
Adabas Control Block Structures (ACB and
ACBX)
Two kinds of control blocks are now supported by Adabas:

The Adabas control block (ACB) is the classic control block, used for Adabas releases prior to
Adabas version 8. If you have been using releases of Adabas prior to Adabas 8, the direct calls used
by your applications use the ACB. It is important to note that Adabas 8 fully supports the ACB, so
you are not required to update your existing applications once you install Adabas 8.

The extended Adabas control block (ACBX) can be used in Adabas releases starting with Adabas 8.
The ACBX supports the increased buffer sizes and segmented buffers introduced in Adabas 8. If you
have purchased and installed Adabas 8 (or later), you can use the ACBX in direct calls from your
applications. Otherwise, you cannot.

The use of each applicable field in the control blocks is explained with each Adabas command in
Commands. To ensure user program compatibility with later Adabas releases, all control block fields not
used by a particular command should be set to zeros or blanks, depending on field type.

The position of each field in a control block is fixed. In addition, all values in the control block must be
entered in the data type defined for the field. For example, the ISN field is defined as binary format;
therefore, any entry made in this field must be in binary format.

Notes:

1. Adabas and other Software AG program products use some control block fields for internal purposes,
and may return values in some fields that have no meaning to the user. These uses and values may be
release-dependent, and are not appropriate for program use. Software AG therefore recommends that
you use only the fields and values described in this documentation. In addition, you should always
initialize unused control block fields with either zeros or blanks, according to their field types.

2. Some Adabas-dependent Software AG products return control block values such as response codes
and subcodes. Refer to the documentation for those products for a description of the product-specific
control block values.

This chapter covers the following topics:

Adabas Control Block (ACB)

Extended Adabas Control Block (ACBX)

Differences between the ACB and the ACBX

Logging the Control Blocks

Adabas Control Block (ACB)
The Adabas control block (ACB) is 80 bytes long. This section covers the following topics:

1

Adabas Control Block Structures (ACB and ACBX)Adabas Control Block Structures (ACB and ACBX)

ACB Format

ACB Fields

ACB DSECT

ACB Examples

ACB Format

The following table describes the format of the ACB. We recommend that you set unused ACB fields to
binary zeros before the direct call is initiated.

DSECT
Name

Field Control Block
Position

Offset Length (in
Bytes)

Format

ACBTYPE Call Type 1 00 1 binary

reserved (reserved) 2 01 1 binary

ACBCMD Command
Code

3-4 02 2 alphanumeric

ACBCID Command ID 5-8 04 4 alphanumeric /
binary

ACBFNR File Number 9-10 08 2 binary

ACBRSP Response Code11-12 0A 2 binary

ACBISN ISN 13-16 0C 4 binary

ACBISL ISN Lower
Limit

17-20 10 4 binary

ACBISQ ISN Quantity 21-24 14 4 binary

ACBFBL Format Buffer
Length

25-26 18 2 binary

ACBRBL Record Buffer
Length

27-28 1A 2 binary

ACBSBL Search Buffer
Length

29-30 1C 2 binary

ACBVBL Value Buffer
Length

31-32 1E 2 binary

ACBIBL ISN Buffer
Length

33-34 20 2 binary

ACBCOP1 Command
Option 1

35 22 1 alphanumeric

ACBCOP2 Command
Option 2

36 23 1 alphanumeric

2

ACB FormatAdabas Control Block Structures (ACB and ACBX)

DSECT
Name

Field Control Block
Position

Offset Length (in
Bytes)

Format

ACBADD1 Additions 1 37-44 24 8 alphanumeric /
binary

ACBADD2 Additions 2 45-48 2C 4 alphanumeric /
binary

ACBADD3 Additions 3 49-56 30 8 alphanumeric

ACBADD4 Additions 4 57-64 38 8 alphanumeric

ACBADD5 Additions 5 65-72 40 8 alphanumeric /
binary

ACBCMDT Command
Time

73-76 48 4 binary

ACBUSER User Area 77-80 4C 4 not applicable

ACB Fields

The content of the control block fields and buffers must be set before an Adabas command (call) is issued.
Adabas also returns one or more values or codes in certain fields and buffers after each command is
executed.

We recommend that you set unused ACB fields to binary zeros before the direct call is initiated.

Each of the fields in the ACB is described in this section, in the order they appear in the ACB format. The
descriptions are valid for most Adabas commands; however, some Adabas commands use some control
block fields for purposes other than those described here. For complete information about how these fields
are used by each Adabas command, read Commands.

Call Type (ACBTYPE)

The first byte of the Adabas control block (ADACB) is used by the Adabas API to determine the
processing to be performed. For more information, read Linking Applications to Adabas.

The values for logical requests are:

Hex Indicates ...

X’00’ a 1-byte file number (file numbers between 1 and 255) or DBID.

X’30’ a 2-byte file number (file numbers between 1 and 65535) or DBID.

X’40’ values greater than or equal to a blank. These are accepted as "logical
application calls" to maintain compatibility with earlier releases of
Adabas.

Note:
The X’44’, X’48’, and X’4C’ calls are reserved for use by Software AG and are therefore not accepted.

3

Adabas Control Block Structures (ACB and ACBX)ACB Fields

All other values in the first byte of the ADACB are reserved for use by Software AG.

Because an application can reset the value in the first byte of the ADACB on each call, it is possible to
mix both one- and two-byte file number (DBID) requests in a single application. In this case, you must
ensure the proper construction of the file number (ACBFNR) and response code (ACBRSP) fields in the
ADACB for each call type. See the discussions of these fields for more information.

