
Linking Applications to Adabas
Since most systems do not allow a standard call to Adabas, Software AG provides an application
programming interface (API) to translate calls issued by an application program into a form that can be
handled by Adabas.

Batch applications are supported in both single-user and multiuser mode; online operations are controlled
by teleprocessing (TP) monitors. The Adabas API is available across all supported mainframe platforms;
versions of the API that are specific to particular TP monitors are provided.

"Adalink" is a generic term that refers to the portion of the API that is specific to a particular TP monitor.

This chapter covers the following topics:

How the Adabas API Works

Available Link Routines

Required Work Area

Required Application Reentrancy Properties

Adabas Control Block Options

Programming Conventions for Issuing Direct Calls

Using the Adabas API in Batch Mode

Support for OpenEdition OS/390 Adabas Clients

How the Adabas API Works
Online Operation

Batch Operation

Online Operation

As an online operation, a request to Adabas is processed as follows:

1. The TP monitor invokes the application program. The application program must be loaded into the
TP monitor region.

2. The application program invokes the Adabas API. The Adabas API module must be installed in the
TP monitor as an application module.

3. The Adabas API takes the Adabas command passed to it from the application program and

builds the required control blocks and structures;

1

Linking Applications to AdabasLinking Applications to Adabas

translates the Adabas parameter list provided by the application program call into a request that
can be handled by the Adabas router or SVC;

includes information that identifies the user (terminal ID, TJID etc.) to Adabas.

The TP monitor’s equivalent of the LINK function is used to pass the user’s Adabas control block
and buffers to the API.

4. The Adabas API usually uses the Adabas router or SVC (supervisor call) installed on the operating
system to send the formatted request to Adabas.

5. The Adabas router or SVC moves the user’s control block and buffers from the TP monitor region to
the Adabas region (into the Adabas nucleus).

6. The Adabas API waits for a response from the Adabas nucleus.

The TP monitor’s equivalent of a WAIT is posted when the Adabas function is complete.

7. Adabas performs the function requested, then invokes the Adabas router or SVC, which returns the
resulting data and response codes to the user application buffer.

8. The Adabas router or SVC then posts the Adabas API in the TP monitor region.

9. The Adabas API sends the response from the Adabas nucleus to the application program and returns
control to the application program.

10. The application program returns control to the TP monitor.

The specific way each of the above functions is handled depends on the TP monitor used. In addition to
these functions, each link routine can call one or more user exits at various processing points to provide
additional capability and flexibility when making Adabas requests.

The following figure illustrates the basic configuration used by the majority of systems:

2

Online OperationLinking Applications to Adabas

Adabas/TP Monitor Communication

Batch Operation

As a batch operation, a request to Adabas is processed as follows:

1. The operating system loads the batch application.

2. The batch application makes an Adabas request (CALL ADABAS ...).

3. The Adabas "stub" program ADAUSER loads and invokes ADARUN, which then loads and invokes
the batch Adabas link routine ADALNK.

4. The ADALNK routine transforms the Adabas request into a format suitable for use by the Adabas
nucleus.

5. The link routine invokes Adabas, usually through a call to the Adabas router or SVC installed in the
operating system. It also determines a unique identification for the user.

6. The link routine then waits for Adabas to handle the request.

7. Adabas, which is usually running in a different address space or partition, processes the request and
posts the link routine, returning all necessary buffers and response codes.

8. The link routine receives control and returns the Adabas buffers with response codes and data to the
application.

3

Linking Applications to AdabasBatch Operation

Available Link Routines
The Adabas API is available for both batch and online applications. For online applications, the Adabas
API is under the control of the TP monitor. When Adabas is installed, the Adabas API that is specific to
the TP monitor in use is also installed.

For IBM Operating Environments

For BS2000 Operating Environments

For IBM Operating Environments

The following table lists the API versions and the corresponding supported TP monitors available for IBM
operating environments:

Link Routine TP Monitor

ADALCO Com-plete

ADALNK Batch (also TSO under OS/390 or z/OS)

ADALNKR Batch/TSO under OS/390 or z/OS (reentrant)

ADALNA5 Batch for Entire System Server (formerly Natural Process)

ADALNI IMS/DC

ADALNM Intercomm

ADALNS Shadow

ADALTM Taskmaster

LNKOLSC CICS (command-level)

LNKVSER Batch under VSE/ESA (reentrant)

For BS2000 Operating Environments

The BS2000 version 7 ADALNK module contains the combined functionality of all the ADALNx
modules of previous Adabas versions and contains the following entry points:

Entry
Point

TP Monitor

ADALNK Batch / TIAM

ADALNR Batch / TIAM (reentrant)

ADALNN UTM running Natural

ADALNU UTM with Assembler or a 3GL language

ADAUTM UTM with SNI BS2000 system Adabas database operations. For more
information, read ADAUTM (Universal Transaction Monitor Support) .

4

Available Link RoutinesLinking Applications to Adabas

Required Work Area
Parameters must be passed to the API. Many of the monitors do not allow standard parameter passing
conventions, and the Adabas control block and buffer addresses must be moved into a special work area.

