
Adabas Design
Database systems often involve complex data structures and data handling procedures that can be
designed and used only by persons with extensive knowledge and experience. Adabas has a remarkably
simple structure by comparison, yet it provides significant advantages for operational efficiency, ease of
design, definition, and database evolution.

This chapter covers the following topics:

Adabas Entities

Database Components

Database Files

Record and Field Definitions

Spanned Records

Adabas Entities
In Adabas, a field is the smallest logical unit of information (e.g., current salary) that may be defined and
referenced by the user. A record is a collection of related fields that make up a complete unit of
information (e.g., all the payroll data for a single employee). A file is a group of related records that have
the same format (with some exceptions; read Multiple Record Types in One File). A database is a group
of related files.

Adabas Limits

Adabas Space Management

Adabas Limits

The table below shows the maximum number that mainframe Adabas supports for each entity:

1

Adabas DesignAdabas Design

Entity Maximum

Databases 65,535

Blocks per
database

2,147,483,646 using 4-byte RABNs

Files per
database

the lower of 5,000 or the Associator block size minus one

Records per
file

4,294,967,294 using 4-byte ISNs

Fields per
record

3214

Uncompressed
record length

depends on the operating system

Compressed
record length

Data Storage block size

Spanned records, supported in Adabas version 8 (or later), split a
logical record into multiple physical records, each smaller than
one Data Storage (DS) block. For more information, read Spanned
Record Support.

Adabas Space Management

The disk storage space allocated to a single Adabas database is segmented into logical Adabas files. A
certain part of the overall space within the database is allocated to each logical file. When the space is
filled with records from the file, Adabas automatically allocates more space to the file from the common
free space pool. This dynamic space allocation, together with the dynamic recovery of released space,
allows Adabas databases to run without intervention for long periods of time.

The distribution of database space across disk drives can be controlled by physically segmenting it into
multiple independent data sets. When all physical database space is filled, more data sets can be allocated
dynamically, or the size of existing data sets can be increased so that new physical files can be loaded
without reorganizing the entire database.

Database Components
To support the separation of data and access structures, the Adabas nucleus uses three database
components:

Data Storage for compressed data

Associator for data management and retrieval

Work, a scratch area for complex search criteria, etc.

This section describes each of these database components:

2

Database ComponentsAdabas Design

Data Storage

Associator

Work

Other Components

Data Storage

Data Storage is divided into blocks, each identified by a 3- or 4-byte relative Adabas block number, or
RABN, that identifies the block’s physical location relative to the beginning of the component. Data
Storage blocks contain one or more physical records and a padding area to absorb the expansion of
records in the block.

A logical identifier stored in the first four bytes of each physical record is the only control information
stored in the data block. This internal sequence number or ISN uniquely identifies each record and never
changes. When a record is added, it is assigned an ISN equal to the highest existing ISN plus one. When a
record is deleted, its ISN is reused only if you instruct Adabas to do so. Reusing ISNs reduces system
overhead during some searches and is recommended for files with records that are frequently added and
deleted.

For each file, between 1-90 percent (default 10%) of each block can be allocated as padding based on the
amount and type of updating expected. This reserved space permits records to expand without migrating
to another block and thus helps to minimize system overhead.

Free Space and Space Reusage
Compression

Free Space and Space Reusage

If records become too large for their blocks, they migrate to new locations. When a record migrates or is
deleted, free space is opened in the data block between the last record and the padding area. The following
figure shows free space created when the record with ISN 0401 becomes too large for the block and
migrates to another block:

3

Adabas DesignData Storage

You can instruct Adabas to reuse free space. Reusing space saves computer time, since Adabas then reads
fewer physical blocks during searches. It is recommended for all files.

Compression

Data compression significantly reduces the amount of storage required. It also permits the transmission of
more information per physical transfer, resulting in greater I/O efficiency.

Adabas retains data records in compressed form. Several compression options are supported:

default compression;

null suppression; and

fixed format; and

forward or prefix index compression.

The first three options define and execute compression at the field level, with null suppression and fixed
format compression added as field options.

The fourth option, forward or prefix index compression, compresses the descriptor values in the
Associator’s inverted list. It can be implemented at the file or the database level, in which case specific
files can be set differently; the file-level setting overrides the database setting. The forward index
compression option is set using the ADALOD utility and can be changed using the ADAORD utility. This
compression option is more fully described in Inverted Lists.

The null suppression and fixed format options are added as field options and are discussed in Data
Compression Options FI and NU.

Default compression deletes trailing blanks in alphanumeric fields and leading zeros in binary fields. An
inclusive length byte (ILB) at the beginning of the field indicates the total number of stored bytes,
including the ILB. Thus, if "Susan" is entered in a "first-name" field defined with a 20-character length
and default compression, its stored size will be six bytes: five bytes for the letters of the name, plus one
byte for the ILB. In addition, empty fields in a record are not stored; an empty field is replaced by a
one-byte empty field counter (EFC). Adabas can store up to 63 contiguous empty fields in a single
hexadecimal byte.

4

Data StorageAdabas Design

Many Adabas files require only 50% to 60% of the space used for the raw data. Even with the addition of
approximately 25% for the access structures stored in the Associator, Adabas storage requirements are
still less than those required for traditional file storage or for DBMSs that do not use data compression.

Associator

The Associator is an organizational unit used for storing the structures required to access data in Data
Storage. It contains the following elements:

Two general control blocks (GCBs) for the database. The GCBs provide information regarding the
physical characteristics of the database, such as the database ID (DBID), the number of files loaded,
the number of Associator, Data Storage, and Work extents, the Associator, Data Storage, and Work
device types, system file information, Data Storage Space Table (DSST) extents, and the database
version indicator.

Individual file control blocks (FCBs) for each file. The FCBs identify the physical characteristics and
associated RABNs of database files. The contents include the file name, file number, current file
status, the ISN reuse settings, the space reuse settings, MINISN and MAXISN settings, the first free
ISN, and the number of updates against the file. In addition, the first RABN, last RABN, and first
unused RABN are stored in the FCB.

All tables needed to control and maintain the database including a field definition table (FDT) for
each file and coupling lists for physically coupled files. For more information about the FDT, read
Records and Field Definitions. For more information about physically coupled files, read Coupled
Files.

An inverted list for each descriptor in each file of the database and an address converter for each file.

If spanned records are used in a file, a secondary address converter for the file.

Inverted Lists

An inverted list, which is used to resolve Adabas search commands and read records in logical sequence,
is built and maintained for each field in an Adabas file that is designated as a key field or descriptor (read
Descriptor Options DE, UQ, and XI). It is called an inverted list because it is organized by descriptor
value rather than by ISN. The list comprises the normal index (NI) and as many as 14 upper indexes (UI).

5

Adabas DesignAssociator

The normal index (NI) of the inverted list for a particular descriptor has an entry for each value. The entry
contains the value itself, the number of records in which the value occurs, and the ISNs of those records.

To increase search efficiency, upper index (UI) levels are automatically created by Adabas as required,
each level to manage the next lower level index. The first level UI, like the NI it manages, contains entries
for only one descriptor in each index block. All other UI levels contain entries for all descriptors in each
index block. UIs require a minimal amount of space: two blocks is the minimum.

Note:
The Adabas direct access method (ADAM) facility permits the retrieval of records directly from Data
Storage without accessing the inverted lists. The Data Storage block number in which a record is located
is calculated using a randomizing algorithm based on the ADAM key of the record. The use of ADAM is
completely transparent to application programs and query and report writer facilities. See Random Access
Using the Adabas Direct Access Method (ADAM) for more information.

The following figure shows a typical normal index for the descriptor CITY in a customer file.

The example indicates that there are 31 records with the CITY Zurich (the ISNs of these records are
2,6,23,76...).

Forward (or ’front’ or ’prefix’) index compression removes redundant prefix information from index
values. Within one index block, the first value is stored in full length. For all subsequent values, the prefix
that is common with the predecessor is compressed. An index value is represented by:

<l, p, value>

-where

p is the number of bytes that are identical to the prefix of the preceding value.

l is the exclusive length of the remaining value including the p-byte.

6

AssociatorAdabas Design

For example:

Before Compression After Compression

ABCDE 6 0 ABCDE

ABCDEF 2 5 F

ABCGGG 4 3 GGG

ABCGGH 2 5 H

The decision to compress index values is based on the similarity of index values and the size of the file:

the more similar the index values, the better the compression results.

small files are not good candidates because the absolute amount of space saved would be small
whereas large files are good candidates for index compression.