Software AG recommends that an application written to use two-byte file numbers always place X’30’ in
the first byte of the ADACB, the logical database ID in the ACBRSP field, and the file number in the
ACBFNR field. The application can then treat both the database ID and file number as 2-byte binary
integers, regardless of the value for the file number in use.

Applications written in Software AG’s Natural language need not include this first byte of the Adabas
ACB because Natural supplies appropriate values.

Command Code (ACBCMD)

The command code defines the command to be executed, and comprises two alphanumeric characters (for
example, OP, A1, BT).

Command ID (ACBCID)

The command ID field is used by many Adabas commands to identify logical read sequences, search
results, and (optionally) decoded formats for use by subsequent commands. You can specify alphanumeric
or binary command IDs as you choose or you can request the generation of new binary command IDs by
Adabas. See the section General Programming Considerations for more information about command IDs.
For ET, CL, and some OP commands, Adabas returns a binary transaction sequence number in the
command ID field.

File Number (ACBFNR)

Note:
For commands that operate on a coupled file pair, this field specifies the primary file from which ISNs or
data are returned.

The file number may be one or two bytes.

Single-byte File Numbers and DBIDs

For an application program issuing Adabas commands for file numbers between 1 and 255 (single byte),
build the control block as follows:

Position Action

1 Place X’00’ in the first byte of the ADACB.

9 Place the file number in the second (rightmost) byte of the ACBFNR field
of the ADACB. The first (leftmost) byte of the ACBFNR field is used to
store the logical (database) ID or number.

If the first byte in ACBFNR is set to zero (B’0000 0000’), the Adabas API uses either the database ID
from the ADARUN cards provided in DDCARD input data, or the default database ID value assembled
into the link routine at offset X’80’.

4

ACB FieldsAdabas Control Block Structures (ACB and ACBX)

Double-byte File Numbers and DBIDs

Adabas permits the use of file numbers greater than 255 on logical requests. For an application program
issuing Adabas commands for file numbers between 256 and 5000 (two-byte), build the control block as
follows:

Position Action

1 Place X’30’ in the first byte of the ADACB.

9 Use both bytes in ACBFNR for the file number, and use the two bytes
in ACBRSP for the database (logical) ID.

If the ACBRSP field is zero, the Adabas API uses either the database ID from the ADARUN cards
provided in DDCARD input data, or the default database ID value assembled into the link routine at offset
X’80’.

Response Code (ACBRSP)

The response code field is used for two-byte database IDs.

It is also always set to a value when the Adabas command is completed. Successful completion is
normally indicated by a response code of zero. For repeatable commands that process sequences of
records or ISNs, other response codes indicate end-of-file or end-of-ISN-list. Non-zero response codes are
defined in the Adabas Messages and Codes.

ISN (ACBISN)

The ISN field both specifies a required four-byte Adabas ISN value required by the command and, where
appropriate, returns either the first ISN of a command-generated ISN list, or an ISN of the record read by
the command.

ISN Lower Limit (ACBISL)

ISN lower limit specifies the starting point in an ISN list or range where processing is to begin. For OP
commands, an optional user-specific non-activity timeout value can be specified in this field. An OP
command also returns Adabas release information in this field (see also the Additions 5 field description).
When using the multifetch option, this field holds an optional maximum count of prefetched records to
return; if zero, there is no limit.

ISN Quantity (ACBISQ)

The ISN quantity is a count of ISNs returned by a command. The count can be a total of all ISNs in an
ISN list, or the total ISNs entered into the ISN buffer from a larger pool of ISNs by this operation. The OP
command uses this field to specify an optional user-specific transaction time limit; it returns system and
call type information flags in the ISN quantity field (see also the Additions 5 field description). In
addition, Sx commands using security-by-value set this field to 1 when more than one ISN meet the search
criteria.

5

Adabas Control Block Structures (ACB and ACBX)ACB Fields

Buffer Length: Format, Record, Search, Value, and ISN (ACBFBL, ACBRBL, ACBSBL,
ACBVBL, and ACBIBL)

The format, record, search, value, and ISN buffer length fields specify the size of the related buffers. A
buffer’s size usually remains the same throughout a transaction. In some ISN-related operations, the ISN
buffer size value determines how a command processes ISNs; for example, specifying a zero ISN buffer
length causes some commands to store a resulting ISN list in the Adabas work area. If a buffer is not
needed for an Adabas command, the corresponding length value should be set to zero. In some cases
(multifetch option, as an example), there is a limit on the length of the buffer; see the specific command
descriptions for more information.

Command Option 1 and Command Option 2 (ACBCOP1 and ACBCOP2)

The Command Option 1 and 2 fields allow you to specify processing options (ISN hold, command-level
prefetching control, returning of ISNs, and so on).

Additions 1 (ACBADD1)

The Additions 1 field sometimes requires miscellaneous command-related parameters such as qualifying
descriptors for creating ISN lists, or the second file number of a coupled file pair.

Additions 2 (ACBADD2)

The Additions 2 field returns compressed record length in the leftmost (high-order) two bytes and
decompressed length of record buffer-selected fields in the rightmost (low-order) two bytes for all An, Ln,
Nn, and S1/2/4 commands. OP (open) and RE (read ET data) commands return transaction sequence
numbers in this field. If Entire Net-work is installed, some response codes return the node ID of the
"problem" node in the leftmost two bytes of the Additions 2 field.