The work area is obtained by the application program from the TP monitor system. It must be specific to
the user and addressable by the Adabas API. The application program must initially obtain and clear this
area to binary zeros.

Note:
If your application program is written in Natural, the necessary API work area is handled without change
to the program code.

The Adabas API versions each have a specific area reserved for use as a work area. For Com-plete,
batch/TSO, and IMS/DC, this area is defined by DSECTs provided in the Adabas source library
containing the API as follows:

Link Routine Work Area DSECT TP Monitor

ADALCO MODIFLCO Com-plete

ADALNK / ADALNKR MODIFIED Batch/TSO

ADALNI MODIFLNI IMS/DC

For these TP monitors, the work area must be at least as long as the DSECT area. The actual required
length of this area depends on the TP monitor, and can be determined by examining the assembly listing
of the link routine.

For TP monitors with DSECT work areas, a reentrant application program must pass to the link routine a
pointer to this area as the 7th parameter on the call statement. See Required Code Reentrancy Properties
for more information.

Once the MODIFxxx area has been initialized, it should not be changed by the application program
between Adabas requests.

Work Area for the Batch/TSO Reentrant ADALNKR

Seventh Parameter Required

In addition to the basic six Adabas parameters, the reentrant batch link routine ADALNKR requires a
seventh parameter that points to a work area for use by the program on every call. Some Software AG
products like XCOM pass eight parameters to ADALNKR.

MODIFIED Work Area

The work area used is mapped by the MODIFIED DSECT, which is provided in the Adabas source library
or as an A.book in the VSE sublibrary. The MODIFIED area is at least 192 bytes (decimal) in length.
Since the area may be expanded in future Adabas releases, Software AG recommends that you reserve
256 bytes for the area.

5

Linking Applications to Adabas Required Work Area

Calling Requirements

The work area should be initialized to binary zeros before the first call to ADALNKR, and its contents
should not be modified by calling application programs thereafter. Several key fields are stored in this
area. If these fields are modified improperly, results are unpredictable and may range from poor
performance to abnormal termination of the link routine.

When calling ADALNKR, it is critical to mark the last parameter address in the calling parameter list with
an X’80’:

High-level languages do this automatically when their CALL statements are employed.

Assembler applications can do this by using the CALL macro to invoke ADALNKR.

Required Application Reentrancy Properties
Applications running under most TP monitors must use nonstandard calls to perform functions that are
transparently handled by the operating system in a batch environment. In these cases, it is the reentrant
properties of application code that determine how multiple users execute Adabas API calls online.

Each Adabas API version complies with the reentrancy requirements for its associated TP monitor.
Application programs that use the Adabas API must also comply with the requirements for the TP monitor
used.

Note:
The reentrancy requirement set by the TP monitor is a minimum. For example, if the TP monitor requires
a quasi-reentrant application program, a fully reentrant program will also be accepted (see CICS special
requirement below). However, if a reentrant application program is required, a quasi- or non-reentrant
program is not acceptable.

Ideally, code for application programs that are shared by a large number of users (commonly used TP
transactions) is "reentrant". The code itself never changes. All work areas are either in general registers or
in user-specific work areas that are addressed by general registers. A transfer of control from one user to
another requires only a change in the program counter (PSW) and the general registers. Many system
routines are coded in this manner.

Most COBOL compilers do not produce reentrant code. The PL/ I compiler produces reentrant code, but
by using operating system functions that are not allowed by most TP monitors. These limitations have led
to the concept of quasi-reentrancy.

A "quasi-reentrant" program may alter its code between calls to TP monitor functions. When a monitor
function is invoked, all user data must be saved in a special work area obtained from the TP monitor
system. The TP monitor will then schedule another user task as the active task in the system, and this task
may reuse the same code. When the original user’s task becomes active again, his work area is
reestablished and control is passed back to the point at which the user requested a TP monitor function.

The following subsections give more detailed information about the reentrancy requirements of several TP
monitors.

Com-plete : Code Reentrancy Requirements

6

 Required Application Reentrancy PropertiesLinking Applications to Adabas

CICS : Code Reentrancy Requirements

TSO and IMS/DC (Standalone) : Code Reentrancy Requirements

Com-plete : Code Reentrancy Requirements

Com-plete does not require nonstandard calling sequences: users may use standard non-reentrant code.
Adabas linkage is provided by a Com-plete service routine, which is automatically included in the user’s
load module if Adabas calls are contained in the user program. The service routine simply passes the user
parameters to Com-plete and returns control when the Adabas command has been executed.

CICS : Code Reentrancy Requirements

LNKOLSC, the command-level CICS API, can use either quasi-reentrant or fully reentrant application
programs, depending on how the API is installed. Optional installation procedures must be executed in
order to use fully reentrant application programs under CICS; however, this allows the use of CICS
program isolation under CICS/ESA 4.1 and above.

