote application" on page 129.

Debugging EPL Applications

Launching a debug session
If a Debug Configuration has been defined for the Apama project, start a debugging session as
follows. (If you need to create a Debug Configuration, see "Creating a debug configuration" on page
127)

1. From the Apama Studio menu, select Run > Debug Configurations.

2. From the Debug Configuration dialog, select the desired Debug Configuration and click Debug. The
Confirm Perspective Switch dialog opens

Launching a debug session

Using Apama Studio 5.2.0 127

3. Click Yes to display the Debug Perspective (and add a check to the Remember my decision check box if
desired). The Debug perspective is opened.

When debugging an EPL application, the Debug perspective is similar in operation to the standard
Eclipse Debug perspective and includes the Debug, Breakpoints, and Variables views.

Debugging EPL Applications

Creating a debug configuration
If you need to create a new Debug Configuration:

Launching a debug session

Using Apama Studio 5.2.0 128

1. From the Apama Studio menu, select Run > Debug Configurations. The Profile configurations wizard
starts.

2. In the left pane, select Apama Application and click the New launch configuration button ().

3. In the right pane, on the Apama Project tab, specify the Name and the Project.

4. If you are going to debug an application running on a remote correlator:

a. Select the Components tab.

b. Click Add and select Add Correlator.

c. In the Correlator Configuration wizard, on the Correlator Arguments tab, specify the Host, Port, and
other Options.

When creating a debug launch configuration, you do not need to specify the -g option in
the Correlator Arguments tab. When you select Run > Debug , Apama Studio automatically
starts the correlator with the -g option, which disables optimizations that hinder debugging.
However, if you use Apama Studio to debug in a remote correlator, you must ensure that the

Debugging a remote application

Using Apama Studio 5.2.0 129

remote correlator was started with the -g option. You cannot debug in a correlator that was
started without specification of the -g option. See "Deploy options" in "Starting the Event
Correlator" in Deploying and Managing Apama Applications.

d. If necessary, specify any initialization options on the Initialization tab.

e. Click OK.

5. Click Debug. The Confirm Perspective Switch dialog opens.

6. Click Yes. Apama Studio switches to the Debug perspective.

Launching a debug session

Debugging a remote application
In Apama Studio you can debug an Apama application running in a correlator on a remote
machine. The correlator on the remote machine must be started with the -g option, which disables
optimizations that interfere with debugging.

To debug an application on a remote machine:

1. Start the application on the remote machine.

2. In Apama Studio on the local machine where you will do the debugging, select Run > Debug
Configurations. This displays the Debug Configurations wizard.

3. In the Debug Configurations wizard, in the left pane select Remote Apama Application and click the New

launch configuration button ().

4. In the right pane, on the Apama Project tab:

a. Specify the Name of the debug configuration and the Project on the local machine where the
debugging session is being run. The application in the project should match the application that is
being debugged.

b. Specify the Host and the Port of the correlator running on the remote machine.

c. If desired, click Test Connection to verify the connection to the correlator on the remote machine can
be made.

5. If desired, on the Source tab, add any needed resources. Generally, the project on the local machine would
contain all the necessary resources.

6. Click Debug. The Confirm Perspective Switch dialog opens.

7. Click Yes. Apama Studio switches to the Debug perspective.

Note, when debugging a remote application, breakpoints are supported only inside actions of
monitors and events. Breakpoints inside listener actions or outside of actions are not supported.

Debugging EPL Applications

Debug view

Debug view

Using Apama Studio 5.2.0 130

The Debug view shows the call stack and status of current contexts in the Apama application. When
execution reaches a breakpoint, Apama Studio highlights the current context in the Debug view.

Also, when a breakpoint is reached, the EPL editor indicates the breakpoint in the code with an
arrow in the left margin. The line of code that will be executed next is highlighted.

When a stack frame is highlighted in the Debug view, the Variable view displays the names and
values of the associated variables, see "Variables view" on page 132.

The tool bar for the Debug view contains the following buttons for controlling execution:

 Remove All Terminated Launches — Clears all terminated debug targets from the Debug view
display.

 Resume — Resumes a suspended debug target.

 Suspend— Halts the execution of currently selected target.

 Terminate — Terminate the selected debug target.

 Step Into — Execute the current line and proceed to the next statement.

Breakpoints view

Using Apama Studio 5.2.0 131

 Step Over — Steps over the highlighted statement and continues executing at the next line
either in the same method or (if at the end of a method) continues in the method from which the
current method was called.

 Step Return — Steps out of the current method. This stops execution after exiting the current
method.

Debugging EPL Applications

Breakpoints view
The Breakpoints view lists the breakpoints you have set in the project.Double clicking a breakpoint
displays the line in the EPL file that contains the breakpoint in the EPL editor. In the Breakpoints
view, you can enable and disable the listed breakpoints.

The tool bar for the Breakpoints view contains the following buttons for controlling execution:

 Remove Selected Breakpoints — Remove the selected breakpoint from the debug session.

 Remove All Breakpoints — Remove all breakpoints from the debug session.

 Show Breakpoints Supported by Selected Targets — Show breakpoints for selected target.

 Go to File for Breakpoint — Open file containing the selected breakpoint.

 Skip All Breakpoints — Skip all breakpoints.

 Expand All — Expand all of the items in the Breakpoints view.

 Collapse All — Collapse the display of all items in the Breakpoints view.

 Link with Debug view — Toggles whether or not the Breakpoints view is automatically updated
when the Debug view changes.

Debugging EPL Applications

Variables view

Using Apama Studio 5.2.0 132

Variables view
The Variables view displays information about the variables associated with the stack frame that
is currently selected in the Debug view. The variables can be expanded to show their fields. The
detail pane the area at the bottom of the view displays text. For a variable of a primitive type, this is
the value of the object; for a complex variable, such as a sequence, dictionary, or event, it is the text
representation of the object as returned by the object’s toString() method.

For complex variables, you can click the Show Logical Structure button ()to expand the variables to
show their sub-values.

In the Variables view, you can change the layout of the display. Click the Drop-Down Menu button
() to the right side of the Variables view title bar and select Layout from the menu.

Debugging EPL Applications

Command-line debugger

Using Apama Studio 5.2.0 133

Command-line debugger
You can also use Apama’s engine_debug tool to control execution of your EPL code in the correlator
and inspect correlator state. This tool is a correlator client that runs a single command from the
command line. It is not an interactive command-line debugger. The interactive debugger in Apama
Studio is more useful during the development of an application. In general, the command-line
engine_debug tool is expected to be most useful during or after deployment of your application.

For more information on engine_debug, see "Using the command line debugger" in Deploying and
Managing Apama Applications.

Debugging EPL Applications

Preparing the correlator for remote debugging

Using Apama Studio 5.2.0 134

Chapter 6: Debugging JMon Applications

n Preparing the correlator for remote debugging ... 134

n Creating a debug run configuration ... 136

n Debug perspective .. 138

n Example debug session .. 141

n Additional resources for Java debugging .. 144

This section describes practical information for developing and debugging JMon applications with
Apama Studio. General knowledge of Java and Apama application development is assumed.

Apama Studio is built on the Eclipse IDE framework and as such running and debugging JMon
applications for the Apama correlator engine is no more different than with any standard Java
application. There are however a few things to consider:

Single thread — For JMon applications, the correlator uses a single thread of execution. When
programming in Java consider the importance of maintaining determinism by not routing,
emitting, or enqueueing an event in a thread other than the current thread. Java provides no
guarantee on execution order for separate threads, so try to keep your JMon applications single
threaded at all times. Although multiple threads are currently allowed for JMon applications, this
might change in the future, with the correlator JVM issuing a warning or possibly an error.

Event definitions — To instantiate event definitions in your JMon application, the Event subclass
in question needs to be defined and included in your JAR file. This is because the correlator uses
a separate classloader for each application (that is, each JMon JAR file injected) and hence cannot
share the event definitions across separate JMon applications. Also, a JMon application cannot
make use of any event definition already present in the correlator. Any event definition (either a
subclass of the JMon Event class or a definition in an EPL file) must be replicated for each JMon
application and for your injected EPL files.

Preparing the correlator for remote debugging
Launching the correlator with the –j option enables the Java Virtual Machine (JVM) as a subprocess
in correlator execution. When launching an Apama project in Apama Studio, specification of the -j
option launches the correlator and launches its JVM as an external process. Consequently, you must
enable a socket connection to the JVM so that you can connect the Apama Studio debugger to it. This
also applies to launching a correlator through any other means.

Enable debugging in the correlator JVM by specifying the Java options for the correlator component
in the launch configuration. The Java Debug Wire Protocol (JDWP) is the protocol used for
communication between a debugger and the Java virtual machine (VM) that it debugs. Oracle's VM
implementations require command line options to load the JDWP agent for debugging. JDWP is
optional; it might not be available in some implementations of the Java™ 2 SDK. The existence of
JDWP can allow the same debugger to work.

From Java 5.0 (or 1.5.0) onwards, specify the -agentlib:jdwp option to load and specify options to
the JDWP agent. For Java releases prior to 5.0, the -Xdebug and -Xrunjdwp options are used. (The 5.0

Preparing the correlator for remote debugging

Using Apama Studio 5.2.0 135

implementation also supports the -Xdebug and -Xrunjdwp options but the newer -agentlib:jdwp option is
preferable as the JDWP agent in 5.0 uses the JVMTI interface to the VM rather than the older JVMDI
interface.) Specify this option in the correlator component in your launch configuration or when
launching the correlator independently:
-J -agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n

This tells the JVM to use a socket transport on port 8787. You can change this at will and use your
own options. For more Java debugging/agent options see:

"http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/conninv.html#Invocation" on page

To launch the correlator with Java and remote debugging enabled, you can use a command line or
Apama Studio.

On the command line, invoke the correlator with the following arguments:
correlator -l license.txt -j -J
-agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n

In Apama Studio, invoke the correlator as follows:

1. From the main Apama Studio menubar, select Run > Run Configurations.

2. Click the Components tab.

3. Select the correlator you want to start and click Edit.

4. Enter the following in the Extra command line arguments field:

-J -agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n

http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/conninv.html#Invocation

Creating a debug run configuration

Using Apama Studio 5.2.0 136

5. Select OK and then Run to start the correlator.

The correlator is now enabled for Java debugging. The next section discusses how to connect to the
correlator with the Apama Studio debugger.

Debugging JMon Applications

Creating a debug run configuration
After you have a running correlator that is enabled for remote debugging, you must create a debug
run configuration that you use to connect to the correlator:

Creating a debug run configuration

Using Apama Studio 5.2.0 137

1. From the Apama Studio menubar, select Run > Debug Configurations.

2. In the Debug dialog, on the left, select Remote Java Application.

3. From the Debug dialog toolbar, select New launch configuration .

4. Select the Connect tab, if it is not already selected.

5. Enter a name for your project and set the host and port for the remote JVM connection you previously
specified as Java options when you started the correlator.

6. Click the Source tab and add the path to the Java source for your JMon application.

7. Click Apply and then Debug.

This launch configuration immediately connects to the remote JVM process in the correlator and
Apama Studio switches to the Apama Runtimeperspective, which you use for debugging. You are

Debug perspective

Using Apama Studio 5.2.0 138

now ready to remotely debug your JMon application. Debugging a JMon application in Apama
Studio is the same as debugging any other Java application in Eclipse.

Debugging JMon Applications

Debug perspective
The Debug perspective appears automatically when you start a debug session. The default Debug
perspective has five panels that you can use for debugging:

The top-left panel is the Debug view which shows the application’s stack frame. See "Using the
Debug view" on page 139.

The top-right panel provides a tabs for viewing the Breakpoints view and the Variables view.
See "Working with breakpoints" on page 140 and "Viewing stack frame variables" on page
140.

The middle-left panel is the code editor view.

The middle-right panel is the code Outline view.

The bottom panel includes the standard tabs for the console output, tasks, errors, problems,
search results, display, and so on.

Debugging JMon Applications

Debug perspective

Using Apama Studio 5.2.0 139

Using the Debug view
The top left view is the main debug panel and shows the call stack and status of current threads,
including any threads that have already run to completion. Whenever execution reaches a
breakpoint, Apama Studio highlights the current thread.

This panel provides code execution controls. These allow you to suspend and resume execution,
step through breakpoints in various ways, jump between stack frames, connect/disconnect to remote
JVMs process, and so on. Following are descriptions of the most important controls:

Resume Select the Resume command to resume execution
of the currently suspended debug target.

Suspend Select the Suspend command to halt execution of
the currently selected thread in a debug target.

Terminate Ends the selected debug session and/or process.
The impact of this action depends on the type of
the item selected in the Debug view.