If a command results in a nucleus response code, the addition 2 field’s low-order (rightmost) two bytes
(47 and 48) can contain a hexadecimal subcode to identify the cause of the response code. For example, if
no OP command began the session and the ADARUN statement specified OPENRQ=YES, a response
code 9 (ADARSP009), subcode 66 is returned and these bytes are set to the hexadecimal value 0042
corresponding to the decimal 66. Response codes and their subcodes (as decimal equivalents) are
described in the section Nucleus Response Codes in the Adabas Messages and Codes.

Additions 3 (ACBADD3)

The Additions 3 field is for providing a user‘s password for accessing password-protected files. If the file
containing the field is actually password-protected, the password in this field is replaced with spaces
(blanks) during command execution before Adabas returns control to the user program.

Additions 4 (ACBADD4)

The Additions 4 field must be set to a cipher code for those instructions that read or write encrypted
(ciphered) database data files. For commands requiring multiple command IDs but no cipher code, one of
the command IDs is specified in this field.

When processed by the nucleus, an Adabas call returns the Adabas release (version and revision) level
numbers and the database ID in the low-order (rightmost) three bytes of the Additions 4 field with the
format vrnnnn where

6

ACB FieldsAdabas Control Block Structures (ACB and ACBX)

v is the Adabas version number;

r is the Adabas revision level number; and

nnnn is the number (hexadecimal) of the Adabas database that processed
the call.

For example, "741111" indicates that an Adabas version 7.4 nucleus on database 4369 processed the call.

Additions 5 (ACBADD5)

The high-order (leftmost) two bits of the first byte of the Additions 5 field control the unique or global
format ID selection; the low-order (rightmost) four or eight bytes can contain either an optional unique or
global format ID, respectively. Refer to the section Using a Global Format ID for a complete description
of this feature. A global format ID to be deleted can be specified in this field for the RC (release command
ID) command. When completed, the OP command returns any optionally specified non-activity and/or
transaction timeout values in the Additions 5 field.

Command Time (ACBCMDT)

The command time field is used by Adabas to return the elapsed time which was needed by the nucleus to
process the command. This does not include the times when the thread was waiting on Adabas I/O
operations or other resources. The time, counted in 16-microsecond units, is called "Adabas thread time".
The returned count is in binary format.

User Area (ACBUSER)

The user area field is reserved for use by the user program. When making logical user calls, the user area
is neither written nor read by Adabas.

For compatibility with future Adabas releases, Software AG recommends that you set unused control
block fields to null values corresponding to the field’s data type.

ACB DSECT

The ACB DSECT can be found in member ADACB of the distributed Adabas SRCE library.

ACB Examples

Programming examples that show control block construction in a variety of host languages are provided in
section Programming Examples of this documentation.

Assembler Examples

COBOL Examples

PL/ I Examples

FORTRAN Examples

7

Adabas Control Block Structures (ACB and ACBX)ACB DSECT

Extended Adabas Control Block (ACBX)
The extended Adabas control block, the ACBX, supports the increase in the buffer sizes in Adabas
commands. It is 192 bytes in length (versus the 80 bytes used by the ACB). The existing, non-extended
Adabas Control Block (ACB) is still supported and your existing applications will still work, but if you
want to take advantage of some of the extended features provided in Adabas 8, you must use the new
ACBX. Specifically, you must use the ACBX if you are using the long buffer (buffers longer than 32K) or
segmented buffer (multiple format/record buffer pairs or format/record/multifetch buffer triplets) features
of Adabas 8.

Otherwise, your application programs may freely switch between Adabas calls using the existing direct
call interface (ACB) and calls using the new interface (ACBX).

ACBX Format

ACBX Fields

ACBX DSECT

ACBX Format

The following table describes the format of the ACBX. We recommend that you set unused ACBX fields
to binary zeros before the direct call is initiated.

DSECT Field
Name

Field Control
Block
Position

Offset Length (in
bytes)

Format

ACBXTYP Call Type 1 00 1 binary

ACBXRSV1 Reserved 1 2 01 1 binary

ACBXVER Version Indicator 3-4 02 2 binary

ACBXLEN ACBX Length 5-6 04 2 binary

ACBXCMD Command Code 7-8 06 2 alphanumeric

ACBXRSV2 Reserved 2 9-10 08 2 binary

ACBXRSP Response Code 11-12 0A 2 binary

ACBXCID Command ID 13-16 0C 4 alphanumeric/
binary

ACBXDBID Database ID 17-20 10 4 numeric

ACBXFNR File Number 21-24 14 4 numeric

ACBXISNG 8-Byte ISN 25-32 18 8 do not use

ACBXISN ISN 29-32 1C 4 binary

ACBXISLG 8-Byte ISN Lower
Limit

33-40 20 8 do not use

ACBXISL ISN Lower Limit 37-40 24 4 binary

8

Extended Adabas Control Block (ACBX)Adabas Control Block Structures (ACB and ACBX)

DSECT Field
Name

Field Control
Block
Position

Offset Length (in
bytes)

Format

ACBXISQG 8-Byte ISN Quantity 41-48 28 8 do not use

ACBXISQ ISN Quantity 45-48 2C 4 binary

ACBXCOP1 Command Option 1 49 30 1 alphanumeric

ACBXCOP2 Command Option 2 50 31 1 alphanumeric

ACBXCOP3 Command Option 3 51 32 1 alphanumeric

ACBXCOP4 Command Option 4 52 33 1 alphanumeric

ACBXCOP5 Command Option 5 53 34 1 alphanumeric

ACBXCOP6 Command Option 6 54 35 1 alphanumeric

ACBXCOP7 Command Option 7 55 36 1 alphanumeric

ACBXCOP8 Command Option 8 56 37 1 alphanumeric

ACBXADD1 Additions 1 57-64 38 8 alphanumeric/
binary

ACBXADD2 Additions 2 65-68 40 4 binary

ACBXADD3 Additions 3 69-76 44 8 alphanumeric/
binary

ACBXADD4 Additions 4 77-84 4C 8 alphanumeric

ACBXADD5 Additions 5 85-92 54 8 alphanumeric/
binary

ACBXADD6 Additions 6 93-100 5C 8 alphanumeric/
binary

ACBXRSV3 Reserved 3 101-104 64 4 binary

ACBXERRG Error Offset in
Buffer (64-bit)