Even in a worst case scenario where the index values for a file do not compress well, a compressed index
will not require more index blocks than an uncompressed index.

Address Converter

The address converter determines the physical location of a record. It is an index that maps the logical
identifier of a record (that is, the ISN) to the relative Adabas block number (RABN) of the Data Storage
block where the record is stored. If spanned records are used, a secondary address converter is used to
map the secondary ISNs to the RABNs of the Data Storage blocks where the secondary records are stored.
For more information about spanned records, read Spanned Records.

The address converter contains a list of RABNs in ISN order. Only the RABNs are actually stored in the
address converter; the ISNs are identified by their relative position.

The following figure shows the relationship between an inverted list, the address converter, and Data
Storage. For example, to determine the physical location of the record whose ISN is 6, Adabas uses the
ISN as an index into the address converter. The sixth entry in the address converter is 2. Therefore, ISN 6
is located in physical block 2 in Data Storage for this file.

7

Adabas DesignAssociator

When a record moves or is deleted, Adabas updates the address converter automatically and transparently.

Since the ISN for a record never changes, and its physical block address is stored only in the address
converter entry, the record itself may be moved in Data Storage with only one update to the address
converter required and with no extension to the access path of the record.

Even if a record has many descriptors defined, the inverted list for each descriptor need not be modified
because it contains ISNs.

This process explains how Adabas is able to perform simple and complex searches quickly and efficiently
without storing pointer information in Data Storage.

Work

The Work area stores information in four parts:

Part Stores . . .

1 data protection information required by the routines for autorestart
and autobackout. Read Backout, Recovery, and Restart for more
information.

2 intermediate results (ISN lists) of search commands.

3 final results (ISN lists) of search commands.

4 data related to two-phase commit processing.

Other Components

8

WorkAdabas Design

Sort and Temp Areas

Certain Adabas utilities (ADAINV, ADALOD) require two additional data sets, sort and temp, for sorting
and intermediate storage of data. Certain functions of other utilities require the temp data set for
intermediate storage.

The size of the temp and sort data sets varies according to the utility function to be executed. These data
sets can be allocated during the job and then released, or permanent data sets can be allocated and reused.

Logs

Adabas uses the following optional logs:

The Command log (CLOG) records information from the control block of each Adabas command
that is issued. The CLOG provides an audit trail and can be used for debugging and for monitoring
the use of resources. Single, dual, or multiple (2-8) data sets can be used (multiple data sets are
recommended).

Timestamps in an Adabas 8 command log created using the ADARUN CLOGLAYOUT=8
parameter are stored in machine time (GMT), whereas CLOGLAYOUT=5 timestamps are stored, as
always, in local time. The LORECX record layout that describes the CLOGLAYOUT=8 command
log includes a differential time field that stores the difference between machine time and local time at
the time the CLOG record is written. This field allows you to calculate the local time of a command
log record.

Because of the difference in timestamp formats, we do not recommend that you mix or merge
command logs created using different CLOGLAYOUT settings. This is especially true for Adabas
nuclei in a cluster environment. For more information, read CLOGLAYOUT : Command Logging
Format .

The Protection log (PLOG) records before- and after-images of records and other elements when
changes are made to the database. It is used to recover the database (up to the last completed
transaction or ET) after restart. Single, dual, or multiple (2-8) data sets can be used (multiple data sets
are recommended).

The Recovery log (RLOG) records additional information that the Adabas Recovery Aid uses to
construct a recovery job stream. Read the ADARAI utility discussion for more information.

Database Files
Each database contains system files and data files. A data file is generally created for each record structure
required; that is, for each set of related fields identified.

Files are loaded into the database using the ADALOD utility. A file number must be unique in the
database and not greater than the maximum file number defined for the database in the MAXFILES
parameter. Checkpoint, security, trigger, and system files can have two-byte file numbers, but cannot be
greater than 5000. Physically coupled files cannot include files with numbers greater than 255. File
numbers are assigned by the user in any sequence.

This section describes the different types of database files:

9

Adabas DesignDatabase Files

System Files

Coupled Files

Structuring Files to Enhance Performance

System Files

Adabas uses certain files to store system information. Using the ADALOD utility’s FILE parameter, you
can identify an Adabas system file as one of the following:

CHECKPOINT Adabas checkpoint file

SECURITY Adabas security file

SYSFILE Adabas system file

TRIGGER Adabas trigger file

Coupled Files

File coupling allows you to select, using a single search command, records from one file that are related
(coupled) to records containing specified values in a second file.

Physical Coupling
Logical or Soft Coupling

Physical Coupling

Any two files with file numbers 255 or lower may be physically coupled if a common descriptor (read
Descriptor Options DE, UQ, and XI) with identical format and length definitions is present in both files.
A single file may be coupled with up to 18 other files, but only one coupling relationship may exist
between any two files at any one time. A file may not be coupled to itself.

When files are coupled, coupling lists are created in the Associator for each file being coupled. File
coupling is bidirectional rather than hierarchical in that two coupling lists are created for each coupling
relationship with each list containing the ISNs that are coupled to the other file.

Once the physical coupling lists have been created, any key field in either file may be used within a search
criteria.

Physical coupling may add a considerable amount of overhead if the files involved are frequently updated.
The coupling lists must be updated if a record in either of the files is added or deleted, or if the descriptor
used as the basis for the coupling is updated in either file.

Physical coupling may be useful for information retrieval systems in which

files seldom change;

the additional overhead of the coupling lists is insignificant compared with the increased ease of
formulating queries; or

10

System FilesAdabas Design

files are small and primarily query-oriented.

Logical or Soft Coupling

Multiple files may also be queried by specifying the field to be used for interfile linkage in the search
criteria. Adabas then performs all necessary search, read, and internal list matching operations.

This technique is called logical or soft coupling because it does not require the files to be physically
coupled. Although logical coupling requires read commands, it is normally more efficient because it
avoids the increased overhead of coupling lists.

Structuring Files to Enhance Performance

An Adabas database with one file for each record type supports any application functions required of it
and is the easiest to manipulate for interactive queries, but it may not yield the best performance:

As the number of Adabas files increases, the number of Adabas calls increases. Each Adabas call
requires interpretation, validation and, in multiuser mode, supervisor call (SVC) and queuing
overhead.

In addition to the input/output (I/O) operations necessary for accessing at least one index, address
converter, and Data Storage block from each file, the one-file-per-record-type structure requires
buffer pool space. If sufficient buffer space is not available, blocks are overwritten that may be
needed for a later request.

The number of Adabas files used by critical programs can be reduced by

using multiple-value fields and periodic groups (read Field Levels);

linking physical files into a single logical (expanded) file;

including more than one type of record in an Adabas file;

including records for more than one category of user in an Adabas (multiclient) file; and

controlling data duplication and the resulting high resource usage.

This section describes the following topics:

Expanded Files
Multiple Record Types in One File
Multiclient Files
Controlled Data Redundancy

Expanded Files

If you have a large number of records of a single type, you may need to spread the records over multiple
physical files.

To reduce the number of files accessed, Adabas allows you to link multiple physical files containing
records of the same format together as a single logical file. This file structure is called an expanded file
and the physical files comprising it are the component files. An expanded file can comprise up to 128
component files, each with a unique range of logical ISNs. An expanded file cannot exceed 4,294,967,294

11

Adabas DesignStructuring Files to Enhance Performance

records.

Note:
Since Adabas now supports larger file sizes and a greater number of Adabas physical files and databases,
the need for expanded files has, in most cases, been removed.

Although an application program addresses the logical file (the address of the file is the number of the
expanded file’s base component or anchor file), Adabas selects the correct component file based on the
data in a field defined as the criterion field. The data in this field has characteristics unique to records in
only one component file. When an application updates the expanded file, Adabas looks at the data in the
criterion field in the record to be written to determine which component file to update. When reading
expanded file data, Adabas uses the logical ISN as the key to finding the correct component file.

Multiple Record Types in One File

Multiple record types can be defined within a single physical record; each record type is a logical record
composed of a subset of the fields defined for the file. Fields that do not belong to a given type are
null-suppressed.

Record types can be identified to Adabas by

defining a record type field with values to differentiate one type from another; or

using values of an existing field to differentiate type; for example, to differentiate two types, a value
of zero for a field common to both types might identify one type and any nonzero value for the same
field might identify the other type.

