

Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its Subsidiaries
and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Apama EPL Streams

A Short Tour

January 2014

Apama EPL Streams: A Quick Tour January 2014

2 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Table of contents

Introduction 3

The Apama event stream processing model 4

Example events 4

Processing events using streams 5

CREATING A STREAM NETWORK 6

USING INLINE ‘STREAM SOURCE TEMPLATE’ EXPRESSIONS 8

USING COMPOUND QUERIES 8

USING DYNAMIC VALUES IN STREAM QUERIES 9

USING STREAM VARIABLES 11

USING THE SHORT-FORM FROM STATEMENT 12

STREAM LIFETIME 12

USING WINDOWS 15

USING JOINS 16

USING PARTITIONS AND GROUPS 17

USING RSTREAM 19

Common Patterns 19

AGGREGATION 19

THROTTLING 20

DYNAMIC FILTERS 20

JOINING THE MOST RECENT EVENT ON EACH OF TWO STREAMS 21

RETAINING THE MOST RECENT ITEM IN EACH PARTITION OF A PARTITIONED STREAM 22

JOINING AN EVENT WITH A PREVIOUS EVENT 22

Further reading 23

Apama EPL Streams: A Quick Tour January 2014

3 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Introduction

Apama EPL allows code authors to express event-driven programs using natural

event-processing constructs. An EPL program consists of a set of interacting

monitors that receive, process and emit events. Monitor instances are self-

contained, communicating with other monitor instances via events. An Apama

application can thus be viewed as a dynamic network of interacting monitor

instances communicating via events. Why dynamic? Because the application

creates and destroys monitor instances in response to the external events

received; similarly, the monitor instances dynamically subscribe and unsubscribe

to particular event patterns or complex event expressions as needed. Thus, at

any given instant, the application has only the monitor instances it needs and is

only listening for the events of interest at that time. This novel approach makes

Apama a highly efficient and responsive tool for complex event processing.

Complex event processing systems come in different flavors, one of which is

event stream processing. The event stream processing approach is similar to the

Apama approach, but tends to involve networks that are much less dynamic.

These networks are constructed from streams and processing nodes, where a

processing node is typically a query, defined using declarative, relational

language elements.

Event stream processing is useful in cases where one or more flows of raw

events are to be converted into a set of 'refined' flows of added-value events.

For these operations, the use of event stream processing language elements

allows these operations to be expressed more clearly and concisely than when

using procedural language constructs. For this reason, Apama EPL includes event

stream processing elements.

The event stream processing constructs in EPL maintain the Apama ethos of

operational responsiveness. Thus you will find that Apama stream queries are

not static and that they are closely integrated with the rest of the EPL language.

Application developers can write code to add and remove stream queries as

required, and the streams language elements allow the values controlling the

stream query behavior to be varied dynamically.

Apama EPL Streams: A Quick Tour January 2014

4 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

The Apama event stream processing model

The Apama event stream processing model consists of a network of streams and

processing nodes; a processing node whose logic is expressed in terms of a

relational query expression is a stream query.

The diagram below shows an example of a stream processing network.

The network consists of five streams1 and three stream queries. Each stream

query has one or more input streams, from which it receives events, and one

output stream, to which it transmits events.

In Apama, each event stream has a single generator but can have multiple

consumers. Each stream or stream query is created within and owned by an

Apama monitor instance. The streams and stream queries within a monitor

instance are used to convert the events received by the monitor instance into

added-value events. These added-value events are then available for use by

standard EPL actions.

Example events

Most of the examples in this tutorial use the following events

event Temperature {

 string sensorId;

 float temperature;

}

event Pressure {

 string sensorId;

 float pressure;

}

event TemperatureAndPressure {

 string sensorId;

 float temperature;

 float pressure;

}

1 In Apama, the term 'stream' is used to refer both to the channel through which the events flow and also to the events flowing through the channel. Some
members of the CEP fraternity use the term event channel to refer to the former and event stream to refer to the latter. In Apama, the term channel is already in
use and so stream is used to refer to the 'event channels' connecting stream queries.

