5 software

Developing Apama Applications in Event Modeler

5.2.0

August 2014

=" APAMA

This document applies to Apama 5.2.0 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its Subsidiaries and or/its Affiliates and/or
their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or Software AG USA Inc.
and/or its Subsidiaries and/or its Affiliates and/or their licensors. Other company and product names mentioned herein may be trademarks of their respective
owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are located at http://documentation.softwareag.com
legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products." This document is located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-Developing_Apama_Applications_in_Event_Modeler-5.2.0-20140808@233876

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Table of Contents

Table of Contents

=1 T 8
About this dOCUMENTATION.cuiiieeice e 8
How this BOOK IS OFQANIZEA..........cciiiiiiiiiiciiies st n e bbb bt 8
DoCUMENLAtION FOAAMAD. ...ttt s sttt 9
Contacting CUSIOMET SUPPOIL..........ccueiiiiiicieteisis ettt bbbt bbb b b s bbb s n s 11

Chapter 1: Overview of Using Event Modeler.............cccocoiiiiieeeeeccececcere e 12
EVENE MOGEIET TAYOUL.......oeeiee et p et r s nerers 12
ADOUL EVENT FIOW SEAIES. ... ettt 14
How rules define SCENAIO DENAVION..........c.cuiuiiiirieieres s 16

Description Of rule CONAIIONS..........cccieiiiiciciee ettt bbb 17
DeSCription Of FUIE ACHONS.........ciriieeeercee et 19
Description of FUNCHONS N TUIES.......c.viviieicicce et 20
ADOUL FUIE BVAIUALION. ..ottt 20
BasSiC VIEW Of TUIE PrOCESSING.c.vireieciiescieiciee et 21
Expanded VIEW Of UIE PrOCESSING.....cciuiiiiiiciereiii ettt b s aes 22
SCeNnario MONIOMING SEAQE........c.ccviiriiiccece ettt bbb bbbt seaee 25
Summary of adding rules when a variable value Changes..............ccovirniinncee s 25
ADOUL SCENAMO VANIADIES........eeuiiieceeeei et 25
VaMDIE EYPES.. ..ttt e et s et st b 26
AULO-tyPING OF VAMNADIES. ... 26
Variable PrOPEILIES.......cviviiieieciesi ettt bbb bbb b bbbttt 26
Variable CONSITAINES. ...ttt 27
USET iNPUL @NA OULPUL......ocveiiccieieiss ettt ettt es s 28
ADOUL DIOCKS. ...ttt 28
Linking variables, block parameters, and block output fields............ccccceviiceciniiccce e 29

Chapter 2: Using Event Modeler............ooiiiiiiiiiiciiccc s sssssnsnnnnssennennns 31

Adding SCENAMOS 10 PIOJECES.cuuvrieeiiciieseiri ettt 31
Creating the GlobalRUIEEXamPIE PrOJECL.........cccueueiiiicces e e 32
Adding GlobalRuleExample.sdf to the GlobalRuleExample project...........coccvevviviceivvecece e 32
Adding a new scenario to the GlobalRuleExample Project...........ocvrirniencrseseseeees 32

Opening and viewing MUILPIE SCENAIIOS..........ccceviiiiicieii it bbb s 33

Selecting from the SCENAMNIO MENU...........ccuiuiiiiiiicee e 33

The EVENt MOGEIET T00I0AT.......cucuiiiiieieieiercees sttt eae e 34

Interacting with the tabs and PaNEIS...........ccovvreeccce e 35

Working in the EVENt FIOW PANELL..........ccciriieicicccccceii s 36
INtEracting With SEALES..........c.riiiiice s 36

SElECHNG @ SALE.....c.iicecece e 37
RESIZING @ SEALE......iiiccc s 37
MOVING @ SEALE......eeeeee bbb 37
MUHIPIE SEBIBCHION.......ocvviicececte ettt bbb bbb 37
AdAING @ SEAE......cviiiiiiie e 38
The fINISNEA SEALUS.........ceeeeeeee ettt ees 38

Developing Apama Applications in Event Modeler 5.2.0 3
? s APAMA

Table of Contents

DElEtiNg @ SEALE........vuieeeieceii s 38
LAbENNG @ SEAE.......cceeeiiiccc e 38
Using cut/copy/paste With SAES...........ccccuiueiiicicice e 39
Interacting With tranSIiONS............ccuiiic s 39
AddING @ HrANSIION......c.cviviiiiiccee bbb 39
SEeleCting @ TrANSItION.c.ciieceeccccce bbb 40
Changing NG-POINTS.........oiuiiieiii bbb 40
Changing the shape of @ tranSitioN............cccceiricis s 40
Labeling @ tranSitioN..........ccooii e 41
Deleting @ TraNSIION.c.cuiieicie e 42
Using cut/copy/paste With tranSitions............cccceeiiiiicisscee s 42
Displaying global rule transitions..........ccccoveicecsisccee e 42
WOrking in the RUIES PANEL..........c.iiiiiiiiicre b 43
AGAING 8 FUIB......ceceee ettt bbbt bbbt b st r b aes 43
ADOUL GIODAI TUIBS......ovveveeiiiiiietiiiit sttt ettt e s st sttt b s s s b bttt 43
Selecting rules and rule ElEMENLS...........criiii s 44
RE-0IAEING TUIES..... ettt n s s e s e e 44
DEIBLING 8 TUIB......veeete ettt R e e e s e e s bbb st ettt tee 44
LADEING @ TUIB. ...t 45
Changing a rUlE’S dESCIIPLION........c.cciveueiricce bbb er e 45
Minimizing and MaXimizZING @ FUIE.........ccouieirieess et nenas 45
Cutting, copying, and PastiNg TUIES..........c.ceriiriiiiriei b 46
Activating and deactivating TUIES........cccovvioiiii i 46
SPECITYING CONAIIONS.......cvviiiicreteieicce ettt bbbt b b s sttt b e s 46
INTErACHVE EAIING.......veeeeceeci s 47
LanQUAGE EIEMENES........c et 47
Selecting and replacing ElEeMENIS..........ccciviiiceeece bbb 48
Cascading alterN@tive MENUS............ciuiiiiieiriiee bbb 50
USING fUNCHONS TN FUIES......voviiecectetcice ettt sttt b b nans 51
Adding @ coNdition 10 @ TUIB......ccuiuiiiiiiie et rene 51
Specifying variable changes iN CONAIIIONS...........cviuriiiiirieiice e 52
Local rules and variable ChangeS.......couovvviiiiririsssrs e 54
Global rules and variable ChaNGES..........ccoeeiiiuieieiiiecere e 54
SPECITYING ACHONS......ceieeieiiet bbbt 55
Adding action SEAtEMENLS.........cccceieirecccccer e 55
Deleting action StatemMeNtS..........cccvoiiiiiic s 56
INTErACHVE EAIING.......cveeeeeeceect s 56
Using the keyboard t0 €dit FUIBS........cvveiiiiiiiirr e 56
Using the Variables taD.........cciiiiiiii i renas 58
AQAING @ VATIADIE. ...t 59
RENAMING @ VAMDIE........cocveiiiicccr bbbt b b 60
SElECHNG @ VAMNADIE.cocviiiiicctce ettt bbbt s bbb bbb 60
Determining which states use a particular variable..............ccoeii 60
MOVING @ VANADIE.......cuiviiiiiececs ettt bbb bbb bbb 60
DElEtiNg @ VANADIE.........cooiieeieccee e en 61
Changing a variable’s PrOPEItIES. ... 61
Setting @ VariablE's VaIUE............cciiiiiccec bbb e 62
Variable iNPUt @nd OUIPUL.......c.ciiiieecec et 63

Developing Apama Applications in Event Modeler 5.2.0 4
’ s APAMA

Table of Contents

Linking a variable to @ block oUtpUL fIeld............cviiiic e 63
Conversion rules for variable tYPES.........cccviieeiccce e 65
Using the Catalogs taD.......c.ciieceee ettt bbb 66
Adding a block template Catalog..........oeriiiiiiic s 66
Selecting and inspecting a block template..........ccviceeeiiiiccs e 67
Adding a block instance t0 the SCENAMI0..........ccciiriiiiicrr s 67
USING the FUNCHONS TaD.........coiiiiiiii bbb 68
Adding @ fUNCLON CAtAlOG........civieeverieiiectcte bbb 68
Selecting and iNSPECting @ fUNCHON.cceviiiictce e 69
USING the BIOCKS taD.........coiueiiiiiiiciic bbb 69
Interacting With @ blOCK INStANCE.........ccriericeccr e 71
SElECHNG @ PATAMELET......cociicectc ettt bbbt bbbttt 71
Viewing a parameter's PrOPEILIES........ccviireeirireeietesee ettt eneeees 72
Setting a parameter’s iNitial ValUE............cc.ccueuiriicccrce s 72
Linking a parameter with a variable or output field...........ccccoceiiiiiccccc e 72
SWITCNING DIOCKS. ...t 73
Using the BIOCK WiIriNG taD........coeeeccccceeeeeseee s 74
WIrNgG DIOCK INPUL TEEAS........cceieeiiieece et 74
Selecting, resizing, and moving blOCK INSIANCES...........ccriiireiriiirirrere e 75
Wiring tWO DIOCKS t0GEINET. ... 75
Connecting feeds and specifying feed MapPING.....ccccoviiiieeiieiece e 76
Wiring @ scenario variable t0 @ DIOCK...........ccciuiriiiriieees s 77
MapPING tYPE CONVEISIONS....c.cviiireririririsisists sttt ses et es s s s s sses e e e e e e e s s ss s s s s e s st s sesesesesnsnses 77
EdIting DIOCK WIMING......viiiiecicicsc ettt ettt bbbt bbb n et rene e e s 78
DEIELING @ WIMING. ...ttt 78
Deleting @ BlOCK INSTANCE.cuiuiriiiiiiiis s 78
Using older VErsions Of DIOCKS..........ccouiuiueiiiiiicicie sttt ettt bbb 78
Troubleshooting INVAlIA SCENATIOS...........c.iiuiiieriieiieieente bbb 79
SEHING PrEfEIBNCES.cvivcieiiictcte bbbttt bttt 79
EXPOrting SCENAMOS @S EPL......c.ccuiiiiiiiiiiiie ittt 81
Exporting scenarios as block tEMPIALES........ccco i 81
Event Modeler command liNe OPIONS...........cceiiiiiicer bbb 81
Chapter 3: Working with Blocks Created from Scenarios............ccccoeeiinninnmmmmmmmcceneennnnnn: 84
Terminology for uSiNg SCENAMO DIOCKS..........cccciiiiiicieiiiicecte ettt bbb 85
Benefits Of SCENAMO DIOCKS.cuiiiiiieee et 86
Steps for uSING SCENAMO DIOCKS..........ccviiiiiriieiesi et 86
Background for using SCENAMO DIOCKS...........ccccviiiieiieiiciiectce et 86
Saving scenarios as DIOCK tEMPIALES..........cciueiiiri e 87
Incrementing scenario bIOCK VErsion NUMDETS.........cciiiiiiiiiiirr e 87
Adding a scenario block t0 @ MaIN SCENAIMO...........ccvuiiiieeeee e rererenes 88
Examining a scenario block’s SOUICE SCENAMO...........ciueuriiireiieirieiree e 88
Descriptions of scenario bloCK Parameters..........coccviiiiceiiccee e 88
Descriptions of scenario bloCk OPErations............ccoeiiiiuiieeiniicciee e 89
Descriptions of SCENANo DIOCK fEEAS. ...t 90
Setting parameters before creating SUD-SCENAMIOS..........cccviuiveriiiiccice s 93
CreatiNg SUD-SCENAIOS.ccuiuireiiiicicte ettt ettt bbb s bbbttt b s st et b sttt s 94
DElEting SUD-SCENAMIOS.euevieiicieiiseiei et 95

Developing Apama Applications in Event Modeler 5.2.0 5
? s APAMA

Table of Contents

Unconditionally deleting @ SUD-SCENAMIO............coueuiiiriiiiriires e 96
Deleting all SUD-SCENAIIOS..........ccviviiiiicicic ettt 96
Modifying sub-scenario input variable VAIUES...........cceeiiiiuieiicctce ettt 96
lterating through SUD-SCENAMIOS.c.vuiuriiieiieirii b 96
Obtaining variable values from SUD-SCENAIIOS..........cccvveueuririiicicie e 98
Linking sub-scenarios With 0ther DIOCKS........cciiiiii s 98
INNEITHING SUD-SCENAIIOS.ouvuveieiicieiisee ittt 98
Description of inheritExternallnsStances ValUES..........ccovvcvcveiiciiecce e 98
Notes for setting the inheritExternalinstances parameter..........c.ccovceeeicceeeseeee e 99
Example of inheriting SUD-SCENAIIOS...........ccuiiiuriieiriiciriis et 99
Observing changes iN SUD-SCENAMOS.ccceueuriirireretisiieie et ae s s 100
Performing simple calculations across SUD-SCENAMOS............cceuiiriiiucreiceceee e 102
Chapter 4: Using Functions in Event Modeler...........iiriiiiiesrrc s 104
Reference information for provided FUNCHONS........coiirirrieee s 104
Date and time fUNCHONS. ... s 104
Extended math functions on float tyPeS........coeueueiiicieiiccccc s 106

1O FUNCHONS. ...ttt bttt s s 108
SyStEM ValUE TUNCHONS........coiviiiiiccicte bbb 109
MiISCEIIANEOUS FUNCHIONS.........cvieiicieicee e 110
Extended math functions on float types..........ocviiiiiiir e 114
About defining your OWN fUNCHONS.........ccciuiiiicetcr s 116
Sample ABS function definition file..........cceiiiiiieiiccc s 116
Sample function definition file with imports element.............ccveercrnr e 117
ADOUL FUNCHON NAMES......coiiiciri st es 118
Chapter 5: Using Standard BIOCKS........ccmmmimiimiiicccscsr s sssnn 120
A DIOCK'S TIfECYCIE. . ..vvvieectcte ettt bbb bbb bbbttt 121
General @NAIYHC DIOCKS.c.uuuiriiiieiieici bbb 122
Change NOLIEE V2.0......cucuiiceieeece sttt bbb 122
Correlation CalCUlAtor V2.0.........ceiririrecesceieee e 124
Data Distribution CalCulator V2.0..........c.ceirriiierrsicce sttt 125
Median and Mode CalCulator VA.0.......c.cc v 127
MOVING AVEIAQE V1.0.....eiieiiccieie et b st s sttt b et b peterenas 128
Spread CalCulator V3.0.........ccerricerirree sttt 129
Statistics CalCUITOr VA.0.........curceces s 130
Velocity CalCUlator V2.0.........ccuiuieiceee ettt bbb bbbt 132
TRE TIMETE BIOCKS. ...ttt ettt b sttt nnens 133
SCREAUIE V3.0... e 133
WAIE V3.0t 136
THE ULIlIEY DIOCKS. ...t 137
DICIONAIY V2.0.....eieeecteieiieetee ettt bbb bbb bbbt 137

File REAGET V2.0, ettt 138

FIlE WIIEE V2.0t s 140
HIStOrY LOGGET V2.0....iiieeececieii ettt st bbbt etee 141
INPUE MEIGEE V2.0.....ovvtceiiieee sttt ettt bbbttt b b nererenas 143

LISE V2.0 11ttt 144
Scenario TErMINALOr V2.0, ..ot 145
SHAIUS V2.0t 146

Developing Apama Applications in Event Modeler 5.2.0 6
? s APAMA

Table of Contents

Variable MaPPET V2.0........ceieeeiece ettt 150
Database functionality—storage and retrieval............ccoccceiiceeisce e 151
ADBC SHOrage V1.0....cucviiieciiieieieecicte ettt et bbb bbbttt 151
ADBC REtFIEVAI V1.0...eeiiiecieiesssece sttt 154
Blocks for working with SCENAM0 DIOCKS..........ccciviiicicieiscce s 159
Change OBSEIVET V2.0.........ciuiiieiictetee ettt bbb bbb bbbttt 159
Filtered SUMMAIY V2.0.......co.cuiiiiieiiciceie bbb 161

Developing Apama Applications in Event Modeler 5.2.0 7
’ s APAMA

About this documentation

Preface
B ADOUL thiS OCUMENTALIONveeiic ettt 8
B How this DOOK IS OFANIZEAcucuiviiiiiiiieee ettt bbb bbbttt bebans 8
B DoCUMENLALION FOQUMED ..viviririririiiiiieee sttt ettt s ettt es sttt s bbb ebe bt 9
B Contacting CUSIOMET SUPPOITcuiviiiiiririteteiiiis ettt ettt s b 1

About this documentation

Developing Apama Application in Event Modeler provides information and instructions for defining
independent, real-time, business strategies, referred to as scenarios. Each scenario can contain any
number of states, and transitions between states happen according to rules that you define.

You use the Event Modeler to create scenarios. You inject completed scenarios into the correlator, and
then use a dashboard to create and configure one or more instances of the scenario. Each scenario
instance listens for particular events or sequences of events. When the scenario instance finds events
or sequences of interest, it performs specified actions according to the rules defined in the scenario.

After you develop a scenario in Event Modeler, you use Dashboard Builder to create a graphical
dashboard for the scenario. The dashboard lets end users create and interact with scenario instances
through an intuitive and easy to manipulate graphical user interface, which is described in Building
Dashboards.

It is assumed that you have read Introduction to Apama, which introduces scenario concepts, discusses
the scenario development lifecycle, and covers Apama® architecture and other Apama concepts.

Preface

How this book is organized

The information in this book is organized as follows:

* "Overview of Using Event Modeler" on page 12 uses an example to show you the procedure
for developing a scenario.

® "Using Event Modeler" on page 31 provides details about defining scenario states, rules,
blocks, and variables.

* "Working with Blocks Created from Scenarios" on page 84 shows how to save a scenario as a
Block and then use that scenario Block in some other scenario.

® "Using Functions in Event Modeler" on page 104describes the standard functions you can use
in a scenario and provides instructions for defining your own function.

® "Using Standard Blocks" on page 120 provides details for using all Blocks provided with
Apama.

Developing Apama Applications in Event Modeler 5.2.0 8
? s APAMA

Documentation roadmap

Preface

Documentation roadmap

On Windows platforms, the specific set of documentation provided with Apama depends on
whether you choose the Developer, Server, or User installation option. On UNIX platforms, only the
Server option is available.

Apama provides documentation in three formats:

* HTML viewable in a Web browser

* PDF

* Eclipse Help (if you select the Apama Developer installation option)

On Windows, to access the documentation, select Start > All Programs > Software AG > Apama 5.2 >
Apama Documentation . On UNIX, display the index.ntm1 file, which is in the doc directory of your
Apama installation directory.

The following table describes the PDF documents that are available when you install the Apama
Developer option. A subset of these documents is provided with the Server and User options.

Title Contents
What’s New in Apama Describes new features and changes since the previous release.
Installing Apama Instructions for installing the Developer, Server, or User

Apama installation options.

Introduction to Apama Introduction to developing Apama applications, discussions of
Apama architecture and concepts, and pointers to sources of
information outside the documentation set.

Using Apama Studio Instructions for using Apama Studio to create and test Apama
projects; write, profile, and debug EPL programs; write J]Mon
programs; develop custom blocks; and store, retrieve and

playback data.
Developing Apama Instructions for using Apama Studio’s Event Modeler editor
Applications in Event to develop scenarios. Includes information about using
Modeler standard functions, standard blocks, and blocks generated

from scenarios.

Developing Apama Introduces Apama’s Event Processing Language (EPL) and
Applications in EPL provides user guide type information for how to write EPL
programs. EPL is the native interface to the correlator. This
document also provides information for using the standard
correlator plug-ins.

Apama EPL Reference Reference information for EPL: lexical elements, syntax, types,
variables, event definitions, expressions, statements.

Developing Apama Applications in Event Modeler 5.2.0 9
? s APAMA

Documentation roadmap

Title

Contents

Developing Apama
Applications in Java

Introduces the Apama in-process API for Java, referred to
as JMon, and provides user guide type information for how
to write Java programs that run on the correlator. Reference
information in Javadoc format is also available.

Building Dashboards Describes how to create dashboards, which are the end-user

interfaces to running scenario instances and data view items.
Dashboard Property Reference information on the properties of the visualization
Reference objects that you can include in your dashboards.

Dashboard Function

Reference information on dashboard functions, which allow

Reference you to operate on correlator data before you attach it to
visualization objects.

Developing Adapters Describes how to create adapters, which are components that
translate events from non-Apama format to Apama format.

Developing Clients Describes how to develop C, C++, Java, or .NET clients that can

communicate with and interact with the correlator.

Writing Correlator Plug-ins

Describes how to develop formatted libraries of C, C++ or Java
functions that can be called from EPL.

Deploying and Managing
Apama Applications

Describes how to:

* Use the Management & Monitoring console to configure,
start, stop, and monitor the correlator and adapters across
multiple hosts.

* Deploy dashboards over wide area networks, including
the internet, and provide dashboards with effective
authorization and authentication.

* Improve Apama application performance by using multiple
correlators, and saving and reusing a snapshot of a
correlator’s state.

* Use the Apama ADBC adapter to store and retrieve data in
JDBC, ODBC, and Apama Sim databases.

* Use the Apama Web Services Client adapter to invoke Web
Services.

* Use correlator-integrated messaging for JMS to reliably send
and receive JMS messages in Apama applications.

* Use Universal Messaging to connect correlators.

Using the Dashboard Viewer

Describes how to view and interact with dashboards that are
receiving run-time data from the correlator.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

10

Contacting customer support

Preface

Contacting customer support

You may open Apama Support Incidents online via the eService section of Empower at http://
empower.softwareag.com. If you are new to Empower, send an email to empoweresoftwareag.com with
your name, company, and company email address to request an account.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Directory at https://empower.softwareag.com/public_directory.asp and give us a call.

Preface

Developing Apama Applications in Event Modeler 5.2.0 1"
’ s APAMA

https://empower.softwareag.com/eservice
https://empower.softwareag.com/eservice
https://empower.softwareag.com/public_directory.asp

Event Modeler layout

Chapter 1: Overview of Using Event Modeler

B EVENE MOGEIET TAYOUL ..ottt bbb n e n e 12
B ADOUL EVENT FIOW SEAES ... 14
B How rules define SCENAro DENAVIOT ..o 16
B BasiC VIEW Of TUIE PrOCESSINGvvvviriricieicieiseis bbbt 21
B ADOUL SCENAMO VAMADIEScovuieieiieiiciic e 25
B ADOUL DIOCKS ..o 28
B Linking variables, block parameters, and block output fIeldSc.ccoviierrriiicce s 29

This chapter introduces the concepts underlying the layout and functionality of the Apama Studio
Event Modeler. It does not attempt to describe how to use the tool or how to interact with its various
tabs and panels. That explanation is provided in "Using Event Modeler" on page 31, once the
underlying concepts are understood.

Before using Developing Apama Applications in Event Modeler, we recommend that you take advantage
of the Apama Studio Tutorials numbered 7, 8, and 9. These tutorials let you quickly start using Event
Modeler by adding to a partially formed scenario. To access the tutorials, open Apama Studio and
click Tutorials on the Welcome page.

It is assumed that you have read Description of Event Modeler and Understanding scenarios and blocks
in Introduction to Apama, which introduces scenario concepts and discusses the scenario development
lifecycle.

Event Modeler layout

To begin learning how to use Event Modeler, it is helpful to examine a sample scenario in Event
Modeler. To do this:

1. Select Start > Programs > Software AG > Apama 5.2 > Apama Studio .
2. On the Apama Studio Welcome page, click Samples, then click Apama Samples.

3. In the list of demos that appears, click Statistical Arbitrage and click Open to open the demo
application’s project in Apama Studio.

4. In the Apama Studio Workbench Project View, expand Scenarios and double-click
StatisticalArbitrage.sdf. This is the scenario definition file. When you double-click it, it opens in
Apama Studio’s Event Modeler editor.

The Event Modeler editor is divided into a number of areas. In the panel on the left (the Event Flow
tab) click on the double-bordered oval shape marked start. Your display will now look as follows: xxx

Developing Apama Applications in Event Modeler 5.2.0 12
’ s APAMA

Event Modeler layout

Figure 1. Event Modeler editor layout

Rpama Studio ==l

ClientCreditLimitRFWRuleClass.mon [El readme.htmi 9 statistic:

stote v & 3 | 7 [00% < [cobalrules - start & | 0 0 |f varavls | ag dods| 3, Cotaoos| fy, Functons

Update bands when spread changes

i |Wait for a change in the spread

start

s from Spread Data Distribution Calculator changes or Std Dev Muliplier

Wat for Spread,

) aa Distribution Ca - i zom @B
\L L ; oo AW

Honitor Opportunities

Watfor Orders

status
status

Launch Control Panel

Apama Correlator is configured for localhost:Eit Details Value

A INo comnec ton] 4 Coretator No connec ton
Host
Port 0

This is the default view. Event Modeler displays the following primary areas:
* Event Flow

®* Global Rules and Local Rules

® Tabs for Variables, Blocks, Catalogs, and Functions.

At the bottom of Event Modeler, there are tabs for Event Flow and Block Wiring. When you click the
Block Wiring tab, the Event Flow and Rules panels diappear and the Block Wiring tab appears.

During its lifetime, a scenario instance transits through a number of execution states, starting from
the start state, and eventually ending at the end state (shown in the Event Flow tab). Event flows are
described in "About event flow states” on page 14.

Each state consists of a list of rules that are executed in a particular sequence. Each has a condition
that needs to be met for its embedded actions to be executed, and once those actions are complete,
it can specify whether the following rules are to be processed next or the scenario should transit
directly to another state. These rules appear in the Global Rules and Local Rules panels. Rules are
examined in "How rules define scenario behavior" on page 16

The Variables tab lists any variables defined in the scenario. Scenario variables are placeholders for
important information that needs to be referred to and modified during the scenario’s execution.
They also reflect what data can be collected from the user or sent back to be displayed to the user as
results or progress updates. Variables will be described in "About scenario variables" on page 25.

The Blocks tab lists any blocks that are being used by this scenario. Blocks are pre-packaged modules
that can be imported and used within scenarios. They can accept inputs, execute some logic of their
own, and generate output. Like a scenario, blocks can themselves have configuration parameters as
well as input and output feeds. Blocks can also carry out specialized operations. See "About blocks"
on page 28 for details.

The Catalogs tab lists the reusable, ready packaged blocks that are available for use in this scenario.
Event Modeler comes with a selection of standard blocks, and these are documented in "Using

Developing Apama Applications in Event Modeler 5.2.0 13
? s APAMA

About event flow states

Standard Blocks" on page 120. "Using the Catalogs tab" on page 66 describes usage of the
Catalogs tab.

The Functions tab lists the functions that are available for use in this scenario. Event Modeler comes
with a selection of standard functions, and these are documented in "Using the Functions tab" on
page 68.

Minimize the panels that are not part of Event Modeler and then click the Block Wiring tab that
appears below the Event Flow tab. The main view changes to show the Block Wiring tab. The Event
Modeler display now looks like this:

Figure 2. Block Wiring tab

“Rpama Workbench - Demos - Statarb/

n ClientCreditLimitRFWRuleClass.mon [El readme.htmi |9 statisticalArbitrage.sdf 53 =n

4 s
i ® %N e &
| oemmsman o] & N o, | R o [s | | 4, ot | o Fancons|

& 8] % | @ NewScenario . Varioes sl

e
g

o

Market Depth 1

statistcs >>> data
Spread Calculator Spread Data Distribution Calculator |

MarketDepth 2 - Gepth >>> dataz

ONEEEEEEEENEONO0DngEs | ¢

Ooo0OoOo00O0000SEEEEEE

Launch Control Panel

Apama Correlatoris configured for localhost: Edit Detsil Val

A INo connection] 4+ Corelator No connection
Host
Port 0

@

This tab shows the blocks that are being used within this scenario, and whether those blocks are
wired together; that is, whether the outputs of one block are acting as the inputs of another. This
functionality will be described in "Switching blocks" on page 73. The specific functionality of all
the tabs will be covered in depth in "Using Event Modeler" on page 31.

Overview of Using Event Modeler

About event flow states

At any moment in a scenario instance’s execution, it is said to be in a particular state in the event flow.
The activities and actions that a scenario instance will be doing at any moment depend on its state,
and are defined by that state’s rules.

The execution of a scenario instance consists of progressing through a sequence of states, starting
from the start state, and ending at the end state. For this reason, all scenarios must have a start and an
end state.

A scenario instance can only ever be in one state, but there might be a choice of states it can advance
to from that state. It is also possible for a scenario instance to move from a state back to the same
state again. A scenario instance will continue executing until it reaches the end state, then it will
terminate.

Developing Apama Applications in Event Modeler 5.2.0 14
’ s APAMA

About event flow states

The Event Flow tab illustrates all the possible states that the scenario instance can be in while it is
running inside the correlator. Note how when the Statistical Arbitrage sample is loaded the Event
Flow tab is showing the following states (the arrows indicate possible transitions between states):

Figure 3. Event Flow tab

Event Flow o B 0w |v

v

start

\

‘Wait for Spread

!

Maonitor Opporunities

orders\ycompleted l

Wait for Orders

end

Using this scenario as an example, when the Statistical Arbitrage scenario is deployed to the
correlator, it will start execution from the start state. From this state it can only transit to the Wait for
Spread state. In Wait for Spread, however, it can go directly to the end state and terminate its execution
(by means of a global rule - shown as an orange line; more on this later), or else transit to the Monitor
Opportunities state by means of a local rule.

From the Monitor Opportunities state, the scenario can advance to the Wait for Orders state, or it can
terminate execution and go to the end state. If execution does reach the Wait for Orders state, it can
only transit back to the Wait for Spread state. What causes a scenario instance to change from one state
to another state, and what it does while it is in a state, depends on its rules.

Overview of Using Event Modeler

Developing Apama Applications in Event Modeler 5.2.0 15
? s APAMA

How rules define scenario behavior

How rules define scenario behavior

States matter because of the distinct behavior that the scenario instance will follow while in a
particular state. And that is defined in each state’s set of rules. A state can have one or more rules
defined in it. Each rule has the following structure; “if a condition is true then do the following ...”.

The center panel has two parts — Global Rules and Local Rules. A global rule can apply to more than
one state. A local rule can apply to exactly one state. When you select a state in the Event Flow tab, the
rules defined for that state appear in the Rules panel.

Each rule has a condition part, denoted by When, and an action part, indicated by Then. The part

indicated by the i symbol is just a descriptive comment that you can set to whatever you like. You

can hide or show the comment by selecting 4 in the Event Modeler toolbar. The start state illustrated
in the previous topic has two local rules, including this rule:

Figure 4. Sample local rule

Statistical Arbitrage Scenario Q aw

This scenaria ukilises a number of blacks ta receive prices For bwao inskruments, then
calculates the spread between the bwo prices (Instrument - Instrument2) and
calculates the mean of that spread, Then the standard deviation of that mean is
calculated and upper and lower bounds are calculated. The bounds are calculated by
riulkiplving the standard deviation by a stepped mulkiplier (commanly 2,00 and adding
ar removing this value to the mean. Then the values of the boundaries are checked
against the spread; if the spread crosses the upper boundary, we issue bwo orders
simulkaneously to the market - sell Instrumentl and buy Instrument2 (the spread is
larger than normal and we expect it ko return ko normal; i.e. the price of Inskrument]
will drop andfar the price of Instrumentz will rise), IF the spread crosses the lower
boundary the opposite is execuked (.8, buy Instrumentl and Sell instrument2],

YWhen | true (evaluated once)

® gtart [Market Depth 1]

® start [Market Depth 2]

2 start [Spread Calculator]

% start [Spread Data Distribution Calculator]
Then | @ start [Position Calculator 1]

® start [Position Calculator 2]

® start [PEL Calculator]

@ Status Message = "Waiting for price data.™
@ continue

This is stating;:
® when true, which means: always do this,
® then do the following:

m carry out the start operation on the following block instances

| Market Depth 1
| Market Depth 2
| Spread Calculator

Developing Apama Applications in Event Modeler 5.2.0 16
? s APAMA

How rules define scenario behavior

u Spread Data Distribution Calculator
| Position Calculator 1

] Position Calculator 2

u P&L Calculator

m setthe StatusMessage variable to ”Waiting for price data”
B continue, thatis, evaluate the next local rule

Variables: For now it is enough to know that, as in other programming environments, scenario
variables are placeholders for useful information that the scenario needs to keep track of and
perhaps modify during its execution. They also identify the information that will be required by a
running instance of the scenario from the end-user in order to configure and start it off, as well as
representing the information that will be sent back to be displayed to the user as progress updates or
results.

® Variables are typed; each can be of type text, number, choice OF true/false.
®* Variables are described in "About scenario variables" on page 25.

Blocks: Likewise, blocks are ready-packaged modules that you can import and use within your
scenarios. They can accept inputs, execute some logic of their own, and generate output. A block can
consist of Input feeds (which contain one or more input fields), Output feeds (which contain one or more
output fields), Parameters, and Operations. Block parameters and fields are typed; each can be of type
text, number, choice O true/false. Blocks are described in "About blocks" on page 28.

In addition to the standard blocks provided with Event Modeler, you can build custom blocks in
Apama Studio.

Overview of Using Event Modeler

Description of rule conditions

The condition specified in a rule must be true for the action part to be executed. Conditions can be

as straightforward as the example seen so far, such as a condition that specifies just true (evaluated
once). This condition causes the action part to execute whenever the rule is evaluated. However,
more often a condition will specify a constraint on the value of a variable, field or parameter, for
example, “is a particular variable at present greater than this value”. It can also be a complex composition
of various conditions defined using the operators and and or. For example:

1. Click on the Wait for Spread state.

2. In the global rules pane, scroll down to the last global rule, the one labeled voiume 1imit check.

Developing Apama Applications in Event Modeler 5.2.0 17
’ s APAMA

How rules define scenario behavior

Volume limit check) aw

% We will exceed our limits if we continue, so end the skrategy. By moving to the end
X state, all outskanding orders will be cancelled and the order Flow ticks will be stopped.
{ { Quantity 1 + ABS { Current Position 1)) is greater than or equal to
When | Max Quantity 1) or ({ Quantity 2 + ABS { Current Position 2 })

is greater than or equal to Max Quantity 2)

@ Status Message =
Then "Maximum trade quantity imits exceeded. Scenario finizhed.™
@ move to state [end]

Consider the condition for this first rule. This condition will be true if:

(Quantity 1 + ABS(Current Position 1)) is greater than or equal to Max
Quantity 1

or

(Quantity 2 + ABS(Current Position 2)) is greater than or equal to Max
Quantity 2

This condition contains two clauses:

® Whether the result of the variable ouantity 1 being added to the absolute value of current position

1 is greater than or equal to the variable max ouantity 1.