Multiclient Files

Records for multiple users or groups of users can be stored in a single Adabas physical file defined as
multiclient. The multiclient feature divides the physical file into multiple logical files by attaching an
internal owner ID to each record.

The owner ID is assigned to a user ID. A user ID can have only one owner ID, but an owner ID can
belong to more than one user. Each user can access only the subset of records that is associated with the
user’s owner ID.

Note:
For any installed external security package such as RACF, CA-ACF2, or CA-Top Secret, a user is still
identified by either Natural ETID or LOGON ID.

All database requests to multiclient files are handled by the Adabas nucleus.

Controlled Data Redundancy

Physical redundancy increases storage requirements but may also enhance performance and decrease
complexity. For example, if a database stores customer and order information in a customer-orders file
and product descriptions in an inventory file, and a program that generates invoices requires product
descriptions in addition to customer-order data, it might enhance performance to store a duplicate copy of
the product descriptions in the customer-orders file.

12

Structuring Files to Enhance PerformanceAdabas Design

Logical redundancy also increases storage demands while decreasing complexity. It involves storing in
one file the results of a process on data in another file; thus, the duplicate data is implied by the content of
another file, rather than being physically stored in two places.

Physical and logical redundancy cause update programs to run more slowly. The duplicate updates
required when changes in one file affect records in another file may degrade performance severely.
Redundancy should be used only for static data or data that is updated rarely. You can control data
redundancy by using multiple-value fields, periodic groups, and multiple record types within a file.

Record and Field Definitions
In Adabas, the record structure and the content of each field in a physical file are described in a Field
Definition Table, or FDT, which is stored in the Associator. There is one FDT for each database file. The
FDT is used by Adabas during the execution of Adabas commands to determine the logical structure and
characteristics of any given field (or group) in the file.

Spanned records, supported in Adabas version 8 (or later), split a logical record into multiple physical
records, each smaller than one Data Storage (DS) block. For more information, read Spanned Record
Support.

This section covers the following topics:

Record Structure and the FDT

Field Levels and Group Fields

System Fields

Field Names

Field Length and Data Format

Field Options

Special Fields and Descriptor Fields

Record Structure and the FDT

The FDT lists the fields of the file in physical record order, provides a quick index to the file’s records,
and defines the file’s fields, subfields, superfields, and descriptors (including collation descriptors,
subdescriptors, superdescriptors, hyperdescriptors, and phonetic descriptors). A minimum of one and a
maximum of 3214 field definitions may be specified.

Information about each field includes the level, name, length, format, options, and special field and
descriptor attributes.

13

Adabas DesignRecord and Field Definitions

 FIELD DESCRIPTION TABLE

 I I I I I
 LEVEL I NAME I LENGTH I FORMAT I OPTIONS I PARENT OF
 I I I I I
 ------I------I--------I--------I--------------I----------------------------I
 I I I I I I
 1 I AA I 8 I A I DE,UQ I I
 1 I AB I I I I I
 2 I AC I 20 I A I NU I I
 2 I AE I 20 I A I DE I SUPERDE,PHONDE I
 2 I AD I 20 I A I NU I I
 1 I AF I 1 I A I FI I I
 1 I AG I 1 I A I FI I I
 1 I AH I 6 I U I DE I I
 1 I A2 I I I I I
 1 I AO I 6 I A I DE I SUBDE,SUPERDE I
 1 I AQ I I I PE I I
 2 I AR I 3 I A I NU I SUPERDE I
 2 I AS I 5 I P I NU I SUPERDE I
 1 I A3 I I I I I
 2 I AU I 2 I U I I SUPERDE I
 2 I AV I 2 I U I NU I SUPERDE I

The order of the fields listed in the FDT determines the structure of the record and the efficiency of
retrieval. The following factors should be considered when ordering fields:

Fields that will be accessed frequently should be ordered first in the FDT. This technique reduces
CPU time because Adabas does not have to read the whole record when retrieving a field.

Fields that will frequently be accessed together should be assigned to a group field.

Fields that will always be accessed together should be defined as a single field. This technique may
inhibit compression and query language use; however, it decreases processing time by providing
more efficient internal processing and shorter format buffers.

If appropriate, fields that will frequently be empty should be ordered together in the FDT and set to
use default compression or null suppression.

Numeric fields should be loaded in the format in which they will be used most often.

Field Levels and Group Fields

When two or more consecutive fields in the FDT are frequently accessed together, you can reference them
together by defining a group field. Other than its level and Adabas short name, a group field has no
attributes defined. It immediately precedes its member fields in the FDT. A higher field level number is
used to assign the member fields to the group field. Adabas supports up to seven field levels. User
programs can access each member field individually, or all member fields together by referencing the
group field.

For example, in the illustration of the Field Definition Table (FDT) in the section Records and Field
Definitions, field AB is defined as a group field and assigned to level 1. Fields AC, AE, and AD are
assigned to level 2, indicating that they belong to group field AB. The next field, AF, is assigned to level
1, indicating that it is not part of the AB group. User programs can access AC, AE, and AD individually,
or together by referencing the group field AB.

14

Field Levels and Group FieldsAdabas Design

A group field can be assigned as a periodic group field if it is comprised of fields that can have more than
one value (for example, group field AQ in the figure).

System Fields

Adabas allows you to define system fields in your Adabas files.

A system field is a field in an Adabas file whose value is automatically set by the Adabas nucleus when
records are inserted or updated on the file. Optionally, you can specify that some system field values only
be set when records are inserted. System fields are fields that store information such as the job name of the
user making the update, the eight-byte user ID of the user, the session ID of the user, or the time at which
the update was made.

The value of a system field refers to an insert or update of an entire record. You cannot define a system
field that refers to only a portion of a record.

Values for system fields are saved in the compressed storage record in the same manner that other Adabas
fields are stored.

This section covers the following topics:

Allowed Types of System Fields
Defining System Fields
System Fields as MU Fields
System Field Rules
System Field Processing by an Adabas Nucleus

Allowed Types of System Fields

System fields containing the following types of information can currently be defined in an Adabas file:

Job name: The job name of the user inserting or updating a record.

ETID: The eight-byte user ID of the user inserting or updating a record. This is the user ID set in the
Additions 1 field of an OP (open) command for the user session.

Session ID: The 28-byte user ID of the user inserting or updating a record.

Session user: The last eight bytes of the 28-byte session ID or the user inserting or updating a record.

Time: The date or date and time at which a record is inserted or updated.

Note:
Information about record deletion is not recorded in system fields for the simple reason that the value of
the system field is itself deleted along with the record.

Defining System Fields

System fields may not be part of a periodic group. Otherwise, they can be simple fields or MU fields
(although not MU fields in a periodic group).

15

Adabas DesignSystem Fields

System fields are defined in the same manner as other database fields using FNDEF definitions in
ADACMP COMPRESS utility runs, except each system field definition must include an SY field option.
If you only want the system field values updated when a record is inserted (and not when it is updated),
you can also specify the CR field option in the system field definition. If the system field is a multiple
occurrence (MU) field, it cannot be defined with the CR field option.

System fields can also be added to a file using the ADADBS NEWFIELD utility function. The same SY
and CR field options are supported by ADADBS NEWFIELD.

The SY and CR options cannot be changed for a field using the ADADBS CHANGE utility function. In
other words, a field defined as a system field cannot later be changed from a system field to a non-system
field. However, a system field may be logically deleted. Note that system field values for logically deleted
fields are still set when record insertions or updates occur; this ensures that the system field values are
correct if they are later no longer logically deleted

For more information about the SY and CR field options, read Field Options.

System Fields as MU Fields

A system field cannot be part of a periodic group. In addition, if the system field is defined with the CR
field option, it cannot also use the MU option. Likewise, if the system field is not defined with the CR
option, it must be defined as an MU field.

If a system field is an MU (multiple occurrence) field, Adabas sets the field values on record insertion and
record update in a specific way.

When a record is inserted, an appropriate value is set in the first occurrence of the MU system field.
The MU system field will contain only a single value (the value set in the first occurrence of the
field).

When a record is updated, an appropriate value is set in the first occurrence of the MU system field.
Values held previously in occurrences 1 to N of the MU system field will be shifted to occurrences 2
to N+1. If the maximum number of MU system field values is reached for the file, the oldest value is
dropped from the file. For example, if a file is defined with a maximum number of MU system field
values set to 5 and 5 values are already present in the file, an update to the MU system field will drop
the value in occurrence 5 of the field, shift the others down and insert the new value in occurrence 1.