Average

Average

Combine

Temperature
readings

Pressure
readings

Average
Temperature

Average
Pressure

Combined average
temperature and pressure

readings

FIGURE 1: STREAM PROCESS ING NETWORK

Apama EPL Streams: A Quick Tour January 2014

5 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Processing events using streams

To receive events directly into a listener action, an on statement is used – for

example:

01. Temperature t;

02. on all Temperature(sensorId="S001"):t { print t.toString(); }

If, instead, the events are to be received into a stream, a stream assignment

statement is used:

01. stream<Temperature> temperatures := all Temperature(sensorId="S001");

This statement declares the stream variable temperatures, which is used to

refer to a stream of Temperature events. On the right side of the assignment,

the 'all Temperature(sensorId="S001")' expression is a stream source

template. A stream source template is an event template preceded by the all

keyword; it uses no other event operators. It creates a stream that contains

events that are received by the monitor instance and that match the event

template.

01. Temperature temperature;

02. stream<Temperature> temperatures := all Temperature(sensorId="S001");

03. from t in temperatures retain 3

04. select Temperature("S001", mean(t.temperature)) : temperature {

05. print temperature.toString();

06. }

Let's look in detail at the from statement. A from statement is similar to an on

statement in form. It consists of three parts:

(a) a stream query

 from t in temperatures retain 3 select Temperature("S001", mean(t.temperature))

(b) followed by a co-assignment

 : temperature

(c) followed by a listener action

 { print temperature.toString(); }

C1

C2

C3

C4

Apama EPL Streams: A Quick Tour January 2014

6 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

In this example, the stream query processes events from the temperatures

stream and computes the average temperature value of the three most recent

events. A new output event is created for each new input event, having the

literal value "S001" for the sensorId field and the evaluated average

temperature value for the temperature field. Each output event, in turn, is co-

assigned to the variable temperature and this is used in the print statement,

within the listener action.

The average temperature value is calculated using the built-in2 mean()

aggregate function.

Below, we give a 'whirlwind tour' of the streams language elements.

CREATING A STREAM NETWORK

The code example below implements the simple stream network illustrated in

Figure 1. The code illustrates that stream queries can be used (a) in from

statements and also (b) on the right side of a stream assignment.

Executing a stream assignment statement does two things. It creates, within the

stream network, the defined query. It then updates the stream variable (on the

LHS of the assignment) to refer to the query's output stream.

Up to now we have referred to streams as 'event streams'. In Apama, the type of

a stream need not be an event; it is possible to create streams of simple types

such as decimal, float, integer, boolean, string.3

01. TemperatureAndPressure tp;

02. stream<Temperature> temperatures := all Temperature(sensorId="T001");

03. stream<Pressure> pressures := all Pressure(sensorId="P001");

04. stream<float> meanTs := from t in temperatures retain 3 select mean(t.temperature);

05. stream<float> meanPs := from p in pressures retain 3 select mean(p.pressure);

06. from t in meanTs retain 1 from p in meanPs retain 1

07. select TemperatureAndPressure("S001",t,p) : tp {

08. print tp.toString();

09. }

Line 6 of the code example shows one method for joining two streams. The

stream query contains two from clauses, where each from clause specifies that

the most recent item in the stream is retained. A query with two from clauses

identifies that a cross-join operation should be performed between the two

source item sets. In the code example, when a new item is available on the

meanPs stream, it is joined with the most recent item on the meanTs stream,

and when a new item is available on the meanTs stream, it is joined with the

most recent item on the meanPs stream.

2 Apama provides a number of commonly used aggregates as predefined ‘built-in’ aggregates. It is also possible to create user-define ‘custom’ aggregates.
3 It is for this reason that, in the ‘Developing Apama Applications in EPL’ manual, and in other documentation, we refer to the contents of streams as ‘items’, not as
‘events’.