®* Whether the result of the variable cuantity 2 being added to the absolute value of current position

2 is greater than or equal to the variable max guantity 2.

As the two clauses are joined with an or, only one needs to be true for the condition to be true as a

whole. Had the operator used been an ang, then both of the clauses would have needed to be true for

the condition as a whole to evaluate to true.

A condition needs to evaluate to the value true or false. Apart from the literal values true and faise

themselves, a condition can also consist of any of the following:

® The inverse of any other condition. This can be achieved by expressing not before that condition

® A variable (or block parameter or block output field) that is of type True/rFaise (or condition)

* A check on whether a variable’s value (or block parameter or block output field) has changed
since the beginning of this state or since it was last checked by this rule

Fcnfexanqple,Max Quantity changes
® A function call whose result is either true or false

For example, isweekday ("Friday")

* Any numeric expression being compared with another numeric expression. A numeric expression

equates to a numeric value, and can be arrived at by any combination of arithmetic operations,

functions and/or number variables. Numeric expressions can be compared to each other with is

less than, is less than or equal to, is greater than, is greater than or equal to, is equal to,arKiis

not equal to.

For example, price is less than 20

or

((Price * 2) / Quantity) is greater than POW(Upper Limit, 5)

* Any fext expression being compared with another text expression. A text expression is a string
(that is, a word or phrase) and can be arrived at by any number of operations, functions and/or

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

18

How rules define scenario behavior

text variables. Text expressions can be compared to each other with is equal to, is not equal to,
and contains.

For example, Name is equal to "Tom"
or
"Bookmark" contains "book"

®* Any choice variable being compared with a valid choice value. The latter can be another choice
variable or a text expression. A choice variable is one whose valid values are limited to a
particular selection of text values. The valid comparisons here are is equal to, and is not equal
to.

®* Any number of nested conditions joined with and or or

F(erxanlple,Max Quantity changes and (Price is less than 15 or Price is greater than or equal to
20)

Details on how to specify conditions in the Rules panel are given in "Working in the Rules panel"” on
page 43.

How rules define scenario behavior

Description of rule actions

If a condition evaluates to true, then the corresponding action part of that rule will be processed.

Actions consist of a number of action statements, and a state transition statement. The former are
optional; it is possible to have an action that does not have any action statements. However, there
must always be a state transition statement.

The state transition statement is straightforward; it will either be continue, Or else move to state [One
of the scenario’s states;. It is important to note that the latter format could indicate a transition back
to the same state, and that this is in fact different to stating continue. The distinction will be explained
in "About rule evaluation" on page 20.

An action statement can be:

* Assign the value of a numeric expression (that is, a number) to a numeric variable or block
parameter. For example:

Trades Executed = Trades Executed + 2

* Assign the value of a text expression (that is, a word or phrase) to a text variable or block
parameter. For example:

Status Message = "Both orders filled"

* Assign the value of a condition (true or false) to a conditional variable or block parameter. What
constitutes a valid condition here is the same as listed in "Description of rule conditions" on page
17. For example:

Active = ((Price * 2) / Quantity) is greater than POW (Upper Limit, 5)
* Assign the value of a text expression or choice variable to a choice variable or block parameter

* Invoke a block operation

Developing Apama Applications in Event Modeler 5.2.0 19
? s APAMA

How rules define scenario behavior

See "Working in the Rules panel" on page 43 for details about specifying rules.

How rules define scenario behavior

Description of functions in rules

As you might have noticed from some of the examples used so far, functions are available in both
conditions and actions.

Functions in Event Modeler take a fixed set of parameters, with each parameter being of a particular
type. A function will return a single value of a particular type. The types available for both
parameters and results are text, number and true/ralse (or condition).

Functions are each defined in a function definition file or . zar file.

The bundled functions include commonly used arithmetic and string functions, like abs (the absolute
value of a number), ceil (the whole number ceiling of a number), floor (the whole number floor of a
number), pow (to the power of) and concat (concatenate). These functions are documented in "Using
Functions in Event Modeler" on page 104.

Note that any . zat files located in the folder functions are automatically picked up by the Event
Modeler at startup time, and made available when defining rules.

How rules define scenario behavior

About rule evaluation

When scenario execution enters a state, the rules of that state are examined in the order they are
defined. If there are global rules as well as local rules, Event Modeler evaluates the first global rule
first.

The first rule’s condition is checked to verify whether it is true or false.

If the condition is false, then execution moves on to the next rule, and the procedure is repeated in
the same way for that rule. If there are global rules, the next rule is the next global rule. If there are
no more global rules, the next rule is the first local rule. If Event Modeler processes all rules assigned
to a state, the order is top to bottom in the combined Global and Local Rules panel.

If, on the other hand, the rule’s condition is true, then its action part is processed. The action
statements are executed, and then the state transition statement is examined. If it iS continue, then
execution moves on to the next rule. If, on the other hand it is move to state [some state] then the
scenario will proceed directly to that state and ignore all other rules. Their conditions will not be
reviewed and their action parts never processed. In the new state, the same procedure highlighted
here is followed.

Note that as stated previously continue, and move to state [this same state] are different. The former
causes execution to proceed to the next rule, while the latter causes the state’s execution to restart
from the first rule as if we had entered this state from a completely different state.

How rules define scenario behavior

Developing Apama Applications in Event Modeler 5.2.0 20
? s APAMA

Basic view of rule processing

Basic view of rule processing

Consider the set of rules shown in this screen.

Figure 5. Rule processing example one

start

MNew State 1

New State 3

MNewistate 2

=5 - New State 1

New Rule 1

i | Anexample rule
Whean | variablel is less than 10
Thern | move to state [Hew State 2]

New Rule 2

i | Anexample rule
Wihen Variable1 is greater than 20
Then | @ move to state [New State 3]

New Rule 3
i | Anexample rule
When | not Variable3

® Message = "Hello"
= continue

Then

F % 4

Q AW

end

New Rule 4

i | Anexample rule
Wihen | Variable? is equal to "World"
Then | = move to state [end]

This example scenario has four variables, called variaplel (number), variaple2 (text), variables

(condition) and vessage (text). These variables could have any value when execution enters newstate

1. Their initial values would normally have been set by a user on creation of the scenario instance, or

else they could have been set and modified by some rule in the start state.

Consider vewstate 1, which specifies four rules. When the scenario instance’s execution first enters

Newstatel, its rules will be processed as follows:

1. wew rule 1 will be examined first.

2. If the value of variabiel is less than 10 then its condition will be true, its action part will be

processed, and this will move the scenario’s execution to Newstate 2 right away. New Rule 2, New
rule 3 and nvew rule 4 Will be ignored, and the rest of the steps outlined here would not apply.

3. If the value of variabie1, however, was greater than or equal to 10, then the condition of new rule 1
will be false. In this case, new rule 2 will be examined.

4. Invwew rule 2,if variablel was actually greater than 20, then the action part of vew rule 2 gets
processed, and this time the scenario moves to Newstate 3.New Rule 3 and wew rule 4 will be

ignored. No further steps apply.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

21

Basic view of rule processing

5. On the other hand, in new rule 2, if the condition was false, we move to New Rule 3.

6. Inwew rule 3,if the value of variable3 was false, then not variable3 would be true, and the
condition of vew rule 3 would be true. In this case, vessage would get set to the text “se110”. Since
the state transition statement is continue, then vew rule 4 will be processed.

7. Had the condition of xew rule 3 been false, Message would not get set to the text “ne110”. However,
New Rule4 would have been processed anyway:.

8. The condition of new rule 4 checks whether variable2 contains the text “wor1d”. If so, execution
proceeds to the end state. If not, then all rules would have been processed and the scenario would
go into a monitoring stage. This will be described later.

This illustrates the way in which rules are processed, in order, from top to bottom.

Overview of Using Event Modeler

Expanded view of rule processing

While the previous top-to-bottom rule processing occurs in the majority of scenarios, the full picture
of how rules are processed is more elaborate.

In practice, when execution enters a state, the rules of that state are placed on a queue in the order
shown in the rules panel — first global rules and then local rules. This queue is known as the rule
queue. Rules are taken off the head of this queue and processed.

The sequence can differ if any of the action statements modify a scenario variable (or block
parameter or block field) that is referenced by the condition of any rule within that state.

In that case, all rules whose condition references that variable, and that are no longer on the
queue, will be added to the end of the queue. If those rules had already been on the queue waiting
to be processed, then they would not be added again. For example, consider the following rules:

* RI1: f(b): continue;

® R2:f(a): continue;

* R3:f(c): a=7; continue;
* R4: {f(d): b=0; continue;
® RS5: f(a,b): continue;

Suppose that a, b, ¢, and d are variables and f(a) means “some function of 'a”. Assume that f(c) and
f(d) are both true. Event Modeler places the rules on the queue as follows:

R1R2R3 R4 R5R2R1

As you can see, when Event Modeler adds a rule to the queue, it always adds it to the end of the
queue.

Consider the set of rules shown in the next screen:

Developing Apama Applications in Event Modeler 5.2.0 22
’ s APAMA

Basic view of rule processing

Figure 6. Rule processing example two

-~

stapl . Local Rules - New State 3 &

/ New Rule 1 G av

i Is Wariable3 rue?

MNew State 1 When | Variable3
Thern | @ move to state [New State 1]

New Rule 2 [av
i | Does Variablel have a value of 157
When | Variable1 is not equal to 15

® Variable? = "A new value"
o continue

Then

New State 2 New Rule 3) aw
i | Does Message have the same value as Variable2?
When | Message is equal to Variable?

Thern | = move to state [New State 3]

New Rule 4) avw
i | Does Yariablel have the same value as & to the power of 27
When | Variabled is equalto (2 * POW (6,2))

end

Then | e transition incomplete

New Rule 5 G av
i | Does Variable2 have a value of "Hello World"?

Wher | Variable? is not equal to CONCAT ("Hello™ , "World™)

Then | ® mowve to state [end]

-

a“w

When execution enters vewstate 3 any rules of the previous state are removed from the rule
queue, and the following rules will be placed on it, in this order: new rule 1, New Rule 2, New Rule 3,
New Rule 4 and New Rule 5.

New rule 1 Will be taken off the queue and its condition examined. If variabies is true, then the
scenario will move to vewstate1. The rule queue will be emptied of all vew state 3 rules, and no
further steps apply.

However, if variables is false, then vew rule 2 is taken off the queue and its condition checked.
Note that at this point the rule queue would contain vew rRule 3, New Rule 4 and New Rule 5. New Rule
2’ s condition states that if variablel is not equal to 15 its action part must be processed. Let us
assume that variaviel is indeed not equal to 15 and its single action statement changes variable2
to the value “a new value”.

What happens next in this case depends on the state transition statement of new rule 2.If it had
caused a transition to another state, then the scenario would have emptied the rule queue, moved
to that state, and then repopulated the queue with the rules from the new state. However, in this
case the state transition statement is continue. Note that varianiez is referred to in the condition
part of vew rule 3 and vew rule 5, and that it has now been changed. Therefore, vew rule 3 and

New Rule 5 must be added to the rule queue. However, they are already on the queue, so nothing
happens. If either of these two rules had not been on the queue, they would have been added to
the end of the queue.

Developing Apama Applications in Event Modeler 5.2.0 23
? s APAMA

Basic view of rule processing

Now, consider this slightly changed set of rules, specifically xew rule 2.

Figure 7. Rule processing example three

startil . - New State 3 & % 4 &

New Rufe 1 Q av
A/ i IsVariable3 true?

When | Variable3
Then | = move to state [New State 1]

Mew State 1

New Rule 2) av

i | Does variablel have a value of 157
When | Variabled is not equalto 15

® Variable? = "A new value™
® Variabled = true

New State 3 Then

= continue

¥

Mew State 2

New Rule 3) av
i | Does Message have the same value as Variable2?

When | Message is equal to Variable?

Then | @ move to state [Hew State 3]

end = New Rule 4) av
i | DoesVariablel have the same value as & to the power of 27

Wihen | Variabled isequalto (2 *POW (6,2))

Then | e move to state [end]

New Rule 5 G ar
i | Does VariableZ have a value of "Hello World"?

Wihen | Variable? is not equal to CONCAT ("Hello™ , "World™)

Then | = move to state [end]

-

New Rule 2 is now also changing variabies. This time, starting with step 3 from the previous sequence,
the following is what happens:

1.

If variables is false, then vew rule 2 is taken off the queue and its condition checked. Note that

at this point the rule queue would contain vew rule 3, New Rule 4 and New Rule 5.New Rule 2's
condition states that if variavie1 is not equal to 15 its action part must be processed. Let us assume
that variavie: is indeed not equal to 15 and action statements change variapie2 to the value “a new
value”, and variable3 to true.

What happens next in this case depends on the state transition statement of xew rulez. If it had
caused a transition to another state, then the scenario would have emptied the rule queue, moved
to that state, and then repopulated the queue with the rules from the new state. However, in this
case the state transition statement is continue. Note that variaviez is referred to in the condition
part of new rRule 3 and vew rule 5, and that it has now been changed. Therefore, new rule 3 and vew
rule 5 must be added to the rule queue. Also, variables is referred to in the condition part of vew
rule 1, and it has also now been changed. Therefore, vew rule 1 must be added to the rule queue.
Now, vew rule 3 and vew rule 5 are already on the queue, so they are not added. vew rule 11isno
longer on the queue, so it is added. Therefore, at the end of processing vew rule 2’s action part,
the rule queue will now be: vew Rule 3, New Rule 4, New Rule 5and New Rule 1.

Developing Apama Applications in Event Modeler 5.2.0 24
’ s APAMA

About scenario variables

Basic view of rule processing

Scenario monitoring stage

If all rules on the rule queue are processed and the queue becomes empty, the scenario instance goes
into a monitoring stage.

The scenario instance stays in this state until some external source changes a variable, block
parameter or block field that is referred to in any condition of any of its rules. This can occur because
of a user sending in a scenario modification, or a block changing its properties in response to some
external event feed.

If this occurs, then the affected rules are added to the rule queue and processed in the order as
described previously.

This process of placing rules on the rule queue and processing them continues until a rule condition
is true and the corresponding action requests a state transition to another state. After moving to the
new state, Event Modeler places the new rules on the queue and evaluates them. Rule processing
stops only when there are no rules left to be evaluated.

Basic view of rule processing

Summary of adding rules when a variable value changes

When a rule action or an external source changes a variable, block parameter or block field that is
referred to in any condition of any rule in the current state, that rule is added to the current rule
queue, unless it is already on the queue. If the queue was empty when the rule was added, then the
rule is processed immediately. If multiple rules need to be added to the queue, they are added in the
order they are listed, top to bottom.

Basic view of rule processing

About scenario variables

Typically, each scenario has a number of variables.

As in other programming environments, variables are placeholders for useful information that the
scenario needs to keep track of and perhaps modify during its execution. They also indicate the
information that will be required by a running instance of the scenario from the end-user in order
to configure and start it off, as well as representing the information that will be sent back to be
displayed to the user as progress updates or results.

The variables defined in a scenario are shown in the Variables tab. Each variable has a distinct type. If
you click on the green box to the left of each variable you can examine its type and other properties.

Overview of Using Event Modeler

Developing Apama Applications in Event Modeler 5.2.0 25
? s APAMA

About scenario variables

Variable types

Variables can be of four types in Event Modeler:

* 1ext (OF string)

®* wumper (integer or float depending on constraint)
® Choice (Or enumeration)

® True/False (Or conditional, or boolean)

rext variables contain textual information, like words, phrases or sentences. An example of valid text
1S “Hello World”, ”Monday”, “acMe” Or ”Trading Strategy executed successfully”. Text values are normally
shown in double quotes. If you want to have quotes in your text, you can escape them as follows: “ne
said \"hello\" and left”.

Number variables can contain numbers. Valid examples are 1, 25.0, -45.62, Or 8902es.

choice variables are constrained so that they can only have values from a specific set of pre-defined
values. For example, the choice variable pay could be constrained so that it can only have one of the
values ”Monday”, ”Tuesday”, ”Wednesday”, “Thursday”, ”Friday”, ”Saturday”OI’”Sunday”.

True/False variables, also known as condition variables, can only take the values true or false.

You can also specify constraints on variables according to their type. For example, you can specify
maximum and minimum values for a vumber variable.

About scenario variables

Auto-typing of variables

Variables are “auto-typed” by default. This means that the type is automatically inferred from the
value assigned to the variable in the Variables tab . If such a variable is wired to another variable or a
block field, it inherits the source’s type.

If you subsequently change the wiring so that the auto-typed variable is then wired to another
variable or block field, its previously inferred type will be changed to the type of the new source.

Note that this means that type mapping (as described in "Linking variables, block parameters, and
block output fields" on page 29) will not be necessary for variables that are auto-typed.

About scenario variables

Variable properties

Variable properties only apply to, and are enforced by, dashboards. That is, they only apply when
a variable is presented to, and is interacted with by, an end user of the scenario. By design, variable
properties do not apply to scenario rules or variable wiring within the Variables tab.

Developing Apama Applications in Event Modeler 5.2.0 26
? s APAMA

About scenario variables

Each variable has a mutability property, which can take the following values:

®* mutable — This property is of relevance to the dashboard. If set it means that the end-user should
be able to set and change the value of this variable at any time, via a dashboard.

®* 1mnutable — This property is of relevance to the dashboard. If set it means that the end-user should
only be allowed to set the value of this variable upon creation of the scenario instance, and
should not be able to modify it afterwards.

®* rixed — This means that this variable is a constant; it cannot be modified through a dashboard. If
a variable is set as rixed but no value is provided for it in the Variables tab, the Event Modeler will
automatically set it to the default value for its type.

Furthermore, each variable can also be set to be unique. This means that if multiple instances of a
scenario are started concurrently, the value of this variable must be unique across all instances. The
dashboard used to enter values for this variable will ascertain that this is the case before accepting
the value from the user. Note that if a variable is set to be unique, it must also be Immutabie.

About scenario variables

Variable constraints

Depending on its type, each variable can also have value constraints set on it.

Variable constraints only apply to dashboards. That is, they only apply when a variable is presented
to, and is interacted with by, an end user of the scenario. By design, variable constraints do not apply
to scenario rules or variable wiring within the Variables tab.

For text variables the possible constraints are:

® Minimum length: @ whole number specifying the minimum acceptable length of the text string.
Setting this constraint is optional.

For example, if set to s, then “voox” would not be valid, but “1ibrary” would.

® Maximum length: @ Whole number specifying the maximum acceptable length of the text string.
Setting this constraint is optional.

For example, if set to 8, “1ivrary” would be a valid value, but “1iprarian” would not.

® Oneofall Upper Case, All Lower Case OF Mixed case. One of these constraints must be set, Mixed case
being set by default.

For example, if set to a11 upper case, “test” and “rest” would be invalid, but “rest” would be
fine. Conversely, only “test” would have been valid if set to 211 rower case, but all three variants
would be fine with the default uixed case setting.

® Trim whitespace: If enabled, all leading and trailing white space characters (space, tabs, new line
and other formatting characters) will be removed from the text string whenever its value is set.
Note that if the minimum length and maximum length constraints were set, they would apply to
the final ‘trimmed’ text string. The default is for this constraint to be disabled.

For example, “ sel1lo woria ” would be automatically changed to “se11o wor1d” if Trim whitespace
were enabled.

For wunper variables the possible constraints are:

Developing Apama Applications in Event Modeler 5.2.0 27
’ s APAMA

About blocks

® Minimun: @ numMber specifying the minimum acceptable value of the variable. Setting this
constraint is optional.

For example, if set to 2 or 2.0, then only numeric values greater than or equal to 2.0 would be
valid.

®* Maximun: @ number specifying the maximum acceptable value of the variable. Setting this
constraint is optional.

For example, if set to s or 5.0, then only numeric values less than or equal to 5.0 would be valid.

® unole Numver: If enabled, all values set for this variable will be changed to whole numbers by being
rounded down. The default is for this setting to be disabled.

For example, 3.1 would be automatically changed to 3, as would 3.9736., while -3.1 would be
changed to -4.

For cnoice variables, the constraints specify the set of valid text values that this variable can take.
These are distinct values, and choice variables can only take the values specified in their constraints.

For example, the choice variable pay should have its constraints set to the set of values “vonday”,
”Tuesday”, ”Wednesday”, ”Thursday”, ”Friday”, ”Saturday” and “Sunday”.

No constraints are available for True/rFalse (condition) variables.

About scenario variables

User input and output

Each scenario variable can be tagged as being an input variable, an output variable, or both.

Variables whose values can be collected directly from the user should be marked input. Those whose
value can change during the execution of a scenario, and whose changing values may be of interest
to the user, should be marked as output.

About scenario variables

About blocks

Blocks are ready packaged modules that you can use in your scenarios. They can accept inputs,
execute some logic of their own, and generate output.

A block is defined in a Block Definition File, or .nas. This XML file describes the functionality of the
block and its implementation in Apama Event Processing Language (EPL), which is the new name of
Apama MonitorScript. EPL is the native language of the correlator.

Note: Within the product, both EPL and MonitorScript are used and should be treated as
synonymous.

A block can consist of:

® [nput feeds — an input feed can be hooked up to a live stream of event data, like a price quote
stream. Within it, an input feed will define one or more input fields, which can be mapped to data

Developing Apama Applications in Event Modeler 5.2.0 28
? s APAMA

Linking variables, block parameters, and block output fields

in the stream. When event data arrives, the fields” values are updated. These fields are typed in
the same way as scenario variables.

* Qutput feeds — an output feed is a stream of output data that can be generated by the block. Each
output feed corresponds to an event that can be generated by the block, and embeds one or more
output fields. The fields are updated as a result of operations carried out by the block. These fields
are typed in the same way as scenario variables.

® Parameters — a block can have a number of parameters, which, when set, configure its behavior.
Parameters differ from input fields, in that the latter are like work packages for the block
to process. Typically, you use parameters to initialize the block or change its core behavior.
Parameters are typed in the same way as scenario variables. Parameters are all provided at
initialization time and can then be updated individually. Input fields are expected to change
often and at any time.

®* Operations — in addition to any standard behavior that is hard-wired into it, a block can also
have a number of explicit operations that can be invoked by the scenario. For example, typical
operations are start and stop, which cause the block to begin processing events or to cease. If
an operation requires any configuration information, this is usually passed in through a block
parameter.

Apama provides a library of useful blocks, which can be viewed and selected from the Catalogs tab.
For information about provided blocks, see "Using Standard Blocks" on page 120.

There is no restriction on the number of block instances that can be added to a scenario. The Blocks
tab shows the blocks that have been added to a scenario. When you add a block to a scenario you are
effectively specifying that instances of that scenario should create an instance of that block running
within them. Whether the block instance then starts executing some activity immediately or waits for
some operation on it to be called depends entirely on how the block itself was written.

It is possible to add multiple instances of the same block to a scenario. Each instance will have its
operations, parameters and fields clearly tagged by its unique name to ensure there is no conflict.

If there is no standard block that meets your needs, you can create a custom block. There are several
ways to do this:

® Use the Apama Studio block editor to create a block by defining its parameters, operations, input
feeds and output feeds.

®* Use the Apama Studio block editor to create a block from an event definition.

® Save a scenario as a block. This lets you create composite scenarios when you use such blocks
in other scenarios. However, you cannot save a scenario as a block if you mark that scenario as
parallel. Nor can you save a non-parallel scenario as a block and then mark the block as parallel-
aware. For details, see "Working with Blocks Created from Scenarios" on page 84.

For more information on the structure of a block and for instructions on how to create your own
blocks, see "Creating blocks" in Using Apama Studio.

Overview of Using Event Modeler

Linking variables, block parameters, and block output
fields

One of the facilities provided by the Event Modeler is the linking of:

Developing Apama Applications in Event Modeler 5.2.0 29
? s APAMA

Linking variables, block parameters, and block output fields

* Block output fields to scenario variables

This creates a relationship between an output field of a block and a scenario variable. Once set
up, Event Modeler automatically updates the value of the variable to the value of the output
field. If the output field changes, the variable’s value immediately reflects the new value of the
block output field.

If the field and the variable are not of the same type, Event Modeler converts the field’s value

to the type of the variable before it updates the variable. If the conversion is not possible, Event
Modeler assigns a default value to the variable. See "Conversion rules for variable types" on page
65 for more information.

If the variable is of auto-type, it inherits the type of the block output field.

After you link a block output field to a scenario variable, you can still explicitly modify the value
of the scenario variable. If you do, keep in mind that Event Modeler will continue to update

the value of the scenario variable each time the value of the linked block output field changes.
Consequently, after you link a block output field to a scenario variable, the recommendation is
that you do not explicitly modify the value of that scenario variable.

® Scenario variables or block output fields to block parameters

This creates a relationship between a scenario variable or block output field and a block
parameter. Once set up, Event Modeler automatically updates the value of the block parameter
to the value of the scenario variable. If the value of the scenario variable or block output field
changes, the value of the linked block parameter immediately changes to reflect the new value.

If the variable or field and the parameter are of different types, Event Modeler converts the
variable’s value or the output field’s value to the type of the parameter before updating the value
of the parameter. If the conversion is not possible, Event Modeler assigns a default value. See
"Conversion rules for variable types" on page 65 for more information.

After you link a scenario variable or block output field to a block parameter, you can still
explicitly modify the value of the block parameter. If you do, keep in mind that Event Modeler
will continue to update the value of the block parameter each time the value of the linked
scenario variable or block output field changes. Consequently, after you link a scenario variable
or block output field to a block parameter, the recommendation is that you do not explicitly
modify the value of that block parameter.

Overview of Using Event Modeler

Developing Apama Applications in Event Modeler 5.2.0 30
? s APAMA

Adding scenarios to projects

Chapter 2: Using Event Modeler

B Adding SCENAMIOS 10 PrOJECESvcvevcviicieririiiiieiee ettt s s s s st s 31
B Opening and viewing MUILIPIE SCENATIOScucuevriiiieiieieirieeieieie ettt 33
B Selecting from the SCENAMO MENUciviiiiiiiiiiir bbb 33
B The Event MOdeler T00IDAI ..ot 34
B [nteracting with the tabs and PANEIS ... s 35
B Working in the EVENnt FIOW PANEIcoiiii e 36
B Working in the RUIES PANEI ..o 43
B UsiNg the Variables 8D ...t 58
B USiNG the Catalogs 1Dcccccieicicicicicceccee ettt 66
B USING the FUNCHONS 18D ..ot 68
B USING the BIOCKS 8Dcoiviiiiiicicieeeees sttt 69
B SWILCHING DIOCKSvoieeieici st 73
B Using the BIOCK WIMNG tADc.coiuiiiiccciccee et 74
B Troubleshooting iNValid SCENAMOS ..o 79
B SEtliNg PrEfEIBNCES ..ot 79
B ExXporting SCENANIOS @S EPLcooiiieiiee st 81
B Exporting scenarios as bIOCK teMPIALESccoviiiiiiiiicc e 81
B Event Modeler command liNe OPLONSc.ovviiriirririiccee e 81

Now that the important concepts underlying the definition of a scenario have been introduced, this
section will illustrate how to use the Event Modeler’s interactive functionality.

This section will describe each of the tabs available in Event Modeler and how to use them
effectively.

Adding scenarios to projects

To open or create a scenario, the scenario must belong to an Apama project. This section uses an
example to show you how to create a project, create a new scenario, and add a scenario to a project:

® "Creating the GlobalRuleExample project" on page 32
® "Adding GlobalRuleExample.sdf to the GlobalRuleExample project” on page 32
® "Adding a new scenario to the GlobalRuleExample project” on page 32

Using Event Modeler

Developing Apama Applications in Event Modeler 5.2.0 31
o gam A =" APAMA

Adding scenarios to projects

Creating the GlobalRuleExample project

The following steps provide an example of how to create an Apama project. To create the
GlobalRuleExample project:

1. Ensurethat Apama Workbench appears in the Apama Studio window title bar. If it does not, from the
Apama Studio menu, select Window > Open Perspective > Apama Workbench.

2. From the Apama Studio menu, select File > New > Apama Project to display the New Apama Project
dialog.

3. Inthe New Apama Project dialog, specify GlobaRuleExample for the project name, accept the default project
location, and click Next.

4. Inthelist of standard bundles that appears, select Scenario Service (required by all Scenario-based
applications), and click Finish.

Bundles are packages of Apama objects such as EPL files, event definition files, and event files or
adapter configuration files that are required for specific types of applications.

Apama Studio displays your new project in the Workbench Project View pane on the left of the
perspective.

Adding scenarios to projects

Adding GlobalRuleExample.sdf to the GlobalRuleExample
project

To add ciobalruleExample.sdf (an existing scenario) to the GlobalRuleExample project:

1. From the Apama Studio menu, select File > Import.

2. Expand General, click File System, and then Next.

3. Click Browse and then navigate to and select your Apama_install directory\samples\scenarios, and click
OK.

4. Inthe Import dialog, select GlobalRuleExample.sdf and click Finish.

5. Inthe Workbench Project View pane, expand scenarios, and double-click GlobalRuleExample.sdf to open it
in Event Modeler.

Adding scenarios to projects

Adding a new scenario to the GlobalRuleExample project

To add a new scenario to the GlobalRuleExample project:

1. From the Apama Studio menu, select File > New > Scenario.

Developing Apama Applications in Event Modeler 5.2.0 32
? s APAMA

Opening and viewing multiple scenarios

2. Enter aname for the new scenario and click Finish.

Adding scenarios to projects

Opening and viewing multiple scenarios

In the Apama Developer perspective, Event Modeler can open multiple scenarios concurrently, but
only one can be on active display; that is on view at any one time. You can tell which scenario is
currently on view by examining the contents of the window title bar, as this lists the scenario’s name
and the location of its corresponding .sar file.

At the top of the Event Flow/Rules display, there is a tab for each opened scenario. The last opened
scenario always becomes the scenario on view. So depending on the sequence in which you open
scenarios, one will be on view and the other will still be loaded. You can switch from one to the other
by clicking its tab.

It is also possible to open multiple Apama Event Modeler windows and view different scenarios (or
the same, for that matter) in each. This can be carried out from the Window menu on the menu bar,
and is not the same as actually starting another instance of Apama Studio. There should never be any
need to do the latter.

To open a window for each scenario:
1. From the Apama Studio Window menu, select New Window.
Another Apama Studio window appears.
2. Inthis second Apama Studio window, you can open the same scenario or a different scenario.
Notice how the title bars reflect which scenario is on view in each window.

If you have multiple windows open showing the same scenario, any edits done in one will be
immediately reflected in the other if applicable. Selections and view changes are not reflected in this
manner; so if in one window you are viewing the start state while in another you are editing the rules
of another state, you will not see your edits in the first window until you select the edited state there.

If you close a window, the scenario on view in that window remains loaded in the Event Modeler
and no changes are lost. If you close all the windows in Event Modeler, you have effectively exited
the Event Modeler. You will be prompted with a warning dialog if you try to exit Event Modeler
while there are modified (unsaved) scenarios open.

Using Event Modeler

Selecting from the Scenario menu

When Event Modeler is open, the Apama Studio menubar includes Scenario. The nested options
from Scenario are as follows:

®* Generate Debug Code — When this is checked, Apama Studio injects the scenario in debug mode
when it runs your project.

®* Generate Block — When this is checked, Apama Studio saves your scenario as a block template
when it saves and/or builds your project. Apama Studio puts the block template in the Generated
scenario blocks catalog in the catalogs directory of your project. You can use the block template in

Developing Apama Applications in Event Modeler 5.2.0 33
? s APAMA

The Event Modeler toolbar

other scenarios. This option is available only if all of the scenario’s states, and by consequence, all
their rules’ conditions and actions, are finished. You cannot mark a scenario as parallel and then

export it as a block.

* Toggle Block Field Feed Name Display — In the Block Wiring tab, toggles the display of block field
feed names.

* Toggle Rule Comment Display — In the Rules panel, toggles the display of the comments that can be

associated with each rule.

® Global Rule Arc Visibility — Determines the Event Flow tab display of transitions controlled by
global rules. Choices are:

m Emphasize All Global Rule Arcs — All global transitions appear in a bright orange color.

m Emphasize State Global Rule Arcs — The global transitions for only the selected state appear in

bright orange. Other global transitions are in a very light orange.

m Deemphasize All Global Rule Arcs — All global transitions appear in a very light orange color.

When you save a scenario, Event Modeler first tries to save a copy of the previously saved version of

that scenario to create a backup. If Event Modeler is unable to make the backup, it displays a dialog

that lets you know. You can save the scenario anyway or cancel and try to find out why the backup
could not be made.

Using Event Modeler

The Event Modeler toolbar

The Event Modeler toolbar contains a number of icons that correspond to commonly used
operations:

Table 1. Event Modeler toolbar

Toolbar icon Operation

B Enable/Disable parallel execution — Indicate that the instances of the
scenario will be run in parallel. This selection is a toggle. A scenario that
runs in parallel executes each scenario instance in a separate context.
Contexts let Apama organize work into threads that the correlator can
concurrently execute.

For a scenario to run in parallel, each block that it uses must be parallel-
aware. If a scenario uses one of the standard blocks provided with Apama,
the scenario must use the latest version of the block. If a scenario uses a
custom block, you must have created it in Callback or Callback (DEBUG)
mode, or converted it to Callback or Callback (DEBUG) mode.

You cannot create a block from a scenario that can run in parallel. Also, you
cannot create a block from a non-parallel scenario and then mark that block
as parallel-aware.

R

Cut the currently selected element to the clipboard (that is, copy it and then
delete it)

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

34

Interacting with the tabs and panels

Toolbar icon Operation

Copy the currently selected element to the clipboard.

Paste the current contents of the clipboard to the current selected location.
This will not be available if the clipboard is empty or if its contents are not
suitable for the current location. For example, you cannot paste a state in
the Variables tab.

& Undo the last action.

58 Redo the last action which was undone.

i Show feed names for block fields.

i Toggle display of rule comments.

Using Event Modeler

Interacting with the tabs and panels

Certain operations require you to highlight or select one of the panels first. You can do this by
clicking somewhere within the desired panel or on its title bar. When a panel is highlighted, its title
bar changes color as shown below. The Local Rules panel’s title bar is highlighted because it is the
selected panel.