TSO and IMS/DC (Standalone) : Code Reentrancy Requirements

Only TSO and IMS/DC allow the use of "nonreentrant" application programs. However, this is the least
efficient means of coding an application program to use with the Adabas API. If a nonreentrant
application program is used, it will have to obtain the Adabas communication ID (LTERM, TJID or
sign-on ID) on every Adabas request. For TSO and IMS/DC, nonreentrant is the minimum requirement;
using a fully reentrant application program will result in significant performance gains (for IMS/ESA,
performance gains will result for version 3.1 and above).

Note:
Reentrant and quasi-reentrant application programs must obtain a special work area for the Adabas API.
See Required Adabas API Work Area.

Adabas Control Block Options
The first parameter passed to the Adabas API by the application program is a pointer to the Adabas
control block (ADACB). The ADACB contains information needed to process an Adabas request.

The first byte of the ADACB is used by the Adabas API to determine the processing to be performed. The
values for logical requests are:

Hex Indicates ...

X’00’ a 1-byte file number (file numbers between 1 and 255)

X’30’ a 2-byte file number (file numbers between 1 and 65535)

X’40’ values greater than or equal to a blank. These are accepted as "logical
application calls" to maintain compatibility with earlier releases of
Adabas. The following calls, however, are reserved for use in special
Software AG functions or products and are therefore not accepted:
X’44’, X’48’, and X’4C’.

7

Linking Applications to Adabas Adabas Control Block Options

All other values in the first byte of the ADACB are reserved for use by Software AG.

Using One-Byte File Numbers

For an application program issuing Adabas commands for file numbers between 1 and 255 (single byte),
build the control block as follows:

Position Action

1 Place X’00’ in the first byte of the ADACB.

9 Place the file number in the second (rightmost) byte of the ACBFNR
field of the ACB. The first (leftmost) byte of the ACBFNR field is
used to store the logical (database) ID or number.

If the first byte in ACBFNR is zero, the API will use either the database ID value provided in the
DDCARD input data (ADARUN cards) or the default database ID value assembled into the link routine at
offset X’80’. Applications written in Software AG’s Natural language need not include the first byte of
the ADACB because Natural supplies appropriate values.

Using Two-Byte File Numbers

Adabas permits the use of file numbers greater than 255 on logical requests. For an application program
issuing Adabas commands for file numbers between 256 and 5000 (two-byte), build the control block as
follows:

Position Action

1 Place X’30’ in the first byte of the ADACB.

9 Use both bytes in ACBFNR for the file number, and use the two bytes
in ACBRESP for the database (logical) ID.

If the ACBRESP field is zero, the API will use either the database ID from the ADARUN cards provided
in DDCARD input data, or the default database ID value assembled into the link routine at offset X’80’.

Using Both One- and Two-Byte File Numbers in a Single Application

Because the application can reset the value in the first byte of the ADACB on each call, it is possible to
mix both one- and two-byte file number requests in a single application.

If this method is used, you must ensure the proper construction of the ACBFNR and ACBRESP fields in
the ADACB for each call type.

Software AG recommends that an application written to use two-byte file numbers always place X’30’ in
the first byte of the ADACB, the logical ID in the ACBRESP field, and the file number in the ACBFNR
field. The application can then treat both the database ID and file number as 2-byte binary integers,
regardless of the value for the file number in use.

8

 Using One-Byte File NumbersLinking Applications to Adabas

Using COBOL to Set the Control Byte

A programming language such as COBOL is not designed to easily manipulate single-byte values as
required to establish two-byte file number support for the Adabas API. The following COBOL example
illustrates one way to set these values:

WORKING-STORAGE SECTION
01 ACB-CONTROL
 05 ACB-TYPE PIC 9(4) COMP.
 05 ACB-DATA REDEFINES ACB-TYPE.
 07 FILLER PIC X.
 07 ACB-TYPE-X PIC X.
01 ADABAS-CB.
 05 ACBTYPE PIC X.
 .
PROCEDURE DIVISION
 .
 * FOR SINGLE-BYTE FILE NUMBERS . . .
 MOVE 0 TO ACB-TYPE.
 .
 * FOR TWO-BYTE FILE NUMBERS . . .
 MOVE 48 TO ACB-TYPE.
 .
 MOVE ACB-TYPE-X TO ACBTYPE.
 .
 CALL ’ADABAS’ USING ADABAS-CB, . . .
 .
 .

The key to this code segment is the use of the REDEFINES clause to remap the PIC 9(4) COMP field to
its constituent two bytes. Then the second byte containing the hexadecimal value for the Adabas control
byte can be moved as "character" data to the Adabas control block.

Programming Conventions for Issuing Direct Calls
This section describes the procedures used to issue Adabas calls in direct mode from a program that is to
be run under the control of one of the following teleprocessing (TP) monitors:

Com-plete

CICS

IMS/DC

Shadow II

Com-plete

Application programs that are to be run under control of Com-plete may be coded in exactly the same
manner as batch programs. Since each application program is assigned a processing thread by Com-plete,
the program need not be written using reentrant or quasi-reentrant code.