C5

Apama EPL Streams: A Quick Tour January 2014

7 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Apama EPL Streams: A Quick Tour January 2014

8 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

USING INLINE ‘STREAM SOURCE TEMPLATE’ EXPRESSIONS

The code example above can be re-written in a more concise format by writing

the stream source template expressions inline, as illustrated below.

01. TemperatureAndPressure tp;

02. stream<float> meanTs :=

03. from t in all Temperature(sensorId="T001") retain 3 select mean(t.temperature);

05. stream<float> meanPs :=

06. from p in all Pressure(sensorId="P001") retain 3 select mean(p.pressure);

07. from t in meanTs retain 1 from p in meanPs retain 1

08. select TemperatureAndPressure("S001",t,p) : tp {

09. print tp.toString();

10. }

USING COMPOUND QUERIES

The complete stream network for this example can be expressed as a single

compound query.

01. TemperatureAndPressure tp;

02. from t in

03. from t in all Temperature(sensorId="T001") retain 3 select mean(t.temperature)

04. retain 1

05. from p in

06. from p in all Pressure(sensorId="P001") retain 3 select mean(p.pressure)

07. retain 1

08 select TemperatureAndPressure("S001",t,p) : tp {

09. print tp.toString();

10. }

Note that the item identifiers, t and p, in the from clauses for the inner

queries use the same names as those in the outer queries. This does not cause

any ambiguity because the scope of the item identifier in the inner query is

restricted to the inner query, and within the inner query hides the name used in

the outer query. Hence, the item identifier, t, in the inner query refers to

Temperature events from the stream all

Temperature(sensorId="T001"), whereas the item identifier, t, in the

outer query refers to the float items produced by the inner query. Using the

same identifier is a matter of style; different identifiers could be used if

preferred (for example, avgT and t).

C6

C7

Apama EPL Streams: A Quick Tour January 2014

9 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

USING DYNAMIC VALUES IN STREAM QUERIES

One of the great features of Apama stream queries is that the values used in the

stream query expression can be dynamically changed throughout the lifetime of

the query. This is useful (for example) for setting dynamic thresholds or for

changing the aggregation period of a query. The code examples below illustrate

these cases.

01. TemperatureAlert alert;

02. from t in all Temperature(sensorId="T001") where t.temperature > threshold

03. select TemperatureAlert(t.sensorId,t.temperature): alert { emit alert; }

01. TemperatureRange range;

02. from t in all Temperature(sensorId="T001") within period every period

03. select TemperatureRange(t.sensorId,min(t.temperature),max(t.temperature)): range {

04. print range.toString();

05. }

In the code examples above, if the variables threshold and period are local

variables4 , then the value used by the queries are the values of the local

variables has when the from statement is executed.5 Even if the local variable

is assigned a new value at some later point in the program execution, the values

used by the queries will be constant throughout the lifetime of the query.

However, if global variables6 or event member variables7 are used and, at a

later time, the values of these variables are changed, then these value changes

will affect the behavior of the stream queries. The full code examples for the

dynamic use-cases are given below.

01. event Temperature { string sensorId; float temperature; }

02. event TemperatureAlert { string sensorId; float temperature; }

03. event ChangeThreshold { float temperature; }

01. monitor TemperatureAlertMonitor {

02. float threshold := 60.0; // a global variable is used

03. action onload() {

04. TemperatureAlert alert;

05. from t in all Temperature(sensorId="T001") where t.temperature > threshold

06. select TemperatureAlert(t.sensorId,t.temperature): alert { emit alert; }

07. ChangeThreshold ct;

08. on all ChangeThreshold():ct { threshold := ct.temperature; }

09. }

10. }

4 A local variable is defined within the body of an action.
5 This is exactly the same mechanism as is used when creating event listeners (that is, when using on statements).
6 When the stream query is defined within a monitor action.
7 When the stream query is defined within an event action.