Figure 8. Event Modeler with Local Rules panel highlighted

Apama Workbench - Demos - Statarb/scenarios/StatisticalArbitrage.sdf - Apama Studio [E=R[E=R =)
File Edit Navigste Search Project Scenario Run Window Help
5 | @ statistical Arbitrage Demo *StatisticalArbitrage.sdf J% = 8 o
GAIE JER=REIREA - ¢ =
| Event Flaw State » ‘ & ‘ e ‘ 100% :Gluhalku\as-start & | : 'L.Ca;z\uus | Jw, Functions =
I _ . Variables [Blocks
~ h-] -
Update bands when spread changes Q@ aw| | | |Variables | e
i |Wait for a change in the spread 1 name value input output
statistics from Spread Data Distribution Calculator changes or Std Dev Multiplier Il nstrume... o
When | e Bl instrume. o
B Quantity 1 10 =]
© Upper Band = { mean from Spread Data Distribution Calculator + (Bl cusntry 2 o g
watro . f;m\::;;: fp:rij;\alla:s:;nhuimn Calculator * Std Dev Multiplier)) Il stapev . i =
w - pread Data Distribution Calculator - { Bl orderTi.. o &l
stddev from Spread Data Distribution Calculator * Std Dev Multiplier)) Hrromi, mme &
J’ © continue 7| (W Max Quan... 2,000 B
Io;mesimn = | B LowerBa.. 0.0 [
B current s... spread =]
Monitor Opportunities - l Upper Band 0.0 B
Statistical Arbitrage Scenario [l Current P... position =
This scenario utilises a number of blocks to receive prices l currentP... position 0
orders\completed for two instruments, then calculates the spread between the L B Traces ex.. o O
two prices (Instrumentl - Instrument2) and calculates the mean | | || B Total Qua.. o B
Wait for Orders of that spread. Then the standard deviation of that mean is l Profitioss profitfom [
calculated and upper and lower bounds are calculated. The H status M. = O
bounds are calculated by multiplying the standard deviation by [l order sta... status 0
a stepped multiplier (commonly 2.0) and adding or removing W Order Sta... status]
this value to the mean. Then the values of the boundaries are 0 0
ead ' | checked against the spread; if the spread crosses the upper
poundary, we issue two orders simultansously to the market -
sell Instrumentl and buy Instrument? (the spread is larger
than normal and we expect it to return to normal; i.e. the
price of Instrumentl will drop and/or the price of Instrument2
will rise). If the spread crosses the lower boundary the
« i v opposite is executed (i.e. buy Instrumentl and Sell -
22/ Event Flow | 3! Block Wiring

Developing Apama Applications in Event Modeler 5.2.0 35
? s APAMA

Working in the Event Flow panel

Using Event Modeler

Working in the Event Flow panel

The Event Flow panel graphically illustrates the states that a scenario instance can be in during
execution, and how it can transit from one state to another. The states are depicted as circles, and
possible transitions are shown as a line between the two states, with the arrow head indicating the
direction of the transition.

Upon creation, a new scenario has two states, marked start and end, with a single transition going
from the start state to the end state. User-defined states have a single border, while mandatory states,
the start and end states, have a double border. Mandatory states are also shown in a different color
(pale blue) instead of rose. The name of an unfinished state appears in red italics. In a newly created
scenario, the start state is unfinished because you have not yet defined any rules to indicate how the
scenario can transit from the start state to the end state.

Figure 9. Mandatory start and end states

atart

end

Note that all colors used in the Event Modeler can be changed from the Preferences dialog. Select
Window > Preferences , expand Apama, and select Scenarios.

You can zoom the view in and out within the Event Flow panel by changing the zoom value from the
pull down selector available on the panel’s toolbar. You can adjust the zoom level from 252 to 400,
with 100 being the default setting. Alternatively you can just type the zoom value you would like
and press Enter.

Using Event Modeler

Interacting with states

You can interact with states in the Event Flow panel in a variety of ways.

Working in the Event Flow panel

Developing Apama Applications in Event Modeler 5.2.0 36
? s APAMA

Working in the Event Flow panel

Selecting a state

If you click on a state you will notice that it becomes highlighted. This is indicated by the border
changing color and eight drag handles appearing around the state.

Figure 10. Selected start state

end

If a state is selected its rules will be displayed in the adjoining Rules panel if this is viewable. When
the title of the state is in red italic the state is unfinished. When the title of the state is in black the
state is finished. See "The finished status" on page 38.

Interacting with states

Resizing a state

The drag handles allow you to resize the state in any of eight directions. Press and hold the left
mouse button while pointing to any of the drag handles to resize while dragging. Notice how the
mouse cursor changes to indicate that a directional resize is available.

If you hold down the Shift key while doing this, you will restore and preserve the aspect ratio of the
circle.

Interacting with states

Moving a state

You can move a state around by pressing the left mouse button while pointing to it, and then
dragging it around while holding down the mouse button.

If a state is selected its rules will be displayed in the adjoining Rules panel if this is viewable.

Interacting with states

Multiple selection

You can select multiple states concurrently by holding down the Shift key and clicking on multiple
states; all will be selected. You can then drag them together by pressing and holding down the left

Developing Apama Applications in Event Modeler 5.2.0 37
? s APAMA

Working in the Event Flow panel

mouse button while pointing to any of them. If more than one state is selected, only the rules for the
first one will be displayed in the Rules panel.

You can also drag and select a rectangle around multiple states and transitions.

Interacting with states

Adding a state

To add a state, click on the % button on the Event Flow panel’s toolbar. A new state will appear in the
upper left corner of the Event Flow tab from where you can move it to a suitable location. This new
state will be selected by default.

Interacting with states

The finished status

To inject a scenario into the correlator, or for the export erL functionality to be available, all its states
must be finished.

For a state to be finished, all its rules must be properly defined. This means that they need to have
valid fully specified conditions, and if any action statements have been added to them, those also
need to be fully specified.

You can ascertain visually whether a state is finished or not by how its name is displayed in the Event
Flow panel. If the name is in regular black font, then the state is finished. On the other hand, a red
italic font for the name indicates that the state is unfinished, that is one or more of its nested rules are
not fully defined.

Note also that if the scenario has changed since the last time it was saved to a file, it must be saved
again before you can export it.

Interacting with states

Deleting a state

To delete a state, select it and then press the Del key, or click the # button on the Event Modeler
toolbar. If you selected multiple states, each of these actions deletes all selected states.

When you delete a state, if there are any rules with transitions to the deleted state, Event Modeler
changes the transition section of those rules to transition incomplete. This makes the state that contains
this rule incomplete. Event Modeler cannot generate EPL for this scenario until you complete the
transition for this rule.

Interacting with states

Labeling a state

To change the label on a state, double click on the state. Type the new name of the state, and press
Enter when done. While typing, you can press Esc to undo the edit.

You can label a state with any name you want. Note that state names do not have to be unique
although it is recommended that you make them so. Otherwise it could be confusing to pick the
correct one when defining the target for a transition from the list of available states.

Interacting with states

Developing Apama Applications in Event Modeler 5.2.0 38
? s APAMA

Working in the Event Flow panel

Using cut/copy/paste with states
You can cut, copy, and paste states.

For reference, recall that cut will copy the current selection into the clipboard and delete it from the
scenario, while copy only places a copy of it in the clipboard.

To cut or copy a state, right-click it to display a context menu and select the operation you want.
Alternatively, you can select it, and then do one of the following;:

®* Press the Control X and Control C shortcut keys

Click the ° or “= buttons on the main toolbar, respectively.
® Select Cut or Copy from the Edit menu.
To paste a state, the Event Flow panel must be highlighted. You can do this by clicking somewhere
within the Event Flow panel so that its toolbar is highlighted. If you right-click, you can select Paste

from the popup context menu. Alternatively, press CTRL+ V, or click the [= button on the Event
Modeler toolbar. The newly pasted state is renamed to copy of previous name if there is still a state
with the same name. For example, if you copy a state and then paste it back in, the newly pasted
state will be renamed.

Note also that all rule transitions in the newly pasted state will be reset to continue. You can then
manually change them to your intended transitions.

You cannot cut the start or end states.

If you want to make a copy of a state that retains all its transitions, you should use the Shift key
to first select the state and then select each of the transitions you want to retain. Copy the entire
selection into the clipboard, and paste it to obtain a copy of the state with the rule transitions’
destinations preserved.

Interacting with states

Interacting with transitions

Once you have created your scenario’s states, you can define transitions between them. The state
where the transition starts is the source state, and the state where the transition ends is the destination
state.

A transition in the Event Flow panel is the same as the action statement that defines it in the Rules
panel. Any interaction with one affects the other; for example, deleting the transition link on the
graph changes the rule's action statement to transition incomplete.

Working in the Event Flow panel

Adding a transition
You can add a transition in a number of ways:

* Having selected the source state, you can add a rule to it and then change the state transition
statement for that rule so that it causes a transition to the destination state. This will
automatically add the transition between the states in the Event Flow panel.

Developing Apama Applications in Event Modeler 5.2.0 39
? s APAMA

Working in the Event Flow panel

Adding rules will be described in "Working in the Rules panel" on page 43.

Alternatively, click the % icon on the Event Flow panel’s toolbar to activate Connect mode. Small
pale red squares, or connectors, appear around the border of all the states except the end state.
Point to a connector on the source state and note how the cursor changes. Press the left mouse
button, and while still holding it, move to another connector on the destination state. Release the
mouse button to create a transition between the two connectors, and thus the two states.

If you select the source state you will notice that a rule has been created in it that embodies the
state transition you have just created. You can repeat this to create more transitions.

Click on the £ icon again to deactivate Connect mode when done.

Interacting with transitions

Selecting a transition

In order to select a transition, click on it with the left mouse button. The transition changes color to a
bold red to indicate it is selected. The corresponding rule is also highlighted in the Rules panel.

You can select multiple transitions by holding down the Shift key while clicking on them

Interacting with transitions

Changing end-points

If a transition is selected and Connect mode is not enabled, you can change the end-points of the
transition.

Point to one of the end-points of the selected transition. The mouse cursor will change. Press the
left mouse button and drag along the border of the state until another connector appears. Release
to move the end-point of the transition to this connector, or keep on dragging to locate another
connector.

There are eight such connectors around the border of each state.

You can also use this to drag the source or destination to another state. This will move the state or
change the transition statement (for the target).

Interacting with transitions

Changing the shape of a transition

By default a transition will be a straight line between one state and another. You can change this into
a curve if you wish.

Select the transition you wish to modify. Right click somewhere along the transition, ideally close
to the centre of the line. A drag handle will appear on it. As before, press and hold the left mouse
button while pointing to the drag handle, and drag to turn the line into a curve. You can do this
at multiple points along the line to further shape the curve, and if you change your mind, you can
delete each curve point by right clicking on its drag handle.

Developing Apama Applications in Event Modeler 5.2.0 40
? s APAMA

Working in the Event Flow panel

Figure 11. Changing transition shape

start

Mew State 1

end

Interacting with transitions

Labeling a transition

To add a label to a transition, double click on the transition. A text entry box will appear in the
middle of the transition. Type the text you want to use for its label, and press Enter when done.
If, while typing you press Esc, the edit will be undone. The label will appear at the center of the
transition line.

If you want to move the label, point to it with your mouse. Notice how the mouse cursor changes.
Simply drag the label to the new position.

Figure 12. Moving transition label

atart firat transition
Mewy State 1
A4
end

Interacting with transitions

Developing Apama Applications in Event Modeler 5.2.0 41
’ s APAMA

Working in the Event Flow panel

Deleting a transition

To delete a transition, select it and then either press the Del key, or click the # button on the Event
Flow toolbar.

When a transition is deleted, the action statement that defined that transition will be deleted.

If you selected multiple transitions, or even a selection of states and transitions, a delete operation
deletes all selected entities at the same time.

Interacting with transitions

Using cut/copy/paste with transitions

You can Cut, Copy and Paste transitions, although note that this is identical to doing this with the
associated rules.

To cut or copy a transition, right-click it and select the desired operation from the popup context
menu. Alternatively, you can select it in the Event Flow panel, and then press the Control X and Control

C shortcut keys, or click the ® or = buttons on the Event Modeler toolbar, respectively. This is the
same as cutting or copying the transition’s associated rule from the Rules panel.

To paste a transition, the Rules panel must be highlighted. You can do this by clicking somewhere
within the Rules panel so that its toolbar is highlighted.

Then you can press Control V, or click the L= button on the Event Modeler toolbar. The newly pasted
rule is renamed to copy of its previous name if there is still a rule with the same name within that
state. For example, if you copy a transition or rule and then paste it back into the same state, the
newly pasted one will be renamed. The transition’s destination state will be preserved provided that
the destination state still exists. If not, it will revert to continue.

Interacting with transitions

Displaying global rule transitions

Global rule transitions are dotted orange lines. You can choose to have them appear in a very light
shade so they do not clutter the Event Flow panel. At the top of the Event Flow panel, click State to
display the drop-down menu.

® All — Displays all global rule transitions in bright orange.

* State — Displays in bright orange the global rule transitions for only the selected state.
®* None — De-emphasizes all global rule transitions. They appear as a very light orange.
The current selection always appears in the Event Flow panel toolbar.

Interacting with transitions

Developing Apama Applications in Event Modeler 5.2.0 42
’ s APAMA

Working in the Rules panel

Working in the Rules panel

The contents of the Rules panel change whenever a state is selected in the Event Flow panel. It then
lists those rules that a scenario must process when it enters the selected state. Global rules apply to
two or more states; a local rule applies to only one state.

A new state does not have any rules defined in it.

Using Event Modeler

Adding a rule

To add a global rule, click the % button on the Global Rules panel toolbar. The Event Modeler adds
this new rule to every state except the end state.

Local rules can be added in the following ways:

Select the state to add the rule, and then click on the ¥ button on the Local Rules panel toolbar.

®* In the Event Flow panel, in Connect mode, manually add a transition between two states. This
creates a new local rule with that transition defined in it within the source state.

The new rule is added to the bottom of the list of local rules.

A new rule will have the default title, “vew rule n”, no description, an unfinished condition indicated
by the red font of the rule name, and an action containing only a state transition statement.

You cannot add a rule to the end state. After a scenario enters its end state, nothing more can execute.
If you want to do some cleanup before you terminate a scenario, add a cleanup state that comes just
before the end state.

Working in the Rules panel

About global rules

When a state has both global and local rules, Event Modeler starts processing with the first global
rule. If Event Modeler processes all of a state’s global and local rules, it starts at the top, works
through the global rules, and then works through the local rules.

To create a global rule, click the Add a New Global Rule button % in the right part of the title bar of the
Global Rules panel. This adds the new global rule to every state except the end state. If you add a new
state after you create a global rule, Event Modeler automatically adds any global rules to the new
state.

If you do not want a global rule to apply to a particular state, select that state, and then click the

Activate/Deactivate = button in the top right corner of the global rule. This toggles whether the
selected rule is processed for the selected state. See "Activating and deactivating rules" on page
46 for more information.

Developing Apama Applications in Event Modeler 5.2.0 43
? s APAMA

Working in the Rules panel

To determine which states a global rule applies to, click the global rule to select it. All states that this
rule applies to have dashed orange borders. If a global rule is unfinished the title of the rule appears
in red italics and the titles of all states that the global rule applies to appear in red italics in the Event
Flow pane. The Problems view displays information about any unfinished global rules.

There is an example of a scenario that uses a global rule in the scenarios\samples directory of your
Apama installation directory.

Working in the Rules panel

Selecting rules and rule elements

To select a rule so that you can carry out operations on it, click on any empty space within it. The
rule will become highlighted, with its border turning to a bold red. If the rule selected defined a state
transition (that is, not continue) the corresponding transition will be highlighted in the Event Flow
panel.

You can select multiple rules by holding down the Shift key while clicking on the rules to select.

To select a rule element, left-click it. To select multiple, contiguous rule elements, move the cursor
over one of the elements, hold down the left mouse button, and drag the cursor over the other
elements.

To select a rule element and display a popup selection menu for that element’s position, right-click
the element. This version of the selection menu also has the Cut/Copy/Paste options at the bottom.
To display a more narrow selection menu for an element, hold down the Shift key and right-click
the element. To select multiple, contiguous, rule elements and display a selection menu, move the
cursor over one of the elements, hold down the right mouse button, and drag the cursor over the
other elements.

Working in the Rules panel

Re-ordering rules

A rule’s position in the listing of rules in the Rules panel is important because of the rule evaluation
procedure described in "About rule evaluation” on page 20. Rules are always added to the rule queue
in the top-to-bottom order shown in the Rules panel.

You can change a rule’s position by selecting it, and then using the T and ** icons on the Rules panel
toolbar to move the rule upwards or downwards, respectively. You can use the Ctrl and Shift keys to
select multiple rules at the same time and move them as a group.

The icons are only available when a rule is selected and their function is available for that rule. For
example, you cannot move the first rule further upwards.

Working in the Rules panel

Deleting a rule

Developing Apama Applications in Event Modeler 5.2.0 44
| s APAMA

Working in the Rules panel

To delete a rule, select it and click the # icon in the Rules panel toolbar. You can also press the Del
key to achieve the same effect if you are not editing the rule’s title or description.

If the rule has a state transition defined in its action part, the corresponding transition in the Event
Flow panel will be deleted.

If you have multiple rules selected, any of the above variants will delete all of them in one step.

Working in the Rules panel

Labeling a rule

The first visual element of a rule is its title. Its function is just to assist you in visually identifying
rules and is not pertinent to rule processing. The rule title is, however, included in logging
information when debug mode is enabled, and therefore constitutes a very useful diagnostic tool. It
is therefore recommended that you name rules. The title does not have to be unique, and by default
all new rules are titled “new rule n”.

Double click with your left mouse button on the title of a rule to be able to edit it. You must press
Enter when you are done to save the new title. If you press Esc your edits will be cancelled.

Working in the Rules panel

Changing a rule’s description

The next visual element, indicated by the symbol 1, is an optional description of the rule’s purpose.

You can hide or show rule descriptions by clicking 4" in the Event Modeler toolbar, or by selecting
Scenario > Toggle Rule Comment Display in the Apama Studio menu.

It is advisable to set a description that explains what condition the rule is checking, what actions it is
carrying out, and its effect within the scope of the overall scenario’s logic. This helps when reviewing
states and rules at a later stage, more so if another person other than the scenario’s author is doing
the reviewing.

Working in the Rules panel

Minimizing and maximizing a rule

Note the two icons to the right of the rule’s title: « and w. If you click on « once, the rule will be
minimized to just its title, its description if it was showing, and the When section. If you click on

it again, only the title and the rule description will be left showing. If you click 4" to hide the
comments, only the rule title appears.

You can then use « to revert it back to either the title and condition, or the entire rule with title,

condition and action. If necessary, click 4 to display the rule’s description.

Working in the Rules panel

Developing Apama Applications in Event Modeler 5.2.0 45
? s APAMA

Working in the Rules panel

Cutting, copying, and pasting rules

You can Cut, Copy and Paste rules.

To cut or copy a rule, right-click it and select the desired operation from the popup context menu.

Alternatively you can press the Control X and Control C shortcut keys, or click the *" and ‘= buttons
on the main toolbar, respectively.

To paste a rule, the Rules panel must be highlighted. You can do this by clicking somewhere within
the Rules panel so that its toolbar is highlighted. You can also right-click in the Rules panel and

select Paste from the popup menu. Alternatively, press Control V, or click the L= button on the Event
Modeler toolbar. Note that the newly pasted rule will be renamed to copy of previous_nane if there is
still a rule with the same name. For example, if you copy a rule and then paste it back into the same
state, the newly pasted one will be renamed. The rule transition’s destination state will be preserved
provided that the destination state still exists. If not, it will revert to continue.

You can also use Cut/Copy/Paste with rule elements. For example, you can copy a text variable
element from a "variablechanges" statement and paste it into a text expression element.

You can also drag and drop rule elements to copy them. To do this, first select the rule element. Then
hold down the mouse button and drag the element to the location to which you want to copy it.

Not all elements can be copied to every other rule element. For example, you cannot copy a number
expression and paste it into a condition expression. When you drag an element over its intended
target, Event Modeler highlights the target in green if the copy is allowed and in red if the copy is not
allowed.

Working in the Rules panel

Activating and deactivating rules

A deactivated rule is excluded from the EPL code generation and deployment. The

s+ button in the top right corner of each rule acts as a toggle to activate and deactivate the selected
rule. Deactivated rules have a grey background to distinguish them from active rules which have
normal white backgrounds. Also, if a rule has a transition associated with it, it will not appear on the
state graph when its rule is deactivated.

An invalid rule prevents Event Modeler from exporting EPL for the scenario. If the rest of your
scenario is valid and you want to export it as EPL, you can deactivate an invalid rule to generate the
EPL. The EPL generator ignores deactivated rules.

Working in the Rules panel

Specifying conditions

Developing Apama Applications in Event Modeler 5.2.0 46
? s APAMA

Working in the Rules panel

In the Event Modeler Rules panel, the condition part of a rule is denoted by When. Every rule
specifies a condition that must evaluate to true or false. When the condition evaluates to true, Event
Modeler executes the action part of the rule, which is denoted by Then.

Working in the Rules panel

Interactive editing

As described in "How rules define scenario behavior" on page 16, there is a rich syntax available
for defining conditions. Traditionally, you would expect to have to learn the language for defining
conditions, specify a condition in a rule, and then have some facility that will check your input and
inform you whether or not it is valid.

Event Modeler takes a different approach, in that it provides for graphical programming. With
graphical programming, you assemble the condition by selecting from a number of options,
gradually piecing it together. The advantage of this approach is that you do not necessarily need
to know the intricacies of the language in any great detail and will be unable to make syntactic
mistakes. With a little practice you can rapidly become as fast as someone who is typing in the
condition.

Specifying conditions

Language elements

The interactive editing function is provided by the Condition Editor. Using the Condition Editor is
very straightforward, but some terminology should be clear in order to assist with explanation.

Text in the condition part consists of a number of elements, which can be one of two types:

* non-terminals — elements that are not yet fully defined and are acting as placeholders to be
replaced with further elements

® terminals — elements that are fully defined, and actually constitute the proper text of the
condition.

An example will make the distinction clear. If it is not already open, open the Limit Order scenario
as a template for exploring the Condition Editor features. See "Adding scenarios to projects" on page
31.

Ensure you do not save any changes as this might render the sample unusable. It is recommended
that you make a backup copy of the .sas file. After the scenario is open:

1. Click the start state to select it.

2. Click the % symbol in the Local Rules panel toolbar to add a new rule to the start state.
The new rule is added to the bottom.

A new rule starts off with the condition part containing the text ‘condition’. Note that the word
‘condition’ is in quotes and also underlined. Both quotes and underlining indicate that this is a non-
terminal, that is, it still needs to be replaced with more precise text for the condition to be finished.
Because the rule is unfinished its name appears in red italics.

The Event Modeler window will look as follows:

Developing Apama Applications in Event Modeler 5.2.0 47
’ s APAMA

Working in the Rules panel

Figure 13. Event Modeler with new rule

P Apama Workbench - Limit-Order/scenarios/limit-order.sdf - Apama Studio
Fle Edt MNavigate Search Project Run - Scemario Window Help

_lojx

IS Himie-or

B e - il o

i

¥yhen | 'condition®

Then | @ continue

4
EvertFlow |State =| B 100% |~} Glokal Rules - start y Ju Functions |
Variables | s Blocks |, Catalogs |
| Stenarin Variahles 1 =
/ | nams valie Input output
start |l instrument {2
ice 0.0)
‘l quantity 0]
|l sice Ie7]
BUY glde timit order - SELL side im\order |l marketbi.. 0.0k
|l market bi.. i
|l market of... T
| i |l marketof... aaE
”) YWhen | true (evaluated once) |l status el
- |M quantity e... quantity 1
Monitor BUY | Rl Then | © Start Market Depth] | =
X ! © continue {
BUY order G av| &
BUY dyder placed SELL orderplaced i On receipt of depth data, transition to the carrect state for a BUY-side order |
e Wihen | depth from Market Depth changes and (side is equalto "BUY") |
Yo It
Ther, | ° Status = "Monitoring market for BUY order” |
e i 1§
Manae o | © move to state [Monitor BUY] |
|
SELL order | ||
i On receipt of depth data, transition to the correct state for a SELL-side order |
fully executed upkhown cancglied ‘Wihen | depth from Market Depth changes and (side is equalto "SELL") i
|
Then | © status = "Monitoring market for SELL order” |
© move to state [Monitor SELL] |
end ::
¥ New Rufe 1 @ av |
|

| = EventFlow | 2! Block Wiring |

Because this condition is unfinished, the rule, the state and indeed the entire scenario are now
unfinished. You can observe that a state is unfinished by the fact that its title is displayed in red
italics text, as with the start state in this case.

Specifying conditions

Selecting and replacing elements

1. Right click onthe ‘condition’ NON-terminal to see what it can be replaced with.

A pop-up menu with several alternatives will appear.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

48

Working in the Rules panel

‘condition’ 'andfor' []

nok [,]

“wariable’ changes

‘nurmber expression’ ‘compared with' 'number expression’
'rext expression’ ‘compared wikth' 'text expression’

‘chaoice wariable' ‘compared with' ‘choice expression’

true

False
g ‘condition scenatio variable’
-lé, ‘condition black parameter’
= ‘'condition block figld

.*E‘, Skandard Functions

T L L

=| Copy Cd-C

Note that some of the alternatives themselves have elements with quotes to indicate that they
are non-terminals that would need to be replaced in turn. The alternatives shown are always
those with which the current selection can be replaced. There can be a distinction between what’s
selected and what’s highlighted, as will be shown shortly.

2. Choose either of the first two alternatives:
[...] ‘and/or’ ‘condition’
‘condition’ ‘and/or’ [...]
The condition editor replaces .. .1 with the selected text.

The text inside the condition part changes from condition’ tO ‘condition’ ‘and/or’ ‘condition’.All
selections will be reset.

3. Right-click on the middle non-terminal, ‘and/or’, t0o See what its available alternatives are.
They are and and or.
4. Choose and.

5. Now right-click on the new and terminal to seeits alternatives.

ar

Rewert

Rewert ba top

Select Maore]
of Cut -
=| Copy Cr-C

Developing Apama Applications in Event Modeler 5.2.0 49
? s APAMA

Working in the Rules panel

Although it is a finished element, you can change it to ox. Also, you can select Revert to set it back
to what it was before the previous operation. Or, you can select Revert to top, which sets the value
back to the value it had as far as possible in the hierarchy of changes. In this example, Revert and
Revert to top have the same result.

Choosing Select More lets you select more of the condition statement. In this case, you can select
the whole statement.

Working in the Rules panel

Cascading alternative menus

To fully define the condition:

1. Move the cursor over either instance of ‘condition’, hold the right mouse button down and drag to select
the whole condition statement. This displays a popup menu that lists the elements that can replace the
selected elements.

2. Choose ‘number expression’ ‘compared with’ ‘number expression’.

All three highlighted elements will be replaced with ‘number expression’ ‘compared with’ ‘number

expression’.
3. Right-click thefirst ‘number expression’ to display its alternatives.

When an alternative consists of a single non-terminal, the Condition Editor looks ahead to see
what it could be replaced with in turn, and provides those choices in a further cascading menu.
This accelerates the process of defining a condition. This is recursive.

4. Pointto ‘number scenario variable’ t0 be shown which scenario variables of number type are available.

[LEIT]

negative [, . .]
[. . .]'operator’ 'number expression’ I

‘number expression’ ‘operator’ [.]

[[] Enter numeric walue

-*E} Standard Functions (3 | .!Ih Stan

E price

"ﬁ» ‘number block parameter’ b quankity

= 'mumber block figld" b mar ket bid price

A b market bid quantity
mar ket offer price
~ Copy SR market offer guantity

quankity execuked

5. Chooseprice.

6. Right-click ‘compared with’ and select ‘is less than or equal to’.

7. Right-click the remaining ‘number expression’ and choose either of these alternatives:
[...]‘operator’ ‘number expression’.

‘number expression’ ‘operator’ [...]

Developing Apama Applications in Event Modeler 5.2.0 50
? s APAMA

Working in the Rules panel

Notice how the editor has added brackets around these latest replacement elements to improve
clarity when a condition starts to get complex:

price is less than or equal to (‘number expression’ ‘operator’ ‘number expression’)
8. nght-CIle thefirst ‘numper expression’ and select ‘Enter numeric value’.

A dialog will appear in which you can supply a number. The dialog indicates the expected
format for your locale.

9. Enter anumber, like 25.36, and click OK to accept it.
10. Inasimilar fashion replace ‘operator’ With *.

Working in the Rules panel

Using functions in rules

To use a function in a rule:

1. Right-click theremaining ‘number expression’, @and from the alternatives in the context menu, point to

Standard functions.

This displays a listing of all the functions available in the Event Modeler that return a number as
a result.

2. Choose zBs (‘number’ value).

A function is selected slightly differently to other elements. If you click on the function name you
will select the function itself, and can thus replace it. If you click on any of its parameters (if it has
any), then you can replace just the parameter. Click the Functions tab to display information about
available functions; see "Using the Functions tab" on page 68.

3. Select the ‘number expression’ parameter, and replace it with the scenario variable quantity, by choosing

‘number scenario variable’, quantity.
The condition is now complete.

There are no unfinished elements, or non-terminals, in it. No elements have quotes or are
underlined.

And if you glance over at the start state in the Event Flow panel, you will notice that the name of the
state is now back to regular black font.

Working in the Rules panel

Adding a condition to a rule

Suppose that when you have finished the condition defined in "Using functions in rules" on page
51 you realize that you only want it to evaluate to true if a condition scenario variable is also

true. So you want to add an ana with another condition clause to the end of the condition you have
already specified, without having to revert it all and start all over again.

You can do this as follows,

Developing Apama Applications in Event Modeler 5.2.0 51
? s APAMA

Working in the Rules panel

1. Select the entire condition by moving the cursor over the condition, holding down the right mouse button,
and dragging until all elements are highlighted. This displays a popup menu of aternatives for the selected
elements.

Now, remember these two alternatives:

[...]'and/or’ ‘condition’
‘condition’ ‘and/or’ [...]

What this means is that if you select one of those alternatives, because the selection you are
replacing is already a ‘condition’ in itself, it will not be thrown away but will be retained within
the new replacement in place of the [...].

So, if you choose the [...] ‘and/or’ ‘condition’ alternative, the current selection will be retained
and will replace [...1.

2. Do that to seethisresult:

(price is less than or equal to (25.36 * ABS (quantity))
‘and/or’ ‘condition’

If you had chosen ‘condition’ ‘and/or’ [...], then ‘condition’ ‘and/or’ would have been added to
the front of your previous elements, not after.

This replacement mechanism is automatically provided wherever an alternative for the current
selection embeds an element of the same type as the selection itself.

Working in the Rules panel

Specifying variable changes in conditions

When you define a rule’s condition, you can choose 'variable'changes from the condition popup menu.
For example:

1. Addanew rule.

2. Inthenew rule, right-click 'conaition', which displays this popup menu:

Developing Apama Applications in Event Modeler 5.2.0 52
? s APAMA

Working in the Rules panel

‘condition’ 'andfor' [.]

not [, .]

“wariable' changes

‘number expression’ 'compared with' 'number expression’
‘rext expression’ ‘compared wikth' 'text expression’

‘choice variable' ‘tompared with' ‘choice expression’

true

False
E ‘condition scenatio variable'
"[/,» ‘condition block parameter’
= ‘'condition block figld

.*E‘,. Standard functions

gy il eE SRl s

=| Copy -

3. Sdect 'variable’ changes. ThlsrepIaC% "condition' WIith 'variable’ changes.

4. Right-click 'variabie', Which displays a menu of the variables you can specify. Asyou can see, this menu
lists the scenario variables, and it then lists the blocks that the scenario uses. If you select a block, you can
then select the variables in that block. The variableinthe 'variabie' changes expression can be one of the
following:

m Scenario variable

m Block output feed

m Field in a block output feed
m Block parameter

When you select 'variable' changes, it can be the entire condition, or it can be an expression in a
condition. Following are a few examples of specifying 'variable' changes in a condition:

® yhen quantity changes

® QWhen quantity changes or price changes

® yhen quantity is greater than 20 and price changes
A changes expression can become true as follows:

®* When the variable in the changes expression is a block feed, any update that causes the block to
send that output feed changes the condition to true. It does not matter whether or not the values
of any fields in the output feed actually change.

®* When the variable in the changes expression is a scenario variable, a block field, or a block
parameter, a change in the value of that variable causes the 'variable' changes expression to be
true. For example, if you assign the value s to the quantity scenario variable and the quantity
scenario variable already has the value s, then there is no change and the 'variable' changes
expression remains false.

Developing Apama Applications in Event Modeler 5.2.0 53
? s APAMA

Working in the Rules panel

Suppose that a 'variable' changes expression in a condition becomes true and the entire condition
becomes true. When this happens, Event Modeler does two things:

® [Executes the rule’s action.

* Resets the value of the 'variable' changes expression to false. This ensures that two rules that
specify the same variable in a changes expression can each trigger their action as a result of the
same change.

Beyond this, the behavior of a 'variable' changes expression varies according to whether the condition
appears in a global rule or a local rule.

Working in the Rules panel

Local rules and variable changes

When there is a transition to a state, any 'variable' changes expressions in local rules are initially false.
Any changes made in previous states do not affect any changes expressions in the new state. For a
changes expression to become true, the specified change must occur in the state to which the rule,
which specifies the changes expression, applies.

Specifying variable changes in conditions

Global rules and variable changes

When there is a transition to a state, a 'variable' changes expression in a global rule can be initially true
or false.

In a global rule, the 'variable' changes expression is initially true when all of the following are true:

* In a previous active state, the 'variable' changes expression became true but there was a transition
to another state before the associated rule was triggered.

®* Since the 'variable' changes expression became true, it has not triggered execution of an action.
® The scenario has not passed through a state for which this global rule was deactivated.

Remember that when a true 'variable' changes expression triggers a rule, the Event Modeler resets the
value of the 'variable' changes expression to false.

In a global rule, the 'variable' changes expression is initially false in each of the following situations:
* The active state is the first state during scenario execution for which the global rule is activated.

® The global rule was not activated in a previous state and since that state was active the variable of
interest has not changed.