The maximum number of MU system field values allowed in a file is stored in the File Control Block
(FCB) for the file and is set when you load the file using ADALOD LOAD. Thereafter, the SYFMAXUV
value can be modified using the ADADBS MODFCB utility function. This setting applies to all MU
system fields in the file. For more information, read MODFCB: Modify File Parameters .

The following are examples of valid system fields. Note that the fourth example from the top is not an MU
field, but is defined with the CR option.

01,ET,8,A,NU,MU,SY=OPUSER
01,SU,8,A,MU,NU,NV,SY=SESSIONUSER
01,SI,28,A,NU,NV,MU,SY=SESSIONID
01,D1,8,U,NU,DT=E(DATE),SY=TIME,CR
01,TI,14,U,MU,NU,DT=E(DATETIME),SY=TIME
01,TZ,14,U,MU,NU,DT=E(DATETIME),TZ,SY=TIME
01,Z3,8,A,MU,SY=JOBNAME

16

System FieldsAdabas Design

System Field Rules

The following rules apply to system fields:

1. The field format for JOBNAME, OPUSER, SESSIONID, and SESSIONUSER system fields must be
A (alphanumeric).

2. The format and length of a TIME system field will be enforced based on the rules set for the
date-time edit mask specified for the field.

A date-time edit mask (DT field option) must be specified for time system fields. However, the DT
field option is not valid for any other type of system field.

3. System fields cannot be a periodic group field (the PE field option cannot be specified), nor can it be
a member of a periodic group.

4. A system field can be a descriptor (the DE field option can be specified) or a unique descriptor field
(the UQ field option can be specified).

5. The system field may be the parent of a superdescriptor field or of a special descriptor.

6. A system field cannot be a long alpha or wide-character field or a large object field (the LA and LB
field options cannot be specified).

7. Security-by-value is allowed for system fields.

8. The CR field option can only be specified if the SY field option is also specified for a field.

9. A system field can be defined to have a fixed storage length (the FI field option can be specified). If
FI is specified, the field length must exactly match the lengths shown in the SY field option
description. If it is not specified, any field length is allowed in the field definition; the length of the
data stored for each field will match the lengths shown in the SY field option description.

10. A system field must have either the MU option OR the CR option specified (but not both). The MU
and CR options are mutually exclusive.

11. Null values can be suppressed for a system field (the NU field option can be specified).

12. Alphanumeric system fields can be processed in the record buffer without being converted (the NV
field option can be specified).

13. The value of a system field refers to the insert or update of an entire record. You cannot define a
system field that refers to only a portion of a record.

14. Information about record deletion is not recorded in system fields for the simple reason that the value
of the system field is itself deleted along with the record.

15. System fields are not required in a file (none can be specified). In addition, one or more system fields
of the same type can be defined for a file.

16. The SY and CR options cannot be changed for a field using the ADADBS CHANGE utility function.
In other words, a field defined as a system field cannot later be changed from a system field to a
non-system field.

17

Adabas DesignSystem Fields

17. A system field can be logically deleted. Note that system field values for logically deleted fields are
still set when record insertions or updates occur; this ensures that the system field values are correct if
they are later no longer logically deleted.

System Field Processing by an Adabas Nucleus

When a record is inserted or updated in an Adabas database file with system fields, the system field values
are set by the nucleus. If system fields are specified one or more times in the format buffers and record
buffers of an insert or update command, the values passed by the user are ignored.

The following processing occurs by the Adabas nucleus for system fields:

1. If the system field is not defined with the CR option, the system field value is set by the nucleus
when an insert command and when an update command is issued.

2. If the system field is defined with the CR option, the system field value is set by the nucleus when an
insert command is issued, and is left as is when an update command is issued.

Field Names

A field is identified to Adabas by a two-character Adabas short name that must begin with an alphabetic
character (either upper- or lowercase) and can be followed by a numeral or an alphabetic character (either
upper-or lowercase) and must be unique within a file. The combinations E0-E9 are reserved and special
characters are not allowed. Adabas assigns short names to fields automatically, although you can choose
to assign them yourself. Adabas uses the short names internally and actually accesses fields by their short
names.

Note:
Lowercase fields will not display correctly (they will be converted to uppercase) if you use the ADARUN
parameter settings MSGCONSL=UPPER, MSGDRUCK=UPPER, or MSGPRINT=UPPER.

Field Length and Data Format

Field values are fixed or variable in length and can be in alphanumeric, binary, fixed-point, floating-point,
packed/unpacked decimal, or wide character formats.

The length (expressed in bytes) and format (expressed as a one-character code) of a field define the
standards (defaults) to be used by Adabas during command processing. They are used when the field is
read/updated unless the user specifies an override.

If standard length is zero for a field, the field is assumed to be a variable-length field. Standard format
must be specified for a field. The format specified determines the type of default compression to be
performed on the field.

The maximum field lengths that may be specified depend on the format value:

18

Field NamesAdabas Design

Format Format Description Maximum Length

A Alphanumeric (left-justified): see also the long
alphanumeric (LA) option in Long Alpha Option LA and
the large object (LB) option in Large Object Option LB

253 bytes

B Binary (right-justified, unsigned/positive) 126 bytes

F Fixed point (right-justified, signed, positive value in
normal form; negative value in two’s complement form)

8 bytes (always exactly 2, 4,
or 8 bytes)

G Floating point (normalized form, signed) 8 bytes (always exactly 4 or
8 bytes)

P Packed decimal (right-justified, signed) 15 bytes

U Unpacked decimal (right-justified, signed) 29 bytes

W Wide character (left-justified): see also the long
alphanumeric (LA) option in Long Alpha Option LA

253 bytes

Field Options

Field options are specified using two-character codes, which may be specified in any order, separated by a
comma.

Code Option Read Section

CR A system field will not be modified
when updates occur to the record, but
only when the record is first inserted.

System Field Options SY and
CR

DE The field is to be a descriptor (key). Descriptor Options DE, UQ,
and XI

DT A date-time edit mask is specified for the
binary, fixed point, packed decimal, or
unpacked decimal field.

Date-Time Edit Mask Option
DT

FI The field is to have a fixed storage
length; values are stored without an
internal length byte, are not compressed,
and cannot be longer than the defined
field length.

Data Compression Options FI
and NU

LA An alphanumeric or wide-character,
variable-length field may contain a value
up to 16,381 bytes long.

Long Alpha Option LA and
Comparing LA and LB Fields

LB An alphanumeric field may contain up to
2,147,483,643 (about 2 GB) of data.

Large Object Option LB and
Comparing LA and LB Fields

MU The field may contain up to about
65,534 values in a single record.

MU and PE Options and
Field Types

19

Adabas DesignField Options

Code Option Read Section

NB Trailing blanks should not be removed
(compressed) from the LA or LB fields.
Specification of this option requires the
specification of NU or NC as well.

Blank Compression Option
NB

NC Field may contain a null value that
satisfies the SQL interpretation of a field
having no value; that is, the field’s value
is not defined (not counted).

SQL Compatibility Options
NC and NN

NN Field defined with NC option must
always have a value defined; it cannot
contain an SQL null (not null).

SQL Compatibility Options
NC and NN

NU Null values occurring in the field are to
be suppressed.

Data Compression Options FI
and NU

NV An alphanumeric or wide-character field
is to be processed in the record buffer
without being converted.

Encoding Conversion Option
NV

PE This group field is to define consecutive
fields (which may include one or more
MU fields) in the FDT that repeat
together (up to about 65,534 times) in a
record.

MU and PE Options and
Field Types

SY The field is a system field. System Field Options SY and
CR

TZ The date-time field value is presented in
the user’s local time and stored in UTC
time, allowing for differences in time
zones.

Time Zone Option TZ

UQ The field is to be a unique descriptor;
that is, for each record in the file, the
descriptor must have a different value.

Descriptor Options DE, UQ,
and XI

XI For this field, the occurrence (index)
number is to be excluded from the
unique descriptor (UQ) option set for a
periodic group (PE).

Descriptor Options DE, UQ,
and XI

Descriptor Options DE, UQ, and XI

A descriptor is a search key. The DE option indicates that the field is to be a descriptor. The UQ option
can only be specified if DE is also specified; it indicates that the DE field is to have a different (i.e.,
unique) value for each record in the file. If the UQ field is also an MU field or a field in a periodic group,
the same value for the field may occur multiple times in the same record, but must be unique in different
records. Entries are made in the Associator’s inverted list for DE fields, adding disk space and processing
overhead requirements.