C8

C9

Apama EPL Streams: A Quick Tour January 2014

10 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

C10

Apama EPL Streams: A Quick Tour January 2014

11 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

01. event Temperature { string sensorId; float temperature; }

02. event TemperatureRange { string sensorId; float minTemperature; float maxTemperature; }

03. event ChangePeriod { float period; }

01. using com.apama.aggregates.max; using com.apama.aggregates.min;

02. event TemperatureRangeService {

03. float period; // an event member variable is used

04. action init(string id, float _period) {

05. period := _period;

06. TemperatureRange range;

07. from t in all Temperature(sensorId=id) within period every period

08. select TemperatureRange(id,min(t.temperature),max(t.temperature)): range {

09. print range.toString();

10. }

11. }

12. action setPeriod(float _period) { period := _period; }

13. }

14. monitor UsesTemperatureRangeService {

15. action onload() {

16. TemperatureRangeService trs := new TemperatureRangeService;

17. trs.init("S001",60.0);

18. ChangePeriod cp;

19. on all ChangePeriod ():cp { trs.setPeriod(cp.period); }

20. }

21. }

USING STREAM VARIABLES

Because streams are values in EPL, we can pass stream references between the

code elements within a monitor. This is useful when writing services. A common

service (that is, a service used by two or more monitors) is normally

implemented using a 'service event'. This event contains the logic to implement

the service or to access an external service. A stream can be used as part of the

interface to the service: the stream and stream query specification is

encapsulated within the service event code and a reference to the stream

created by this code is returned, from the service action to the client monitor

code, as the return value of an action call. This is illustrated in the following

code example.

01. event Temperature { string sensorId; float temperature; }

02. event TemperatureRange { string sensorId; float minTemperature; float maxTemperature; }

01. using com.apama.aggregates.max; using com.apama.aggregates.min;

02. event TemperatureRangeService {

03. float period;

04. action init(string id, float _period) returns stream<TemperatureRange> {

05. period := _period;

06. return

07. from t in all Temperature(sensorId=id) within period every period

08. select TemperatureRange(id,min(t.temperature),max(t.temperature));

09. }

10. }

11. monitor UsesTemperatureRangeService {

12. action onload() {

13. TemperatureRangeService service := new TemperatureRangeService;

14. stream<TemperatureRange> ranges := service.init("S001",60.0);

15. TemperatureRange range;

16. from r in ranges select r : range { print range.toString(); }

17. }

C11

Apama EPL Streams: A Quick Tour January 2014

12 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

18. }

USING THE SHORT-FORM FROM STATEMENT

In example C12 on line 16 of the code, the query used is very simple. It merely

selects the current item in the stream and co-assigns it to the variable range.

This is a common use-case and the EPL language provides an alternate, short-

form version that can be used instead, as illustrated below.

16. from ranges: range { print range.toString(); }

To further simplify the code in example C12, note that, instead of declaring a

ranges stream variable, we can place the expression for the stream (that is,

"service.init("S001",60.0)") directly in-line, in the from statement:

16. from service.init("S001",60.0): range { print range.toString(); }

Hence, the monitor code in example C12 can be rewritten as

12. monitor UsesTemperatureRangeService {

13. action onload() {

14. TemperatureRangeService service := new TemperatureRangeService;

15. TemperatureRange range;

16. from service.init("S001",60.0): range { print range.toString(); }

17. }

18. }

STREAM LIFETIME

When considering the lifecycle of a stream, firstly we reflect on how they are

created. A from statement is similar to an on statement, in that both create

stream listeners. When creating the stream listener, a listener variable can be

assigned to refer to the stream listener. The listener variable can then be used

(at a later time) to quit the stream listener.8

When creating a stream query and assigning it to a stream variable, the stream

variable can be used (at a later time) to quit the stream query.