Disconnect Detaches the debugger from the selected process
(useful for debugging attached processes).

Step Into Select to execute the current line, including any
routines, and proceed to the next statement.

Step Over Select to execute the current line, following
execution inside a routine.

Step Return Select to continue execution to the end of the
current routine, then follow execution to the
routine’s caller.

Debug perspective

Using Apama Studio 5.2.0 140

Drop to Frame Select the Drop to Frame command to re-enter the
selected stack frame in the Debug view.

Use Step Filters Select the Use Step Filters command to change
whether step filters should be used in the Debug
view.

Debug perspective

Working with breakpoints
You can set breakpoints in your code in a number of ways. The most straightforward way is to select
a line in your Java code and double click on the gray area to the left of the line. This sets a breakpoint
before the execution of that line. The debugger will suspend execution when it reaches that line,
allowing you to inspect variable values and results of expressions, either as defined in the code or
created by you in real-time. These expressions can also be used in conditions for breakpoints.

You can set breakpoints on particular Java exceptions, on particular line numbers, on particular
method calls, on conditions such as after a certain number of hits on a particular statement, and so
on.

The breakpoint panel allows you to view and control all your currently defined breakpoints.
After execution reaches a breakpoint, you can control process execution by stepping forwards or
backwards through your code execution, or by simply resuming execution until the next breakpoint
or until your program terminates.

Debug perspective

Viewing stack frame variables
When selecting a particular stack frame in the Debug view the variables panel on the top right side
lets you inspect all variables as defined in the current stack context. Of course, you can also view
variables alongside other variable values (globules, constants, and so on) if they are specified in the
options. For more information, see the Eclipse debugging documentation.

Example debug session

Using Apama Studio 5.2.0 141

Debug perspective

Example debug session
This section provides a very simple example that highlights some of the basic debugging concepts.
It shows the basic steps for creating a JMon JAR file and injecting it into a debug enabled correlator.
Familiarity with how to develop JMon applications is assumed and some steps are omitted based on
this assumption.

The steps for developing a JMon application are as follows:

1. Implement the Java code.

2. Annotate the Java code with required JMon information.

3. Generate the classes from the code.

4. Package the classes into a JAR file.

5. Create the JMon JAR manifest manually or by using the JarProcessor utility.

6. Inject the JAR file into a running correlator that is enabled with the JVM and with the proper Java options
for remote debugging.

This section provides details as follows:

"Debug example of preparing code and JAR file" on page 141

"Debug example of starting correlator and injecting application" on page 143

"Example of debugging in Apama Studio" on page 143

Debugging JMon Applications

Debug example of preparing code and JAR file

Example debug session

Using Apama Studio 5.2.0 142

Consider the following sample Java code, which is the basis for a JMon application. The files
containing the complete code are Simple.java and Tick.java, which are located in the samples
\java_monitor\simple\src directory of your Apama installation.
@Application(name = "Simple",
 author = "John Doe",
 version = "1.0",
 company = "Apama",
 description = "sample")
@MonitorType(description = "A simple Java monitor")

public class Simple implements Monitor, MatchListener {
 public Simple() {}
 public void onLoad() {
 EventExpression eventExpr =
 new EventExpression("all Tick(*, >10.0):t");
 eventExpr.addMatchListener(this);
 }

 public void match(MatchEvent event) {
 Tick tick = (Tick)event.getMatchingEvents().get("t");
 tick.emit();
 }
}

Here is the Tick class (Tick.java):
@EventType(description = "Event that signals a stock trade")
public class Tick extends Event {
 public String name;
 public double price;
 public Tick() {
 this("", 0);
 }

 public Tick(String name, double price){
 this.name = name;
 this.price = price;
 }
}

Assume that Simple.java is part of your Apama Studio project. Open or create the project in Apama
Studio and add the code if necessary. Note that this code is already annotated with the information
required for creating the JMon JAR manifest.

The next step is to compile and pack the class bytecode into a JAR file, and create the manifest that
flags and describes this JAR file as a JMon application. You can do this by setting up a new builder in
the project properties in Apama Studio or through the command line. For the sake of simplicity, the
standard command line calls are described below:

1. Compile the Java code. For example:

javac -classpath "%APAMA_HOME%/lib/correlator_extension_api5.2.jar;%APAMA_HOME%/lib/util5.2.jar"

*.java

2. Package the classes into your JAR file:

jar cf simple-jmon.jar *.class

3. Use the JarProcessor utility to create the manifest for the JAR file. For example, if the JAR is called simple-
jmon.jar, enter:

java -classpath "%APAMA_HOME%/lib/correlator_extension_api5.2.jar"

com.apama.jmon.annotation.JarProcessor simple-jmon.jar

Example debug session

Using Apama Studio 5.2.0 143

Debug example of starting correlator and injecting application
Start a local correlator with remote debugging enabled. For example, if you specify port 8787, the
command line looks like this:
correlator -l license.txt -j -J
-agentlib:jdwp=transport=dt_socket,address=8787,server=y,suspend=n

Inject the JAR into the running correlator. For example:
engine_inject –j simple-jmon.jar

You are ready to start an Apama Studio debug session.

Example of debugging in Apama Studio
You want to connect to the remote correlator and debug the JMon application in Apama Studio. To
do this, you must open the JMon project (or the Apama project with Java support enabled) in Apama
Studio and create a debug launch configuration. This launch configuration connects to the remote
Java application, which is the JVM in the running correlator.

For test purposes, suppose that you create a simple breakpoint in the match() method in Simple.java.
This suspends execution when the correlator reaches a matching event listener.

Send the following events to the correlator to trigger the breakpoint:
Tick("ibm", 1.0)
Tick("ibm", 5.0)
Tick("ibm", 15.0)
Tick("msft", 15.0)

Additional resources for Java debugging

Using Apama Studio 5.2.0 144

As you can see, the debugger stops execution at the specified code breakpoint after the listener finds
the first Tick event with a price greater than 10.0, that is Tick("ibm", 15.0).

Suppose that you want to examine the heap context, that is, the values of the variables. You can
observe this in the top left Debug panel of the Apama Runtime perspective. Select the Simple.match
method stack frame from Thread[ApamaProcessing]. For example:

Note that the top right Variables view now shows the proper stack frame context with all relevant
heap space variable values. The tick variable, defined in the code, is not yet visible. This is because
execution was suspended before the current line was executed. To execute the current line, which
extracts the matching Tick event and assigns it to the tick variable, click Step Over in the Debug
panel toolbar. As you can see, the tick variable now appears in the Variables view. You can select it to
inspect its value, which is, of course, Tick("ibm", 15.0).

Additional resources for Java debugging
This section introduces the basic concepts for debugging JMon applications in Apama Studio.
There are a number of Apama Studio debugging features not mentioned, but the mechanisms
are essentially the same as for other Java applications. For additional information about available
debugging options, see the following Eclipse information:

Running and debugging Java in Eclipse:

http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.jdt.doc.user/
 tasks/task-running_and_debugging.htm

Eclipse And Java: Using the Debugger (Video Tutorial):

http://www.eclipse.org/resources/resource.php?id=405

JDB (Java debugger):

http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-running_and_debugging.htm
http://help.eclipse.org/kepler/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-running_and_debugging.htm
http://www.eclipse.org/resources/resource.php?id=405

Additional resources for Java debugging

Using Apama Studio 5.2.0 145

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/jdb.html

Good video tutorials and practice exercises for debugging Java in Eclipse:

http://eclipsetutorial.sourceforge.net/debugger.html

IBM debugging with Eclipse:

http://www.ibm.com/developerworks/library/os-ecbug/

Debugging JMon Applications

http://docs.oracle.com/javase/1.5.0/docs/tooldocs/windows/jdb.html
http://eclipsetutorial.sourceforge.net/debugger.html
http://www.ibm.com/developerworks/library/os-ecbug/

Launching profiling sessions

Using Apama Studio 5.2.0 146

Chapter 7: Profiling EPL Applications

n Launching profiling sessions ... 146

n The Apama Profiler perspective .. 149

n Using filters ... 153

n Taking snapshots ... 155

n Using snapshots .. 155

n Choosing profiling information columns ... 156

n Updating profile data ... 156

n Displaying Apama perspective preferences .. 157

You can profile Apama applications written in EPL with Apama Studio. Data collected in the profiler
allows you to identify possible bottlenecks in an EPL application. The Apama Studio profiler consists
of the Apama Profiler perspective which includes a variety of views. With the Apama Studio EPL
Profiler, you can profile applications running on both local and remote correlators.

Launching profiling sessions
You can profile an Apama EPL application using a default launch configuration. You can also create
custom profile launch configurations for launching profiling session. For example, you may want the
profiler to launch the application using a correlator different from the project's default correlator or
to profile an application running on a remote correlator.

When a default profile configuraton is launched, it starts the profiler and the default correlator
and the application if they aren’t already running. If they are already running the profiler just
starts profiling the running application. See "Launching a default profiling session" on page
147 for more information on launching a default profiling session.

If you want to profile an application that runs on a non-default correlator, you need to create a
launch configuration that points to the run configuration associated with the desired correlator.
See "Launching a custom profiling session" on page 147 for more information for creating and
launching a custom profiling configuration.

If you want to profile an application that runs on a remote correlator, you need to create a launch
configuration that points to the machine where the correlator is running. In order to profile an
application running on a remote correlator, the remote application needs to be running before
you launch the profiling session. See "Launching a remote profiling session" on page 148 for
more information on creating and launching a configuration for a remote profiling session.

Profiling EPL Applications

Launching profiling sessions

Using Apama Studio 5.2.0 147

Launching a default profiling session
You can profile an Apama EPL application using a default launch configuration or you can create a
custom profiler launch configuration for an application running on a remote correlator.

To launch a profiling session in Apama Studio using the default launch configuration:

1. From the Apama Studio menu, select Run > Profile.

2. By default, Apama Studio displays the Confirm Perspective Switch dialog asking if you want to use the
Apama Profiler perspective. Click Yes. Apama Studio switches to the Apama Profiler perspective and
begins collecting data from the EPL application.

Note, you can change the behavior of the Confirm Perspective Switch dialog by changing a
setting in the Profiling Monitor view's Preferences wizard; see "Displaying Apama perspective
preferences" on page 157.

Launching a custom profiling session
You can create custom launch configurations for profiling Apama EPL applications. See "Creating
a custom profile launch configuration" on page 147 for more information on creating a custom
profiler launch configuration.

To launch a profiling session in Apama Studio using a custom launch configuration, assuming that
you have defined a custom profiler launch configuration:

1. In the Project Explorer right-click the project name and select Profile As > Apama Correlator Profiler. The
Select Profile Application dialog is displayed.

2. In the Select Profile Application dialog, select the launch configuration you want to use and click OK.

3. By default, Apama Studio displays the Confirm Perspective Switch dialog asking if you want to use the
Apama Profiler perspective. Click Yes. Apama Studio switches to the Apama Profiler perspective and
begins collecting data from the EPL application.

Note, you can change the behavior of the Confirm Perspective Switch dialog by changing a
setting in the Profiling Monitor view's Preferences wizard; see "Displaying Apama perspective
preferences" on page 157.

Launching profiling sessions

Creating a custom profile launch configuration
You can create custom profile launch configurations for launching profiling session. For example,
you may want the profiler to launch the application using a correlator different from the project's
default correlator.

1. In the Project Explorer right-click the project and select Profile As > Profile Configurations. The Profile
Configurations wizard starts.

2. In the Profile Configurations wizard, click the New launch configuration button.

Launching profiling sessions

Using Apama Studio 5.2.0 148

3. In the Profile Configurations wizard, replace the default name in the Name field if desired.

4. In the Profile Configurations wizard, on the Connection Details tab, in the Profile a field, use the default
Apama Launch configuration selection.

5. In the Launch Configuration field, click the Browse button. The Choose Launch Configuration dialog is
displayed.

6. In the Choose Launch Configuration dialog, select the run configuration you want to profile and click
OK.

7. In the Profile Configurations wizard, click Apply to save the profile configuration or Profile to save and
launch the profiling session.

Launching a custom profiling session

Launching a remote profiling session
In Apama Studio you can profile an Apama application running on a remote correlator by creating
a custom profiler launch configuration that points to the remote machine where the correlator is
running.

Before you launch a profiling session for an application running on a remote correlator, the remote
application needs to be already running. To launch a profiling session for an application on a remote
correlator, assuming that you have already created a remote profiler launch configuration:

1. In the Project Explorer right-click the project name and select Profile As > Apama Correlator Profiler. The
Select Profile Application dialog is displayed.

2. In the Select Profile Application dialog, select the launch configuration you want to use to connect to
the remote correlator and click OK.