105-112 68 8 do not use

ACBXERRA Error Offset in
Buffer (32-bit)

109-112 6C 4 binary

ACBXERRB Error Character Field113-114 70 2 alphanumeric

ACBXERRC Error Subcode 115-116 72 2 binary

ACBXERRD Error Buffer ID 117 74 1 alphanumeric

ACBXERRE Reserved for future
use

118 75 1 do not use

ACBXERRF Error Buffer
Sequence Number

119-120 76 2 numeric

ACBXSUBR Subcomponent
Response Code

121-122 78 2 binary

9

Adabas Control Block Structures (ACB and ACBX)ACBX Format

DSECT Field
Name

Field Control
Block
Position

Offset Length (in
bytes)

Format

ACBXSUBS Subcomponent
Response Subcode

123-124 7A 2 binary

ACBXSUBT Subcomponent Error
Text

125-128 7C 4 alphanumeric

ACBXLCMP Compressed Record
Length

129-136 80 8 binary

ACBXLDEC Decompressed
Record Length

137-144 88 8 binary

ACBXCMDT Command Time 145-152 90 8 binary

ACBXUSER User Area 153-168 98 16 not applicable

ACBXRSV4 Reserved 4 169-193 A8 24 do not touch

ACBX Fields

The content of the control block fields and buffers must be set before an Adabas command (call) is issued.
Adabas also returns one or more values or codes in certain fields and buffers after each command is
executed.

We recommend that you set unused ACBX fields to binary zeros before the direct call is initiated.

Each of the fields in the ACBX is described in this section, in the order they appear in the ACBX format.
The descriptions are valid for most Adabas commands; however, some Adabas commands use some
control block fields for purposes other than those described here. For complete information about how
these fields are used by each Adabas command, read Commands.

Call Type (ACBXTYP)

The first byte of the Adabas control block (ADACBX) is used by the Adabas API to determine the
processing to be performed. See Linking Applications to Adabas in the Adabas Operations documentation
for more information.

When issuing an Adabas command, set this field to binary zeros. This indicates that a logical user call is
being made (ACBXTUSR equate).

The following values in ACBXTYPE are reserved for use by Software AG and are therefore not accepted
by application programs: X’04’, X’08’, X’0c’, X’10’, X’14’, X’18’, X’1c’, X’20’, X’24’, X’28’, X’2c’,
X’34’, X’38’, X’3c’, X’44’, X’48’, and X’4c’.

Applications written in Software AG’s Natural language need not include this first byte of the Adabas
ACBX because Natural supplies appropriate values.

10

ACBX FieldsAdabas Control Block Structures (ACB and ACBX)

Reserved 1 (ACBXRSV1)

This field is reserved. Set this field to zero.

Version Indicator (ACBXVER)

The version indicator identifies whether the Adabas control block uses the new ACBX or the classic ACB
format. If this field is set to a value starting with the letter "F" (for example "F2"), Adabas treats the
Adabas control block as though it is specified in the ACBX format. If this field is set to any other value,
Adabas treats the control block as though it is specified in the classic ACB format.

ACBX Length (ACBXLEN)

The ACBX length field should be set to the length of the ACBX structure passed to Adabas (the
ACBXQLL equate, currently 192).

Command Code (ACBXCMD)

The command code defines the command to be executed, and comprises two alphanumeric characters (for
example, OP, A1, BT).

Reserved 2 (ACBXRSV2)

This field is reserved. Set this field to zero.

Response Code (ACBXRSP)

This field gets set to a value when the Adabas command is completed. Successful completion is normally
indicated by a response code of zero. For repeatable commands that process sequences of records or ISNs,
other response codes indicate end-of-file or end-of-ISN-list. Non-zero response codes are defined in the
Adabas Messages and Codes documentation.

Command ID (ACBXCID)

The command ID field is used by many Adabas commands to identify logical read sequences, search
results, and (optionally) decoded formats for use by subsequent commands. You can specify alphanumeric
or binary command IDs as you choose or you can request the generation of new binary command IDs by
Adabas. See the section General Programming Considerations for more information about command IDs.
For ET, CL, and some OP commands, Adabas returns a binary transaction sequence number in the
command ID field.

Database ID (ACBXDBID)

Use this field to specify the database ID. The Adabas call will be directed to this database.

This field is a four-byte binary field, but at this time only two-byte database IDs are supported. Therefore,
the database ID should be specified in the low-order part (rightmost bytes) of the field, with leading binary
zeros.

If this field is set to binary zeros, the Adabas API uses either the database ID from the ADARUN cards
provided in DDCARD input data or the default database ID value provided in the LNKGBLS module
linked with or loaded by the link routine.

11

Adabas Control Block Structures (ACB and ACBX)ACBX Fields

File Number (ACBXFNR)

Use this field to specify the number of the file to which the Adabas call should be directed.