Once created, a stream (and the stream query supplying it) remains in existence

until any of the following occur:

(a) it is quit,

8 Nb. This is identical to an EPL on statement, where a listener variable can be used to quit a standard event listener.

C12

C13

C14

C15

Apama EPL Streams: A Quick Tour January 2014

13 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

(b) all of its downstream connections are removed,

(c) the removal of an upstream stream means that the stream (stream

query) can generate no more output.

The above statements sound rather complicated but are quite straightforward.

Consider the following code example:

01. event Temperature { string sensorId; float temperature; }

02. event Quit { string what; }

01. using com.apama.aggregates.mean;

02. monitor StreamLifetimes {

03. action onload() {

04. float temperature;

05. stream<Temperature> temperatures := all Temperature(sensorId="S001");

06. stream<float> meanTs := from t in temperatures within 60.0

07. select mean(t.temperature);

08. listener freezing := from t in meanTs where t < 0.0 select t: temperature {

09. print "It's freezing! The temperature is " + temperature.toString();

10. }

11. listener boiling := from t in meanTs where t > 100.0 select t: temperature {

12. print "It's boiling! The temperature is " + temperature.toString();

13. }

14. on Quit("temperatures") { temperatures.quit(); }

15. on Quit("meanTs") { meanTs.quit(); }

16. on Quit("freezing") { freezing.quit(); }

17. on Quit("boiling") { boiling.quit(); }

18. }

19. }

In this example, the stream network consists of two streams (declared on lines 5

and 6-7) and two stream listeners (declared on lines 8-10 and 11-13). The

stream variables temperatures and meanTs refer to the two streams, and the

listener variables freezing and boiling refer to the two stream listeners.

Let's take a look at what happens when quit() is called on each of the listener

and stream variables:

> If freezing.quit() is called, then only the stream listener referred to by
freezing becomes inactive. Similarly, if boiling.quit() is called,

then only the stream listener referred to by boiling becomes inactive.

> If meanTs.quit() is called, then all of the streams, stream queries and
stream listeners will become inactive. This is because the meanTs query is
the only downstream connection for the temperatures stream, and once
meanTs is quit, the two stream listeners for freezing and boiling can
no longer produce any output.

> Finally, if temperatures.quit() is called, then there would be no
further input to the stream query for meanTs. However, items in the
window of the stream query may remain 'within the window' for up to 60.0
seconds after the temperatures stream is quit. Hence the meanTs
stream query, and any queries/listeners downstream of it, will remain active
until all items in the meanTs stream query window have 'expired'.

C16

Apama EPL Streams: A Quick Tour January 2014

14 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Apama EPL Streams: A Quick Tour January 2014

15 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

USING WINDOWS

Various examples in earlier sections have used window operators. Within a

stream query, when a window operator is applied to a stream, it causes some of

the past items in the stream to be retained. These are the items upon which the

relational query operations are performed. For example, the query

from t in all Temperature(sensorId="T001") retain 10 select mean(t.temperature)

will calculate, for sensor "T001", the mean temperature value from the set of

the most recent 10 temperature readings from that sensor, and the query

from t in all Temperature(sensorId="T001") within 60.0 select mean(t.temperature)

will calculate, for sensor "T001", the mean temperature value from the set of

all temperature readings for that sensor within the last 60.0 seconds.

The table below gives a guide to the window operators and their combinations:

retain all Retains all of the items input to the stream since its creation9.

retain number Retains (up to) the number most recent items input to the stream

within duration
Retains all items input to the stream within the last duration

seconds.

within duration

retain number

Retains (up to) the number most recent items input to the stream

within the last duration seconds.

retain number

with unique key

Retains (up to) the n most recent items input to the stream. A new

item with a given key value will displace an existing item with the

same key value.

within duration

with unique key

Retains items input to the stream within the last duration seconds.

A new item with a given key value will displace an existing item with

the same key value.

If no window operator is applied to a stream then the set of items on which the

relational query operations are performed is the set of items that is current for

the stream. Using a stream without applying any window operations to it can be

useful when used within a join query.