3. By default, Apama Studio displays the Confirm Perspective Switch dialog asking if you want to use the
Apama Profiler perspective. Click Yes. Apama Studio switches to the Apama Profiler perspective and
begins collecting data from the EPL application.

Note, you can change the behavior of the Confirm Perspective Switch dialog by changing a
setting in the Profiling Monitor view's Preferences wizard; see "Displaying Apama perspective
preferences" on page 157.

Launching profiling sessions

Creating a remote profiler launch configuration
You can create custom profile launch configurations for profiling Apama applications running on
remote correlators.

1. From the Project Explorer, right-click the project and select Profile As > Profile Configurations. The
Profile Configurations wizard is displayed.

2. In the Profile Configurations wizard, enter a meaningful name for the configuration in the Name field if
you do not want to use the default name.

3. On the Connection Details tab, in the Profile a field, select Remote Apama correlator.

4. In the Remote Correlator Details section, enter the name of the host and the port in the Host and Port fields.

The Apama Profiler perspective

Using Apama Studio 5.2.0 149

5. If desired, and if the remote correlator is running, click Test Connection to confirm the specified location
information is correct.

6. Click Apply to save the profile configuration or Profile to save and launch the profiling session.

Launching a remote profiling session

The Apama Profiler perspective
The following illustration shows an active profiling session.

The Apama Profiler perspective consists of the following views:

Profiling Monitor view

Execution Statistics view

Profiling EPL Applications

Profiling Monitor view
The Profiling Monitor view shows a tree view of the available profiler sessions. These sessions
could be associated with different applications or associated with applications running on different
correlators.

The Apama Profiler perspective

Using Apama Studio 5.2.0 150

The tool bar for the Profiling Monitor view contains the following buttons:

 — Resume the profiling session.

 — Pause the profiling session.

 — Stop the profiling session.

 — Manually refresh the Execution Statistics view with collected data. By default the data
is automatically refreshed at 10 second intervals; you can change the refresh behavior with the
Preferences button described below.

 — Displays a Preferences wizard where you can change the following:

Specify whether a profiler automatically displays the Apama Profiler perspective.

Specify how often to refresh the Execution Statistics view with new data.

For more information on refreshing profiler data, see "Updating profile data" on page 156.

 — Collapse the entries in the tree view displayed in the Profiling Monitor view.

 — Display the Profiling Monitor view's drop down menu.

The Apama Profiler perspective

Execution Statistics view
The Execution Statistics view displays the timing details of the profiled EPL application. This view
includes the following tabs:

The Apama Profiler perspective

Using Apama Studio 5.2.0 151

Execution Statistics

Comparison of Execution Statistics

You can adjust the way the information is displayed using the buttons on the view's tool bar. The
following tools are available:

 — Apply and manage filters for displaying subsets of the profiling data. This tool is not
available for the Comparison of Execution Statistics tab. For more information on filtering the data,
see "Using filters" on page 153

 — Expand the entire of tree of entries.

 — Collapse the entire of tree of entries.

 — Take a snapshot of the profiling data.

 — Manage snapshots.

 — Specify how to organize the profiling information by Contexts, Monitors/Events, or
Action.

 — Choose which columns to display. You can also change the order in which the columns are
displayed.

The Apama Profiler perspective

The Execution Statistics tab
The Execution Statistics tab carries a sub-title of "Session Summary". By default the left-hand column
displays a tree view of the application's contexts, monitors, and actions organized by contexts. You
can change the display to show profiler information organized by monitors/events and by actions

using the Organize View By button [].

You can filter the profiler information in order to focus on specific application behavior using the

Filter button []. For more information on using filters, see "Using filters" on page 153.

By default the display includes the following three columns of information:

CPU time — The time in seconds this action has been executing.

Cumulative time — The time in seconds spent in this action and all its child actions.

Idle — The time in seconds this context has been idle, waiting for events.

You can also display the following information, by using the Choose Columns button [[].

Empty — The time in seconds this context has been empty, that is, without monitors.

Non-Idle — The time in seconds this context has been non-idle, in other words, when it has had
events to process.

The Apama Profiler perspective

Using Apama Studio 5.2.0 152

Runnable — The time in seconds this context has had work to do, but during which the work has
not been executed by the scheduler.

Plugin — The time in seconds spent in a plugin call.

Blocked — The time in seconds this context has been blocked, for example, waiting for a queue to
become non-full.

Execution Statistics view

Comparison of Execution Statistics tab
This tab compares the most recent profiling data with that of a previous set. For each type of
information there are three associated columns, for example CPU, Old CPU, and Diff CPU. The
leftmost column is the current information, the column labelled "Old" is the information from
the previous set, and the column labelled "Diff" is the change between the new and the previous
information. The previous set is considered the baseline.

By default, the "previous set" consists of the data from the last time it was refreshed. You can change
this behavior to compare the most recent data to data captured in a snapshot at a particular moment
in time. For information on capturing data in a snapshot, see "Taking snapshots" on page 155

As with the Execution Statistics tab, you can change the type of information and how it is displayed on
the Comparison Execution Statistics tab as follows.

Use the Organize View By button [] to organize the profiler information by Contexts,
Monitors/Events, or Actions.

Use the Choose Columns button [] to add, remove, or change the order of the information
columns.

Execution Statistics view

Viewing EPL code
In the Execution Statistics view you can display the EPL code for a specific action or listener. Only

the action-level entries that are shown with the code icon [] are able to display the associated
code. There are other entries, such as garbage collector timings (that is, GC-mark, GC etc.), events
and others for which there is no code association.

To display the code for an action or listener:

In the Execution Statistics view, double-click the action or listener for which you want to view the
code. The EPL source file containing the code for the action or listener opens (if it is not already
open) in the EPL editor.

Using filters

Using Apama Studio 5.2.0 153

The Apama Profiler perspective

Using filters
When viewing the Execution Statistics tab of the Execution Statistics view, you can focus on specific
data by applying a filter to the profiling information.

Profiling EPL Applications

Creating a Filter
You can create filters in order concentrate on particular profiling data. To create a filter:

1.
On the Execution Statistics tab, click the Filter button [] on the view's tool bar and select Manage
Filters. The Manage Filters dialog is displayed.

2. In the Manage Filters dialog, click Add. The Create Filter dialog is displayed.

Using filters

Using Apama Studio 5.2.0 154

3. In the Create Filter dialog, specify the Filter Name and an optional Filter Description.

4.
In the Create Filter dialog, click the Add New Row button []. This adds a row in the table field as
indicated by a new set of parenthesis marks ().

5. Specify the filter criteria as follows:

a. Click the Type column and from the drop-down list select the type of data you want to filter for.

b. Click on the Operation column and from the drop-down list specify the operation that is appropriate to
the Type you are filtering for.

c. Double-click in the Value column and enter an appropriate value; then click in a blank area of the table
to accept the value you specified.

d. You can add other criteria to the filter by ANDing or ORing. In the AND/OR column, select the
appropriate operator from the drop-down list, click the Add New Row and specify the additional filter
criteria as described above.

6. Click OK.

7. In the Manage Filters dialog, select the filter you want and click Apply.

The Execution Statistics tab is updated according to your filter criteria.

Using filters

Managing Filters
Use the Filter tool to manage the use of filters. You can add, edit, or remove filters; change which filter
is used; and revert to the default display of unfiltered data. To manage filters:

1.
On the Execution Statistics tab, click the Filter tool [] and select Manage Filters from the pop-
up menu. The Manage Filters dialog is displayed.

If you want to create a new filter click Add. The Create Filter dialog is displayed. See
"Creating a Filter" on page 153 for more information on creating filters.

If you want to edit an existing filter click, select the name of the filter and click Edit. The Edit
Filter dialog displays the current filter criteria. Edit the filter information as necessary and
click OK.

If you want to remove a filter, select the name of the filter and click Delete.

2. Select the filter you want and click Apply. If you remove all the filters and click Apply, the profiler
displays shows the default unfiltered set of information.

If you are looking at a filtered data set and want to return to the default display of unfiltered data,

click the Filter tool [] and select Reset Filter from the pop-up menu.

Using filters

Taking snapshots

Using Apama Studio 5.2.0 155

Taking snapshots
You can capture profiling data at any moment in time by taking snapshots. You can then compare
current profiling data to the data represented in a snapshot. To take a snapshot:

1.
In the Execution Statistics view, click the Take Snapshot button []. The Create Snapshot dialog is
displayed.

2. Enter a meaningful name in the Snapshot Name field.

3. Specify the source of the data you want to use to create the snapshot as follows:

To populate the snapshot with data that the correlator captures at this point in time, select
Current correlator.

To populate the snapshot with data that has previously been stored on disk in a .csv file select
Select from file. This data would typically be collected using the engine_management tool as, for
example
engine_management -r "profiling get" > myfile.csv

Note, however to be used this way, the .csv file must have been generated using Apama
release 5.0.1 or later.

For more information on the engine_management utility, see "Shutting down and managing
components" in Deploying and Managing Apama Applications.

4. Click OK.

In the Comparison of Execution Statistics tab the baseline columns (labelled "Old") display the data
captured in the snapshot and the columns labelled "Diff" are similarly updated to compare the
current information with that captured in the snapshot. For more information on managing
snapshots, see "Using snapshots" on page 155.

Profiling EPL Applications

Using snapshots
After you create a snapshot the display on the Comparison of Execution Statistics tab is updated to
compare the current data with that captured in the snapshot. You can change this to compare the
current data to another snapshot or the default setting that compares the current data to the data
seen the previous time the data was refreshed. To change the compared sets of data:

In the Comparison of Execution Statistics tab, click the Show Previous Snapshots button [].

If you want to use the data from another snapshot, select the name you assigned to it.

If you want to return to the profiler's default comparison, select Compare last data.

If you want to manage your snapshots

1. Select Manage snapshots.

2. Select the name of the snapshot you want to apply or remove.

Choosing profiling information columns

Using Apama Studio 5.2.0 156

3. Click OKto apply the snapshot or Remove to remove the snapshot.

If you want remove all snapshots, select Clear Snapshots.

Profiling EPL Applications

Choosing profiling information columns
You can specify which information to display in the Execution Statistics view. You can also change
the order in which the columns are displayed. By default, the following columns are displayed:

CPU — The time in seconds this action has been executing.

Cumulative — The time in seconds spent in this action and all its child actions.

Idle — The time in seconds this context has been idle, waiting for events.

1.
In the Execution Statistics view, click the View menu button [] and select Choose columns. The
Choose Columns dialog is displayed.

2. Add a check to the check boxes that correspond to the columns you want to display.

3. Click OK.

The Execution Statistics view is updated to show all the selected the columns.

Profiling EPL Applications

Updating profile data
By default, the Apama Studio profiler polls for data every 10 seconds and then updates the display
in the Execution Statistics view. You can change the polling frequency. You can also change the way
the profiler updates the data from a polling mode (Automatic Refresh) to an on-demand mode (Manual
Refresh). Using the on-demand mode is useful, for example, if you want to let your application run
up to a certain point and then retrieve profile data or if you want to inject a set of test events and then
examine the profile deltas.

To change the way the profiler updates data:

1.
In the Profiling Montior view, click the Preferences button []. The Preferences wizard is displayed.

Displaying Apama perspective preferences

Using Apama Studio 5.2.0 157

2. In the Preferences wizard, select the Apama > Profiling and Logging node in the left pane. In the right
pane, in the Refreshing views field, select the behavior you want and click OK.

If you select Automatic, you can also specify the refresh interval.

Profiling EPL Applications

Displaying Apama perspective preferences
By default, when you launch a profiling session, Apama Studio displays the Confirm Perspective
Switch dialog asking if you want to switch to the Apama Profiler perspective.

You can change the this behavior by changing the setting in the Profiling Monitor view's
Preferences.

To change this behavior:

1.
In the Profiling Monitor view, click the Preferences icon []. This displays the Preferences wizard.

2. In the Preferences wizard, select the Apama > Profiling and Logging node in the left pane. In the right
pane, in the Switch to associated perspective when profiling or importing logs field, select the behavior you
want and click OK.

Profiling EPL Applications

Introduction to the Data Player

Using Apama Studio 5.2.0 158

Chapter 8: Using the Data Player

n Introduction to the Data Player ... 158

n Using the Data Player ... 158

n Data Player Control view .. 164

n Creating query templates .. 166

n Command-line Data Player interface ... 167

With the Apama Data Player you can play back previously saved event data as you develop your
application. During playback, you can analyze the behavior of your application. Or, if you modify
the saved event data, you can analyze how your application performs with the altered data. Apama
Studio plays back event data that has been stored in standard data formats.