* The global rule was triggered in a previous state and since that state was active the variable of
interest has not changed.

For example, suppose states 1, 2, and 3 each define global rule x, which specifies price changes as its
condition. There is a transition to state 1. Initially, the price changes expression is false, but while state
1 is active the price variable changes and the price changes expression becomes true. However, there
is a transition to state 2 before execution triggers global rule x. Global rule x is activated for state 2
but there is a transition to state 3 before execution triggers global rule x in state 2. In state 3, the price
changes expression is still true. Execution triggers global rule %, performs the associated action, and
resets the price changes expression to false. If global rule x has not been activated for state 2, or if

Developing Apama Applications in Event Modeler 5.2.0 54
? s APAMA

Working in the Rules panel

global rule x has been triggered in state 2, then the price changes expression would have been false
when state 3 become active.

Specifying variable changes in conditions

Specifying actions
The second important part of a rule is its action part.

The action part of a rule is denoted by Then and consists of a number of action statements and a state
transition statement.

When a rule is first created it has no action statements set.

The state transition statement

The state transition statement, already introduced elsewhere, specifies whether scenario execution
should transit to another state if the rule’s condition is true and once its actions are fully executed.

It can be continue, the default setting, which specifies that no transition is to occur, or be move to state

[a state].

You can modify the state transition statement by pointing to it and right-clicking. A pop-up menu
will appear listing all the possible settings for the statement.

If you select any of the states, the state transition arrow will be set to move to state [that state]l. A
corresponding transition will also appear in the Event Flow panel.

If a state transition starts and ends within the same state, a transition will still be added from that
state to itself in the Event Flow panel. If you ensure that the rule is highlighted, the transition will be
highlighted as well, and you will then be able to change its connectors and turn it into a curve. This
will make it more visible.

Note that if you click on the state transition statement, i.e. with the left mouse button, and it is set to
move to state [a state], you will be taken to that state. That is, the target state will be selected in the
Event Flow panel, and the Rules panel will change to show the rules of that state.

Working in the Rules panel

Adding action statements
To add an action statement, left click the « symbol to the left of the state transition statement.
1. Click the= symbol to add an action statement.

New action statements consist of the text ‘action statement’ preceded by a e symbol.

In general, when you left-click a « symbol Event Modeler adds an action statement before the line
containing the symbol.

MNew Rue 8 o
wWhen | 'condition”

@ "action statement”
@ continue

Then

Developing Apama Applications in Event Modeler 5.2.0 55
? s APAMA

Working in the Rules panel

2. Click the = symbol preceding the new action statement to add another action statement beforeit.

Specifying actions

Deleting action statements

To delete an action statement, right click the esymbol to the left of the statement you want to delete.
Note that you cannot delete the transition statement.

Click the ssymbol for the first action statement to delete it.

Specifying actions

Interactive editing

Once you have added an action statement, you need to specify the desired action using the Action
Editor.

The Action Editor works on the same principles as the Condition Editor. See "Specifying conditions"
on page 46.

Right click the non-terminal ‘action statement’ to see its replacement alternatives.

‘rext variable' = 'text expression’
‘choice variable' = 'choice expression'

‘condition variable’ = ‘condition’

sl Crder Manager J
il Market Depth J
=| Copy Cid-C

As you can see from the alternatives available, the main difference is that action statements can either
be assignments to variables or invocations of block operations.

There is a separate Action Editor for each action statement, and like the condition, all statements
need to be finished for the rule to be finished. Feel free to explore the language elements and
replacements available in action statements.

Specifying actions

Using the keyboard to edit rules

Instead of using the mouse, you can use the keyboard to edit rules.

Select one or more rule elements, and then press the Menu key .

This displays the menu of choices for replacing the selected element(s). Use the cursor keys to select
what you want.

Developing Apama Applications in Event Modeler 5.2.0 56
? s APAMA

Working in the Rules panel

The following table lists the other keys you can use to edit rules. Select one or more rule elements

and then press the key.

Table 2. Using the keyboard to edit rules

Task Key

Description

Add action +

Inserts a new placeholder for an action
statement below the condition or action that
contains the selected element.

Delete action -

Deletes the action statement that contains the
selected element(s).

Insert or
Menu key

Display menu

Displays the context menu for the selected
element.

Edit literal F2 or Enter

Displays a dialog in which you can edit the
selected literal value.

Move to next rule Page Down

Selects the first element in the next rule. If

the focus is on the last rule, the focus stays
where it is. If the focus is on a global rule,
pressing this key selects the first element in
the next global rule. If the focus is on the last
global rule, pressing this key does not select
the first element in the first local rule. The
focus stays where it is. Note: if you selected the
whole rule, so that the red, rectangular outline
appears around it, pressing Page Down does
nothing.

Move to previous rule Page Up

Selects the first element in the previous rule.

If the focus is on the first rule, the focus stays
where it is. If the focus is on a local rule,
pressing this key selects the first element in the
previous local rule. If the focus is on the first
local rule, pressing this key does not move to
the last global rule. The focus stays where it

is. Note: if you selected the whole rule, so that
the red, rectangular outline appears around it,
pressing Page Up does nothing.

Move to next element -

Selects the next element in the statement. If the
last element is already selected, pressing the
left arrow key does nothing.

Move to previous element -

Selects the previous element in the statement.
If the first element is already selected, pressing
the right-arrow does nothing.

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA

Using the Variables tab

Task

Key

Description

Move to next statement

Selects the first element in the next condition
or action statement. If the selected element
is in the last global or local action statement,
pressing this key does nothing.

Move to previous statement

Selects the first element in the previous
condition or action statement. If the selected
element is in the first global or local condition,
pressing this key does nothing.

Revert to top

Delete

Resets the selected element or elements as far
back before any changes as possible.

Revert selection

Backspace

Resets the selected element or elements to its
(their) previous value.

Select first element

Home

Selects the first element in the condition or
action statement in which you had selected an
element.

Select last element

End

Selects the last element in the condition or
action statement in which you had selected an
element.

Select multiple elements

Shift + -=

Adds one or more subsequent elements to
the selection. Event Modeler examines each
subsequent element in order until it enlarges
the selection to a set of elements that can be
replaced as a unit. This might mean that only
the next element is added to the selection, or
that multiple subsequent elements are added.

Shift + -

Adds one or more previous elements to the
selection. Event Modeler examines each
previous element in order until it enlarges

the selection to a set of elements that can be
replaced as a unit. This might mean that only
the previous element is added to the selection,
or that multiple previous elements are added.

Working in the Rules panel

Using the Variables tab

The Variables tab lists and allows modification of all the variables available for use in a scenario.

In order to explore its features, create a new scenario by selecting File > New > Scenario from the

Apama Studio menu.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

58

Using the Variables tab

Observe the Variables tab. Note the selection of buttons on its toolbar, and the fact that it contains a
table, with two rows and four columns.

l : :
. Scenatio Yariahbles

hame value Tt ontpat

[| O O

The first row contains column headings, while the second row appears empty. The variables table
always displays a line for each variable defined, with a final empty line from which you can add new
variables. In this case, no variables are yet defined, so the table only contains the final empty line.

The columns are name, value, input and output, and in addition each variable row has a dark green
square to the left of it.

By default the background of these rows is green; green being used throughout the Event Modeler to
denote scenario variables.

Using Event Modeler

Adding a variable

To add a variable:

1. Left click on the empty row in the cell under the column heading name. The cell will become highlighted
with aborder appearing around it. This means you can typein the cell.

Alternatively you could double click on the cell, and this would display a flashing text entry
cursor in the cell.

2. After selecting the name entry cell, typein aname for your new variable, like var1, and either click
elsewhere or press Enter.

Developing Apama Applications in Event Modeler 5.2.0 59
? s APAMA

Using the Variables tab

Note how a new empty line is added to the bottom of the table. The name of a scenario variable
must be unique within the set of a scenario’s variables. A scenario variable can have the same
name as a parameter of a block that the scenario uses.

3. Create asecond variable by clicking on the name cell in the final empty row and naming it var2.

Using the Variables tab

Renaming a variable

If you left click on the name of a variable to select its name cell, you can type in a new name,
effectively renaming the variable.

Alternatively you can double click on the cell, and this will display a flashing text entry cursor in the
cell, allowing you to edit the previous name.

Recall that variable names must be unique — if you type a name already in use it will revert to its old
value on acceptance.

Using the Variables tab

Selecting a variable

If you want to carry out some variable operations, like moving a variable, or viewing its properties,
you first need to select it.

You can do this by clicking on the green square at the beginning of each row. This selects the entire
row. Notice how the icons on the Variables tab change to indicate they are now available.

You can select multiple variables in one go. Select the first one normally. Then, while holding down
the Ctrl (Control) key, select any additional variables. Alternatively, hold down the Shift key to select
all variables from the first one selected to the current one.

Using the Variables tab

Determining which states use a particular variable

Event Modeler displays a dotted green border around each state that uses the selected variable when
you do either of the following;:

* Highlight a row in the Variables tab by clicking on the green square at the beginning of the row.
®* C(Click on a variable in a rule.

Using the Variables tab

Moving a variable

Developing Apama Applications in Event Modeler 5.2.0 60
? s APAMA

Using the Variables tab

Once you have selected a variable you can move it up and down in the table by using the T and
symbols.

Changing a variable’s position in the Variables tab has no effect on scenario execution other than
appearing in that order whenever the scenario is opened from disk.

You can also select multiple variables and move all of them at the same time. Hold down the Ctrl key
when you select each variable. Or use the Shift key select a range of variables.

You cannot move the last empty line, and cannot move variables below it.

Using the Variables tab

Deleting a variable

You can delete a variable by right-clicking its name and selecting Cut from the context menu.

Once you have selected a variable you can delete it by clicking on the # icon on the main toolbar or
by pressing Del.

If you have selected multiple variables, they will all be deleted.

If any rules’ condition or action parts refer to the variable you have removed, the references will be
reverted back to their non-terminals. This will make those rules, and therefore the enclosing states
and the scenario, unfinished.

Using the Variables tab

Changing a variable’s properties

Once you have selected a variable you can change its properties. To display a variable’s properties,

either click (again) on the green square at the left of its row, or else click on the [icon in the Variables
tab toolbar.

This will display the Properties dialog.
This dialog has two tabbed panes, Type and Constraints.

Developing Apama Applications in Event Modeler 5.2.0 61
? s APAMA

Using the Variables tab

Properties I : x|

Properties of “warl"

Type ‘I,ICDnstraints ‘I't

i Text im0 Mutable
i1 Mumber i1 Immutable
i Chaice i Fixed
i1 True)False
futo-typed [] Unigque

| i | || Zancel ||

Use the Type pane to change the variable’s type and mutability properties.
Use the Constraints pane to specify what values are valid for that variable.

Remember that mutability properties and value constraints only apply to an end user’s interaction
with the scenario through a dashboard. They do not apply when a variable is wired to another
variable or a block field, or to any assignments carried out in any action part of any rule.

Note that the constraints available change according to the variable’s type, so the contents of the
Constraints pane change dynamically as you select different types on the Type pane.

The options available for both panes have already been described in "About scenario variables" on
page 25.

When a rule’s condition or action parts refer to a variable, in the majority of cases those references
are type specific. For example @ ‘condition variable’ Nhon-terminal can only be replaced by a scenario
variable that is of type rrue/raise. Therefore, if you change the type of a variable after having used

it in any rule conditions or actions, the references to it will be reverted back to their non-terminals if
they become invalid. This will make those rules, and therefore the enclosing states and the scenario,
unfinished.

Using the Variables tab

Setting a variable’s value

Once you have created a variable you can also set its initial value. This is the value that the variable
will have at the start of execution of any scenario instance before it is modified by the user or by an
action in a rule.

You may have noticed that a default value is always displayed in the value cell. By default a variable
is set to be auto-Typed, and initially set to be of rext type with the empty string as its value — .

You can change the initial value by clicking on the va1ue cell for the particular variable, and then
typing in the appropriate value, or else double clicking on the cell to get a text entry cursor. The
former method over-writes any previous value; while the latter technique lets you edit the existing
value.

Developing Apama Applications in Event Modeler 5.2.0 62
? s APAMA

Using the Variables tab

If the variable is set to be auto-Typed, you can type in any value. The variable’s type will then be
deduced, and may therefore be changed, by what you have typed in.

If you type any whole number (for example, s, 25, -145) the variable will be set to number, with the
constraint whole number. If you supply a number with a fractional part (4.45, . 68456, -23.), the variable
will be set to be a number with no constraints. If you enter one of true or false (any mixture of case
will work, for example, trug, True, true), the variable will be assumed to be of True/rFalse (conditional)
type. Everything else is taken to imply a rext variable.

If the variable is not auto-Typed, you are only allowed to enter values that are valid according to the
type of the variable and any constraints imposed on it. So, for example, if the variable is of yumber
type, you cannot enter “re110” as a valid value. If you attempt to do so, the variable’s value will be
reset to the previously set value, or the default for that type if none had been set, thatis o or o.o.

Using the Variables tab

Variable input and output

As described in "Variable constraints" on page 27, a variable can be marked as being an input
variable, or an output variable, or both. These indicators are used by the dashboard to restrict which
scenario variables it should make available to the end-user. For output variables it can also auto-
generate specific functionality.

By default these indicators are off for each variable. Click on the check boxes in the input and output
columns to set them. The space bar also toggles this on and off.

Using the Variables tab

Linking a variable to a block output field

"Linking variables, block parameters, and block output fields" on page 29 described how one can set
up a link between a scenario variable and another variable, or to the value of a block output field.
Once this link is set up the variable will always have the same value as the source variable or the
output field.

If the value of the source variable or output field changes, the destination variable’s value will get
updated automatically to be the same value.

You can set up such a link by right-clicking while pointing to the vaiue cell for the variable to be
linked. If the scenario contains any other variables or block instances with output feeds and fields, a
pop-up menu will appear listing these.

Developing Apama Applications in Event Modeler 5.2.0 63
? s APAMA

Using the Variables tab

Figure 14. Linking a variable to a block output field

Scenatio Yariables

hame valine Input adtput
l Instrument 1
l Instrument 2 T
l Quantity 1 1a O
B cuantity 2 20 O
B std pev Muttipii... i O
l Order Timeout ... Instrument 1
l Max Quantity 1 Instrument 2
l Max Quantity 2 Quankity 1
l Lower Band Quankity 2
l Current Spread spread| Order Timeout Secs
l Upper Band Max CQuankity 1

l Current Positio... positiol Max Quantity 2
l Current Positio... positiol Lower Band

l Trades Executed Current Spread
ity I... L Band
l Total Guantity | pper Ban e
l Profitloss profit ff Current Position 1
i kokal placed
l Status Message Current Position 2
kotal executed

l Order Status 1 status | Trades Executed
l Order Status 2 status | Total Quantity In Market
l ProfitfLoss

kokal working
waiting For acknowledgement

wiarking
Skatus Message

complete
Crder Status 1 ;

rejected
Order Status 2 {

pending change
Market Depth 1 b pending cancel
Market Depth 2 b cancelled
Spread Calculatar b suspended
Spread Data Distribution Calculator b in market
Order Manager 1 b wisible

order skatus ¥ | modifiable

Position Calculator 1) kradeable
Position Calculator 2 b | iteration complete b
Pl Calculator b | order execution b
Crder Cancellation Timer ¥ | order quankity]

When you select the output field to link with the variable, the field’s name, preceded by the enclosing
block instance’s name, is displayed in the value cell.

The source variable or field chosen does not have to be of the same type as the destination variable.

If the destination variable is auto-Typed, it can be wired to other variables or block output fields of any
type, and will inherit their type once the wiring is carried out.

If it is not auto-Typed, and it is not of the same type as the source, the source value will be converted
to the destination variable’s type before being copied to it. If this is not possible, a default value is
set. See "Conversion rules for variable types" on page 65. For this reason, it is important to set up
these links carefully.

Developing Apama Applications in Event Modeler 5.2.0 64
? s APAMA

Using the Variables tab

Using the Variables tab

Conversion rules for variable types

This table summarizes the conversion rules:

Table 3. Conversion rules for variable types

Number Number (whole) Text Choice Condition
Number Copy the Copy the value Copy the Copy the false
value and round it value as a value as a
to the nearest string. string.
integer value
Number Copy the Copy the value Copy the Copy the false
(whole) value value as a value as a
string. string.
Text Try to convert Try to convert to Copy the Copy the If the
to a valid a valid number value. value. value
number up up to the first is true
to the first non-numeric then set
non-numeric character, set to 0 to true,
character, set if first character is else false.
to 0.0 if first not a number. Case is
character is ignored.
not a number.
Choice Try to convert Try to convert to Copy the Copy the If the
to a valid a valid number value. value. value
number up up to the first is true
to the first non-numeric then set
non-numeric character, set to 0 to true,
character, set if first character is else false.
to 0.0 if first not a number. Case is
character is ignored.
not a number.
Condition | 1.0 for true 0 1 for true O for Copy the Copy the Copy the
for false false value as a value as a value.
string. string.
Examples
Text Source Number Target
"information" 00ro.o

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

65

Using the Catalogs tab

Text Source Number Target
"-2.45" =2.45
"456test” 456

Using the Variables tab

Using the Catalogs tab

The Catalogs tab displays catalogs of block templates that are available for use in a scenario. A
catalog of block templates is a folder that contains one or more .»nar files, each defining a block
template that the user can instantiate in a scenario. A catalog of block templates can also contain
subfolders that themselves contain .nat files. This hierarchical organization of a catalog appears
when it is displayed in the Catalogs tab.

This text uses the term block template to refer to a block’s definition on disk (within a .nat file),
whereas block is used to refer to an instance of a block template that has been added to the scenario.

The format and structure of a .ndr file is discussed in "File Definition Formats" in Using Apama Studio.

Typically, you might want to use multiple block template catalogs to distinguish between block
templates supplied by Apama, block templates that you have developed yourself, and block
templates that you have obtained from third parties.

In addition, within each block template catalog, as the number of block templates available to a
scenario author could be very large it is useful to organize them into categories that reflect their
functionality. Furthermore, as the block templates available are enhanced and new versions released,
one is likely to need access to multiple versions of the same block templates.

A block template catalog’s folder structure is therefore as follows:

* A root folder that represents the block template catalog, and within it,

®* One or more sub-folders that represent functional categories of block templates, and within each,
® A folder called biock template name.bdf, which contains

® The different available versions of a block template in distinct .»ar files.

The default block template catalog is simply called v1ocks. In the Catalogs tab, it appears as Standard
Blocks.

Using Event Modeler

Adding a block template catalog

When Event Modeler is open it automatically makes the default catalog v1ocks available. If you have
another block template catalog available on your system and want to make those block templates
available to your scenario, use Apama Studio to add the block catalog to your project:

1. Inthe Apama Developer perspective, right-click the project name and select Properties.

Developing Apama Applications in Event Modeler 5.2.0 66
? s APAMA

Using the Catalogs tab

In the Properties dialog, expand Apama and click Catalogs.
Click the Blocks tab and then Add.
In the Source Folder Selection dialog, click on catalogs to highlight it and click Create New Folder.

In the Folder name field enter the name of the catalog you are adding.

AR

To add the complete contents of the catalog you specified, click Finish, and then click OK twice. You are
done.

7. To choose particular filesto add, click Next. Specify inclusion and/or exclusion patterns and click Finish.
Then click OK twice.

Also use the Blocks tab in the Properties dialog when you want to remove a block template catalog.

Using the Catalogs tab

Selecting and inspecting a block template

The Catalogs tab is divided horizontally into two areas.

The top area displays the available catalogs. Expand each catalog to view its contents. When you
select one of the following, a description of it appears in the bottom area:

® A particular version of a block template
* A block parameter

®* A block operation

* A block input feed or input field

®* A block output feed or output field
Using the Catalogs tab

Adding a block instance to the scenario

To add a block template to your scenario, first select it from the Catalogs tab. Open the folder it is
in, select the block you want, and if there is more than one version, select the version you want. The
recommendation is to use the most recent version, which is implemented in a way that delivers
better performance than the older version. Also, the most recent version is parallel-aware. Older
versions will be removed in a future release.

Then click on the #¥ icon in the tab’s toolbar to add this block to the scenario. You will see it
appearing in the Blocks tab.This instance of the block template in the scenario will be automatically
named. The name assigned will be the block template name followed by 1, to indicate that this is the
first instance of this block.

As implied, it is possible to add multiple instances of the same block to the scenario. These will be
named sequentially to differentiate between them. The unique naming of each instance is important,

Developing Apama Applications in Event Modeler 5.2.0 67
? s APAMA

Using the Functions tab

as all block instance feeds, fields, parameters, and operations are referred to from within rules by the
enclosing block instance’s name.

Using the Catalogs tab

Using the Functions tab

The Functions tab presents an organized view of the functions available for use in Event Modeler. The
functions are organized in a folder hierarchy.

A function catalog allows you to organize a large number of functions into a manageable set of
categories that indicate their functionality. A function catalog has the following structure:

* A root folder that represents the function catalog, and within it,

®* One or more sub-folders that represent functional categories of functions, and within each of the
sub-folders,

® :at files that define a group of related functions.

Such a catalog is installed by the Event Modeler installer. The default function catalog is simply
called functions. To display this catalog, click the Functions tab.

Using Event Modeler

Adding a function catalog

When Event Modeler is open it automatically makes the default catalog functions available. If you
have another functions catalog available on your system and want to make those functions available
to your scenario, use Apama Studio to add the function catalog to your project:

In the Apama Developer perspective, right-click the project name and select Properties.

In the Properties dialog, expand Apama and click Catalogs.

Click the Functions tab and then Add.

In the Source Folder Selection dialog, click on catalogs to highlight it and click Create New Folder.

In the Folder name field enter the name of the catalog you are adding.

SRR BN

To add the complete contents of the catalog you specified, click Finish, and then click OK twice. Y ou are
done.

7. To choose particular filesto add, click Next. Specify inclusion and/or exclusion patterns and click Finish.
Then click OK twice.

Also use the Functions tab in the Properties dialog when you want to remove a block template
catalog.

You must ensure that the function name attribute is unique within the directory in which you save the
.tat file. If you save a function definition file in a function directory that has been added to Event
Modeler, and your new . zas file does not have a unique function name attribute, you receive an error
message about this when you open Event Modeler. You must resolve this error condition before you

Developing Apama Applications in Event Modeler 5.2.0 68
? s APAMA

Using the Blocks tab

try to use either of the duplicate functions. If you do not, you cannot predict which function Event
Modeler will actually use when you call one of the duplicate functions.

Using the Functions tab

Selecting and inspecting a function

The Functions tab is divided horizontally into two areas. The top area lists the categories of functions
in the catalog, and within each, the available functions. You can expand each function to view its
parameters and return value. When you select a function name a description of that function appears
in the bottom area.

Using the Functions tab

Using the Blocks tab

The Blocks tab lists all block instances that have been added to the scenario. From it you can select
and delete a block, view its parameters, and link them to scenario variables or other block instances’
output fields.

The Blocks tab is initially empty, but it then gets populated with block instances as you add these to
the scenario from the Catalogs tab.

As you add block instances, each appears in the Blocks tab as a distinct element. By default, each is
given a blue background, although this can be changed in the Event Modeler’s preferences.

For each block instance, the representing element lists the block instance’s name, and name of the
block definition it was added from (this is in parenthesis), followed by a table with two columns, nane
and value.

Each row in the table contains a parameter, and similar to the table in the Variables tab, each is
preceded by a solid blue square.

Developing Apama Applications in Event Modeler 5.2.0 69
? s APAMA

Using the Blocks tab

Figure 15. Sample Blocks tab

Yariables * %3 Blocks "'. % Catalogs ', f Functions ',

Blocks ® Gt o= :.L'

Market Depth 1 (Market Depth version 2.0)
hake
instrument Instrument 1
service identifier
market identifier
extra parameters

Market Depth 2 (Market Depth version 2.0)
hname
instrument Instrument 2
service identifier rrer
market identifier
extra parameters

Spread Calculator (Spread Calculator version 3.0) -

Spread Data Distribution Calculator (Data Distribution Calculator version 2.0) o
hame vaide
period
size]

Order Manager 1 (Order Manager version 4.0) ot

Order Manager 2 (Order Manager version 4.0) o

Position Calculator 1 (Position Calculator version 3.0) ot

Position Calculator 2 (Position Calculator version 3.0) B
hame valge
counterparty flow

Note that a block does not have to have any parameters, and some of the standard blocks supplied
by Apama are like this.

Interaction with this parameters table is similar to that in the Variables tab, with the distinction that it
is not possible to add new parameters, rename them, re-order them, or change their properties. This
functionality is not possible because the number, name and nature of block parameters is defined in
the block’s definition.

Once a block is added to the scenario, its parameters, output feeds and operations are available for
interaction within rule conditions and actions. When a scenario is loaded the Event Modeler will
reload that block’s definition from its .nat file and check that none of the referenced parameters,
output feeds or operations have changed. If they have then any references will be reverted back to
their non-terminals.

If you load a scenario and a block that you previously added to that scenario is missing Event
Modeler reverts values of any variables that depended on that block's feeds to their default values.
You receive a message that the block is missing when you open the scenario. Also, an entry for
each missing block appears in the Problems view as shown in the figure below. Double-clicking on

Developing Apama Applications in Event Modeler 5.2.0 70
? s APAMA

Using the Blocks tab

a missing block entry in the Problems view displays the Block Wiring for the scenario without the
missing blocks.

Figure 16. Problems view with missing blocks entries

] console | [21¢ Problems 23 l

4 errors, 0 warnings, 0 others
Descripkion = | Resource | Path | Location | Type |
= @ Errors (4 items)
@ Black Template "Market Data ManagementMarket Depth, bdffMarket Depth v2.0.bdf not Found: blocks removed Statisticalar... | fDema - Statistic... Unknown Problem
@ Block Template "Market Data Management/Market Depth,bdf{Market Depth v2,0.bdf not found: blocks removed Statisticalér.., fDemo - Statistic,,. Unknown Problem
@ Block Template "Market Data Management/Market Depth,bdf{Market Depth v2,0.bdf not found: blocks removed Statisticalér.., fDemo - Statistic,,. Unknown Problem
@ Block Template "Market Data ManagementMarket Depth, bdffMarker Depth vz.0.bdf nok Found: blocks removed Statisticalar,,, | fDemo - Stakistic,,, Unknown Problem

Using Event Modeler

Interacting with a block instance

To select a block instance you need to left click somewhere within its display element other than
inside its parameters table. For example, clicking on its name or on the table’s column heading will
select the block instance.

Once a block is selected,

* You can delete it by pressing Del, or by clicking on the # icon in the toolbar.
If any rules’ condition or action parts refer to any feed, field, parameter or operation of the block
instance you have removed, the references will be reverted back to their non-terminals. This will
make those rules, and therefore the enclosing states and the scenario, unfinished.

* You can move the instance’s relative position in the tab by clicking on the T and % icons in the
tab’s toolbar.

L]

You can browse the instance’s block template definition in the Catalogs tab by clicking on the™:
icon in the tab’s toolbar.

®* You can switch all references in rules and mappings from this block to another block by clicking

on the %~ icon. This operation is described in more detail later.
* Event Modeler displays a dotted blue border around each state that uses the selected block.

Another way to see which states use a particular block is to click that block in a rule. Event Modeler
displays a dotted blue outline around the states that use the selected block.

Using the Blocks tab

Selecting a parameter

To select a block parameter, click on the solid blue square to the left of the parameter’s name.
The entire row will be highlighted with a dark red background.

Using the Blocks tab

Developing Apama Applications in Event Modeler 5.2.0 71
’ s APAMA

Using the Blocks tab

Viewing a parameter’s properties

Once a parameter is selected, you can view its properties. You can do this by either clicking again on

the solid blue square, or else by clicking on the = icon in the Blocks tab’s toolbar.

This will display the Properties dialog. Properties for block parameters are almost identical to
properties for scenario variables, with the distinction that the former cannot be modified in the Event
Modeler. For this reason all settings in the Properties dialog will be grayed out. You can view them
but you cannot change them.

Using the Blocks tab

Setting a parameter’s initial value

As with scenario variables, block parameters need to have an initial value. This will be displayed in
the vaiue column. You can modify this initial value for each block instance’s parameters by clicking
on the value cell and typing in a new initial value. Alternatively you can double click on the vaiue cell
to edit the existing initial value.

Note that as with scenario variables, you are only allowed to supply an initial value that is
compatible with the parameter’s type and constraints (if any). If you specify an invalid value, the
initial value will be reset to the default for that type.

Using the Blocks tab

Linking a parameter with a variable or output field

"Linking variables, block parameters, and block output fields" on page 29 described how one can
set up a link between a block instance’s parameter and the value of a scenario variable or block
output field. Once this link is set up the block parameter will always have the same value as the
source variable or block output field. If the value of the source variable or output field changes, the
destination parameter’s value gets updated automatically to be the same value.

You can set up such a link by right-clicking while pointing to the vaiue cell for the parameter to be
linked. If the scenario contains any variables or block instances, a pop-up menu will appear listing
those variables, the block instances, their output feeds, and within those, their output fields.

When you select a variable or output field to link with the parameter, the variable’s or field’s name is
displayed in the vaiue cell.

The variable or field chosen does not have to be of the same type as the parameter. If it is not of the
same type, its value will be changed to the parameter’s type before being copied to the parameter. If
this is not possible, a default value is set. See "Conversion rules for variable types" on page 65.

Since this could set the parameter to unexpected values, it is important to set up these links carefully.

Using the Blocks tab

Developing Apama Applications in Event Modeler 5.2.0 72
’ s APAMA

Switching blocks

Switching blocks

Consider the situation where you wish to replace a block in your scenario with another one. A
common occurrence of this is if you wish to upgrade your block, for example by replacing version 1
of a block with a newer version 2.

The problem with this is that if you delete the version 1, all references to its parameters, feeds and
operations will be reverted or reset. You would then have to add the new block of the more recent
version and re-establish all the references.

To facilitate this operation you can switch blocks as follows:
1. Inthe Catalogs tab, add the newer block to the scenario.

2. Inthe Blocks tab, select the block you want to replace.

3. In the Blocks tab's tool bar, click on 9% tobe prompted for which block you want to use to replace the
selected block.

4. Select the name of the replacement block from the choice list, and click OK.

Event Modeler tries to replace all references to the old block with the corresponding interface
elements of the new one. Event Modeler also replaces the wiring of the old block with wiring for the
new block.

At the end of the switching operation, a dialog appears that summarizes how many elements were
replaced and which had to be reverted. For example:

. Replaced 3 references

1 | Reverted O references
Replaced 1 wire and © wire
mappings
Reverted 0 wires and 1 wire

rnapping
| Ok, I

Event Modeler can replace only those parameters, feeds and fields, and operations of the same name.
If any elements do not have a corresponding element in the replacement block they will be reverted
or removed, as follows:

® References are reverted to their non-terminals.

* In a wire mapping for which the source block output field has changed, the destination block
input field is reverted to the default value for its type. For example, if the destination block input
tield is an integer, the field is reverted to 0. The mapping itself is not removed even though it no
longer has a source field.

* For a wire mapping for which the destination block input field has changed, the wire mapping is
removed.

Using Event Modeler

Developing Apama Applications in Event Modeler 5.2.0 73
? s APAMA

Using the Block Wiring tab

Using the Block Wiring tab

At the bottom of the Event Flow panel, you can click the Block Wiring tab to replace the Event Flow
and Rules panels with the Block Wiring tab. The purpose of the Block Wiring tab is to allow you to
interactively define how your scenario’s block instances are to be wired together.

Up to this point only block parameter wiring has been discussed. Recall that a block has parameters,
input feeds, output feeds and operations. Parameters are intended for initializing the block, although
they can then individually be updated during the block’s lifetime to modify its operation. Input
feeds, on the other hand, are normally used when a block’s primary role is to process or transform
some regularly changing data.

For example, the change notifier block’s purpose is to generate a notification when the value of a
numeric input data stream changes by a given amount over a configurable moving time window. Its
parameters define the time window and the amount that the monitored values must change by to
trigger the notification, while the actual values being monitored would of course be an input feed.

A block might accept input data while not having an input feed. This is normally because the block’s
author expects their block to be used alongside, and get all its input data from, dedicated EPL such
as that included with external adapters. Good examples of this are the market Data Management and the
Order Management blocks such as mMarket Depth.

In general, a block is written to have exposed input feeds if its inputs can be provided by other
blocks.

If you open a scenario and a block that was previously added to that scenario is missing you receive
a pop-up error message, Event Modeler removes the block from the block wiring display, and there
is an entry indicating the missing block in the Problems view.

Using Event Modeler

Wiring block input feeds

Two block instances are said to be wired together if one block’s input feed is attached to the other’s
output feed. Output fields from the source block’s output feed then need to be mapped (that is,
connected) to the destination block’s input feed’s input fields.

The Block Wiring tab displays a solid blue labeled rectangle for each of the block instances that have
been added to the scenario. Unless re-organized, these will initially be displayed in a partially
overlapping stack at the top-left of the tab.

If a block instance has one or more input feeds, its rectangle will have a wiring point on the left hand
side. This is a small solid black semi-circle. Similarly, if it has one or more output feeds, its rectangle
will have a wiring point on the right hand side. Blocks with both input and output feeds exhibit
wiring points on both sides. The figure below shows the Block Wiring tab.

Developing Apama Applications in Event Modeler 5.2.0 74
’ s APAMA

Using the Block Wiring tab

Figure 17. Sample Block Wiring panel

Black Wiring s [+

orag

Order Manager 1
ordel |

Order Manager 2

[Order Cancellation Timer H

5. Event Flow 2! Block Wiring /

depth === datal

> Spread Calculator

depth === dataZ
Position Calculator 1

i
Paosition Calculator 2

statistics === data
Spread Data Distribution Calculator

status === order s

> position === position

P&L Calculator H

tatus === order sk

>

pasition === position

Using the Block Wiring tab

Selecting, resizing, and moving block instances

Interaction with the block instances in the Block Wiring tab is similar to that in the Event Flow tab.

Click on a block instance rectangle to select it. The rectangle’s border will become bold red and eight
drag handles will appear around the rectangle.

To move a rectangle simply press and hold the left mouse button while pointing to it, and drag to the
desired location. Release the mouse button to confirm the new location.

You can use the drag rectangles to resize the rectangle in any of the eight coordinates. As above,
point to a drag handle, press the left mouse button and hold down while dragging the handle to the
desired location. If you hold down the Shift key while dragging, you will restore and then preserve
the rectangle’s aspect ratio.