The following example shows an Adabas call from a COBOL program that is to be run under Com-plete:

9

Linking Applications to Adabas Programming Conventions for Issuing Direct Calls

WORKING-STORAGE SECTION
 .
 .
01 CONTROL-BLOCK COPY ADACBCOB.
01 FORMAT-BUFFER COPY FORDEF.
01 RECORD-BUFFER COPY RECDEF.
01 SEARCH-BUFFER COPY SEADEF.
01 VALUE-BUFFER COPY VALDEF.
01 ISN-BUFFER COPY ISNBUF.

PROCEDURE DIVISION
 .
 .
 .
CALL ’ADABAS’ USING
 CONTROL-BLOCK, FORMAT-BUFFER, RECORD-BUFFER,
 SEARCH-BUFFER, VALUE-BUFFER, ISN-BUFFER.
 .

CICS

Applications running under CICS use the command-level API LNKOLSC and the CICS Transaction
Work Area (TWA) to communicate parameters.

The high-level language interface guarantees the quasi-reentrancy of COBOL, PL/ I , and Assembler
(release 1.4 and above).

Language Control blocks and buffers may be defined ...

COBOL in working storage. All of working storage is copied to a user work area
when a transaction is initiated.

PL/ I as automatic storage (default storage class) variables.

The addresses of the Adabas control block and buffers are passed in the same way for all releases of
CICS. These addresses must be placed in the first six words of the TWA.

To place the parameter addresses in the TWA, Software AG provides an Assembler subroutine that can be
called from a COBOL or Assembler application program. The subroutine uses entry point ADASTWA
and accepts the TWA as its first parameter.

The ’EXEC CICS ADDRESS TWA’ function is used to make the TWA addressable. The second to
seventh parameters are the usual Adabas calling parameters. The Assembler subroutine places the
parameter addresses into the TWA, and the CICS/Adabas link routine retrieves them from the TWA.

Addressing the CICS TWA : Assembler
Addressing the CICS TWA : PL/I
Adabas Call Using CICS : VS COBOL
Adabas Call Using CICS : COBOL II or COBOL/LE

Addressing the CICS TWA : Assembler

A CICS Assembler programmer can address the TWA directly by using an installation macro to place the
addresses in the TWA and call Adabas.

10

CICSLinking Applications to Adabas

Addressing the CICS TWA : PL/I

PL/ I offers a facility for addressing the TWA and obtaining the addresses of data areas. The programmer
himself can place parameter addresses in the TWA. Your site may wish to establish a PL/ I preprocessor
procedure to generate the calling code.

DCL 1 TWA BASED (TWAPTR),
 2 CBPTR POINTER,
 2 FBPTR POINTER,
 2 RBPTR POINTER,
 .
 EXEC CICS ADDRESS TWA (TWAPTR) END-EXEC;
 .
 .
 CBPTR=ADDR(ADA-CONTROL-BLOCK);
 FBPTR=ADDR(FORMAT-BUFFER);
 RBPTR=ADDR(RECORD-BUFFER);

Adabas Call Using CICS : VS COBOL

Under VS COBOL, Adabas is called using the statement:

EXEC CICS LINK PROGRAM (’ADABAS’)
 END-EXEC.

CBL XOPTS (APOST)
IDENTIFICATION DIVISION.
 .
 .
WORKING-STORAGE SECTION.
 .
 .
01 ADABAS-CB COPY ADACBCOB.
01 ADABAS-FB COPY ADAFBCOB.
01 ADABAS-RB COPY ADARBCOB.
01 ADABAS-SB COPY ADASBCOB.
01 ADABAS-VB COPY ADAVBCOB.
01 ADABAS-IB COPY ADAIBCOB.
 .
 .

LINKAGE SECTION.
 .
 .
01 PARMLIST.
 05 FILLER PIC S9(08) COMP.
 05 TWAPTR PIC S9(08) COMP.

01 TWA.
 05 PARM-ADDRESSES OCCURS 7 TIMES PIC S9(08) COMP.
 .
 .
PROCEDURE DIVISION.
 .
 .
 SERVICE RELOAD PARMLIST.
 .
 EXEC CICS ADDRESS TWA (TWAPTR) END-EXEC

11

Linking Applications to AdabasCICS

 SERVICE RELOAD TWA.
 .
 CALL ’ADASTWA’ USING TWA, ADABAS-CB, ADABAS-FB,
 ADABAS-RB, ADABAS-SB, ADABAS-VB
 ADABAS-IB.
 EXEC CICS LINK PROGRAM (’ADABAS’) END-EXEC.
 .
 .
 .

Adabas Call Using CICS : COBOL II or COBOL/LE

Under COBOL II or COBOL/LE, Adabas is called using the statement:

EXEC CICS LINK PROGRAM (’ADABAS’) END-EXEC.