Introduction to the Data Player
The Data Player relies on Apama Database Connector (ADBC) adapters that are specific to standard
ODBC and JDBC database formats as well as the proprietary Apama Sim format. These adapters
run in the Apama Integration Application Framework (IAF), which connects the data sources to the
correlator.

For more information on ADBC, see "Using the Apama Database Connector" in Deploying and
Managing Apama Applications.

For more information on the IAF, see "The Integration Adapter Framework" in Developing
Adapters (available if you selected Developer during installation.

The Apama Data Player consists of both the Query Editor and the Data Player Control.

Using the Data Player

Using the Data Player
In addition to the normal operations for running an application in Apama Studio, in order to play
back event data in the Data Player, you need to perform a few other steps. Broadly, these steps are:

1. Configure the Apama Studio project to use the appropriate ADBC adapter for the data source and database
and specify the event types that will be played back along with the appropriate IAF mapping.

2. Launch the project so it can establish a connection to the data source.

3. Specify a playback query to determine what data from the database you want to play back.

4. Use the Data Player control to specify the following: how fast you want to play back the data; over what
time range; and what throttling period to use.

5. Run the playback session.

Using the Data Player

Using Apama Studio 5.2.0 159

Adding the ADBC adapter
If you want to use the Apama Data Player in your project, you need to add and configure the Apama
Database Connector adapter that is appropriate to the data source used by the project: ODBC, JDBC,
or Sim.

1. There are two ways of adding an ADBC adapter to a project.

If you are creating a new Apama project, select File > Project > New > Apama , give it a name, and click
Next.

If you are adding an ADBC adapter to an existing project:

a. In the Project Explorer right-click the project and select Apama > Add Adapter. The Add Adapter
Instance dialog opens.

b. If desired, in the Add Adapter Instance dialog, create a new name for the adapter instance or accept
the default instance name. Apama Studio prevents you from using a name that is already in use.

2. In the New Apama Project dialog or the Add Adapter Instance dialog, select the ADBC adapter
bundle that is appropriate to the kind of data source your application will use. Click Finish or OK.

Apama Studio adds an Adapters node to your project if not already present. The node will contain a
node for the new adapter. The adapter node contains an instance of the new adapter.

When you add a data source-specific adapter, the ADBC Adapter common (Apama Database Connector
Common common) bundle will be added to the project automatically.

Configuring the ADBC adapter
To configure an instance of an ADBC adapter:

1. In the Project Explorer, expand the project’s Adapters node and open the adapter folder (either Adapter for
ODBC, Adapter for JDBC, or Adapter for Sim).

2. Double-click the entry for the adapter instance you want to configure. The configuration file opens in the
adapter editor. For example, a configuration file for an instance of the ADBC-JDBC adapter looks like this:

Using the Data Player

Using Apama Studio 5.2.0 160

The editor’s graphical display presents configuration information in three separate sections:

General Properties

Advanced Properties

Variables

For an instance of the ADBC-ODBC adapter, the display is similar but with fewer items in the
General Properties and Variables section. For an instance of the ADBC-Sim adapter, the display
only shows the Variables section.

For more information on specifying ADBC properties and variables, see "Configuring an ADBC
adapter" in Deploying and Managing Apama.

Launching the project
To create queries most efficiently, the project needs to be running so that you can see what data
sources, databases, and existing queries are available. If you need to create a new run configuration
the steps are as follows:

1. Select the project for which to create the run configuration.

2. In the Apama Studio menu bar, select Run > Run Configuration.

3. In the Run Configuration wizard, select Apama Application and click the New launch configuration

button ().

4. On the Apama Project tab, specify the following:

Using the Data Player

Using Apama Studio 5.2.0 161

Specify the Name of the run configuration.

Select or accept the Project.

Select the Enable DataPlayer check box. If this box is not checked, the Query Editor and Data
Player control are disabled.

Select Generate time events from data if you want the correlator to use external time events
(starting the correlator with the -Xclock option). The Generate time events from data check box is
available only if you checked the Enable DataPlayer check box. For details about the format of
correlator &TIME events, see Generating events that keep time in Developing Apama Applications in
EPL.

When Generate time events from data is checked, the time field specified in the playback query
must be a float value that represents a number of seconds since the epoch. The data player
transforms these values into &TIME events.

When Generate time events from data is disabled (unchecked), the Data Player’s Speed and Play
to controls are disabled.

5. Click Run to save and launch the project. Or click Apply to save the configuration without running the
project.

Specifying playback queries
You create and modify Data Player queries with the Data Player Query Editor. The information for
the queries is stored in the project’s dataplayer_queries.xml file. To create or modify a Data Player
query:

1. In the Project Explorer view, expand the project and then expand the config folder. Double click on the
dataplayer_queries.xml file. Apama Studio opens the Query Editor. If the project is running, you will be
able to make selections from the Datasource, Database, and Query drop-down lists. If the project is not
running, most of the controls are disabled.

If the project is not running the Query Editor will report that it is offline; in this mode, you
cannot select Data Sources or Databases and all the controls are disabled.

Using the Data Player

Using Apama Studio 5.2.0 162

If you are creating a new query, you can also right-click on the name of the project and select New
> Data Player Query from the pop-up menu. Use this method if you are working on an imported
project that does not yet contain a dataplayer_queries.xml file.

2.
Click the Add Query button(). The New Query dialog is displayed.

3. Provide a name for the new query and click OK.

4. In the General Settings section, specify the following properties for the query:

Description — Provide a description of the query.

Data Source — Select an available Data Source from the drop down list.

Database — Select an available Database from the drop down list.

Return Type — The choices are Native or Wrapped. When Native is selected, each matching event
will be sent as-is to the correlator. When Wrapped is selected, each matching event will be
“wrapped” in a container event. The container event will be named using the event name.
For example a Tick event would be wrapped in a WrappedTick event. Event wrapping allows
events to be sent to the correlator without triggering application listeners. A separate user
monitor can listen for wrapped events, modify the contained event, and reroute it such that
application listeners can match on it.

5. In the Query section, the Use Query Template check box specifies whether you want to use a Query
Template (checked) or a Raw Query (unchecked).

If you are using a Query Template:

a. Select a Query Template from the drop-down list. The choices are the canned queries supplied with
the Apama installation: findAll, findEarliest, findLatest, and getCount. You can add your own Query
Templates; see "Creating query templates" on page 166.

b. If the Query Template uses replaceable parameters, they will be displayed in the Name and Value table
in the Query section of the editor.

Using the Data Player

Using Apama Studio 5.2.0 163

6. Double click a cell in the Value column and type the entry to use for the query, for example the name of a
database table or column.

If you are using a Raw Query, in the Query String text area specify the statement to execute as
follows:

For ODBC and JDBC data sources, use SQL syntax.

For an Apama Sim data source, use the following keywords (keywords are case insensitive):

TIME with =, <, >, >=, and <= comparators and the time. Use one or two TIME statements. If two
TIME statements are used, only data that matches both statements will be returned.

INCLUDE plus the event type to retrieve.

EXCLUDE plus the event type to not retrieve.

Examples of this syntax are:
TIME=12345
TIME=12345;INCLUDE=(com.apama.something)
TIME=12345;INCLUDE=(com.apama.something);EXCLUDE=(com.apama.something.abc)
TIME>12345;TIME<20000

7. In the Event Type field, specify unmapped-sql when the database table contains an eventString column
that contains stringified Apama events. However, if the database table contains individual columns that are
mapped to event fields in the ADBC adapter, then specify the name of the specific event in the Event Type
field.

The value that you specify in the Event Type field becomes the value for _ADBCType in the ADBC
adapter.

8. In the Time Column field, specify the time column in your table. For example, if your table contains a
TransactionTime column then you could specify TransactionTime in the Time Column field. Ensure that the
value in the time column is a float value that represents a number of seconds since the epoch.

9. In the Advanced Settings section specify any Extra Parameters.

a. Right click in the Name column and select Add from the pop up menu (or double click in the Name
column).

b. Specify the Name of the Extra Parameter.

c. In the Value column, specify the value of the extra parameter.

10. Save the query.

When you save the query, the query name is added to the Data Player Control view’s drop down
query list.

The Query Editor tool bar contains the following buttons:

 Configure Credentials — This displays the Credential for selected data source dialog where
you add a user name and password for the current query if they are required for accessing
the data source and select the scope of the credentials from a drop-down list. You can specify
if the credentials apply globally, to a specific data source, or to a specific query. Credentials
entered here are shared by the Query Editor and the Data Player.

Data Player Control view

Using Apama Studio 5.2.0 164

 Clone Query — Select this if you want to make a copy of the current query. The Clone
Query dialog prompts you for the name of the copy. You can then edit the specifications for
the query.

 Add Query — Select this if you want to add a new query. The New Query dialog prompts
you for the name of the new query.

 Rename Query — Select this if you want to rename the query. The Rename Query dialog
prompts for the new name of the query.

 Delete Query — Select this if you want to delete the query. The Delete Query dialog
prompts you to confirm that this is what you want to do.

Data Player Control view
The Data Player Control view is enabled when the project is launched if Enable DataPlayer has been
checked in the project’s Run Configuration. The tab for this view is located in the lower right of the
Apama Developer perspective next to the Console and Tasks views. If the Data Player Control view
is not shown, select Window > Show View > Data Player Control from the Apama Studio menu.

Using the Data Player

Playback settings
The individual controls available on title bar of the Data Player Control view are:

Query — The available queries are listed in the Query drop-down list on the title bar.

Data Player Control view

Using Apama Studio 5.2.0 165

Preferences — The Preferences dialog is displayed by clicking the view Menu down arrow at the
right-hand side of the control’s title bar. From the Preferences dialog you can select default Time
Zone to use and the Date/Time Format to use during playback.

Speed — Specify playback speed from the drop-down list; 10x is generally a good balance
between speed and understandability.

Throttle — This specifies the Data Player throttling period. The Data Player coalesces scenario
update events sent to dashboards and other clients over a throttling period in order to enhance
playback performance. The default setting is 5.0 seconds. You can change this setting to match
your application. If data overwhelms the correlator or clients, increase the setting. If data arrives
too slowly for clients to operate optimally, reduce the setting. Setting the value to 0.0 turns it off.

Data Player Control view

Playback controls
The Data Player playback controls are:

Play — Start the playback.

Stop — Stop the playback.

Pause — Pause the playback.

Step — Plays back a single event at a time.

Play to — Displays the Choose Date Time dialog so you can select a specified date and time at
which the playback will pause.

Data Player Control view

Playback status
The Data Player displays the following status information:

Total Events — Shows the total events that have been played back during the current playback
operation.

Last Event Time — Shows the recorded time of the last event played back.

Last Event — Shows the contents of the last event played back.

When a playback session has run to completion or if you click the Stop button and Generate time
events from data has been enabled, the Data Player control displays the Query Done dialog. You
can move the dialog box around if it covers up status information needed in order to decide
whether to restart or stop the project.

Creating query templates

Using Apama Studio 5.2.0 166

Restart — Click Restart if you want to run another playback session. In the Terminate launch
dialog click No. You can then display the Data Player control again and start another playback
session.

Stop — Click Stop if you want to terminate all processes associated with the playback session.

Data Player Control view

Creating query templates
If you want to create a new query template, you need to specify them in the project’s query template
file. The query template file is found in the project’s bundle_instance_files folder and is named ADBC-
queryTemplates-SQL.xml if you are using an ODBC or JDBC data source or ADBC-queryTemplates-Sim.xml if
you are using a Sim data source. To add a query template:

1. In the Project Explorer view, expand the project’s bundle_instance_files folder and then expand either the
ADBC_for_ODBC, ADBC_for_JDBC, or ADBC_for_Sim folder as appropriate.

2. Double click the query templates file, either ADBC-queryTemplates-SQL.xml or or ADBC-queryTemplates-
Sim.xml. The file opens in the Apama Studio text editor. The following is the standard findLatest query
template for ODBC and JDBC data sources.

<query
 name="findLatest"
 description="Get the row with the latest time."
 implementationFunction="substitution"
 inputString="select * from ${TABLE_NAME} order by
 ${TIME_COLUMN_NAME} desc limit 1">
 <parameter
 description="Name of a table to query"
 name="TABLE_NAME"
 type="String"
 default=""/>
 <parameter
 description="Name of the time column"
 name="TIME_COLUMN_NAME"
 type="String"
 default="timeField"/>
</query>

3. The query templates are defined in the <query> element. The available attributes you can specify are:

name — A short name that will be displayed in the Query Template drop-down list.

description — A short description of the query.

implementationFunction — Currently query templates support the substitution function. This
allows a token to be used as a place holder in a SQL query.