Using the Block Wiring tab

Wiring two blocks together

In order to wire two blocks together, it is best to place them side by side so that the source block
instance is displayed on the left and the destination instance is to the right of it.

Then point to the output wiring point on the source block. Note how the mouse cursor changes.
Press the left mouse button, and while holding it down, drag to the input wiring point on the

Developing Apama Applications in Event Modeler 5.2.0 75
? s APAMA

Using the Block Wiring tab

destination block. If a connection is possible the line being dragged from one wiring point to another
will turn bold to indicate that you can now release the mouse button and create the wire.

Figure 18. Block wiring example

Order Manager 1
Order Manager 2

If you release the mouse button elsewhere, and when the line being dragged is not bold, then
nothing will happen. You can try again.

BEWMA Calculator 1
eeeeee— |

If you release the mouse button correctly at a point where the line can be created, then the Configure
Block Wiring dialog will appear.

Using the Block Wiring tab

Connecting feeds and specifying feed mapping

The Configure Block Wiring dialog has two main areas.

Figure 19. Configure Block Wiring dialog

B2 Configure Block Wiring X|

Select output and input feeds o wire together:

Order Manager 1 output: EvMA Calculator 1 input;
|0r-::ler status v| |data v|

Configure feed mapping information:

Ibrice [float] v => vale [foat]

| Ok | | Cancel

The first area is labeled “se1ect output and input feeds to wire together:”. The bordered area
underneath it will list all the output feeds of the source block instance on the left, and the input feeds
of the destination block instance on the right.

Use the pull-down selectors for each block instance to define which feed should be mapped to
which. Note that each wire corresponds to a single mapping of one output feed to one input feed.

Developing Apama Applications in Event Modeler 5.2.0 76
? s APAMA

Using the Block Wiring tab

Therefore once you have selected the output feed and the input feed, consider the second area of the
dialog. This is labeled ”Configure feed mapping information:”.

Within the bordered area underneath this label you will see a listing of all the input fields contained
within the input feed selected previously. To the left of each field you need to specify the source
output field that is to be connected to it. Use the pull-down selector to view the output fields
available and to create the mappings.

You can map a single output field to several input fields, or create distinct mappings for each.

At runtime, the field to field mapping will ensure that the input field of the destination block
instance will always be kept the same as the value of the output field of the source block instance.
When the output field changes, which might be very frequently, the input field will be updated
immediately.

Alternatively, you can also just type in a value instead of selecting an output field. In that case the
input field will become a constant, always containing the value you set. If you select the ~ option
from the selector no mapping will be made, and the input field will be set to the default value for its

type.

Click on OK to finish the wiring operation. A line will be displayed between the two block instances,
labeled to indicate which feeds are involved in the wiring.

Figure 20. Block Wiring panel sample wire labels

Order Manager 1
Order Manager 2

Using the Block Wiring tab

order status »== data

EWMA Calculator 1
eeeeeee— |

Wiring a scenario variable to a block

You might want the value of a scenario variable to be the input for a block. To do this, use the
variable Mapper block. Wire the output of the variabie Mapper block to the input of the block that
requires the scenario variable.

The variable Mapper block takes the name of a scenario variable as the value of its only input
parameter. When the value of the mapped variable changes, the variable Mapper block sends the new
value to its output feed. The output feed includes two values. The first value is the new value as a
number. The second value is the new value as text. You can choose which representation you need to
wire into another block.

Using the Block Wiring tab

Mapping type conversions

Developing Apama Applications in Event Modeler 5.2.0 77
phg Jama op =" APAMA

Using the Block Wiring tab

It is important to be aware that if the type of the source output field is not the same as the destination
input field, type conversion will automatically take place.

The behavior here is the same as that already described when linking variables, parameters and
output fields. That is, if the conversion cannot be carried out (such as when attempting to convert a
non-numeric string to a number) then the destination field will be set to the default value for its type.
See "Conversion rules for variable types" on page 65.

Using the Block Wiring tab

Editing block wiring

If you wish to edit the mapping of an existing wire just double click on the line representing the
wiring.

Using the Block Wiring tab

Deleting a wiring

If you wish to delete an existing wire select the line representing the wiring by clicking on it. It will
become a bold red to indicate it is selected.

You can then press Del to delete it, or else click on the # icon in the main toolbar.

Using the Block Wiring tab

Deleting a block instance

You can delete rectangles representing block instances. However, this is the same as deleting block
instances from the Blocks tab.

To do this, select the block instance’s rectangle, and then press the Del button. If that block had any
wiring, either as a source or a destination, it will be removed.

If any rules’ condition or action parts refer to any feed, field, parameter or operation of the block
instance you have removed, the references will be reverted back to their non-terminals. This will
make those rules, and therefore the enclosing states and the scenario, unfinished.

Using the Block Wiring tab

Using older versions of blocks

Apama 4.2 modified the interface for implementing blocks. All standard blocks have been updated
to use this new interface. If you use a version of a block that implements the old interface, Event
Modeler indicates this in the Block Wiring tab by using a different color around the perimeter of the
block. Deprecated blocks (blocks that use the old interface and any blocks that are deprecated in the

Developing Apama Applications in Event Modeler 5.2.0 78
? s APAMA

Troubleshooting invalid scenarios

future) have an orange border while current blocks have a black border. However, the selected block,
of any type, has a red border.

You can use both deprecated and current blocks in the same scenario. However, if a scenario uses
at least one deprecated block, the scenario instances cannot be run in parallel. In the Blocks tab and
in the Block Wiring tab, blocks that are parallel-aware have a double-line border. Blocks that are not
parallel-aware have a single-line border.

The recommendation is to update any custom blocks to the new interface. Support for the old
interface will be removed in a future release. Information for converting custom blocks to the new
interface is in the Apama 5.0 migration guide.

Using the Block Wiring tab

Troubleshooting invalid scenarios

Event Modeler does the following to help you troubleshoot scenario validation issues:

® An error in a scenario file causes Apama Studio to display an error icon & in the Project Explorer
panel on the scenario name, the scenarios folder, and the project folder.

®* Apama Studio's Problems tab displays an entry for each error in a scenario.

®* Double clicking a scenario error in the Problems tab opens the scenario that contains the error, if it
is not already open, and selects the component associated with the error you clicked.

*]f a global rule is incomplete (unfinished), the title of the rule appears in bright red, a red-
outlined box appears around the rule definition, and the name of each state that the rule applies
to also appears in bright red.

® If alocal rule is incomplete the title of the rule appears in bright red, a red-outlined box appears
around the rule definition, and the name of the state the rule applies to also appears in bright
red.

® [f a block is missing Event Modeler displays an error icon on the Block Wiring tab name
F .

@Ek_w.'% , removes the block from the wiring display, and displays an error in the
Problems tab. This error identifies the missing block. Double clicking this error displays the Block
Wiring panel that contained the missing block. The wiring display no longer shows the block that
is missing and there is no error indicator in the wiring display for the missing block.

If there is a missing block whose feeds are used to set the values of scenario variables Event Modeler
reverts the value of the scenario variable to its default value. No error indication appears.

Using Event Modeler

Setting preferences

You can display the Event Modeler Preferences dialog by selecting Windows > Preferences,
expanding Apama, and selecting Scenarios:

Developing Apama Applications in Event Modeler 5.2.0 79
? s APAMA

Setting preferences

BP Preferences

IMM‘
- General 1=
-- Ant
=8 Apama

- Adapters

.. Catalogs

- MonitorScript

- MonitorScript Path 4

- Profiling and Loggin

- Scenarios

- Welcome Pages
.. Workbench

- Help

- Install/Update
[+ Java

[+ Java EE
- Javascript
#- Plug-in Development
- Run/Debug

[#]- Server

[+

H- Team

- Validation
- Web

. Weh Serviree
d

s

=] S
Scenarios r e

General I Colors and Fonts |
‘State Graph

¥ Show grid Gridcolor

[+ Snap to grid Grid spacing IZD
~Wiring Graph

[+ Show arid Grid color |

¥ Snap to grid

Grid spadng IID

~Recently used Scenarios
History size

=

~Undo /Reda
History size

[1=

Restore Defaults | Apply |

%)

R

B

Cancel |

The Preferences dialog has two tabs: General and Colors and Fonts.

The General tab contains these properties:

® State Graph

m Show grid — Enable to show the grid in the Event Flow tab.

® Snap to grid — Enable to turn on snap-to-grid in the Event Flow tab.

m Grid color — Click on the color box to bring up a dialog from where you can choose a new color
for the grid lines in the Event Flow tab.

m Grid spacing — Enter a value to set the scale and spacing of the grid in the Event Flow tab.

* Wiring Graph

m Show grid — Enable to show the grid in the Block Wiring tab.

® Snap to grid — Enable to turn on snap-to-grid in the Block Wiring tab.

m Grid color — Click on the color box to bring up a dialog from where you can choose a new color
for the grid lines in the Block Wiring tab.

m Grid spacing — Enter a value to set the scale and spacing of the grid in the Block Wiring tab.

® Recently used Scenarios

History size — This setting specifies how many previously edited scenarios the Event Modeler

should remember.

* Undo/Redo

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA °

Exporting scenarios as EPL

History size — This setting specifies how many edits the Event Modeler should remember for the
purpose of being able to undo them. The Undo button can be clicked multiple times to undo
several actions at once, up to the limit set in this property.

Colors and Fonts allows you to change the colors and fonts of most of the graphical elements of the
Event Modeler display.

Using Event Modeler

Exporting scenarios as EPL

To export one or more scenarios as EPL:
From the Apama Studio menu, select File > Export.
Expand Apama, select Export as MonitorScript, and click Next.

Select the project that contains the scenario(s) you want to export.

1.
2.
3
4. Select the scenario(s) to export and whether to export them in debug mode.
5. ldentify the output directory for the generated EPL.

6

Click Finish.

Using Event Modeler

Exporting scenarios as block templates

To export a scenario as a block template:

1. From the Apama Studio menu, select File > Export.

2. Expand Apama, select Export as Block, and click Next.

3. Select the project that contains the scenario(s) you want to export.
4. Select the scenario(s) to export and whether to export.
5

Identify the output directory for the generated block template. By default, Apama Studio puts the generated
block template in the Generated scenario blocks catalog in the catalogs directory of the project.

6. Click Finish.

Using Event Modeler

Event Modeler command line options

After you define a scenario, you can use a command line to generate EPL for that scenario, or to
generate a block from that scenario. This might be useful for custom scripting. The Event Modeler
executable is in the nin directory of your Apama installation directory. In addition to generating
EPL or a block, you can use the command line format to obtain information about Event Modeler.
Information about all Event Modeler command line options is in the table at the end of this topic.

Developing Apama Applications in Event Modeler 5.2.0 81
? s APAMA

Event Modeler command line options

Scenario to EPL

The command line format for generating EPL from a scenario is as follows:

event modeler.exe -Xgenerate sdf file path EPL file path

sdf file path Path of the scenario definition file for the scenario that you
want to save.

EPL file path Name of the new monitor.

For example:

event modeler.exe -Xgenerate c:\dev\scenariol.sdf scenariol.mon

This example generates the scenariol.mon file from the scenariol.sdas scenario definition file.

Scenario to block

The command line format for generating a block from a scenario is as follows:

event modeler.exe -XgenerateBlock scenario block catalog

scenario Path of the scenario definition file for the scenario that you want to save as a
block.

block Name of the new block.

catalog Path of the blocks catalog in which to save the new block.

For example:

event modeler.exe -XgenerateBlock scenariol.sdf scenariolBlock.bdf C:/Apama/blocks

This example generates the scenarioiBlock.bds file from the scenariol.sds file and stores the new block
h1C:/Apama/block&

All options

The format for executing event_modeler.exe is as follows:

event modeler.exe [options] [scenarioFilel.sdf scenarioFile2.sdf ...]

Table 4. event_modeler options

-h | --help Displays this information.

-v | --version Displays Event Modeler version
information

-c | --conf file Path to Event Modeler configuration file.

The default is event_modeler config.xml.

-1 | --logfile file Identifies the name of the Event Modeler
log file.
-V | --loglevel level Specifies the log level.

Developing Apama Applications in Event Modeler 5.2.0 82
? s APAMA

Event Modeler command line options

-f | --file file

Loads the specified scenario definition
file into Event Modeler. Repeat to load
multiple scenario definition files.

-XgenerateDebug [true]|false]

Generate debug output or not (default is
true).

-Xgenerate scenario EPL file

Generate EPL from the specified scenario
definition file.

-XgenerateBlock scenario block catalog

Generate a block from the specified
scenario definition file and save the new
block in the specified catalog.

-XforceBlockCatalogPaths path[,path ...

1>

Force Event Modeler to use the specified
comma separated block catalog paths.

-XaddBlockCatalogPaths path[,path ..

1>

Add the comma separated block catalog
paths to Event Modeler.

-XforceFunctionCatalogPaths path[,path ..

-]

Force Event Modeler to use the specified
comma separated function catalog paths.

-XaddFunctionCatalogPaths path[,path ..

1>

Add the comma separated function
catalog paths to Event Modeler.

Using Event Modeler

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA °©

Chapter 3: Working with Blocks Created from Scenarios

Terminology for using SCENAIO DIOCKScccviiiiuiiiieiiicctcre ettt 85
Benefits 0f SCENAMO DIOCKS ..o 86
Steps for uSING SCENAMO DIOCKSccoviuiiiiiriieii s 86
Background for using SCENAO DIOCKS ..o 86
Saving scenarios as block tEMPIALEScccccviiiiiieccce e 87
Incrementing scenario DIOCK VErSION NUMDEIScoiiiiiiriiicies et 87
Adding a scenario block t0 @ MaIN SCENAMOvviiiiiiiiiiie e 88
Examining a scenario blOCK'S SOUMCE SCENAMOc.eueuiiiiirieieiriieieieiei sttt 88
Descriptions of scenario bloCK Parametersccocciiiicieiiiccee et 88
Descriptions of scenario bloCk OPEratioNScoviiiricee e 89
Descriptions of SCeNArio BIOCK fEEASciiiiiieeieee s 90
Setting parameters before creating SUD-SCENATIOScoviiriirririrrircrre e 93
Creating SUD=-SCENAMIOScvcviviveieieteiete ettt ettt bbbttt et b s s bbb b s e e e e e e s s s n e %4
DEleting SUD-SCENAMOScvvrieiiiiiciitiei bbbt 95
Modifying sub-scenario input variable VAIUES ..o 96
lterating through SUD-SCENAMIOSccuiiiiiiiiei e nees 96
Obtaining variable values from SUD-SCENAIIOSccccueiiiiiiiiiie it 98
Linking sub-scenarios With Other DIOCKS ... 98
INNEMIEING SUD-SCENAMOSvviieciiteise ettt 98
Observing changes iN SUD-SCENAMOScccucueveviiiriieieieisi et s b 100
Performing simple calculations across SUD-SCENAIMOSccoceueueiiiieiiiiiieie s 102

In the Event Modeler, you can export a scenario to create a block. You can then use this block in other
scenarios. This chapter provides information and instructions for using blocks that you create from
scenarios.

For a sample scenario that uses a block that was created from a scenario, open the
ScenarioAsBlockExample.sdf file in the Event Modeler. This file is in the samples\scenarios directory of
your Apama installation directory.

You cannot create a block from a parallel-aware scenario. Nor can you create a block from a non-
parallel-aware scenario and then mark that block as parallel-aware.

Developing Apama Applications in Event Modeler 5.2.0 [84
pha a9 =" APAMA

Terminology for using scenario blocks

Terminology for using scenario blocks

To use blocks created from scenarios, you must understand the following terms:
®* Source scenario — A scenario block that you export to create a block.

* Scenario block— A block that you create from a scenario by selecting Scenario > Generate Block in
the Apama Studio menu and then saving and building the project. Alternatively, you can select
Export as Block from File > Export dialog.

& Main scenario — A scenario that uses a scenario block.

®* Sub-scenario — A source scenario instance that a scenario block dynamically creates. When you
use a scenario block in a main scenario, the scenario block manages sub-scenarios according to
the rules you define in the main scenario. The operations a scenario block can perform on a sub-
scenario include create, retrieve, commit, delete, delete all, iterate, and next.

* Context instance — Also referred to as the context sub-scenario. This is the current sub-scenario.
A scenario block can create any number of sub-scenarios. However, at any point in time, a main
scenario can modify only the context instance. Certain operations make a particular sub-scenario
the context instance. You can also set the value of the scenario block instance id parameter to the
instance ID for a particular sub-scenario and then call the scenario block retrieve operation to
make that sub-scenario the context instance.

The following figure shows the relationships among these items.

Figure 21. Relationship between source scenario and scenario block

gets saved as

Scenario

Source Scenario

e Block

Main Scenario

uses

Scenario dynamically creates
Block p Sub-Scenarios

Instance of
Source Scenario

Working with Blocks Created from Scenarios

Developing Apama Applications in Event Modeler 5.2.0 85
? s APAMA

Benefits of scenario blocks

Benefits of scenario blocks

The benefit of using a scenario block is that you can write a scenario once and then use it any number
of times without having to manually create instances of that scenario. Instead, in your main scenario,
you define rules that create and manage the instances of the source scenario. When a main scenario
uses a scenario block, the scenario block dynamically creates and manages instances of the source
scenario according to the rules you define in the main scenario. The main scenario functions as a
management tool for the sub-scenarios. This allows self-contained units of work that start and finish
within the main scenario.

A main scenario can use several different scenario blocks. This lets you define multiple source
scenarios, and then pull them together into a single main scenario.

Like all blocks, using scenario blocks makes propagating updates to the source scenario easier. For
example, suppose you have 10 instances of a scenario. If you need to change that scenario, you must
also update the 10 instances. Now suppose you have a main scenario that uses a scenario block to
create 10 sub-scenarios. If you need to modify the source scenario, you only need to also update the
main scenario that uses the scenario block.

Working with Blocks Created from Scenarios

Steps for using scenario blocks

The general steps for using scenario blocks are as follows:
1. Define and save the source scenario.

2. Generate ablock from the source scenario to create your scenario block. This makes your new scenario
block available for selection in the Catalogs tab.

Define amain scenario.
Add your scenario block to your main scenario.

In your main scenario, define rules that refer to your scenario block.

S

Deploy the source scenario. You can do thisin Apama Studio, or by injecting the . sar fileinto the
correlator with the engine inject Utility. If the source scenario requires any event types or other EPL to be
injected before you can run it, be sure to inject those items before you try to run the main scenario.

7. Deploy the main scenario.

Working with Blocks Created from Scenarios

Background for using scenario blocks

To use scenario blocks in a main scenario, it is helpful to understand the implementation model.
Consider a deck of cards with each card stacked on top of the other cards. Each card represents a
sub-scenario, which is an instance of the source scenario.

When a sub-scenario generates an update event, that sub-scenario pops to the top of the stack of sub-
scenarios, like you might move a card to the top of a deck. When a sub-scenario is at the top of the

Developing Apama Applications in Event Modeler 5.2.0 86
? s APAMA

Saving scenarios as block templates

stack of sub-scenarios, you can access the values associated with that sub-scenario. Any time you
can access the values associated with a sub-scenario, that sub-scenario is the context sub-scenario.
For example, when a sub-scenario completes its processing, the scenario block sends an update
event to its output feed. This update event makes the completed sub-scenario the context instance.
Consequently, you can do something like this:

When instance status from MyScenarioBlock (output) = "ENDED"
Then quantity = quantity + subquantity from MyScenarioBlock (output)

If quantity is a variable in the main scenario, this action increases the value of the quantity variable
upon the completion of each sub-scenario. You do not need to first retrieve a sub-scenario to obtain
the value of its subquantity variable.

As you can see, one way to operate on a particular sub-scenario is to wait for that sub-scenario to be
the context sub-scenario. Another way to operate on a particular sub-scenario is to make that sub-
scenario be the context sub-scenario. You do this by specifying the context ID of the sub-scenario you
want to operate on and then calling the retrieve operation.

A main scenario can use two or more instances of the same scenario block. Each scenario block
manages only the sub-scenarios it creates. However, you can change this according to the value you
specify for the scenario block innheritExternalinstances parameter. See "Inheriting sub-scenarios" on
page 98.

Working with Blocks Created from Scenarios

Saving scenarios as block templates

To use a source scenario as a block, you must save it as a block, which creates a new block template.
To create a block template from a scenario:

1. InEvent Modeler, open the scenario from which you want to create a block.

2. Ensurethat the scenario is complete and correct.

3. Inthe Event Modeler menu bar, select Scenario and ensure that there is a check next to Generate Block.

Whenever you save and/or build the project, Event Modeler generates a block template from this
scenario. You can see the block template in the Generated scenario blocks catalog in your project’s
Catalogs tab. The name of the block template is the name of the scenario with the .nar extension. If
you have already saved a version of this scenario as a block, Event Modeler sets the version field to
the revision level of the latest scenario block exported from this scenario.

Working with Blocks Created from Scenarios

Incrementing scenario block version numbers

To increment the version number, export one or more scenarios as blocks:

1. From the Apama Studio menu, select File > Export

2. Inthe Export dialog, expand Apama, click Export as Block, and click Next.

3. Inthe Project: field, select the project that contains the scenario(s) you want to export.
4

In the Export column, select one or more scenarios to export as blocks and click Next.

Developing Apama Applications in Event Modeler 5.2.0 87
? s APAMA

Adding a scenario block to a main scenario

5. Select the folder in which you want to save your new block. By default, Event Modeler saves scenario
blocksin the catalogs\Generated scenario blocks directory of your project directory.

The name of the new block is always the name of the scenario with the .nar extension. If you have
already saved a version of this scenario as a block, Event Modeler sets the version field to the
revision level of the latest scenario block exported from this scenario. To save a newer version,
increment the version number.

To create a new folder in which to store your new scenario block, click New..., specify the name of
the new folder, and click OK.

To add a new catalog in which to store your new scenario block, switch to Apama Developer
perspective, right-click the project name, select Properties, and click the Blocks tab. Then return to
the Export As Block dialog.

6. Click Export. Your new scenario block isimmediately available for selection from the Catalogs tab.

You can nest a scenario block in another scenario block. In other words, you can export a main
scenario as a block, and use the new scenario block in some other main scenario.

Working with Blocks Created from Scenarios

Adding a scenario block to a main scenario

You add a scenario block to a main scenario as you would add any other block to a scenario.

1. Inthe Catalogs tab, select the scenario block you want to use in your main scenario.

2. Inthe Catalogs tool bar, click the Add Selected Block Template 4= button. The scenario block you
selected now appears in the Blocks tab.

You can now use the scenario block as you would any other block.

Working with Blocks Created from Scenarios

Examining a scenario block’s source scenario

After you add a scenario block to a main scenario, you might like to look at the scenario block’s
source scenario. To do this:

1. Select the scenario block in the Blocks tab.

2. Right-click to display the context menu.

3. Select Open Source Scenario....

This displays a separate copy of Event Modeler with the source scenario open.

Working with Blocks Created from Scenarios

Descriptions of scenario block parameters

A scenario block has the following parameters:

Developing Apama Applications in Event Modeler 5.2.0 88
? s APAMA

Descriptions of scenario block operations

® instance id — This is a string that identifies a sub-scenario. An instance ID must be unique within
a main scenario. In the main scenario, you set the value of the instance id parameter to indicate
the sub-scenario that is the target of the next scenario block operation.

® deleteChildrenonTerminate — Boolean that indicates whether all sub-scenarios terminate when the
main scenario terminates. The default behavior is that sub-scenarios remain active if the main
scenario terminates. That is, the default is false.

If the main scenario inherits sub-scenarios from other main scenarios, the inherited sub-scenarios
would also terminate when the value of the deletechildrenonterninate parameter is true.

® inheritExternalInstances — Indicates whether the main scenario inherits sub-scenarios created
by other main scenarios. When the main scenario inherits sub-scenarios, it means that the main
scenario can operate on inherited sub-scenarios as though it had created those sub-scenarios. For
details, see "Inheriting sub-scenarios” on page 98.

® input-variables — There is one parameter for each source scenario variable that is marked as
input. For example, if the source scenario has a quantity input variable, then a scenario block
created from that source scenario has a quantity parameter. The recommendation is that you
mark a source scenario variable as input or output and not as both.

When you add a scenario block to a main scenario, the initial value of the instance id parameter is an
empty string, "». When you call the create operation on a scenario block and the value of the instance
id parameter is an empty string, the scenario block generates the ID that it assigns to the new sub-
scenario. This ensures that the instance ID is unique within the main scenario. You can obtain the
assigned instance ID from the scenario block output feed.

Generated instance IDs would look something like the following for a scenario block named
MyScenarioBlock

MyScenarioBlockl;1
MyScenarioBlockl; 2
MyScenarioBlockl; 3
and so on

When you want to specify the ID that the scenario block assigns to a new sub-scenario, set the value
of the instance id parameter and then call the create operation. If you specify an instance ID that
already exists, and call the create operation, the create operation fails.

Working with Blocks Created from Scenarios

Descriptions of scenario block operations

You can call the following operations on a scenario block:
® create — Creates a sub-scenario.
® gelete — Deletes the sub-scenario identified by the value of the instance id parameter.

® gelete all — Deletes all sub-scenarios that this scenario block manages. The sub-scenarios that
a scenario block manages are the sub-scenarios that the scenario block created and has not yet
deleted. A main scenario can use two or more instances of the same scenario block. Each scenario
block manages only the sub-scenarios it creates. In a main scenario, the 21 scenario block has no
information about sub-scenarios created by the a2 scenario block.

Developing Apama Applications in Event Modeler 5.2.0 89
? s APAMA

Descriptions of scenario block feeds

retrieve — Retrieves the sub-scenario identified by the value of the instance id parameter. The
retrieved sub-scenario becomes the context instance. To modify any values associated with a sub-
scenario, the sub-scenario must be the context instance. The retrieve operation does not modify
the current values of the scenario block’s parameters.

comnit — Changes and saves the values of the context sub-scenario’s input variables that
correspond to scenario block parameters whose values have changed since the previous create,
iterate, next, retrieve, OF comnit Operation, whichever came last.

iterate — Starts an iteration through the sub-scenarios that this scenario block manages. After
you call the iterate Operation, the first sub-scenario that the block created is the context sub-
scenario. You do not need to call the next operation to retrieve the first sub-scenario. To restart an
iteration, call the iterate operation again.

next — Moves to the next sub-scenario in the iteration and makes that sub-scenario, if there is
one, the context instance. The next operation visits the sub-scenarios in the order in which the
scenario block created them.

Call this operation after a call to the iterate operation. When you call next, if there is a valid next
instance, the scenario block sends an event to the ocutput feed. You can obtain the instance ID for
the new context instance from this event.

There are no timing issues because the scenario block immediately performs the next operation
and sends an event to the cutput feed. That is, you do not need to wait for the next operation to
complete before you issue an action that operates on the sub-scenario that is the context instance
as a result of the next operation.

Working with Blocks Created from Scenarios

Descriptions of scenario block feeds

Scenario blocks have no input feeds. Scenario blocks have three output feeds:

output — Provides updated information about a sub-scenario. The scenario block sends output to
this feed whenever the value of a sub-scenario variable changes. The main scenario that created
the sub-scenario, and any other main scenarios that inherit the sub-scenario each get an output
feed to indicate the changes.

iteration ended— Indicates whether an iteration is complete.

group info — Provides cumulative information about all sub-scenarios managed by this scenario
block.

The following table describes the fields in each output feed.

Feed Fields Description
output instance id String that identifies the sub-scenario that changed.
instance owner Identifies the user account under which the main

scenario that is using this scenario block was created.

instance created Boolean value that is true after the sub-scenario is
created.

Developing Apama Applications in Event Modeler 5.2.0 90
? s APAMA

Descriptions of scenario block feeds

Feed Fields Description

instance ended Boolean value that is true after the sub-scenario stops
processing. This can happen because it fails, is deleted,
or ends its normal processing.

instance status Enumerated string field that indicates the status of the
sub-scenario. The value is one of the following:

* runnine — The sub-scenario has been created and has
not ended, failed, or been deleted.

® rwpep — The sub-scenario has ended normally; it
reached its end state.

® ra1Ep — The scenario block failed to create the sub-
scenario, perhaps because of a duplicate instance ID.
Or, the sub-scenario failed because something went
wrong while it was running. For example, the sub-
scenario tried to divide by zero.

® peLETED — ©The main scenario called the delete
operation, which removes the sub-scenario from the
correlator. Or, some other external entity deleted the
sub-scenario from the correlator.

* unknown — The status of the sub-scenario is unknown.
For example, the status is unknown after you invoke
the create operation and before the scenario block
actually creates the sub-scenario.

variables In the output feed, there is a field for each source scenario
variable. Each of these fields contains the current value
of the variable for the identified sub-scenario.

iteration complete Boolean value that is true when iteration through
ended the sub-scenarios that this scenario block manages is
complete. When you call the next operation, and there
is not another sub-scenario in the iteration, then the
iteration ended feed outputs a value of true for the
complete field.

group total created Integer that indicates how many sub-scenarios this
info scenario block has created since it began processing.
total deleted Integer that indicates how many sub-scenarios this

scenario block has deleted since it began processing.

total loaded Integer that indicates how many sub-scenarios created
by this scenario block are loaded in the correlator. This
includes sub-scenarios that are running, plus sub-
scenarios that failed while they were running, plus sub-
scenarios that have ended. This number does not include
sub-scenarios that the scenario block tried to create and

Developing Apama Applications in Event Modeler 5.2.0 91
? s APAMA

Descriptions of scenario block feeds

Feed Fields Description

failed to create. In other words, the total loaded is equal
to the total created minus the total deleted.

number running Integer indicating how many sub-scenarios created by
this scenario block are running.

number ended Integer indicating how many sub-scenarios created by
this scenario block are still loaded but have ended.

number failed Integer that indicates how many sub-scenarios created
by this scenario block are still loaded but have failed.

summary Convenience string that summarizes the information
provided by the other group info fields. For example:
"Total Created: 100, Total Deleted: 40, Total Loaded: 60,
Number Running: 10, Number Ended: 48, Number Failed: 2".

Inheritance affects the totals in the group info feed as follows:

® total created indicates the number of sub-scenarios that were created and that the main scenario
could operate on. This number only goes up. This number includes sub-scenarios created by this
main scenario as well as inherited sub-scenarios created by other main scenarios.

® total deleted indicates the number of sub-scenarios that were deleted while the main scenario
could operate on them. This number only goes up. This number includes sub-scenarios created
by this main scenario as well as inherited sub-scenarios.

® +total loaded, total running, number ended, and number failed indicate the number of sub-scenarios
that are currently loaded in the correlator and that the main scenario can operate on. This
number goes up and down.

For example, SUppoOSse inheritExternalInstances is set to owner fOr Mainscenarioa. Now suppose
MainScenarioB, which has the same owner as MainScenarioa, creates a new sub-scenario. The total
created field for Mainscenarioa gets incremented by 1. Now suppose that mainscenarioc, which has a
different owner, creates the same type of sub-scenario. The total created field for Mainscenarior would
not get incremented.

Following is an example of an output feed. Suppose the source scenario defines the following
variables:

* svueor (Input)

* sipe (Input)

® crice (Output)

®* ouvantity sowp (Output)

The output feed would have the following fields:

instance id
instance owner
instance created
instance ended
instance status
SYMBOL

SIDE

Developing Apama Applications in Event Modeler 5.2.0 92
? s APAMA

Setting parameters before creating sub-scenarios

PRICE
QUANTITY SOLD

Working with Blocks Created from Scenarios

Setting parameters before creating sub-scenarios

When you add a scenario block to a main scenario, the scenario block’s parameters have default
values according to their types. For example, the default value of a string parameter is an empty
string ("").

After you add a scenario block to a main scenario, you can set initial values for the scenario block’s
parameters in the Blocks tab. However, it is important to understand that the values you set are initial
values and not default values. During execution of a main scenario, if you want to change the value
of a parameter, you must explicitly do so. After you modify the value of a parameter, if you require
the parameter to have its initial value, you must explicitly set it to its initial value.

When you call the create operation, the newly created instance’s input variables take their values
from the current values of the corresponding scenario block parameters. The current values of

the parameters might or might not be the initial values; if you modified a parameter value, the
parameter has the last value that was assigned to it. If you then call the create operation, the scenario
block assigns that last value to the sub-scenario’s corresponding input variable.

To create a sub-scenario that has the initial parameter values for its input variables, do one of the
following:

® Jf the main scenario has not made any changes to the scenario block’s parameter values, call the
create Operation.

® [f the main scenario has made changes to parameter values, explicitly specify the value of each
parameter, and then call the create operation. This is the safest way to ensure that you create
the sub-scenario with the values you want. A common mistake is to forget that you changed the
value of a parameter in the course of some work. If you then create a new sub-scenario, it has the
updated value of the parameter and not the initial value.

For example, consider the following set-up: Myscenarioslock has three parameters that correspond to
three input variables: 1nput1, Input2, and nput3. The initial value of each parameter is niue. The value
of the instance id parameter is the empty string, which means that the scenario block generates the
instance IDs for you. In a rule, you can set parameter values and create sub-scenarios as follows:

When true Creates the Myscenarioblockl; 1 instance. The
Then Inputl = green values of the parameters and the values of
Then create [MyScenarioBlock]

the input variables in this instance are green,
blue, and biue.

Then Input2 = purple Creates the MyScenarioBlockl;2 instance. The
Then create [MyScenarioBlock] values of the parameters and the values of
the input variables in this instance are green,
purple, and biue.

Then Input3 = white Creates the MyscenarioBlockl; 3 instance. The
Then create [MyScenarioBlock] values of the parameters and the values of
the input variables in this instance are green,
purple, and white.

Developing Apama Applications in Event Modeler 5.2.0 93
? s APAMA

Creating sub-scenarios

Then instance id = MyScenarioBlockl;?2 Makes the second created sub-scenario
Then retrieve [MyScenarioBlock] the context instance. The variables in this
instance have the values green, purple, and
plue. Note that this is not the same as the
current parameter values, which are green,
purple, and white. The retrieve operation
does not modify the current values of the
scenario block’s parameters.

Then Input2 = gold After the comnit operation, the values of this
Then commit [MyScenarioBlock] sub-scenario’s input variables are green, gold,
and viue. The values of the corresponding
scenario block parameters are green, gold,
and white. The commit operation modifies
only the context instance. It does not
modify any other sub-scenarios. The commit
operation makes only those changes made
since the retrieve operation. For example, it
does not change the value of tnput3 to white.