This field is a four-byte binary field, but the file number should be specified in the low-order part
(rightmost bytes) of the field, with leading binary zeros.

Note:
For commands that operate on a coupled file pair, this field specifies the primary file from which ISNs or
data are returned.

ISN (ACBXISNG/ACBXISN)

The ISN field specifies any required Adabas ISN value required by the command and, where appropriate,
returns either the ISN of the record read by the command , or the first ISN of an ISN list generated by the
command.

The ACBXISN field is a four-byte binary field embedded in the eight-byte ACBXISNG field, which is
not yet used. Set the high-order part of the ACBXISNG field to binary zeros.

ISN Lower Limit (ACBXISLG/ACBXISL)

The ISN Lower Limit field specifies the starting point in an ISN list or range where processing is to begin.

For OP commands, an optional user-specific non-activity timeout value can be specified in this field. The
OP command also returns Adabas release information in this field.

When the multifetch option is used, this field holds an optional maximum count of records to be
prefetched; if zero, there is no limit.

The ACBXISL field is a four-byte binary field embedded in the eight-byte ACBXISLG field, which is not
yet used. Set the high-order part of the ACBXISLG field to binary zeros.

ISN Quantity (ACBXISQG/ACBXISQ)

The ISN Quantity field is the count of ISNs returned by a search (Sx) command. The count can be a total
of all ISNs in an ISN list, or the total ISNs entered into the ISN buffer segment from a larger pool of ISNs
by this operation. Search commands using security-by-value set the ISN Quantity to "1" when more than
one ISN meets the search criteria.

For an OP command, an optional user-specific transaction time limit may be specified in this field. The
OP command returns system and call type information in this field.

The ACBXISQ field is a four-byte binary field embedded in the eight-byte ACBXISQG field, which is
not yet used. Set the high-order part of the ACBXISQG field to binary zeros.

Command Options 1 through 8 (ACBXCOP1 through ACBXCOP8)

The Command Option 1 - 8 fields allow you to specify processing options (ISN hold, command-level
prefetching control, returning of ISNs, and so on). In Adabas 8.1, only the Command Option 1 and
Command Option 2 field are supported. However, the other Command Option fields are provided for
potential expansion in future Adabas releases.

12

ACBX FieldsAdabas Control Block Structures (ACB and ACBX)

Additions 1 (ACBXADD1)

The Additions 1 field sometimes requires miscellaneous command-related parameters such as qualifying
descriptors for creating ISN lists, or the second file number of a coupled file pair.

Additions 2 (ACBXADD2)

OP (open) and RE (read ET data) commands return transaction sequence numbers in this field.

Additions 3 (ACBXADD3)

The Additions 3 field is for providing a user’s password for accessing password-protected files. This field
is always reset to blanks during command execution.

Additions 4 (ACBXADD4)

If a command reads or writes records of an encrypted (ciphered) Adabas file, the Additions 4 field must be
set to the cipher code for that file. For commands requiring multiple command IDs but no cipher code, one
of the command IDs is specified in this field.

Adabas always resets this field to blanks during command execution.

When processed by a nucleus that is not running single-user mode (ADARUN MODE=SINGLE is not
specified), the Adabas call returns the Adabas release (version and revision) level numbers and the
database ID in the low-order (rightmost) three bytes of the Additions 4 field with the format vrnnnn where

v is the Adabas version number;

r is the Adabas revision level number; and

nnnn is the number (hexadecimal) of the Adabas database that processed
the call.

For example, "811111" indicates that an Adabas version 8.1 nucleus on database 4369 processed the call.

Additions 5 (ACBXADD5)

The high-order (leftmost) two bits of the first byte of the Additions 5 field control the unique or global
format ID selection; the low-order (rightmost) four or eight bytes can contain either an optional unique or
global format ID, respectively. A global format ID to be deleted can be specified in this field for the RC
(release command ID) command. When completed, the OP command returns any optionally specified
non-activity or transaction timeout values in the Additions 5 field.

Additions 6 (ACBXADD6)

This field is not used at this time. It must be set to binary zeros.

Reserved 3 (ACBXRSV3)

This field is reserved. Set this field must be set to binary zeros.

13

Adabas Control Block Structures (ACB and ACBX)ACBX Fields

Error Offset in Buffer (64-bit) (ACBXERRG)

The Error Offset in Buffer (64-bit) and the Error Offset in Buffer (32-bit) fields specify the offset in the
buffer, if any, where the error is detected during the direct call.

The Error Offset in Buffer (64-bit) field, ACBXERRG, is not yet available, but may be used in some later
release. For now, use the Error Offset in Buffer (32-bit) field, ACBXERRA.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXEFFE fields are only set when the response code is related to
buffer processing.

Error Offset in Buffer (32-bit) (ACBXERRA)

The Error Offset in Buffer (64-bit) and the Error Offset in Buffer (32-bit) fields specify the offset in the
buffer, if any, where the error is detected during the direct call.

The Error Offset in Buffer (64-bit) field, ACBXERRG, is not yet available, but may be used in some later
release. For now, use the Error Offset in Buffer (32-bit) field, ACBXERRA.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRF fields are only set when the response code is related to
buffer processing.

Error Character Field (ACBXERRB)

This field identifies the two-byte Adabas short name of the field, if any, that was being processed when
the error was detected.

The ACBXERRx fields are only set when a response code is returned from a direct call.

Error Subcode (ACBXERRC)

This field stores the subcode of the error that occurred during direct call processing.

The ACBXERRx fields are only set when a response code is returned from a direct call. If Entire
Net-work is installed, some response codes return the node ID of the problem node in this field.