Command-line Data Player interface

Using Apama Studio 5.2.0 167

inputString — For ODBC and JDBC data sources, use standard SQL syntax, from the example
above:

inputString="select * from ${TABLE_NAME} order by
 ${TIME_COLUMN_NAME} desc limit 1">

In the above example, $(TABLE_NAME) and $(TIME_COLUMN_NAME) are parameters that will be replaced
with a database table and column name when you create a query from the template (see
parameter, below).

For Sim data sources use the TIME keyword plus the comparators =, ><>=, <= plus the
time. You can use one or two TIME expressions. Note, because you are adding the expression to an
xml file, you need to use > and < instead of the characters > and <. Do not use spaces before
or after > and <.

The inputString expression can also use the INCLUDE, and EXCLUDE keywords, for example:
TIME=12345;INCLUDE=(com.apama.something);EXCLUDE=(com.apama.something.abc)
TIME>12345;TIME<20000

parameter — For ODBC and JDBC data sources you can specify parameters and default values
for the query template. This allows you to create different queries from the same template
that, for example, query different tables or different columns in the database. From the above
example:

<parameter
 description="Name of a table to query"
 name="TABLE_NAME"
 type="String"
 default=""/>
<parameter
 description="Name of the time column"
 name="TIME_COLUMN_NAME"
 type="String"
 default="timeField"/>

When you create a query from a template that has the parameters shown above in the Query
Editor, you will specifiy the names of the database table and column to use with the query.

4. Save the query template file when you finish modifying it.

Using the Data Player

Command-line Data Player interface
When you are ready to test your application, you can use the Data Player command-line interface to
write scripts and unit tests to exercise the API layers. In some cases it might be easier to play back
events to the correlator using the command-line interface as compared to using the Data Player GUI
in Apama Studio.

To use the command-line interface to the Data Player, you must have already used the GUI interface
in Apama Studio to define queries and query configurations in Apama Studio. When you use the
command-line interface, you specify the query names and query configurations that you created in
Apama Studio.

For more information on using the Data Player command line interface, see "Using the Data Player
command line interface" in Deploying and Managing Apama Applications.

Using the Data Player

Starting the wizard

Using Apama Studio 5.2.0 168

Chapter 9: Generating Dashboards

n Starting the wizard .. 168

n Using the wizard ... 169

n Using the titlebar/toolbar ... 170

n Using the Introduction form ... 170

n Using the Main, Create, Edit, and Details Forms .. 171

n Using the layout configuration forms ... 173

This section describes how to generate dashboards for a given scenario by using the Dashboard
Generation wizard.

Dashboards provide the ability to view and interact with scenarios and DataViews. They contain
charts and other objects that dynamically visualize the values of scenario variables. Dashboards
can also contain control objects for creating, editing, and deleting scenario instances. You create
Dashboards either with the Dashboard Generation wizard or with the Dashboard Builder.

The wizard allows you to generate simple, default dashboards, customized by your choices
regarding layout, visualization objects to display, and scenario variables to use with each
visualization object.

The Builder is a graphical composition tool that gives you fine-grained control over a dashboard’s
appearance and behavior. It also supports a wider array of visualization and control objects than
does the wizard. Advanced users can use the Builder instead of the wizard to create dashboards
from scratch, or they can use the Builder in conjunction with the wizard to modify or augment
generated dashboards. See Building Dashboards for more information on the Dashboard Builder.

The wizard allows you to do all the following:

Create and edit dashboard-generation configurations

Save configurations to an XML file

Generate dashboards from a configuration

Once you have finished generating your dashboards with the wizard (or finished building or
modifying them with the Builder), follow the steps described in "Preparing Dashboards for
Deployment" on page 177.

Note that if you modify a dashboard with the Builder, the changes you make cannot be propagated
back to the configuration that generated the dashboard. So once you modify a dashboard with the
Builder, you no longer use the wizard for development of that dashboard.

Starting the wizard
You start the Dashboard Generation wizard by opening your project’s dashboard-generation
configuration file, dashboard_generation.xml in your project’s config folder. This is the file in which
saved configurations are stored.

Using the wizard

Using Apama Studio 5.2.0 169

Follow these steps to start the wizard:

1. Open your project’s config folder. If config or config\dashboard_generation.xml does not exist (because
your project was created with a prior Apama release), right click on the project folder and select Add
Dashboard Generation Configuration from the pop-up menu.

2. Double-click on dashboard_generation.xml, or else right click on it and select Open With > Apama
Dashboard Generation Editor from the pop-up menu. The wizard appears.

Generating Dashboards

Using the wizard
Use of the wizard involves the following steps:

1. Use the toolbar to create a new dashboard-generation configuration, or to select a previously saved
configuration. See "Using the titlebar/toolbar" on page 170.

2. For each of the wizard’s forms, fill out or modify the settings (or accept the default or previously saved
settings), and then click Next.

3.
On the toolbar, click the tool icon in order to generate the dashboards. See "Using the titlebar/
toolbar" on page 170.

At any time, you can save configuration changes by selecting Save in the Apama Studio File menu.

Using the titlebar/toolbar

Using Apama Studio 5.2.0 170

The wizard’s forms are discussed in the following sections:

"Using the Introduction form" on page 170

"Using the Main, Create, Edit, and Details Forms" on page 171

"Using the layout configuration forms" on page 173

Generating Dashboards

Using the titlebar/toolbar
The titlebar/toolbar is located at the top of the wizard. It allows you to select a configuration to edit.
It also allows you to add, remove, and rename configurations.

The titlebar/toolbar includes the following elements:

Title: At the far left, Dashboard Generation: followed by the project name appears.

Config field: A drop down list of configurations appears next to the label Config:. These are all
the existing configurations for the current project. When you edit a configuration, or generate
dashboards for a configuration, you must first select the configuration from the list.

 tool icon: Generates dashboards for the configuration specified in the Config field (see
above), and displays a dialog that indicates the location of the generated dashboards. Generated
dashboards are placed in your project’s dashboards folder.

 tool icon: Adds a new, named configuration

 tool icon: Renames the configuration specified in the Config field (see above).

 tool icon: Removes the configuration specified in the Config field (see above).

Generating Dashboards

Using the Introduction form
The Introduction form appears when the wizard first starts, as well as when you add a new
configuration. It allows you to specify a text description for the dashboards, a scenario for which to
generate the dashboards, and a color scheme for the dashboards. It also allows you to specify the
types of dashboards to generate.

Using the Main, Create, Edit, and Details Forms

Using Apama Studio 5.2.0 171

The Introduction form has the following editable components:

Description: Enter an optional text description of the current dashboard-generation configuration.

Scenario: Select the scenario for which dashboards are to be generated. The visualization objects
of the generated dashboards are attached to data from the specified scenario’s variables.

This dropdown menu is disabled if your project has no scenarios. After you import or create a
scenario, click on the icon next to the dropdown menu in order to refresh its contents.

Scheme: Select an item from the dropdown list in order to control either the dashboard
background color or the fill color of visualization objects and forms in the dashboards.

Select pages: Click the checkbox for each type of dashboard that you want to be generated.

Main: First dashboard page that the end user sees in each session. Contains buttons that allow the
end user to open other dashboards.

Create: Allows end users to create new scenario instances.

Edit: Allows end users to edit the selected scenario instance.

Details: Provides a detailed view of scenario instances or of a selected scenario instance.

Generating Dashboards

Using the Main, Create, Edit, and Details Forms
These forms allow you to specify information about each dashboard to be generated (as specified in
the Select pages section of the Introduction form), including height, width, titles, logo, and layout.

Using the Main, Create, Edit, and Details Forms

Using Apama Studio 5.2.0 172

One of these forms appears when you press Next in the Introduction form, and when you press Next in
the layout configuration form for the previous dashboard page (main, create, or edit).

For each dashboard, the wizard includes a form with the following editable components:

Width: Specify the width of the dashboard window in pixels.

Height: Specify the height of the dashboard window in pixels.

Title: Enter the title of the dashboard window. The title appears in the top, left portion of the
window. This field is optional; you can leave it empty.

Subtitle: Enter the subtitle of the dashboard window. The subtitle appears beneath the Title. This
field is optional; you can leave it empty.

Logo: Select a graphic file. The dropdown list includes all supported graphic files in the dashboard
\images folder under your project folder. Supported formats include GIF, JPG, and PNG.The logo
appears in the top, right portion of the generated dashboard. After you import or create a new
graphic file, click on the icon next to the dropdown menu in order to refresh its contents. This
field is optional; you can leave it empty.

Layout: Click the radio button for the desired layout. Each section of a dashboard’s layout contains
one visualization object (table, bar graph, or pie chart) or one form, as specified in the layout
configuration forms.

Generating Dashboards

Using the layout configuration forms

Using Apama Studio 5.2.0 173

Using the layout configuration forms
These forms allow you to enter information about each section of each dashboard’s layout, including
the visualization object to use in that section, and how to attach the object to scenario variables.

For each section of each dashboard (main, create, edit, or details), the wizard includes a form with
the following editable elements:

Choose content: Select an object to appear in the current section of the layout. The current section
of the layout is indicated by the check mark in the layout diagram to the left of this field.

Scenario variables table: Use the buttons to ensure that the Selected variables column contains
those variables that you want attached to the object specified in the Choose content field. Select an
item or items in the Available variables column to activate the Add button; select an item or items in
the Selected variables column to activate the Remove button.

Summary tables contain one row for each scenario instance, and one column for each variable that is
included in the Selected variables column. A cell in a given column and row contains the value of the
column’s corresponding variable for the row’s corresponding scenario instance.

Bar charts contain one group of bars for each numeric variable that is included in the Selected
variables column. Within each group, there is one bar for each scenario instance. The size of a given
bar in a given group is proportional to the value of the group’s corresponding numeric variable for
the bar’s corresponding scenario instance.

Using the layout configuration forms

Using Apama Studio 5.2.0 174

Pie charts contain one slice for each scenario instance. The size of a given slice is proportional to the
value of the first included, numeric variable for the slice’s corresponding scenario instance.

Form panels contain one text-entry field for each scenario variable that is included in the Selected
variables column. Create and Edit dashboards use entered values in order to initialize or update the
variables.

If you select Summary Table for the Choose content field, the following elements are also included:

Table header: Enter a label for the table

Column name: Select a variable in the Selected variables column of the scenario variables table.
Enter the header for the selected variable’s corresponding table column. Leave this field blank to
use the variable name as the column header.

Format: Select a variable in the Selected variables column of the scenario variables table. Enter a
format string for the selected variable’s corresponding table column. Specify numerical formats
based on the Java format specification, or with the following shorthand:

$ for US dollar money values

$$ for US dollar money values with additional formatting, () for non-money values, formatted
similar to money

for positive or negative whole values

Specify date formats based on the Java date specification.

If you select Form Panel for the Choose content field, the following element is also included:

Using the layout configuration forms

Using Apama Studio 5.2.0 175

Display name: Select a variable in the Selected variables column of the scenario variables table.
Enter a label for the selected variable’s corresponding text-entry field. Leave the Display name
field blank to use the variable name as the field label.

If you select Bar Chart or Pie Chart for the Choose content field, the following elements are also
included:

Using the layout configuration forms

Using Apama Studio 5.2.0 176

Chart header: Enter a heading for the chart.

Show legend: Select to show a legend for the chart. The legend indicates the mapping from
bar or pie-slice color to value of the scenario’s first non-numeric variable for the bar or slice’s
corresponding scenario instance.

Filter by instance: Select to filter out all scenario instances except the one that corresponds to the
selected row in a summary table on the current dashboard. This allows the end user (the user
of the generated dashboard) to select the scenario instance to be visualized. In this case, the
bar chart has only a single bar for each numeric variable, rather than a group of bars for each
numeric variable.

Generating Dashboards

Dashboard feature checklist

Using Apama Studio 5.2.0 177

Chapter 10: Preparing Dashboards for Deployment

n Dashboard feature checklist .. 177

n Changing correlator definitions for deployment ... 178

n Choosing among deployment types .. 178

n Using the Deployment Configuration editor ... 181

n Generating a deployment package from the command line .. 186

n Sharing information with the Dashboard Administrator .. 187

This section describes how to prepare a project’s dashboards for deployment, including how to create
a deployment configuration with the Dashboard Deployment Configuration Editor, as well as how to
use the Packaging wizard to generate a deployment package.

Once you have followed the steps described here, if you want to deploy on additional application
servers without using Apama Studio, you or another user must follow the steps described in
Deploying and Managing Apama Applications, "Deploying Dashboards".

Follow these steps in order to prepare a project’s dashboards for deployment, generate a
deployment, packag:

1. Ensure that the dashboards have the required functionality. See "Dashboard feature checklist" on page
177.

2. Change your dashboard’s correlator definitions so that they specify deployment correlators. See
"Changing correlator definitions for deployment" on page 178.