CBL XOPTS (APOST,ANSI85)
IDENTIFICATION DIVISION.
 .
 .
WORKING-STORAGE SECTION.
 .
 .
01 ADABAS-CB COPY ADACBCOB.
01 ADABAS-FB COPY ADAFBCOB.
01 ADABAS-RB COPY ADARBCOB.
01 ADABAS-SB COPY ADASBCOB.
01 ADABAS-VB COPY ADAVBCOB.
01 ADABAS-IB COPY ADAIBCOB.
 .
 .
LINKAGE SECTION.
 .
01 TWA.
 05 PARM-ADDRESSES OCCURS 7 TIMES PIC S9(08) COMP.
 .
 .
PROCEDURE DIVISION.
 .
 .
 . EXEC CICS ADDRESS TWA (ADDRESS OF TWA) END-EXEC.
 .
 CALL ’ADASTWA’ USING TWA, ADABAS-CB, ADABAS-FB,
 ADABAS-RB, ADABAS-SB, ADABAS-VB,
 ADABAS-IB.
 EXEC CICS LINK PROGRAM (’ADABAS’) END-EXEC.
 .
 .
 .

IMS/DC

IMS message processing programs that use the Adabas API require no special link and need not be
reentrant. However, a reentrant option is supported: the application code and the Adabas IMS API module
ADALNI can function with full reentrancy if the application program provides a work area as the 7th
parameter when calling the API (see example below).

12

IMS/DCLinking Applications to Adabas

Under IMS/ESA 3.1 and above, the API ADALNI should be linked with an AMODE of 31 because the
IMS control blocks referenced by the routine may be above the 16-megabyte line.

Adabas Call Using IMS/DC (Nonreentrant)

A nonreentrant Adabas API call under IMS/DC is made like a conventional Adabas API call under batch
as follows:

WORKING-STORAGE-SECTION.
 .
 .
01 ADA-CONTROL BLOCK COPY ADACBCOB.
01 FORMAT-BUFFER COPY FORDEF.
01 RECORD-BUFFER COPY RECDEF.
01 SEARCH-BUFFER COPY SEADEF.
01 VALUE-BUFFER COPY VALDEF.
01 ISN-BUFFER COPY ISNDEF.
 .
PROCEDURE DIVISION.
 .
 .
 CALL ’ADABAS’ USING ADA-CONTROL-BLOCK, FORMAT-BUFFER,
 RECORD-BUFFER, SEARCH-BUFFER,
 VALUE-BUFFER, ISN-BUFFER.
 .
 .

Adabas Call Using IMS/DC (Reentrant)

The Adabas ADALNI module can be assembled to be functionally reentrant. Refer to the Adabas
Installation documentation for information about setting up ADALNI as a reentrant module.

To facilitate reentrant operation, an additional parameter pointing to a work area obtained by the caller
must be passed to the ADALNI routine. This area must be initialized to binary zeros before the first call to
the Adabas IMS API, and must not be modified between calls. The length of the ADALNI reentrant work
area can be determined by examining the current assembly listing. Under Adabas, the length is 128 bytes.

The reentrant Adabas API call under IMS/DC is as follows:

WORKING-STORAGE-SECTION.
 .
 .
01 ADA-CONTROL BLOCK COPY ADACBCOB.
01 FORMAT-BUFFER COPY FORDEF.
01 RECORD-BUFFER COPY RECDEF.
01 SEARCH-BUFFER COPY SEADEF.
01 VALUE-BUFFER COPY VALDEF.
01 ISN-BUFFER COPY ISNDEF.
01 ADALNI-WORK-AREA PIC X(128).
 .
PROCEDURE DIVISION.
 MOVE LOW-VALUES TO ADALNI-WORK-AREA.
 .
 .
 CALL ’ADABAS’ USING ADA-CONTROL-BLOCK, FORMAT-BUFFER,
 RECORD-BUFFER, SEARCH-BUFFER,

13

Linking Applications to AdabasIMS/DC

 VALUE-BUFFER, ISN-BUFFER.
 ADALNI-WORK-AREA.
 .
 .

Shadow II

The following procedure is used for calling Adabas from quasi-reentrant COBOL application programs
that are to be run under Shadow II:

1. Define storage for variable Adabas control block and buffers in the linkage section of the COBOL
program. Obtain storage using the Shadow get-variable function, ISHDHLGV.

2. Pass parameters to the Adabas interface routine directly using the Shadow calling procedure. Include
in the call the count of the number of parameters as a binary halfword number.

The Adabas interface routine is linked as part of the Shadow monitor and is defined in the Shadow
program table.

3. Use the Shadow routine ISHDHLCP to access the Adabas interface routine. The first parameter is the
character name of the interface routine (ADABAS); the second, the number of parameters being
passed to the routine; followed by the parameters to be passed to Adabas.

Adabas Call Using Shadow II

WORKING-STORAGE SECTION.
 .
 .
01 ADABAS PIC X(8) VALUE ’ADABAS’.
 .
 .
01 PARM-NUMBER PIC S9(4) COMP VALUE +6.
01 ISHD-H80 PIC S9(4) COMP VALUE +80.
 .
 .
LINKAGE-SECTION.
 .
 .
01 ADABAS-CONTROL-BLOCK COPY ADACBCOB.
 .
 .
PROCEDURE DIVISION USING TCBD RELOCATE.
 .
 .
GET-STORAGE.
CALL ’ISHDHLGV’ USING ISHD-FULLWORD0, ISHD-XF0,
 ISHD-H80, BLL-NUMBER.
 .
 .
 .
CALL-ADABAS.
 CALL ’ISHDHLCP’ USING ADABAS, PARM-NUMBER,
 ADABAS-CONTROL-BLOCK,
 FORMAT-BUFFER, RECORD-BUFFER,
 SEARCH-BUFFER, VALUE-BUFFER,
 ISN-BUFFER.
 .
 .