20

Field OptionsAdabas Design

Any field can be used within a selection criterion. When a field that is used extensively as a search
criterion is defined as a descriptor (key), the selection process is considerably faster since Adabas is able
to access the descriptor’s values directly from the inverted list without reading any records from Data
Storage.

A descriptor field can be used as a sort key in a search command, as a way of controlling a logical
sequential read process (ascending or descending values), or as the basis for file coupling.

Any field and any number of fields in a file can be defined as descriptors. When a multiple-value field or a
field in a periodic group is defined as a descriptor, multiple key values are generated for the record. Key
searches may be limited to particular occurrences of a periodic group.

For descriptor fields that are part of a periodic group (PE field), the group index is considered part of the
descriptor value in the index. This makes it possible to search for a value plus a group index. By default, a
given value plus the group index of one occurrence of a record is considered different than the same value
plus the different group index of a second record. Because the group indexes are different, these two
occurrences do not violate the "uniqueness" criteria. If you want to eliminate the group index from the
uniqueness criteria, use the XI option. The XI option is used for unique descriptors in periodic groups to
exclude the occurrence (index) number from the definition of uniqueness.

Because the inverted list requires disk space and update overhead, the descriptor option should be used
judiciously, particularly if the file is large and the field that is being considered as a descriptor is updated
frequently. For instance, the inverted list for a periodic group used as a descriptor may be very large
because each occurrence is stored.

A descriptor may be defined at the time a file is created, or later by using an Adabas utility. Because the
definition of a descriptor is independent of and has no effect on the record structure, descriptors may be
created or deleted at any time without the need for database restructuring or reorganization.

Note, however, that if a descriptor field is not ordered first in the record structure and logically falls past
the end of the physical record, the inverted list entry for that record is not generated for performance
reasons. To generate the inverted list entry in this case, it is necessary to unload short, decompress, and
reload the file; or use an application program to reorder the field first for each record of the file.

A portion of a field may be defined as a subdescriptor; combinations of fields or portions thereof may be
defined as a superdescriptor; a user-supplied algorithm may be the basis of a collation descriptor or
hyperdescriptor; and a sounds-like encoding algorithm may be the basis of a phonetic descriptor, which
may be customized for specific language requirements. Read Special Field and Descriptor Attributes for
more information.

System Field Options SY and CR

A system field is a field in an Adabas file whose value is automatically set by the Adabas nucleus when
records are inserted or updated on the file. Optionally, you can specify that some system field values only
be set when records are inserted. A system field cannot be a PE field.

System fields containing the following types of information can currently be defined in an Adabas file:

Job name: The job name of the user inserting or updating a record. When ADACMP COMPRESS is
used to define this type of field, its field value will be the job name of the ADACMP COMPRESS
job.

21

Adabas DesignField Options

ETID: The eight-byte user ID of the user inserting or updating a record. This is the user ID set in the
Additions 1 field of an OP (open) command for the user session.

Session ID: The 28-byte user ID of the user inserting or updating a record.

Session user: The last eight bytes of the 28-byte session ID or the user inserting or updating a record.

Time: The date or date and time at which a record is inserted or updated.

Use the SY field option to specify the type of information stored in a system field.

Use the CR option to indicate that the system field value should only be maintained when a record is
inserted and not when it is updated. The CR field option can only be specified for fields defined with the
SY field option, but cannot be specified for an MU field.

For complete information about system fields, read System Fields. For more information about the SY and
CR field options, read Field Options.

Date-Time Edit Mask Option DT

DT assigns a date-time edit mask to a binary, fixed point, packed decimal, or unpacked decimal field. This
option cannot be specified for fields of other formats.

The syntax of the DT option is:

DT=E(edit-mask-name)

Valid values for edit-mask-name substitutions are described in the following table. It also shows the
required minimum field lengths for the different formats of fields that can specify the DT option; the
length of the field must be large enough to store the date-time values. Detailed discussions of each edit
mask is provided in Date-Time Edit Mask Reference.

Note:
In the table, "YYYY" represents the 4-digit year (1-9999), "MM" represents the 2-digit month (1-12),
"DD" represents the 2-digit day of the month (1-31), "HH" represents the 2-digit hour (0-23), "II"
represents the 2-digit minute within the hour (0-59), "SS" represents the 2-digit second within the minute
(0-59), and "XXXXXX" represents the 6-digit microsecond within the second.

22

Field OptionsAdabas Design

edit-mask-name Description Minimum
Field Length

for Field
Format

B F P U

DATE The date field is in the format Z’ YYYYMMDD’ . 4 4 5 8

TIME The time field is in the format Z’ HHIISS’ . 3 4 4 6

DATETIME The date and time field is in the format
Z’ YYYYMMDDHHIISS’

6 8 8 14

TIMESTAMP The date and time field is in the format
Z’ YYYYMMDDHHIISSXXXXXX’ , with
microsecond precision

-- -- 11 20

NATTIME The time field is in Natural T format (tenths of
seconds since year zero)

6 8 7 13

NATDATE The date field is in Natural D format (days since
year zero)

3 4 4 7

UNIXTIME The time field is in UNIX time_t type format
(seconds since January 1, 1970)

4 4 6 10

XTIMESTAMP The date and time field is in UNIX timestamp
format, with microsecond precision, since January
1, 1970 (UNIXTIME * 60**6 +
microseconds).

8 8 10 18

The following table contains some examples.

Example The field contains...

1,SD,8,U,DT=E(DATE) Numeric data in the form Z’YYYYMMDD’.

1,TI,6,U,DT=E(TIME) Numeric time in the form Z’HHIISSD’

1,DT,14,U,DT=E(DATETIME) A value composed of DATE and TIME

1,TS,20,U,DT=E(TIMESTAMP) A value composed of DATETIME plus
microseconds

1,TT,7,P,DT=E(NATTIME) Natural T-format data (tenths of seconds since the
year zero)

1,DD,4,P,DT=E(NATDATE) Natural D-format data (days since the year zero)

1,UU,4,F,DT=E(UNIXTIME) UNIX time_t-type data (seconds since January 1,
1970)

1,XS,8,F,DT=E(XTIMESTAMP) UNIX time data (microseconds since January 1,
1970)

23

Adabas DesignField Options

Time Zone Option TZ

The TZ field option identifies a date-time field that should be presented in the user’s local time and stored
in UTC time, allowing for differences in time zones. There is no specific syntax for the TZ field option as
there are no parameters; simply specifying TZ in the field definition of a date-time field provides time
zone support.

When TZ is specified, date-time values are converted and displayed in the user’s local time, but are stored
in coordinated universal (UTC) time. This allows users in different time zones to view the data in their
individual local times, but still share the same data. Storing values in standardized UTC time makes them
easily comparable.

Adabas uses the time zone data taken from the tz database, which is also called the zoneinfo or Olson
database. The specific list of time zone names that Adabas supports in any given release can be found in
the TZINFO member of the Adabas time zone library (ADAvrs.TZ00). For more information about the
TZINFO member of the time zone library, read Supported Time Zones.

The TZ option can be specified in field definitions that use the following date-time edit masks:

DATETIME

TIMESTAMP

NATTIME

UNIXTIME

XTIMESTAMP

You cannot use the TZ option in field definitions that use the DATE, TIME, or NATDATE date-time edit
masks because the timezone offsets depend on the presence of both date and time values in the data.

Note that UNIXTIME and XTIMESTAMP fields are by definition based on the UTC; standard conversion
routines will perform time zone handling outside of Adabas. In other words, the TZ option has no effect
when reading or writing fields with the UNIXTIME or XTIMESTAMP edit mask.

However, when the DATETIME, NATTIME, and TIMESTAMP edit masks are set in the format buffer,
the TZ option will convert the times to local time; otherwise they will be converted and returned as UTC
times.

For example, if a date-time field is stored in UTC format is February 14, 2009, 16:00 hours, user A in time
zone America/New_York will see the field displayed as February 14, 2009, 11:00 hours or 10:00 (UTC
time minus 5 or 6 hours, depending on the differences in daylight savings time). Alternately, user G in
time zone Europe/Berlin will see the field as February 14, 2009, 17:00 hours (UTC time plus 1).

For information on the conversions between date-time fields defined with the TZ option, read Conversions
Between Date-Time Representations for Fields with the TZ option.

Data Compression Options FI and NU

Default data compression is described in the section Compression. At the field level, additional
compression can be specified (null suppression option) or all compression can be disabled (fixed storage
option).