3. Decide which type or types of deployment to support for your project. See "Choosing among
deployment types" on page 178.

4. Create a deployment configuration or deployment configurations by using the Dashboard Deployment
Configuration Editor. See "Using the Deployment Configuration editor" on page 181.

5. Generate a deployment package either with the Dashboard Package wizard or with the
dashboard_management command line tool. See "Using the Dashboard Package wizard" on page 185
and "Generating a deployment package from the command line" on page 186.

6. If necessary, communicate the appropriate information to the individual who will complete the deployment
process. See "Sharing information with the Dashboard Administrator" on page 187.

Dashboard feature checklist
This section contains a checklist of capabilities that you should include in a project’s dashboards in
order to ensure that the dashboards provide all standard dashboard functions. Most projects require
all these capabilities, but some projects may not.

Summary view: Displays a listing of all the instances of a scenario or all the items of a DataView.

Detail view: Provides detailed information about a selected scenario instance or DataView item.

Changing correlator definitions for deployment

Using Apama Studio 5.2.0 178

Create: Allows creation of new scenario instances or DataView items.

Edit: Supports editing of existing scenario instances or DataView items.

Delete: Allows deletion of scenario instances or DataView items.

The Statistical Arbitrage sample included with Apama is an example of a scenario dashboard that
provides all these capabilities.

Preparing Dashboards for Deployment

Changing correlator definitions for deployment
When you create a dashboard in Dashboard Builder, use a development correlator. When you deploy
a dashboard for use with a live correlator, change the correlator host and port so that they reference
the live correlator.

This can be done in two ways:

In the Dashboard Builder, select Tools > Options... and use the Apama tab to specify the
deployment correlator or correlators. You must do this before you generate a deployment package
with the Dashboard Deployment Configuration Editor. See Specifying Data Sources on page 29 in
Building Dashboards.

When you or another user starts a Data Server or Display Server that will serve event data to
your deployed dashboard, use the -c or --correlator option to override the host and port specified
in Dashboard Builder for a given correlator logical name. See Managing the Dashboard Data
Server and Display Server in Deploying and Managing Apama Applications.

If a user other than you will complete the deployment as described in Deploying and Managing Apama
Applications, you must communicate to this other user the logical name for each correlator as well as
the host name and port for each deployment correlator (if any) that you defined.

Preparing Dashboards for Deployment

Choosing among deployment types
Apama supports two types of dashboard deployment:

Web-based: as an applet or Java Web Start application, or as a simple, thin-client Web page (thin-
client deployment is known as Display Server deployment, because it uses the Display Server to
mediate correlator access)

Local: as a locally-installed desktop application (the Dashboard Viewer) together with
dashboard-specific files that the application can open

The following sections compare Web-based deployments with local deployments with regard to
these factors:

"Application installation" on page 179

"Authentication" on page 179

"Authorization" on page 179

Choosing among deployment types

Using Apama Studio 5.2.0 179

"Data Protection" on page 180

"Scalability" on page 180

They are followed by a section on "Choosing among Web-based deployment types" on page 180.

Note, the valueHigh(Low)AlarmCommand property of Range Dynamic Objects only works for non-
display server deployments. For display server deployments, only the valueHigh(Low)AlarmImage and
the valueHigh(Low)Color properties will be honored.

Preparing Dashboards for Deployment

Application installation
Local deployments require the use of the Dashboard Viewer desktop application (available on
Windows platforms only). End users open locally-deployed dashboards in the Dashboard Viewer,
which must be pre-installed locally or on a shared file system. See the Using the Dashboard Viewer for
more information.

With Web-based deployment, the Dashboard Viewer does not need to be installed locally.
Dashboards are invoked through a Web browser, and are installed on demand, as simple web
pages, applets, or Web Start applications, so they can easily be deployed across a wide area network,
including the Internet.

Authentication
Web-based deployments provide Web-based login functionality and use the authentication
mechanism provided by your application server. They support authentication customization by
allowing you to configure your application server to use the security realm and authentication
service of your choice.

Local deployments include Data Server or Display Server login functionality, and support
authentication by allowing you to supply any JAAS-supported authentication module as a plug-in to
the Data Server or Display Server.

Authorization
Web-based deployments support role-based dashboard access control, which allows you to associate
a role with a deployed dashboard, and to authorize use of the dashboard only for application server
users with the dashboard’s associated role.

Local deployments support dashboard access control by allowing you to use the system security
mechanisms in order to restrict access to the deployed dashboard files.

Both types of deployment support scenario and DataView access control, which allows you to
control who can have which type of access to which scenarios and DataViews.

Choosing among deployment types

Using Apama Studio 5.2.0 180

Data Protection
With Web-based deployments you can secure inter-process communication by enabling HTTPS
in the application server. With local deployments you can secure inter-process communication by
enabling secure sockets (SSL) in the Data Server or Display Server.

With both types of deployment you can secure inter-process communication through the use of
secure channels (SSH) and virtual private networks (VPN).

Scalability
Both types of deployment are highly scalable, since both use the Data Sever or Display Server to
mediate access to correlators.

Choosing among Web-based deployment types
Each Web-based deployment is one of the following:

Applet

WebStart application

Thin-client Web page

The following sections compare these three types of deployment with regard to the following factors:

"Installation" on page 180

"Served data" on page 180

"Refresh latency" on page 181

"Dashboard command support" on page 181

Installation
For applet and WebStart deployments, the local Web browser must have the Java plug-in. For thin-
client Web page deployments, no Java plug-in is required.

Served data
The Data Server mediates correlator access for applet, WebStart, and local deployments; the Display
Server mediates correlator access for simple thin-client, Web-page deployments.

The Data Server delivers raw data from which deployed dashboards construct the visualization
objects that they display. The Display Server, in contrast, delivers already-constructed visualization
objects in the form of image files and image maps, and therefore no Java plug-in is required on
clients of the Display Server.

Using the Deployment Configuration editor

Using Apama Studio 5.2.0 181

Refresh latency
The Display Server's minimum refresh latency (5 seconds) is greater than that of the Data Server. Use
the Data Server for applications that require high-frequency screen updates.

Dashboard command support
Applet deployments do not support dashboard actions that are system commands (that is, actions
that are specified with the Define System Command dialog).

Dashboard iPad Support
Dashboards targeted for the Apple iPad must be Display Server deployments.

Using the Deployment Configuration editor
The Deployment Configuration Editor is a form-based interface that allows you to specify
dashboard deployment configurations and save them for future use. It also allows you to launch the
Packaging wizard, which you can use to generate deployment packages (.war files or .zip files) from
configurations.

See the following sections for detailed information:

"Starting the Configuration editor" on page 181

"Saving deployment configurations" on page 182

"Sections of the configuration editor GUI" on page 182

"Title bar/Toolbar" on page 182

"General Settings" on page 183

"Layout" on page 185

"Additional JAR Files" on page 184

"Startup and Server" on page 184

"Using the Dashboard Package wizard" on page 185

Preparing Dashboards for Deployment

Starting the Configuration editor
Follow these steps to start the Configuration Editor:

1. If you are using the Project Explorer view, ensure that a project is selected.

2. In either the Project Explorer view or the Workbench Project view, select New > Dashboard
Deployment from the File menu. (You can also right-click in the navigation pane and select Dashboard
Deployment from the popup menu. In the Workbench Project view, you can also click the New button

Using the Deployment Configuration editor

Using Apama Studio 5.2.0 182

that is above the navigation pane and select Dashboard Deployment from the Apama folder, or click the
down arrow that is next to the New button, and select Dashboard Deployment from the popup menu.)

3. In the New Dashboard Deployment Configuration dialog, enter a name in the Configuration field.
The Dashboard Deployment Configuration Editor uses this as the name of the new configuration.

4. Click Finish.The Dashboard Deployment Configuration Editor appears, and displays the new dashboard
configuration. In addition, a new dashboard-deployment configuration file (dashboard_deploy.xml) appears
under the current project’s config folder, if one wasn’t already present.

Saving deployment configurations
Select Save in the Apama Studio File menu to save configuration changes.

Sections of the configuration editor GUI
The Configuration Editor has the following sections:

"Title bar/Toolbar" on page 182

"General Settings" on page 183

"Startup and Server" on page 184

"Additional JAR Files" on page 184

"Layout" on page 185

Title bar/Toolbar

Using the Deployment Configuration editor

Using Apama Studio 5.2.0 183

The title bar/toolbar appears at the top of the Configuration Editor. It allows you to select a
configuration to edit. It also allows you to add, remove, and rename configurations, as well as to start
the Packaging wizard.

The title bar/toolbar includes the following elements:

Title: Dashboard Deploy: followed by the project name appears at the far left.

Configuration field: A drop down list of configurations appears next to the label Configuration:.
These are all the existing dashboard configurations for the current project. When you edit a
configuration, you must first select the configuration from the list.

Dashboard Package: Starts a wizard that can generate deployment packages for one or more
of the available configurations.

See "Using the Dashboard Package wizard" on page 185.

 Add: Adds a new, named configuration

 Rename: Renames the configuration specified in the Configurations field (see above).

 Remove: Removes the configuration specified in the Configurations field (see above).

General Settings
This section allows you to specify a name, description and deployment type, as well as an entry-
point dashboard file or a panels configuration file.

It has the following editable elements:

Deploy Name text field: Enter a name to be used as the file name of the generated deployment
package. This name is also used as the directory name for temporary deployment files. Do not
use spaces in this field.

Choose Deployment Type: Select the type of deployment for which you want to prepare your
dashboard: WebStart, Applet, Display Server, or Local.

Using the Deployment Configuration editor

Using Apama Studio 5.2.0 184

Dashboard Entry: Select the dashboard entry point, the file to be used as the initially-displayed
dashboard. If you are using multiple display panels, select a panels-initialization file.

If a user other than you will complete the deployment as described in Deploying and Managing Apama
Applications, you must communicate to this other user the file name specified in the Deploy Name text
field as well as the deployment type chosen from the Choose Deployment Type drop down list.

Startup and Server
If you selected a Web-based deployment type (that is, Web Start, Applet, or Display Server
deployment), the Startup and Server section is visible:

This section contains the following editable elements:

Host text field: Specify the host of the Data Server or Display Server that will serve data to the
deployed dashboard.

Port text field: Specify the port of the Data Server or Display Server that will serve data to the
deployed dashboard.

Refresh Rate text field: Specify the dashboard update rate, which is the rate at which the
dashboard updates its display to reflect new event data received from the correlator via the Data
Server or Display Server. If you know the maximum update rate used by the Servers to which
the deployed dashboard might connect, ensure that the update rate that you specify here is no
greater than this maximum.

If a user other than you will complete the deployment as described in Deploying and Managing
Apama Applications, you must communicate to this other user the host, port, and refresh rate that you
specified.

Additional JAR Files
For backward compatibility, this section allows you to specify additional .jar files. These additional
files must be in the directory %APAMA_WORK%\dashboards_deploy\lib.

Using the Deployment Configuration editor

Using Apama Studio 5.2.0 185

The JAR files table is for backward compatibility only; specify new .jar files in the Apama Studio
Dashboard Properties (select Properties from the Project menu). Click the Add button to display a list of
.jar files that are found in the directory %APAMA_WORK%\dashboards_deploy\lib. Select the file or files that
you want to add. To remove files that have been added, select them from the table and click Remove.

Layout
This section allows you to control the appearance of Applet/WebStart deployments. It contains the
following editable elements:

For Applet/WebStart deployments, you can supply a title that will be used by the deployed
application or applet. This is optional.

For Applet deployments, if Fit Applet To Frame is checked, the applet’s height and width are set to
100%.

Using the Dashboard Package wizard

The Dashboard Package tool, (which is on the "Title bar/Toolbar" on page 182) brings up
a wizard that guides you through the process of generating a deployment package for specified
configurations.

Follow these steps to use the wizard:

1.
Click The Dashboard Package tool (which is on the "Title bar/Toolbar" on page 182) to start
the wizard.

The Dashboard Selection screen appears.

2. In the Available Configurations section, use the check boxes to select one or more configurations on which
to perform the specified operations and click Next. The Package Dashboard Configurations appears.

The Package Dashboard Configurations screen appears.

Generating a deployment package from the command line

Using Apama Studio 5.2.0 186

3. In the Package Location field, enter or browse to the path name of the directory into which you want
Apama to place the generated deployment package. For local deployments, this is a directory that is
accessible to end users.

If the desired final destination of the deployment package is not accessible to you, the
deployment package can be installed by the dashboard administrator as part of the deployment
process. See Deploying Dashboards, in Deploying and Managing Apama Applications.