9 Note. The implementation achieves this behavior without actually retaining all of the items.

C17

C18

Apama EPL Streams: A Quick Tour January 2014

16 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

USING JOINS

There are two types of joins that can be used within a stream query: cross-joins

and equijoins.

A cross-join of two sets combines every item from one set with each item from

the other set. A cross-join is performed by using two, top-level from clauses in a

query. We have already seen an example of this:

01. TemperatureAndPressure tp;

02. stream<Temperature> temperatures := all Temperature(sensorId="T001");

03. stream<Pressure> pressures := all Pressure(sensorId="P001");

04. stream<float> meanTs := from t in temperature retain 3 select mean(t.temperature);

05. stream<float> meanPs := from p in pressure retain 3 select mean(p.pressure);

06. from t in meanTs retain 1

07. from p in meanPs retain 1

08. select TemperatureAndPressure("S001",t,p) : tp {

09. print tp.toString();

10. }

An equi-join is performed by following the initial from clause with a join clause.

An equi-join of two sets combines items in the two sets where a specified key

value of the item in the first set matches a specified key value of the item in

the second set. Separate key value expressions for each source item identify the

key values to be compared.

01. TemperatureAndPressure tp;

02. from t in all Temperature() partition by t.sensorId retain 1

03. join p in all Pressure() partition by p.sensorId retain 1

04 on sensorNumber(t.sensorId) equals sensorNumber(p.sensorId)

05. select TemperatureAndPressure(combinedId(t.sensorId), t.temperature, p.pressure) : tp {

06. print tp.toString();

07. }

When considering performance, cross-joins will in general be less efficient than

equijoins. It is advised that cross-joins only be used where the number of items

in the stream windows is small (as in code example C19).

Note that joins can be performed between a stream10 and a window. For

example:

01. TemperatureAndPressure tp;

02. stream<Temperature> temperatures := all Temperature(sensorId="T001"); 1

03. stream<Pressure> pressures := all Pressure(sensorId="P001");

04 from t in temperatures from p in pressures retain 1

05. select TemperatureAndPressure ("S001",t.temperature,p.pressure) : tp {

06. print tp.toString();

07. }

10 That is, where no window operators are applied to the stream, in the query.

C19

C20

Apama EPL Streams: A Quick Tour January 2014

17 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

This join will produce an output item whenever there is a new Temperature

event for the sensor but not when there is a new Pressure event. The

temperature and pressure events arrive at different times; when the

temperature event arrives, because of the retain 1 in the right side from

clause, there is a pressure event available for joining with; but, because there is

no window operation in the left side from clause, when a pressure event

arrives, there is no temperature event to join with.

USING PARTITIONS AND GROUPS

Code example C20 used the partition by clause. The partition by clause

splits a stream into partitions, based on a key value. When a window operator is

applied to a partitioned stream, the behavior is as if a separate window

operator had been applied to each partition. We often refer to the result of

using partition by followed by a window operator as a partitioned window;

queries with partitioned windows are used to retain a set of items for each

partition, as illustrated in the earlier code example, C20. In this example

01. Temperature temperature;

02. from t in all Temperature() partition by t.sensorId retain 3

03. group by t.sensorId select Temperature(t.sensorId, mean(t.temperature)):

04. temperature {

05. print temperature.toString();

06. }

The combined partition by and retain clauses cause the last three values

for each sensor to be retained. By contrast, the group by clause's effect is to

alter the behavior of the projection (the item generated by the select clause)

such that aggregate values are generated for each group in the collection and

not for the collection as a whole. For example, when a new Temperature

event occurs for sensor "S001", the event will be directed to the partition for

that sensor. It will cause the window contents for that partition to change,

which, in turn, will affect the collection of events over which the aggregate

projection is being performed; because a group by clause is present, a new

projected value will be produced only for the group(s) affected by the update

(in this case, the group for sensorId "S001") . So, the end result is that an

incoming temperature event, for sensor "S001", causes a new outgoing mean

temperature event for sensor "S001" to be produced. The group by clause

can also be used without partition by, as in the following code sample.11

11 Note that (as implied by the example), there is usually little point in partitioning a time-based (a within) window. One exception to this is when it is combined

with the with unique clause.