Then create [MyScenarioBlock] Creates the MyScenarioBlockl; 4 instance.
The values of the input variables in this
instance are green, gold, and white, which
are the current values of the corresponding
parameters.

Working with Blocks Created from Scenarios

Creating sub-scenarios

The scenario block create Operation creates a new sub-scenario with the current values of the
scenario block’s input-variables parameters. A sub-scenario is an instance of the source scenario. Call
this operation for each sub-scenario you want to create.

You can have any number of sub-scenarios running in parallel. You do not need to wait for one sub-
scenario to complete processing before you create another sub-scenario. When you invoke the create
operation, the scenario block immediately sends an update event to its output feed. The fields in this
event have the following values:

® instance id — This field provides the instance ID of the sub-scenario being created. This is
either the instance ID you specified as the value of the instance id parameter before you called
the create operation, or it is the instance ID generated by the scenario block if the value of
the instance id parameter was an empty string. For the format of a generated instance ID, see
"Descriptions of scenario block parameters” on page 88.

® instance created — This field is false because the scenario block has not yet created the new sub-
scenario.

® i.stance ended — This field is also false.

® instance status — This field has a value of unknown because, again, the scenario block has not yet
created the new sub-scenario.

Developing Apama Applications in Event Modeler 5.2.0 94
? s APAMA

Deleting sub-scenarios

In addition, the output feed contains a field for each variable that the source scenario defines.

As soon as the scenario block actually creates the new sub-scenario, it sends another event to the
output feed. This time, if creation was successful, the instance created field is true, and the instance
status field is runninG. For example, you might want to do something like this:

State: Step 1

When true

Then create [MyScenarioBlock]

Then move to state [Step 2]

State: Step 2

When instance created from MyScenarioBlock (output)
Then status = "Instance created successfully"

When the scenario block sends the first event after you invoke the create operation, that event
indicates that the sub-scenario you are creating is the context sub-scenario. For example, to issue two
orders in sequence you can specify the following:

State 1
When true
Then Symbol from MyScenarioBlock = "APMA"

Then create [MyScenarioBlock]
Then continue

When instance status from MyScenarioBlock (output) = "ENDED"
Then Quantity = Quantity + Quantity from MyScenarioBlock (output)
Then Symbol from MyScenarioBlock = "MSFT"

Then create [MyScenarioBlock]
Then move to state [State 2]
State 2
When instance status from MyScenarioBlock (output) = "ENDED"
(Note that this now reflects the second sub-scenario created.)
Then Quantity = Quantity + Quantity from MyScenarioBlock (output)

Alternatively, you can do it this way:

When true

Then Symbol from MyScenarioBlock = "APMA"
Then create [MyScenarioBlock]
Then Symbol from MyScenarioBlock = "MSET"
Then create [MyScenarioBlock]
Then Symbol from MyScenarioBlock = "ORCL"

Then create [MyScenarioBlock]

To operate on a sub-scenario that you just created, you must wait for the value of the instance status
field to be runnING.

Working with Blocks Created from Scenarios

Deleting sub-scenarios

To delete a sub-scenario when it reaches its end state:
1. Check the output feed for atrue value for the instance ended field.
2. Call the de1ete Operation.

The output event that the scenario block sends to its output feed to indicate that the instance has
finished processing also makes the completed instance the context instance. Consequently, you do
not need to set the instance id parameter before you call the de1ete operation.

Working with Blocks Created from Scenarios

Developing Apama Applications in Event Modeler 5.2.0 95
? s APAMA

Modifying sub-scenario input variable values

Unconditionally deleting a sub-scenario

To unconditionally delete a sub-scenario:

1. Settheinstance ia parameter to the instance ID of the sub-scenario you want to delete.
2. Cadll the retrieve Operation.

3. Cadll the de1ete Operation.

Deleting sub-scenarios

Deleting all sub-scenarios

To delete all sub-scenarios that this scenario block created but has not yet deleted:
1. Cadltheagelete a11 operaIion.
2. Watch the group info feed' s total 10aded field for avalue of o.

Deleting sub-scenarios

Modifying sub-scenario input variable values

To modify the value of one of a sub-scenario’s input variables:

1. Settheinstance ia parameter to the instance ID of the sub-scenario whose input variable you want to
change.

2. Cadll the retrieve Operation so that the sub-scenario you want to modify is the context instance.

3. Set the value of the scenario block’ s parameter that corresponds to the input variable you want to change.
Y ou can do this for each input variable you want to change.

4. Cadl the commit Operation to save your changes. This does the following:
m Updates only the sub-scenario identified by the instance id parameter.

m Updates each input variable that corresponds to a scenario block parameter that you
modified since the retrieve Operation.

m Sends output to the output feed to indicate the current variable values.

Working with Blocks Created from Scenarios

Iterating through sub-scenarios

To iterate through the sub-scenarios that a particular scenario block manages, you can do something
like the following:

Developing Apama Applications in Event Modeler 5.2.0 96
? s APAMA

Iterating through sub-scenarios

1. Instate 1, cal the iterate Operation to start an iteration. After you call iterate, the first sub-scenario that
the block created becomes the context instance.

2. Moveto state 2.
3. Instate 2, determine whether you are done iterating through the sub-scenarios.

a. If thevalue of the compiete field inthe iteration ended output feed istrue, then you are done iterating.
Moveto state 3.

b. If there are no sub-scenarios, the value of the compicte field istrueimmediately after calling the
iterate OperaII on.

c. If thevalue of the compiete field inthe iteration endeda OuUtput feed isfalse, then you are not done
iterating. Do the following:

m Do something. For example, aggregate some quantity.

m Call the next operation to make the next sub-scenario the context instance. The iterate
operation visits the sub-scenarios in the order in which they were created.

B Move to state 2.

Following are rules that perform these steps:

State 1
When true
Then iterate [MyScenarioBlock]
Then move to State 2
State 2
When complete from MyScenarioBlock(iteration ended)
Then move to State 3
When true
Then Quantity = Quantity + Quantity from MyScenarioBlock (output)
Then next [MyScenarioBlock]
Then Move to State 2

In your main scenario, you might want to start the iteration and perform the iteration in a single
state. One way to do this is to use a Boolean variable that indicates whether an iteration is in
progress. In the following example, iterating is a Boolean variable:

Iterate State
When not iterating
Then iterating = true
Then iterate [MyScenarioBlock]
Then continue
When complete from MyScenarioBlock(iteration ended)
Then iterating = false
Then Move to AnotherState
When true
Then Quantity = Quantity + Quantity from MyScenarioBlock (output)
Then next [MyScenarioBlock]
Then Move to Iterate State

There is no significant performance advantage of using one of the above iteration techniques rather
than the other. Choose the simplest approach for your Scenario. To restart an iteration, call the
iterate Operation.

Note: You might find it convenient to use the Filtered Summary block instead of an iteration.

The Filtered Summary block can calculate totals and averages across sub-scenarios. For any other
calculations, you would need to iterate through sub-scenarios. See the "Filtered Summary v2.0" on
page 161 for details.

Developing Apama Applications in Event Modeler 5.2.0 97
? s APAMA

Obtaining variable values from sub-scenarios

Working with Blocks Created from Scenarios

Obtaining variable values from sub-scenarios

Because a sub-scenario is an instance of its source scenario, each sub-scenario contains the variables
defined in its source scenario. To obtain the current value of a sub-scenario’s variable, check the
scenario block’s output feed. The output feed contains a field for each source scenario variable. The
scenario block updates its output feed whenever there is a change to the value of a sub-scenario
variable.

Working with Blocks Created from Scenarios

Linking sub-scenarios with other blocks

You can share sub-scenario instance IDs with other blocks. For example, the wait block supports
multiple concurrent timers. You could assign an ID to each timer and then use that same ID to create
a sub-scenario. You could do this multiple times. When a timer fires, you can use the ID it reports

to retrieve the associated sub-scenario and perform some operation on it, such as deleting it. For
example:

When time up from Wait (timer)

Then instance id from MyScenarioBlock = timer id from Wait (timer)

Then retrieve [MyScenarioBlock]

Then continue

When instance status from MyScenarioBlock (output) is equal to "RUNNING"
Then move to state[next]

Working with Blocks Created from Scenarios

Inheriting sub-scenarios

A scenario block has the inheritexternalinstances parameter, which indicates whether the main
scenario inherits sub-scenarios created by other main scenarios. Inherited sub-scenarios are always

® [oaded in the correlator

* Created by the same type of scenario block as the scenario block for which you are setting the
parameter.

When the main scenario inherits sub-scenarios, it means that the main scenario can operate on
inherited sub-scenarios as though it had created those sub-scenarios. For example, if the main
scenario iterates over its sub-scenarios, the iteration includes inherited sub-scenarios.

Working with Blocks Created from Scenarios

Description of inheritExternallnstances values

The inheritExternalInstances parameter has one of the following values:

®* xone — The main scenario can operate on only the sub-scenarios it creates. This is the default.

Developing Apama Applications in Event Modeler 5.2.0 98
? s APAMA

Inheriting sub-scenarios

®* owner — The main scenario can operate on sub-scenarios that have the same owner as the main
scenario.

Every main scenario is created under a particular user account. This account is the owner of the
main scenario and consequently it is also the owner of each sub-scenario that the main scenario
creates. Each scenario block has an instanceowner output field that indicates the owner.

®* 211 — The main scenario can operate on all sub-scenarios created by scenario blocks that are the
same type as the scenario block for which you are setting the inheritexternalinstances parameter.
It does not matter which main scenario created the sub-scenario or which account owns the sub-
scenario.

Inheriting sub-scenarios

Notes for setting the inheritExternallnstances parameter

You can change the value of the inheritexternalinstances parameter during Scenario execution.
When you do, the new value takes effect immediately. Likewise, as other main scenarios create sub-
scenarios, a main scenario might inherit those sub-scenarios if it has a value of owner or a11 for its
inheritExternalInstances parameter.

When a main scenario changes the value of the innheritExternalinstances parameter, the scenario block
searches within the correlator for sub-scenarios that the main scenario now inherits. For each sub-
scenario that the scenario block finds, it sends data to its output feed. For example, if the scenario
block finds five sub-scenarios that the main scenario now inherits, the scenario block sends five sets
of data to its output feed. The scenario block also sends data to its group info feed that includes the
inherited sub-scenarios in the counts. Subsequently, if any main scenarios create or terminate sub-
scenarios that another main scenario inherits, or if any inherited sub-scenarios fail, the scenario block
in the inheriting main scenario sends data to its output feed just as if the inheriting main scenario had
created the sub-scenario.

A particular main scenario does not need to create any sub-scenarios before it can inherit sub-
scenarios created by other main scenarios. For example, you might define a scenario block whose
only purpose is to monitor inherited sub-scenarios and perform some sort of aggregation or analysis.
Or, you can define a scenario block with true as the value of the deletechildrenonterninate parameter.
When you want to terminate all instances of that type of sub-scenario you need to only terminate one
main scenario.

Keep in mind that inherited sub-scenarios are shared by more than one main scenario. That means
that more than one main scenario can operate on the same sub-scenario. Be sure to consider this
when you design your application.

Inheriting sub-scenarios

Example of inheriting sub-scenarios

The following figure illustrates how the inheritExternalinstances parameter works. Each main
scenario is owned by the user account under which it was created. When a main scenario inherits a
sub-scenario, the inherited sub-scenario is visible to the main scenario.

Developing Apama Applications in Event Modeler 5.2.0 99
? s APAMA

Observing changes in sub-scenarios

Remember that inherited sub-scenarios are always of the same type as the scenario block for which
you are setting the inheritExternalinstances parameter. In the following figure, the scenario blocks
are each shown as myscenarioBilk 1. They could of course have been shown as myscenariosik 2,
MyScenarioBlk 3, and MyscenarioBlk 5, Or any other similar combination. The important point is that
they are all instances of myscenarioBik. In the figure,

®* Main scenario x can operate on sub-scenarios 2-1, 2-2, and a-3.
®* Main scenario v can operate on sub-scenarios a-1, a-2, a-3, 2-4, and a-s.

®* Main scenario z can operate on sub-scenarios a-4 and a-s.

Figure 22. Scenario inheritance

Correlator
hain Scenario Y z
Ihstances Chain er Chainer Cwner
Bernard Bernard Clark
¥ J |
W yScenarioBlk 1 Wy ScenarioBlk 1 hWyScenaroBlk 1
Instances of
WS cenarinBlk Wisibility Wisibility Wisibility
Owner | All - | None =
>~ AT "
" - - e
| \ - — T Foy g - ||
| Ay P . - i " - - ol
I Sy Sl
1 - R - L
) AN A S U A = ¥
Dh-5 i -
Instangeegarm A-1 A\ A-2 A-3 A-d A-5

—_— - Cragtes

______ = isibility

Inheriting sub-scenarios

Observing changes in sub-scenarios

The Change Observer block watches a set of sub-scenarios for changes in the value of one of the
sub-scenario variables. You specify which variable you want to watch. When the value changes, the
Change Observer block sends data to its change output feed. The output feed indicates the old value
and the new value. You use one Change Observer block for each variable that you want to observe.
See "Change Observer v2.0" on page 159 for details.

Developing Apama Applications in Event Modeler 5.2.0 100

s- APAMA

Observing changes in sub-scenarios

For example, suppose your main scenario uses the Trader scenario block and the Price Checker
scenario block. The Trader scenario block output fields include:

® instance id [string]

L instance owner [string]

® instance created [Boolean]

L instance ended [Boolean]

L instance status [UNKNOWN, RUNNING, ENDED or FAILED]
® +trading [Boolean]

The Price Checker scenario block output fields include the following:
® instance id [string]

® ipstance owner [string]

. instance created [Boolean]

L instance ended [Boolean]

L instance status [UNKNOWN, RUNNING, ENDED or FAILED]
® price [number]

In your main scenario, you create several Trader sub-scenarios — each one trades in a different
market. When a Trader sub-scenario finishes trading, it sends data to its output feed and this data
includes trading=false.

You also create several Price Checker sub-scenarios — one for each type of stock symbol you are
trading. When the price of a stock being checked changes, the Price Checker sub-scenario sends data
to its output feed and this data includes the new price.

In your main scenario, you want to monitor changes in the Trader trading field and in the Price
Checker price field. To do this, use an instance of the Change Observer block for each field. The block
wiring would look like this:

Figure 23. Block wiring example

Price Checker 1

[elpred! » IR

 Change Observer_PRICE CHECKER P

trader 1

Change Observer_TRADER P

Developing Apama Applications in Event Modeler 5.2.0 101
? s APAMA

Performing simple calculations across sub-scenarios

The Change Observer_PRICE CHECKER block sends an output feed whenever a Price Checker
sub-scenario sends a price change to its output feed. The Change Observer_TRADER block sends
an output feed whenever a Trader sub-scenario stops trading or starts trading, as indicated by the
trading field in its output feed. You would wire their fields as follows:

Wire Price Checker 1 Output Feed To Change Observer_PRICE CHECKER Input Feed
Output feed: output Input feed: input
instance id [string] output field stream [string] input field
price [float] output field watchvalue [string] input field

Wire Trader 1 Output Feed To Change Observer_TRADER Input Feed
Output feed: output Input feed: input
instance id [string] output field stream [string] input field
trading [boolean] output field watchvalue [string] input field

The rules to implement this would look something like the following: (Note that the name of the
Change Observer block output feed is change.

Figure 24. Sample rules

check for price changes e
When | change frem Change Observer _PRICE CHECKER changes

® pld price = oldValue frem Change Observer _PRICE CHECHKER

® new price = newWalue from Change Observer_PRICE CHECKER

® changed instance = stream from Change Observer PRICE CHECKER
@ move to state [end]

Then

check for when trading is commpiate e

change from Change Observer_TRADER changes and not

i
" | To_BOOLEAM (newValue from Change Observer TRADER.)

® numTradesComplete = { numTradesComplete + 1)
@ continue

Then

Working with Blocks Created from Scenarios

Performing simple calculations across sub-scenarios

The Filtered Summary block performs simple calculations across a set of sub-scenarios. This is an
alternative to iterating over a set of sub-scenarios. The Filtered Summary block can operate on only

Developing Apama Applications in Event Modeler 5.2.0 102
? s APAMA

Performing simple calculations across sub-scenarios

floating point values. You can use this block to calculate sums and averages. See "Filtered Summary
v2.0" on page 161 for details.

In more general terms, the Filtered Summary block performs calculations on a keyed set of floating
point values. Typically, you use the sub-scenario instance ID as the key. The key’s associated value is
the value of a sub-scenario floating point variable that you want to use in an aggregate calculation.

To use the Filtered Summary block, wire output fields from the scenario block to input fields of the
Filtered Summary block. Typically, you want to map the scenario block instance ia output field

to the Filtered Summary key input field. Then map a floating point sub-scenario variable from the
scenario block output feed to the Filtered Summary value input field.

You can specify filters to perform calculations on a sub-group of sub-scenarios. For example, suppose
you wanted to calculate the total number of shares purchased by sub-scenarios owned by sonn. To
accomplish this, you do the following two things:

®* Map the scenario block instance owner output field to the Filtered Summary block fiiter input
field.

® Set the Filtered Summary filter parameter to "sonn".

When the Filtered Summary block receives input from your scenario block, it checks whether the
value of the fiiter input field is equal to the value of the riiter parameter. If the values are equal, (in
the example, they are both "sonn") the Filtered Summary block sends output to its output feed. If the
values are not equal, the Filtered Summary block sends no output.

Now suppose that you want to exclude shares purchased by John from your calculation. That is, you
want to know the total number of shares purchased by everyone except John. To make this happen,
you perform one step in addition to the steps already described. Set the Filtered Summary block’s
filter is "not equal to" parameter to true. Now the Filtered Summary block sends output only when
the fiiter input field is not equal to "sonn".

You can also remove keys and their associated values from the Filtered Summary block’s internal
data store. This lets you exclude data from certain sub-scenarios from the calculations. You do this
with the deleterey Operation and the xeyropelete parameter. One way to do this is to define a global
rule that watches for sub-scenarios to terminate. When a sub-scenario terminates, you can specify its
instance ID as the key and remove the data for that key from the Filtered Summary block’s store of
data.

Working with Blocks Created from Scenarios

Developing Apama Applications in Event Modeler 5.2.0 103
? s APAMA

Reference information for provided functions

Chapter 4: Using Functions in Event Modeler

B Reference information for provided fUNCHONS ... 104

B About defining Your OWN fUNCHONSvcvevciiicicccc et 116

In Event Modeler, when you define a rule, you can use a function to specify the value, or part of the
value, of a condition or action. Event Modeler provides a number of functions that you can use. In
addition, you can define your own functions.

To use a function in a rule, select Standard Functions from the context menu when defining a rule.
Event Modeler displays only those functions that are valid for the portion of the rule you are
defining.

Reference information for provided functions

Event Modeler provides a number of functions. Each function is defined in its own function
definition file (. far file) in the catalogs/functions directory of the your Apama installation directory.
A function definition file is an XML file that contains metadata about the function plus the EPL that
implements the function.

The following tables describe the functions provided in Event Modeler. Your Apama Service
Provider might have included additional functions that are not documented here.

®* '"Date and time functions" on page 104
® "[O functions" on page 108

® "System value functions" on page 109
® "Miscellaneous functions" on page 110

Using Functions in Event Modeler

Date and time functions

The following table describes the date and time functions.

Typical use

A typical use of most of these functions is something like the following:

ADD YEAR(GET CURRENT TIME AS NUMBER(), 5)

Developing Apama Applications in Event Modeler 5.2.0 104
? s APAMA

Reference information for provided functions

Table 5. Date and time functions

_AS NUMBER

Function name Return | Parameters Description
value
ADD_DAYS float float dateTime Given a date plus a number of days, returns
the result date in seconds since the epoch.
float nrDays
ADD_HOURS float float dateTime Given a date plus a number of hours,
returns the result date in seconds since the
float nrHours
epoch.
ADD_MINUTES float float dateTime Given a date plus a number of minutes,
returns the result date in seconds since the
float nrMins
epoch.
ADD_MONTHS float float dateTime Given a date plus a number of months,
returns the result date in seconds since the
float nrMonths
epoch.
ADD_WEEKS float float dateTime Given a date plus a number of weeks,
returns the result date in seconds since the
float nrieeks
epoch.
ADD_YEARS float float dateTime Given a date plus a number of years, returns
the result date in seconds since the epoch.
float nrYears
FORMAT TIME string | float Returns the specified time and date in a
TimeInSeconds formatted string. For example:
) FORMAT TIME (GET CURRENT TIME(),
string — - -
"dd-MM-yyyy HH:mm:ss")
TimeFormat
For format options, see "Using the Time
Format plug-in" in Developing Apama
Applicatons in EPL.
GET CURRENT DATE string | none Returns the current date in a formatted
string. For example, "11 June 2007".
GET CURRENT DATE string | none Returns the current date and time in a
_TIME formatted string. For example, "11 gune 2007
11:10:23".
GET CURRENT TIME string | none Returns the current time in a formatted
string. For example, "11:10:25".
GET CURRENT TTME float none Returns the current time as a number of

seconds since the epoch, January 1, 1970.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

105

Reference information for provided functions

Function name Return Parameters Description
value

GET CURRENT TIME string | string Returns the current time and date in a

_FORMATTED TimeFormat formatted string.
For format options, see "Using the Time
Format plug-in" in Developing Apama
Applicatons in EPL.

GET DAY IN WEEK float float dateTime Returns the day of the week for the given
date.

GET DAY TN _YEAR float float dateTime Returns the day in the year for the given
date.

GET MONTH_IN_ YEAR float float dateTime Returns the month in the year for the given
date.

GET WEEK_IN MONTH float float dateTime Returns the week in the month for the given
date.

GET WEEK TN YEAR float float dateTime Returns the week in the year for the given
date.

IS_LEAP_YEAR boolean | float year Returns true if the given year is a leap year.

PARSE_TIME float string TimeDate Returns the specified time and date in a
numeric format. For example:

string
TimeFormat PARSE TIME (GET CURRENT TIME (), "H:m:s")

For format options, see "Using the Time
Format plug-in" in Developing Apama
Applicatons in EPL.

Reference information for provided functions

Extended math functions on float types

The following table describes the extended math functions on f1cat types.

Table 6. Extended math functions on £1oattypes

Function name Return Parameters Description
value
ACOS float float value Returns the inverse cosine of the

value in radians. If the value's
absolute value is greater than 1
then acos () returns nan.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

106

Reference information for provided functions

Function name Return Parameters Description
value

ACOSH float float value Returns the inverse hyperbolic
cosine of the value. If the value's
absolute value is less than 1 then
ACOSH () returns nan.

ASIN float float value Returns the inverse sine of the
value in radians. If the value is nan
then asin() returns the value. If the
value's absolute value is greater
than 1 then asin() returns van.

ASINH float float value Returns the inverse hyperbolic sine
of the value.

ATAN float float value Returns the inverse tangent of the
value.

ATAN2 float float x float y Returns the two-parameter inverse
tangent of the two values.

ATANH float float value Returns the inverse hyperbolic
tangent of the value.

CBRT float float value Returns the cube root of the value.

cos float float value Returns the cosine of the value.
The value should be in units of
radians.

CosH float float value Returns the hyperbolic cosine of
the value.

ERF float float value Returns the error function value
for the given value.

EXPONENT float float value Returns the exponent where
the given value is equal to
mantissa*2eXponent, assuming 0.5 <=
|mantissal < 1.0.

FMOD float float nominator Returns nominator mod denominator
in exact arithmetic.

float denominator
FRACTIONALPART float float value Returns the fractional component

of the value.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

107

Reference information for provided functions

Function name Return Parameters Description
value

GAMMAL float float value Returns the logarithm of the
gamma function.

ILOGB integer float value Returns the binary exponent of the
specified non-zero value.

INTEGRALPART integer float value Returns the integeral part of a
floating pont value.

MANTISSA float float value Returns the mantissa where
the given value is equal to
mantissa*2® P27 assuming 0.5 <=
|[mantissal < 1.0.

NEXTAFTER float float x float y Returns the next machine floating
point number after x in the
direction toward y.

SCALBN float float x integer n Returns x*2n.

SIN float float value Returns the sine of the specified
value, which should be in units of
radians.

SINH float float value Returns the hyperbolic sine of the
value.

TAN float float value Returns the tan of the value, which
should be in units of radians.

TANH float float value Returns the hyperbolic tangent of
the value.

Reference information for provided functions

10 functions

The following table describes the IO functions.

Table 7. 10 functions

Function name Return Parameters Description
value
LOG string string message Logs the specified string to the
correlator log.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

108

Reference information for provided functions

Function name Return Parameters Description
value

string logLevel

PRINT string string message Displays the specified string in the
correlator console.

Reference information for provided functions

System value functions

The following table describes the system value functions.

Table 8. System value functions

Function name Return Parameters Description
value
GET_DASHBOARD string None Returns the instance ID of the current
INSTANCEID Scenario instance for use in dashboards. The

apama.instanceld field contains this value.

GET_INSTANCEID string None Returns the complete instance ID of the
current Scenario instance. For example:

"default.myScenario.l".

GET_ INSTANCE OWNER string None Returns the value of the owner attribute of

the current Scenario instance. This might

be, but is not necessarily, the account Id that
created the Scenario. You can use the Scenario
service API to create Scenario instances and
set the owner attribute to a value you choose.
When you use a dashboard to create Scenario
instances, the owner attribute has the value of
the account you logged into.

GET NUMERIC float None Returns only the number at the end of the
INSTANCEID complete instance Id of the current Scenario
instance. For example, if the complete
instance Id is default .myScenario.l, this
function returns 1.

GET SCENARIO ID string None Returns the unique scenario ID of the current
scenario definition. The correlator uses this
key to create new instances of the scenario.

GET_SCENARIO_ NAME string None Returns the display name of the current
Scenario.

Developing Apama Applications in Event Modeler 5.2.0 109
? s APAMA

Reference information for provided functions

Reference information for provided functions

Miscellaneous functions

The following table describes the miscellaneous functions.

Table 9. Miscellaneous functions

Function name Return Parameters Description
value

ABS number number value Returns the absolute value of the

number supplied.

ADD_ EXTRAPARAM text text payload, This function is deprecated. Use

the pict ser function instead.
textfieldname, -
Takes an existing extraparam value
text 1 .o .
erEvatne and adds the specified field and
value to it.

CEIL number number value Returns the ceiling integer value
(whole of the number passed. This is the
number) smallest possible integer that is

larger than the value supplied.

CONCAT text text prefix, Concatenates two strings and

returns the result as a string.
text suffix

CONCAT text text prefix, Concatenates an enumeration

value to a string, and returns the
choice suffix .
result as a string.
CONCAT text text prefix, Concatenates a number to a
string, and returns a string.
number suffix
CONDITIONAL text condition condition Functions like an 1r statement.

text true result

text false result

The first parameter is the
expression to be evaluated,
similar to a condition in an 1
statement. The second and third
parameters are the values to
return according to the result

of the condition. The second
parameter represents a true
result. The third parameter
represents a false result. See

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA ™

Reference information for provided functions

Function name

Return
value

Parameters

Description

"Example of CONDITIONAL
function" on page 113.

DICT GET

text

text dictAsString

text key

Reads the dictionary specified

by dictasstring and returns

the value of the specified

key. Specify the dictionary in
dictionary<string,string>.toString()
format.

Returns an empty string if the
key is not present or the string
representation of the dictionary is

nn

DICT_ GETORDEFAULT

text

text dictAsString
text key

text default

Reads the dictionary specified

by dictasstring and returns

the value of the specified

key. Specify the dictionary in
dictionary<string,string>.toString()
format.

Returns the specified defau1t
text if the key is not present or
the string representation of the

nn

dictionary is "".

DICT_ HASKEY

boolean

text dictAsString

text key

Reads the dictionary specified

by dictasstring and returns

true if the specified xey

exists in that dictionary.

Specify the dictionary in
dictionary<string, string>.toString/()
format..

DICT SET

text

text dictAsString

text key

text value

Reads the dictionary specified

by dictasstring and adds or
replaces the specified xey/vaiue
pair. Specify the dictionary in
dictionary<string, string>.toString()
format.

An empty string for dictasstring
is treated as an empty dictionary.

Returns a string representation of
the dictionary.

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA "

Reference information for provided functions

Function name Return Parameters Description
value
FLOOR number number value Returns the floor integer value
(whole of the number passed. This is the
number) largest possible integer that is
smaller than the value supplied.
GET EXTRAPARAM text text payload, This function is deprecated. Use
the pict cet function instead.
text fieldname w
Returns the value from extraparam
data of the specified field, else an
empty string.
HAS EXTRAPARAM boolean text payload, This function is deprecated. Use
the pict maskey function instead.
text field - .
e tesaname Returns true lf the extraParam data
has the specified field value.
ISFINITE boolean float value Returns true if value 1S ﬁnite, that
is, it is not infinite or NaN.
ISINFINITE boolean float value Returns true lf value 1S infinite,
that is, it is positive or negative
infinity.
ISNAN boolean float value Returns true if value 1S NaN, that
is, it is not a number.
MAX number number valuel, Returns the largest of two
numbers.
number valuel2
MIN number number valuel, Returns the smallest of two
numbers.
number valueZ2
POW number number value, Returns the value of the first
parameter to the power of the
number exponent
second parameter.
REPLACE text text value, Replaces all string occurrences of
0ld IN value Wlth new.
text old,
text new
RND number number lower bound, Returns a random number

number upper bound

between the specified boundaries.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

112

Reference information for provided functions

Function name

Return
value

Parameters

Description

ROOT

number

number

number

value,

exponent

Returns the value of the first
parameter root of the second
parameter.

ROUND

number

number

number

value,

decimal places

Rounds a float to a given number
of decimal places. You can
specify a negative number for
decimal places tO round in the
opposite direction. See "Example
of ROUND function" on page
113.

TO_BOOLEAN

condition

text value

Converts a string to a Boolean
value, and returns the Boolean
value. This function is case
insensitive.

TO_NUMBER

number

choice

value

Converts an enumeration to a
number, and returns the number.

TO_NUMBER

number

text value

Converts a string to a number,
and returns the number.

TO TEXT

text

condition value

Converts a Boolean value to a
string, and returns the string.

TO TEXT

text

number

value

Converts a number to a string,
and returns the string.

Example of CONDITIONAL function

side = CONDITIONAL

(price is greater than 50,

"BUY", "SELL")

If the price is greater than 50, this function returns "suv". The side Scenario variable is set to suy or

serL according to whether the price variable is greater than 50.

Example of ROUND function

You can specify a negative number to round in the opposite direction. For example:

Value Decimal places Result
12345.6543 4 12345.6543
12345.6543 3 12345.654
12345.6543 2 12345.65
12345.6543 1 12345.7

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

13

Reference information for provided functions

Value Decimal places Result
12345.6543 0 12346.0
12345.6543 -1 12350.0
12345.6543 -2 12300.0
12345.6543 -3 12000.0
12345.6543 -4 10000.0
12345.6543 -5 0.0

Reference information for provided functions

Extended math functions on float types

The following table describes the extended math functions on f1cat types.

Table 10. Extended math functions on £10attypes

Function name

Return
value

Parameters

Description

ACOS

float

float

value

Returns the inverse cosine of the
value in radians. If the value's
absolute value is greater than 1
then acos () returns van.

ACOSH

float

float

value

Returns the inverse hyperbolic
cosine of the value. If the value's
absolute value is less than 1 then
ACOsH () returns nan.

ASIN

float

float

value

Returns the inverse sine of the
value in radians. If the value is ~an
then as1in() returns the value. If the
value's absolute value is greater
than 1 then asin () returns nan.

ASINH

float

float

value

Returns the inverse hyperbolic sine
of the value.

ATAN

float

float

value

Returns the inverse tangent of the
value.

ATANZ2

float

float

x float y

Returns the two-parameter inverse
tangent of the two values.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

114

Reference information for provided functions

Function name Return Parameters Description
value

ATANH float float value Returns the inverse hyperbolic
tangent of the value.

CBRT float float value Returns the cube root of the value.

cos float float value Returns the cosine of the value.
The value should be in units of
radians.

CosH float float value Returns the hyperbolic cosine of
the value.

ERF float float value Returns the error function value
for the given value.

EXPONENT float float value Returns the exponent where
the given value is equal to
mantissa*2® P27 assuming 0.5 <=
|mantissal < 1.0.

FMOD float float nominator Returns nominator mod denominator
in exact arithmetic.

float denominator

FRACTIONALPART float float value Returns the fractional component
of the value.

GAMMAL float float value Returns the logarithm of the
gamma function.

ILOGB integer float value Returns the binary exponent of the
specified non-zero value.

INTEGRALPART integer float value Returns the integeral part of a
floating pont value.

MANTTISSA float float value Returns the mantissa where
the given value is equal to
mantissax2S¥POnent assuming 0.5 <=
|mantissal < 1.0.

NEXTAFTER float float x float y Returns the next machine floating
point number after x in the
direction toward y.

SCALBN float float x integer n Returns x*2n.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

115

About defining your own functions

Function name Return Parameters Description
value

SIN float float value Returns the sine of the specified
value, which should be in units of
radians.

SINH float float value Returns the hyperbolic sine of the
value.

TAN float float value Returns the tan of the value, which
should be in units of radians.

TANH float float value Returns the hyperbolic tangent of
the value.

Reference information for provided functions

About defining your own functions

You define a function in Apama Studio. In the Apama Developer perspective, select File > New

> Scenario Function . Apama Studio prompts you for some metadata and then creates a skeleton
function definition file (. zaf), which is an XML file. The skeleton file indicates where you need to add
data and what kind of data you need to add.

See Using Apama Studio, "Creating new scenario functions" for details about the scenario function
definition file format.

The content of a function definition file must comply with the DTD in the etc/fdaf.dtd file in the
Apama installation directory.

The following topics provide additional information about using functions that you define in Event
Modeler.

® "Sample ABS function definition file" on page 116
® "Sample function definition file with imports element" on page 117

® "About function names" on page 118

Related Topic
"Adding a function catalog" on page 68

Using Functions in Event Modeler

Sample ABS function definition file

Following is the function definition file for the absolute value (azs) function. This function returns the
absolute value of the given parameter. For example, if the input is -123, the ass function returns 123.