4. Your deployment can include .jar files that define custom classes and functions used by your project’s
dashboards. The .jar files that are specified in Dashboard Properties (select Properties from Apama
Studio's Project menu) are automatically included in the generated deployment package. This screen allows
you to direct Apama to sign .jar files before including them in the deployment package.

Click the Default button, to specify the keystore shipped with Apama (%APAMA_HOME%\etc
\DashboardKeystore). Use the default unless you require a custom keystore. If you require a custom
keystore, use the following fields:

Signature file text field: Enter the full path name of (or click Browse... and navigate to) the
keystore to use for singing .jar files. Leave this field empty to skip signing the .jar files.

Alias text field: Enter the private key to be used to sign the .jar files. If you are using the
keystore shipped with Apama, click the Default button (which specifies the alias dashboard).

Password text field: Enter the password for the private key specified in the Alias text field. Or
click the default button for default Alias/Password being used for the DashboardKeystore.

5. Click Finish.

The operations are performed and then the Dashboard package/deploy/publish summary appears.
The summary indicates which operations succeeded for which configurations. A green check
mark indicates success. A red x indicates failure.

Generating a deployment package from the command
line
Once you have a defined a dashboard deployment configuration, use dashboard_management in order to
generate a deployment package. Use the following options:

-y or --deploy: Specify a dashboard configuration file, typically dashboard_deploy.xml in your
project’s config folder.

-c or --config: Specify the name of a deployment configuration that is saved in the file specified
with -y or --deploy.

-r or --rtvPath: Specify the directory containing the dashboard (.rtv files) to use in order to
generate the deployment package.

-k or --keystoreFile: Specify the keystore to use in order to sign the .jar files to be included in the
deployment package. Supply this option only if the .jar files are not already signed.

-a or --alias: Specify the alias to use in order to sign the .jar files to be included in the
deployment package.

-j or --jar: Specify a third-party jar file to sign. You can specify multiple -j | --jar arguments if
you have multiple jar files to sign.

Sharing information with the Dashboard Administrator

Using Apama Studio 5.2.0 187

-o or --password: Specify the password to use in order to sign the .jar files to be included in the
deployment package.

Here is an example:
dashboard_management --deploy "C:\workspace\Demo - Statistical
Arbitrage\config\dashboard_deploy.xml" --config "My Config" --rtvPath "C:\workspace\Demo
- Statistical Arbitrage\dashboards" --keystoreFile "C:\Program Files\Software AG\Apama
5.2\etc\DashboardKeystore" --alias "dashboard" --password "terra"

For more information on dashboard_management, see Managing and Stopping the Data Server and
Display Server in Deploying and Managing Apama Applications.

Preparing Dashboards for Deployment

Sharing information with the Dashboard Administrator
There are two types of activity involved in making dashboards available to end users:

Dashboard development, which requires the use of the Apama Dashboard Builder or Dashboard
Generation wizard, as well as the use of the Dashboard Deployment Configuration Editor to
generate a deployment package.

Dashboard deployment, which requires installing and configuring the deployment package, as
well as administering the Data Server or Display Server and managing dashboard security (see
Deploying and Managing Apama Applications).

Sometimes these activities are performed by different individuals. In such a case, the dashboard
developer must be sure to communicate the following information to the dashboard administrator
regarding the dashboard to be deployed:

Location and file name of the .war file or .zip file that was generated by the Deployment
Configuration Editor when the developer prepared the dashboard for deployment

For Display Server deployments, the location of the dashboard project directory (the directory
that contains the project’s .rtv files)

For Web-based deployments, the Data Sever or Display Server host, port, and update rate that
the builder supplied to the Configuration Editor

Logical name for each correlator as well as the host name and port for each deployment correlator
(if any) that was specified by the dashboard developer in the Apama tab of the Tools > Options...
dialog prior to the generation of the deployment package. See "Changing correlator definitions
for deployment" on page 178.

Trend-data caching requirements for the deployed dashboards. See Configuring Trend-Data
Caching in Deploying and Managing Apama Applications.

Whether SQL-based instance tables are used by the dashboard for data attachments. See
Attaching dashboards to correlator data in Building dashboards in Developing Apama Applications.

Preparing Dashboards for Deployment

Function definition file format

Using Apama Studio 5.2.0 188

Chapter 11: File Definition Formats

n Function definition file format .. 188

n Defining EPL code in function definition files .. 191

n Block definition file format ... 191

This section describes the formats of Apama’s function definition and block definition files. It is
important that developers adhere strictly to these formats when developing functions and blocks to
be used in Apama scenarios.

Understanding the XML format is especially important for developers creating functions, because
the function editor in Apama Studio lets you work directly on a function definition file’s XML code.
Function definition files have an .fdf extension.

On the other hand, block developers are shielded from most of a block definition file’s XML code
by the Apama Studio block editor, which automatically generates the block’s boilerplate code and
allows input only in sections of the file where user input is appropriate. Block definition files have a
.bdf extension.

Function definition file format
A function definition file contains metadata that describes the function plus EPL code that
implements the function. The following topics describe these pieces:

"Defining metadata in function definition files" on page 188

"Defining EPL code in function definition files" on page 191

File Definition Formats

Defining metadata in function definition files
The metadata in a function definition file has the following format:

<function name="string" display-string="string" return-type="string">
 <version>

 <id>version_number</id>
 <date>version_date</date>
 <author>version_author</author>
 <comments>internal_info_about_function</comments>
 </version>
 <description>

 description_of_what_function_does--appears_in_function_catalog
 </description>
 [<imports>

 <import library="string" alias="string"/>...
 </imports>]
 <parameters>

Function definition file format

Using Apama Studio 5.2.0 189

 [<fixed-parameter name="string" type="string"/>] ...
 </parameters>

 (EPL in a code element goes here)</function>

The top level function element must specify the following three attributes:

name — Logical name of the function. To avoid function conflicts in Event Modeler, the value of
this attribute must be unique across all .fdf files in each directory.

When you write the EPL code that implements the function, you specify #name# in place of the
name of the function. When you use the function in a scenario, the Event Modeler replaces #name#
with the value you specify for the function name attribute. When the Event Modeler does this, it
adds an identifier to the name you specify to ensure that the function name is unique.

display-string — Function name that the rules editor displays. When you want to use this
function in a rule, this is the name that you select from the menu of functions. You might want to
give your function a short name, but specify a more descriptive name for the value of the display-
string attribute.

return-type — Type of the value returned by the function. The table below shows the values you
can specify for the return-type attribute, and the Event Modeler types these values map to:

Value of return-type Attribute Maps to This Event Modeler Type

String text

float number

enumeration choice

boolean true/false

Defining the version element
The version element must contain one of each of the following elements in the following order. Use
the version element to maintain updates to your function. In the Function Catalogs panel, when you
click a function, the values you specified in the version element (except for the contents of comments)
appear in the middle pane.

id — Identifier for this version of your function. Typically, a version number.

date — Date the function was written.

author — Name of the person who wrote the function.

comments — Any information about the function that you want to provide. This information
appears only in the .fdf file; it does not appear in the Event Modeler.

For example:
<version>
 <id>1.0</id>
 <date>7 November 2006</date>
 <author>Matthew Amos</author>
 <comments>External function</comments>
</version>

Function definition file format

Using Apama Studio 5.2.0 190

Defining the description element
After the version element, there is a description element that describes what the function does. The
text you enter in the description element appears in the middle pane of the Function Catalogs panel.
For example:
<description>
 Convert a string to a number, and return the number.
</description>

Defining the imports element
The optional imports element provides a place to specify any plug-ins required by your function. Any
plug-ins you specify must be written in the correlator plug-in API. The imports element can contain
any number of import elements. Each import element must contain the following attributes:

library — Name of the file that contains the plug-in required by your function.

alias — Name of the plug-in in the code element of the function definition file. When you write
the EPL code that implements the function, you specify #alias_value# as the name of the plug-in.
When you use the function in a scenario, the Event Modeler replaces #alias_value# with the name
of the function in the specified library.

For example:
<imports>
 <import library="TimeFormatPlugin" alias="timePlugin"</import>
</imports>

In the code element, you would specify something like the following:
return #timePlugin#.formatTime

Defining the parameters element
After the description element, or imports element if there is one, there is a parameters element. The
parameters element defines the function’s parameters. A function can have

No parameters. The .fdf file must still contain the parameters element, but it is empty. For
example:
<parameters/>

A sequence of one or more fixed parameters. Each fixed parameter has a specified name and a
specified type. In the function code, you must specify any fixed parameters in the same order in
which you define them in the parameters element.

To define fixed parameters, specify one or more fixed-parameter elements. Each fixed-parameter
element contains a name attribute and a type attribute. The value of the name attribute indicates the
name of the fixed parameter. The value of the type attribute indicates the type of the fixed parameter
and must be string, float, enumeration, or boolean. For example:
<parameters>
 <fixed-parameter name="condition" type="boolean" />
 <fixed-parameter name="true_result" type="string" />
 <fixed-parameter name="false_result" type="string" />
</parameters>

When you display functions in the Event Modeler Catalogs panel, you can click on a function and
then expand parameters to view the parameters required by that function. When you execute the
function, each fixed parameter is required.

Defining EPL code in function definition files

Using Apama Studio 5.2.0 191

Defining EPL code in function definition files
In a function definition file, the last element in the function element is the code element. The code
element contains one CDATA section that contains EPL code that defines one action. The requirements
for the EPL code are as follows:

The parameters and types that the EPL defines must match the parameters and types specified in
the parameters element.

The return type specified in the EPL code must match the type specified for the functionreturn-
type attribute.

Specify the name of the action as #name#.

Specify the name of a plug-in as #alias_value#.

The function must be valid EPL code.

For example:
<code><![CDATA[
 action #name#(float f) returns float {
 return f.abs();
 }]] >
</code>

The function can use local variables. To use a scenario variable, assign its value to a function
parameter.

File Definition Formats

Block definition file format
This section describes the format of the block definition file (.bdf). This is a readable XML text
document. Block definition files are generated automatically by Apama Studio. When these files are
generated, Apama Studio creates all the XML code for specifying the block’s metadata and defining
its interface. The task of the developer is to add the code that implements the block’s behavior.

All editing of .bdf files should be done in the Apama Studio block editor.

File Definition Formats

Block definition file DTD
The document must comply with the XML Document Type Definition bdf.dtd. This file is included
in the Apama installation’s etc directory. This description of the file format is presented for
troubleshooting purposes and general background information.

When you create a new block as part of a project in Apama Studio, the best practice is to locate it
in the project’s default blocks directory. This directory is found in the project’s catalogs directory.
The block directory has a name in the form <project_name> blocks. So, for example, the default block
directory of a project named My_Project will be catalogs\My_Project blocks.

Block definition file format

Using Apama Studio 5.2.0 192

If you place your block in the Apama Studio project’s default block directory, scenarios created in
the project will automatically find them and make them available in Event Modeler when you are
displaying the scenario.

Apama Studio assigns the name of the file as follows:
Block Name v version_number.bdf

For example, the block whose <name> attribute is Database Retrieval would be defined in the file
Database Retrieval v1.0.bdf and stored in a folder called Database Retrieval.bdf. This convention
makes it easy to browse multiple versions of the block within a block catalog when using the Event
Modeler. Note that this naming and folder placement (and creation) is all done automatically by
Apama Studio.

Block definition file encodings
Apama Studio and Event Modeler always read and write block definition files in UTF-8.

XML elements that define a block
Here are the list of XML element needed to define a block, arranged to show the hierarchical
ordering. The elements are described in the table that follows the list:
<block>
 <version>
 <id> </id>
 <date> </date>
 <author> </author>
 <comments> </comments>
 </version>
 <description> </description>
 <properties parallel-aware="false" deprecated="false">
 <input-feeds>
 <feed>
 <description> </description>
 <field>
 <description> </description>
 <validation> </validation>
 </field>
 </feed>
 </input-feeds>
 <output-feeds>
definition identical to fields in input feeds
 </output-feeds>
 <parameters>
 <field>
definition identical to fields in input and output feeds
 </field>
 </parameters>
 <operations>
 <operation>
 <description> </description>
 </operation>
 </operations>
 </properties>
 <code> </code>
</block>

Block definition file format

Using Apama Studio 5.2.0 193

The following table lists and describes the XML elements used to define a block:

Element Description

<block> The root element in any .bdf file. This element has a single text (CDATA)
attribute, <name>, which must define the name of the block. This element
must contain the <version>, <description>, <properties>, and <code> child
elements.

<version> The block’s version. This element must contain the <id>, <date>, <author>,
and <comments> child elements.