24

Field OptionsAdabas Design

http://www.twinsun.com/tz/tz-link.htm

Null suppression (NU) differs from default compression in that searches on descriptor fields defined with
null suppression do not return records in which the descriptor field is empty.

Fields defined as fixed format (FI) do not include a length byte and are not compressed. This option
actually saves storage space for one-byte fields or fields that are nearly always full (e.g., a field containing
the social security number).

Encoding Conversion Option NV

Alphanumeric (A) or wide-character (W) format fields with the NV option are processed in the record
buffer without being converted to or from the user.

The field has the characteristics of the file encoding; that is, the default blank:

for A fields is always the EBCDIC blank (X’40’), and

for W fields is always the blank in the file encoding for W format.

The NV option is used for fields containing data that cannot be converted meaningfully or should not be
converted because the application expects the data exactly as it is stored.

The field length for NV fields is byte-swapped if the user architecture is byte-swapped.

Long Alpha Option LA

The long alphanumeric (LA) option can only be specified for variable-length alphanumeric or
wide-character fields; i.e., A- or W-format fields having a length of zero. With the LA option, such an
alphanumeric or wide-character field can contain a value up to 16,381 bytes long.

An alpha or wide field with the LA option is compressed in the same way as an alpha or wide field
without the option. The maximum length that a field with LA option can actually have is restricted by the
block size where the compressed record is stored.

In Adabas 8 (or later), the NB (no blank compression) option can be specified for LA fields to control
blank suppression.

LA fields cannot also be defined with the LB field option. To assist you in determining whether to define
a field as an LA or an LB field, read Comparing LA and LB Fields.

Large Object Option LB

The large object (LB) option can be specified for some fields to identify them as large object fields. LB
fields can contain up to 2,147,483,643 bytes (about 2 GB) of data.

The format of an LB field must be "A" (alphanumeric) and its default field length must currently be
defined as zero.

LB fields cannot be:

Descriptors or parents of a special (phonetic, sub-, super-, or hyper-) descriptor.

Defined with the FI or LA options.

25

Adabas DesignField Options

To assist you in determining whether to define a field as an LA or an LB field, read Comparing LA
and LB Fields.

Specified in a search buffer or in format selection criteria in a format buffer.

LB fields may be:

Defined with any of the following options: MU, NB, NC, NN, NU, or NV

Part of a simple group or a PE group.

The presence of the NB (no blank compression) field option in the LB field definition indicates whether
on not Adabas removes trailing blanks in LB fields containing characters.

LB fields containing both binary and character data are supported. An LB field defined with both the NV
and NB options can store binary large object data, as Adabas will not modify binary LB fields in any way.
The identical LB binary byte string that was stored is what is retrieved when the LB field is read. In
addition, because LB fields containing binary values are defined with the NV and the NB options, Adabas
will not convert LB field binary values according to some character code page nor will it cut off trailing
blanks in LB fields containing binary values.

Note:
LB fields containing binary values are not defined using format B, because format B can imply byte
swapping in some environments with different byte orders. Byte swapping does not apply to binary LB
fields.

The following table provides some valid example of FDT definitions for LB fields:

FDT Specification Description

1,L1,0,A,LB,NU Field L1 is a null-suppressed, character, large object
field

1,L2,0,A,LB,NV,NB,NU,MU Field L2 is a null-suppressed, multiple-value, binary,
large object field.

Commands dealing with LB fields must always be directed to the base file of a LOB file group. User
commands against LOB files are rejected.

For information on getting started using LB fields, read Large Object (LB) Files and Fields.

Comparing LA and LB Fields

The following table comparing pertinent LA and LB field features may help you decide which to use
when defining fields for your database.

Feature LA Field Behavior LB Field Behavior

Zero field length
specification in
format buffers

Two bytes in the
corresponding record buffer
area are used to store the
actual length of the LA field.

Four bytes in the
corresponding record buffer
area are used to store the
actual length of the LB field.

26

Field OptionsAdabas Design

Feature LA Field Behavior LB Field Behavior

Data record storageAlphanumeric and
wide-character fields are
stored within the compressed
record.

All long values must fit into
the same compressed record.
The maximum length of
simple or spanned data
records limits the number and
lengths of long values that can
be stored. This can be a
problem if multiple long
values are contained in a
record.

Some LB field values (those
larger than 253 bytes) are
stored offline in a separate
large object file (the LOB file)
and only references to the LB
field values in the LOB file
are included in the data
record. This allows for storing
more long objects for a single
data record than using normal
or LA fields. However, the
performance overhead at
runtime and for file
maintenance is increased for
LB fields because of this
behavior.

Smaller LB field values (up to
253 bytes) are stored directly
in the compressed record.
This improves performance
for small values, but also
limits the number of small LB
field occurrences that can be
stored in the same compressed
record.

Asterisk (*) field
length notation in
format buffers

Supported for LA fields of
any length.

Supported for LB fields of
any length.

Maximum length of
any stored object
does not exceed
16,381 bytes

Alphanumeric or
wide-character LA field can
be used. This avoids the
overhead of LB fields, but
limits the number of such
fields that can be stored in a
single record.

Alphanumeric LB field can be
used.

Maximum length of
any stored object
exceeds 16,381
bytes

Not supported. Supports objects with sizes
larger than 16,381 bytes.

So many large
objects that they
will not fit in a
single simple or
spanned data record

Not supported. Supports multiple large
objects.

27

Adabas DesignField Options

MU and PE Options and Field Types

Adabas supports two basic field types: elementary fields and multiple-value fields. An elementary field
has only one value per record. Multiple-value (MU) fields can have 191 up to about 65,534 values, or
occurrences, in a single record. The use of more than 191 MU fields or PE groups in a file must be
explicitly allowed for a file (it is not allowed by default). This is accomplished using the ADADBS
MUPEX function or the ADACMP COMPRESS MUPEX and MUPECOUNT parameters. Each
multiple-value field has a binary occurrence counter (BOC) that stores the number of occurrences.

A periodic (PE) group field defines consecutive fields in the FDT that repeat together in a record. Like the
members of a non-periodic group field, PE members immediately follow the PE group field, have a higher
level number than the PE field, and can be accessed both individually and as a group. Each PE has a BOC
that stores the number of occurrences.

A periodic group may be repeated 191 or up to about 65,534 times per record and may contain one or
more multiple-value fields. The use of more than 191 MU fields or PE groups in a file must be explicitly
allowed for a file (it is not allowed by default). This is accomplished using the ADADBS MUPEX
function or the ADACMP COMPRESS MUPEX and MUPECOUNT parameters. Occurrences or values
that are not used require no storage space.

Adabas thus supports four field types:

 Single Value per Record Multiple Values per Record

Single Field Elementary MU

Multiple Fields Group PE

The actual limit to the number of occurrences of MU fields and PE groups in a file is derived from the
maximum data storage record length (the ADALOD MAXRECL parameter), which defaults to the size of
the data storage block minus 4.

The number of occurrences of each MU field or each PE group in a record can be increased from 191 to
about 65,534 using the ADADBS MUPEX function or the ADACMP COMPRESS MUPEX and
MUPECOUNT parameters. However, the actual limit is derived from the maximum Data Storage record
length (the ADALOD MAXRECL parameter), which defaults to the size of the Data Storage block minus
4, the device type, and the file type (spanned or unspanned). All MU fields and PE groups and other fields
must fit into one compressed record. If you are using spanned records (introduced with Adabas 8), more
MU fields and PE groups can be stored.

In addition, subdescriptors and superdescriptor definitions can affect the number of MU fields or PE
groups in the record. For example, if a superdescriptor is created as a combination of a PE group and one
or more MU fields and the number of occurrences is high, performance and resource problems can occur.

Note:
Excessive use of extended MU and PE fields might cause performance and resource problems. These can
result in a work storage overflow, resulting in response code 9 (ADARSP009). If this should happen,
increase the ADARUN LP size for the database.

All MU fields and PE groups and other fields must fit into one compressed record. If you are using
spanned records (introduced with Adabas 8), more MU fields and PE groups can be stored.

28

Field OptionsAdabas Design

The following figure illustrates the four field types in a single record structure.

A PE field cannot be nested within another PE group. Nesting an MU field within a PE group, as shown in
the figure above, is permitted but complicates programming by introducing a two-dimensional array. It
also has implications for data access: when Adabas accesses the periodic group, it returns only the first
occurrence of the MU for each occurrence of the PE returned.