C21

C22

Apama EPL Streams: A Quick Tour January 2014

18 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Apama EPL Streams: A Quick Tour January 2014

19 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

01. Temperature temperature;

02. from t in all Temperature() within 60.0

03. group by t.sensorId select Temperature(t.sensorId, mean(t.temperature)):

04. temperature {

05. print temperature.toString();

06. }

USING RSTREAM

Normally, in stream queries, we select items that are currently in the stream or

window. Adding the keyword rstream to a select clause causes it to select

the items that are currently leaving the stream or window. The main use of this

is to delay events, either by a time period or by a number of events. The

delayed event is typically compared to the set of events that arrived after it, up

until the current time, as illustrated by the code example below.

01. stream<float> tNow := from t in all Temperature(sensorId="T001")

02. select t.temperature;

03. stream<float> tDelayed := from t in tNow retain 10 select rstream t;

04. float t;

05. from t1 in tDelayed from t2 in tNow retain 10 where t2 > t1 * 1.05 select t2 : t

06. print "Rapid temperature rise: " + t.toString();

07. }

Common Patterns

This section lists a few common patterns. You have seen many of them in the

earlier code examples.

AGGREGATION

We have seen examples of this already, calculating the 'running averages' of the

temperature and pressure readings. A common use-case, illustrated below, is

the calculation of the volume-weighted average price of a stock. This example

used the weighted-average aggregate function, wavg().

01. using com.apama.aggregates.wavg;

02. event Tick { string symbol; decimal price; decimal volume; }

03. monitor CalculateVwap {

04. action onload() {

05. decimal vwap;

06. from t in all Tick(symbol="SOW") within 300.0 select wavg(t.price,t.volume): vwap {

07. print vwap.toString();

08. }

09. }

10. }

C23

C24

Apama EPL Streams: A Quick Tour January 2014

20 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Aggregation can also be used in combination with group by to generate the

aggregate results for different groups of items, as illustrated in code examples

C22 and C23. Note that code authors are not restricted to the set of built-in

aggregates as it is possible to define custom aggregates.

THROTTLING

Sometimes it is the case that results are only required at a given rate. We can

extend the example above, adding an every clause, so that the query only

generates values every 10 seconds.

01. using com.apama.aggregates.wavg;

02. event Tick { string symbol; float price; float volume; }

03. monitor CalculateVwap {

04. action onload() {

05. float vwap;

06. from t in all Tick(symbol="SOW") within 300.0 every 10.0

07. select wavg(t.price,t.volume): vwap {

08. print vwap.toString();

09. }

10. }

11. }

DYNAMIC FILTERS

Event listeners, created using on statements, are very efficient at matching

events, but have the drawback that the values of any variables or expressions

used within an event template are evaluated only when the on statement is

executed (that is, when the event listener is created) and remain fixed

thereafter.

If we are using event listeners only and have a use-case where we need to

change one of the match values, then, each time that the desired match value

changes, we would need (a) to quit the current listener and (b) recreate it with

the new match value. An alternative approach is to use streams. For example, if

we want to receive Temperature events for a given sensor, but to select only

those where the temperature value is greater than a given, static threshold,

we would use

01. event Temperature { string sensorId; float temperature; }

02. monitor StaticFilter {

03. action onload() {

04. Temperature temperature;

05. on all Temperature (sensorId="T001", temperature>38.0): temperature {

06. print temperature.toString();

07. }

08. }

09. }

C25

C26

C27

Apama EPL Streams: A Quick Tour January 2014

21 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

If, instead, we need to change the temperature threshold dynamically, then the

following code could be used:

01. event Temperature { string sensorId; float temperature; }

02. event Threshold { string sensorId; float temperature; }

03. monitor StaticFilter {

04. Threshold threshold := Threshold("T001",38.0);

05. action onload() {

06. Temperature temperature;

07. from t in all Temperature(sensorId="T001")

08. where t.temperature > threshold.temperature select t : temperature {

09. print temperature.toString();

10. }

11. on all Threshold(sensorId="T001"): threshold {}

12. }

13. }

In the static case (that is, where the threshold value does not change), the code in

example C27 is more efficient than that of example C28, because the events that

are not of interest are rejected as early as possible (that is, before being passed

to the monitor instance). In the dynamic case (that is, where a changing threshold

value is required), the C28 code example is more elegant and typically more

efficient than using a non-streams approach.

In the dynamic threshold use-case, choosing which solution to prefer – using only

event listeners or using streams - would depend on how frequently the threshold

value is expected to change. The cost of quitting the current listener and

recreating it with the new threshold value may be acceptable if the threshold

value changes only infrequently.

JOINING THE MOST RECENT EVENT ON EACH OF TWO STREAMS

Another common pattern that has already been seen is that of comparing the

most recent values from two event streams. The following code example

illustrates this pattern with a use-case example of calculating the price spread

between two stocks.

01. event Price { string symbol; float price; }

02. monitor ComputeSpreads {

03. action onload() {

04. float spread;

05. from a in all Price(symbol="IBM") retain 1

06. from b in all Price(symbol="MSFT") retain 1

07. select a.price - b.price : spread {

08. print spread.toString();

09. }

10. }

11. }

C28

C29

Apama EPL Streams: A Quick Tour January 2014

22 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

RETAINING THE MOST RECENT ITEM IN EACH PARTITION OF A PARTITIONED STREAM

There are some situations where you want to join the most recent events from

two sources, based on a common key. Typically you are processing all events

from those sources and not a subset of those events. This pattern is similar to

the previous example, but with a partition by clause added to each 'leg' of

the join.

01. event Temperature { string sensorId; float temperature; }

02. event Pressure { string sensorId; float pressure; }

03. event TemperatureAndPressure { string sensorId; float temperature; float pressure; }

04. monitor CombineTheLatestTemperatureAndPressureReadings {

05. action onload() {

06. TemperatureAndPressure tp;

07. from t in all Temperature() partition by t.sensorId retain 1

08. join p in all Pressure() partition by p.sensorId retain 1

09. on t.sensorId equals p.sensorId

10. select TemperatureAndPressure(t.sensorId, t.temperature, p.pressure) : tp {

11. print tp.toString();

12. }

13. }

14. }

JOINING AN EVENT WITH A PREVIOUS EVENT

Another use-case that is reasonably common is where an item output from a

stream query needs to be compared to the previous output item. As an example,

let's say that we need to detect for a given sensor when the average

temperature value was below a threshold value but now is above the threshold

value.

01. using com.apama.aggregates.mean;

02. event Temperature { string sensorId; float temperature; }

03. monitor DetectBreach {

04. action onload() {

05. stream<float> temperatures := all Temperature(sensorId="S001");

06. stream<boolean> current := from t in temperatures within 60.0

07. select mean(t.temperatures) > 97.0;

08. stream<boolean> previous := from c in current retain 1 select rstream c;

09. string text;

10. from c in current from p in previous where c and not p

11. select "Temperature breach" : text {

12. print text;

13. }

14. }

15. }

C30

C31

Apama EPL Streams: A Quick Tour January 2014

23 Copyright © 2013-2014 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its
Subsidiaries and or/its Affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement
with Software AG.

Further reading

For more details on using Apama stream queries please refer to the Apama documentation. See the

section “Working with Streams and Stream Queries” within “Developing Apama Applications in EPL”. You

may also refer to the “Apama EPL Reference”.

Apama EPL Streams: A Quick Tour January 2014