Error Buffer ID (ACBXERRD)

This field contains the ID (from the ABDID field) of the buffer referred to by the ACBXERRA field, so
that the buffer causing the error can be identified, when multiple buffers are involved.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRF fields are only set when the response code is related to
buffer processing.

Reserved (ACBXERRE)

This field is reserved for future use. Do not use this field at this time.

14

ACBX FieldsAdabas Control Block Structures (ACB and ACBX)

Error Buffer Sequence Number (ACBXERRF)

This field contains the two-byte sequence number of the buffer segment containing the error (if any)
referred to by the ACBXERRA and ACBXERRD fields.

The ACBXERRx fields are only set when a response code is returned from a direct call. The
ACBXERRA, ACBXERRD, and ACBXERRF fields are only set when the response code is related to
buffer processing.

Subcomponent Response Code (ACBXSUBR)

This field contains the response code from any error that occurred when an Adabas add-on product
intercepts the Adabas command.

Subcomponent Response Subcode (ACBXSUBS)

This field contains the response subcode from any error that occurred when an Adabas add-on product
intercepts the Adabas command.

Subcomponent Error Text (ACBXSUBT)

This field contains the error text of any error that occurred when an Adabas add-on product intercepts the
Adabas command.

Compressed Record Length (ACBXLCMP)

This field returns the compressed record length when a record was read or written.

This is the length of the compressed data processed by the successful Adabas call. If the logical data
storage record spans multiple physical data records, the combined length of all associated physical records
may not be known. In this case, Adabas returns high values in the low-order word of this field.

Decompressed Record Length (ACBXLDEC)

This field returns the decompressed record length. This is the length of the decompressed data processed
by the successful call. If multiple record buffer segments are specified, this reflects the total length across
all buffer segments.

Command Time (ACBXCMDT)

The command time (also called thread time) field is used by Adabas to return the elapsed time that was
needed by the nucleus to process the command. This does not include the times when the Adabas thread
executing the command was waiting on Adabas I/O operations or other resources; it does include the
times when the thread was waiting for a processor so it could execute the code. The time is measured in
1/4096 microsecond units and the returned count is in binary format.

User Area (ACBXUSER)

The user area field is reserved for use by the user program. When making logical user calls, the user area
is neither written nor read by Adabas.

15

Adabas Control Block Structures (ACB and ACBX)ACBX Fields

Reserved 4 (ACBXRSV4)

This field is reserved for use by Adabas. Your user program should set this field to binary zeros before the
first Adabas call using this ACBX and then leave it unmodified thereafter.

ACBX DSECT

The ACBX DSECT can be found in member ADACBX of the distributed Adabas SRCE library. For your
convenience, an ACBX Format table is also provided, elsewhere in this section.

Differences between the ACB and the ACBX
The ACBX differs in many ways from the ACB. The ACBX includes some fields that are not included in
the ACB and the sizes of some ACBX fields are larger than their ACB equivalents. These expansions in
the ACBX have been made to ensure that its structure can be flexible enough to handle potential future
enhancements to Adabas, without altering its fundamental structure for many years.

This section describes the differences between the ACB and the ACBX:

Control Block Length

Buffer Length Fields

Command Options, Additions, and Reserved Fields

Unit Differences

Field Length Differences

Additional Fields in ACBX

ACB Dual Purpose Field Changes

Structure and Offset Differences

Control Block Length

The ACBX is 192 (or X’C0’) bytes in length; the ACB is 80 bytes long.

Buffer Length Fields

The buffer length fields are not included in the ACBX as they are in the ACB. When using the ACBX
direct call interface, they are instead provided in the individual Adabas buffer descriptions (ABDs). So the
ACBX contains no buffer fields corresponding to the ACBFBL, ACBIBL, ACBRBL, ACBSBL, and
ACBVBL found in the ACB; the ABDs associated with the call are used instead. One ABD represents an
individual Adabas buffer segment. They are described in Adabas Buffer Descriptions.

16

Differences between the ACB and the ACBXAdabas Control Block Structures (ACB and ACBX)

Command Options, Additions, and Reserved Fields

The number of command option, additions, and reserved control block fields are larger in the ACBX:

The ACBX contains eight command option fields, up from the two command option fields available
in the ACB.

The ACBX contains six additions fields, up from the five additions fields available in the ACB.

The ACBX contains four reserved fields, up from one reserved field available in the ACB.

Reserved ACBX fields must be set to binary zeros; the reserved 4 field (ACBXRSV4) should be
initialized to binary zeros and then left unchanged.

Unit Differences

The units used to measure command time (thread time) differ between the ACB and the ACBX. The ACB
measures command time (ACBCMDT) in 16 microsecond units; the ACBX measures command time
(ACBXCMDT) in 1/4096 microsecond units.

Field Length Differences

The lengths of many control block fields are larger in the ACBX. The following table summarizes these
changes:

Field Title Length

ACB ACBX

File Number 2 4

Database ID 2 4

ISN 4 4

ISN Lower Limit 4 4

ISN Quantity 4 4

Compressed Record Length 4 8

Decompressed Record Length 4 8

Command Time 4 8

User Area 4 16

Format Buffer Length 2 4 (in the ABD)

Record Buffer Length 2 4 (in the ABD)

Search Buffer Length 2 4 (in the ABD)

Value Buffer Length 2 4 (in the ABD)

17

Adabas Control Block Structures (ACB and ACBX)Command Options, Additions, and Reserved Fields

Additional Fields in ACBX

The following additional fields are available in the ACBX:

ACBX DSECT Name Description

ACBXADD6 Additions 6

ACBXCOP3 Command options 3

ACBXCOP4 Command options 4

ACBXCOP5 Command options 5

ACBXCOP6 Command options 6

ACBXCOP7 Command options 7

ACBXCOP8 Command options 8

ACBXDBID The database ID. In the ACB, the database ID is stored
in the response code field (ACBRSP) for X’30’ calls
and in the first byte of ACBFNR for other logical
calls.