<id> From an XML point of view, this element can contain any character
data (#PCDATA), but it should be set to indicate the version number of the
block, for example, 1.0 or 1.1. The version number is used to distinguish
different versions of the block in the catalog browser within the Event
Modeler. This version number must be the same as that encoded within
the .bdf filename itself. For this reason, if the block is generated by the
Block Builder, the content of this element is automatically used to name
the .bdf file, in conjunction with the <name> element; see the description of
the <block> element. This element has no attributes.

<date> The date when the block was authored. This information is just for the
block author’s future reference. This element takes any character data
(#PCDATA). It has no attributes.

<author> The block’s author. This information is just for future reference. This
element takes any character data (#PCDATA). It has no attributes.

<comments> Describes any changes that have been made to the block in this version.
This element takes any character data (#PCDATA). It has no attributes

<description>

— child of
<block>

Can contain any character data (#PCDATA) that informatively describes
the purpose of this block. As this information is displayed within the
block catalog browser in the Event Modeler, it is useful to provide a brief
summary of the block’s functionality. It has no attributes.

<properties> Describes the interface of the block. This element must contain the <input-
feeds>, <output-feeds>, <parameters>, and <operations> child elements. This
element can also contain the two Boolean attributes "parallel-aware" and
"deprecated". When the parallel-aware attribute is set to true, the block can
be used in a parallel scenario. When the deprecated attribute is set to true,
the block has been deprecated.

<input-feeds> List all the input feeds of this block. This element can include zero or more
<feed> child elements within it. It has no attributes and cannot contain any
text.

<feed> Represents either an input feed or an output feed, depending on where it
occurs within the XML document. <feed> has two attributes, id and name.
id is optional. If supplied, it must be a unique string that distinguishes the

Block definition file format

Using Apama Studio 5.2.0 194

Element Description
feed from all other input or output feeds. The name attribute must also be
unique, but only across input feeds or output feeds. The block definition
in the EPL code defines an action type definition that corresponds to this
feed and that takes an argument for each field in the feed.

This element must contain the <description> and <field> child elements.

<description>

— child of
<feed>

Describes the purpose and use of the feed and is displayed by the block
catalog browser in the Event Modeler.

<field> The <feed> element can include any number of <field> elements.
Each represents a field within the feed in question. The action in the
corresponding EPL code that updates according to an input feed or sends
data to an output feed must accept an argument for each field in the feed.
The arguments must be in the same order as the fields defined in the XML
document. A <field> element has two attributes, id and name. It is highly
recommended to include the id attribute, it is optional only for backwards
compatibility. It must be a unique string that distinguishes the field from
all other input or output fields. name, a string, must also be unique but only
within the feed the field belongs to.

This element must contain the <description> and <validation> child
elements.

<description>

— child of
<field>

Describes the purpose and use of the field and is displayed by the block
catalog browser in the Event Modeler.

<validation> Although the DTD indicates this element is optional, this is just for
backwards compatibility with older blocks. This element is required, and
will be added automatically with default values applied when the block
is used in the Event Modeler if a <validation> is unspecified. This element
defines the type of the field.

If the field is of the scenario type string, float, integer or boolean, then no
child elements are required within the <validation> element, whereas if the
field is of type enumeration, then an <enumeration> child element should be
included. Note that the first four types correspond to the types of the same
name in the EPL code, whereas enumeration is really a string in the EPL
code.

<validation> includes nine attributes, whose relevance depends on the
value entered for the first attribute, type. This can only take the values
string, float, integer, enumeration or boolean, and is required.

The other attributes, which are all optional, are minlength, maxlength,
minvalue, maxvalue, unique, mutability, stringcase, and trim.

Note that these constraints are not enforced in this version of Event
Modeler and are therefore not documented.

Block definition file format

Using Apama Studio 5.2.0 195

Element Description

<output-feeds> Lists all the output feeds of this block. To do this, you can include zero
or more <feed> child elements within it, in the same way as for <input-
feeds>.This element has no attributes and cannot contain any text.

<parameters> This element should list all the configuration parameters of the block.
The functionality of a block should be configured primarily through
parameters. Like the fields in input and output feeds, the whole set
of parameters must correspond to an initialization event whose field
parameters correspond to the block parameters, in the same order.
Furthermore, for each parameter there must be an event which enables
that parameter to be set independently of the others and after the initial
configuration.

This element takes no attributes and contains zero or more <field> child
elements, one for each block parameter.

<field> — child
of <parameter>

Each <field> child element corresponds to an actual parameter of the
block, and the XML definition is identical as that for fields in input or
output feeds. As described elsewhere, each <field> further embeds a
<validation> element, where the <type> attribute is the most relevant. The
type used here must correspond to the equivalent type in the EPL code.

<operations> Represents any operations implemented in the block. Operations are
chunks of functionality written in EPL that could be invoked by a
scenario. This element has no attributes, and contains zero or more
<operation> child elements.

<operation> Describes an operation defined in the block. There should be an instance
of this element for each operation in the block. This element takes
two attributes, id and name. Both attributes are XML CDATA elements.
id is optional only for backwards compatibility reasons, and should
be specified. If not supplied, id will automatically be added in a way
that makes the operation element unique. name, the string name for the
operation, should also be made unique across the set of operations. In
addition, each <operation> element should contain a <description> child
element. This element can contain any character data that constitutes
a relevant description of the functionality that is being made available.
Its description is displayed by the block catalog browser in the Event
Modeler.

Note that the XML definition of an operation consists solely of a name and
a description. If you wish to pass parameters to an operation, you should
use the block parameter mechanism.

<code> The actual EPL template code that implements the interface and
functionality of the block. For XML validation purposes, any character
data can be supplied here (#CDATA), although the content must in fact
be very carefully written. The contents of this section, which can only
partly be generated by Apama Studio, are discussed in detail in "Creating
Blocks" on page 81.

	Table of Contents
	Preface
	About this documentation
	How this book is organized
	Documentation roadmap
	Contacting customer support

	Chapter 1: Overview of Developing Apama Applications
	Samples and tutorials
	The Apama interface
	The Apama Workbench perspective
	Workbench Project view

	The Apama Developer perspective
	Project Explorer view

	The Apama Runtime perspective
	Apama projects
	Managing project hierarchies

	Working with Apama projects
	Editors
	Outline view
	Scenario Browser view
	Engine Receive view
	Engine Status view
	Engine Information view
	Console view
	Problems view
	Data Player Control view

	Building Apama projects
	Launching Apama projects
	Specifying the location of the license file

	Chapter 2: Working with Projects
	Creating Apama projects
	Adding resources to Apama projects
	Creating new monitor files for EPL applications
	Creating new event definition files for EPL applications
	Creating event definitions by adding EPL code
	Creating event definitions from XML files
	Creating event definitions from XSD files

	Creating new files for JMon applications
	Adding a new JMon application
	Adding a JMon monitor
	Adding a JMon event
	Adding an EPL Plugin written in Java

	Creating new scenarios
	Creating new blocks
	Creating a block with the block editor
	Creating a block from an EPL event definition
	Adding EPL code to a block

	Creating new scenario functions
	Creating new dashboards
	Creating dashboards with the Dashboard Generation wizard
	Creating dashboards with the Dashboard Builder
	Creating new dashboard-deployment configurations
	Creating new event files
	Adding resources to EPL projects
	Adding resources to JMon projects
	Adding JMon applications
	Adding JMon classes
	Adding non-JMon Java files

	Adding bundles to projects
	Bundle instances

	Adding adapters to projects
	Adding Universal Messaging configuration to projects

	Editing Apama files
	Obtaining content assistance
	Using auto-completion
	Displaying information for events and actions
	Specifying comments
	Using auto-Indent
	Using auto-bracketing
	Using tabs
	Defining shorthand (templates) for frequently used EPL code
	Sharing templates among Apama Studio installations
	Specifying colors to distinguish EPL elements
	Shortcuts when editing Apama files

	Navigating in Apama files
	Using the Outline view to navigate
	Using the Quick Outline to navigate
	Jumping to an event or action definition or variable declaration
	Searching in EPL files

	Building Apama projects
	Build automatically when a resource changes
	Build all Apama projects
	Build one Apama project
	Build a working set
	Clean and rebuild projects
	Configuring the project build path
	Project source files
	Specifying projects
	Specifying external dependencies
	Specifying dependencies for a single-user project
	Specifying dependencies for a multi-user project

	Defining MonitorScript Build Path variables

	Importing projects
	Importing adapter configurations
	Exporting project information
	Exporting a project initialization file list
	Exporting to a deployment script
	Exporting scenarios
	Exporting Correlator Deployment Packages
	Exporting adapter configurations
	Exporting ApamaDoc

	Deleting projects and resources
	Deleting resources
	Deleting projects

	Adding the Apama nature to a project
	Internationalizing Apama applications
	Checking the error log
	Setting up the environment before importing projects
	Using Apama Studio to configure adapters that use UM

	Chapter 3: Creating Blocks
	About blocks
	Introduction to block definition files
	Description of block interface elements
	How scenarios communicate with their blocks

	Defining new blocks in Apama Studio
	Specifying the block metadata
	Specifying the block interface
	Creating parallel-aware blocks
	Adding EPL code to the block definition
	Considerations for adding EPL code to the block definition
	Details about EPL code that you can add
	Timeliness of acknowledgements

	An example block
	Description of the Correlation Calculator block interface
	Description of the Correlation Calculator block EPL

	Chapter 4: Launching Projects
	Running Apama projects
	Default launch configuration
	Workbench perspective
	Developer perspective

	Defining custom launch configurations
	Adding a correlator
	Correlator arguments
	Persistence options
	Injections
	Event Files

	Connecting correlators
	Adding an external process
	Testing a subset of your apama application

	Monitoring apama applications
	Console view
	Using the Engine Information view
	Using the Engine Receive view
	Engine Receive Viewer preferences

	Using the Engine Status view
	Using the Scenario Browser view
	Displaying the Scenario Browser
	Browsing scenarios
	Creating new instances of scenarios
	Viewing Scenario instances
	Editing a scenario instance
	Deleting a scenario instance
	Deleting all scenario instances

	Dashboards

	Chapter 5: Debugging EPL Applications
	Adding breakpoints
	Launching a debug session
	Creating a debug configuration

	Debugging a remote application
	Debug view
	Breakpoints view
	Variables view
	Command-line debugger

	Chapter 6: Debugging JMon Applications
	Preparing the correlator for remote debugging
	Creating a debug run configuration
	Debug perspective
	Using the Debug view
	Working with breakpoints
	Viewing stack frame variables

	Example debug session
	Debug example of preparing code and JAR file
	Debug example of starting correlator and injecting application
	Example of debugging in Apama Studio

	Additional resources for Java debugging

	Chapter 7: Profiling EPL Applications
	Launching profiling sessions
	Launching a default profiling session
	Launching a custom profiling session
	Creating a custom profile launch configuration

	Launching a remote profiling session
	Creating a remote profiler launch configuration

	The Apama Profiler perspective
	Profiling Monitor view
	Execution Statistics view
	The Execution Statistics tab
	Comparison of Execution Statistics tab

	Viewing EPL code

	Using filters
	Creating a Filter
	Managing Filters

	Taking snapshots
	Using snapshots
	Choosing profiling information columns
	Updating profile data
	Displaying Apama perspective preferences

	Chapter 8: Using the Data Player
	Introduction to the Data Player
	Using the Data Player
	Adding the ADBC adapter
	Configuring the ADBC adapter
	Launching the project
	Specifying playback queries

	Data Player Control view
	Playback settings
	Playback controls
	Playback status

	Creating query templates
	Command-line Data Player interface

	Chapter 9: Generating Dashboards
	Starting the wizard
	Using the wizard
	Using the titlebar/toolbar
	Using the Introduction form
	Using the Main, Create, Edit, and Details Forms
	Using the layout configuration forms

	Chapter 10: Preparing Dashboards for Deployment
	Dashboard feature checklist
	Changing correlator definitions for deployment
	Choosing among deployment types
	Application installation
	Authentication
	Authorization
	Data Protection
	Scalability
	Choosing among Web-based deployment types
	Installation
	Served data
	Refresh latency
	Dashboard command support
	Dashboard iPad Support

	Using the Deployment Configuration editor
	Starting the Configuration editor
	Saving deployment configurations
	Sections of the configuration editor GUI
	Title bar/Toolbar
	General Settings
	Startup and Server
	Additional JAR Files
	Layout
	Using the Dashboard Package wizard

	Generating a deployment package from the command line
	Sharing information with the Dashboard Administrator

	Chapter 11: File Definition Formats
	Function definition file format
	Defining metadata in function definition files
	Defining the version element
	Defining the description element
	Defining the imports element
	Defining the parameters element

	Defining EPL code in function definition files
	Block definition file format
	Block definition file DTD
	Block definition file encodings
	XML elements that define a block