The unique characteristic of the periodic group and the reason for choosing the periodic group structure is
its ability to maintain the order of occurrences. If a periodic group originally contains three occurrences
and the first or second occurrence is later deleted, those occurrences are set to nulls; the third occurrence
remains in the third position. This contrasts with the way leading null entries are handled in multiple-value
fields. The individual values in a multiple-value field do not retain positional integrity if one of the values
is removed.

If a file has been established with extended MU or PE limits, you should not read the occurrence count of
an MU field or PE group into a one-byte field in the record buffer. If you try, Adabas returns response
code 55 (ADARSP055), subcode 9. Therefore, any application program that reads the occurrence count
using an xxC element in the format buffer (for example, FB=’MUC.’ or FB=’MUC,1,B.’) must be
changed to read the occurrence count into a field with two or more bytes (for example, FB=’MUC,2,B.’ or
FB=’MUC,4,B.’).

Blank Compression Option NB

The NB option can be used with LA and LB fields to control blank compression. When specified, the NB
option indicates that Adabas should not remove trailing blanks for the field; when not specified, Adabas
removes trailing blanks when storing an alphanumeric or wide-character field value. If you specify the NB
option for a field, you must also specify the NU or NC option for the field; NB processing requires the use
of NC or NU as well.

29

Adabas DesignField Options

Note:
Fields specified without the NB option can lead to differences in the stored and retrieved lengths of the
fields. The retrieved length of a non-NB field is likely to be smaller than the length specified for the field
when it is stored due to blank compression. This may matter if the value if not really a character string, but
rather a binary value that happens to end with the character codes for a blank. Therefore, if you want the
stored and retrieved lengths of a field to be the same, use the NB option.

Adabas does not allow the storing of a field with a length of zero unless the field has been defined with
the NB option. One way to specify a length of zero for a large object (LOB) field L1 would be, for
instance, via FB=’L1L,4,B,L1,*,A.’ and RB=x’00000000’ . Adabas accepts this construction if
field L1 has been defined with the NB-option (for example, L1,0,A,LB,NU,NB) and will return the
length of zero if the field is later read. However, if the field has been defined without the NB option (for
example, L1,0,A,LB,NU), Adabas rejects the attempt to store the zero-length value with response code
52 (ADARSP052), subcode 2. Without the NB option, an empty field should be stored as a single blank
(for example, FB=’L1L,4,B,L1,*,A.’ and RB=x’0000000140’).

For examples of this, read Read Operations, Length Indicators, and the NB (No Blank Compression)
Option.

SQL Compatibility Options NC and NN

Special data definition options are included in Adabas to accommodate Software AG’s mainframe Adabas
SQL Gateway (ACE) and other structured query language (SQL) database query languages that require
SQL-compatible null representation.

A field designated with the NC (not counted) option may contain a null value that satisfies the SQL
interpretation of a field having no value. An NC field containing a null means that no field value has been
entered; that is, the field’s value is not defined.

This undefined state differs from a null value assigned to a non-NC field for which no value has been
specified: a non-NC field’s null means the value in the field is either zero or blank, depending on the
field’s format.

The NN (not null) option can be specified only for NC-defined fields. It indicates that an NC field must
always have a value defined; it cannot contain an SQL null. This ensures that the field cannot be left
undefined when a record is either created or updated. The field value may be zero or blank, however.

Special Fields and Descriptor Fields

The FDT indicates whether a field is a parent field for a collation descriptor, subfield, superfield,
subdescriptor, superdescriptor, hyperdescriptor, or phonetic descriptor. Information about any special
fields and descriptors (collation descriptors, subdescriptors, subfields, superdescriptors, superfields,
phonetic descriptors, and hyperdescriptors) in a file is maintained in the special descriptor table (SDT)
part of the FDT.

30

 Special Fields and Descriptor FieldsAdabas Design

 SPECIAL DESCRIPTOR TABLE

 I I I I I I
 TYPE I NAME I LENGTH I FORMAT I OPTIONS I STRUCTURE I
 I I I I I I
 -------I------I--------I--------I----------------------I----------------I
 I I I I I I
 SUPER I H1 I 4 I B I DE,NU I AU (1 - 2) I
 I I I I I AV (1 - 2) I
 SUB I S1 I 4 I A I DE I AO (1 - 4) I
 SUPER I S2 I 26 I A I DE I AO (1 - 6) I
 I I I I I AE (1 - 20) I
 SUPER I S3 I 12 I A I DE,NU,PE I AR (1 - 3) I
 I I I I I AS (1 - 9) I
 I I I I I I
 PHON I PH I I I I PH =PHON(AE) I
 I I I I I I
 COL I Y1 I 20 I W I DE I CDX 8,PA I
 COL I Y2 I 12 I A I DE,NU,PE I CDX 1,AR I
 I I I I I I
 I I I I I I

Along with the name, length, format, and specified options of each special field and descriptor, this table
provides the following information:

Column Explanation

TYPE COL Collation descriptor

HYPER Hyperdescriptor

PHON Phonetic descriptor

SUB Subfield/subdescriptor

SUPER Superfield/superdescriptor

STRUCTURE The component fields and field bytes of the sub-, super-, or
hyperdescriptor. Phonetic descriptors show the equivalent
alphanumeric elementary fields. Collation descriptors show the
associated collation descriptor user exit and the name of the parent
field.

This section describes the special fields and descriptors:

Collation Descriptor
Hyperdescriptor
Phonetic Descriptor
Subfield / Superfield
Subdescriptor
Superdescriptor

31

Adabas Design Special Fields and Descriptor Fields

Collation Descriptor

An alphanumeric or wide-character field can be defined as a parent field of a collation descriptor. A
collation descriptor is used to sort field values in a special user-defined sequence. The LF command
reports the collation descriptor field information.

A collation descriptor is assigned a collation descriptor user exit (1-8) which encodes the collation
descriptor value and decodes it back to the original field value. The ADARUN parameter CDXnn is used
to specify collation descriptor user exits.

Hyperdescriptor

The hyperdescriptor option can be used to generate descriptor values based on a user-supplied algorithm.
Up to 31 different hyperdescriptors can be defined for a single physical Adabas database. Each
hyperdescriptor must be named by an appropriate HEXnn ADARUN statement parameter in the job where
it is used.

With hyperdescriptors, fuzzy matching is possible; i.e., retrieving data based on similar rather than on
exact search criteria. Hyperdescriptors allow multiple virtual indexes, meaning that several different
search index entries can be made for a single data field.

Hyperdescriptors can be used to implement n-component superdescriptors, derived keys, or other key
constructs. Using hyperdescriptors, it is possible to develop applications that are simpler and more flexible
than applications based on a strictly normalized relational structure.

One application area for hyperdescriptors is name processing. For example, the name SCHROEDER
could be stored not only with the index SCHROEDER itself, but also with the virtual indexes
SCHRODER, SCHRADER, or any other variation of the name. Thus, although only the name
SCHROEDER is physically stored in the data area of the database, multiple search indexes exist to the
data. If, subsequently, a search is made for the name SCHRODER, the record SCHROEDER will be
found.

A more sophisticated application area for hyperdescriptors is fingerprint matching, in which typical
characteristics of fingerprints can form the basis of a fuzzy matching algorithm; i.e., the original
fingerprint is stored in the database, but any number of search indexes can be made to the fingerprint,
based on an algorithm that allows small-scale deviations from the original.

Phonetic Descriptor

A phonetic descriptor may be defined and used to search for all records that contain similar phonetic
values. The phonetic value of a descriptor is determined by an internal algorithm based on the first 20
bytes of the field value with only alphabetic values being considered (numeric values, special characters
and blanks are ignored).

Subfield / Superfield

A portion of a field (subfield) or any combination of fields (superfield) may be defined as an elementary
field (read MU and PE Options and Field Types). Subfields and superfields may be used for read
operations only. They may only be changed by updating the original fields.

32

 Special Fields and Descriptor FieldsAdabas Design

Subdescriptor

A subdescriptor is part of a single field used as a descriptor. The field from which the subdescriptor is
derived may or may not be an elementary descriptor (read Descriptor Options DE, UQ, and XI. If a search
criteria involves a range of values contained in the first n bytes of an alphanumeric field or the last n bytes
of a numeric field, a subdescriptor may be defined using only the relevant bytes of the field. A
subdescriptor allows you to increase the efficiency of a search by specifying a single value rather than a
range of values.