ACBXERRA Error offset into the buffer (32-bit).

ACBXERRB Error character field (field name).

ACBXERRC Error subcode.

ACBXERRD Error buffer ID, if multiple buffers are involved.

ACBXERRE Error buffer sequence number, if multiple buffers are
involved.

ACBXERRG Error offset into the buffer (64-bit) - this field is not
yet supported.

ACBXLCMP Compressed record length (or portion of record if the
entire record is not read). In the ACB, the compressed
record length is stored in the Additions 2 field
(ACBADD2).

ACBXLDEC Decompressed record length. In the ACB, the
decompressed record length is stored in the Additions
2 field (ACBADD2).

ACBXLEN The length of the ACBX, currently 192

ACBXRSV2 Reserved. The value of this field must be set to zero.

ACBXRSV3 Reserved. The value of this field must be set to zero.

ACBXRSV4 Reserved for use by Adabas.

ACBXSUBR Subcomponent response code, used by Adabas add-on
products.

ACBXSUBS Subcomponent response subcode, used by Adabas
add-on products.

18

Additional Fields in ACBXAdabas Control Block Structures (ACB and ACBX)

ACBX DSECT Name Description

ACBXSUBT Subcomponent error text, used by Adabas add-on
products.

ACBXVER When set to C’F2’, this field indicates to Adabas that
the new extended ACB (ACBX) is used.

ACB Dual Purpose Field Changes

There are a number of cases where an ACB field that has multiple purposes has been split out into
additional fields in the ACBX:

In the ACB, the Response code field (ACBRSP) is used to store the database ID for X’30’ calls. For
the other logical calls the one-byte database ID was stored in the first byte of the file number field,
ACBFNR. The ACBX provides a Database ID field (ACBXDBID) for this purpose.

In the ACB, the ACBADD2 field is used to retain error information for certain Adabas response
codes. In the ACBX, error information fields (ACBXERR* series) are provided for this purpose.

In the ACB, the ACBADD2 field is used to return, for a successful call, the compressed and
decompressed record lengths of the processed data. In the ACBX, for a successful call, the
Compressed Record field (ACBXLCMP) contains the length of the compressed data processed by
Adabas and the Decompressed Record field (ACBXLDEC) contains the length of the decompressed
data.

Structure and Offset Differences

The offset and sequence of ACBX fields is generally different from the corresponding ACB fields, as
depicted in the following table.

Offset ACB DSECT Field Name ACBX DSECT Field Name

00 ACBTYPE (Call type) ACBXTYPE (Call type)

01 reserved ACBXRSV1 (reserved 1)

02 ACBCMD (Command code) ACBXVER (ACBX version
indicator)

04 ACBCID (Command ID) ACBXLEN (ACBX length)

06 (ACBCID continued) ACBXCMD (Command code)

08 ACBFNR (File number) ACBXRSV2 (reserved 2)

0A ACBRSP (Response code -- used
for the database ID with X’30’
calls)

ACBXRSP (Response code)

0C ACBISN (ISN) ACBXCID (Command ID)

10 ACBISL (ISN lower limit) ACBXDBID (Database ID)

14 ACBISQ (ISN quantity) ACBXFNR (File number)

18 ACBFBL (Format buffer length) ACBXISNG (8-Byte ISN)

19

Adabas Control Block Structures (ACB and ACBX)ACB Dual Purpose Field Changes

Offset ACB DSECT Field Name ACBX DSECT Field Name

1A ACBRBL (Record buffer length) (ACBXISNG continued)

1C ACBSBL (Search buffer length) ACBXISN (ISN -- included in
ACBXISNG)

1E ACBVBL (Value buffer length) (ACBXISN and ACBXISNG
continued)

20 ACBIBL (ISN buffer length) ACBXISLG (8-Byte ISN Lower
Limit)

22 ACBCOP1 (Command option 1) (ACBXISLG continued)

23 ACBCOP2 (Command option 2) (ACBXISLG continued)

24 ACBADD1 (Additions 1) ACBXISL (ISN lower limit --
included in ACBXISLG)

28 (ACBADD1 continued) ACBXISQG (8-Byte ISN
Quantity)

2C ACBADD2 (Additions 2) ACBXISQ (ISN quantity --
included in ACBXISQG)

30 ACBADD3 (Additions 3) ACBXCOP1 (Command option
1)

31 (ACBADD3 continued) ACBXCOP2 (Command option
2)

32 (ACBADD3 continued) ACBXCOP3 (Command option
3)

33 (ACBADD3 continued) ACBXCOP4 (Command option
4)

34 (ACBADD3 continued) ACBXCOP5 (Command option
5)

35 (ACBADD3 continued) ACBXCOP6 (Command option
6)

36 (ACBADD3 continued) ACBXCOP7 (Command option
7)

37 (ACBADD3 continued) ACBXCOP8 (Command option
8)

38 ACBADD4 (Additions 4) ACBXADD1 (Additions 1)

40 ACBADD5 (Additions 5) ACBXADD2 (Additions 2)

44 (ACBADD5 continued) ACBXADD3 (Additions 3)

48 ACBCMDT (Command time) (ACBXADD3 continued)

4C ACBUSER (User area) ACBXADD4 (Additions 4)

54 --- ACBXADD5 (Additions 5)

5C --- ACBXADD6 (Additions 6)

20

Structure and Offset DifferencesAdabas Control Block Structures (ACB and ACBX)

Offset ACB DSECT Field Name ACBX DSECT Field Name

64 --- ACBXRSV3 (reserved 3)

68 --- ACBXERRG (Error offset in
buffer, 64-bit -- this is not yet
supported).