14

Shadow IILinking Applications to Adabas

Using the Adabas API in Batch Mode
The Adabas API in batch mode uses a standard call with a parameter list in register 1 and register 13
pointing to a register save area. This convention is supported by all major programming languages through
their CALL mechanisms.

Under most mainframe operating systems, the batch API (ADALNK) can either be linked directly with
the batch application module or it can be loaded by ADAUSER. Software AG strongly recommends that
batch applications be linked with ADAUSER and not the batch API (ADALNK).

ADAUSER and ADARUN with the Adabas API

Batch Execution Modes

ADAUSER and ADARUN with the Adabas API

The ADAUSER module can optionally be linked with the Adabas API. ADAUSER provides upward
compatibility with Adabas releases and a degree of isolation from changes that might be made in the API
or the Adabas SVC in the future.

Each user program to be executed should be linked with the Adabas version-independent module
ADAUSER, which dynamically loads the Adabas control module ADARUN. For batch mode execution,
the user program should be linked with ADAUSER to achieve maximum environment independence, as
shown below:

User Program linked with ... Advantage

ADAUSER, ADARUN, and ADALNK independent of mode and Adabas
version

ADARUN and ADALNK independent of mode only

ADALNK none; no version- or mode-independence

The following sections illustrate the JCL/JCS required to link the batch application module with
ADAUSER.

Link Example (BS2000)
Link Example (OS/390 or z/OS)
Link Example (VM/ESA or z/VM)
Link Example (VSE/ESA)

Link Example (BS2000)

/ EXEC $TSOSLNK
PROGRAM USERPROG
INCLUDE USERPGM, ... User Library
INCLUDE ADAUSER, ... Adabas Library
END

15

Linking Applications to Adabas Using the Adabas API in Batch Mode

Link Example (OS/390 or z/OS)

// EXEC LKED,PARM=’NCAL’
//LKED.SYSLMOD DD ... User Library
//LKED.ADALIB DD ... Adabas Library
//LKED.SYSIN DD *
 INCLUDE SYSLMOD(USERPGM)
 INCLUDE ADALIB(ADAUSER)
 ENTRY USEREP (see note)
 NAME USERPROG(R)
/*

Note:
The entry point, if specified, must be the entry point of the user program.

Link Example (VM/ESA or z/VM)

FILEDEF ADALIB DISK ADAVnnn LOADLIB fm
FILEDEF SYSLIN DISK LINKEDIT CARDS A
LKED userprog (NCAL LET XREF MAP LIBE USERLIB LIST

The file "LINKEDIT CARDS A" contains the following linkage editor control statements. The user
program exists as a TEXT file.

INCLUDE ADALIB(ADABAS)
ENTRY userprog
NAME userprog(R)

Note:
Link with ADAUSER is not applicable when using CMS since this system dynamically loads all
necessary modules.

Link Example (VSE/ESA)

* Appropriate assignments must be made for private
libraries, where necessary.
*
// OPTION CATAL
 PHASE USERPROG,*
 INCLUDE USERPGM
 INCLUDE ADAUSER
 ENTRY USEREP (see note)
// EXEC LNKEDT

Note:
The entry point, if specified, must be the entry point of the user program.

Batch Execution Modes

When executing under batch, the program can be run in either single-user or multiuser mode:

Single-user mode runs the application program, the batch API, ADARUN, and the Adabas nucleus in
the same address space or partition.

Multiuser mode executes the application program and the Adabas API in an address space separate
from the Adabas nucleus.

16

Batch Execution ModesLinking Applications to Adabas

The recommended mode of operation is multiuser mode. The user must provide only those job control
statements required by ADARUN and the user program.

Multiuser Mode Example (BS2000)
Multiuser Mode Example (OS/390 or z/OS)
Multiuser Mode Example (VM/ESA or z/VM)
Multiuser Mode Example (VSE/ESA)
Execution in Single-User Mode

Multiuser Mode Example (BS2000)

In SDF Format:

/ASS-SYSDTA *SYSCMD (ADARUN PARAMETERS)
/SET-FILE-LINK DDLIB,ADAvrs.MOD
/SET-FILE-LINK BLSLIB00,user modlib
/START-PROGRAM USERPROG,PR-MO=ANY,RUN-MODE=ADV(ALT-LIB=YES)
ADARUN MODE=MULTI...

In ISP Format:

/FILE ADABAS MODLIB,LINK=DDLIB
/SYSFILE TASKLIB=user modlib
/SYSFILE SYSDTA=(SYSCMD) (ADARUN PARAMETERS)
/EXEC USERPROG
ADARUN MODE=MULTI...

Notes:

1. As an alternative to using SYSDTA as the input stream, the user program can assign a sequential file
containing the ADARUN parameters to the link name DDCARD using /SET-FILE-LINK (in ISP
format, /FILE).