For example, if the first two bytes of a five-byte field refer to a geographical region and you want to
retrieve all records for region 11 without using a subdescriptor, you would have to search for all records in
the range 11000-11999. If you define a subdescriptor comprising the first two bytes of the field, you could
search for all records with 11 in the subdescriptor.

Superdescriptor

A superdescriptor combines all or parts of 2-20 fields. The fields from which the superdescriptor is
derived may or may not be elementary descriptors. When search criteria involve values for a combination
of fields, using a superdescriptor is more efficient than using a combination of several elementary
descriptors.

For example, to search for customers by last name within regions, you could create a superdescriptor by
combining the first two bytes (i.e., the geographical region indicator) of the five-byte customer number
field and the entire customer last name field.

For complete information about defining superdescriptors, read SUPDE: Superdescriptor Definition in the
ADACMP documentation .

Spanned Records
With Adabas 8, records can be spanned in a database. In the database, the logical record is split into a
number of physical records, each part fitting into a single Data Storage (DS) block. Spanned records may
be segmented at the field or byte level. The resulting physical records are each assigned individual ISNs.
The first physical record is called the primary record and contains the beginning of the compressed record
and is assigned a primary ISN. The remaining physical records are called secondary records and contain
the rest of the data of the logical record. Secondary records are assigned secondary ISNs. These ISNs do
not affect the user ISNs assigned when using the N2 command or the ISNs used when using the I option
of the L1 command. If spanned records are used, a secondary address converter is used to map the
secondary ISNs to the RABNs of the Data Storage blocks where the secondary records are stored.

A spanned record is comprised of one primary record and one or more secondary records. However, the
number of segments in a spanned record is limited. The Adabas nucleus allows up to five physical records
(one primary record and four secondary records) in a spanned record.

Spanned records are not directly visible to application programs. Applications always address spanned
records via the primary ISN.

Spanned records are also supported in expanded Adabas files and in multi-client files.

Note:
Spanned record support must be explicitly allowed for a file. You can do this using the ADADBS
RECORDSPANNING function or the SPAN parameter of ADACMP COMPRESS. For more

33

Adabas DesignSpanned Records

information, read the Adabas Utilities Manual documentation for the ADADBS and ADACMP utilities.

This section covers the following topics:

Spanned Record Structure

Allowing Spanned Records in Files

Secondary Record Segmentation

Padding Factors

Spanned Record ISN Use

ADARUN Parameters Affected

Reporting on Spanned Records

Securing Spanned Records

Spanned Record Structure

A spanned logical record is comprised of one or more physical records, including a single primary record
and one or more secondary records. The number of records that comprise a spanned record is limited. The
Adabas nucleus allows up to five physical records (one primary record and four secondary records) in a
spanned record.

The primary and secondary records in a spanned record are connected using their ISNs. The header of
each physical record contains the ISN of the current record, the ISN of the primary record, as well as the
ISN of the next secondary record. In addition, the header indicates whether the current record is the
primary record or a secondary record.

The header of each physical record also provides the length of the record -- even if it is a segmented
record (in which case, it is the length of the segment).

Allowing Spanned Records in Files

Files can contain spanned records only if it has been explicitly requested via the SPAN parameter of
ADACMP COMPRESS, the RECORDSPANNING function of ADADBS or the equivalent Adabas
Online System function. The ADAREP database report and the Adabas Online System report functions
indicate whether or not a file has been defined to allow spanned records.

The SPAN attribute of a file is retained in an ADAULD UNLOAD function. In other words, when a file is
unloaded, deleted, and reloaded, its support for spanned records remains unchanged.

Similar rules hold for files that allow more than 191 MU or PE occurrences. For more information on
identifying MU and PE occurrences greater than 191 in a compressed record, read Identifying MU and PE
Occurrences Greater Than 191 in Compressed Records.

34

Spanned Record StructureAdabas Design

Secondary Record Segmentation

Secondary records are segmented either by field or by byte. For performance reasons, segmentation is
done by field whenever possible. However, when any non-LB (large object) type field is larger than the
data storage block size, the record is split at the byte level. If a field is larger than the remaining space in
the data storage block, but smaller than the data storage block size, than the field is split at the field level
and not at the byte level. The header of each secondary record indicates which type of segment record it
is.

Padding Factors

Padding factors are generally ignored for spanned records, in an attempt to fully use the block. So it is
frequently listed as zero on reports. The padding factor is only used in the last, short, segment of a
spanned record.

Spanned Record ISN Use

Primary and secondary records are addressed by Adabas using address converters (AC). However, the
primary address converter maps only the ISNs of primary records to the RABNs of their corresponding
Data Storage blocks. If spanned records are used, a secondary address converter is used to map the
secondary ISNs to the RABNs of the Data Storage blocks where the secondary records are stored.
Therefore, spanned records have no affect on the index structure, since there is still only one index for
each record.

Separate ISN ranges are maintained for primary and secondary ISNs. Wherever an ISN is stored or
handled, it distinguishes between whether the action is for a primary or a secondary ISN.

All commands should be specified using the primary record’s ISN; secondary record ISNs are kept hidden
and cannot be used. Physical sequential commands will automatically skip the secondary records in Data
Storage. Read commands that specify secondary ISNs will receive an error (response code 113,
ADARSP113).

The ISN of the primary records are included in TOPISN and MAXISN values. Secondary record ISNs are
not. Secondary ISNs are included in the MINSEC and MAXSEC values instead. A file containing
spanned records can be loaded by specifying an MINISN value, but the MINISN must refer only to a
primary record ISN (never a secondary record ISN).

ADARUN Parameters Affected

The following ADARUN parameters may need to be changed to support files with spanned records.

The number of ISNs in the hold queue per user (NISNHQ parameter) may need to be increased as the
number of spanned records to be updated also increases.

The length of the Adabas work pool (LWP) may also need to be increased since space is needed to
store both the before and after image of the spanned record and to support several update threads
running in parallel. Space may also be needed to accommodate larger descriptor value tables (up to
65,534 occurrences of descriptors in PE groups are permitted).

The SRLOG parameter indicates how spanned records are logged to the protection logs (PLOGs).
Complete or partial logging can occur.

35

Adabas DesignSecondary Record Segmentation

For complete information on these and other ADARUN parameters, read Adabas Initialization (ADARUN
Statement).

Reporting on Spanned Records

Maximum record length statistics have no relevance with spanned files. Utilities that report on the
maximum record length will now report that the statistics as "N/A" (not applicable). The FCB will contain
high values in the maximum record length field for a file that is using spanned records.

Securing Spanned Records

Files containing spanned records can be ciphered and protected with security-by-value. If the primary
record’s ISN is referenced, all secondary segment records must be read, and therefore, processing is
time-sensitive.

36

Reporting on Spanned RecordsAdabas Design

	Adabas Design
	Adabas Entities
	Adabas Limits
	Adabas Space Management

	Database Components
	Data Storage
	Free Space and Space Reusage
	Compression

	Associator
	Inverted Lists
	Address Converter

	Work
	Other Components
	Sort and Temp Areas
	Logs

	Database Files
	System Files
	Coupled Files
	Physical Coupling
	Logical or Soft Coupling

	Structuring Files to Enhance Performance
	Expanded Files
	Multiple Record Types in One File
	Multiclient Files
	Controlled Data Redundancy

	Record and Field Definitions
	Record Structure and the FDT
	Field Levels and Group Fields
	System Fields
	Allowed Types of System Fields
	Defining System Fields
	System Fields as MU Fields
	System Field Rules
	System Field Processing by an Adabas Nucleus

	Field Names
	Field Length and Data Format
	Field Options
	 Descriptor Options DE, UQ, and XI
	System Field Options SY and CR
	Date-Time Edit Mask Option DT
	Time Zone Option TZ
	 Data Compression Options FI and NU
	 Encoding Conversion Option NV
	Long Alpha Option LA
	Large Object Option LB
	Comparing LA and LB Fields
	 MU and PE Options and Field Types
	Blank Compression Option NB
	 SQL Compatibility Options NC and NN

	 Special Fields and Descriptor Fields
	Collation Descriptor
	Hyperdescriptor
	Phonetic Descriptor
	Subfield / Superfield
	Subdescriptor
	Superdescriptor

	Spanned Records
	Spanned Record Structure
	Allowing Spanned Records in Files
	Secondary Record Segmentation
	Padding Factors
	Spanned Record ISN Use
	ADARUN Parameters Affected
	Reporting on Spanned Records
	Securing Spanned Records