Developing Apama Applications in Event Modeler 5.2.0 116
? s APAMA

About defining your own functions

Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE function SYSTEM "http://www.apama.com/dtd/fdf.dtd">
<!--Apama Function Definition File-->
<function name="ABS" display-string="ABS" return-type="float">
<version>
<id>1.0</id>
<date>22 Nov 2004</date>
<author>Matthew Amos</author>
<comments>External function</comments>
</version>
<description>
Return the abs value of the number passed
</description>
<parameters>
<fixed-parameter name="value" type="float" />
</parameters>
<code><! [CDATA[
action #name# (float f) returns float {
return f.abs();
}
11></code>
</function>

Notes
Notes for this function:

® The value of the function name attribute, ABS, is unique within the directory that contains this . fas
file.

®* Appears as ABS in the Event Modeler rules menu.

® Returns a float.

* Metadata indicates who wrote the function and when the function was written.
* Description briefly describes what the function does.

® There is one parameter called value and it is of type fioat.

* Name of the single action is the placeholder #nane#. This is always what you specify as the name
of the function in the code element.

® The EPL in the coara section is standard EPL. You can use locally defined variables in addition to
the function’s parameters. To use a Scenario variable, assign its value to a function parameter.

About defining your own functions

Sample function definition file with imports element

Following is a function definition file that specifies the imports element.

Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE function SYSTEM "http://www.apama.com/dtd/fdf.dtd">
<!--Apama Function Definition File-->
<function name="ExtractTimeField" display-string="ExtractTimeField"
return-type="float">
<version>

Developing Apama Applications in Event Modeler 5.2.0 17
’ s APAMA

About defining your own functions

<id>1.0</id>
<date>17 May 2005</date>
<author>Ben Spiller</author>
<comments>External function</comments>
</version>
<description>
Return the value of a single field from the specified
time string (using the TimeFormatPlugin). Date fields
include 'dd', 'MM' and 'yyyy'. Time fields include 'HH',
'mm' and 'ss'.
</description>
<imports>
<import library="TimeFormatPlugin" alias="timePlugin"/>
</imports>
<parameters>
<fixed-parameter name="time" type="float" />
<fixed-parameter name="field identifier" type="string" />
</parameters>

<code><! [CDATA[
action #name# (float time, string field id) returns float
{
// If the field string is invalid, make it obvious!
if field identifier.length() == 0 then {
return 0.0;

// Should return 0 if the field specifier is invalid
return #timePlugin#.format
(time, "$"+field id).toFloat();
}
11></code>
</function>

Notes
Notes for this function:

® The value of the function name attribute, ExtractTimeField, is unique within the directory that
contains this . rfar file.

®* Appears as ExtractTimeField in the Event Modeler rules menu.
® Returns a float.

* The imports element specifies timer1lugin as the alias for the plug-in, and TineFormatplugin as the
shared library that contains the plug-in.

® The code element specifies timerlugin to refer to required plug-in.
* Takes two parameters — a f1oat that specifies a time, and a string that specifies a field ID.

®* The EPL ensures that the 1o field is valid and then invokes the fornat function by specifying the
alias for the rimerormatpiugin library:

return #timePlugin#.format

About defining your own functions

About function names

Functions have several different names:

Developing Apama Applications in Event Modeler 5.2.0 118
? s APAMA

About defining your own functions

® The file name — this is the name of the file that contains the function definition, for example,
String String Concat.fdf.

®* The logical name — this is the name specified by the function name attribute in the .zart file.
Event Modeler uses the logical name to distinguish each function from every other function in a
particular directory. Within each directory, this value must be unique. For example, ssconcat.

® The display name —this is the name that appears in the Event Modeler Functions tab. For
example, concat. This name also appears in the Rules panel context menu.

The contents of a function definition file contain something like this near the beginning;:

<function name="SSConcat" display-string="Concat"
return-type="string">

In this example, the logical name is ssconcat. The display name is concat.

For example, it is possible to have the following three functions in the same directory:

Filename: String String Concat.fdf String Integer String Integer String
Concat.fdf Concat.fdf

Parameters: String, String String, Integer String, Integer, String

[)iSpl&y’ Concat Concat Concat

name:

[A)gical Concatss ConcatsSI ConcatSSs

name:

Note that these functions have the same display name but different logical names. An exact duplicate
of any of these functions can be in a directory other than the directory that already contains its
duplicate.

When you select functions from the rules editor context menu, Event Modeler displays the
arguments that each function takes. Consequently, if two functions have the same display name, you
can distinguish them by their arguments. For example:

TO_NUMBER (‘choice’ value)

TO_NUMBER (‘text’ wvalue)

About defining your own functions

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA ™

Chapter 5: Using Standard Blocks

I N o) (o Tot 0 T1 =T33 PR 121
B General @nalYtic DIOCKScucuciciiiici et bbbt bbb 122
B THE TIMEE DIOCKSvuieeieiicieiit bbbt 133
B The ULHlItY DIOCKS ..oveiecieicicicis et 137
B Database functionality—storage and retrieVal ... 151
B Blocks for working with SCENArio BIOCKSccciiiiiiiiiiiii e 159

Blocks are ready packaged modules that you can import and use in your scenarios. They can accept
inputs, execute some logic of their own, and generate output. In Event Modeler, in the Catalogs tab,
you can view and select the blocks provided with Apama.

A block is defined in a Block Definition File, or .nat. This XML file describes what the block does and
its implementation in Apama EPL. A block can consist of:

® Parameters — a block can have a number of parameters, which when set configure its behavior.
Parameters differ from input fields, in that the latter are like work packages for the block to
process and are expected to change all the time, while the former are typically only set to
initialize the block and whenever its core behavior needs to be modified. Parameters are typed
in the same way as scenario variables. Parameters are all provided at initialization time and can
then be updated individually.

® Operations — in addition to any standard behavior that is hard-wired into it, a block can
also have a number of explicit operations that can be invoked by the scenario. For example,
typical operations are to start processing some data and to stop. If an operation requires any
configuration information this is usually passed in through a block parameter.

® [nput feeds — an input feed can be hooked up to a live stream of event data, like a price quote
stream. Within it, an input feed will define one or more input fields, which can be mapped to
data in the stream. When event data arrives, the fields” values get updated. These fields are typed
in the same way as scenario variables.

* Qutput feeds — an output feed is a stream of output data that can be generated by the block. Each
output feed corresponds to an event that can be generated by the block, and embeds one or more
output fields. The fields are updated as a result of operations carried out by the block. These
fields are typed in the same way as scenario variables.

When you add a block to a scenario, you are specifying that each instance of that scenario should
create an instance of that block running within the scenario. Whether the block instance then starts
executing some activity immediately or waits for some operation on it to be called depends entirely
on how the block itself is written.

There is no restriction on the number of block instances that you can add to a scenario. It is possible
to add multiple instances of the same block to a scenario. To ensure there is no conflict, each instance
has its own operations, parameters and fields clearly tagged by its unique name.

You can save a scenario as a block, and then use that scenario block in other scenarios. In this way,
you can create composite scenarios. However, you cannot create a block from a scenario that can run

Developing Apama Applications in Event Modeler 5.2.0 120
? s APAMA

A block’s lifecycle

in parallel. Also, you cannot create a block from a non-parallel scenario and then mark that block as
parallel-aware. See "Working with Blocks Created from Scenarios" on page 84.

If there is no standard block that meets your needs you can use Apama Studio's block editor to create
a custom block. You can use the block editor to define the block's parameters, operations, input feeds
and output feeds, or you can use the block editor to create the block from an event definition. See
"Creating Blocks" in Using Apama Studio.

Notes

Only the latest version of each standard block is documented here. Except where noted otherwise,
one earlier version of each standard block is included in Apama. However, use of the latest version
of a standard block is recommended for the following reasons:

* Jtimplements the block as an event type, which is faster than the previous interface.
® [t is parallel-aware. You can use it in a parallel scenario.
* Support for the earlier version will be removed in a future release.

Most standard blocks are automatically available to your scenario from the Catalogs tab. However,
some standard blocks are available only if you add a particular bundle to your project. Where this is
the case, the description of the standard block notes this.

A block’s lifecycle

This section describes a block’s lifecycle

1. You use Apama Studio to define a block. Apama Studio saves it as a Block Definition File (.vads).
This is an XML document, and it contains the interface of the block in XML elements as well as
the EPL that defines the block’s functionality.

The EPL template for a block is the <code> section within the block’s .vdrt file. This contains the
actual implementation of the block, embedding the custom behavior that identifies the block.

2. A scenario is defined within Event Modeler. This scenario is made to import one or more
instances of the block. The scenario is saved to disk in a Scenario Definition File (.sat) which is also
an XML document. This document contains a reference to the location of any imported blocks’
.pat files. It does not embed the blocks themselves.

During this stage, the contents of the <code> section in the .bar are read in and all EPL names
that are tagged with # characters are replaced with unique names that distinguish this particular
block instance from any other that the scenario imports. The modified block EPL is then added
to the scenario’s EPL. Because certain elements of the EPL in the <code> section are renamed, this
section of the code is often termed an EPL template.

3. The scenario and the referenced blocks are converted to an EPL file (.mon), either explicitly with
File > Export > Apama > Export as EPL or implicitly when running the project from Apama Studio.

4. The EPL containing the combined scenario and block code described in Step 3 is injected
into, and parsed by the correlator. Note that if the EPL supplied in the .»as file is invalid, the
correlator will reject the scenario at this stage. However, if the EPL is valid but does not correctly
implement the block’s interface, it will still inject successfully. This situation cannot be detected
until the scenario does not function as expected.

Developing Apama Applications in Event Modeler 5.2.0 121
’ s APAMA

General analytic blocks

5. At this point the EPL for the scenario and its embedded block(s) is now in the correlator. This
means that actual instances of the scenario can be created by end users. Assume that a dashboard
has been created with Dashboard Builder to go with the scenario, and that end users can
therefore interact with the scenario through the Dashboard Viewer. When a user logs into the
scenario’s application and creates an instance (sometimes referred to as a strategy), the correlator
will create a specific working instance of the scenario and of its embedded block(s). Each instance
is unique and distinct. Therefore, if the scenario embedded two blocks (or even two copies of
the same block), and three instances of it are created from a dashboard, there will then be three
instances of the scenario and six block instances.

Therefore, when you add a block to a scenario in Event Modeler, you are effectively specifying that
real instances of that scenario should each create an instance of that block running within them.
Whether the block instance then starts executing some activity immediately or else waits for some
operation on it to be called depends entirely on how the block itself was written.

It is possible to add multiple instances of the same block to a scenario in Event Modeler. Since their
operations, parameters and fields are clearly specified by their enclosing block instance’s name when
invoked from the scenario there is no conflict at runtime. There is no restriction on the number of
block instances that can be added to a scenario.

Using Standard Blocks

General analytic blocks

This section discusses Event Modeler analytic blocks.
®* "Change Notifier v2.0" on page 122

® "Correlation Calculator v2.0" on page 124

® "Data Distribution Calculator v2.0" on page 125

®* "Median and Mode Calculator v1.0" on page 127
® "Moving Average v1.0" on page 128

® "Spread Calculator v3.0" on page 129

® "Statistics Calculator v1.0" on page 130

®* "Velocity Calculator v2.0" on page 132

Using Standard Blocks

Change Notifier v2.0

The Change Notifier block sends out a notification when its input data stream changes by a given
amount over a configurable, moving time window. When a sufficiently large positive or negative
change has occurred, the output feed will indicate this by setting the changed field to true. The output
feed can be configured to automatically reset to its unchanged state a certain time after triggering by
setting the reset period parameter.

Developing Apama Applications in Event Modeler 5.2.0 122
’ s APAMA

General analytic blocks

Parameters

Parameter Description

period The maximum age of any sample that is used in the calculations, in
seconds. Any samples older than this will be discarded before performing
the calculation. Must be greater than zero.

amount The change amount value, zero to ignore. A notification will be sent if the
difference between the oldest value inside the time window and the most
recent sample is greater than this amount. Absolute values are used in the
calculations.

percentage The change percentage value, zero to ignore. Absolute values are used as
for the amount parameter. 100.0 means to look for a doubling of the input
values.

reset period Following the detection of a big enough change, the output feed will be
reset to its un-triggered state after this interval. It is specified in seconds,
and is ignored if less than or equal to zero.

At least one of amount and percentage should be different from 0.0, otherwise no notifications will
occur.

Operations
Operation Description
start Starts checking for changes in the input data feed.
stop Stops checking for changes.
clear Discards all stored values.
reset Resets the changed notification flag.
Input feeds
Feed Field Description
data value Feed of input values
Output feeds
Feed Fields Description
notify percentage change The amount of change measured as a percentage.
amount change The amount of change.

Developing Apama Applications in Event Modeler 5.2.0 123
? s APAMA

General analytic blocks

Feed Fields Description

changed Set true to indicate a sufficiently large change has
occurred. Is reset to false by calling operation reset,
or after the specified reset period.

General analytic blocks

Correlation Calculator v2.0

The Correlation Calculator block calculates the correlation coefficient between two streams of data.
The calculation may be performed over an unlimited set of data from each stream, or a set limited by
number of samples or age of samples. The calculator only generates an output if there is at least one
suitable sample from each stream.

Correlation coefficient

A correlation coefficient approaching +1.0 shows a strong correlation between the streams,

a coefficient close to 0.0 shows little or no correlation between the streams and a coefficient
approaching -1.0 shows an inverse correlation between the streams; for example, if one is increasing,
the other is decreasing.

Parameters
Parameter Description

period The maximum age of any sample that is used in the calculations, in seconds.
Any samples older than this will be discarded before performing the
calculation.

size The maximum number of sample pairs that are used in the calculation. A pair
consists of a sample from one stream, and the most recent sample from the
other stream. The oldest sample is replaced by the newest sample when the
total number of samples has reached this limit.

One or both of the above parameters must be o, in which case that limit is not imposed. It is not
possible to restrict the number of samples by both age and number of samples, but it is possible to
not impose any limit on the number of samples (thus an infinite set of samples is kept). Note that
imposing a limit after input events have been received will clear all existing samples.

Operations
Operation Description
start Starts the calculation of coefficients. Must be called before the calculator will
generate any statistics.
stop Stops the calculation of further coefficients. Any subsequent input feeds are
ignored.

Developing Apama Applications in Event Modeler 5.2.0 124
’ s APAMA

General analytic blocks

Operation Description
clear Discards all current data.
Input feeds
Feed Fields Description
datal value The first input set.
data2 value The second input set.

Note that at least one feed from both sets needs to have been received (and if set, within period
seconds) before an output will be generated.

Output feeds
Feed Fields Description
statistics correlation The correlation coefficient (between -1.0 and +1.0).

samples The number of sample pairs used for this calculation.

General analytic blocks

Data Distribution Calculator v2.0

The Data Distribution Calculator block calculates some common statistics from a set of samples. Like
the correlation block, the set of samples may be unlimited in size, or constrained by a maximum
number of samples or a maximum age of samples. Note that execution of the Median and Mode
Calculator block, Moving Average block or Statistics Calculator block is faster than execution of the
Data Distribution Calculator block. This is because those blocks perform a subset of the processing of
the Data Distribution Calculator block.

Parameters
Parameter Description

period The maximum age of any sample that is used in the calculations, in seconds.
Any samples older than this will be discarded before performing the
calculation.

size The maximum number of samples that are used in the calculation. The oldest
sample is replaced by the newest sample when the total number of samples
has reached this limit.

Developing Apama Applications in Event Modeler 5.2.0 125
? s APAMA

General analytic blocks

One or both of the above parameters must be o, in which case that limit is not imposed. It is not
possible to restrict the number of samples by both age and number of samples, but it is possible to

not impose any limit on the number of samples (thus an infinite set of samples is kept).

Operations
Operation Description
start Starts the calculation of statistics. Must be called before the calculator will
generate any statistics.
stop Stops the calculation of further statistics. Any subsequent input feeds are
ignored.
clear Discards all current data.
Input feeds
Feed Fields Description
data value The feed of values. The time of a value is taken to be the
correlator’s current time.
Output feeds
Feed Fields Description
statistics | value The most recent value received in the input feed.
mean The arithmetic mean of the distribution.
mode The most commonly occurring value, if there is one.

no unique mode

true if there is no single mode.

median

The mid point of the ordered set of data values.

standard deviation

Standard deviation of the data set.

variance

Variance of the distribution.

skew Degree of skewed-ness of the distribution.
kurtosis Kurtosis measure of the distribution.
samples The number of samples used for this calculation.

General analytic blocks

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

126

General analytic blocks

Median and Mode Calculator v1.0

The Median and Mode Calculator block calculates the median and the mode from the input data
stream over a configurable time window and sample set size. This block performs a subset of the
processing performed by the Data Distribution Calculator block. Consequently, execution of this
block is slightly faster than execution of the Data Distribution Calculator block. Like the Correlation
Calculation block, the set of samples may be unlimited in size, or constrained by a maximum number
of samples or a maximum age of samples.

Parameters
Parameter Description

period The maximum age of any sample that is used in the calculations, in seconds.
Any samples older than this will be discarded before performing the
calculation.

size The maximum number of samples that are used in the calculation. The oldest
sample is replaced by the newest sample when the total number of samples
has reached this limit.

One or both of the above parameters must be o, in which case that limit is not imposed. It is not
possible to restrict the number of samples by both age and number of samples, but it is possible to
not impose any limit on the number of samples (thus an infinite set of samples is kept).

Operations
Operation Description
start Starts the calculation of statistics. Must be called before the calculator will
generate any statistics.
stop Stops the calculation of further statistics. Any subsequent input feeds are
ignored.
clear Discards all current data.
Input feeds
Feed Fields Description
data value The feed of values. The time of a value is taken to be the
correlator’s current time.

Developing Apama Applications in Event Modeler 5.2.0 127
’ s APAMA

General analytic blocks

Output feeds
Feed Fields Description
statistics value The most recent value received on the input

feed

mode The most commonly occurring value, if there
is one.

no unique mode true if there is no single mode.

median The mid point of the ordered set of data
values.

samples The number of samples used for this
calculation.

General analytic blocks

Moving Average v1.0

The Moving Average block calculates the moving average from the input data stream over a
configurable time window and sample set size. Like the Correlation Calculation block, the set of
samples may be unlimited in size, or constrained by a maximum number of samples or a maximum
age of samples. The Moving Average block performs a subset of the processing performed by

the Data Distribution Calculator block. Consequently, execution of the Moving Average block is
considerably faster than execution of the Data Distribution Calculator block.

Parameters
Parameter Description

period The maximum age of any sample that is used in the calculations, in seconds.
Any samples older than this will be discarded before performing the
calculation.

size The maximum number of samples that are used in the calculation. The oldest
sample is replaced by the newest sample when the total number of samples
has reached this limit.

One or both of the above parameters must be o, in which case that limit is not imposed. It is not
possible to restrict the number of samples by both age and number of samples, but it is possible to
not impose any limit on the number of samples (thus an infinite set of samples is kept).

Developing Apama Applications in Event Modeler 5.2.0 128
? s APAMA

General analytic blocks

Operations
Operation Description
start Starts the calculation of statistics. Must be called before the calculator will
generate any statistics.
stop Stops the calculation of further statistics. Any subsequent input feeds are
ignored.
clear Discards all current data.
Input feeds
Feed Fields Description
data value The feed of values. The time of a value is taken to be the
correlator’s current time.
Output feeds
Feed Fields Description
statistics value The most recent value received on the input
feed.
mean The arithmetic mean of the distribution.
samples The number of samples used for this
calculation.

General analytic blocks

Spread Calculator v3.0

The Spread Calculator block calculates the difference between the latest data points of two streams.
The output feed also provides the time of the event. This can either be supplied in the input feed or,
if no mapping is provided for the input feed, the correlator’s current time is used. Note that the first
result will not be generated until both input feeds have received an event.

Parameters

There are no parameters for this block.

Developing Apama Applications in Event Modeler 5.2.0 129
? s APAMA

General analytic blocks

Operations
Operation Description
start Starts the calculation of differences. Must be called before any output events
are sent.
stop Stops the calculation of further coefficients. Any subsequent input feeds are
ignored.
clear Discards all current data.
Input feeds
Feed Fields Description
datal value The first feed of values.
time The timestamp of the data point. Leave unmapped (i.e. left as o)
to set the time as the correlator’s current time.
data? value The second feed of values.
time The timestamp of the data point. Leave unmapped (i.e. left as o)
to set the time as the correlator’s current time.
Output feeds
Feed Fields Description
statistics lastl The most recent value sent to the data1 feed.
timel The time of the most recent value sent to the data1 feed.
last2 The most recent value sent to the data2 feed.
time2 The time of the most recent value sent to the data2 feed.
spread Difference between 1ast1 and 1ast2. Will be negative if 1ast2 is
greater than 1ast1.

General analytic blocks

Statistics Calculator v1.0

The Statistics Calculator block calculates running statistics from a set of samples. Like the correlation
block, the set of samples may be unlimited in size, or constrained by a maximum number of samples
or a maximum age of samples. The Statistics Calculator block performs a subset of the processing

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA ™

General analytic blocks

performed by the Data Distribution Calculator block. Consequently, execution of the Statistics
Calculator block is considerably faster than execution of the Data Distribution Calculator block.

Parameters
Parameter Description

period The maximum age of any sample that is used in the calculations, in seconds.
Any samples older than this will be discarded before performing the
calculation.

size The maximum number of samples that are used in the calculation. The oldest
sample is replaced by the newest sample when the total number of samples
has reached this limit.

One or both of the above parameters must be o, in which case that limit is not imposed. It is not
possible to restrict the number of samples by both age and number of samples, but it is possible to
not impose any limit on the number of samples (thus an infinite set of samples is kept).

Operations
Operation Description
start Starts the calculation of statistics. Must be called before the calculator will
generate any statistics.
stop Stops the calculation of further statistics. Any subsequent input feeds are
ignored.
clear Discards all current data.
Input feeds
Feed Fields Description
data value The feed of values. The time of a value is taken to be the
correlator’s current time.
Output feeds
Feed Fields Description
statistics value The most recent value received on the input
feed.
mean The arithmetic mean of the data set.
standard deviation Standard deviation of the data set.
variance Variance of the data set.

Developing Apama Applications in Event Modeler 5.2.0 131
? s APAMA

General analytic blocks

Feed Fields Description
skew Degree of skewed-ness of the data set.
kurtosis Kurtosis measure of the data set.
samples The number of samples used for this
calculation.

General analytic blocks

Velocity Calculator v2.0

Velocity calculates the rate of change (that is, change divided by the time between the changes) of the
last two values of a stream. The time of incoming events is taken to be the correlator’s current time.
Note that the first result will not be generated until two events have been received on the input feed.

Parameters

This block has no parameters.

Operations
Operation Description
start Starts the calculation of velocity. Must be called before any output events are
sent.
stop Stops the calculation of velocity. Any subsequent input feeds are ignored.
clear Discards all current data.
Input feeds
Feed Fields Description
data value The feed of values.
Output feeds
Feed Fields Description
velocity value The difference of the last two values divided by the time

between the last two values. Values are assumed to arrive at no
less than 0.01 seconds apart. Thus, no two events are considered
to have the same timestamp, which would mean the velocity
could not be computed.

Developing Apama Applications in Event Modeler 5.2.0 132
? s APAMA

The Timer blocks

General analytic blocks

The Timer blocks

Apama provides two timer blocks.

® "Schedule v3.0" on page 133

® "Wait v3.0" on page 136
Using Standard Blocks

Schedule v3.0

The Schedule block sends an output feed at a given time in the future. The time is specified by any

combination of weekday, month, year, hour, minute and seconds. Any of the parameters may take a
negative value, which means any value is allowed. Multiple timers may be started in a single block,
each one having a different timer id. This timer id is supplied in the output feed when the timer fires,
so may be used to determine what to do upon the timer firing.

Parameters

Parameter

Description

timer id

A string that distinguishes this timer from other timers in this block. An
empty string is valid.

month The month of the year (1-12) or negative for any month of the year.

day The day of the month (1-31) or negative for any day of the month.

hour The hour of the day (0-23) or negative for any hour of the day.

minute The minutes past the hour (0-59) or negative for any minute.

second The seconds past the minute (0-59) or negative for any second.
Operations

Operation Description

start Starts the specified timer id.

cancel Cancels the specified timer id.

retrieve Retrieve the details of the specified timer id by setting the output feed

accordingly.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

133

The Timer blocks

Input feeds

This block has no input feeds.

Output feeds
Feed Fields Description
timer timer id A string that distinguishes this timer from other timers

in this block. An empty string is valid.

month The month (1-12).

day The day of month (1-31).

hour The hour (0-23).

minute The minute (0-59).

seconds The seconds (0-59).

time up true if time is up, faise otherwise (i.e. on retrieval).

book

num timers

The number of currently active timers known to this
block.

Examples

The following tables list the values for parameters that will trigger at the times described.

Example 1:

Parameter

Value

When triggered

month

day

hour

minute

seconds

Once a month, on the first of every month, at 03:00:00.

Example 2:

Parameter

When triggered

month

day

Every hour, at 15 minutes past the hour.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

134

The Timer blocks

Parameter Value When triggered
hour -1
minute 15
seconds 0

Note that the time and date information is simply a copy of the parameters used when starting the
timer. Any field whose corresponding parameter was given a negative value will have that same
value.

Example 3:

Parameter Value When triggered
month -1 Every second.
day -1
hour -1
minute -1
seconds -1

Example 4:

Parameter Value When triggered
month -1 Every day at noon
day -1
hour 12
minute 0
seconds 0

Example 5:

Parameter Value When triggered
month 5 Once a year, at exactly 16:31:28 on 31st May
day 31
hour 16
minute 31

Developing Apama Applications in Event Modeler 5.2.0 135
? s APAMA

The Timer blocks

Parameter Value When triggered
seconds 28
The Timer blocks

Wait v3.0

The Wait block sends an output feed at a given time in the future. The time is specified by a number
of seconds to wait from the time the start operation is called. A timer may be set to repeat. Multiple
timers may be started in a single block, each one having a different timer id. This timer id is supplied
in the output feed when the timer fires, so may be used to determine what to do when that happens.

Parameters
Parameter Description
timer id A string to identify this timer from others in used in this block (an empty
string is valid).
time The number of seconds to wait.
repeat true if the timer should repeat, fa1se if a single-shot.
Operations
Operation Description
start Starts the specified timer id.
cancel Cancels the specified timer id.
retrieve Retrieve the details of the specified timer id by setting the output feed
accordingly.
reset Resets the output feed. Useful for repeating timers to set the output feed’s time
up field to false.
Input feeds

This block has no input feeds.

Output feeds
Feed Fields Description
timer timer id The id of the timer, as supplied by the timer id
parameter.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

The Utility blocks

Feed Fields Description
time The time to wait in seconds.
repeat true if the timer repeats.
time up true if time is up, faise otherwise (i.e. on retrieval).
book num timers The total number of timers known to this block.
The Timer blocks

The Utility blocks

Apama provides a number of utility blocks.
®* "Dictionary v2.0" on page 137

® '"File Reader v2.0" on page 138

® "File Writer v2.0" on page 140

& "History Logger v2.0" on page 141

® "Input Merger v2.0" on page 143

® "List v2.0" on page 144

® "Scenario Terminator v2.0" on page 145
® "Status v2.0" on page 146

® "Variable Mapper v2.0" on page 150
Using Standard Blocks

Dictionary v2.0

As scenarios do not support a dictionary type, the Dictionary block addresses this potential
requirement by providing an associative map of (string) keys and values. It provides facilities for
adding, accessing, removing, as well as iterating across, elements within this map.

Parameters
Parameter Description
key Holds the key for a add / get operation.
value Holds the value for a adda / get operation.

Developing Apama Applications in Event Modeler 5.2.0 137
? s APAMA

The Utility blocks

Operations
Operation Description
add Adds the name-value pair stored in key and value to the dictionary. If the key
already exists, the value will be overwritten with the new value.
get Retrieves the value for the key stored in the xey parameter and causes a result
to be sent out on the output stream.
clear Empties the dictionary.
remove Removes the entry with the key stored in the key parameter from the
dictionary - fails silently if key does not exist (removed key and value will be
sent out on the result output feed).
next For iterating through the dictionary - forces the next result to be output.
reset Resets the iterator to the first entry in the dictionary.
Input feeds

This block has no input feeds.

Output feeds
Feed Field Description
result key The key for the entry.
value The value of the entry.
found true if the key was found in the dictionary, faise
otherwise.
size Number of entries in the dictionary.
The Utility blocks

File Reader v2.0

The File Reader lets a scenario read a line at a time from a specified file using the File adapter with
the smultirilerransport transport layer and the snuiicodec codec plug-in.

For details about using the File adapter, see Developing Adapters, "Apama file adapter”.

The same File Reader block can read from multiple files.

Developing Apama Applications in Event Modeler 5.2.0

«"APAMA *

The Utility blocks

Parameters
Parameter Description

Transport Name The name of the instance of the sMultiFileTransport to use. This must
match a transport instance name specified in the IAF configuration file.

File Name The name of the file to read.

Lines In Header The number of lines to skip at the beginning of the file.

File Channel The name of the channel to output file events to. The various file events
are defined in the rileEvents.mon file, and the definitions are in the
com.apama.file package. You can find rileEvents.mon in the adapters/
monitors directory of your Apama installation directory.

Operations
Operation Description
Open File Opens a file according to the current values of the rransport wame, rile
Name, Lines In Header and File Channel parameters
Close File Closes a file according to the current values of the rransport Name, File
Name and File channel parameters.
Read Line Reads a line from the file. Uses the current values of the Transport
Name, File Name and File Channel parameters.
Get File Status Explicit call to update the status output feed. Uses the current values
of the Transport Name, File Name and File Channel parameters.
Input feeds

This block has no input feeds.

Output feeds
Feed Field Description

line file name The name of the file associated with the current line.

file transport The name of the transport associated with the current
line.

line String that contains the current read line.

error file name The name of the file that returned the error.
file transport The name of the transport that returned the error.

Developing Apama Applications in Event Modeler 5.2.0 139
? s APAMA

The Utility blocks

Feed Field Description
message The error message returned.
status file name The name of the file associated with the status update.

file transport

The name of the transport associated with the status
update.

more available

A flag that indicates whether there are currently more
lines to read from the file.

file currently open A flag that indicates whether or not the file is currently

open.

The Utility blocks

File Writer v2.0

The File Writer block lets a scenario write a line at a time to a specified file using the File adapter

with the smultiFilerransport transport plug-in and the mulicodec codec plug-in. A single File Writer
block can write to multiple files.

Parameters

Parameter

Description

Transport Name

The name of the instance of the sMultiFileTransport to use. This
must match an instance name specified in the IAF configuration
file.

File Name

The name of the file to write.

Append A flag indicating whether to append to the end of a file, or
whether to replace the contents of the existing file.
Line The line to be written to the file identified by the rile name

parameter.

File Channel

The name of the channel to output file events to. The various file
events are defined in the rileEvents.mon file and they are defined
in the com.apama. file package. You can find the rileEvents.mon
file in the adapters/monitors directory of your Apama installation
directory.

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

140

The Utility blocks

Operations
Operation Description
Open File Opens a file according to the current values of the rransport wame,

File Name, Append and File Channel parameters.

Close File

Closes a file according to the current values of the rransport Name,
File Name and File channel parameters.

Write Line

Writes a line to the file identified by the current values of the
Transport Name, File Name, Line and File Channel parameters.

Get File Status

Explicit call to update the status output feed. Uses the current
values of the Transport Name, File Name and File channel parameters.

Input feeds

This block has no input feeds

Output feeds

Feed

Field

Description

error

file name

The name of the file that returned the error.

file transport

The name of the transport that returned the error.

message

The error message returned.

status file name The name of the file associated with the status update.
file transport The name of the transport associated with the status
update.
file currently open A flag that indicates whether the file is currently open.
The Utility blocks

History Logger v2.0

The History Logger block maintains an ordered and (optionally) time-stamped history of text
messages. This is normally used in conjunction with multi-line entries in dashboards, such as history
lists, where a fixed size list is used to contain a rolling window of constantly changing information.

Developing Apama Applications in Event Modeler 5.2.0 141
’ s APAMA

The Utility blocks

Parameters
Parameter Description
entry An entry to be added to the history.
timestamps Index for an add, clear Or retrieve Operation.

most recent first

Set to true to order the history so that the most recent element is
first, fa1se for least recent first.

max size

Maximum number of entries to retain - set to o to retain all entries.

delimiter

String to separate history entries when output by the block. If not
specified, the default is "\n" (linefeed).

time format

String format to display time-stamps, if required. A default format
is used if this is not set.

Operations
Operation Description
add Adds the content of entry to the history - an output update will automatically
be produced.
clear Clears the history.
retrieve Causes the latest history to be output from the block as a single, delimiter-
separated string.
Input feeds

This block has no input feeds.

Output feeds
Feed Field Description
history size Number of entries in the history.
text Text representation of the history, where each entry is
optionally time-stamped and separated by the delimiter
string.
The Utility blocks

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

142

The Utility blocks

Input Merger v2.0

The Input Merger block collects a number of related field values and outputs them simultaneously.

Description

The input event is a field name/value pair. If the name in a pair matches one of the names in the order
parameter, the corresponding value is stored for output. When all of the names in order have been
matched at least once, the set of stored values is output. Note that multiple matches (and stores) can
occur for any name. In this case, the latest store overwrites the value of the previous store, ensuring
that each field has the latest value.

If the incremental update parameter is set, then further outputs are generated on any input that
matches a field in the order parameter. If the incremental update parameter is not set, then further
outputs are only sent once all fields have been received again (that is, the old input values are
discarded). The id field increments with each output event, in either mode.

Parameters
Parameter Description
order A comma-separated list of up to 8 field names to match against
names on the input stream. The order in which the names are listed
is the order in which they appear on the output. Note that fields
may not contain commas, but they may be repeated or be an empty
string.
incremental input If true, a change to a single field listed in the order parameter
results in an output being generated once all input fields have been
received at least once — that is, the first output is still generated
only when all fields have been received.
Operations
Operation Description
start Activate merger.
stop Deactivate merger.
Input feeds
Feed Field Description
in name Field name

value Field value

Developing Apama Applications in Event Modeler 5.2.0 143
? s APAMA

The Utility blocks

Output feeds

The out feed specifies the selected individual values from the input feed, in the order they are listed

by the order parameter.

Feed

Field

Description

out

id

Increments each time an output event occurs, even if none of the
other fields has changed from the previous output event.