2. Software AG recommends that you link the ADAUSER module to user programs in a TP
environment; for example, COBOL.

Multiuser Mode Example (OS/390 or z/OS)

The following example assumes that the user program USERPROG has been linked with the module
ADAUSER and is to be executed in multiuser mode.

// EXEC PGM=USERPROG
//STEPLIB DD ... User Library
// DD ... Adabas Library
//DDCARD DD *
ADARUN MODE=MULTI
//DDPRINT DD SYSOUT=*
//... user DD statements ...

Multiuser Mode Example (VM/ESA or z/VM)

User programs running under VM/ESA or z/VM in multiuser mode cannot use ADARUN to control other
programs.

17

Linking Applications to AdabasBatch Execution Modes

Multiuser Mode Example (VSE/ESA)

The following example assumes that the user program USERPROG has been linked with the module
ADAUSER and is to be executed in multiuser mode.

//....user program assignments....
// LIBDEF PHASE,SEARCH=(user-library, ADABAS-library)
// EXEC USERPROG
ADARUN MODE=MULTI
/*

If the user program reads statement input, one of the following applies:

If all user statements are read before the first Adabas call, they must immediately follow the EXEC
statement and be followed by /*. The user file must be opened, read, and closed before the first
Adabas call.

If the first Adabas call is made before the first user statement is read, the user statements must follow
the ADARUN parameter statements and start with a /* statement.

Otherwise, the ADARUN parameter statements must be read from file CARD on tape or disk.

Notes:

1. ADARUN and/or the Adalink, ADAIOR, ADAMOD, and other Adabas modules must be available
for dynamic loading during execution.

2. The Adabas load library must be available during execution so that required modules can be
dynamically loaded.

Execution in Single-User Mode

In single-user mode, the appropriate Adabas nucleus JCL must be included with the JCL of the user
program. This includes job control statements to define the Adabas datasets for the Associator, Data
Storage, the Work dataset, and any datasets for protection or command logging. For more information
about Adabas runtime job control requirements, see Adabas Session Execution.

Note:
User programs that use VM/ESA or z/VM facilities cannot access an Adabas nucleus in single-user mode.

Support for OpenEdition OS/390 Adabas Clients
A client running under OpenEdition OS/390 or z/OS can access Adabas. An OpenEdition application
containing calls to Adabas can be linked with ADALNK (option 1) or ADAUSER (option 2).

Software AG recommends that you link your OpenEdition application with ADAUSER (option 2) for the
following reasons:

the application is not tied to a specific database ID and SVC number, or Adabas release;

the DDPRINT output provides information about the database ID and SVC number used, as well as
diagnostic information in case of error (DDPRINT output is lost when using option 1); and

18

Support for OpenEdition OS/390 Adabas ClientsLinking Applications to Adabas

the program occupies less space in the hierarchical file system (HFS).

Option 1 : Link OpenEdition Application with ADALNK

Option 2 : Link OpenEdition Application with ADAUSER

Setting the OpenEdition Shell Variable STEPLIB

Limitations for OpenEdition Support

Option 1 : Link OpenEdition Application with ADALNK

An OpenEdition application that contains calls to Adabas can be linked with the module ADALNK. The
database ID and SVC number must be zapped into the Adabas CSECT of the linked module at the offsets
described in section Writing User Exits for an Adalink of the Adabas Installation documentation.

The following sample ZAP and link job has the following steps:

COPYLNK: copy module ADALNK to another library

ZAPLNK: zap the copied ADALNK module

BINDAPP1: link (bind) the application with the zapped ADALNK into OpenEdition

//*
//* COPY AND RENAME ADALNK
//*
//
COPYLNK

 EXEC PGM=IEBCOPY
//INLIB DD DSN=ADABAS.load.library,DISP=SHR
//OTLIB DD DSN=ADABAS.lnk.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COPY INDD=INLIB,OUTDD=OTLIB
SELECT MEMBER=((ADALNK,ADALNKOE,R))
/*
//*
//* ZAP DBID AND SVC INTO COPIED ADALNK
//*
//
ZAPLNK

 EXEC PGM=IMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=ADABAS.lnk.library,DISP=SHR
//SYSIN DD *
NAME ADALNKOE ADABAS
VER 0080 0001 DEFAULT DBID 1
VER 0084 0AF9 DEFAULT SVC 249
REP 0080 00D3 <====== CHANGE TO USER DBID (HERE DBID 211)
REP 0084 0AE8 <====== CHANGE TO USER SVC (HERE SVC 232)
/*
//*
//* BIND APPLICATION
//*
//
BINDAPP1

19

Linking Applications to AdabasOption 1 : Link OpenEdition Application with ADALNK

 EXEC PGM=IEWBLINK,
// PARM=’LIST,LET,XREF,MAP,CASE=MIXED’
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD PATH=’/u/group/user’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXU,SIRWXG,SIRWXO)
//APPLIB DD DSN=your.appl.library,DISP=SHR
//LNKLOAD DD DSN=ADABAS.lnk.library,DISP=SHR
//SYSLIN DD *
 INCLUDE APPLIB(applname)
 INCLUDE LNKLOAD(ADALNKOE)
 ENTRY applent
 NAME oeappl(R)
/*

Option 2 : Link OpenEdition Application with ADAUSER

An OpenEdition application that contains calls to Adabas can be linked with the module ADAUSER.