6C --- ACBXERRA (Error offset in
buffer, 32-bit)

70 --- ACBXERRB (Error character
field)

72 --- ACBXERRC (Error subcode)

74 --- ACBXERRD (Error buffer ID)

75 --- ACBXERRE (Error buffer
sequence number)

78 --- ACBXSUBR (Subcomponent
response code)

7A --- ACBXSUBS (Subcomponent
response subcode)

7C --- ACBXSUBT (Subcomponent
error text)

80 --- ACBXLCMP (Compressed
record length)

88 --- ACBXLDEC (Decompressed
record length)

90 --- ACBXCMDT (Command time)

98 --- ACBXUSER (User area)

A8 --- ACBXRSV4 (reserved 4)

Logging the Control Blocks
There are two formats for the Command log (CLOG), CLOGLAYOUT=5 and CLOGLAYOUT=8. The
ADARUN parameter CLOGLAYOUT determines which format is used.

Note:
We recommend that you use CLOGLAYOUT=5 for user programs designed for versions of Adabas up to
Adabas 8. User programs designed for Adabas 8 or later should use CLOGLAYOUT=8.

If CLOGLAYOUT=5, all Adabas control block fields are logged in the basic command logging area. If
CLOGLAYOUT=8, each of the buffers are written out in much the same way as for CLOGLAYOUT=5,
except that each buffer is prefixed by its corresponding Adabas buffer description (ABD). Each
segmented buffer (format, record, or multifetch) is written separately and uniquely identified.

21

Adabas Control Block Structures (ACB and ACBX)Logging the Control Blocks

The CLOGLAYOUT parameter is described in CLOGLAYOUT : Command Logging Format . A detailed
description of both command log formats can be found in Command Log Formats.

22

Logging the Control BlocksAdabas Control Block Structures (ACB and ACBX)

	Adabas Control Block Structures (ACB and ACBX)
	Adabas Control Block (ACB)
	ACB Format
	ACB Fields
	Call Type (ACBTYPE)
	Command Code (ACBCMD)
	Command ID (ACBCID)
	File Number (ACBFNR)
	Single-byte File Numbers and DBIDs
	Double-byte File Numbers and DBIDs
	Response Code (ACBRSP)
	ISN (ACBISN)
	ISN Lower Limit (ACBISL)
	ISN Quantity (ACBISQ)
	Buffer Length: Format, Record, Search, Value, and ISN (ACBFBL, ACBRBL, ACBSBL, ACBVBL, and ACBIBL)
	Command Option 1 and Command Option 2 (ACBCOP1 and ACBCOP2)
	Additions 1 (ACBADD1)
	Additions 2 (ACBADD2)
	Additions 3 (ACBADD3)
	Additions 4 (ACBADD4)
	Additions 5 (ACBADD5)
	Command Time (ACBCMDT)
	User Area (ACBUSER)

	ACB DSECT
	ACB Examples

	Extended Adabas Control Block (ACBX)
	ACBX Format
	ACBX Fields
	Call Type (ACBXTYP)
	Reserved 1 (ACBXRSV1)
	Version Indicator (ACBXVER)
	ACBX Length (ACBXLEN)
	Command Code (ACBXCMD)
	Reserved 2 (ACBXRSV2)
	Response Code (ACBXRSP)
	Command ID (ACBXCID)
	Database ID (ACBXDBID)
	File Number (ACBXFNR)
	ISN (ACBXISNG/ACBXISN)
	ISN Lower Limit (ACBXISLG/ACBXISL)
	ISN Quantity (ACBXISQG/ACBXISQ)
	Command Options 1 through 8 (ACBXCOP1 through ACBXCOP8)
	Additions 1 (ACBXADD1)
	Additions 2 (ACBXADD2)
	Additions 3 (ACBXADD3)
	Additions 4 (ACBXADD4)
	Additions 5 (ACBXADD5)
	Additions 6 (ACBXADD6)
	Reserved 3 (ACBXRSV3)
	Error Offset in Buffer (64-bit) (ACBXERRG)
	Error Offset in Buffer (32-bit) (ACBXERRA)
	Error Character Field (ACBXERRB)
	Error Subcode (ACBXERRC)
	Error Buffer ID (ACBXERRD)
	Reserved (ACBXERRE)
	Error Buffer Sequence Number (ACBXERRF)
	Subcomponent Response Code (ACBXSUBR)
	Subcomponent Response Subcode (ACBXSUBS)
	Subcomponent Error Text (ACBXSUBT)
	Compressed Record Length (ACBXLCMP)
	Decompressed Record Length (ACBXLDEC)
	Command Time (ACBXCMDT)
	User Area (ACBXUSER)
	Reserved 4 (ACBXRSV4)

	ACBX DSECT

	Differences between the ACB and the ACBX
	Control Block Length
	Buffer Length Fields
	Command Options, Additions, and Reserved Fields
	Unit Differences
	Field Length Differences
	Additional Fields in ACBX
	ACB Dual Purpose Field Changes
	Structure and Offset Differences

	Logging the Control Blocks