Field 1

Field 2

Field 3

Field 4

Field 5

Field 6

Field 7

8

Field 8

The Utility blocks

List v2.0

As scenarios do not support a sequence type, the List block addresses this potential requirement by

providing a dynamically-sized sequence of string items. It provides facilities for adding, inserting,

accessing, removing, as well as iterating across, elements within this sequence.

Parameters
Parameter Description
item Holds an item for an add Or nextIndex Operation.
index Index for an add, get Or remove Operation.
Operations
Operation Description
add Adds the value currently held in iten to the end of the list.

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

144

The Utility blocks

Operation Description
insert Adds the value held in iten to the list at the position held in index.
get Retrieves the item stored at the position held in ingex.
clear Empties the list.
remove Removes the item at the position stored in the index parameter.
next For iterating through the list - forces the next result to be output.
reset Resets the iterator to the first entry in the list.
nextIndex For iterating through the list - move the iteration position to the next instance
of item stored in the item parameter and outputs the results.
Input feeds

This block has no input feeds.

Output feeds
Feed Field Description
result item Holds the item for a retrieval operation.
index Holds the index of a retrieved item.
found true if an item was found in the list, ra1se otherwise.
size Number of entries in the list.
The Utility blocks

Scenario Terminator v2.0

The Scenario Terminator block is unusual in that it does not directly interact with the scenario
through any feeds, parameters or operations. The Scenario Terminator block simply listens for
special events that can be sent to the correlator, and terminates the scenario if requested to.

Description

The Scenario Terminator block depends on the scenariobeletersupport.mon file, which is supplied
in the monitors folder. This EPL file must be injected before a scenario containing the Scenario

Terminator block can be injected.

Unlike other blocks, there is no value in including the block more than once, though doing so is not

an error.

Developing Apama Applications in Event Modeler 5.2.0 145
? s APAMA

The Utility blocks

This block has no parameters, no operations, no input feeds, and no output feeds.

The Scenario Terminator block listens for the following events:

com.apama.scenarios.DeleteAllScenarios ()
com.apama.scenarios.DeleteScenariosByUser (string owner)

The first deletes all scenarios with a Scenario Terminator block. The second deletes all scenarios for
the given dashboard username that have a Scenario Terminator block. For example, to delete all
scenarios for the user roguetrader, do the following;:

com.apama.scenarios.DeleteScenariosByUser ("roguetrader")

The Utility blocks

Status v2.0

The Status block obtains the status of an object managed by a service monitor. For example, you can
use the Status block to obtain the status of a market, a connection, or some other component. The
objects for which you can obtain status and the meaning of various parameters depend on the service
monitor providing the status.

Usage notes

You use the Status block with the com. apama.statusreport F events, which are defined in
statusSupport.mon in the monitors directory of your Apama installation directory. There are four
com.apama.statusreport event typ€SZ

® supbscribestatus events — the Status block sends a subscribestatus event to a service monitor to
initiate receipt of status events from that service. A subscribestatus event identifies the ID of the
service you want to receive status from, the object you want status for, the sub-service ID, if there
is one, to receive status from, and the connection to use if there is a choice.

In a subscribestatus event, when the service ID is an empty string, the Status block is initiating a
status subscription with each service monitor that is listening for subscrivestatus events that have
an empty string for the service ID. In this case, you should expect to receive status events from
more than one service.

® Unsubscribestatus — the Status block sends an unsubscribestatus event to a service monitor to
terminate receiving status from that service. An unsubscribestatus event identifies the same
information as a subscribestatus event.

®* status — a subscribed service sends a status event to the Status block to provide the status
information. A service sends a status event as the result of a new subscription and whenever
there is a change in status. In addition to identifying the service that the information is from
and the object that the information is for, the status event contains a string that contains a status
description, a sequence that contains one or more key words, a Boolean indication of whether the
object is in a state in which it can be used, and a dictionary that contains any other information
that the service can provide.

® SstatusError — a subscribed service sends a statuszrror event to the Status block when it cannot
provide status information. In addition to identifying the service that the event is from and the
object that the event pertains to, the statuserror event contains a free-form string that describes
the problem, and a Boolean indication of whether the status subscription was terminated.

Developing Apama Applications in Event Modeler 5.2.0 146
? s APAMA

The Utility blocks

The Status block uses these events to interface with any service monitor that supports the

com.apama.statusreport interface. In other words, these events form the message exchange protocol
(MEP) between the Status block in your Apama application and service monitors. For example, a

service monitor might be the part of your adapter that makes the features of the adapter available to

your Apama application.

Parameters

Parameter

Description

servicelID

String that identifies the service monitor that you want to
subscribe to for status information. Leave blank (empty string) to
subscribe to all service monitors that are currently listening for
com.apama.statusreport.SubscribeStatus nnessages.

object

String that identifies the object that you want status for. The
service monitor defines the values that you can specify here. For
example, a service monitor might provide status for connection or
Market.

subServicelID

For service monitors that provide sub-services, this string
identifies the sub-service that you want to subscribe to for status
information. If the service monitor has no sub-services, leave this
parameter blank.

connection

For service monitors that provide status for several instances of
the specified object, this string identifies the instance for which
you want to obtain status information. If the service monitor
provides status for only one instance, leave this parameter blank.
For example, an adapter might connect to multiple sources of
data. You would use this parameter to specify the data connection
you are interested in. The service monitor must define the
allowable values for the connection parameter.

extract key 1 extract

key 2 extract key 3

These three parameters make it convenient to obtain particular
values from the extracted parametern output fields in the Status
block output feed.

Each parameter is a string that specifies a key whose value you
want to obtain in the status received from the service monitor. For
example, when you set the extract key 1 parameter to the value
of a key defined in the service monitor, the status output feed
contains the specified key’s value in its extracted parameter 1 field.

These fields make it easier to access particular elements in the
extra parameters field of the output feed. You do not need to parse
the payload string in the extra parameters field yourself.

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

147

The Utility blocks

Operations

Operation

Description

start

Initiates subscription to the service monitor identified by the servicern
parameter, for information about the component identified by the object
parameter. If the specified service monitor has sub-services or provides
information about more than one object instance, the subscription is for the
sub-service and connection identified by the values that the subservicern and
connection Status block parameters have when the start operation is called.

If the value of the service1p parameter is an empty string, the start
operation initiates a subscription to each service monitor that is listening for
subscribestatus events that have an empty string in their sexrvicern field.

Under the covers, the Status block routes a supscribestatus event to the
correlator. This event takes its values from the current values of the Status
block parameters.

After a service monitor receives a subscribestatus event, it starts sending status
events to the subscribing scenario.

stop

Terminates the subscription to the service monitor identified by the servicern
parameter. If the value of the service1p parameter is an empty string, the stop
operation terminates the subscription to each service monitor that is listening
for unsubscribestatus events that have an empty string in their servicern field.

Under the covers, the Status block routes an unsubscribestatus event to the
correlator. This event takes its values from the current values of the Status
block parameters.

If a scenario terminates without invoking the stop operation for a subscription,
the block routes the appropriate unsubscribestatus events upon termination of
the scenario.

Input feeds

This block has no input feeds.

Output feeds
Feed Field Description
Status serviceID String that identifies the service monitor that is

providing the status.

object String that identifies the object that the status is for.

subServiceID String that identifies the sub-service that is providing the
status. This is blank if the service has no sub-services.

connection String that identifies the object instance that status is
being provided for.

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

148

The Utility blocks

Feed

Field

Description

description

String that contains human-readable text that describes
the status.

summaries

One word or a series of space-separated words that
describe the status. For example, Connected, Disconnected,
LoginFailed. The service monitor defines and documents
the words that can appear in the sumnaries field. While
the dgescription field is for a human reader, the summaries
field contains key words that a scenario can act on. For
example, suppose summaries contains pisconnected. The
scenario can define a rule that specifies what to do when
this service is disconnected.

available

Boolean value that indicates whether the object is in a
state where it can be used. For example, if you specify
Market as the object, a value of true in the availavie field
might mean that the market is open and accepting
orders.

extra parameters

Payload-format string that contains any other
information that the service monitor provides for the
object.

extracted parameter
1

extracted parameter

2

extracted parameter
3

Each of these parameters is a string that contains the
value of one of the key/value pairs that is in the extra
parameters output field. The particular key value that
the field contains is determined by the value that the
corresponding extract key 1 block parameter had when
the block’s start operation was invoked.

For example, suppose that the extract xey 1 parameter
has a value of tine. The block then invokes the start
operation to subscribe to a particular service monitor.
When the block receives status information from that
monitor, the block inserts the value of time, for example,
"12:34:56" into the extracted parameter 1 field and then
sends the information to its status output feed.

received status

Boolean value that indicates whether a status event has
been received from the specified service monitor.

Initially, this field is fa1se. When the block receives a
status event, it sets this field to true. When the block
unsubscribes from the specified service monitor or when
the block receives a statuserror event, the block sets the
received status field to false.

A value of true means that the information in the status
output feed is from the latest status event and no error
has since been signaled by the service monitor. In other

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

149

The Utility blocks

Feed

Field

Description

words, you can trust the information in the status output
feed.

fault

Boolean value that indicates whether there was an error
obtaining status information for the specified object.
When the service monitor sends a statuskError event, the
block sets this field to true. You should consider any
information from this service monitor to be stale.

total

Integer that indicates the number of objects for which all
of the following are true:

- The block is receiving status information for the object.

- The block has not received a statuserror event from the
service monitor since the block received the previous
Status event.

- The object is in a state in which it can be used. That is,
the value of the available output field is true.

This field makes it convenient to track when a
subscription is no longer providing status information.
For example, if a Status block has 4 subscriptions but
total = 3, then the scenario can take some action such as
restoring the subscription, or not using stale data.

The Utility blocks

Variable Mapper v2.0

The Variable Mapper block lets you use a scenario variable as a data source for any other block. The
Variable Mapper block takes the name of a scenario variable as the value of its only input parameter.
When the value of the mapped variable changes, the Variable Mapper block sends the new value to
its output feed. The output feed includes two values. The first value is the new value as a number.
The second value is the new value as text. You can choose which representation you need to wire
into another block.

Parameters
Parameter Description
variable Name of the scenario variable whose value you want to output.
Operations
None.

Developing Apama Applications in Event Modeler 5.2.0 150
? s APAMA

Database functionality—storage and retrieval

Input feeds
This block has no input feeds.

Output feeds
Feed Field Description
variable nurber New value of the scenario variable as a number type.
updates
text New value of the scenario variable as a text type.
The Utility blocks

Database functionality—storage and retrieval

The Database blocks let you store rows in a database and send queries to the database to retrieve

a set of rows. They take parameters that let you specify a database name, a table name, a user name
and password, and a service identifier. Note that any password given in the scenario or through the
dashboard will be visible on screen.

The ADBC Storage block takes a list of fie1ds and a list of vaiues as parameters. The block places the
values into their corresponding entry into the list of fields. Alternatively, the storage block takes a
storage query or statement.

The ADBC Retrieval block takes a query string as a parameter. If you specify a query template, there
is a parameter for specifying the query template parameters.

The format for a complete query string is service specific, typically SQL or an SQL-like language.
When you specify a complete query, the block ignores the parameters that list fields, values, or a
where clause.

The retrieval block return a number of outputs, one for each field/value pair for each row that
matched the query. The scenario needs to call the next operation to retrieve the next field/value
pair. The row number indicates when a field/value pair belongs to a different row. The row number
counts from 1 upwards.

The Database blocks are:

* "ADBC Storage v1.0" on page 151
® "ADBC Retrieval v1.0" on page 154
Using Standard Blocks

ADBC Storage v1.0

The ADBC (Apama Database Connector) Storage block uses the ADBC adapter to store data in a
database. To make this block available to your scenario, add the ADBC for JDBC or ADBC for ODBC
bundle to your project. Adding one of these bundles to your project automatically adds the ADBC
Common bundle, which contains the ADBC blocks.

Developing Apama Applications in Event Modeler 5.2.0 151
? s APAMA

Database functionality—storage and retrieval

Description

The ADBC adapter is a standard adapter provided with Apama. It provides general database
storage and retrieval (query) and also event capture and playback. The ADBC adapter supports
both standard SQL and specialized databases. In particular, the adapter supports ODBC and JDBC.
This support provides access to most commercial and open source SQL databases. ADBC provides a
superset of the functionality that was available in the ODBC and JDBC Apama standard adapters.

The Storage block can also be used to perform standard SQL operations such as Delete, Update,
and Rollback. To carry out an SQL operation, the value of the statement parameter (described below)
should be set to the operation you want to carry out.

Parameters
Parameter Description
service identifier The name of the service to use.
database The data source name of the database to connect to.
user name The username to use when connecting to the database.
password The password to use when connecting to the database (will be
readable on screen).
table The name of the table to store data in.
fields A comma-separated list of field names.
values A comma-separated list of values that will be placed in the fields
list.
statement If this is not empty, the correlator uses this as the storage
command instead of using the fie1ds and values parameters. This
parameter can be set to an SQL operation such as vepatg, pELETE, OF
ROLLBACK.
autocommit The auto commit mode to use. The default is an empty string.
Specify one of the following:
® orr indicates no auto commit mode.
® psc indicates the ADBC adapter auto commit mode based on a
time period.
* oata source indicates a data source specific auto commit mode.
This might not be available for all data sources.
acknowledge store Boolean that indicates whether the data source returns an
acknowledgement to indicate success or failure for each store
performed. True indicates that the data source always sends
an acknowledgement. False indicates that the data source
returns only store errors. The default is true. The success

Developing Apama Applications in Event Modeler 5.2.0 152
? s APAMA

Database functionality—storage and retrieval

Parameter Description
acknowledgement along with the current auto commit setting
determine whether the data has been stored. A commit operation
might also be needed.
unique connection Boolean that indicates whether or not to create a new database

connection. True indicates that you want the block to always create
a new connection. False indicates that the block can use an existing
connection. The default is false.

final store

If true indicates this will be the last store operation performed.
Default value is faise.If true the output feed field committed.final
store complete Will be set to true after the store operation
completes (success or failure).

Operations
Operation Description
connect Establish a connection to the database.
store Store in the database the data held in the block’s parameters.
commit Commit any data sent to the database.
rollback Rollback uncommitted changes to the database.
reset Resets the output feed.
disconnect Close the database connection.
Input feeds

This block has no input feeds.

Output feeds
Feed Fields Description
result success true if the last update to the database was
successful.
message A message from the last database update operation.
connected true if connected to the database.
committed status true if the last commit operation succeeds, else false.
final store complete true When the store operation with the final store
parameter set to true has completed.

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

153

Database functionality—storage and retrieval

Feed Fields Description

rollback status true if the last rollback operation succeeded;
otherwise raise.

Database functionality —storage and retrieval

ADBC Retrieval v1.0

The ADBC (Apama Database Connector) Retrieval block uses the ADBC adapter to retrieve data
from a database. The ADBC adapter is a standard adapter provided with Apama. To make this
block available to your scenario, add the ADBC for JDBC or ADBC for ODBC bundle to your project.
Adding one of these bundles to your project automatically adds the ADBC Common bundle, which
contains the ADBC blocks.

Description

The ADBC adapter is a standard adapter provided with Apama. It provides general database
storage and retrieval (query) and also event capture and playback. The ADBC adapter supports
both standard SQL and specialized databases. In particular, the adapter supports ODBC and JDBC.
This support provides access to most commercial and open source SQL databases. ADBC provides a
superset of the functionality that was available in the ODBC and JDBC Apama standard adapters.

The ADBC Retrieval block supports prepared queries, stored procedures, and query templates. For
more information see:

® '"Prepared queries" on page 157
®* "Stored procedures" on page 158

® "Query templates" on page 158

Parameters
Parameter Description
service The name of the service to use, or blank for any service.
identifier
database The data source name of the database to connect to.
user name The username to use when connecting to the database.
password The password to use when connecting to the database (will be readable on
screen).
table name The name of the table to retrieve data from.
query string The data source specific query statement to be used. If you specify a query
template name, be sure to set the query parameters parameter as needed for
the template.

Developing Apama Applications in Event Modeler 5.2.0 154
? s APAMA

Database functionality—storage and retrieval

Parameter Description
query If you specify a query template in the query string parameter, specify the
parameters parameters for the query template here. This is a comma separated list of

name:value pairs, for example, TABLE NAME:Trade, SORT_ORDER:asc.

input types

The input types of the parameters in the query template that is specified
in the query. These are listed in a comma separated list of types, such as
Double, Double, Float.

output types

The output types of the parameters in the query template that is specified
in the query. These are listed in a comma separated list of types, such as
Double, Double, Float.

prepared query

named id

A string that uniquely identifies this prepared query.

prepared query

params

The parameters to a prepared query in the form of a comma separated list
of values.

batch size

Number of rows to be buffered in the block. The default is 50. The
maximum is 10,000.

disable Boolean that indicates whether the results are streamed automatically as

buffering they are received. True indicates that they are. When set, the next rewind
and reset operations have no effect since they are not needed. For use when
wiring the ADBC Retrieval block’s output to another block. The default is
false.

unique Boolean that indicates whether or not to create a new database connection.

connection True indicates that you want the block to always create a new connection.
False indicates that the block can use an existing connection. The default is
false.

Operations
Operation Description

connect Establish a connection to the database.

query Perform the query operation.

reset Reset the output feed.

next Look up the next field/value pair.

rewind Rewind to the first result in the current buffered batch, without performing

the operation again.
stop Stop the query, even if not complete.

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

155

Database functionality—storage and retrieval

Operation Description
disconnect Close the database connection.
create Create a prepared query for use later, passing in the correct input types.
prepared
query

run prepared

Run a previously created prepared query, passing in the relevant input

query parameters.
delete Delete an existing prepared query.
prepared
query
retrieve Retrieve a full list of named queries available, including the query template
query name, parameters and description.
templates
Input feeds

This block has no input feeds.

Output feeds
Feed Fields Description
schema names The f1e1d names Of the results.
types The Apama types of the fields.
indexable The names of the fields that are
indexes.
results number The row number of the field/
value pair. A number of -1
indicates the end of data.
field The name of the field the value
was taken from.
value The value of the field.
error message A message that describes the
error if the store operation was
unsuccessful.
status no more true if the current query has

been completed and no more
field/value pairs are available
after the current pair.

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

156

Database functionality—storage and retrieval

Feed Fields Description

more available true if there is more data
available to be read within
the current batch and faise

otherwise.
connected true if connected to the
database.
prepared query created True if the query is successfully

created; false otherwise.

deleted rrue if the query is successfully
deleted; false otherwise.

query templates retrieved false until the last query

template is retrieved, at which
point becomes true.

query name The identifying query name.

query parameters The list of parameters that the
query requires.

query description A brief description of the
purpose of the query.

Note that it is possible for no more to be false and more available to be false; this means that the service
is waiting for more results to become available, but they have not been supplied by the database yet.
The scenario should wait until more available becomes true before calling next. As with the order
manager iteration, the scenario will need to re-enter the state it is in while iterating, in order to re-
evaluate all of the rules in that state.

Prepared queries

Creating prepared queries

1.

The query string parameter should be set with the prepared query string, such as szrect * rrom
tablename WHERE intfield < ?

The input types of the input parameters in the prepared query being created. This is a comma-
separated list of types, for example pouble, Double, Float, etc.

The output types of the parameters in the prepared query being created should be set to a
comma-separated list of types, for example pouble, Dpouble, rloat if calling on a stored procedure.

In the block's prepared query named id parameter specify a unique identifier in the form of a user
readable name (string) for this prepared query. Multiple prepared queries can exist in the block
at any one time, so the identifier allows you to specify which query you want to use.

Call the create prepared query operation.

Developing Apama Applications in Event Modeler 5.2.0 157
? s APAMA

Database functionality—storage and retrieval

In the prepared query output feed, the created field will contain true if the query was successfully
created.

Using prepared queries

1. Inthe block's prepared query named id specify the identifier of the prepared query you want to
execute.

2. Inthe prepared query params parameter, list the values which should match, in types and number,
those of the input types.

3. C(Call the run prepared query operation.

4. From this point on, the no more and more availavle fields and the next and stop operations behave
in the same manner as they do for normal queries.

Deleting prepared queries

1. To delete a prepared query, set the prepared query named id parameter to the identifier of the
prepared query you want to delete.

2. Call the gelete prepared query operation.
In the prepared query output feed, the deleted field will contain true if the query was successfully
deleted.

Stored procedures

Stored procedures must be created and deleted externally to the retrieval block, as in the case when
creating a table in the database.

1. Once the stored procedure exists in the database you can create a prepared query, as in "Prepared
queries" on page 157, above. The syntax for using a stored procedure in a query string is in the
forrn {call demo_stored-procedure(?,?)}.

2. Specify the input types and output types parameters. Use nurs in the list of types for padding
purposes. For example, given a pouble (input only), nouble (both input and output), and rioat
(output only), for the input types parameter specify pouble, Dounle, nurt and for the output types
parameter specify nuLL, Double, Float.

3. Set an identifier in the prepared query named id parameter with this prepared query for future use.
4. Call the create prepared query operation.

In the prepared query output feed, the created field will contain true if the query was successfully
created.

5. Using the prepared query associated with the stored procedure is the same as described in
"Prepared queries" on page 157, above.

Query templates

Retrieving query templates

You can retrieve the list of query templates that are associated with the project, by calling the retrieve
query templates operation. In the query templates output feed, the query name, query paramters, and query
description fields show each query template's name, parameters, and description, respectively. The
retrieved field is true when all query templates have been retrieved.

Running query templates

Developing Apama Applications in Event Modeler 5.2.0 158
? s APAMA

Blocks for working with scenario blocks

1. Set the block's query string parameter to the name of the query template you want to run, such as

findEarliest.

2. Intheblock's query parameters parameter specify the query parameters required by the query
template, for example, TABLE NAME:tableName, TIME_COLUMN NAME:timefield.

3. Call the query operation to execute the query template, in the same way as for normal queries.

Database functionality —storage and retrieval

Blocks for working with scenario blocks

Apama provides two blocks for working with scenario blocks.
® "Change Observer v2.0" on page 159

® 'Filtered Summary v2.0" on page 161

Using Standard Blocks

Change Observer v2.0

The Change Observer block watches sub-scenarios for changes in the value of one of the sub-scenario
variables. You specify which variable you want to watch. When the value changes, the Change
Observer block sends data to its change output feed. The output feed indicates the old value and the
new value.

Description

To use the Change Observer block, wire output fields from the scenario block to input fields of the
Change Observer block. Typically, you want to map the scenario block instance id output field to the
Change Observer strean input field. Then map one of the sub-scenario variables from the scenario
block ocutput feed to the Change Observer watchvalue input field. When the Change Observer block
detects a change in a variable value, it sends notification of this change to its output feed.

Typically, you use the sub-scenario instance ID as the key. The key’s associated value is the variable
whose value you want to watch.

You can specify a filter so that you obtain results from a particular set of sub-scenarios.

You can also remove keys and their associated values from the Change Observer block’s internal data
store. This lets you exclude certain data from calculations. One way to do this is to define a global
rule that watches for sub-scenarios to terminate. When a sub-scenario terminates, you can specify its
instance ID as the key and remove the data for that key from the Change Observer block’s store of
data.

For a detailed example of using the Change Observer block, see "Observing changes in sub-
scenarios" on page 100.

Developing Apama Applications in Event Modeler 5.2.0 159
? s APAMA

Blocks for working with scenario blocks

Parameters

Parameter

Description

filter

String that indicates that you want to observe those key/value pairs for
which the input fiiter field matches this field. An empty string as the
value of either the fi1ter parameter or the input filter field indicates
that there is no filtering. If the value of the filter is "not equal to"
parameter is true, and you specify a value for the fiiter parameter, the
Change Observer block observes key/value pairs for which the input
filter field does NOT match the value of the fi1ter parameter.

keyToDelete

String that indicates a key for which you want to delete data from the
Change Observer block’s internal store of data. Invoke the delctexey
operation to delete the data associated with this key.

filter is "not Boolean that indicates whether you want to match or not match the
equal to" value of the fiiter parameter. When the filter is "not equal to"
parameter is true, the Change Observer block observes key/value
pairs for which the input filter field does NOT match the value of the
filter parameter.
Operations
Operation Description
reset The Change Observer block stores data about the number of unique
keys it has observed and their most recent associated values. This
operation flushes that data; it is no longer accessible to the Change
Observer block.
deleteKey Deletes the key defined by the keyropelete parameter. This operation
deletes data from the Change Observer block’s internal store of data.
If the value of the xeyTobelete parameter is an empty string, this
operation does nothing.
Input feed
The Change Observer input input feed provides the key, the value, and possibly a filter.
Feed Fields Description
input stream String that contains the key for which you want the
Change Observer block to observe changes. Typically,
the key is the instance ID of a sub-scenario. The
Change Observer block ignores blank keys, that is, a
key that is an empty string.
watchValue String that contains the field you want to watch.
Typically, this is the value of a sub-scenario variable.

Developing Apama Applications in Event Modeler 5.2.0

s- APAMA

160

Blocks for working with scenario blocks

Feed Fields Description

filter String that contains a filter for determining the key/
value pairs you are interested in.

Output feed

The Change Observer change output feed indicates the key, its old value, and its new value.

Feed Fields Description

change stream String that contains the key that this change is for.
Typically, this is the instance ID of a sub-scenario.

oldvalue String that contains the value of the variable being
observed just before the value changed.

newvalue String that contains the new value of the variable
being observed.

Blocks for working with scenario blocks

Filtered Summary v2.0

The Filtered Summary block performs simple calculations across a set of sub-scenarios. This is an
alternative to iterating over a set of sub-scenarios. The Filtered Summary block can operate on only
floating point values.

Description

In more general terms, the Filtered Summary block performs calculations on a keyed set of floating
point values. Typically, you use the sub-scenario instance ID as the key. The key’s associated value is
the value of a sub-scenario floating point variable that you want to use in an aggregate calculation.

You can specify filters to perform calculations on a sub-group of sub-scenarios. You can also remove
keys and their associated values from the Filtered Summary block’s internal data store. This lets

you exclude data from certain sub-scenarios from the calculations. One way to do this is to define

a global rule that watches for sub-scenarios to terminate. When a sub-scenario terminates, you can
specify its instance ID as the key and remove the data for that key from the Filtered Summary block’s
store of data.

To use the Filtered Summary block, wire output fields from the scenario block to input fields of the
Filtered Summary block. Typically, you want to map the scenario block instance ia output field

to the Filtered Summary xey input field. Then map a floating point sub-scenario variable from the
scenario block cutput feed to the Filtered Summary vaiue input field.

Developing Apama Applications in Event Modeler 5.2.0 161
? s APAMA

Blocks for working with scenario blocks

Parameters
Parameter Description
filter String that indicates that you want to perform calculations on only those
key/value pairs for which the input fiiter field matches this field. An
empty string as the value of either the filter parameter or the input
filter field indicates that there is no filtering. If the value of the filter is
"not equal to" parameter is true, and you specify a value for the filter
parameter, the Filtered Summary block operates on key/value pairs for
which the input filter field does NOT match the value of the filter
parameter.
keyToDelete String that indicates a key for which you want to delete data from the
Filtered Summary block’s internal store of data. Invoke the deletekey
operation to delete the data associated with this key.
filter is "not Boolean that indicates whether you want to match or not match the value
equal to" of the filter parameter. When the filter is "not equal to" parameter is
true, the Filtered Summary block operates on key/value pairs for which
the input filter field does NOT match the value of the fiiter parameter.
Operations
Operation Description
reset The Filtered Summary block stores data about the number of unique
keys it has observed and their most recent associated values. This
operation flushes that data; it is no longer accessible to the Filtered
Summary block.
deleteKey Deletes the key defined by the keyropelete parameter. This operation
deletes data from the Filtered Summary block’s internal store of
data. If the value of the keyropelete parameter is an empty string, this
operation does nothing.
Input feed

The input input feed provides the key, the value, and possibly a filter.

Feed Fields Description

input key String that contains the key under which you want the
Filtered Summary block to store data in its internal
data store. Typically, the key is the instance ID of a
sub-scenario. The Filtered Summary block ignores
blank keys, that is, a key that is an empty string

value A f1oat value that you want to operate on. Typically,
this is the value of a sub-scenario variable.

Developing Apama Applications in Event Modeler 5.2.0 162
? s APAMA

Blocks for working with scenario blocks

Feed Fields Description
filter String that contains a filter for determining the key/
value pairs you are interested in.
Output feed

The data output feed indicates the number of keys for which data is stored, the sum of the stored

values, and the average of the stored values.

Feed Fields Description
data numberOfKeys Integer that specifies the number of unique keys for
which the Filtered Summary block currently stores
data.
totalValue Floating point value that is the sum of the values that
the Filtered Summary block currently stores.
averagevalue Floating point value that is the average of the values

that the Filtered Summary block currently stores.

Blocks for working with scenario blocks

Developing Apama Applications in Event Modeler 5.2.0
| s APAMA

163

	Table of Contents
	Preface
	About this documentation
	How this book is organized
	Documentation roadmap
	Contacting customer support

	Chapter 1: Overview of Using Event Modeler
	Event Modeler layout
	About event flow states
	How rules define scenario behavior
	Description of rule conditions
	Description of rule actions
	Description of functions in rules
	About rule evaluation

	Basic view of rule processing
	Expanded view of rule processing
	Scenario monitoring stage
	Summary of adding rules when a variable value changes

	About scenario variables
	Variable types
	Auto-typing of variables
	Variable properties
	Variable constraints
	User input and output

	About blocks
	Linking variables, block parameters, and block output fields

	Chapter 2: Using Event Modeler
	Adding scenarios to projects
	Creating the GlobalRuleExample project
	Adding GlobalRuleExample.sdf to the GlobalRuleExample project
	Adding a new scenario to the GlobalRuleExample project

	Opening and viewing multiple scenarios
	Selecting from the Scenario menu
	The Event Modeler toolbar
	Interacting with the tabs and panels
	Working in the Event Flow panel
	Interacting with states
	Selecting a state
	Resizing a state
	Moving a state
	Multiple selection
	Adding a state
	The finished status
	Deleting a state
	Labeling a state
	Using cut/copy/paste with states

	Interacting with transitions
	Adding a transition
	Selecting a transition
	Changing end-points
	Changing the shape of a transition
	Labeling a transition
	Deleting a transition
	Using cut/copy/paste with transitions
	Displaying global rule transitions

	Working in the Rules panel
	Adding a rule
	About global rules
	Selecting rules and rule elements
	Re-ordering rules
	Deleting a rule
	Labeling a rule
	Changing a rule’s description
	Minimizing and maximizing a rule
	Cutting, copying, and pasting rules
	Activating and deactivating rules
	Specifying conditions
	Interactive editing
	Language elements

	Selecting and replacing elements
	Cascading alternative menus
	Using functions in rules
	Adding a condition to a rule
	Specifying variable changes in conditions
	Local rules and variable changes
	Global rules and variable changes

	Specifying actions
	Adding action statements
	Deleting action statements
	Interactive editing

	Using the keyboard to edit rules

	Using the Variables tab
	Adding a variable
	Renaming a variable
	Selecting a variable
	Determining which states use a particular variable
	Moving a variable
	Deleting a variable
	Changing a variable’s properties
	Setting a variable’s value
	Variable input and output
	Linking a variable to a block output field
	Conversion rules for variable types

	Using the Catalogs tab
	Adding a block template catalog
	Selecting and inspecting a block template
	Adding a block instance to the scenario

	Using the Functions tab
	Adding a function catalog
	Selecting and inspecting a function

	Using the Blocks tab
	Interacting with a block instance
	Selecting a parameter
	Viewing a parameter’s properties
	Setting a parameter’s initial value
	Linking a parameter with a variable or output field

	Switching blocks
	Using the Block Wiring tab
	Wiring block input feeds
	Selecting, resizing, and moving block instances
	Wiring two blocks together
	Connecting feeds and specifying feed mapping
	Wiring a scenario variable to a block
	Mapping type conversions
	Editing block wiring
	Deleting a wiring
	Deleting a block instance
	Using older versions of blocks

	Troubleshooting invalid scenarios
	Setting preferences
	Exporting scenarios as EPL
	Exporting scenarios as block templates
	Event Modeler command line options

	Chapter 3: Working with Blocks Created from Scenarios
	Terminology for using scenario blocks
	Benefits of scenario blocks
	Steps for using scenario blocks
	Background for using scenario blocks
	Saving scenarios as block templates
	Incrementing scenario block version numbers
	Adding a scenario block to a main scenario
	Examining a scenario block’s source scenario
	Descriptions of scenario block parameters
	Descriptions of scenario block operations
	Descriptions of scenario block feeds
	Setting parameters before creating sub-scenarios
	Creating sub-scenarios
	Deleting sub-scenarios
	Unconditionally deleting a sub-scenario
	Deleting all sub-scenarios

	Modifying sub-scenario input variable values
	Iterating through sub-scenarios
	Obtaining variable values from sub-scenarios
	Linking sub-scenarios with other blocks
	Inheriting sub-scenarios
	Description of inheritExternalInstances values
	Notes for setting the inheritExternalInstances parameter
	Example of inheriting sub-scenarios

	Observing changes in sub-scenarios
	Performing simple calculations across sub-scenarios

	Chapter 4: Using Functions in Event Modeler
	Reference information for provided functions
	Date and time functions
	Extended math functions on float types
	IO functions
	System value functions
	Miscellaneous functions
	Extended math functions on float types

	About defining your own functions
	Sample ABS function definition file
	Sample function definition file with imports element
	About function names

	Chapter 5: Using Standard Blocks
	A block’s lifecycle
	General analytic blocks
	Change Notifier v2.0
	Correlation Calculator v2.0
	Data Distribution Calculator v2.0
	Median and Mode Calculator v1.0
	Moving Average v1.0
	Spread Calculator v3.0
	Statistics Calculator v1.0
	Velocity Calculator v2.0

	The Timer blocks
	Schedule v3.0
	Wait v3.0

	The Utility blocks
	Dictionary v2.0
	File Reader v2.0
	File Writer v2.0
	History Logger v2.0
	Input Merger v2.0
	List v2.0
	Scenario Terminator v2.0
	Status v2.0
	Variable Mapper v2.0

	Database functionality—storage and retrieval
	ADBC Storage v1.0
	ADBC Retrieval v1.0

	Blocks for working with scenario blocks
	Change Observer v2.0
	Filtered Summary v2.0