Additionally, a member "ddcard" must be set up in the OpenEdition hierarchical file system (HFS) to
contain the ADARUN parameters required by the client; for example:

ADARUN PROG=USER,DBID=211,SVC=232,MODE=MULTI

Prior to the first call to Adabas, the application must set the current working directory (using the chdir()
function, for example) to the directory where file "ddcard" is located. As the application runs, Adabas
searches the current working directory for member "ddcard", and extracts the parameters. Additionally,
Adabas directs the DDPRINT output to member "ddprint" of the current working directory.

Note:
Member names "ddcard" and "ddprint" are case-sensitive. Member name "DDCARD" is not valid and will
be ignored.

The following sample link job has one step:

BINDAPP2: link (bind) the application with ADAUSER into OpenEdition

//*
//* BIND APPLICATION
//*
//
BINDAPP2

 EXEC PGM=IEWBLINK,
// PARM=’LIST,LET,XREF,MAP,CASE=MIXED’
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD PATH=’/u/group/user’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXU,SIRWXG,SIRWXO)
//APPLIB DD DSN=your.appl.library,DISP=SHR
//ADALOAD DD DSN=ADABAS.load.library,DISP=SHR
//SYSLIN DD *
 INCLUDE APPLIB(applname)

20

Option 2 : Link OpenEdition Application with ADAUSERLinking Applications to Adabas

 INCLUDE ADALOAD(ADAUSER)
 ENTRY applent
 NAME oeappl(R)
/*

Setting the OpenEdition Shell Variable STEPLIB

For both options, the OpenEdition shell variable STEPLIB must be set to ensure access to the Adabas load
library. The following sample job sets the variable from OpenEdition running in batch mode:

//*
//OEBATCH EXEC PGM=BPXBATCH,
// PARM=’PGM /u/group/user/oeappl’
//STDIN DD
PATH=’/u/group/user/oeappl.in’,PATHOPTS=(ORDONLY)
//STDOUT DD PATH=’/u/group/user/oeappl.out’,
// PATHOPTS=(OWRONLY,OCREAT),PATHMODE=SIRWXU
//STERR DD PATH=’/u/group/user/oeappl.err’,
// PATHOPTS=(OWRONLY,OCREAT),PATHMODE=SIRWXU
//STDENV DD *
STEPLIB=ADABAS.load.library
/*
//

Limitations for OpenEdition Support

Support is not available for running the following under OpenEdition:

the Adabas nucleus or utilities

clients running in single-user mode (MODE=SINGLE)

clients running in 24-bit addressing mode (AMODE 24)

21

Linking Applications to AdabasSetting the OpenEdition Shell Variable STEPLIB

	Linking Applications to Adabas
	How the Adabas API Works
	Online Operation
	
	Adabas/TP Monitor Communication

	Batch Operation

	Available Link Routines
	For IBM Operating Environments
	For BS2000 Operating Environments

	 Required Work Area
	Work Area for the Batch/TSO Reentrant ADALNKR
	Seventh Parameter Required
	MODIFIED Work Area
	Calling Requirements

	 Required Application Reentrancy Properties
	Com-plete : Code Reentrancy Requirements
	CICS : Code Reentrancy Requirements
	 TSO and IMS/DC (Standalone) : Code Reentrancy Requirements

	 Adabas Control Block Options
	 Using One-Byte File Numbers
	 Using Two-Byte File Numbers
	Using Both One- and Two-Byte File Numbers in a Single Application
	Using COBOL to Set the Control Byte

	 Programming Conventions for Issuing Direct Calls
	Com-plete
	CICS
	Addressing the CICS TWA : Assembler
	Addressing the CICS TWA : PL/I
	Adabas Call Using CICS : VS COBOL
	Adabas Call Using CICS : COBOL II or COBOL/LE

	IMS/DC
	Adabas Call Using IMS/DC (Nonreentrant)
	Adabas Call Using IMS/DC (Reentrant)

	Shadow II
	Adabas Call Using Shadow II

	 Using the Adabas API in Batch Mode
	ADAUSER and ADARUN with the Adabas API
	Link Example (BS2000)
	Link Example (OS/390 or z/OS)
	Link Example (VM/ESA or z/VM)
	Link Example (VSE/ESA)

	Batch Execution Modes
	Multiuser Mode Example (BS2000)
	Multiuser Mode Example (OS/390 or z/OS)
	Multiuser Mode Example (VM/ESA or z/VM)
	Multiuser Mode Example (VSE/ESA)
	Execution in Single-User Mode

	Support for OpenEdition OS/390 Adabas Clients
	Option 1 : Link OpenEdition Application with ADALNK
	Option 2 : Link OpenEdition Application with ADAUSER
	Setting the OpenEdition Shell Variable STEPLIB
	 Limitations for OpenEdition Support

